Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
  1/*
  2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3 *
  4 *   This program is free software; you can redistribute it and/or
  5 *   modify it under the terms of the GNU General Public License
  6 *   as published by the Free Software Foundation, version 2.
  7 *
  8 *   This program is distributed in the hope that it will be useful, but
  9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 11 *   NON INFRINGEMENT.  See the GNU General Public License for
 12 *   more details.
 13 *
 14 * A code-rewriter that enables instruction single-stepping.
 15 * Derived from iLib's single-stepping code.
 16 */
 17
 18#ifndef __tilegx__   /* Hardware support for single step unavailable. */
 19
 20/* These functions are only used on the TILE platform */
 21#include <linux/slab.h>
 22#include <linux/thread_info.h>
 23#include <linux/uaccess.h>
 24#include <linux/mman.h>
 25#include <linux/types.h>
 26#include <linux/err.h>
 27#include <asm/cacheflush.h>
 28#include <asm/unaligned.h>
 29#include <arch/abi.h>
 30#include <arch/opcode.h>
 31
 32#define signExtend17(val) sign_extend((val), 17)
 33#define TILE_X1_MASK (0xffffffffULL << 31)
 34
 35int unaligned_printk;
 36
 37static int __init setup_unaligned_printk(char *str)
 38{
 39	long val;
 40	if (strict_strtol(str, 0, &val) != 0)
 41		return 0;
 42	unaligned_printk = val;
 43	pr_info("Printk for each unaligned data accesses is %s\n",
 44		unaligned_printk ? "enabled" : "disabled");
 45	return 1;
 46}
 47__setup("unaligned_printk=", setup_unaligned_printk);
 48
 49unsigned int unaligned_fixup_count;
 50
 51enum mem_op {
 52	MEMOP_NONE,
 53	MEMOP_LOAD,
 54	MEMOP_STORE,
 55	MEMOP_LOAD_POSTINCR,
 56	MEMOP_STORE_POSTINCR
 57};
 58
 59static inline tile_bundle_bits set_BrOff_X1(tile_bundle_bits n, s32 offset)
 60{
 61	tile_bundle_bits result;
 62
 63	/* mask out the old offset */
 64	tile_bundle_bits mask = create_BrOff_X1(-1);
 65	result = n & (~mask);
 66
 67	/* or in the new offset */
 68	result |= create_BrOff_X1(offset);
 69
 70	return result;
 71}
 72
 73static inline tile_bundle_bits move_X1(tile_bundle_bits n, int dest, int src)
 74{
 75	tile_bundle_bits result;
 76	tile_bundle_bits op;
 77
 78	result = n & (~TILE_X1_MASK);
 79
 80	op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) |
 81		create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) |
 82		create_Dest_X1(dest) |
 83		create_SrcB_X1(TREG_ZERO) |
 84		create_SrcA_X1(src) ;
 85
 86	result |= op;
 87	return result;
 88}
 89
 90static inline tile_bundle_bits nop_X1(tile_bundle_bits n)
 91{
 92	return move_X1(n, TREG_ZERO, TREG_ZERO);
 93}
 94
 95static inline tile_bundle_bits addi_X1(
 96	tile_bundle_bits n, int dest, int src, int imm)
 97{
 98	n &= ~TILE_X1_MASK;
 99
100	n |=  (create_SrcA_X1(src) |
101	       create_Dest_X1(dest) |
102	       create_Imm8_X1(imm) |
103	       create_S_X1(0) |
104	       create_Opcode_X1(IMM_0_OPCODE_X1) |
105	       create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1));
106
107	return n;
108}
109
110static tile_bundle_bits rewrite_load_store_unaligned(
111	struct single_step_state *state,
112	tile_bundle_bits bundle,
113	struct pt_regs *regs,
114	enum mem_op mem_op,
115	int size, int sign_ext)
116{
117	unsigned char __user *addr;
118	int val_reg, addr_reg, err, val;
119
120	/* Get address and value registers */
121	if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
122		addr_reg = get_SrcA_Y2(bundle);
123		val_reg = get_SrcBDest_Y2(bundle);
124	} else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
125		addr_reg = get_SrcA_X1(bundle);
126		val_reg  = get_Dest_X1(bundle);
127	} else {
128		addr_reg = get_SrcA_X1(bundle);
129		val_reg  = get_SrcB_X1(bundle);
130	}
131
132	/*
133	 * If registers are not GPRs, don't try to handle it.
