Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * Xen time implementation.
  3 *
  4 * This is implemented in terms of a clocksource driver which uses
  5 * the hypervisor clock as a nanosecond timebase, and a clockevent
  6 * driver which uses the hypervisor's timer mechanism.
  7 *
  8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  9 */
 10#include <linux/kernel.h>
 11#include <linux/interrupt.h>
 12#include <linux/clocksource.h>
 13#include <linux/clockchips.h>
 14#include <linux/kernel_stat.h>
 15#include <linux/math64.h>
 16#include <linux/gfp.h>
 
 
 
 17
 18#include <asm/pvclock.h>
 19#include <asm/xen/hypervisor.h>
 20#include <asm/xen/hypercall.h>
 21
 22#include <xen/events.h>
 23#include <xen/features.h>
 24#include <xen/interface/xen.h>
 25#include <xen/interface/vcpu.h>
 26
 27#include "xen-ops.h"
 28
 29/* Xen may fire a timer up to this many ns early */
 30#define TIMER_SLOP	100000
 31#define NS_PER_TICK	(1000000000LL / HZ)
 32
 33/* runstate info updated by Xen */
 34static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate);
 35
 36/* snapshots of runstate info */
 37static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot);
 38
 39/* unused ns of stolen and blocked time */
 40static DEFINE_PER_CPU(u64, xen_residual_stolen);
 41static DEFINE_PER_CPU(u64, xen_residual_blocked);
 42
 43/* return an consistent snapshot of 64-bit time/counter value */
 44static u64 get64(const u64 *p)
 45{
 46	u64 ret;
 47
 48	if (BITS_PER_LONG < 64) {
 49		u32 *p32 = (u32 *)p;
 50		u32 h, l;
 51
 52		/*
 53		 * Read high then low, and then make sure high is
 54		 * still the same; this will only loop if low wraps
 55		 * and carries into high.
 56		 * XXX some clean way to make this endian-proof?
 57		 */
 58		do {
 59			h = p32[1];
 60			barrier();
 61			l = p32[0];
 62			barrier();
 63		} while (p32[1] != h);
 64
 65		ret = (((u64)h) << 32) | l;
 66	} else
 67		ret = *p;
 68
 69	return ret;
 70}
 71
 72/*
 73 * Runstate accounting
 74 */
 75static void get_runstate_snapshot(struct vcpu_runstate_info *res)
 76{
 77	u64 state_time;
 78	struct vcpu_runstate_info *state;
 79
 80	BUG_ON(preemptible());
 81
 82	state = &__get_cpu_var(xen_runstate);
 83
 84	/*
 85	 * The runstate info is always updated by the hypervisor on
 86	 * the current CPU, so there's no need to use anything
 87	 * stronger than a compiler barrier when fetching it.
 88	 */
 89	do {
 90		state_time = get64(&state->state_entry_time);
 91		barrier();
 92		*res = *state;
 93		barrier();
 94	} while (get64(&state->state_entry_time) != state_time);
 95}
 96
 97/* return true when a vcpu could run but has no real cpu to run on */
 98bool xen_vcpu_stolen(int vcpu)
 99{
100	return per_cpu(xen_runstate, vcpu).state == RUNSTATE_runnable;
101}
102
103void xen_setup_runstate_info(int cpu)
104{
105	struct vcpu_register_runstate_memory_area area;
106
107	area.addr.v = &per_cpu(xen_runstate, cpu);
108
109	if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area,
110			       cpu, &area))
111		BUG();
112}
113
114static void do_stolen_accounting(void)
115{
116	struct vcpu_runstate_info state;
117	struct vcpu_runstate_info *snap;
118	s64 blocked, runnable, offline, stolen;
119	cputime_t ticks;
120
121	get_runstate_snapshot(&state);
122
123	WARN_ON(state.state != RUNSTATE_running);
124
125	snap = &__get_cpu_var(xen_runstate_snapshot);
126
127	/* work out how much time the VCPU has not been runn*ing*  */
128	blocked = state.time[RUNSTATE_blocked] - snap->time[RUNSTATE_blocked];
129	runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
130	offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
131
132	*snap = state;
133
134	/* Add the appropriate number of ticks of stolen time,
135	   including any left-overs from last time. */
136	stolen = runnable + offline + __this_cpu_read(xen_residual_stolen);
137
138	if (stolen < 0)
139		stolen = 0;
140
141	ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
142	__this_cpu_write(xen_residual_stolen, stolen);
143	account_steal_ticks(ticks);
144
145	/* Add the appropriate number of ticks of blocked time,
146	   including any left-overs from last time. */
147	blocked += __this_cpu_read(xen_residual_blocked);
148
149	if (blocked < 0)
150		blocked = 0;
151
152	ticks = iter_div_u64_rem(blocked, NS_PER_TICK, &blocked);
153	__this_cpu_write(xen_residual_blocked, blocked);
154	account_idle_ticks(ticks);
155}
156
157/* Get the TSC speed from Xen */
158static unsigned long xen_tsc_khz(void)
159{
160	struct pvclock_vcpu_time_info *info =
161		&HYPERVISOR_shared_info->vcpu_info[0].time;
162
163	return pvclock_tsc_khz(info);
164}
165
166cycle_t xen_clocksource_read(void)
167{
168        struct pvclock_vcpu_time_info *src;
169	cycle_t ret;
170
171	preempt_disable_notrace();
172	src = &__get_cpu_var(xen_vcpu)->time;
173	ret = pvclock_clocksource_read(src);
174	preempt_enable_notrace();
175	return ret;
176}
177
178static cycle_t xen_clocksource_get_cycles(struct clocksource *cs)
179{
180	return xen_clocksource_read();
181}
182
183static void xen_read_wallclock(struct timespec *ts)
 
