Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*  arch/sparc64/kernel/process.c
  2 *
  3 *  Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
  4 *  Copyright (C) 1996       Eddie C. Dost   (ecd@skynet.be)
  5 *  Copyright (C) 1997, 1998 Jakub Jelinek   (jj@sunsite.mff.cuni.cz)
  6 */
  7
  8/*
  9 * This file handles the architecture-dependent parts of process handling..
 10 */
 11
 12#include <stdarg.h>
 13
 14#include <linux/errno.h>
 15#include <linux/export.h>
 16#include <linux/sched.h>
 
 
 
 17#include <linux/kernel.h>
 18#include <linux/mm.h>
 19#include <linux/fs.h>
 20#include <linux/smp.h>
 21#include <linux/stddef.h>
 22#include <linux/ptrace.h>
 23#include <linux/slab.h>
 24#include <linux/user.h>
 25#include <linux/delay.h>
 26#include <linux/compat.h>
 27#include <linux/tick.h>
 28#include <linux/init.h>
 29#include <linux/cpu.h>
 
 30#include <linux/elfcore.h>
 31#include <linux/sysrq.h>
 32#include <linux/nmi.h>
 
 
 33
 34#include <asm/uaccess.h>
 35#include <asm/page.h>
 36#include <asm/pgalloc.h>
 37#include <asm/pgtable.h>
 38#include <asm/processor.h>
 39#include <asm/pstate.h>
 40#include <asm/elf.h>
 41#include <asm/fpumacro.h>
 42#include <asm/head.h>
 43#include <asm/cpudata.h>
 44#include <asm/mmu_context.h>
 45#include <asm/unistd.h>
 46#include <asm/hypervisor.h>
 47#include <asm/syscalls.h>
 48#include <asm/irq_regs.h>
 49#include <asm/smp.h>
 
 50
 51#include "kstack.h"
 52
 53static void sparc64_yield(int cpu)
 
 54{
 55	if (tlb_type != hypervisor) {
 56		touch_nmi_watchdog();
 57		return;
 58	}
 59
 60	clear_thread_flag(TIF_POLLING_NRFLAG);
 61	smp_mb__after_clear_bit();
 62
 63	while (!need_resched() && !cpu_is_offline(cpu)) {
 64		unsigned long pstate;
 65
 66		/* Disable interrupts. */
 
 
 
 
 67		__asm__ __volatile__(
 68			"rdpr %%pstate, %0\n\t"
 69			"andn %0, %1, %0\n\t"
 70			"wrpr %0, %%g0, %%pstate"
 71			: "=&r" (pstate)
 72			: "i" (PSTATE_IE));
 73
 74		if (!need_resched() && !cpu_is_offline(cpu))
 75			sun4v_cpu_yield();
 
 
 
 
 
 76
 77		/* Re-enable interrupts. */
 78		__asm__ __volatile__(
 79			"rdpr %%pstate, %0\n\t"
 80			"or %0, %1, %0\n\t"
 81			"wrpr %0, %%g0, %%pstate"
 82			: "=&r" (pstate)
 83			: "i" (PSTATE_IE));
 84	}
 85
 86	set_thread_flag(TIF_POLLING_NRFLAG);
 87}
 88
 89/* The idle loop on sparc64. */
 90void cpu_idle(void)
 91{
 92	int cpu = smp_processor_id();
 93
 94	set_thread_flag(TIF_POLLING_NRFLAG);
 95
 96	while(1) {
 97		tick_nohz_idle_enter();
 98		rcu_idle_enter();
 99
100		while (!need_resched() && !cpu_is_offline(cpu))
101			sparc64_yield(cpu);
102
103		rcu_idle_exit();
104		tick_nohz_idle_exit();
105
106#ifdef CONFIG_HOTPLUG_CPU
107		if (cpu_is_offline(cpu)) {
108			sched_preempt_enable_no_resched();
109			cpu_play_dead();
110		}
111#endif
112		schedule_preempt_disabled();
113	}
114}
 
115
116#ifdef CONFIG_COMPAT
117static void show_regwindow32(struct pt_regs *regs)
118{
119	struct reg_window32 __user *rw;
120	struct reg_window32 r_w;
121	mm_segment_t old_fs;
122	
123	__asm__ __volatile__ ("flushw");
124	rw = compat_ptr((unsigned)regs->u_regs[14]);
125	old_fs = get_fs();
126	set_fs (USER_DS);
127	if (copy_from_user (&r_w, rw, sizeof(r_w))) {
128		set_fs (old_fs);
129		return;
130	}
131
132	set_fs (old_fs);			
133	printk("l0: %08x l1: %08x l2: %08x l3: %08x "
134	       "l4: %08x l5: %08x l6: %08x l7: %08x\n",
135	       r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
136	       r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
137	printk("i0: %08x i1: %08x i2: %08x i3: %08x "
138	       "i4: %08x i5: %08x i6: %08x i7: %08x\n",
139	       r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
140	       r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
141}
142#else
143#define show_regwindow32(regs)	do { } while (0)
144#endif
145
146static void show_regwindow(struct pt_regs *regs)
147{
148	struct reg_window __user *rw;
149	struct reg_window *rwk;
150	struct reg_window r_w;
151	mm_segment_t old_fs;
152
153	if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
154		__asm__ __volatile__ ("flushw");
155		rw = (struct reg_window __user *)
156			(regs->u_regs[14] + STACK_BIAS);
157		rwk = (struct reg_window *)
158			(regs->u_regs[14] + STACK_BIAS);
159		if (!(regs->tstate & TSTATE_PRIV)) {
160			old_fs = get_fs();
161			set_fs (USER_DS);
162			if (copy_from_user (&r_w, rw, sizeof(r_w))) {
163				set_fs (old_fs);
164				return;
165			}
166			rwk = &r_w;
167			set_fs (old_fs);			
168		}
169	} else {
170		show_regwindow32(regs);
171		return;
172	}
173	printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
174	       rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
175	printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
176	       rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
177	printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
178	       rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
179	printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
180	       rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
181	if (regs->tstate & TSTATE_PRIV)
182		printk("I7: <%pS>\n", (void *) rwk->ins[7]);
183}
184
185void show_regs(struct pt_regs *regs)
186{
 
