Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 *  linux/arch/arm/mm/dma-mapping.c
   3 *
   4 *  Copyright (C) 2000-2004 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 *
  10 *  DMA uncached mapping support.
  11 */
  12#include <linux/module.h>
  13#include <linux/mm.h>
 
  14#include <linux/gfp.h>
  15#include <linux/errno.h>
  16#include <linux/list.h>
  17#include <linux/init.h>
  18#include <linux/device.h>
 
  19#include <linux/dma-mapping.h>
 
  20#include <linux/dma-contiguous.h>
  21#include <linux/highmem.h>
  22#include <linux/memblock.h>
  23#include <linux/slab.h>
  24#include <linux/iommu.h>
 
  25#include <linux/vmalloc.h>
 
 
  26
  27#include <asm/memory.h>
  28#include <asm/highmem.h>
  29#include <asm/cacheflush.h>
  30#include <asm/tlbflush.h>
  31#include <asm/sizes.h>
  32#include <asm/mach/arch.h>
  33#include <asm/dma-iommu.h>
  34#include <asm/mach/map.h>
  35#include <asm/system_info.h>
  36#include <asm/dma-contiguous.h>
 
  37
 
  38#include "mm.h"
  39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40/*
  41 * The DMA API is built upon the notion of "buffer ownership".  A buffer
  42 * is either exclusively owned by the CPU (and therefore may be accessed
  43 * by it) or exclusively owned by the DMA device.  These helper functions
  44 * represent the transitions between these two ownership states.
  45 *
  46 * Note, however, that on later ARMs, this notion does not work due to
  47 * speculative prefetches.  We model our approach on the assumption that
  48 * the CPU does do speculative prefetches, which means we clean caches
  49 * before transfers and delay cache invalidation until transfer completion.
  50 *
  51 */
  52static void __dma_page_cpu_to_dev(struct page *, unsigned long,
  53		size_t, enum dma_data_direction);
  54static void __dma_page_dev_to_cpu(struct page *, unsigned long,
  55		size_t, enum dma_data_direction);
  56
  57/**
  58 * arm_dma_map_page - map a portion of a page for streaming DMA
  59 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  60 * @page: page that buffer resides in
  61 * @offset: offset into page for start of buffer
  62 * @size: size of buffer to map
  63 * @dir: DMA transfer direction
  64 *
  65 * Ensure that any data held in the cache is appropriately discarded
  66 * or written back.
  67 *
  68 * The device owns this memory once this call has completed.  The CPU
  69 * can regain ownership by calling dma_unmap_page().
  70 */
  71static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
  72	     unsigned long offset, size_t size, enum dma_data_direction dir,
  73	     struct dma_attrs *attrs)
  74{
  75	if (!arch_is_coherent())
  76		__dma_page_cpu_to_dev(page, offset, size, dir);
  77	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
  78}
  79
 
 
 
 
 
 
 
  80/**
  81 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
  82 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  83 * @handle: DMA address of buffer
  84 * @size: size of buffer (same as passed to dma_map_page)
  85 * @dir: DMA transfer direction (same as passed to dma_map_page)
  86 *
  87 * Unmap a page streaming mode DMA translation.  The handle and size
  88 * must match what was provided in the previous dma_map_page() call.
  89 * All other usages are undefined.
  90 *
  91 * After this call, reads by the CPU to the buffer are guaranteed to see
  92 * whatever the device wrote there.
  93 */
  94static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
  95		size_t size, enum dma_data_direction dir,
  96		struct dma_attrs *attrs)
  97{
  98	if (!arch_is_coherent())
  99		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
 100				      handle & ~PAGE_MASK, size, dir);
 101}
 102
 103static void arm_dma_sync_single_for_cpu(struct device *dev,
 104		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 105{
 106	unsigned int offset = handle & (PAGE_SIZE - 1);
 107	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 108	if (!arch_is_coherent())
 109		__dma_page_dev_to_cpu(page, offset, size, dir);
 110}
 111
 112static void arm_dma_sync_single_for_device(struct device *dev,
 113		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 114{
 115	unsigned int offset = handle & (PAGE_SIZE - 1);
 116	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 117	if (!arch_is_coherent())
 118		__dma_page_cpu_to_dev(page, offset, size, dir);
 119}
 120
 121static int arm_dma_set_mask(struct device *dev, u64 dma_mask);
 122
 123struct dma_map_ops arm_dma_ops = {
 124	.alloc			= arm_dma_alloc,
 125	.free			= arm_dma_free,
 126	.mmap			= arm_dma_mmap,
 
 127	.map_page		= arm_dma_map_page,
 128	.unmap_page		= arm_dma_unmap_page,
 129	.map_sg			= arm_dma_map_sg,
 130	.unmap_sg		= arm_dma_unmap_sg,
 
 131	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
 132	.sync_single_for_device	= arm_dma_sync_single_for_device,
 133	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
 134	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
 135	.set_dma_mask		= arm_dma_set_mask,
 
 136};
 137EXPORT_SYMBOL(arm_dma_ops);
 138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 139static u64 get_coherent_dma_mask(struct device *dev)
 140{
 141	u64 mask = (u64)arm_dma_limit;
 142
 143	if (dev) {
 144		mask = dev->coherent_dma_mask;
 145
 146		/*
 147		 * Sanity check the DMA mask - it must be non-zero, and
 148		 * must be able to be satisfied by a DMA allocation.
 149		 */
 150		if (mask == 0) {
 151			dev_warn(dev, "coherent DMA mask is unset\n");
 152			return 0;
 153		}
 154
 155		if ((~mask) & (u64)arm_dma_limit) {
 156			dev_warn(dev, "coherent DMA mask %#llx is smaller "
 157				 "than system GFP_DMA mask %#llx\n",
 158				 mask, (u64)arm_dma_limit);
 159			return 0;
 160		}
 161	}
 162
 163	return mask;
 164}
 165
 166static void __dma_clear_buffer(struct page *page, size_t size)
 167{
 168	void *ptr;
 169	/*
 170	 * Ensure that the allocated pages are zeroed, and that any data
 171	 * lurking in the kernel direct-mapped region is invalidated.
 172	 */
 173	ptr = page_address(page);
 174	if (ptr) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175		memset(ptr, 0, size);
 176		dmac_flush_range(ptr, ptr + size);
 177		outer_flush_range(__pa(ptr), __pa(ptr) + size);
 
 
 178	}
 179}
 180
 181/*
 182 * Allocate a DMA buffer for 'dev' of size 'size' using the
 183 * specified gfp mask.  Note that 'size' must be page aligned.
 184 */
 185static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
 
 186{
 187	unsigned long order = get_order(size);
 188	struct page *page, *p, *e;
 189
 190	page = alloc_pages(gfp, order);
 191	if (!page)
 192		return NULL;
 193
 194	/*
 195	 * Now split the huge page and free the excess pages
 196	 */
 197	split_page(page, order);
 198	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 199		__free_page(p);
 200
 201	__dma_clear_buffer(page, size);
 202
 203	return page;
 204}
 205
 206/*
 207 * Free a DMA buffer.  'size' must be page aligned.
 208 */
 209static void __dma_free_buffer(struct page *page, size_t size)
 210{
 211	struct page *e = page + (size >> PAGE_SHIFT);
 212
 213	while (page < e) {
 214		__free_page(page);
 215		page++;
 216	}
 217}
 218
 219#ifdef CONFIG_MMU
 220
 221#define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - consistent_base) >> PAGE_SHIFT)
 222#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - consistent_base) >> PMD_SHIFT)
 223
 224/*
 225 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
 226 */
 227static pte_t **consistent_pte;
 228
 229#define DEFAULT_CONSISTENT_DMA_SIZE SZ_2M
 230
 231static unsigned long consistent_base = CONSISTENT_END - DEFAULT_CONSISTENT_DMA_SIZE;
 232
 233void __init init_consistent_dma_size(unsigned long size)
 234{
 235	unsigned long base = CONSISTENT_END - ALIGN(size, SZ_2M);
 236
 237	BUG_ON(consistent_pte); /* Check we're called before DMA region init */
 238	BUG_ON(base < VMALLOC_END);
 239
 240	/* Grow region to accommodate specified size  */
 241	if (base < consistent_base)
 242		consistent_base = base;
 243}
 244
 245#include "vmregion.h"
 246
 247static struct arm_vmregion_head consistent_head = {
 248	.vm_lock	= __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
 249	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
 250	.vm_end		= CONSISTENT_END,
 251};
 252
 253#ifdef CONFIG_HUGETLB_PAGE
 254#error ARM Coherent DMA allocator does not (yet) support huge TLB
 255#endif
 256
 257/*
 258 * Initialise the consistent memory allocation.
 259 */
 260static int __init consistent_init(void)
 261{
 262	int ret = 0;
 263	pgd_t *pgd;
 264	pud_t *pud;
 265	pmd_t *pmd;
 266	pte_t *pte;
 267	int i = 0;
 268	unsigned long base = consistent_base;
 269	unsigned long num_ptes = (CONSISTENT_END - base) >> PMD_SHIFT;
 270
 271	if (IS_ENABLED(CONFIG_CMA) && !IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU))
 272		return 0;
 273
 274	consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL);
 275	if (!consistent_pte) {
 276		pr_err("%s: no memory\n", __func__);
 277		return -ENOMEM;
 278	}
 279
 280	pr_debug("DMA memory: 0x%08lx - 0x%08lx:\n", base, CONSISTENT_END);
 281	consistent_head.vm_start = base;
 282
 283	do {
 284		pgd = pgd_offset(&init_mm, base);
 285
 286		pud = pud_alloc(&init_mm, pgd, base);
 287		if (!pud) {
 288			pr_err("%s: no pud tables\n", __func__);
 289			ret = -ENOMEM;
 290			break;
 291		}
 292
 293		pmd = pmd_alloc(&init_mm, pud, base);
 294		if (!pmd) {
 295			pr_err("%s: no pmd tables\n", __func__);
 296			ret = -ENOMEM;
 297			break;
 298		}
 299		WARN_ON(!pmd_none(*pmd));
 300
 301		pte = pte_alloc_kernel(pmd, base);
 302		if (!pte) {
 303			pr_err("%s: no pte tables\n", __func__);
 304			ret = -ENOMEM;
 305			break;
 306		}
 307
 308		consistent_pte[i++] = pte;
 309		base += PMD_SIZE;
 310	} while (base < CONSISTENT_END);
 311
 312	return ret;
 313}
 314core_initcall(consistent_init);
 315
 316static void *__alloc_from_contiguous(struct device *dev, size_t size,
 317				     pgprot_t prot, struct page **ret_page);
 
 
 318
 319static struct arm_vmregion_head coherent_head = {
 320	.vm_lock	= __SPIN_LOCK_UNLOCKED(&coherent_head.vm_lock),
 321	.vm_list	= LIST_HEAD_INIT(coherent_head.vm_list),
 322};
 