 
 
 
 
184{
185	struct shared_info *s = HYPERVISOR_shared_info;
186	struct pvclock_wall_clock *wall_clock = &(s->wc);
187        struct pvclock_vcpu_time_info *vcpu_time;
188
189	vcpu_time = &get_cpu_var(xen_vcpu)->time;
190	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
191	put_cpu_var(xen_vcpu);
192}
193
194static unsigned long xen_get_wallclock(void)
195{
196	struct timespec ts;
 
197
198	xen_read_wallclock(&ts);
199	return ts.tv_sec;
 
200}
201
202static int xen_set_wallclock(unsigned long now)
 
203{
 
 
 
204	struct xen_platform_op op;
205	int rc;
 
 
 
206
207	/* do nothing for domU */
208	if (!xen_initial_domain())
209		return -1;
210
211	op.cmd = XENPF_settime;
212	op.u.settime.secs = now;
213	op.u.settime.nsecs = 0;
214	op.u.settime.system_time = xen_clocksource_read();
 
 
215
216	rc = HYPERVISOR_dom0_op(&op);
217	WARN(rc != 0, "XENPF_settime failed: now=%ld\n", now);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
218
219	return rc;
220}
221
 
 
 
 
222static struct clocksource xen_clocksource __read_mostly = {
223	.name = "xen",
224	.rating = 400,
225	.read = xen_clocksource_get_cycles,
226	.mask = ~0,
227	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
228};
229
230/*
231   Xen clockevent implementation
232
233   Xen has two clockevent implementations:
234
235   The old timer_op one works with all released versions of Xen prior
236   to version 3.0.4.  This version of the hypervisor provides a
237   single-shot timer with nanosecond resolution.  However, sharing the
238   same event channel is a 100Hz tick which is delivered while the
239   vcpu is running.  We don't care about or use this tick, but it will
240   cause the core time code to think the timer fired too soon, and
241   will end up resetting it each time.  It could be filtered, but
242   doing so has complications when the ktime clocksource is not yet
243   the xen clocksource (ie, at boot time).
244
245   The new vcpu_op-based timer interface allows the tick timer period
246   to be changed or turned off.  The tick timer is not useful as a
247   periodic timer because events are only delivered to running vcpus.
248   The one-shot timer can report when a timeout is in the past, so
249   set_next_event is capable of returning -ETIME when appropriate.
250   This interface is used when available.
251*/
252
253
254/*
255  Get a hypervisor absolute time.  In theory we could maintain an
256  offset between the kernel's time and the hypervisor's time, and
257  apply that to a kernel's absolute timeout.  Unfortunately the
258  hypervisor and kernel times can drift even if the kernel is using
259  the Xen clocksource, because ntp can warp the kernel's clocksource.
260*/
261static s64 get_abs_timeout(unsigned long delta)
262{
263	return xen_clocksource_read() + delta;
264}
265
266static void xen_timerop_set_mode(enum clock_event_mode mode,
267				 struct clock_event_device *evt)
268{
269	switch (mode) {
270	case CLOCK_EVT_MODE_PERIODIC:
271		/* unsupported */
272		WARN_ON(1);
273		break;
274
275	case CLOCK_EVT_MODE_ONESHOT:
276	case CLOCK_EVT_MODE_RESUME:
277		break;
278
279	case CLOCK_EVT_MODE_UNUSED:
280	case CLOCK_EVT_MODE_SHUTDOWN:
281		HYPERVISOR_set_timer_op(0);  /* cancel timeout */
282		break;
283	}
284}
285
286static int xen_timerop_set_next_event(unsigned long delta,
287				      struct clock_event_device *evt)
288{
289	WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
290
291	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
292		BUG();
293
294	/* We may have missed the deadline, but there's no real way of
295	   knowing for sure.  If the event was in the past, then we'll
296	   get an immediate interrupt. */
297
298	return 0;
299}
300
301static const struct clock_event_device xen_timerop_clockevent = {
302	.name = "xen",
303	.features = CLOCK_EVT_FEAT_ONESHOT,
304
305	.max_delta_ns = 0xffffffff,
306	.min_delta_ns = TIMER_SLOP,
307
308	.mult = 1,
309	.shift = 0,
310	.rating = 500,
 
