Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
Note: File does not exist in v3.5.6.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * blk-mq scheduling framework
  4 *
  5 * Copyright (C) 2016 Jens Axboe
  6 */
  7#include <linux/kernel.h>
  8#include <linux/module.h>
  9#include <linux/blk-mq.h>
 10
 11#include <trace/events/block.h>
 12
 13#include "blk.h"
 14#include "blk-mq.h"
 15#include "blk-mq-debugfs.h"
 16#include "blk-mq-sched.h"
 17#include "blk-mq-tag.h"
 18#include "blk-wbt.h"
 19
 20void blk_mq_sched_free_hctx_data(struct request_queue *q,
 21				 void (*exit)(struct blk_mq_hw_ctx *))
 22{
 23	struct blk_mq_hw_ctx *hctx;
 24	int i;
 25
 26	queue_for_each_hw_ctx(q, hctx, i) {
 27		if (exit && hctx->sched_data)
 28			exit(hctx);
 29		kfree(hctx->sched_data);
 30		hctx->sched_data = NULL;
 31	}
 32}
 33EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
 34
 35void blk_mq_sched_assign_ioc(struct request *rq)
 36{
 37	struct request_queue *q = rq->q;
 38	struct io_context *ioc;
 39	struct io_cq *icq;
 40
 41	/*
 42	 * May not have an IO context if it's a passthrough request
 43	 */
 44	ioc = current->io_context;
 45	if (!ioc)
 46		return;
 47
 48	spin_lock_irq(&q->queue_lock);
 49	icq = ioc_lookup_icq(ioc, q);
 50	spin_unlock_irq(&q->queue_lock);
 51
 52	if (!icq) {
 53		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
 54		if (!icq)
 55			return;
 56	}
 57	get_io_context(icq->ioc);
 58	rq->elv.icq = icq;
 59}
 60
 61/*
 62 * Mark a hardware queue as needing a restart. For shared queues, maintain
 63 * a count of how many hardware queues are marked for restart.
 64 */
 65void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
 66{
 67	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
 68		return;
 69
 70	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
 71}
 72EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
 73
 74void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
 75{
 76	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
 77		return;
 78	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
 79
 80	blk_mq_run_hw_queue(hctx, true);
 81}
 82
 83/*
 84 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 85 * its queue by itself in its completion handler, so we don't need to
 86 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
 87 */
 88static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
 89{
 90	struct request_queue *q = hctx->queue;
 91	struct elevator_queue *e = q->elevator;
 92	LIST_HEAD(rq_list);
 93
 94	do {
 95		struct request *rq;
 96
 97		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
 98			break;
 99
100		if (!blk_mq_get_dispatch_budget(hctx))
101			break;
102
103		rq = e->type->ops.dispatch_request(hctx);
104		if (!rq) {
105			blk_mq_put_dispatch_budget(hctx);
106			break;
107		}
108
109		/*
110		 * Now this rq owns the budget which has to be released
111		 * if this rq won't be queued to driver via .queue_rq()
112		 * in blk_mq_dispatch_rq_list().
113		 */
114		list_add(&rq->queuelist, &rq_list);
115	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
116}
117
118static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
119					  struct blk_mq_ctx *ctx)
120{
121	unsigned short idx = ctx->index_hw[hctx->type];
122
123	if (++idx == hctx->nr_ctx)
124		idx = 0;
125
126	return hctx->ctxs[idx];
127}
128
129/*
130 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
131 * its queue by itself in its completion handler, so we don't need to
132 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
133 */
134static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
135{
136	struct request_queue *q = hctx->queue;
137	LIST_HEAD(rq_list);
138	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
139
140	do {
141		struct request *rq;
142
143		if (!sbitmap_any_bit_set(&hctx->ctx_map))
144			break;
145
146		if (!blk_mq_get_dispatch_budget(hctx))
147			break;
148
149		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
150		if (!rq) {
151			blk_mq_put_dispatch_budget(hctx);
152			break;
153		}
154
155		/*
156		 * Now this rq owns the budget which has to be released
157		 * if this rq won't be queued to driver via .queue_rq()
158		 * in blk_mq_dispatch_rq_list().