134	 *
135	 * FIXME: we could handle non-GPR loads by getting the real value
136	 * from memory, writing it to the single step buffer, using a
137	 * temp_reg to hold a pointer to that memory, then executing that
138	 * instruction and resetting temp_reg.  For non-GPR stores, it's a
139	 * little trickier; we could use the single step buffer for that
140	 * too, but we'd have to add some more state bits so that we could
141	 * call back in here to copy that value to the real target.  For
142	 * now, we just handle the simple case.
143	 */
144	if ((val_reg >= PTREGS_NR_GPRS &&
145	     (val_reg != TREG_ZERO ||
146	      mem_op == MEMOP_LOAD ||
147	      mem_op == MEMOP_LOAD_POSTINCR)) ||
148	    addr_reg >= PTREGS_NR_GPRS)
149		return bundle;
150
151	/* If it's aligned, don't handle it specially */
152	addr = (void __user *)regs->regs[addr_reg];
153	if (((unsigned long)addr % size) == 0)
154		return bundle;
155
156	/*
157	 * Return SIGBUS with the unaligned address, if requested.
158	 * Note that we return SIGBUS even for completely invalid addresses
159	 * as long as they are in fact unaligned; this matches what the
160	 * tilepro hardware would be doing, if it could provide us with the
161	 * actual bad address in an SPR, which it doesn't.
162	 */
163	if (unaligned_fixup == 0) {
164		siginfo_t info = {
165			.si_signo = SIGBUS,
166			.si_code = BUS_ADRALN,
167			.si_addr = addr
168		};
169		trace_unhandled_signal("unaligned trap", regs,
170				       (unsigned long)addr, SIGBUS);
171		force_sig_info(info.si_signo, &info, current);
172		return (tilepro_bundle_bits) 0;
173	}
174
175	/* Handle unaligned load/store */
176	if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
177		unsigned short val_16;
178		switch (size) {
179		case 2:
180			err = copy_from_user(&val_16, addr, sizeof(val_16));
181			val = sign_ext ? ((short)val_16) : val_16;
182			break;
183		case 4:
184			err = copy_from_user(&val, addr, sizeof(val));
185			break;
186		default:
187			BUG();
188		}
189		if (err == 0) {
190			state->update_reg = val_reg;
191			state->update_value = val;
192			state->update = 1;
193		}
194	} else {
195		unsigned short val_16;
196		val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg];
197		switch (size) {
198		case 2:
199			val_16 = val;
200			err = copy_to_user(addr, &val_16, sizeof(val_16));
201			break;
202		case 4:
203			err = copy_to_user(addr, &val, sizeof(val));
204			break;
205		default:
206			BUG();
207		}
208	}
209
210	if (err) {
211		siginfo_t info = {
212			.si_signo = SIGSEGV,
213			.si_code = SEGV_MAPERR,
214			.si_addr = addr
215		};
216		trace_unhandled_signal("segfault", regs,
217				       (unsigned long)addr, SIGSEGV);
218		force_sig_info(info.si_signo, &info, current);
219		return (tile_bundle_bits) 0;
220	}
221
222	if (unaligned_printk || unaligned_fixup_count == 0) {
223		pr_info("Process %d/%s: PC %#lx: Fixup of"
224			" unaligned %s at %#lx.\n",
225			current->pid, current->comm, regs->pc,
226			(mem_op == MEMOP_LOAD ||
227			 mem_op == MEMOP_LOAD_POSTINCR) ?
228			"load" : "store",
229			(unsigned long)addr);
230		if (!unaligned_printk) {
231#define P pr_info
232P("\n");
233P("Unaligned fixups in the kernel will slow your application considerably.\n");
234P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
235P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
236P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
237P("access will become a SIGBUS you can debug. No further warnings will be\n");
238P("shown so as to avoid additional slowdown, but you can track the number\n");
239P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
240P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
241P("\n");
242#undef P
243		}
244	}
245	++unaligned_fixup_count;
246
247	if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
248		/* Convert the Y2 instruction to a prefetch. */
249		bundle &= ~(create_SrcBDest_Y2(-1) |
250			    create_Opcode_Y2(-1));
251		bundle |= (create_SrcBDest_Y2(TREG_ZERO) |
252			   create_Opcode_Y2(LW_OPCODE_Y2));
253	/* Replace the load postincr with an addi */
254	} else if (mem_op == MEMOP_LOAD_POSTINCR) {
255		bundle = addi_X1(bundle, addr_reg, addr_reg,
256				 get_Imm8_X1(bundle));
257	/* Replace the store postincr with an addi */
258	} else if (mem_op == MEMOP_STORE_POSTINCR) {
259		bundle = addi_X1(bundle, addr_reg, addr_reg,
260				 get_Dest_Imm8_X1(bundle));
261	} else {
262		/* Convert the X1 instruction to a nop. */
263		bundle &= ~(create_Opcode_X1(-1) |
264			    create_UnShOpcodeExtension_X1(-1) |
265			    create_UnOpcodeExtension_X1(-1));
266		bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) |
267			   create_UnShOpcodeExtension_X1(
268				   UN_0_SHUN_0_OPCODE_X1) |
269			   create_UnOpcodeExtension_X1(
270				   NOP_UN_0_SHUN_0_OPCODE_X1));
271	}
272
273	return bundle;
274}
275
276/*
277 * Called after execve() has started the new image.  This allows us
278 * to reset the info state.  Note that the the mmap'ed memory, if there
279 * was any, has already been unmapped by the exec.