 
311
312	.set_mode = xen_timerop_set_mode,
313	.set_next_event = xen_timerop_set_next_event,
314};
315
 
 
 
316
 
 
 
 
 
 
 
 
317
318static void xen_vcpuop_set_mode(enum clock_event_mode mode,
319				struct clock_event_device *evt)
320{
321	int cpu = smp_processor_id();
322
323	switch (mode) {
324	case CLOCK_EVT_MODE_PERIODIC:
325		WARN_ON(1);	/* unsupported */
326		break;
327
328	case CLOCK_EVT_MODE_ONESHOT:
329		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
330			BUG();
331		break;
332
333	case CLOCK_EVT_MODE_UNUSED:
334	case CLOCK_EVT_MODE_SHUTDOWN:
335		if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
336		    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
337			BUG();
338		break;
339	case CLOCK_EVT_MODE_RESUME:
340		break;
341	}
342}
343
344static int xen_vcpuop_set_next_event(unsigned long delta,
345				     struct clock_event_device *evt)
346{
347	int cpu = smp_processor_id();
348	struct vcpu_set_singleshot_timer single;
349	int ret;
350
351	WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
352
353	single.timeout_abs_ns = get_abs_timeout(delta);
354	single.flags = VCPU_SSHOTTMR_future;
355
356	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
357
358	BUG_ON(ret != 0 && ret != -ETIME);
 
 
359
360	return ret;
361}
362
363static const struct clock_event_device xen_vcpuop_clockevent = {
364	.name = "xen",
365	.features = CLOCK_EVT_FEAT_ONESHOT,
366
367	.max_delta_ns = 0xffffffff,
 
368	.min_delta_ns = TIMER_SLOP,
 
369
370	.mult = 1,
371	.shift = 0,
372	.rating = 500,
373
374	.set_mode = xen_vcpuop_set_mode,
 
375	.set_next_event = xen_vcpuop_set_next_event,
376};
377
378static const struct clock_event_device *xen_clockevent =
379	&xen_timerop_clockevent;
380static DEFINE_PER_CPU(struct clock_event_device, xen_clock_events);
 
 
 
 
 
381
382static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
383{
384	struct clock_event_device *evt = &__get_cpu_var(xen_clock_events);
385	irqreturn_t ret;
386
387	ret = IRQ_NONE;
388	if (evt->event_handler) {
389		evt->event_handler(evt);
390		ret = IRQ_HANDLED;
391	}
392
393	do_stolen_accounting();
394
395	return ret;
396}
397
398void xen_setup_timer(int cpu)
399{
400	const char *name;
401	struct clock_event_device *evt;
 
 
 
 
 
 
 
 
 
 
 
 
402	int irq;
403
 
 
 