 
187	printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x    %s\n", regs->tstate,
188	       regs->tpc, regs->tnpc, regs->y, print_tainted());
189	printk("TPC: <%pS>\n", (void *) regs->tpc);
190	printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
191	       regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
192	       regs->u_regs[3]);
193	printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
194	       regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
195	       regs->u_regs[7]);
196	printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
197	       regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
198	       regs->u_regs[11]);
199	printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
200	       regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
201	       regs->u_regs[15]);
202	printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
203	show_regwindow(regs);
204	show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
205}
206
207struct global_reg_snapshot global_reg_snapshot[NR_CPUS];
208static DEFINE_SPINLOCK(global_reg_snapshot_lock);
209
210static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
211			      int this_cpu)
212{
 
 
213	flushw_all();
214
215	global_reg_snapshot[this_cpu].tstate = regs->tstate;
216	global_reg_snapshot[this_cpu].tpc = regs->tpc;
217	global_reg_snapshot[this_cpu].tnpc = regs->tnpc;
218	global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7];
 
 
219
220	if (regs->tstate & TSTATE_PRIV) {
221		struct reg_window *rw;
222
223		rw = (struct reg_window *)
224			(regs->u_regs[UREG_FP] + STACK_BIAS);
225		if (kstack_valid(tp, (unsigned long) rw)) {
226			global_reg_snapshot[this_cpu].i7 = rw->ins[7];
227			rw = (struct reg_window *)
228				(rw->ins[6] + STACK_BIAS);
229			if (kstack_valid(tp, (unsigned long) rw))
230				global_reg_snapshot[this_cpu].rpc = rw->ins[7];
231		}
232	} else {
233		global_reg_snapshot[this_cpu].i7 = 0;
234		global_reg_snapshot[this_cpu].rpc = 0;
235	}
236	global_reg_snapshot[this_cpu].thread = tp;
237}
238
239/* In order to avoid hangs we do not try to synchronize with the
240 * global register dump client cpus.  The last store they make is to
241 * the thread pointer, so do a short poll waiting for that to become
242 * non-NULL.
243 */
244static void __global_reg_poll(struct global_reg_snapshot *gp)
245{
246	int limit = 0;
247
248	while (!gp->thread && ++limit < 100) {
249		barrier();
250		udelay(1);
251	}
252}
253
254void arch_trigger_all_cpu_backtrace(void)
255{
256	struct thread_info *tp = current_thread_info();
257	struct pt_regs *regs = get_irq_regs();
258	unsigned long flags;
259	int this_cpu, cpu;
260
261	if (!regs)
262		regs = tp->kregs;
263
264	spin_lock_irqsave(&global_reg_snapshot_lock, flags);
265
266	memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
267
268	this_cpu = raw_smp_processor_id();
269
270	__global_reg_self(tp, regs, this_cpu);
 
 
 
271
272	smp_fetch_global_regs();
273
274	for_each_online_cpu(cpu) {
275		struct global_reg_snapshot *gp = &global_reg_snapshot[cpu];
 
 
 
 
 
276
277		__global_reg_poll(gp);
278
279		tp = gp->thread;
280		printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
281		       (cpu == this_cpu ? '*' : ' '), cpu,
282		       gp->tstate, gp->tpc, gp->tnpc,
283		       ((tp && tp->task) ? tp->task->comm : "NULL"),
284		       ((tp && tp->task) ? tp->task->pid : -1));
285
286		if (gp->tstate & TSTATE_PRIV) {
287			printk("             TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
288			       (void *) gp->tpc,
289			       (void *) gp->o7,
290			       (void *) gp->i7,
291			       (void *) gp->rpc);
292		} else {
293			printk("             TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
294			       gp->tpc, gp->o7, gp->i7, gp->rpc);
295		}
 
 
296	}
297
298	memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
299
300	spin_unlock_irqrestore(&global_reg_snapshot_lock, flags);
301}
302
303#ifdef CONFIG_MAGIC_SYSRQ
304
305static void sysrq_handle_globreg(int key)
306{
307	arch_trigger_all_cpu_backtrace();
308}
309
310static struct sysrq_key_op sparc_globalreg_op = {
311	.handler	= sysrq_handle_globreg,
312	.help_msg	= "Globalregs",
313	.action_msg	= "Show Global CPU Regs",
314};
315
316static int __init sparc_globreg_init(void)
317{
318	return register_sysrq_key('y', &sparc_globalreg_op);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
319}
320
321core_initcall(sparc_globreg_init);
 
 
322
323#endif
 
 
 
 
324
325unsigned long thread_saved_pc(struct task_struct *tsk)
326{
327	struct thread_info *ti = task_thread_info(tsk);
328	unsigned long ret = 0xdeadbeefUL;
329	
330	if (ti && ti->ksp) {
331		unsigned long *sp;
332		sp = (unsigned long *)(ti->ksp + STACK_BIAS);
333		if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
334		    sp[14]) {
335			unsigned long *fp;
336			fp = (unsigned long *)(sp[14] + STACK_BIAS);
337			if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
338				ret = fp[15];
339		}
 
 
 
 
 
 
 
 
 
 
 
340	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341	return ret;
342}
343
 
 
 
 
344/* Free current thread data structures etc.. */
345void exit_thread(void)
346{
347	struct thread_info *t = current_thread_info();
348
349	if (t->utraps) {
350		if (t->utraps[0] < 2)
351			kfree (t->utraps);
352		else
353			t->utraps[0]--;
354	}
355}
356
357void flush_thread(void)
358{
359	struct thread_info *t = current_thread_info();
360	struct mm_struct *mm;
361
362	mm = t->task->mm;
363	if (mm)
364		tsb_context_switch(mm);
365
366	set_thread_wsaved(0);
367
368	/* Clear FPU register state. */
369	t->fpsaved[0] = 0;
370}
371
372/* It's a bit more tricky when 64-bit tasks are involved... */
373static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
374{
 
375	unsigned long fp, distance, rval;
376
377	if (!(test_thread_flag(TIF_32BIT))) {
378		csp += STACK_BIAS;
379		psp += STACK_BIAS;
380		__get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
381		fp += STACK_BIAS;
 