280 */
281void single_step_execve(void)
282{
283	struct thread_info *ti = current_thread_info();
284	kfree(ti->step_state);
285	ti->step_state = NULL;
286}
287
288/**
289 * single_step_once() - entry point when single stepping has been triggered.
290 * @regs: The machine register state
291 *
292 *  When we arrive at this routine via a trampoline, the single step
293 *  engine copies the executing bundle to the single step buffer.
294 *  If the instruction is a condition branch, then the target is
295 *  reset to one past the next instruction. If the instruction
296 *  sets the lr, then that is noted. If the instruction is a jump
297 *  or call, then the new target pc is preserved and the current
298 *  bundle instruction set to null.
299 *
300 *  The necessary post-single-step rewriting information is stored in
301 *  single_step_state->  We use data segment values because the
302 *  stack will be rewound when we run the rewritten single-stepped
303 *  instruction.
304 */
305void single_step_once(struct pt_regs *regs)
306{
307	extern tile_bundle_bits __single_step_ill_insn;
308	extern tile_bundle_bits __single_step_j_insn;
309	extern tile_bundle_bits __single_step_addli_insn;
310	extern tile_bundle_bits __single_step_auli_insn;
311	struct thread_info *info = (void *)current_thread_info();
312	struct single_step_state *state = info->step_state;
313	int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
314	tile_bundle_bits __user *buffer, *pc;
315	tile_bundle_bits bundle;
316	int temp_reg;
317	int target_reg = TREG_LR;
318	int err;
319	enum mem_op mem_op = MEMOP_NONE;
320	int size = 0, sign_ext = 0;  /* happy compiler */
321
322	asm(
323"    .pushsection .rodata.single_step\n"
324"    .align 8\n"
325"    .globl    __single_step_ill_insn\n"
326"__single_step_ill_insn:\n"
327"    ill\n"
328"    .globl    __single_step_addli_insn\n"
329"__single_step_addli_insn:\n"
330"    { nop; addli r0, zero, 0 }\n"
331"    .globl    __single_step_auli_insn\n"
332"__single_step_auli_insn:\n"
333"    { nop; auli r0, r0, 0 }\n"
334"    .globl    __single_step_j_insn\n"
335"__single_step_j_insn:\n"
336"    j .\n"
337"    .popsection\n"
338	);
339
340	/*
341	 * Enable interrupts here to allow touching userspace and the like.
342	 * The callers expect this: do_trap() already has interrupts
343	 * enabled, and do_work_pending() handles functions that enable
344	 * interrupts internally.
345	 */
346	local_irq_enable();
347
348	if (state == NULL) {
349		/* allocate a page of writable, executable memory */
350		state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL);
351		if (state == NULL) {
352			pr_err("Out of kernel memory trying to single-step\n");
353			return;
354		}
355
356		/* allocate a cache line of writable, executable memory */
357		buffer = (void __user *) vm_mmap(NULL, 0, 64,
358					  PROT_EXEC | PROT_READ | PROT_WRITE,
359					  MAP_PRIVATE | MAP_ANONYMOUS,
360					  0);
361
362		if (IS_ERR((void __force *)buffer)) {
363			kfree(state);
364			pr_err("Out of kernel pages trying to single-step\n");
365			return;
366		}
367
368		state->buffer = buffer;
369		state->is_enabled = 0;
370
371		info->step_state = state;
372
373		/* Validate our stored instruction patterns */
374		BUG_ON(get_Opcode_X1(__single_step_addli_insn) !=
375		       ADDLI_OPCODE_X1);
376		BUG_ON(get_Opcode_X1(__single_step_auli_insn) !=
377		       AULI_OPCODE_X1);
378		BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO);
379		BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0);
380		BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0);
381	}
382
383	/*
384	 * If we are returning from a syscall, we still haven't hit the
385	 * "ill" for the swint1 instruction.  So back the PC up to be
386	 * pointing at the swint1, but we'll actually return directly
387	 * back to the "ill" so we come back in via SIGILL as if we
388	 * had "executed" the swint1 without ever being in kernel space.