 
404	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
405
406	name = kasprintf(GFP_KERNEL, "timer%d", cpu);
407	if (!name)
408		name = "<timer kasprintf failed>";
409
410	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
411				      IRQF_DISABLED|IRQF_PERCPU|
412				      IRQF_NOBALANCING|IRQF_TIMER|
413				      IRQF_FORCE_RESUME,
414				      name, NULL);
415
416	evt = &per_cpu(xen_clock_events, cpu);
417	memcpy(evt, xen_clockevent, sizeof(*evt));
418
419	evt->cpumask = cpumask_of(cpu);
420	evt->irq = irq;
421}
422
423void xen_teardown_timer(int cpu)
424{
425	struct clock_event_device *evt;
426	BUG_ON(cpu == 0);
427	evt = &per_cpu(xen_clock_events, cpu);
428	unbind_from_irqhandler(evt->irq, NULL);
429}
430
431void xen_setup_cpu_clockevents(void)
432{
433	BUG_ON(preemptible());
434
435	clockevents_register_device(&__get_cpu_var(xen_clock_events));
436}
437
438void xen_timer_resume(void)
439{
440	int cpu;
441
442	pvclock_resume();
443
444	if (xen_clockevent != &xen_vcpuop_clockevent)
445		return;
446
447	for_each_online_cpu(cpu) {
448		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
 
449			BUG();
450	}
451}
452
453static const struct pv_time_ops xen_time_ops __initconst = {
454	.sched_clock = xen_clocksource_read,
 
455};
456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
457static void __init xen_time_init(void)
458{
 
459	int cpu = smp_processor_id();
460	struct timespec tp;
 
 
 
 
461
462	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
463
464	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
 
465		/* Successfully turned off 100Hz tick, so we have the
466		   vcpuop-based timer interface */
467		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
468		xen_clockevent = &xen_vcpuop_clockevent;
469	}
470
471	/* Set initial system time with full resolution */
472	xen_read_wallclock(&tp);
473	do_settimeofday(&tp);
474
475	setup_force_cpu_cap(X86_FEATURE_TSC);
476
 
 
 
 
 
 
 
 
 
 
477	xen_setup_runstate_info(cpu);
478	xen_setup_timer(cpu);
479	xen_setup_cpu_clockevents();
 
 
 
 
 
480}
481
482void __init xen_init_time_ops(void)
483{
484	pv_time_ops = xen_time_ops;
 
485
486	x86_init.timers.timer_init = xen_time_init;
487	x86_init.timers.setup_percpu_clockev = x86_init_noop;
488	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
489
490	x86_platform.calibrate_tsc = xen_tsc_khz;
491	x86_platform.get_wallclock = xen_get_wallclock;
492	x86_platform.set_wallclock = xen_set_wallclock;
 
 
493}
494
495#ifdef CONFIG_XEN_PVHVM
496static void xen_hvm_setup_cpu_clockevents(void)
497{
498	int cpu = smp_processor_id();
499	xen_setup_runstate_info(cpu);
500	xen_setup_timer(cpu);
 
 
 
 
501	xen_setup_cpu_clockevents();
502}
503
504void __init xen_hvm_init_time_ops(void)
505{
506	/* vector callback is needed otherwise we cannot receive interrupts
 
507	 * on cpu > 0 and at this point we don't know how many cpus are
508	 * available */
 
509	if (!xen_have_vector_callback)
510		return;
 
511	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
512		printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
513				"disable pv timer\n");
514		return;
515	}
516
517	pv_time_ops = xen_time_ops;
 
518	x86_init.timers.setup_percpu_clockev = xen_time_init;
519	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
520
521	x86_platform.calibrate_tsc = xen_tsc_khz;
522	x86_platform.get_wallclock = xen_get_wallclock;
523	x86_platform.set_wallclock = xen_set_wallclock;
524}
525#endif
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Xen time implementation.
  4 *
  5 * This is implemented in terms of a clocksource driver which uses
  6 * the hypervisor clock as a nanosecond timebase, and a clockevent
  7 * driver which uses the hypervisor's timer mechanism.
  8 *
  9 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 10 */
 11#include <linux/kernel.h>
 12#include <linux/interrupt.h>
 13#include <linux/clocksource.h>
 14#include <linux/clockchips.h>
 
 
 15#include <linux/gfp.h>
 16#include <linux/slab.h>
 17#include <linux/pvclock_gtod.h>
 18#include <linux/timekeeper_internal.h>
 19
 20#include <asm/pvclock.h>
 21#include <asm/xen/hypervisor.h>
 22#include <asm/xen/hypercall.h>
 23
 24#include <xen/events.h>
 25#include <xen/features.h>
 26#include <xen/interface/xen.h>
 27#include <xen/interface/vcpu.h>
 28
 29#include "xen-ops.h"
 30
 31/* Minimum amount of time until next clock event fires */
 32#define TIMER_SLOP	100000
 