 
382	} else
383		__get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
384
385	/* Now align the stack as this is mandatory in the Sparc ABI
386	 * due to how register windows work.  This hides the
387	 * restriction from thread libraries etc.
388	 */
389	csp &= ~15UL;
390
391	distance = fp - psp;
392	rval = (csp - distance);
393	if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
394		rval = 0;
395	else if (test_thread_flag(TIF_32BIT)) {
396		if (put_user(((u32)csp),
397			     &(((struct reg_window32 __user *)rval)->ins[6])))
398			rval = 0;
399	} else {
400		if (put_user(((u64)csp - STACK_BIAS),
401			     &(((struct reg_window __user *)rval)->ins[6])))
402			rval = 0;
403		else
404			rval = rval - STACK_BIAS;
405	}
406
407	return rval;
408}
409
410/* Standard stuff. */
411static inline void shift_window_buffer(int first_win, int last_win,
412				       struct thread_info *t)
413{
414	int i;
415
416	for (i = first_win; i < last_win; i++) {
417		t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
418		memcpy(&t->reg_window[i], &t->reg_window[i+1],
419		       sizeof(struct reg_window));
420	}
421}
422
423void synchronize_user_stack(void)
424{
425	struct thread_info *t = current_thread_info();
426	unsigned long window;
427
428	flush_user_windows();
429	if ((window = get_thread_wsaved()) != 0) {
430		int winsize = sizeof(struct reg_window);
431		int bias = 0;
432
433		if (test_thread_flag(TIF_32BIT))
434			winsize = sizeof(struct reg_window32);
435		else
436			bias = STACK_BIAS;
437
438		window -= 1;
439		do {
440			unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
441			struct reg_window *rwin = &t->reg_window[window];
 
 
 
 
 
 
 
 
 
442
443			if (!copy_to_user((char __user *)sp, rwin, winsize)) {
444				shift_window_buffer(window, get_thread_wsaved() - 1, t);
445				set_thread_wsaved(get_thread_wsaved() - 1);
446			}
447		} while (window--);
448	}
449}
450
451static void stack_unaligned(unsigned long sp)
452{
453	siginfo_t info;
454
455	info.si_signo = SIGBUS;
456	info.si_errno = 0;
457	info.si_code = BUS_ADRALN;
458	info.si_addr = (void __user *) sp;
459	info.si_trapno = 0;
460	force_sig_info(SIGBUS, &info, current);
461}
462
463void fault_in_user_windows(void)
 
 
 
 
 
464{
465	struct thread_info *t = current_thread_info();
466	unsigned long window;
467	int winsize = sizeof(struct reg_window);
468	int bias = 0;
469
470	if (test_thread_flag(TIF_32BIT))
471		winsize = sizeof(struct reg_window32);
472	else
473		bias = STACK_BIAS;
474
475	flush_user_windows();
476	window = get_thread_wsaved();
477
478	if (likely(window != 0)) {
479		window -= 1;
480		do {
481			unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
482			struct reg_window *rwin = &t->reg_window[window];
 
 
 
 
 
 
 
 
 
483
484			if (unlikely(sp & 0x7UL))
485				stack_unaligned(sp);
486
487			if (unlikely(copy_to_user((char __user *)sp,
488						  rwin, winsize)))
 
 
 
 
 
 
 
489				goto barf;
 
490		} while (window--);
491	}
492	set_thread_wsaved(0);
493	return;
494
495barf:
496	set_thread_wsaved(window + 1);
497	do_exit(SIGILL);
498}
499
500asmlinkage long sparc_do_fork(unsigned long clone_flags,
501			      unsigned long stack_start,
502			      struct pt_regs *regs,
503			      unsigned long stack_size)
504{
505	int __user *parent_tid_ptr, *child_tid_ptr;
506	unsigned long orig_i1 = regs->u_regs[UREG_I1];
507	long ret;
508
509#ifdef CONFIG_COMPAT
510	if (test_thread_flag(TIF_32BIT)) {
511		parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
512		child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
513	} else
514#endif
515	{
516		parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
517		child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
518	}
519
520	ret = do_fork(clone_flags, stack_start,
521		      regs, stack_size,
522		      parent_tid_ptr, child_tid_ptr);
523
524	/* If we get an error and potentially restart the system
525	 * call, we're screwed because copy_thread() clobbered
526	 * the parent's %o1.  So detect that case and restore it
527	 * here.
528	 */
529	if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
530		regs->u_regs[UREG_I1] = orig_i1;
531
532	return ret;
533}
534
535/* Copy a Sparc thread.  The fork() return value conventions
536 * under SunOS are nothing short of bletcherous:
537 * Parent -->  %o0 == childs  pid, %o1 == 0
538 * Child  -->  %o0 == parents pid, %o1 == 1
539 */
540int copy_thread(unsigned long clone_flags, unsigned long sp,
541		unsigned long unused,
542		struct task_struct *p, struct pt_regs *regs)
543{
544	struct thread_info *t = task_thread_info(p);
 
545	struct sparc_stackf *parent_sf;
546	unsigned long child_stack_sz;
547	char *child_trap_frame;
548	int kernel_thread;
549
550	kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
551	parent_sf = ((struct sparc_stackf *) regs) - 1;
552
553	/* Calculate offset to stack_frame & pt_regs */
554	child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
555			  (kernel_thread ? STACKFRAME_SZ : 0));
556	child_trap_frame = (task_stack_page(p) +
557			    (THREAD_SIZE - child_stack_sz));
558	memcpy(child_trap_frame, parent_sf, child_stack_sz);
559
560	t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
561				 (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
562		(((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
563	t->new_child = 1;
564	t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
565	t->kregs = (struct pt_regs *) (child_trap_frame +
566				       sizeof(struct sparc_stackf));
567	t->fpsaved[0] = 0;
568
569	if (kernel_thread) {
570		struct sparc_stackf *child_sf = (struct sparc_stackf *)
571			(child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
572
573		/* Zero terminate the stack backtrace.  */
574		child_sf->fp = NULL;
575		t->kregs->u_regs[UREG_FP] =
576		  ((unsigned long) child_sf) - STACK_BIAS;
577
578		t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
579		t->kregs->u_regs[UREG_G6] = (unsigned long) t;
580		t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
581	} else {
582		if (t->flags & _TIF_32BIT) {
583			sp &= 0x00000000ffffffffUL;
584			regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
585		}
586		t->kregs->u_regs[UREG_FP] = sp;
587		t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
588		if (sp != regs->u_regs[UREG_FP]) {
589			unsigned long csp;
590
591			csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
592			if (!csp)
593				return -EFAULT;
594			t->kregs->u_regs[UREG_FP] = csp;
595		}
596		if (t->utraps)
597			t->utraps[0]++;
598	}
599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
600	/* Set the return value for the child. */
601	t->kregs->u_regs[UREG_I0] = current->pid;
602	t->kregs->u_regs[UREG_I1] = 1;
603
604	/* Set the second return value for the parent. */
605	regs->u_regs[UREG_I1] = 0;
606
607	if (clone_flags & CLONE_SETTLS)
608		t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
609
610	return 0;
611}
612
613/*
614 * This is the mechanism for creating a new kernel thread.
615 *
616 * NOTE! Only a kernel-only process(ie the swapper or direct descendants
617 * who haven't done an "execve()") should use this: it will work within
618 * a system call from a "real" process, but the process memory space will
619 * not be freed until both the parent and the child have exited.
620 */
621pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
622{
623	long retval;
 