 
 323
 324static size_t coherent_pool_size = DEFAULT_CONSISTENT_DMA_SIZE / 8;
 325
 326static int __init early_coherent_pool(char *p)
 327{
 328	coherent_pool_size = memparse(p, &p);
 329	return 0;
 330}
 331early_param("coherent_pool", early_coherent_pool);
 332
 333/*
 334 * Initialise the coherent pool for atomic allocations.
 335 */
 336static int __init coherent_init(void)
 337{
 338	pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
 339	size_t size = coherent_pool_size;
 340	struct page *page;
 341	void *ptr;
 342
 343	if (!IS_ENABLED(CONFIG_CMA))
 344		return 0;
 345
 346	ptr = __alloc_from_contiguous(NULL, size, prot, &page);
 
 
 
 
 
 
 
 
 
 
 347	if (ptr) {
 348		coherent_head.vm_start = (unsigned long) ptr;
 349		coherent_head.vm_end = (unsigned long) ptr + size;
 350		printk(KERN_INFO "DMA: preallocated %u KiB pool for atomic coherent allocations\n",
 351		       (unsigned)size / 1024);
 
 
 
 
 
 
 
 
 
 352		return 0;
 353	}
 354	printk(KERN_ERR "DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
 355	       (unsigned)size / 1024);
 
 
 
 
 
 356	return -ENOMEM;
 357}
 358/*
 359 * CMA is activated by core_initcall, so we must be called after it.
 360 */
 361postcore_initcall(coherent_init);
 362
 363struct dma_contig_early_reserve {
 364	phys_addr_t base;
 365	unsigned long size;
 366};
 367
 368static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 369
 370static int dma_mmu_remap_num __initdata;
 371
 372void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 373{
 374	dma_mmu_remap[dma_mmu_remap_num].base = base;
 375	dma_mmu_remap[dma_mmu_remap_num].size = size;
 376	dma_mmu_remap_num++;
 377}
 378
 379void __init dma_contiguous_remap(void)
 380{
 381	int i;
 382	for (i = 0; i < dma_mmu_remap_num; i++) {
 383		phys_addr_t start = dma_mmu_remap[i].base;
 384		phys_addr_t end = start + dma_mmu_remap[i].size;
 385		struct map_desc map;
 386		unsigned long addr;
 387
 388		if (end > arm_lowmem_limit)
 389			end = arm_lowmem_limit;
 390		if (start >= end)
 391			return;
 392
 393		map.pfn = __phys_to_pfn(start);
 394		map.virtual = __phys_to_virt(start);
 395		map.length = end - start;
 396		map.type = MT_MEMORY_DMA_READY;
 397
 398		/*
 399		 * Clear previous low-memory mapping
 
 
 
 
 
 
 400		 */
 401		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 402		     addr += PMD_SIZE)
 403			pmd_clear(pmd_off_k(addr));
 404
 405		iotable_init(&map, 1);
 406	}
 407}
 408
 409static void *
 410__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
 411	const void *caller)
 412{
 413	struct arm_vmregion *c;
 414	size_t align;
 415	int bit;
 416
 417	if (!consistent_pte) {
 418		pr_err("%s: not initialised\n", __func__);
 419		dump_stack();
 420		return NULL;
 421	}
 422
 423	/*
 424	 * Align the virtual region allocation - maximum alignment is
 425	 * a section size, minimum is a page size.  This helps reduce
 426	 * fragmentation of the DMA space, and also prevents allocations
 427	 * smaller than a section from crossing a section boundary.
 428	 */
 429	bit = fls(size - 1);
 430	if (bit > SECTION_SHIFT)
 431		bit = SECTION_SHIFT;
 432	align = 1 << bit;
 433
 434	/*
 435	 * Allocate a virtual address in the consistent mapping region.
 436	 */
 437	c = arm_vmregion_alloc(&consistent_head, align, size,
 438			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM), caller);
 439	if (c) {
 440		pte_t *pte;
 441		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
 442		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
 443
 444		pte = consistent_pte[idx] + off;
 445		c->priv = page;
 446
 447		do {
 448			BUG_ON(!pte_none(*pte));
 449
 450			set_pte_ext(pte, mk_pte(page, prot), 0);
 451			page++;
 452			pte++;
 453			off++;
 454			if (off >= PTRS_PER_PTE) {
 455				off = 0;
 456				pte = consistent_pte[++idx];
 457			}
 458		} while (size -= PAGE_SIZE);
 459
 460		dsb();
 461
 462		return (void *)c->vm_start;
 463	}
 464	return NULL;
 465}
 466
 467static void __dma_free_remap(void *cpu_addr, size_t size)
 468{
 469	struct arm_vmregion *c;
 470	unsigned long addr;
 471	pte_t *ptep;
 472	int idx;
 473	u32 off;
 474
 475	c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
 476	if (!c) {
 477		pr_err("%s: trying to free invalid coherent area: %p\n",
 478		       __func__, cpu_addr);
 479		dump_stack();
 480		return;
 481	}
 482
 483	if ((c->vm_end - c->vm_start) != size) {
 484		pr_err("%s: freeing wrong coherent size (%ld != %d)\n",
 485		       __func__, c->vm_end - c->vm_start, size);
 486		dump_stack();
 487		size = c->vm_end - c->vm_start;
 488	}
 489
 490	idx = CONSISTENT_PTE_INDEX(c->vm_start);
 491	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
 492	ptep = consistent_pte[idx] + off;
 493	addr = c->vm_start;
 494	do {
 495		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
 496
 497		ptep++;
 498		addr += PAGE_SIZE;
 499		off++;
 500		if (off >= PTRS_PER_PTE) {
 501			off = 0;
 502			ptep = consistent_pte[++idx];
 503		}
 504
 505		if (pte_none(pte) || !pte_present(pte))
 506			pr_crit("%s: bad page in kernel page table\n",
 507				__func__);
 508	} while (size -= PAGE_SIZE);
 509
 510	flush_tlb_kernel_range(c->vm_start, c->vm_end);
 511
 512	arm_vmregion_free(&consistent_head, c);
 513}
 514
 515static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
 516			    void *data)
 517{
 518	struct page *page = virt_to_page(addr);
 519	pgprot_t prot = *(pgprot_t *)data;
 520
 521	set_pte_ext(pte, mk_pte(page, prot), 0);
 522	return 0;
 523}
 524
 525static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 526{
 527	unsigned long start = (unsigned long) page_address(page);
 528	unsigned end = start + size;
 529
 530	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 531	dsb();
 532	flush_tlb_kernel_range(start, end);
 533}
 534
 535static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 536				 pgprot_t prot, struct page **ret_page,
 537				 const void *caller)
 538{
 539	struct page *page;
 540	void *ptr;
 541	page = __dma_alloc_buffer(dev, size, gfp);
 
 
 
 
 542	if (!page)
 543		return NULL;
 
 
 544
 545	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
 546	if (!ptr) {
 547		__dma_free_buffer(page, size);
 548		return NULL;
 549	}
 550
 
 551	*ret_page = page;
 552	return ptr;
 553}
 554
 555static void *__alloc_from_pool(struct device *dev, size_t size,
 556			       struct page **ret_page, const void *caller)
 557{
 558	struct arm_vmregion *c;
 559	size_t align;
 560
 561	if (!coherent_head.vm_start) {
 562		printk(KERN_ERR "%s: coherent pool not initialised!\n",
 563		       __func__);
 564		dump_stack();
 565		return NULL;
 566	}
 567
 568	/*
 569	 * Align the region allocation - allocations from pool are rather
 570	 * small, so align them to their order in pages, minimum is a page
 571	 * size. This helps reduce fragmentation of the DMA space.
 572	 */
 573	align = PAGE_SIZE << get_order(size);
 574	c = arm_vmregion_alloc(&coherent_head, align, size, 0, caller);
 575	if (c) {
 576		void *ptr = (void *)c->vm_start;
 577		struct page *page = virt_to_page(ptr);
 578		*ret_page = page;
 579		return ptr;
 580	}
 581	return NULL;
 
 582}
 583
 584static int __free_from_pool(void *cpu_addr, size_t size)
 585{
 586	unsigned long start = (unsigned long)cpu_addr;
 587	unsigned long end = start + size;
 588	struct arm_vmregion *c;
 589
 590	if (start < coherent_head.vm_start || end > coherent_head.vm_end)
 
 
 591		return 0;
 592
 593	c = arm_vmregion_find_remove(&coherent_head, (unsigned long)start);
 594
 595	if ((c->vm_end - c->vm_start) != size) {
 596		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
 597		       __func__, c->vm_end - c->vm_start, size);
 598		dump_stack();
 599		size = c->vm_end - c->vm_start;
 600	}
 601
 602	arm_vmregion_free(&coherent_head, c);
 603	return 1;
 604}
 605
 606static void *__alloc_from_contiguous(struct device *dev, size_t size,
 607				     pgprot_t prot, struct page **ret_page)
 
 
 608{
 609	unsigned long order = get_order(size);
 610	size_t count = size >> PAGE_SHIFT;
 611	struct page *page;
 
 612
 613	page = dma_alloc_from_contiguous(dev, count, order);
 614	if (!page)
 615		return NULL;
 616
 617	__dma_clear_buffer(page, size);
 618	__dma_remap(page, size, prot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 619
 
 620	*ret_page = page;
 621	return page_address(page);
 622}
 623
 624static void __free_from_contiguous(struct device *dev, struct page *page,
 625				   size_t size)
 626{
 627	__dma_remap(page, size, pgprot_kernel);
 
 
 
 
 
 628	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 629}
 630
 631static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
 632{
 633	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
 634			    pgprot_writecombine(prot) :
 635			    pgprot_dmacoherent(prot);
 636	return prot;
 637}
 638
 639#define nommu() 0
 640
 641#else	/* !CONFIG_MMU */
 642
 643#define nommu() 1
 644
 645#define __get_dma_pgprot(attrs, prot)	__pgprot(0)
 646#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
 647#define __alloc_from_pool(dev, size, ret_page, c)		NULL
 648#define __alloc_from_contiguous(dev, size, prot, ret)		NULL
 649#define __free_from_pool(cpu_addr, size)			0
 650#define __free_from_contiguous(dev, page, size)			do { } while (0)
 651#define __dma_free_remap(cpu_addr, size)			do { } while (0)
 652
 653#endif	/* CONFIG_MMU */
 654
 655static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 656				   struct page **ret_page)
 657{
 658	struct page *page;
 659	page = __dma_alloc_buffer(dev, size, gfp);
 
 660	if (!page)
 661		return NULL;
 662
 663	*ret_page = page;
 664	return page_address(page);
 665}
 666
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 667
 
 
 
 
 668
 669static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 670			 gfp_t gfp, pgprot_t prot, const void *caller)
 
 671{
 672	u64 mask = get_coherent_dma_mask(dev);
 673	struct page *page;
 674	void *addr;
 
 
 
 
 