159		 */
160		list_add(&rq->queuelist, &rq_list);
161
162		/* round robin for fair dispatch */
163		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
164
165	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
166
167	WRITE_ONCE(hctx->dispatch_from, ctx);
168}
169
170void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
171{
172	struct request_queue *q = hctx->queue;
173	struct elevator_queue *e = q->elevator;
174	const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
175	LIST_HEAD(rq_list);
176
177	/* RCU or SRCU read lock is needed before checking quiesced flag */
178	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
179		return;
180
181	hctx->run++;
182
183	/*
184	 * If we have previous entries on our dispatch list, grab them first for
185	 * more fair dispatch.
186	 */
187	if (!list_empty_careful(&hctx->dispatch)) {
188		spin_lock(&hctx->lock);
189		if (!list_empty(&hctx->dispatch))
190			list_splice_init(&hctx->dispatch, &rq_list);
191		spin_unlock(&hctx->lock);
192	}
193
194	/*
195	 * Only ask the scheduler for requests, if we didn't have residual
196	 * requests from the dispatch list. This is to avoid the case where
197	 * we only ever dispatch a fraction of the requests available because
198	 * of low device queue depth. Once we pull requests out of the IO
199	 * scheduler, we can no longer merge or sort them. So it's best to
200	 * leave them there for as long as we can. Mark the hw queue as
201	 * needing a restart in that case.
202	 *
203	 * We want to dispatch from the scheduler if there was nothing
204	 * on the dispatch list or we were able to dispatch from the
205	 * dispatch list.
206	 */
207	if (!list_empty(&rq_list)) {
208		blk_mq_sched_mark_restart_hctx(hctx);
209		if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
210			if (has_sched_dispatch)
211				blk_mq_do_dispatch_sched(hctx);
212			else
213				blk_mq_do_dispatch_ctx(hctx);
214		}
215	} else if (has_sched_dispatch) {
216		blk_mq_do_dispatch_sched(hctx);
217	} else if (hctx->dispatch_busy) {
218		/* dequeue request one by one from sw queue if queue is busy */
219		blk_mq_do_dispatch_ctx(hctx);
220	} else {
221		blk_mq_flush_busy_ctxs(hctx, &rq_list);
222		blk_mq_dispatch_rq_list(q, &rq_list, false);
223	}
224}
225
226bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
227		unsigned int nr_segs, struct request **merged_request)
228{
229	struct request *rq;
230
231	switch (elv_merge(q, &rq, bio)) {
232	case ELEVATOR_BACK_MERGE:
233		if (!blk_mq_sched_allow_merge(q, rq, bio))
234			return false;
235		if (!bio_attempt_back_merge(rq, bio, nr_segs))
236			return false;
237		*merged_request = attempt_back_merge(q, rq);
238		if (!*merged_request)
239			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
240		return true;
241	case ELEVATOR_FRONT_MERGE:
242		if (!blk_mq_sched_allow_merge(q, rq, bio))
243			return false;
244		if (!bio_attempt_front_merge(rq, bio, nr_segs))
245			return false;
246		*merged_request = attempt_front_merge(q, rq);
247		if (!*merged_request)
248			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
249		return true;
250	case ELEVATOR_DISCARD_MERGE:
251		return bio_attempt_discard_merge(q, rq, bio);
252	default:
253		return false;
254	}
255}
256EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
257
258/*
259 * Iterate list of requests and see if we can merge this bio with any
260 * of them.
261 */
262bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
263			   struct bio *bio, unsigned int nr_segs)
264{
265	struct request *rq;
266	int checked = 8;
267
268	list_for_each_entry_reverse(rq, list, queuelist) {
269		bool merged = false;
270
271		if (!checked--)
272			break;
273
274		if (!blk_rq_merge_ok(rq, bio))
275			continue;
276
277		switch (blk_try_merge(rq, bio)) {
278		case ELEVATOR_BACK_MERGE:
279			if (blk_mq_sched_allow_merge(q, rq, bio))
280				merged = bio_attempt_back_merge(rq, bio,
281						nr_segs);
282			break;
283		case ELEVATOR_FRONT_MERGE:
284			if (blk_mq_sched_allow_merge(q, rq, bio))
285				merged = bio_attempt_front_merge(rq, bio,
286						nr_segs);
287			break;
288		case ELEVATOR_DISCARD_MERGE:
289			merged = bio_attempt_discard_merge(q, rq, bio);
290			break;
291		default:
292			continue;
293		}
294
295		return merged;
296	}
297
298	return false;
299}
300EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);
301
302/*
303 * Reverse check our software queue for entries that we could potentially
304 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
305 * too much time checking for merges.