 33
 34static u64 xen_sched_clock_offset __read_mostly;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 35
 36/* Get the TSC speed from Xen */
 37static unsigned long xen_tsc_khz(void)
 38{
 39	struct pvclock_vcpu_time_info *info =
 40		&HYPERVISOR_shared_info->vcpu_info[0].time;
 41
 42	return pvclock_tsc_khz(info);
 43}
 44
 45static u64 xen_clocksource_read(void)
 46{
 47        struct pvclock_vcpu_time_info *src;
 48	u64 ret;
 49
 50	preempt_disable_notrace();
 51	src = &__this_cpu_read(xen_vcpu)->time;
 52	ret = pvclock_clocksource_read(src);
 53	preempt_enable_notrace();
 54	return ret;
 55}
 56
 57static u64 xen_clocksource_get_cycles(struct clocksource *cs)
 58{
 59	return xen_clocksource_read();
 60}
 61
 62static u64 xen_sched_clock(void)
 63{
 64	return xen_clocksource_read() - xen_sched_clock_offset;
 65}
 66
 67static void xen_read_wallclock(struct timespec64 *ts)
 68{
 69	struct shared_info *s = HYPERVISOR_shared_info;
 70	struct pvclock_wall_clock *wall_clock = &(s->wc);
 71        struct pvclock_vcpu_time_info *vcpu_time;
 72
 73	vcpu_time = &get_cpu_var(xen_vcpu)->time;
 74	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
 75	put_cpu_var(xen_vcpu);
 76}
 77
 78static void xen_get_wallclock(struct timespec64 *now)
 79{
 80	xen_read_wallclock(now);
 81}
 82
 83static int xen_set_wallclock(const struct timespec64 *now)
 84{
 85	return -ENODEV;
 86}
 87
 88static int xen_pvclock_gtod_notify(struct notifier_block *nb,
 89				   unsigned long was_set, void *priv)
 90{
 91	/* Protected by the calling core code serialization */
 92	static struct timespec64 next_sync;
 93
 94	struct xen_platform_op op;
 95	struct timespec64 now;
 96	struct timekeeper *tk = priv;
 97	static bool settime64_supported = true;
 98	int ret;
 99
100	now.tv_sec = tk->xtime_sec;
101	now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 
102
103	/*
104	 * We only take the expensive HV call when the clock was set
105	 * or when the 11 minutes RTC synchronization time elapsed.
106	 */
107	if (!was_set && timespec64_compare(&now, &next_sync) < 0)
108		return NOTIFY_OK;
109
110again:
111	if (settime64_supported) {
112		op.cmd = XENPF_settime64;
113		op.u.settime64.mbz = 0;
114		op.u.settime64.secs = now.tv_sec;
115		op.u.settime64.nsecs = now.tv_nsec;
116		op.u.settime64.system_time = xen_clocksource_read();
117	} else {
118		op.cmd = XENPF_settime32;
119		op.u.settime32.secs = now.tv_sec;
120		op.u.settime32.nsecs = now.tv_nsec;
121		op.u.settime32.system_time = xen_clocksource_read();
122	}
123
124	ret = HYPERVISOR_platform_op(&op);
125
126	if (ret == -ENOSYS && settime64_supported) {
127		settime64_supported = false;
128		goto again;
129	}
130	if (ret < 0)
131		return NOTIFY_BAD;
132
133	/*
134	 * Move the next drift compensation time 11 minutes
135	 * ahead. That's emulating the sync_cmos_clock() update for
136	 * the hardware RTC.
137	 */
138	next_sync = now;
139	next_sync.tv_sec += 11 * 60;
140
141	return NOTIFY_OK;
142}
143
144static struct notifier_block xen_pvclock_gtod_notifier = {
145	.notifier_call = xen_pvclock_gtod_notify,
146};
147
148static struct clocksource xen_clocksource __read_mostly = {
149	.name = "xen",
150	.rating = 400,
151	.read = xen_clocksource_get_cycles,
152	.mask = ~0,
153	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
154};
155
156/*
157   Xen clockevent implementation
158
159   Xen has two clockevent implementations:
160
161   The old timer_op one works with all released versions of Xen prior
162   to version 3.0.4.  This version of the hypervisor provides a
163   single-shot timer with nanosecond resolution.  However, sharing the
164   same event channel is a 100Hz tick which is delivered while the
165   vcpu is running.  We don't care about or use this tick, but it will
166   cause the core time code to think the timer fired too soon, and
167   will end up resetting it each time.  It could be filtered, but
168   doing so has complications when the ktime clocksource is not yet
169   the xen clocksource (ie, at boot time).
170
171   The new vcpu_op-based timer interface allows the tick timer period
172   to be changed or turned off.  The tick timer is not useful as a
173   periodic timer because events are only delivered to running vcpus.
174   The one-shot timer can report when a timeout is in the past, so
175   set_next_event is capable of returning -ETIME when appropriate.
176   This interface is used when available.
177*/
178
179
180/*
181  Get a hypervisor absolute time.  In theory we could maintain an
182  offset between the kernel's time and the hypervisor's time, and
183  apply that to a kernel's absolute timeout.  Unfortunately the
184  hypervisor and kernel times can drift even if the kernel is using
185  the Xen clocksource, because ntp can warp the kernel's clocksource.
186*/
187static s64 get_abs_timeout(unsigned long delta)
188{
189	return xen_clocksource_read() + delta;
190}
191
192static int xen_timerop_shutdown(struct clock_event_device *evt)
 