624
625	/* If the parent runs before fn(arg) is called by the child,
626	 * the input registers of this function can be clobbered.
627	 * So we stash 'fn' and 'arg' into global registers which
628	 * will not be modified by the parent.
629	 */
630	__asm__ __volatile__("mov %4, %%g2\n\t"	   /* Save FN into global */
631			     "mov %5, %%g3\n\t"	   /* Save ARG into global */
632			     "mov %1, %%g1\n\t"	   /* Clone syscall nr. */
633			     "mov %2, %%o0\n\t"	   /* Clone flags. */
634			     "mov 0, %%o1\n\t"	   /* usp arg == 0 */
635			     "t 0x6d\n\t"	   /* Linux/Sparc clone(). */
636			     "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
637			     " mov %%o0, %0\n\t"
638			     "jmpl %%g2, %%o7\n\t"   /* Call the function. */
639			     " mov %%g3, %%o0\n\t"   /* Set arg in delay. */
640			     "mov %3, %%g1\n\t"
641			     "t 0x6d\n\t"	   /* Linux/Sparc exit(). */
642			     /* Notreached by child. */
643			     "1:" :
644			     "=r" (retval) :
645			     "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
646			     "i" (__NR_exit),  "r" (fn), "r" (arg) :
647			     "g1", "g2", "g3", "o0", "o1", "memory", "cc");
648	return retval;
649}
650EXPORT_SYMBOL(kernel_thread);
651
652typedef struct {
653	union {
654		unsigned int	pr_regs[32];
655		unsigned long	pr_dregs[16];
656	} pr_fr;
657	unsigned int __unused;
658	unsigned int	pr_fsr;
659	unsigned char	pr_qcnt;
660	unsigned char	pr_q_entrysize;
661	unsigned char	pr_en;
662	unsigned int	pr_q[64];
663} elf_fpregset_t32;
664
665/*
666 * fill in the fpu structure for a core dump.
667 */
668int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
669{
670	unsigned long *kfpregs = current_thread_info()->fpregs;
671	unsigned long fprs = current_thread_info()->fpsaved[0];
672
673	if (test_thread_flag(TIF_32BIT)) {
674		elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
675
676		if (fprs & FPRS_DL)
677			memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
678			       sizeof(unsigned int) * 32);
679		else
680			memset(&fpregs32->pr_fr.pr_regs[0], 0,
681			       sizeof(unsigned int) * 32);
682		fpregs32->pr_qcnt = 0;
683		fpregs32->pr_q_entrysize = 8;
684		memset(&fpregs32->pr_q[0], 0,
685		       (sizeof(unsigned int) * 64));
686		if (fprs & FPRS_FEF) {
687			fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
688			fpregs32->pr_en = 1;
689		} else {
690			fpregs32->pr_fsr = 0;
691			fpregs32->pr_en = 0;
692		}
693	} else {
694		if(fprs & FPRS_DL)
695			memcpy(&fpregs->pr_regs[0], kfpregs,
696			       sizeof(unsigned int) * 32);
697		else
698			memset(&fpregs->pr_regs[0], 0,
699			       sizeof(unsigned int) * 32);
700		if(fprs & FPRS_DU)
701			memcpy(&fpregs->pr_regs[16], kfpregs+16,
702			       sizeof(unsigned int) * 32);
703		else
704			memset(&fpregs->pr_regs[16], 0,
705			       sizeof(unsigned int) * 32);
706		if(fprs & FPRS_FEF) {
707			fpregs->pr_fsr = current_thread_info()->xfsr[0];
708			fpregs->pr_gsr = current_thread_info()->gsr[0];
709		} else {
710			fpregs->pr_fsr = fpregs->pr_gsr = 0;
711		}
712		fpregs->pr_fprs = fprs;
713	}
714	return 1;
715}
716EXPORT_SYMBOL(dump_fpu);
717
718/*
719 * sparc_execve() executes a new program after the asm stub has set
720 * things up for us.  This should basically do what I want it to.
721 */
722asmlinkage int sparc_execve(struct pt_regs *regs)
723{
724	int error, base = 0;
725	char *filename;
726
727	/* User register window flush is done by entry.S */
728
729	/* Check for indirect call. */
730	if (regs->u_regs[UREG_G1] == 0)
731		base = 1;
732
733	filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
734	error = PTR_ERR(filename);
735	if (IS_ERR(filename))
736		goto out;
737	error = do_execve(filename,
738			  (const char __user *const __user *)
739			  regs->u_regs[base + UREG_I1],
740			  (const char __user *const __user *)
741			  regs->u_regs[base + UREG_I2], regs);
742	putname(filename);
743	if (!error) {
744		fprs_write(0);
745		current_thread_info()->xfsr[0] = 0;
746		current_thread_info()->fpsaved[0] = 0;
747		regs->tstate &= ~TSTATE_PEF;
748	}
749out:
750	return error;
751}
752
753unsigned long get_wchan(struct task_struct *task)
754{
755	unsigned long pc, fp, bias = 0;
756	struct thread_info *tp;
757	struct reg_window *rw;
758        unsigned long ret = 0;
759	int count = 0; 
760
761	if (!task || task == current ||
762            task->state == TASK_RUNNING)
763		goto out;
764
765	tp = task_thread_info(task);
766	bias = STACK_BIAS;
767	fp = task_thread_info(task)->ksp + bias;
768
769	do {
770		if (!kstack_valid(tp, fp))
771			break;
772		rw = (struct reg_window *) fp;
773		pc = rw->ins[7];
774		if (!in_sched_functions(pc)) {
775			ret = pc;
776			goto out;
777		}
778		fp = rw->ins[6] + bias;
779	} while (++count < 16);
780
781out:
782	return ret;
783}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*  arch/sparc64/kernel/process.c
  3 *
  4 *  Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
  5 *  Copyright (C) 1996       Eddie C. Dost   (ecd@skynet.be)
  6 *  Copyright (C) 1997, 1998 Jakub Jelinek   (jj@sunsite.mff.cuni.cz)
  7 */
  8
  9/*
 10 * This file handles the architecture-dependent parts of process handling..
 11 */
 12
 13#include <stdarg.h>
 14
 15#include <linux/errno.h>
 16#include <linux/export.h>
 17#include <linux/sched.h>
 18#include <linux/sched/debug.h>
 19#include <linux/sched/task.h>
 20#include <linux/sched/task_stack.h>
 21#include <linux/kernel.h>
 22#include <linux/mm.h>
 23#include <linux/fs.h>
 24#include <linux/smp.h>
 25#include <linux/stddef.h>
 26#include <linux/ptrace.h>
 27#include <linux/slab.h>
 28#include <linux/user.h>
 29#include <linux/delay.h>
 30#include <linux/compat.h>
 31#include <linux/tick.h>
 32#include <linux/init.h>
 33#include <linux/cpu.h>
 34#include <linux/perf_event.h>
 35#include <linux/elfcore.h>
 36#include <linux/sysrq.h>
 37#include <linux/nmi.h>
 38#include <linux/context_tracking.h>
 39#include <linux/signal.h>
 40
 41#include <linux/uaccess.h>
 42#include <asm/page.h>
 43#include <asm/pgalloc.h>
 44#include <asm/pgtable.h>
 45#include <asm/processor.h>
 46#include <asm/pstate.h>
 47#include <asm/elf.h>
 48#include <asm/fpumacro.h>
 49#include <asm/head.h>
 50#include <asm/cpudata.h>
 51#include <asm/mmu_context.h>
 52#include <asm/unistd.h>
 53#include <asm/hypervisor.h>
 54#include <asm/syscalls.h>
 55#include <asm/irq_regs.h>
 56#include <asm/smp.h>
 57#include <asm/pcr.h>
 58
 59#include "kstack.h"
 60
 61/* Idle loop support on sparc64. */
 62void arch_cpu_idle(void)
 63{
 64	if (tlb_type != hypervisor) {
 65		touch_nmi_watchdog();
 66		local_irq_enable();
 67	} else {
 