306 */
307static bool blk_mq_attempt_merge(struct request_queue *q,
308				 struct blk_mq_hw_ctx *hctx,
309				 struct blk_mq_ctx *ctx, struct bio *bio,
310				 unsigned int nr_segs)
311{
312	enum hctx_type type = hctx->type;
313
314	lockdep_assert_held(&ctx->lock);
315
316	if (blk_mq_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
317		ctx->rq_merged++;
318		return true;
319	}
320
321	return false;
322}
323
324bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
325		unsigned int nr_segs)
326{
327	struct elevator_queue *e = q->elevator;
328	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
329	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
330	bool ret = false;
331	enum hctx_type type;
332
333	if (e && e->type->ops.bio_merge)
334		return e->type->ops.bio_merge(hctx, bio, nr_segs);
335
336	type = hctx->type;
337	if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
338			!list_empty_careful(&ctx->rq_lists[type])) {
339		/* default per sw-queue merge */
340		spin_lock(&ctx->lock);
341		ret = blk_mq_attempt_merge(q, hctx, ctx, bio, nr_segs);
342		spin_unlock(&ctx->lock);
343	}
344
345	return ret;
346}
347
348bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
349{
350	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
351}
352EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
353
354void blk_mq_sched_request_inserted(struct request *rq)
355{
356	trace_block_rq_insert(rq->q, rq);
357}
358EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
359
360static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
361				       bool has_sched,
362				       struct request *rq)
363{
364	/* dispatch flush rq directly */
365	if (rq->rq_flags & RQF_FLUSH_SEQ) {
366		spin_lock(&hctx->lock);
367		list_add(&rq->queuelist, &hctx->dispatch);
368		spin_unlock(&hctx->lock);
369		return true;
370	}
371
372	if (has_sched)
373		rq->rq_flags |= RQF_SORTED;
374
375	return false;
376}
377
378void blk_mq_sched_insert_request(struct request *rq, bool at_head,
379				 bool run_queue, bool async)
380{
381	struct request_queue *q = rq->q;
382	struct elevator_queue *e = q->elevator;
383	struct blk_mq_ctx *ctx = rq->mq_ctx;
384	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
385
386	/* flush rq in flush machinery need to be dispatched directly */
387	if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
388		blk_insert_flush(rq);
389		goto run;
390	}
391
392	WARN_ON(e && (rq->tag != -1));
393
394	if (blk_mq_sched_bypass_insert(hctx, !!e, rq))
395		goto run;
396
397	if (e && e->type->ops.insert_requests) {
398		LIST_HEAD(list);
399
400		list_add(&rq->queuelist, &list);
401		e->type->ops.insert_requests(hctx, &list, at_head);
402	} else {
403		spin_lock(&ctx->lock);
404		__blk_mq_insert_request(hctx, rq, at_head);
405		spin_unlock(&ctx->lock);
406	}
407
408run:
409	if (run_queue)
410		blk_mq_run_hw_queue(hctx, async);
411}
412
413void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
414				  struct blk_mq_ctx *ctx,
415				  struct list_head *list, bool run_queue_async)
416{
417	struct elevator_queue *e;
418	struct request_queue *q = hctx->queue;
419
420	/*
421	 * blk_mq_sched_insert_requests() is called from flush plug
422	 * context only, and hold one usage counter to prevent queue
423	 * from being released.
424	 */
425	percpu_ref_get(&q->q_usage_counter);
426
427	e = hctx->queue->elevator;
428	if (e && e->type->ops.insert_requests)
429		e->type->ops.insert_requests(hctx, list, false);
430	else {
431		/*
432		 * try to issue requests directly if the hw queue isn't
433		 * busy in case of 'none' scheduler, and this way may save
434		 * us one extra enqueue & dequeue to sw queue.