193{
194	/* cancel timeout */
195	HYPERVISOR_set_timer_op(0);
196
197	return 0;
 
 
 
 
 
 
 
 
 
 
 
198}
199
200static int xen_timerop_set_next_event(unsigned long delta,
201				      struct clock_event_device *evt)
202{
203	WARN_ON(!clockevent_state_oneshot(evt));
204
205	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
206		BUG();
207
208	/* We may have missed the deadline, but there's no real way of
209	   knowing for sure.  If the event was in the past, then we'll
210	   get an immediate interrupt. */
211
212	return 0;
213}
214
215static struct clock_event_device xen_timerop_clockevent __ro_after_init = {
216	.name			= "xen",
217	.features		= CLOCK_EVT_FEAT_ONESHOT,
218
219	.max_delta_ns		= 0xffffffff,
220	.max_delta_ticks	= 0xffffffff,
221	.min_delta_ns		= TIMER_SLOP,
222	.min_delta_ticks	= TIMER_SLOP,
223
224	.mult			= 1,
225	.shift			= 0,
226	.rating			= 500,
227
228	.set_state_shutdown	= xen_timerop_shutdown,
229	.set_next_event		= xen_timerop_set_next_event,
230};
231
232static int xen_vcpuop_shutdown(struct clock_event_device *evt)
233{
234	int cpu = smp_processor_id();
235
236	if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
237			       NULL) ||
238	    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
239			       NULL))
240		BUG();
241
242	return 0;
243}
244
245static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
 
246{
247	int cpu = smp_processor_id();
248
249	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
250			       NULL))
251		BUG();
 
 
 
 
 
 
252
253	return 0;
 
 
 
 
 
 
 
 
254}
255
256static int xen_vcpuop_set_next_event(unsigned long delta,
257				     struct clock_event_device *evt)
258{
259	int cpu = smp_processor_id();
260	struct vcpu_set_singleshot_timer single;
261	int ret;
262
263	WARN_ON(!clockevent_state_oneshot(evt));
264
265	single.timeout_abs_ns = get_abs_timeout(delta);
266	/* Get an event anyway, even if the timeout is already expired */
267	single.flags = 0;
 
268
269	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
270				 &single);
271	BUG_ON(ret != 0);
272
273	return ret;
274}
275
276static struct clock_event_device xen_vcpuop_clockevent __ro_after_init = {
277	.name = "xen",
278	.features = CLOCK_EVT_FEAT_ONESHOT,
279
280	.max_delta_ns = 0xffffffff,
281	.max_delta_ticks = 0xffffffff,
282	.min_delta_ns = TIMER_SLOP,
283	.min_delta_ticks = TIMER_SLOP,
284
285	.mult = 1,
286	.shift = 0,
287	.rating = 500,
288
289	.set_state_shutdown = xen_vcpuop_shutdown,
290	.set_state_oneshot = xen_vcpuop_set_oneshot,
291	.set_next_event = xen_vcpuop_set_next_event,
292};
293
294static const struct clock_event_device *xen_clockevent =
295	&xen_timerop_clockevent;
296
297struct xen_clock_event_device {
298	struct clock_event_device evt;
299	char name[16];
300};
301static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
302
303static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
304{
305	struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
306	irqreturn_t ret;
307
308	ret = IRQ_NONE;
309	if (evt->event_handler) {
310		evt->event_handler(evt);
311		ret = IRQ_HANDLED;
312	}
313
 