 
 
 
 
 68		unsigned long pstate;
 69
 70		local_irq_enable();
 71
 72                /* The sun4v sleeping code requires that we have PSTATE.IE cleared over
 73                 * the cpu sleep hypervisor call.
 74                 */
 75		__asm__ __volatile__(
 76			"rdpr %%pstate, %0\n\t"
 77			"andn %0, %1, %0\n\t"
 78			"wrpr %0, %%g0, %%pstate"
 79			: "=&r" (pstate)
 80			: "i" (PSTATE_IE));
 81
 82		if (!need_resched() && !cpu_is_offline(smp_processor_id())) {
 83			sun4v_cpu_yield();
 84			/* If resumed by cpu_poke then we need to explicitly
 85			 * call scheduler_ipi().
 86			 */
 87			scheduler_poke();
 88		}
 89
 90		/* Re-enable interrupts. */
 91		__asm__ __volatile__(
 92			"rdpr %%pstate, %0\n\t"
 93			"or %0, %1, %0\n\t"
 94			"wrpr %0, %%g0, %%pstate"
 95			: "=&r" (pstate)
 96			: "i" (PSTATE_IE));
 97	}
 
 
 98}
 99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100#ifdef CONFIG_HOTPLUG_CPU
101void arch_cpu_idle_dead(void)
102{
103	sched_preempt_enable_no_resched();
104	cpu_play_dead();
 
 
 
105}
106#endif
107
108#ifdef CONFIG_COMPAT
109static void show_regwindow32(struct pt_regs *regs)
110{
111	struct reg_window32 __user *rw;
112	struct reg_window32 r_w;
113	mm_segment_t old_fs;
114	
115	__asm__ __volatile__ ("flushw");
116	rw = compat_ptr((unsigned int)regs->u_regs[14]);
117	old_fs = get_fs();
118	set_fs (USER_DS);
119	if (copy_from_user (&r_w, rw, sizeof(r_w))) {
120		set_fs (old_fs);
121		return;
122	}
123
124	set_fs (old_fs);			
125	printk("l0: %08x l1: %08x l2: %08x l3: %08x "
126	       "l4: %08x l5: %08x l6: %08x l7: %08x\n",
127	       r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
128	       r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
129	printk("i0: %08x i1: %08x i2: %08x i3: %08x "
130	       "i4: %08x i5: %08x i6: %08x i7: %08x\n",
131	       r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
132	       r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
133}
134#else
135#define show_regwindow32(regs)	do { } while (0)
136#endif
137
138static void show_regwindow(struct pt_regs *regs)
139{
140	struct reg_window __user *rw;
141	struct reg_window *rwk;
142	struct reg_window r_w;
143	mm_segment_t old_fs;
144
145	if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
146		__asm__ __volatile__ ("flushw");
147		rw = (struct reg_window __user *)
148			(regs->u_regs[14] + STACK_BIAS);
149		rwk = (struct reg_window *)
150			(regs->u_regs[14] + STACK_BIAS);
151		if (!(regs->tstate & TSTATE_PRIV)) {
152			old_fs = get_fs();
153			set_fs (USER_DS);
154			if (copy_from_user (&r_w, rw, sizeof(r_w))) {
155				set_fs (old_fs);
156				return;
157			}
158			rwk = &r_w;
159			set_fs (old_fs);			
160		}
161	} else {
162		show_regwindow32(regs);
163		return;
164	}
165	printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
166	       rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
167	printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
168	       rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
169	printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
170	       rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
171	printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
172	       rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
173	if (regs->tstate & TSTATE_PRIV)
174		printk("I7: <%pS>\n", (void *) rwk->ins[7]);
175}
176
177void show_regs(struct pt_regs *regs)
178{
179	show_regs_print_info(KERN_DEFAULT);
180
181	printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x    %s\n", regs->tstate,
182	       regs->tpc, regs->tnpc, regs->y, print_tainted());
183	printk("TPC: <%pS>\n", (void *) regs->tpc);
184	printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
185	       regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
186	       regs->u_regs[3]);
187	printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
188	       regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
189	       regs->u_regs[7]);
190	printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
191	       regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
192	       regs->u_regs[11]);
193	printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
194	       regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
195	       regs->u_regs[15]);
196	printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
197	show_regwindow(regs);
198	show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
199}
200
201union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
202static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
203
204static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
205			      int this_cpu)
206{
207	struct global_reg_snapshot *rp;
208
209	flushw_all();
210
211	rp = &global_cpu_snapshot[this_cpu].reg;
212
213	rp->tstate = regs->tstate;
214	rp->tpc = regs->tpc;
215	rp->tnpc = regs->tnpc;
216	rp->o7 = regs->u_regs[UREG_I7];
217
218	if (regs->tstate & TSTATE_PRIV) {
219		struct reg_window *rw;
220
221		rw = (struct reg_window *)
222			(regs->u_regs[UREG_FP] + STACK_BIAS);
223		if (kstack_valid(tp, (unsigned long) rw)) {
224			rp->i7 = rw->ins[7];
225			rw = (struct reg_window *)
226				(rw->ins[6] + STACK_BIAS);
227			if (kstack_valid(tp, (unsigned long) rw))
228				rp->rpc = rw->ins[7];
229		}
230	} else {
231		rp->i7 = 0;
232		rp->rpc = 0;
233	}
234	rp->thread = tp;
235}
236
237/* In order to avoid hangs we do not try to synchronize with the
238 * global register dump client cpus.  The last store they make is to
239 * the thread pointer, so do a short poll waiting for that to become
240 * non-NULL.
241 */
242static void __global_reg_poll(struct global_reg_snapshot *gp)
243{
244	int limit = 0;
245
246	while (!gp->thread && ++limit < 100) {
247		barrier();
248		udelay(1);
249	}
250}
251
252void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
253{
254	struct thread_info *tp = current_thread_info();
255	struct pt_regs *regs = get_irq_regs();
256	unsigned long flags;
257	int this_cpu, cpu;
258
259	if (!regs)
260		regs = tp->kregs;
261
262	spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
 