 
 
 
 
 
 
 675
 676#ifdef CONFIG_DMA_API_DEBUG
 677	u64 limit = (mask + 1) & ~mask;
 678	if (limit && size >= limit) {
 679		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 680			size, mask);
 681		return NULL;
 682	}
 683#endif
 684
 685	if (!mask)
 686		return NULL;
 687
 
 
 
 
 
 688	if (mask < 0xffffffffULL)
 689		gfp |= GFP_DMA;
 690
 691	/*
 692	 * Following is a work-around (a.k.a. hack) to prevent pages
 693	 * with __GFP_COMP being passed to split_page() which cannot
 694	 * handle them.  The real problem is that this flag probably
 695	 * should be 0 on ARM as it is not supported on this
 696	 * platform; see CONFIG_HUGETLBFS.
 697	 */
 698	gfp &= ~(__GFP_COMP);
 
 699
 700	*handle = DMA_ERROR_CODE;
 701	size = PAGE_ALIGN(size);
 702
 703	if (arch_is_coherent() || nommu())
 704		addr = __alloc_simple_buffer(dev, size, gfp, &page);
 705	else if (!IS_ENABLED(CONFIG_CMA))
 706		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
 707	else if (gfp & GFP_ATOMIC)
 708		addr = __alloc_from_pool(dev, size, &page, caller);
 
 709	else
 710		addr = __alloc_from_contiguous(dev, size, prot, &page);
 
 
 
 
 
 711
 712	if (addr)
 713		*handle = pfn_to_dma(dev, page_to_pfn(page));
 
 714
 715	return addr;
 
 
 
 
 
 
 
 716}
 717
 718/*
 719 * Allocate DMA-coherent memory space and return both the kernel remapped
 720 * virtual and bus address for that space.
 721 */
 722void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 723		    gfp_t gfp, struct dma_attrs *attrs)
 724{
 725	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
 726	void *memory;
 727
 728	if (dma_alloc_from_coherent(dev, size, handle, &memory))
 729		return memory;
 
 730
 731	return __dma_alloc(dev, size, handle, gfp, prot,
 732			   __builtin_return_address(0));
 
 
 
 733}
 734
 735/*
 736 * Create userspace mapping for the DMA-coherent memory.
 737 */
 738int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 739		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 740		 struct dma_attrs *attrs)
 741{
 742	int ret = -ENXIO;
 743#ifdef CONFIG_MMU
 
 744	unsigned long pfn = dma_to_pfn(dev, dma_addr);
 745	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 746
 747	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
 748		return ret;
 749
 750	ret = remap_pfn_range(vma, vma->vm_start,
 751			      pfn + vma->vm_pgoff,
 752			      vma->vm_end - vma->vm_start,
 753			      vma->vm_page_prot);
 754#endif	/* CONFIG_MMU */
 
 755
 756	return ret;
 757}
 758
 759/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 760 * Free a buffer as defined by the above mapping.
 761 */
 762void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 763		  dma_addr_t handle, struct dma_attrs *attrs)
 
 764{
 765	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 
 
 
 
 
 
 
 
 766
 767	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
 
 768		return;
 769
 770	size = PAGE_ALIGN(size);
 
 
 771
 772	if (arch_is_coherent() || nommu()) {
 773		__dma_free_buffer(page, size);
 774	} else if (!IS_ENABLED(CONFIG_CMA)) {
 775		__dma_free_remap(cpu_addr, size);
 776		__dma_free_buffer(page, size);
 777	} else {
 778		if (__free_from_pool(cpu_addr, size))
 779			return;
 780		/*
 781		 * Non-atomic allocations cannot be freed with IRQs disabled
 782		 */
 783		WARN_ON(irqs_disabled());
 784		__free_from_contiguous(dev, page, size);
 785	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786}
 787
 788static void dma_cache_maint_page(struct page *page, unsigned long offset,
 789	size_t size, enum dma_data_direction dir,
 790	void (*op)(const void *, size_t, int))
 791{
 
 
 
 
 
 
 792	/*
 793	 * A single sg entry may refer to multiple physically contiguous
 794	 * pages.  But we still need to process highmem pages individually.
 795	 * If highmem is not configured then the bulk of this loop gets
 796	 * optimized out.
 797	 */
 798	size_t left = size;
 799	do {
 800		size_t len = left;
 801		void *vaddr;
 802
 
 
 803		if (PageHighMem(page)) {
 804			if (len + offset > PAGE_SIZE) {
 805				if (offset >= PAGE_SIZE) {
 806					page += offset / PAGE_SIZE;
 807					offset %= PAGE_SIZE;
 808				}
 809				len = PAGE_SIZE - offset;
 810			}
 811			vaddr = kmap_high_get(page);
 812			if (vaddr) {
 813				vaddr += offset;
 814				op(vaddr, len, dir);
 815				kunmap_high(page);
 816			} else if (cache_is_vipt()) {
 817				/* unmapped pages might still be cached */
 818				vaddr = kmap_atomic(page);
 819				op(vaddr + offset, len, dir);
 820				kunmap_atomic(vaddr);
 
 
 
 
 
 
 821			}
 822		} else {
 823			vaddr = page_address(page) + offset;
 824			op(vaddr, len, dir);
 825		}
 826		offset = 0;
 827		page++;
 828		left -= len;
 829	} while (left);
 830}
 831
 832/*
 833 * Make an area consistent for devices.
 834 * Note: Drivers should NOT use this function directly, as it will break
 835 * platforms with CONFIG_DMABOUNCE.
 836 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 837 */
 838static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 839	size_t size, enum dma_data_direction dir)
 840{
 841	unsigned long paddr;
 842
 843	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 844
 845	paddr = page_to_phys(page) + off;
 846	if (dir == DMA_FROM_DEVICE) {
 847		outer_inv_range(paddr, paddr + size);
 848	} else {
 849		outer_clean_range(paddr, paddr + size);
 850	}
 851	/* FIXME: non-speculating: flush on bidirectional mappings? */
 852}
 853
 854static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
 855	size_t size, enum dma_data_direction dir)
 856{
 857	unsigned long paddr = page_to_phys(page) + off;
 858
 859	/* FIXME: non-speculating: not required */
 860	/* don't bother invalidating if DMA to device */
 861	if (dir != DMA_TO_DEVICE)
 862		outer_inv_range(paddr, paddr + size);
 863
 864	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 
 865
 866	/*
 867	 * Mark the D-cache clean for this page to avoid extra flushing.
 868	 */
 869	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
 870		set_bit(PG_dcache_clean, &page->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 871}
 872
 873/**
 874 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
 875 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 876 * @sg: list of buffers
 877 * @nents: number of buffers to map
 878 * @dir: DMA transfer direction
 879 *
 880 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 881 * This is the scatter-gather version of the dma_map_single interface.
 882 * Here the scatter gather list elements are each tagged with the
 883 * appropriate dma address and length.  They are obtained via
 884 * sg_dma_{address,length}.
 885 *
 886 * Device ownership issues as mentioned for dma_map_single are the same
 887 * here.
 888 */
 889int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 890		enum dma_data_direction dir, struct dma_attrs *attrs)
 891{
 892	struct dma_map_ops *ops = get_dma_ops(dev);
 893	struct scatterlist *s;
 894	int i, j;
 895
 896	for_each_sg(sg, s, nents, i) {
 897#ifdef CONFIG_NEED_SG_DMA_LENGTH
 898		s->dma_length = s->length;
 899#endif
 900		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
 901						s->length, dir, attrs);
 902		if (dma_mapping_error(dev, s->dma_address))
 903			goto bad_mapping;
 904	}
 905	return nents;
 906
 907 bad_mapping:
 908	for_each_sg(sg, s, i, j)
 909		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
 910	return 0;
 911}
 912
 913/**
 914 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 915 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 916 * @sg: list of buffers
 917 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 918 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 919 *
 920 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 921 * rules concerning calls here are the same as for dma_unmap_single().
 922 */
 923void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 924		enum dma_data_direction dir, struct dma_attrs *attrs)
 925{
 926	struct dma_map_ops *ops = get_dma_ops(dev);
 927	struct scatterlist *s;
 928
 929	int i;
 930
 931	for_each_sg(sg, s, nents, i)
 932		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
 933}
 934
 935/**
 936 * arm_dma_sync_sg_for_cpu
 937 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 938 * @sg: list of buffers
 939 * @nents: number of buffers to map (returned from dma_map_sg)
 940 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 941 */
 942void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
 943			int nents, enum dma_data_direction dir)
 944{
 945	struct dma_map_ops *ops = get_dma_ops(dev);
 946	struct scatterlist *s;
 947	int i;
 948
 949	for_each_sg(sg, s, nents, i)
 950		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
 951					 dir);
 952}
 953
 954/**
 955 * arm_dma_sync_sg_for_device
 956 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 957 * @sg: list of buffers
 958 * @nents: number of buffers to map (returned from dma_map_sg)
 959 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 960 */
 961void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
 962			int nents, enum dma_data_direction dir)
 963{
 964	struct dma_map_ops *ops = get_dma_ops(dev);
 965	struct scatterlist *s;
 966	int i;
 967
 968	for_each_sg(sg, s, nents, i)
 969		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
 970					    dir);
 971}
 972
 973/*
 974 * Return whether the given device DMA address mask can be supported
 975 * properly.  For example, if your device can only drive the low 24-bits
 976 * during bus mastering, then you would pass 0x00ffffff as the mask
 977 * to this function.
 978 */
 979int dma_supported(struct device *dev, u64 mask)
 980{
 981	if (mask < (u64)arm_dma_limit)
 982		return 0;
 983	return 1;
 984}
 985EXPORT_SYMBOL(dma_supported);
 986
 987static int arm_dma_set_mask(struct device *dev, u64 dma_mask)
 988{
 989	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
 990		return -EIO;
 991
 992	*dev->dma_mask = dma_mask;
 993
 994	return 0;
 
 
 
 
 995}
 996
 997#define PREALLOC_DMA_DEBUG_ENTRIES	4096
 998
 999static int __init dma_debug_do_init(void)
1000{
1001#ifdef CONFIG_MMU
1002	arm_vmregion_create_proc("dma-mappings", &consistent_head);
1003#endif
1004	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1005	return 0;
1006}
1007fs_initcall(dma_debug_do_init);
1008
1009#ifdef CONFIG_ARM_DMA_USE_IOMMU
 
 
 
 
 
 
 
 
 
 
 
 
 
1010
1011/* IOMMU */
1012
 
 
1013static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1014				      size_t size)
1015{
1016	unsigned int order = get_order(size);
1017	unsigned int align = 0;
1018	unsigned int count, start;
 
1019	unsigned long flags;
 