389	 */
390	if (regs->faultnum == INT_SWINT_1)
391		regs->pc -= 8;
392
393	pc = (tile_bundle_bits __user *)(regs->pc);
394	if (get_user(bundle, pc) != 0) {
395		pr_err("Couldn't read instruction at %p trying to step\n", pc);
396		return;
397	}
398
399	/* We'll follow the instruction with 2 ill op bundles */
400	state->orig_pc = (unsigned long)pc;
401	state->next_pc = (unsigned long)(pc + 1);
402	state->branch_next_pc = 0;
403	state->update = 0;
404
405	if (!(bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK)) {
406		/* two wide, check for control flow */
407		int opcode = get_Opcode_X1(bundle);
408
409		switch (opcode) {
410		/* branches */
411		case BRANCH_OPCODE_X1:
412		{
413			s32 offset = signExtend17(get_BrOff_X1(bundle));
414
415			/*
416			 * For branches, we use a rewriting trick to let the
417			 * hardware evaluate whether the branch is taken or
418			 * untaken.  We record the target offset and then
419			 * rewrite the branch instruction to target 1 insn
420			 * ahead if the branch is taken.  We then follow the
421			 * rewritten branch with two bundles, each containing
422			 * an "ill" instruction. The supervisor examines the
423			 * pc after the single step code is executed, and if
424			 * the pc is the first ill instruction, then the
425			 * branch (if any) was not taken.  If the pc is the
426			 * second ill instruction, then the branch was
427			 * taken. The new pc is computed for these cases, and
428			 * inserted into the registers for the thread.  If
429			 * the pc is the start of the single step code, then
430			 * an exception or interrupt was taken before the
431			 * code started processing, and the same "original"
432			 * pc is restored.  This change, different from the
433			 * original implementation, has the advantage of
434			 * executing a single user instruction.
435			 */
436			state->branch_next_pc = (unsigned long)(pc + offset);
437
438			/* rewrite branch offset to go forward one bundle */
439			bundle = set_BrOff_X1(bundle, 2);
440		}
441		break;
442
443		/* jumps */
444		case JALB_OPCODE_X1:
445		case JALF_OPCODE_X1:
446			state->update = 1;
447			state->next_pc =
448				(unsigned long) (pc + get_JOffLong_X1(bundle));
449			break;
450
451		case JB_OPCODE_X1:
452		case JF_OPCODE_X1:
453			state->next_pc =
454				(unsigned long) (pc + get_JOffLong_X1(bundle));
455			bundle = nop_X1(bundle);
456			break;
457
458		case SPECIAL_0_OPCODE_X1:
459			switch (get_RRROpcodeExtension_X1(bundle)) {
460			/* jump-register */
461			case JALRP_SPECIAL_0_OPCODE_X1:
462			case JALR_SPECIAL_0_OPCODE_X1:
463				state->update = 1;
464				state->next_pc =
465					regs->regs[get_SrcA_X1(bundle)];
466				break;
467
468			case JRP_SPECIAL_0_OPCODE_X1:
469			case JR_SPECIAL_0_OPCODE_X1:
470				state->next_pc =
471					regs->regs[get_SrcA_X1(bundle)];
472				bundle = nop_X1(bundle);
473				break;
474
475			case LNK_SPECIAL_0_OPCODE_X1:
476				state->update = 1;
477				target_reg = get_Dest_X1(bundle);
478				break;
479
480			/* stores */
481			case SH_SPECIAL_0_OPCODE_X1:
482				mem_op = MEMOP_STORE;
483				size = 2;
484				break;
485
486			case SW_SPECIAL_0_OPCODE_X1:
487				mem_op = MEMOP_STORE;
488				size = 4;
489				break;
490			}
491			break;
492
493		/* loads and iret */
494		case SHUN_0_OPCODE_X1:
495			if (get_UnShOpcodeExtension_X1(bundle) ==
496			    UN_0_SHUN_0_OPCODE_X1) {
497				switch (get_UnOpcodeExtension_X1(bundle)) {
498				case LH_UN_0_SHUN_0_OPCODE_X1:
499					mem_op = MEMOP_LOAD;
500					size = 2;
501					sign_ext = 1;
502					break;
503
504				case LH_U_UN_0_SHUN_0_OPCODE_X1:
505					mem_op = MEMOP_LOAD;
506					size = 2;
507					sign_ext = 0;
508					break;
509
510				case LW_UN_0_SHUN_0_OPCODE_X1:
511					mem_op = MEMOP_LOAD;
512					size = 4;
513					break;
514
515				case IRET_UN_0_SHUN_0_OPCODE_X1:
516				{
517					unsigned long ex0_0 = __insn_mfspr(
518						SPR_EX_CONTEXT_0_0);
519					unsigned long ex0_1 = __insn_mfspr(
520						SPR_EX_CONTEXT_0_1);
521					/*
522					 * Special-case it if we're iret'ing
523					 * to PL0 again.  Otherwise just let
524					 * it run and it will generate SIGILL.