435		 */
436		if (!hctx->dispatch_busy && !e && !run_queue_async) {
437			blk_mq_try_issue_list_directly(hctx, list);
438			if (list_empty(list))
439				goto out;
440		}
441		blk_mq_insert_requests(hctx, ctx, list);
442	}
443
444	blk_mq_run_hw_queue(hctx, run_queue_async);
445 out:
446	percpu_ref_put(&q->q_usage_counter);
447}
448
449static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
450				   struct blk_mq_hw_ctx *hctx,
451				   unsigned int hctx_idx)
452{
453	if (hctx->sched_tags) {
454		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
455		blk_mq_free_rq_map(hctx->sched_tags);
456		hctx->sched_tags = NULL;
457	}
458}
459
460static int blk_mq_sched_alloc_tags(struct request_queue *q,
461				   struct blk_mq_hw_ctx *hctx,
462				   unsigned int hctx_idx)
463{
464	struct blk_mq_tag_set *set = q->tag_set;
465	int ret;
466
467	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
468					       set->reserved_tags);
469	if (!hctx->sched_tags)
470		return -ENOMEM;
471
472	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
473	if (ret)
474		blk_mq_sched_free_tags(set, hctx, hctx_idx);
475
476	return ret;
477}
478
479/* called in queue's release handler, tagset has gone away */
480static void blk_mq_sched_tags_teardown(struct request_queue *q)
481{
482	struct blk_mq_hw_ctx *hctx;
483	int i;
484
485	queue_for_each_hw_ctx(q, hctx, i) {
486		if (hctx->sched_tags) {
487			blk_mq_free_rq_map(hctx->sched_tags);
488			hctx->sched_tags = NULL;
489		}
490	}
491}
492
493int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
494{
495	struct blk_mq_hw_ctx *hctx;
496	struct elevator_queue *eq;
497	unsigned int i;
498	int ret;
499
500	if (!e) {
501		q->elevator = NULL;
502		q->nr_requests = q->tag_set->queue_depth;
503		return 0;
504	}
505
506	/*
507	 * Default to double of smaller one between hw queue_depth and 128,
508	 * since we don't split into sync/async like the old code did.
509	 * Additionally, this is a per-hw queue depth.
510	 */
511	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
512				   BLKDEV_MAX_RQ);
513
514	queue_for_each_hw_ctx(q, hctx, i) {
515		ret = blk_mq_sched_alloc_tags(q, hctx, i);
516		if (ret)
517			goto err;
518	}
519
520	ret = e->ops.init_sched(q, e);
521	if (ret)
522		goto err;
523
524	blk_mq_debugfs_register_sched(q);
525
526	queue_for_each_hw_ctx(q, hctx, i) {
527		if (e->ops.init_hctx) {
528			ret = e->ops.init_hctx(hctx, i);
529			if (ret) {
530				eq = q->elevator;
531				blk_mq_sched_free_requests(q);
532				blk_mq_exit_sched(q, eq);
533				kobject_put(&eq->kobj);
534				return ret;
535			}
536		}
537		blk_mq_debugfs_register_sched_hctx(q, hctx);
538	}
539
540	return 0;
541
542err:
543	blk_mq_sched_free_requests(q);
544	blk_mq_sched_tags_teardown(q);
545	q->elevator = NULL;
546	return ret;
547}
548
549/*
550 * called in either blk_queue_cleanup or elevator_switch, tagset
551 * is required for freeing requests
552 */
553void blk_mq_sched_free_requests(struct request_queue *q)
554{
555	struct blk_mq_hw_ctx *hctx;
556	int i;
557
558	queue_for_each_hw_ctx(q, hctx, i) {
559		if (hctx->sched_tags)
560			blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
561	}
562}
563
564void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
565{
566	struct blk_mq_hw_ctx *hctx;
567	unsigned int i;
568
569	queue_for_each_hw_ctx(q, hctx, i) {
570		blk_mq_debugfs_unregister_sched_hctx(hctx);
571		if (e->type->ops.exit_hctx && hctx->sched_data) {
572			e->type->ops.exit_hctx(hctx, i);
573			hctx->sched_data = NULL;
574		}
575	}
576	blk_mq_debugfs_unregister_sched(q);
577	if (e->type->ops.exit_sched)
578		e->type->ops.exit_sched(e);
579	blk_mq_sched_tags_teardown(q);
580	q->elevator = NULL;
581}