 
1020
1021	count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
1022		 (1 << mapping->order) - 1) >> mapping->order;
1023
1024	if (order > mapping->order)
1025		align = (1 << (order - mapping->order)) - 1;
1026
1027	spin_lock_irqsave(&mapping->lock, flags);
1028	start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
1029					   count, align);
1030	if (start > mapping->bits) {
1031		spin_unlock_irqrestore(&mapping->lock, flags);
1032		return DMA_ERROR_CODE;
 
 
 
 
1033	}
1034
1035	bitmap_set(mapping->bitmap, start, count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1036	spin_unlock_irqrestore(&mapping->lock, flags);
1037
1038	return mapping->base + (start << (mapping->order + PAGE_SHIFT));
 
 
 
1039}
1040
1041static inline void __free_iova(struct dma_iommu_mapping *mapping,
1042			       dma_addr_t addr, size_t size)
1043{
1044	unsigned int start = (addr - mapping->base) >>
1045			     (mapping->order + PAGE_SHIFT);
1046	unsigned int count = ((size >> PAGE_SHIFT) +
1047			      (1 << mapping->order) - 1) >> mapping->order;
1048	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1049
1050	spin_lock_irqsave(&mapping->lock, flags);
1051	bitmap_clear(mapping->bitmap, start, count);
1052	spin_unlock_irqrestore(&mapping->lock, flags);
1053}
1054
1055static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
 
 
 
 
 
1056{
1057	struct page **pages;
1058	int count = size >> PAGE_SHIFT;
1059	int array_size = count * sizeof(struct page *);
1060	int i = 0;
 
1061
1062	if (array_size <= PAGE_SIZE)
1063		pages = kzalloc(array_size, gfp);
1064	else
1065		pages = vzalloc(array_size);
1066	if (!pages)
1067		return NULL;
1068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1069	while (count) {
1070		int j, order = __fls(count);
1071
1072		pages[i] = alloc_pages(gfp | __GFP_NOWARN, order);
1073		while (!pages[i] && order)
1074			pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order);
1075		if (!pages[i])
1076			goto error;
1077
1078		if (order)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1079			split_page(pages[i], order);
1080		j = 1 << order;
1081		while (--j)
1082			pages[i + j] = pages[i] + j;
 
1083
1084		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1085		i += 1 << order;
1086		count -= 1 << order;
1087	}
1088
1089	return pages;
1090error:
1091	while (--i)
1092		if (pages[i])
1093			__free_pages(pages[i], 0);
1094	if (array_size <= PAGE_SIZE)
1095		kfree(pages);
1096	else
1097		vfree(pages);
1098	return NULL;
1099}
1100
1101static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size)
 
1102{
1103	int count = size >> PAGE_SHIFT;
1104	int array_size = count * sizeof(struct page *);
1105	int i;
1106	for (i = 0; i < count; i++)
1107		if (pages[i])
1108			__free_pages(pages[i], 0);
1109	if (array_size <= PAGE_SIZE)
1110		kfree(pages);
1111	else
1112		vfree(pages);
1113	return 0;
1114}
1115
1116/*
1117 * Create a CPU mapping for a specified pages
1118 */
1119static void *
1120__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot)
1121{
1122	struct arm_vmregion *c;
1123	size_t align;
1124	size_t count = size >> PAGE_SHIFT;
1125	int bit;
1126
1127	if (!consistent_pte[0]) {
1128		pr_err("%s: not initialised\n", __func__);
1129		dump_stack();
1130		return NULL;
1131	}
1132
1133	/*
1134	 * Align the virtual region allocation - maximum alignment is
1135	 * a section size, minimum is a page size.  This helps reduce
1136	 * fragmentation of the DMA space, and also prevents allocations
1137	 * smaller than a section from crossing a section boundary.
1138	 */
1139	bit = fls(size - 1);
1140	if (bit > SECTION_SHIFT)
1141		bit = SECTION_SHIFT;
1142	align = 1 << bit;
1143
1144	/*
1145	 * Allocate a virtual address in the consistent mapping region.
1146	 */
1147	c = arm_vmregion_alloc(&consistent_head, align, size,
1148			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM), NULL);
1149	if (c) {
1150		pte_t *pte;
1151		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
1152		int i = 0;
1153		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
1154
1155		pte = consistent_pte[idx] + off;
1156		c->priv = pages;
1157
1158		do {
1159			BUG_ON(!pte_none(*pte));
1160
1161			set_pte_ext(pte, mk_pte(pages[i], prot), 0);
1162			pte++;
1163			off++;
1164			i++;
1165			if (off >= PTRS_PER_PTE) {
1166				off = 0;
1167				pte = consistent_pte[++idx];
1168			}
1169		} while (i < count);
1170
1171		dsb();
1172
1173		return (void *)c->vm_start;
1174	}
1175	return NULL;
1176}
1177
1178/*
1179 * Create a mapping in device IO address space for specified pages
1180 */
1181static dma_addr_t
1182__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
 
1183{
1184	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1185	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1186	dma_addr_t dma_addr, iova;
1187	int i, ret = DMA_ERROR_CODE;
1188
1189	dma_addr = __alloc_iova(mapping, size);
1190	if (dma_addr == DMA_ERROR_CODE)
1191		return dma_addr;
1192
1193	iova = dma_addr;
1194	for (i = 0; i < count; ) {
 
 
1195		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1196		phys_addr_t phys = page_to_phys(pages[i]);
1197		unsigned int len, j;
1198
1199		for (j = i + 1; j < count; j++, next_pfn++)
1200			if (page_to_pfn(pages[j]) != next_pfn)
1201				break;
1202
1203		len = (j - i) << PAGE_SHIFT;
1204		ret = iommu_map(mapping->domain, iova, phys, len, 0);
 
1205		if (ret < 0)
1206			goto fail;
1207		iova += len;
1208		i = j;
1209	}
1210	return dma_addr;
1211fail:
1212	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1213	__free_iova(mapping, dma_addr, size);
1214	return DMA_ERROR_CODE;
1215}
1216
1217static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1218{
1219	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1220
1221	/*
1222	 * add optional in-page offset from iova to size and align
1223	 * result to page size
1224	 */
1225	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1226	iova &= PAGE_MASK;
1227
1228	iommu_unmap(mapping->domain, iova, size);
1229	__free_iova(mapping, iova, size);
1230	return 0;
1231}
1232
1233static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1234	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1235{
1236	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
 
 
 
 
 
 
 
 
 
 
 
1237	struct page **pages;
1238	void *addr = NULL;
1239
1240	*handle = DMA_ERROR_CODE;
1241	size = PAGE_ALIGN(size);
1242
1243	pages = __iommu_alloc_buffer(dev, size, gfp);
 
 
 
 
 
 
 
 
 
 
 
 
 
1244	if (!pages)
1245		return NULL;
1246
1247	*handle = __iommu_create_mapping(dev, pages, size);
1248	if (*handle == DMA_ERROR_CODE)
1249		goto err_buffer;
1250
1251	addr = __iommu_alloc_remap(pages, size, gfp, prot);
 
 
 
 
1252	if (!addr)
1253		goto err_mapping;
1254
1255	return addr;
1256
1257err_mapping:
1258	__iommu_remove_mapping(dev, *handle, size);
1259err_buffer:
1260	__iommu_free_buffer(dev, pages, size);
1261	return NULL;
1262}
1263
1264static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
 
 
 
 
 
 
 
 
 
 
 
 
1265		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1266		    struct dma_attrs *attrs)
1267{
1268	struct arm_vmregion *c;
 
 
1269
1270	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1271	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
1272
1273	if (c) {
1274		struct page **pages = c->priv;
1275
1276		unsigned long uaddr = vma->vm_start;
1277		unsigned long usize = vma->vm_end - vma->vm_start;
1278		int i = 0;
1279
1280		do {
1281			int ret;
1282
1283			ret = vm_insert_page(vma, uaddr, pages[i++]);
1284			if (ret) {
1285				pr_err("Remapping memory, error: %d\n", ret);
1286				return ret;
1287			}
1288
1289			uaddr += PAGE_SIZE;
1290			usize -= PAGE_SIZE;
1291		} while (usize > 0);
1292	}
1293	return 0;
 
 
 
 
 
 
 
 
 
 
 
1294}
1295
1296/*
1297 * free a page as defined by the above mapping.
1298 * Must not be called with IRQs disabled.
1299 */
1300void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1301			  dma_addr_t handle, struct dma_attrs *attrs)
1302{
1303	struct arm_vmregion *c;
1304	size = PAGE_ALIGN(size);
1305
1306	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
1307	if (c) {
1308		struct page **pages = c->priv;
1309		__dma_free_remap(cpu_addr, size);
1310		__iommu_remove_mapping(dev, handle, size);
1311		__iommu_free_buffer(dev, pages, size);
 
 
 
1312	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1313}
1314
1315/*
1316 * Map a part of the scatter-gather list into contiguous io address space
1317 */
1318static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1319			  size_t size, dma_addr_t *handle,
1320			  enum dma_data_direction dir)
 
1321{
1322	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1323	dma_addr_t iova, iova_base;
1324	int ret = 0;
1325	unsigned int count;
1326	struct scatterlist *s;
 
1327
1328	size = PAGE_ALIGN(size);
1329	*handle = DMA_ERROR_CODE;
1330
1331	iova_base = iova = __alloc_iova(mapping, size);
1332	if (iova == DMA_ERROR_CODE)
1333		return -ENOMEM;
1334
1335	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1336		phys_addr_t phys = page_to_phys(sg_page(s));
1337		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1338
1339		if (!arch_is_coherent())
1340			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1341
1342		ret = iommu_map(mapping->domain, iova, phys, len, 0);
 
 
1343		if (ret < 0)
1344			goto fail;
1345		count += len >> PAGE_SHIFT;
1346		iova += len;
1347	}
1348	*handle = iova_base;
1349
1350	return 0;
1351fail:
1352	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1353	__free_iova(mapping, iova_base, size);
1354	return ret;
1355}
1356
1357/**
1358 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1359 * @dev: valid struct device pointer
1360 * @sg: list of buffers
1361 * @nents: number of buffers to map
1362 * @dir: DMA transfer direction
1363 *
1364 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1365 * The scatter gather list elements are merged together (if possible) and
1366 * tagged with the appropriate dma address and length. They are obtained via
1367 * sg_dma_{address,length}.
1368 */
1369int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1370		     enum dma_data_direction dir, struct dma_attrs *attrs)
1371{
1372	struct scatterlist *s = sg, *dma = sg, *start = sg;
1373	int i, count = 0;
1374	unsigned int offset = s->offset;
1375	unsigned int size = s->offset + s->length;
1376	unsigned int max = dma_get_max_seg_size(dev);
1377
1378	for (i = 1; i < nents; i++) {
1379		s = sg_next(s);
1380
1381		s->dma_address = DMA_ERROR_CODE;
1382		s->dma_length = 0;
1383
1384		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1385			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1386			    dir) < 0)
1387				goto bad_mapping;
1388
1389			dma->dma_address += offset;
1390			dma->dma_length = size - offset;
1391
1392			size = offset = s->offset;
1393			start = s;
1394			dma = sg_next(dma);
1395			count += 1;
1396		}
1397		size += s->length;
1398	}
1399	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir) < 0)
 
1400		goto bad_mapping;
1401
1402	dma->dma_address += offset;
1403	dma->dma_length = size - offset;
1404
1405	return count+1;
1406
1407bad_mapping:
1408	for_each_sg(sg, s, count, i)
1409		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1410	return 0;
1411}
1412
1413/**
1414 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1415 * @dev: valid struct device pointer
1416 * @sg: list of buffers
1417 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1418 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1419 *
1420 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1421 * rules concerning calls here are the same as for dma_unmap_single().
 