525					 */
526					if (EX1_PL(ex0_1) == USER_PL) {
527						state->next_pc = ex0_0;
528						regs->ex1 = ex0_1;
529						bundle = nop_X1(bundle);
530					}
531				}
532				}
533			}
534			break;
535
536#if CHIP_HAS_WH64()
537		/* postincrement operations */
538		case IMM_0_OPCODE_X1:
539			switch (get_ImmOpcodeExtension_X1(bundle)) {
540			case LWADD_IMM_0_OPCODE_X1:
541				mem_op = MEMOP_LOAD_POSTINCR;
542				size = 4;
543				break;
544
545			case LHADD_IMM_0_OPCODE_X1:
546				mem_op = MEMOP_LOAD_POSTINCR;
547				size = 2;
548				sign_ext = 1;
549				break;
550
551			case LHADD_U_IMM_0_OPCODE_X1:
552				mem_op = MEMOP_LOAD_POSTINCR;
553				size = 2;
554				sign_ext = 0;
555				break;
556
557			case SWADD_IMM_0_OPCODE_X1:
558				mem_op = MEMOP_STORE_POSTINCR;
559				size = 4;
560				break;
561
562			case SHADD_IMM_0_OPCODE_X1:
563				mem_op = MEMOP_STORE_POSTINCR;
564				size = 2;
565				break;
566
567			default:
568				break;
569			}
570			break;
571#endif /* CHIP_HAS_WH64() */
572		}
573
574		if (state->update) {
575			/*
576			 * Get an available register.  We start with a
577			 * bitmask with 1's for available registers.
578			 * We truncate to the low 32 registers since
579			 * we are guaranteed to have set bits in the
580			 * low 32 bits, then use ctz to pick the first.
581			 */
582			u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) |
583					   (1ULL << get_SrcA_X0(bundle)) |
584					   (1ULL << get_SrcB_X0(bundle)) |
585					   (1ULL << target_reg));
586			temp_reg = __builtin_ctz(mask);
587			state->update_reg = temp_reg;
588			state->update_value = regs->regs[temp_reg];
589			regs->regs[temp_reg] = (unsigned long) (pc+1);
590			regs->flags |= PT_FLAGS_RESTORE_REGS;
591			bundle = move_X1(bundle, target_reg, temp_reg);
592		}
593	} else {
594		int opcode = get_Opcode_Y2(bundle);
595
596		switch (opcode) {
597		/* loads */
598		case LH_OPCODE_Y2:
599			mem_op = MEMOP_LOAD;
600			size = 2;
601			sign_ext = 1;
602			break;
603
604		case LH_U_OPCODE_Y2:
605			mem_op = MEMOP_LOAD;
606			size = 2;
607			sign_ext = 0;
608			break;
609
610		case LW_OPCODE_Y2:
611			mem_op = MEMOP_LOAD;
612			size = 4;
613			break;
614
615		/* stores */
616		case SH_OPCODE_Y2:
617			mem_op = MEMOP_STORE;
618			size = 2;
619			break;
620
621		case SW_OPCODE_Y2:
622			mem_op = MEMOP_STORE;
623			size = 4;
624			break;
625		}
626	}
627
628	/*
629	 * Check if we need to rewrite an unaligned load/store.
630	 * Returning zero is a special value meaning we need to SIGSEGV.