 
263
264	this_cpu = raw_smp_processor_id();
265
266	memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
267
268	if (cpumask_test_cpu(this_cpu, mask) && !exclude_self)
269		__global_reg_self(tp, regs, this_cpu);
270
271	smp_fetch_global_regs();
272
273	for_each_cpu(cpu, mask) {
274		struct global_reg_snapshot *gp;
275
276		if (exclude_self && cpu == this_cpu)
277			continue;
278
279		gp = &global_cpu_snapshot[cpu].reg;
280
281		__global_reg_poll(gp);
282
283		tp = gp->thread;
284		printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
285		       (cpu == this_cpu ? '*' : ' '), cpu,
286		       gp->tstate, gp->tpc, gp->tnpc,
287		       ((tp && tp->task) ? tp->task->comm : "NULL"),
288		       ((tp && tp->task) ? tp->task->pid : -1));
289
290		if (gp->tstate & TSTATE_PRIV) {
291			printk("             TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
292			       (void *) gp->tpc,
293			       (void *) gp->o7,
294			       (void *) gp->i7,
295			       (void *) gp->rpc);
296		} else {
297			printk("             TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
298			       gp->tpc, gp->o7, gp->i7, gp->rpc);
299		}
300
301		touch_nmi_watchdog();
302	}
303
304	memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
305
306	spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
307}
308
309#ifdef CONFIG_MAGIC_SYSRQ
310
311static void sysrq_handle_globreg(int key)
312{
313	trigger_all_cpu_backtrace();
314}
315
316static struct sysrq_key_op sparc_globalreg_op = {
317	.handler	= sysrq_handle_globreg,
318	.help_msg	= "global-regs(y)",
319	.action_msg	= "Show Global CPU Regs",
320};
321
322static void __global_pmu_self(int this_cpu)
323{
324	struct global_pmu_snapshot *pp;
325	int i, num;
326
327	if (!pcr_ops)
328		return;
329
330	pp = &global_cpu_snapshot[this_cpu].pmu;
331
332	num = 1;
333	if (tlb_type == hypervisor &&
334	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
335		num = 4;
336
337	for (i = 0; i < num; i++) {
338		pp->pcr[i] = pcr_ops->read_pcr(i);
339		pp->pic[i] = pcr_ops->read_pic(i);
340	}
341}
342
343static void __global_pmu_poll(struct global_pmu_snapshot *pp)
344{
345	int limit = 0;
346
347	while (!pp->pcr[0] && ++limit < 100) {
348		barrier();
349		udelay(1);
350	}
351}
352
353static void pmu_snapshot_all_cpus(void)
354{
355	unsigned long flags;
356	int this_cpu, cpu;
357
358	spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
359
360	memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
361
362	this_cpu = raw_smp_processor_id();
363
364	__global_pmu_self(this_cpu);
365
366	smp_fetch_global_pmu();
367
368	for_each_online_cpu(cpu) {
369		struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
370
371		__global_pmu_poll(pp);
372
373		printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
374		       (cpu == this_cpu ? '*' : ' '), cpu,
375		       pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
376		       pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
377
378		touch_nmi_watchdog();
379	}
380
381	memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
382
383	spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
384}
385
386static void sysrq_handle_globpmu(int key)
387{
388	pmu_snapshot_all_cpus();
389}
390
391static struct sysrq_key_op sparc_globalpmu_op = {
392	.handler	= sysrq_handle_globpmu,
393	.help_msg	= "global-pmu(x)",
394	.action_msg	= "Show Global PMU Regs",
395};
396
397static int __init sparc_sysrq_init(void)
398{
399	int ret = register_sysrq_key('y', &sparc_globalreg_op);
400
401	if (!ret)
402		ret = register_sysrq_key('x', &sparc_globalpmu_op);
403	return ret;
404}
405
406core_initcall(sparc_sysrq_init);
407
408#endif
409
410/* Free current thread data structures etc.. */
411void exit_thread(struct task_struct *tsk)
412{
413	struct thread_info *t = task_thread_info(tsk);
414
415	if (t->utraps) {
416		if (t->utraps[0] < 2)
417			kfree (t->utraps);
418		else
419			t->utraps[0]--;
420	}
421}
422
423void flush_thread(void)
424{
425	struct thread_info *t = current_thread_info();
426	struct mm_struct *mm;
427
428	mm = t->task->mm;
429	if (mm)
430		tsb_context_switch(mm);
431
432	set_thread_wsaved(0);
433
434	/* Clear FPU register state. */
435	t->fpsaved[0] = 0;
436}
437
438/* It's a bit more tricky when 64-bit tasks are involved... */
439static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
440{
441	bool stack_64bit = test_thread_64bit_stack(psp);
442	unsigned long fp, distance, rval;
443
444	if (stack_64bit) {
445		csp += STACK_BIAS;
446		psp += STACK_BIAS;
447		__get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
448		fp += STACK_BIAS;
449		if (test_thread_flag(TIF_32BIT))
450			fp &= 0xffffffff;
451	} else
452		__get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
453
454	/* Now align the stack as this is mandatory in the Sparc ABI
455	 * due to how register windows work.  This hides the
456	 * restriction from thread libraries etc.
457	 */
458	csp &= ~15UL;
459
460	distance = fp - psp;
461	rval = (csp - distance);
462	if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
463		rval = 0;
464	else if (!stack_64bit) {
465		if (put_user(((u32)csp),
466			     &(((struct reg_window32 __user *)rval)->ins[6])))
467			rval = 0;
468	} else {
469		if (put_user(((u64)csp - STACK_BIAS),
470			     &(((struct reg_window __user *)rval)->ins[6])))
471			rval = 0;
472		else
473			rval = rval - STACK_BIAS;
474	}
475
476	return rval;
477}
478
479/* Standard stuff. */
480static inline void shift_window_buffer(int first_win, int last_win,
481				       struct thread_info *t)
482{
483	int i;
484
485	for (i = first_win; i < last_win; i++) {
486		t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
487		memcpy(&t->reg_window[i], &t->reg_window[i+1],
488		       sizeof(struct reg_window));
489	}
490}
491
492void synchronize_user_stack(void)
493{
494	struct thread_info *t = current_thread_info();
495	unsigned long window;
496
497	flush_user_windows();
498	if ((window = get_thread_wsaved()) != 0) {
 