 
1422 */
1423void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1424			enum dma_data_direction dir, struct dma_attrs *attrs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1425{
1426	struct scatterlist *s;
1427	int i;
1428
1429	for_each_sg(sg, s, nents, i) {
1430		if (sg_dma_len(s))
1431			__iommu_remove_mapping(dev, sg_dma_address(s),
1432					       sg_dma_len(s));
1433		if (!arch_is_coherent())
1434			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1435					      s->length, dir);
1436	}
1437}
1438
1439/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1440 * arm_iommu_sync_sg_for_cpu
1441 * @dev: valid struct device pointer
1442 * @sg: list of buffers
1443 * @nents: number of buffers to map (returned from dma_map_sg)
1444 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1445 */
1446void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1447			int nents, enum dma_data_direction dir)
1448{
1449	struct scatterlist *s;
1450	int i;
1451
1452	for_each_sg(sg, s, nents, i)
1453		if (!arch_is_coherent())
1454			__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1455
1456}
1457
1458/**
1459 * arm_iommu_sync_sg_for_device
1460 * @dev: valid struct device pointer
1461 * @sg: list of buffers
1462 * @nents: number of buffers to map (returned from dma_map_sg)
1463 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1464 */
1465void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1466			int nents, enum dma_data_direction dir)
1467{
1468	struct scatterlist *s;
1469	int i;
1470
1471	for_each_sg(sg, s, nents, i)
1472		if (!arch_is_coherent())
1473			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1474}
1475
1476
1477/**
1478 * arm_iommu_map_page
1479 * @dev: valid struct device pointer
1480 * @page: page that buffer resides in
1481 * @offset: offset into page for start of buffer
1482 * @size: size of buffer to map
1483 * @dir: DMA transfer direction
1484 *
1485 * IOMMU aware version of arm_dma_map_page()
1486 */
1487static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1488	     unsigned long offset, size_t size, enum dma_data_direction dir,
1489	     struct dma_attrs *attrs)
1490{
1491	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1492	dma_addr_t dma_addr;
1493	int ret, len = PAGE_ALIGN(size + offset);
1494
1495	if (!arch_is_coherent())
1496		__dma_page_cpu_to_dev(page, offset, size, dir);
1497
1498	dma_addr = __alloc_iova(mapping, len);
1499	if (dma_addr == DMA_ERROR_CODE)
1500		return dma_addr;
1501
1502	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
 
 
1503	if (ret < 0)
1504		goto fail;
1505
1506	return dma_addr + offset;
1507fail:
1508	__free_iova(mapping, dma_addr, len);
1509	return DMA_ERROR_CODE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1510}
1511
1512/**
1513 * arm_iommu_unmap_page
1514 * @dev: valid struct device pointer
1515 * @handle: DMA address of buffer
1516 * @size: size of buffer (same as passed to dma_map_page)
1517 * @dir: DMA transfer direction (same as passed to dma_map_page)
1518 *
1519 * IOMMU aware version of arm_dma_unmap_page()
1520 */
1521static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1522		size_t size, enum dma_data_direction dir,
1523		struct dma_attrs *attrs)
1524{
1525	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1526	dma_addr_t iova = handle & PAGE_MASK;
1527	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1528	int offset = handle & ~PAGE_MASK;
1529	int len = PAGE_ALIGN(size + offset);
1530
1531	if (!iova)
1532		return;
1533
1534	if (!arch_is_coherent())
1535		__dma_page_dev_to_cpu(page, offset, size, dir);
1536
1537	iommu_unmap(mapping->domain, iova, len);
1538	__free_iova(mapping, iova, len);
1539}
1540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1541static void arm_iommu_sync_single_for_cpu(struct device *dev,
1542		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1543{
1544	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1545	dma_addr_t iova = handle & PAGE_MASK;
1546	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1547	unsigned int offset = handle & ~PAGE_MASK;
1548
1549	if (!iova)
1550		return;
1551
1552	if (!arch_is_coherent())
1553		__dma_page_dev_to_cpu(page, offset, size, dir);
1554}
1555
1556static void arm_iommu_sync_single_for_device(struct device *dev,
1557		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1558{
1559	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1560	dma_addr_t iova = handle & PAGE_MASK;
1561	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1562	unsigned int offset = handle & ~PAGE_MASK;
1563
1564	if (!iova)
1565		return;
1566
1567	__dma_page_cpu_to_dev(page, offset, size, dir);
1568}
1569
1570struct dma_map_ops iommu_ops = {
1571	.alloc		= arm_iommu_alloc_attrs,
1572	.free		= arm_iommu_free_attrs,
1573	.mmap		= arm_iommu_mmap_attrs,
 
1574
1575	.map_page		= arm_iommu_map_page,
1576	.unmap_page		= arm_iommu_unmap_page,
1577	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1578	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1579
1580	.map_sg			= arm_iommu_map_sg,
1581	.unmap_sg		= arm_iommu_unmap_sg,
1582	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1583	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1584};
1585
1586/**
1587 * arm_iommu_create_mapping
1588 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1589 * @base: start address of the valid IO address space
1590 * @size: size of the valid IO address space
1591 * @order: accuracy of the IO addresses allocations
1592 *
1593 * Creates a mapping structure which holds information about used/unused
1594 * IO address ranges, which is required to perform memory allocation and
1595 * mapping with IOMMU aware functions.
1596 *
1597 * The client device need to be attached to the mapping with
1598 * arm_iommu_attach_device function.
1599 */
1600struct dma_iommu_mapping *
1601arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1602			 int order)
1603{
1604	unsigned int count = size >> (PAGE_SHIFT + order);
1605	unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1606	struct dma_iommu_mapping *mapping;
 
1607	int err = -ENOMEM;
1608
1609	if (!count)
 
 
 
 
1610		return ERR_PTR(-EINVAL);
1611
 
 
 
 
 
1612	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1613	if (!mapping)
1614		goto err;
1615
1616	mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1617	if (!mapping->bitmap)
 
 
1618		goto err2;
1619
 
 
 
 
 
 
1620	mapping->base = base;
1621	mapping->bits = BITS_PER_BYTE * bitmap_size;
1622	mapping->order = order;
1623	spin_lock_init(&mapping->lock);
1624
1625	mapping->domain = iommu_domain_alloc(bus);
1626	if (!mapping->domain)
1627		goto err3;
1628
1629	kref_init(&mapping->kref);
1630	return mapping;
 
 
1631err3:
1632	kfree(mapping->bitmap);
1633err2:
1634	kfree(mapping);
1635err:
1636	return ERR_PTR(err);
1637}
 
1638
1639static void release_iommu_mapping(struct kref *kref)
1640{
 
1641	struct dma_iommu_mapping *mapping =
1642		container_of(kref, struct dma_iommu_mapping, kref);
1643
1644	iommu_domain_free(mapping->domain);
1645	kfree(mapping->bitmap);
 
 
1646	kfree(mapping);
1647}
1648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1649void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1650{
1651	if (mapping)
1652		kref_put(&mapping->kref, release_iommu_mapping);
1653}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1654
1655/**
1656 * arm_iommu_attach_device
1657 * @dev: valid struct device pointer
1658 * @mapping: io address space mapping structure (returned from
1659 *	arm_iommu_create_mapping)
1660 *
1661 * Attaches specified io address space mapping to the provided device,
1662 * this replaces the dma operations (dma_map_ops pointer) with the
1663 * IOMMU aware version. More than one client might be attached to
1664 * the same io address space mapping.
 
 
1665 */
1666int arm_iommu_attach_device(struct device *dev,
1667			    struct dma_iommu_mapping *mapping)
1668{
1669	int err;
1670
1671	err = iommu_attach_device(mapping->domain, dev);
1672	if (err)
1673		return err;
1674
1675	kref_get(&mapping->kref);
1676	dev->archdata.mapping = mapping;
1677	set_dma_ops(dev, &iommu_ops);
1678
1679	pr_info("Attached IOMMU controller to %s device.\n", dev_name(dev));
1680	return 0;
1681}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1682
 
 
 
1683#endif
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/mm/dma-mapping.c
   4 *
   5 *  Copyright (C) 2000-2004 Russell King
   6 *
 
 
 
 
   7 *  DMA uncached mapping support.
   8 */
   9#include <linux/module.h>
  10#include <linux/mm.h>
  11#include <linux/genalloc.h>
  12#include <linux/gfp.h>
  13#include <linux/errno.h>
  14#include <linux/list.h>
  15#include <linux/init.h>
  16#include <linux/device.h>
  17#include <linux/dma-direct.h>
  18#include <linux/dma-mapping.h>
  19#include <linux/dma-noncoherent.h>
  20#include <linux/dma-contiguous.h>
  21#include <linux/highmem.h>
  22#include <linux/memblock.h>
  23#include <linux/slab.h>
  24#include <linux/iommu.h>
  25#include <linux/io.h>
  26#include <linux/vmalloc.h>
  27#include <linux/sizes.h>
  28#include <linux/cma.h>
  29
  30#include <asm/memory.h>
  31#include <asm/highmem.h>
  32#include <asm/cacheflush.h>
  33#include <asm/tlbflush.h>
 