631	 */
632	if (mem_op != MEMOP_NONE && unaligned_fixup >= 0) {
633		bundle = rewrite_load_store_unaligned(state, bundle, regs,
634						      mem_op, size, sign_ext);
635		if (bundle == 0)
636			return;
637	}
638
639	/* write the bundle to our execution area */
640	buffer = state->buffer;
641	err = __put_user(bundle, buffer++);
642
643	/*
644	 * If we're really single-stepping, we take an INT_ILL after.
645	 * If we're just handling an unaligned access, we can just
646	 * jump directly back to where we were in user code.
647	 */
648	if (is_single_step) {
649		err |= __put_user(__single_step_ill_insn, buffer++);
650		err |= __put_user(__single_step_ill_insn, buffer++);
651	} else {
652		long delta;
653
654		if (state->update) {
655			/* We have some state to update; do it inline */
656			int ha16;
657			bundle = __single_step_addli_insn;
658			bundle |= create_Dest_X1(state->update_reg);
659			bundle |= create_Imm16_X1(state->update_value);
660			err |= __put_user(bundle, buffer++);
661			bundle = __single_step_auli_insn;
662			bundle |= create_Dest_X1(state->update_reg);
663			bundle |= create_SrcA_X1(state->update_reg);
664			ha16 = (state->update_value + 0x8000) >> 16;
665			bundle |= create_Imm16_X1(ha16);
666			err |= __put_user(bundle, buffer++);
667			state->update = 0;
668		}
669
670		/* End with a jump back to the next instruction */
671		delta = ((regs->pc + TILE_BUNDLE_SIZE_IN_BYTES) -
672			(unsigned long)buffer) >>
673			TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES;
674		bundle = __single_step_j_insn;
675		bundle |= create_JOffLong_X1(delta);
676		err |= __put_user(bundle, buffer++);
677	}
678
679	if (err) {
680		pr_err("Fault when writing to single-step buffer\n");
681		return;
682	}
683
684	/*
685	 * Flush the buffer.
686	 * We do a local flush only, since this is a thread-specific buffer.
687	 */
688	__flush_icache_range((unsigned long)state->buffer,
689			     (unsigned long)buffer);
690
691	/* Indicate enabled */
692	state->is_enabled = is_single_step;
693	regs->pc = (unsigned long)state->buffer;
694
695	/* Fault immediately if we are coming back from a syscall. */
696	if (regs->faultnum == INT_SWINT_1)
697		regs->pc += 8;
698}
699
700#else
701#include <linux/smp.h>
702#include <linux/ptrace.h>
703#include <arch/spr_def.h>
704
705static DEFINE_PER_CPU(unsigned long, ss_saved_pc);
706
707
708/*
709 * Called directly on the occasion of an interrupt.
710 *
711 * If the process doesn't have single step set, then we use this as an
712 * opportunity to turn single step off.
713 *
714 * It has been mentioned that we could conditionally turn off single stepping
715 * on each entry into the kernel and rely on single_step_once to turn it
716 * on for the processes that matter (as we already do), but this
717 * implementation is somewhat more efficient in that we muck with registers
718 * once on a bum interrupt rather than on every entry into the kernel.
719 *
720 * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred,
721 * so we have to run through this process again before we can say that an
722 * instruction has executed.
723 *
724 * swint will set CANCELED, but it's a legitimate instruction.  Fortunately
725 * it changes the PC.  If it hasn't changed, then we know that the interrupt
726 * wasn't generated by swint and we'll need to run this process again before
727 * we can say an instruction has executed.
728 *
729 * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get
730 * on with our lives.
731 */
732
733void gx_singlestep_handle(struct pt_regs *regs, int fault_num)
734{
735	unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
736	struct thread_info *info = (void *)current_thread_info();
737	int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
738	unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
739
740	if (is_single_step == 0) {
741		__insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 0);
742
743	} else if ((*ss_pc != regs->pc) ||
744		   (!(control & SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK))) {
745
746		ptrace_notify(SIGTRAP);
747		control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
748		control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
749		__insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
750	}
751}
752
753
754/*
755 * Called from need_singlestep.  Set up the control registers and the enable
756 * register, then return back.
757 */
758
759void single_step_once(struct pt_regs *regs)
760{
761	unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
762	unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
763
764	*ss_pc = regs->pc;
765	control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
766	control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
767	__insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
768	__insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 1 << USER_PL);
769}
770
771void single_step_execve(void)
772{
773	/* Nothing */
774}
775
776#endif /* !__tilegx__ */