 
 
 
 
 
 
 
499		window -= 1;
500		do {
 
501			struct reg_window *rwin = &t->reg_window[window];
502			int winsize = sizeof(struct reg_window);
503			unsigned long sp;
504
505			sp = t->rwbuf_stkptrs[window];
506
507			if (test_thread_64bit_stack(sp))
508				sp += STACK_BIAS;
509			else
510				winsize = sizeof(struct reg_window32);
511
512			if (!copy_to_user((char __user *)sp, rwin, winsize)) {
513				shift_window_buffer(window, get_thread_wsaved() - 1, t);
514				set_thread_wsaved(get_thread_wsaved() - 1);
515			}
516		} while (window--);
517	}
518}
519
520static void stack_unaligned(unsigned long sp)
521{
522	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) sp, 0);
 
 
 
 
 
 
 
523}
524
525static const char uwfault32[] = KERN_INFO \
526	"%s[%d]: bad register window fault: SP %08lx (orig_sp %08lx) TPC %08lx O7 %08lx\n";
527static const char uwfault64[] = KERN_INFO \
528	"%s[%d]: bad register window fault: SP %016lx (orig_sp %016lx) TPC %08lx O7 %016lx\n";
529
530void fault_in_user_windows(struct pt_regs *regs)
531{
532	struct thread_info *t = current_thread_info();
533	unsigned long window;
 
 
 
 
 
 
 
534
535	flush_user_windows();
536	window = get_thread_wsaved();
537
538	if (likely(window != 0)) {
539		window -= 1;
540		do {
 
541			struct reg_window *rwin = &t->reg_window[window];
542			int winsize = sizeof(struct reg_window);
543			unsigned long sp, orig_sp;
544
545			orig_sp = sp = t->rwbuf_stkptrs[window];
546
547			if (test_thread_64bit_stack(sp))
548				sp += STACK_BIAS;
549			else
550				winsize = sizeof(struct reg_window32);
551
552			if (unlikely(sp & 0x7UL))
553				stack_unaligned(sp);
554
555			if (unlikely(copy_to_user((char __user *)sp,
556						  rwin, winsize))) {
557				if (show_unhandled_signals)
558					printk_ratelimited(is_compat_task() ?
559							   uwfault32 : uwfault64,
560							   current->comm, current->pid,
561							   sp, orig_sp,
562							   regs->tpc,
563							   regs->u_regs[UREG_I7]);
564				goto barf;
565			}
566		} while (window--);
567	}
568	set_thread_wsaved(0);
569	return;
570
571barf:
572	set_thread_wsaved(window + 1);
573	force_sig(SIGSEGV);
574}
575
576asmlinkage long sparc_do_fork(unsigned long clone_flags,
577			      unsigned long stack_start,
578			      struct pt_regs *regs,
579			      unsigned long stack_size)
580{
581	int __user *parent_tid_ptr, *child_tid_ptr;
582	unsigned long orig_i1 = regs->u_regs[UREG_I1];
583	long ret;
584
585#ifdef CONFIG_COMPAT
586	if (test_thread_flag(TIF_32BIT)) {
587		parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
588		child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
589	} else
590#endif
591	{
592		parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
593		child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
594	}
595
596	ret = do_fork(clone_flags, stack_start, stack_size,
 
597		      parent_tid_ptr, child_tid_ptr);
598
599	/* If we get an error and potentially restart the system
600	 * call, we're screwed because copy_thread() clobbered
601	 * the parent's %o1.  So detect that case and restore it
602	 * here.
603	 */
604	if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
605		regs->u_regs[UREG_I1] = orig_i1;
606
607	return ret;
608}
609
610/* Copy a Sparc thread.  The fork() return value conventions
611 * under SunOS are nothing short of bletcherous:
612 * Parent -->  %o0 == childs  pid, %o1 == 0
613 * Child  -->  %o0 == parents pid, %o1 == 1
614 */
615int copy_thread(unsigned long clone_flags, unsigned long sp,
616		unsigned long arg, struct task_struct *p)
 