  34#include <asm/mach/arch.h>
  35#include <asm/dma-iommu.h>
  36#include <asm/mach/map.h>
  37#include <asm/system_info.h>
  38#include <asm/dma-contiguous.h>
  39#include <xen/swiotlb-xen.h>
  40
  41#include "dma.h"
  42#include "mm.h"
  43
  44struct arm_dma_alloc_args {
  45	struct device *dev;
  46	size_t size;
  47	gfp_t gfp;
  48	pgprot_t prot;
  49	const void *caller;
  50	bool want_vaddr;
  51	int coherent_flag;
  52};
  53
  54struct arm_dma_free_args {
  55	struct device *dev;
  56	size_t size;
  57	void *cpu_addr;
  58	struct page *page;
  59	bool want_vaddr;
  60};
  61
  62#define NORMAL	    0
  63#define COHERENT    1
  64
  65struct arm_dma_allocator {
  66	void *(*alloc)(struct arm_dma_alloc_args *args,
  67		       struct page **ret_page);
  68	void (*free)(struct arm_dma_free_args *args);
  69};
  70
  71struct arm_dma_buffer {
  72	struct list_head list;
  73	void *virt;
  74	struct arm_dma_allocator *allocator;
  75};
  76
  77static LIST_HEAD(arm_dma_bufs);
  78static DEFINE_SPINLOCK(arm_dma_bufs_lock);
  79
  80static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
  81{
  82	struct arm_dma_buffer *buf, *found = NULL;
  83	unsigned long flags;
  84
  85	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
  86	list_for_each_entry(buf, &arm_dma_bufs, list) {
  87		if (buf->virt == virt) {
  88			list_del(&buf->list);
  89			found = buf;
  90			break;
  91		}
  92	}
  93	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
  94	return found;
  95}
  96
  97/*
  98 * The DMA API is built upon the notion of "buffer ownership".  A buffer
  99 * is either exclusively owned by the CPU (and therefore may be accessed
 100 * by it) or exclusively owned by the DMA device.  These helper functions
 101 * represent the transitions between these two ownership states.
 102 *
 103 * Note, however, that on later ARMs, this notion does not work due to
 104 * speculative prefetches.  We model our approach on the assumption that
 105 * the CPU does do speculative prefetches, which means we clean caches
 106 * before transfers and delay cache invalidation until transfer completion.
 107 *
 108 */
 109static void __dma_page_cpu_to_dev(struct page *, unsigned long,
 110		size_t, enum dma_data_direction);
 111static void __dma_page_dev_to_cpu(struct page *, unsigned long,
 112		size_t, enum dma_data_direction);
 113
 114/**
 115 * arm_dma_map_page - map a portion of a page for streaming DMA
 116 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 117 * @page: page that buffer resides in
 118 * @offset: offset into page for start of buffer
 119 * @size: size of buffer to map
 120 * @dir: DMA transfer direction
 121 *
 122 * Ensure that any data held in the cache is appropriately discarded
 123 * or written back.
 124 *
 125 * The device owns this memory once this call has completed.  The CPU
 126 * can regain ownership by calling dma_unmap_page().
 127 */
 128static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
 129	     unsigned long offset, size_t size, enum dma_data_direction dir,
 130	     unsigned long attrs)
 131{
 132	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
 133		__dma_page_cpu_to_dev(page, offset, size, dir);
 134	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 135}
 136
 137static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
 138	     unsigned long offset, size_t size, enum dma_data_direction dir,
 139	     unsigned long attrs)
 140{
 141	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 142}
 143
 144/**
 145 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 146 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 147 * @handle: DMA address of buffer
 148 * @size: size of buffer (same as passed to dma_map_page)
 149 * @dir: DMA transfer direction (same as passed to dma_map_page)
 150 *
 151 * Unmap a page streaming mode DMA translation.  The handle and size
 152 * must match what was provided in the previous dma_map_page() call.
 153 * All other usages are undefined.
 154 *
 155 * After this call, reads by the CPU to the buffer are guaranteed to see
 156 * whatever the device wrote there.
 157 */
 158static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
 159		size_t size, enum dma_data_direction dir, unsigned long attrs)
 
 160{
 161	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
 162		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
 163				      handle & ~PAGE_MASK, size, dir);
 164}
 165
 166static void arm_dma_sync_single_for_cpu(struct device *dev,
 167		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 168{
 169	unsigned int offset = handle & (PAGE_SIZE - 1);
 170	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 171	__dma_page_dev_to_cpu(page, offset, size, dir);
 
 172}
 173
 174static void arm_dma_sync_single_for_device(struct device *dev,
 175		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 176{
 177	unsigned int offset = handle & (PAGE_SIZE - 1);
 178	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 179	__dma_page_cpu_to_dev(page, offset, size, dir);
 
 180}
 181
 182const struct dma_map_ops arm_dma_ops = {
 
 
 183	.alloc			= arm_dma_alloc,
 184	.free			= arm_dma_free,
 185	.mmap			= arm_dma_mmap,
 186	.get_sgtable		= arm_dma_get_sgtable,
 187	.map_page		= arm_dma_map_page,
 188	.unmap_page		= arm_dma_unmap_page,
 189	.map_sg			= arm_dma_map_sg,
 190	.unmap_sg		= arm_dma_unmap_sg,
 191	.map_resource		= dma_direct_map_resource,
 192	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
 193	.sync_single_for_device	= arm_dma_sync_single_for_device,
 194	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
 195	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
 196	.dma_supported		= arm_dma_supported,
 197	.get_required_mask	= dma_direct_get_required_mask,
 198};
 199EXPORT_SYMBOL(arm_dma_ops);
 200
 201static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 202	dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
 203static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 204				  dma_addr_t handle, unsigned long attrs);
 205static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 206		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 207		 unsigned long attrs);
 208
 209const struct dma_map_ops arm_coherent_dma_ops = {
 210	.alloc			= arm_coherent_dma_alloc,
 211	.free			= arm_coherent_dma_free,
 212	.mmap			= arm_coherent_dma_mmap,
 213	.get_sgtable		= arm_dma_get_sgtable,
 214	.map_page		= arm_coherent_dma_map_page,
 215	.map_sg			= arm_dma_map_sg,
 216	.map_resource		= dma_direct_map_resource,
 217	.dma_supported		= arm_dma_supported,
 218	.get_required_mask	= dma_direct_get_required_mask,
 219};
 220EXPORT_SYMBOL(arm_coherent_dma_ops);
 221
 222static int __dma_supported(struct device *dev, u64 mask, bool warn)
 223{
 224	unsigned long max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
 225
 226	/*
 227	 * Translate the device's DMA mask to a PFN limit.  This
 228	 * PFN number includes the page which we can DMA to.
 229	 */
 230	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
 231		if (warn)
 232			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
 233				 mask,
 234				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
 235				 max_dma_pfn + 1);
 236		return 0;
 237	}
 238
 239	return 1;
 240}
 241
 242static u64 get_coherent_dma_mask(struct device *dev)
 243{
 244	u64 mask = (u64)DMA_BIT_MASK(32);
 245
 246	if (dev) {
 247		mask = dev->coherent_dma_mask;
 248
 249		/*
 250		 * Sanity check the DMA mask - it must be non-zero, and
 251		 * must be able to be satisfied by a DMA allocation.
 252		 */
 253		if (mask == 0) {
 254			dev_warn(dev, "coherent DMA mask is unset\n");
 255			return 0;
 256		}
 257
 258		if (!__dma_supported(dev, mask, true))
 
 
 
 259			return 0;
 
 260	}
 261
 262	return mask;
 263}
 264
 265static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
 266{
 
 267	/*
 268	 * Ensure that the allocated pages are zeroed, and that any data
 269	 * lurking in the kernel direct-mapped region is invalidated.
 270	 */
 271	if (PageHighMem(page)) {
 272		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
 273		phys_addr_t end = base + size;
 274		while (size > 0) {
 275			void *ptr = kmap_atomic(page);
 276			memset(ptr, 0, PAGE_SIZE);
 277			if (coherent_flag != COHERENT)
 278				dmac_flush_range(ptr, ptr + PAGE_SIZE);
 279			kunmap_atomic(ptr);
 280			page++;
 281			size -= PAGE_SIZE;
 282		}
 283		if (coherent_flag != COHERENT)
 284			outer_flush_range(base, end);
 285	} else {
 286		void *ptr = page_address(page);
 287		memset(ptr, 0, size);
 288		if (coherent_flag != COHERENT) {
 289			dmac_flush_range(ptr, ptr + size);
 290			outer_flush_range(__pa(ptr), __pa(ptr) + size);
 291		}
 292	}
 293}
 294
 295/*
 296 * Allocate a DMA buffer for 'dev' of size 'size' using the
 297 * specified gfp mask.  Note that 'size' must be page aligned.
 298 */
 299static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
 300				       gfp_t gfp, int coherent_flag)
 301{
 302	unsigned long order = get_order(size);
 303	struct page *page, *p, *e;
 304
 305	page = alloc_pages(gfp, order);
 306	if (!page)
 307		return NULL;
 308
 309	/*
 310	 * Now split the huge page and free the excess pages
 311	 */
 312	split_page(page, order);
 313	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 314		__free_page(p);
 315
 316	__dma_clear_buffer(page, size, coherent_flag);
 317
 318	return page;
 319}
 320
 321/*
 322 * Free a DMA buffer.  'size' must be page aligned.
 323 */
 324static void __dma_free_buffer(struct page *page, size_t size)
 325{
 326	struct page *e = page + (size >> PAGE_SHIFT);
 327
 328	while (page < e) {
 329		__free_page(page);
 330		page++;
 331	}
 332}
 333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 334static void *__alloc_from_contiguous(struct device *dev, size_t size,
 335				     pgprot_t prot, struct page **ret_page,
 336				     const void *caller, bool want_vaddr,
 337				     int coherent_flag, gfp_t gfp);
 338
 339static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 340				 pgprot_t prot, struct page **ret_page,
 341				 const void *caller, bool want_vaddr);
 342
 343#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
 344static struct gen_pool *atomic_pool __ro_after_init;
 345
 346static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
 347
 348static int __init early_coherent_pool(char *p)
 349{
 350	atomic_pool_size = memparse(p, &p);
 351	return 0;
 352}
 353early_param("coherent_pool", early_coherent_pool);
 354
 355/*
 356 * Initialise the coherent pool for atomic allocations.
 357 */
 358static int __init atomic_pool_init(void)
 359{
 360	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
 361	gfp_t gfp = GFP_KERNEL | GFP_DMA;
 362	struct page *page;
 363	void *ptr;
 364
 365	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
 366	if (!atomic_pool)
 367		goto out;
 368	/*
 369	 * The atomic pool is only used for non-coherent allocations
 370	 * so we must pass NORMAL for coherent_flag.
 371	 */
 372	if (dev_get_cma_area(NULL))
 373		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
 374				      &page, atomic_pool_init, true, NORMAL,
 375				      GFP_KERNEL);
 376	else
 377		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
 378					   &page, atomic_pool_init, true);
 379	if (ptr) {
 380		int ret;
 381
 382		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
 383					page_to_phys(page),
 384					atomic_pool_size, -1);
 385		if (ret)
 386			goto destroy_genpool;
 387
 388		gen_pool_set_algo(atomic_pool,
 389				gen_pool_first_fit_order_align,
 390				NULL);
 391		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
 392		       atomic_pool_size / 1024);
 393		return 0;
 394	}
 395
 396destroy_genpool:
 397	gen_pool_destroy(atomic_pool);
 398	atomic_pool = NULL;
 399out:
 400	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
 401	       atomic_pool_size / 1024);
 402	return -ENOMEM;
 403}
 404/*
 405 * CMA is activated by core_initcall, so we must be called after it.
 406 */
 407postcore_initcall(atomic_pool_init);
 408
 409struct dma_contig_early_reserve {
 410	phys_addr_t base;
 411	unsigned long size;
 412};
 413
 414static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 415
 416static int dma_mmu_remap_num __initdata;
 417
 418void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 419{
 420	dma_mmu_remap[dma_mmu_remap_num].base = base;
 421	dma_mmu_remap[dma_mmu_remap_num].size = size;
 422	dma_mmu_remap_num++;
 423}
 424
 425void __init dma_contiguous_remap(void)
 426{
 427	int i;
 428	for (i = 0; i < dma_mmu_remap_num; i++) {
 429		phys_addr_t start = dma_mmu_remap[i].base;
 430		phys_addr_t end = start + dma_mmu_remap[i].size;
 431		struct map_desc map;
 432		unsigned long addr;
 433
 434		if (end > arm_lowmem_limit)
 435			end = arm_lowmem_limit;
 436		if (start >= end)
 437			continue;
 438
 439		map.pfn = __phys_to_pfn(start);
 440		map.virtual = __phys_to_virt(start);
 441		map.length = end - start;
 442		map.type = MT_MEMORY_DMA_READY;
 443
 444		/*
 445		 * Clear previous low-memory mapping to ensure that the
 446		 * TLB does not see any conflicting entries, then flush
 447		 * the TLB of the old entries before creating new mappings.
 448		 *
 449		 * This ensures that any speculatively loaded TLB entries
 450		 * (even though they may be rare) can not cause any problems,
 451		 * and ensures that this code is architecturally compliant.
 452		 */
 453		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 454		     addr += PMD_SIZE)
 455			pmd_clear(pmd_off_k(addr));
 456
 457		flush_tlb_kernel_range(__phys_to_virt(start),
 458				       __phys_to_virt(end));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 459
 460		iotable_init(&map, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 461	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 462}
 463
 464static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
 