 
314	return ret;
315}
316
317void xen_teardown_timer(int cpu)
318{
 
319	struct clock_event_device *evt;
320	evt = &per_cpu(xen_clock_events, cpu).evt;
321
322	if (evt->irq >= 0) {
323		unbind_from_irqhandler(evt->irq, NULL);
324		evt->irq = -1;
325	}
326}
327
328void xen_setup_timer(int cpu)
329{
330	struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
331	struct clock_event_device *evt = &xevt->evt;
332	int irq;
333
334	WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
335	if (evt->irq >= 0)
336		xen_teardown_timer(cpu);
337
338	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
339
340	snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
 
 
341
342	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
343				      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
344				      IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
345				      xevt->name, NULL);
346	(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
347
 
348	memcpy(evt, xen_clockevent, sizeof(*evt));
349
350	evt->cpumask = cpumask_of(cpu);
351	evt->irq = irq;
352}
353
 
 
 
 
 
 
 
354
355void xen_setup_cpu_clockevents(void)
356{
357	clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
 
 
358}
359
360void xen_timer_resume(void)
361{
362	int cpu;
363
 
 
364	if (xen_clockevent != &xen_vcpuop_clockevent)
365		return;
366
367	for_each_online_cpu(cpu) {
368		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
369				       xen_vcpu_nr(cpu), NULL))
370			BUG();
371	}
372}
373
374static const struct pv_time_ops xen_time_ops __initconst = {
375	.sched_clock = xen_sched_clock,
376	.steal_clock = xen_steal_clock,
377};
378
379static struct pvclock_vsyscall_time_info *xen_clock __read_mostly;
380static u64 xen_clock_value_saved;
381
382void xen_save_time_memory_area(void)
383{
384	struct vcpu_register_time_memory_area t;
385	int ret;
386
387	xen_clock_value_saved = xen_clocksource_read() - xen_sched_clock_offset;
388
389	if (!xen_clock)
390		return;
391
392	t.addr.v = NULL;
393
394	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
395	if (ret != 0)
396		pr_notice("Cannot save secondary vcpu_time_info (err %d)",
397			  ret);
398	else
399		clear_page(xen_clock);
400}
401
402void xen_restore_time_memory_area(void)
403{
404	struct vcpu_register_time_memory_area t;
405	int ret;
406
407	if (!xen_clock)
408		goto out;
409
410	t.addr.v = &xen_clock->pvti;
411
412	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
413
414	/*
415	 * We don't disable VCLOCK_PVCLOCK entirely if it fails to register the
416	 * secondary time info with Xen or if we migrated to a host without the
417	 * necessary flags. On both of these cases what happens is either
418	 * process seeing a zeroed out pvti or seeing no PVCLOCK_TSC_STABLE_BIT
419	 * bit set. Userspace checks the latter and if 0, it discards the data
420	 * in pvti and fallbacks to a system call for a reliable timestamp.
421	 */
422	if (ret != 0)
423		pr_notice("Cannot restore secondary vcpu_time_info (err %d)",
424			  ret);
425
426out:
427	/* Need pvclock_resume() before using xen_clocksource_read(). */
428	pvclock_resume();
429	xen_sched_clock_offset = xen_clocksource_read() - xen_clock_value_saved;
430}
431
432static void xen_setup_vsyscall_time_info(void)
433{
434	struct vcpu_register_time_memory_area t;
435	struct pvclock_vsyscall_time_info *ti;
436	int ret;
437
438	ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL);
439	if (!ti)
440		return;
441
442	t.addr.v = &ti->pvti;
443
444	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
445	if (ret) {
446		pr_notice("xen: VCLOCK_PVCLOCK not supported (err %d)\n", ret);
447		free_page((unsigned long)ti);
448		return;
449	}
450
451	/*
452	 * If primary time info had this bit set, secondary should too since
453	 * it's the same data on both just different memory regions. But we
454	 * still check it in case hypervisor is buggy.
455	 */
456	if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) {