617{
618	struct thread_info *t = task_thread_info(p);
619	struct pt_regs *regs = current_pt_regs();
620	struct sparc_stackf *parent_sf;
621	unsigned long child_stack_sz;
622	char *child_trap_frame;
 
 
 
 
623
624	/* Calculate offset to stack_frame & pt_regs */
625	child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
 
626	child_trap_frame = (task_stack_page(p) +
627			    (THREAD_SIZE - child_stack_sz));
 
628
 
 
 
629	t->new_child = 1;
630	t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
631	t->kregs = (struct pt_regs *) (child_trap_frame +
632				       sizeof(struct sparc_stackf));
633	t->fpsaved[0] = 0;
634
635	if (unlikely(p->flags & PF_KTHREAD)) {
636		memset(child_trap_frame, 0, child_stack_sz);
637		__thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 
638			(current_pt_regs()->tstate + 1) & TSTATE_CWP;
639		t->current_ds = ASI_P;
640		t->kregs->u_regs[UREG_G1] = sp; /* function */
641		t->kregs->u_regs[UREG_G2] = arg;
642		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
643	}
644
645	parent_sf = ((struct sparc_stackf *) regs) - 1;
646	memcpy(child_trap_frame, parent_sf, child_stack_sz);
647	if (t->flags & _TIF_32BIT) {
648		sp &= 0x00000000ffffffffUL;
649		regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
650	}
651	t->kregs->u_regs[UREG_FP] = sp;
652	__thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 
653		(regs->tstate + 1) & TSTATE_CWP;
654	t->current_ds = ASI_AIUS;
655	if (sp != regs->u_regs[UREG_FP]) {
656		unsigned long csp;
657
658		csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
659		if (!csp)
660			return -EFAULT;
661		t->kregs->u_regs[UREG_FP] = csp;
662	}
663	if (t->utraps)
664		t->utraps[0]++;
665
666	/* Set the return value for the child. */
667	t->kregs->u_regs[UREG_I0] = current->pid;
668	t->kregs->u_regs[UREG_I1] = 1;
669
670	/* Set the second return value for the parent. */
671	regs->u_regs[UREG_I1] = 0;
672
673	if (clone_flags & CLONE_SETTLS)
674		t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
675
676	return 0;
677}
678
679/* TIF_MCDPER in thread info flags for current task is updated lazily upon
680 * a context switch. Update this flag in current task's thread flags
681 * before dup so the dup'd task will inherit the current TIF_MCDPER flag.
 
 
 
 
682 */
683int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
684{
685	if (adi_capable()) {
686		register unsigned long tmp_mcdper;
687
688		__asm__ __volatile__(
689			".word 0x83438000\n\t"	/* rd  %mcdper, %g1 */
690			"mov %%g1, %0\n\t"
691			: "=r" (tmp_mcdper)
692			:
693			: "g1");
694		if (tmp_mcdper)
695			set_thread_flag(TIF_MCDPER);
696		else
697			clear_thread_flag(TIF_MCDPER);
698	}
699
700	*dst = *src;
701	return 0;
 
 
 
 
 
 
 
 
 
 
702}
 
703
704typedef struct {
705	union {
706		unsigned int	pr_regs[32];
707		unsigned long	pr_dregs[16];
708	} pr_fr;
709	unsigned int __unused;
710	unsigned int	pr_fsr;
711	unsigned char	pr_qcnt;
712	unsigned char	pr_q_entrysize;
713	unsigned char	pr_en;
714	unsigned int	pr_q[64];
715} elf_fpregset_t32;
716
717/*
718 * fill in the fpu structure for a core dump.
719 */
720int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
721{
722	unsigned long *kfpregs = current_thread_info()->fpregs;
723	unsigned long fprs = current_thread_info()->fpsaved[0];
724
725	if (test_thread_flag(TIF_32BIT)) {
726		elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
727
728		if (fprs & FPRS_DL)
729			memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
730			       sizeof(unsigned int) * 32);
731		else
732			memset(&fpregs32->pr_fr.pr_regs[0], 0,
733			       sizeof(unsigned int) * 32);
734		fpregs32->pr_qcnt = 0;
735		fpregs32->pr_q_entrysize = 8;
736		memset(&fpregs32->pr_q[0], 0,
737		       (sizeof(unsigned int) * 64));
738		if (fprs & FPRS_FEF) {
739			fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
740			fpregs32->pr_en = 1;
741		} else {
742			fpregs32->pr_fsr = 0;
743			fpregs32->pr_en = 0;
744		}
745	} else {
746		if(fprs & FPRS_DL)
747			memcpy(&fpregs->pr_regs[0], kfpregs,
748			       sizeof(unsigned int) * 32);
749		else
750			memset(&fpregs->pr_regs[0], 0,
751			       sizeof(unsigned int) * 32);
752		if(fprs & FPRS_DU)
753			memcpy(&fpregs->pr_regs[16], kfpregs+16,
754			       sizeof(unsigned int) * 32);
755		else
756			memset(&fpregs->pr_regs[16], 0,
757			       sizeof(unsigned int) * 32);
758		if(fprs & FPRS_FEF) {
759			fpregs->pr_fsr = current_thread_info()->xfsr[0];
760			fpregs->pr_gsr = current_thread_info()->gsr[0];
761		} else {
762			fpregs->pr_fsr = fpregs->pr_gsr = 0;
763		}
764		fpregs->pr_fprs = fprs;
765	}
766	return 1;
767}
768EXPORT_SYMBOL(dump_fpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
769
770unsigned long get_wchan(struct task_struct *task)
771{
772	unsigned long pc, fp, bias = 0;
773	struct thread_info *tp;
774	struct reg_window *rw;
775        unsigned long ret = 0;
776	int count = 0; 
777
778	if (!task || task == current ||
779            task->state == TASK_RUNNING)
780		goto out;
781
782	tp = task_thread_info(task);
783	bias = STACK_BIAS;
784	fp = task_thread_info(task)->ksp + bias;
785
786	do {
787		if (!kstack_valid(tp, fp))
788			break;
789		rw = (struct reg_window *) fp;
790		pc = rw->ins[7];
791		if (!in_sched_functions(pc)) {
792			ret = pc;
793			goto out;
794		}
795		fp = rw->ins[6] + bias;
796	} while (++count < 16);
797
798out:
799	return ret;
800}