 465{
 466	struct page *page = virt_to_page(addr);
 467	pgprot_t prot = *(pgprot_t *)data;
 468
 469	set_pte_ext(pte, mk_pte(page, prot), 0);
 470	return 0;
 471}
 472
 473static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 474{
 475	unsigned long start = (unsigned long) page_address(page);
 476	unsigned end = start + size;
 477
 478	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 
 479	flush_tlb_kernel_range(start, end);
 480}
 481
 482static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 483				 pgprot_t prot, struct page **ret_page,
 484				 const void *caller, bool want_vaddr)
 485{
 486	struct page *page;
 487	void *ptr = NULL;
 488	/*
 489	 * __alloc_remap_buffer is only called when the device is
 490	 * non-coherent
 491	 */
 492	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
 493	if (!page)
 494		return NULL;
 495	if (!want_vaddr)
 496		goto out;
 497
 498	ptr = dma_common_contiguous_remap(page, size, prot, caller);
 499	if (!ptr) {
 500		__dma_free_buffer(page, size);
 501		return NULL;
 502	}
 503
 504 out:
 505	*ret_page = page;
 506	return ptr;
 507}
 508
 509static void *__alloc_from_pool(size_t size, struct page **ret_page)
 
 510{
 511	unsigned long val;
 512	void *ptr = NULL;
 513
 514	if (!atomic_pool) {
 515		WARN(1, "coherent pool not initialised!\n");
 
 
 516		return NULL;
 517	}
 518
 519	val = gen_pool_alloc(atomic_pool, size);
 520	if (val) {
 521		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
 522
 523		*ret_page = phys_to_page(phys);
 524		ptr = (void *)val;
 
 
 
 
 
 
 525	}
 526
 527	return ptr;
 528}
 529
 530static bool __in_atomic_pool(void *start, size_t size)
 531{
 532	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
 533}
 
 534
 535static int __free_from_pool(void *start, size_t size)
 536{
 537	if (!__in_atomic_pool(start, size))
 538		return 0;
 539
 540	gen_pool_free(atomic_pool, (unsigned long)start, size);
 541
 
 
 
 
 
 
 
 
 542	return 1;
 543}
 544
 545static void *__alloc_from_contiguous(struct device *dev, size_t size,
 546				     pgprot_t prot, struct page **ret_page,
 547				     const void *caller, bool want_vaddr,
 548				     int coherent_flag, gfp_t gfp)
 549{
 550	unsigned long order = get_order(size);
 551	size_t count = size >> PAGE_SHIFT;
 552	struct page *page;
 553	void *ptr = NULL;
 554
 555	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
 556	if (!page)
 557		return NULL;
 558
 559	__dma_clear_buffer(page, size, coherent_flag);
 560
 561	if (!want_vaddr)
 562		goto out;
 563
 564	if (PageHighMem(page)) {
 565		ptr = dma_common_contiguous_remap(page, size, prot, caller);
 566		if (!ptr) {
 567			dma_release_from_contiguous(dev, page, count);
 568			return NULL;
 569		}
 570	} else {
 571		__dma_remap(page, size, prot);
 572		ptr = page_address(page);
 573	}
 574
 575 out:
 576	*ret_page = page;
 577	return ptr;
 578}
 579
 580static void __free_from_contiguous(struct device *dev, struct page *page,
 581				   void *cpu_addr, size_t size, bool want_vaddr)
 582{
 583	if (want_vaddr) {
 584		if (PageHighMem(page))
 585			dma_common_free_remap(cpu_addr, size);
 586		else
 587			__dma_remap(page, size, PAGE_KERNEL);
 588	}
 589	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 590}
 591
 592static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
 593{
 594	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
 595			pgprot_writecombine(prot) :
 596			pgprot_dmacoherent(prot);
 597	return prot;
 598}
 599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 601				   struct page **ret_page)
 602{
 603	struct page *page;
 604	/* __alloc_simple_buffer is only called when the device is coherent */
 605	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
 606	if (!page)
 607		return NULL;
 608
 609	*ret_page = page;
 610	return page_address(page);
 611}
 612
 613static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
 614				    struct page **ret_page)
 615{
 616	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
 617				     ret_page);
 618}
 619
 620static void simple_allocator_free(struct arm_dma_free_args *args)
 621{
 622	__dma_free_buffer(args->page, args->size);
 623}
 624
 625static struct arm_dma_allocator simple_allocator = {
 626	.alloc = simple_allocator_alloc,
 627	.free = simple_allocator_free,
 628};
 629
 630static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
 631				 struct page **ret_page)
 632{
 633	return __alloc_from_contiguous(args->dev, args->size, args->prot,
 634				       ret_page, args->caller,
 635				       args->want_vaddr, args->coherent_flag,
 636				       args->gfp);
 637}
 638
 639static void cma_allocator_free(struct arm_dma_free_args *args)
 640{
 641	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
 642			       args->size, args->want_vaddr);
 643}
 644
 645static struct arm_dma_allocator cma_allocator = {
 646	.alloc = cma_allocator_alloc,
 647	.free = cma_allocator_free,
 648};
 649
 650static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
 651				  struct page **ret_page)
 652{
 653	return __alloc_from_pool(args->size, ret_page);
 654}
 655
 656static void pool_allocator_free(struct arm_dma_free_args *args)
 657{
 658	__free_from_pool(args->cpu_addr, args->size);
 659}
 660
 661static struct arm_dma_allocator pool_allocator = {
 662	.alloc = pool_allocator_alloc,
 663	.free = pool_allocator_free,
 664};
 665
 666static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
 667				   struct page **ret_page)
 668{
 669	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
 670				    args->prot, ret_page, args->caller,
 671				    args->want_vaddr);
 672}
 673
 674static void remap_allocator_free(struct arm_dma_free_args *args)
 675{
 676	if (args->want_vaddr)
 677		dma_common_free_remap(args->cpu_addr, args->size);
 678
 679	__dma_free_buffer(args->page, args->size);
 680}
 681
 682static struct arm_dma_allocator remap_allocator = {
 683	.alloc = remap_allocator_alloc,
 684	.free = remap_allocator_free,
 685};
 686
 687static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 688			 gfp_t gfp, pgprot_t prot, bool is_coherent,
 689			 unsigned long attrs, const void *caller)
 690{
 691	u64 mask = get_coherent_dma_mask(dev);
 692	struct page *page = NULL;
 693	void *addr;
 694	bool allowblock, cma;
 695	struct arm_dma_buffer *buf;
 696	struct arm_dma_alloc_args args = {
 697		.dev = dev,
 698		.size = PAGE_ALIGN(size),
 699		.gfp = gfp,
 700		.prot = prot,
 701		.caller = caller,
 702		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 703		.coherent_flag = is_coherent ? COHERENT : NORMAL,
 704	};
 705
 706#ifdef CONFIG_DMA_API_DEBUG
 707	u64 limit = (mask + 1) & ~mask;
 708	if (limit && size >= limit) {
 709		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 710			size, mask);
 711		return NULL;
 712	}
 713#endif
 714
 715	if (!mask)
 716		return NULL;
 717
 718	buf = kzalloc(sizeof(*buf),
 719		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
 720	if (!buf)
 721		return NULL;
 722
 723	if (mask < 0xffffffffULL)
 724		gfp |= GFP_DMA;
 725
 726	/*
 727	 * Following is a work-around (a.k.a. hack) to prevent pages
 728	 * with __GFP_COMP being passed to split_page() which cannot
 729	 * handle them.  The real problem is that this flag probably
 730	 * should be 0 on ARM as it is not supported on this
 731	 * platform; see CONFIG_HUGETLBFS.
 732	 */
 733	gfp &= ~(__GFP_COMP);
 734	args.gfp = gfp;
 735
 736	*handle = DMA_MAPPING_ERROR;
 737	allowblock = gfpflags_allow_blocking(gfp);
 738	cma = allowblock ? dev_get_cma_area(dev) : false;
 739
 740	if (cma)
 741		buf->allocator = &cma_allocator;
 742	else if (is_coherent)
 743		buf->allocator = &simple_allocator;
 744	else if (allowblock)
 745		buf->allocator = &remap_allocator;
 746	else
 747		buf->allocator = &pool_allocator;
 748
 749	addr = buf->allocator->alloc(&args, &page);
 750
 751	if (page) {
 752		unsigned long flags;
 753
 
 754		*handle = pfn_to_dma(dev, page_to_pfn(page));
 755		buf->virt = args.want_vaddr ? addr : page;
 756
 757		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
 758		list_add(&buf->list, &arm_dma_bufs);
 759		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
 760	} else {
 761		kfree(buf);
 762	}
 763
 764	return args.want_vaddr ? addr : page;
 765}
 766
 767/*
 768 * Allocate DMA-coherent memory space and return both the kernel remapped
 769 * virtual and bus address for that space.
 770 */
 771void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 772		    gfp_t gfp, unsigned long attrs)
 773{
 774	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
 
 775
 776	return __dma_alloc(dev, size, handle, gfp, prot, false,
 777			   attrs, __builtin_return_address(0));
 778}
 779
 780static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 781	dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
 782{
 783	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
 784			   attrs, __builtin_return_address(0));
 785}
 786
 787static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 
 