457		t.addr.v = NULL;
458		ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area,
459					 0, &t);
460		if (!ret)
461			free_page((unsigned long)ti);
462
463		pr_notice("xen: VCLOCK_PVCLOCK not supported (tsc unstable)\n");
464		return;
465	}
466
467	xen_clock = ti;
468	pvclock_set_pvti_cpu0_va(xen_clock);
469
470	xen_clocksource.archdata.vclock_mode = VCLOCK_PVCLOCK;
471}
472
473static void __init xen_time_init(void)
474{
475	struct pvclock_vcpu_time_info *pvti;
476	int cpu = smp_processor_id();
477	struct timespec64 tp;
478
479	/* As Dom0 is never moved, no penalty on using TSC there */
480	if (xen_initial_domain())
481		xen_clocksource.rating = 275;
482
483	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
484
485	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
486			       NULL) == 0) {
487		/* Successfully turned off 100Hz tick, so we have the
488		   vcpuop-based timer interface */
489		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
490		xen_clockevent = &xen_vcpuop_clockevent;
491	}
492
493	/* Set initial system time with full resolution */
494	xen_read_wallclock(&tp);
495	do_settimeofday64(&tp);
496
497	setup_force_cpu_cap(X86_FEATURE_TSC);
498
499	/*
500	 * We check ahead on the primary time info if this
501	 * bit is supported hence speeding up Xen clocksource.
502	 */
503	pvti = &__this_cpu_read(xen_vcpu)->time;
504	if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) {
505		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
506		xen_setup_vsyscall_time_info();
507	}
508
509	xen_setup_runstate_info(cpu);
510	xen_setup_timer(cpu);
511	xen_setup_cpu_clockevents();
512
513	xen_time_setup_guest();
514
515	if (xen_initial_domain())
516		pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
517}
518
519void __init xen_init_time_ops(void)
520{
521	xen_sched_clock_offset = xen_clocksource_read();
522	pv_ops.time = xen_time_ops;
523
524	x86_init.timers.timer_init = xen_time_init;
525	x86_init.timers.setup_percpu_clockev = x86_init_noop;
526	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
527
528	x86_platform.calibrate_tsc = xen_tsc_khz;
529	x86_platform.get_wallclock = xen_get_wallclock;
530	/* Dom0 uses the native method to set the hardware RTC. */
531	if (!xen_initial_domain())
532		x86_platform.set_wallclock = xen_set_wallclock;
533}
534
535#ifdef CONFIG_XEN_PVHVM
536static void xen_hvm_setup_cpu_clockevents(void)
537{
538	int cpu = smp_processor_id();
539	xen_setup_runstate_info(cpu);
540	/*
541	 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
542	 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
543	 * early bootup and also during CPU hotplug events).
544	 */
545	xen_setup_cpu_clockevents();
546}
547
548void __init xen_hvm_init_time_ops(void)
549{
550	/*
551	 * vector callback is needed otherwise we cannot receive interrupts
552	 * on cpu > 0 and at this point we don't know how many cpus are
553	 * available.
554	 */
555	if (!xen_have_vector_callback)
556		return;
557
558	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
559		pr_info("Xen doesn't support pvclock on HVM, disable pv timer");
 
560		return;
561	}
562
563	xen_sched_clock_offset = xen_clocksource_read();
564	pv_ops.time = xen_time_ops;
565	x86_init.timers.setup_percpu_clockev = xen_time_init;
566	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
567
568	x86_platform.calibrate_tsc = xen_tsc_khz;
569	x86_platform.get_wallclock = xen_get_wallclock;
570	x86_platform.set_wallclock = xen_set_wallclock;
571}
572#endif
573
574/* Kernel parameter to specify Xen timer slop */
575static int __init parse_xen_timer_slop(char *ptr)
576{
577	unsigned long slop = memparse(ptr, NULL);
578
579	xen_timerop_clockevent.min_delta_ns = slop;
580	xen_timerop_clockevent.min_delta_ticks = slop;
581	xen_vcpuop_clockevent.min_delta_ns = slop;
582	xen_vcpuop_clockevent.min_delta_ticks = slop;
583
584	return 0;
585}
586early_param("xen_timer_slop", parse_xen_timer_slop);