 
 788		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 789		 unsigned long attrs)
 790{
 791	int ret = -ENXIO;
 792	unsigned long nr_vma_pages = vma_pages(vma);
 793	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 794	unsigned long pfn = dma_to_pfn(dev, dma_addr);
 795	unsigned long off = vma->vm_pgoff;
 796
 797	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
 798		return ret;
 799
 800	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
 801		ret = remap_pfn_range(vma, vma->vm_start,
 802				      pfn + off,
 803				      vma->vm_end - vma->vm_start,
 804				      vma->vm_page_prot);
 805	}
 806
 807	return ret;
 808}
 809
 810/*
 811 * Create userspace mapping for the DMA-coherent memory.
 812 */
 813static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 814		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 815		 unsigned long attrs)
 816{
 817	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 818}
 819
 820int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 821		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 822		 unsigned long attrs)
 823{
 824	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 825	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 826}
 827
 828/*
 829 * Free a buffer as defined by the above mapping.
 830 */
 831static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 832			   dma_addr_t handle, unsigned long attrs,
 833			   bool is_coherent)
 834{
 835	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 836	struct arm_dma_buffer *buf;
 837	struct arm_dma_free_args args = {
 838		.dev = dev,
 839		.size = PAGE_ALIGN(size),
 840		.cpu_addr = cpu_addr,
 841		.page = page,
 842		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 843	};
 844
 845	buf = arm_dma_buffer_find(cpu_addr);
 846	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
 847		return;
 848
 849	buf->allocator->free(&args);
 850	kfree(buf);
 851}
 852
 853void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 854		  dma_addr_t handle, unsigned long attrs)
 855{
 856	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
 857}
 858
 859static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 860				  dma_addr_t handle, unsigned long attrs)
 861{
 862	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
 863}
 864
 865int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
 866		 void *cpu_addr, dma_addr_t handle, size_t size,
 867		 unsigned long attrs)
 868{
 869	unsigned long pfn = dma_to_pfn(dev, handle);
 870	struct page *page;
 871	int ret;
 872
 873	/* If the PFN is not valid, we do not have a struct page */
 874	if (!pfn_valid(pfn))
 875		return -ENXIO;
 876
 877	page = pfn_to_page(pfn);
 878
 879	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 880	if (unlikely(ret))
 881		return ret;
 882
 883	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 884	return 0;
 885}
 886
 887static void dma_cache_maint_page(struct page *page, unsigned long offset,
 888	size_t size, enum dma_data_direction dir,
 889	void (*op)(const void *, size_t, int))
 890{
 891	unsigned long pfn;
 892	size_t left = size;
 893
 894	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
 895	offset %= PAGE_SIZE;
 896
 897	/*
 898	 * A single sg entry may refer to multiple physically contiguous
 899	 * pages.  But we still need to process highmem pages individually.
 900	 * If highmem is not configured then the bulk of this loop gets
 901	 * optimized out.
 902	 */
 
 903	do {
 904		size_t len = left;
 905		void *vaddr;
 906
 907		page = pfn_to_page(pfn);
 908
 909		if (PageHighMem(page)) {
 910			if (len + offset > PAGE_SIZE)
 
 
 
 
 911				len = PAGE_SIZE - offset;
 912
 913			if (cache_is_vipt_nonaliasing()) {
 
 
 
 
 
 
 914				vaddr = kmap_atomic(page);
 915				op(vaddr + offset, len, dir);
 916				kunmap_atomic(vaddr);
 917			} else {
 918				vaddr = kmap_high_get(page);
 919				if (vaddr) {
 920					op(vaddr + offset, len, dir);
 921					kunmap_high(page);
 922				}
 923			}
 924		} else {
 925			vaddr = page_address(page) + offset;
 926			op(vaddr, len, dir);
 927		}
 928		offset = 0;
 929		pfn++;
 930		left -= len;
 931	} while (left);
 932}
 933
 934/*
 935 * Make an area consistent for devices.
 936 * Note: Drivers should NOT use this function directly, as it will break
 937 * platforms with CONFIG_DMABOUNCE.
 938 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 939 */
 940static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 941	size_t size, enum dma_data_direction dir)
 942{
 943	phys_addr_t paddr;
 944
 945	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 946
 947	paddr = page_to_phys(page) + off;
 948	if (dir == DMA_FROM_DEVICE) {
 949		outer_inv_range(paddr, paddr + size);
 950	} else {
 951		outer_clean_range(paddr, paddr + size);
 952	}
 953	/* FIXME: non-speculating: flush on bidirectional mappings? */
 954}
 955
 956static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
 957	size_t size, enum dma_data_direction dir)
 958{
 959	phys_addr_t paddr = page_to_phys(page) + off;
 960
 961	/* FIXME: non-speculating: not required */
 962	/* in any case, don't bother invalidating if DMA to device */
 963	if (dir != DMA_TO_DEVICE) {
 964		outer_inv_range(paddr, paddr + size);
 965
 966		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 967	}
 968
 969	/*
 970	 * Mark the D-cache clean for these pages to avoid extra flushing.
 971	 */
 972	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
 973		unsigned long pfn;
 974		size_t left = size;
 975
 976		pfn = page_to_pfn(page) + off / PAGE_SIZE;
 977		off %= PAGE_SIZE;
 978		if (off) {
 979			pfn++;
 980			left -= PAGE_SIZE - off;
 981		}
 982		while (left >= PAGE_SIZE) {
 983			page = pfn_to_page(pfn++);
 984			set_bit(PG_dcache_clean, &page->flags);
 985			left -= PAGE_SIZE;
 986		}
 987	}
 988}
 989
 990/**
 991 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
 992 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 993 * @sg: list of buffers
 994 * @nents: number of buffers to map
 995 * @dir: DMA transfer direction
 996 *
 997 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 998 * This is the scatter-gather version of the dma_map_single interface.
 999 * Here the scatter gather list elements are each tagged with the
1000 * appropriate dma address and length.  They are obtained via
1001 * sg_dma_{address,length}.
1002 *
1003 * Device ownership issues as mentioned for dma_map_single are the same
1004 * here.
1005 */
1006int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1007		enum dma_data_direction dir, unsigned long attrs)
1008{
1009	const struct dma_map_ops *ops = get_dma_ops(dev);
1010	struct scatterlist *s;
1011	int i, j;
1012
1013	for_each_sg(sg, s, nents, i) {
1014#ifdef CONFIG_NEED_SG_DMA_LENGTH
1015		s->dma_length = s->length;
1016#endif
1017		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1018						s->length, dir, attrs);
1019		if (dma_mapping_error(dev, s->dma_address))
1020			goto bad_mapping;
1021	}
1022	return nents;
1023
1024 bad_mapping:
1025	for_each_sg(sg, s, i, j)
1026		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1027	return 0;
1028}
1029
1030/**
1031 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1032 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1033 * @sg: list of buffers
1034 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1035 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1036 *
1037 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1038 * rules concerning calls here are the same as for dma_unmap_single().
1039 */
1040void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1041		enum dma_data_direction dir, unsigned long attrs)
1042{
1043	const struct dma_map_ops *ops = get_dma_ops(dev);
1044	struct scatterlist *s;
1045
1046	int i;
1047
1048	for_each_sg(sg, s, nents, i)
1049		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1050}
1051
1052/**
1053 * arm_dma_sync_sg_for_cpu
1054 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1055 * @sg: list of buffers
1056 * @nents: number of buffers to map (returned from dma_map_sg)
1057 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1058 */
1059void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1060			int nents, enum dma_data_direction dir)
1061{
1062	const struct dma_map_ops *ops = get_dma_ops(dev);
1063	struct scatterlist *s;
1064	int i;
1065
1066	for_each_sg(sg, s, nents, i)
1067		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1068					 dir);
1069}
1070
1071/**
1072 * arm_dma_sync_sg_for_device
1073 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1074 * @sg: list of buffers
1075 * @nents: number of buffers to map (returned from dma_map_sg)
1076 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1077 */
1078void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1079			int nents, enum dma_data_direction dir)
1080{
1081	const struct dma_map_ops *ops = get_dma_ops(dev);
1082	struct scatterlist *s;
1083	int i;
1084
1085	for_each_sg(sg, s, nents, i)
1086		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1087					    dir);
1088}
1089
1090/*
1091 * Return whether the given device DMA address mask can be supported
1092 * properly.  For example, if your device can only drive the low 24-bits
1093 * during bus mastering, then you would pass 0x00ffffff as the mask
1094 * to this function.
1095 */
1096int arm_dma_supported(struct device *dev, u64 mask)
1097{
1098	return __dma_supported(dev, mask, false);
 
 
1099}
 
1100
1101static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1102{
1103	/*
1104	 * When CONFIG_ARM_LPAE is set, physical address can extend above
1105	 * 32-bits, which then can't be addressed by devices that only support
1106	 * 32-bit DMA.
1107	 * Use the generic dma-direct / swiotlb ops code in that case, as that
1108	 * handles bounce buffering for us.
1109	 */
1110	if (IS_ENABLED(CONFIG_ARM_LPAE))
1111		return NULL;
1112	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1113}
1114
1115#ifdef CONFIG_ARM_DMA_USE_IOMMU
1116
1117static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1118{
1119	int prot = 0;
 
 
 
 
 
 
1120
1121	if (attrs & DMA_ATTR_PRIVILEGED)
1122		prot |= IOMMU_PRIV;
1123
1124	switch (dir) {
1125	case DMA_BIDIRECTIONAL:
1126		return prot | IOMMU_READ | IOMMU_WRITE;
1127	case DMA_TO_DEVICE:
1128		return prot | IOMMU_READ;
1129	case DMA_FROM_DEVICE:
1130		return prot | IOMMU_WRITE;
1131	default:
1132		return prot;
1133	}
1134}
1135
1136/* IOMMU */
1137
1138static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1139
1140static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1141				      size_t size)
1142{
1143	unsigned int order = get_order(size);
1144	unsigned int align = 0;
1145	unsigned int count, start;
1146	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1147	unsigned long flags;
1148	dma_addr_t iova;
1149	int i;
1150
1151	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1152		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1153
1154	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1155	align = (1 << order) - 1;
1156
1157	spin_lock_irqsave(&mapping->lock, flags);
1158	for (i = 0; i < mapping->nr_bitmaps; i++) {
1159		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1160				mapping->bits, 0, count, align);
1161
1162		if (start > mapping->bits)
1163			continue;
1164
1165		bitmap_set(mapping->bitmaps[i], start, count);
1166		break;
1167	}
1168
1169	/*
1170	 * No unused range found. Try to extend the existing mapping
1171	 * and perform a second attempt to reserve an IO virtual
1172	 * address range of size bytes.
1173	 */
1174	if (i == mapping->nr_bitmaps) {
1175		if (extend_iommu_mapping(mapping)) {
1176			spin_unlock_irqrestore(&mapping->lock, flags);
1177			return DMA_MAPPING_ERROR;
1178		}
1179
1180		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1181				mapping->bits, 0, count, align);
1182
1183		if (start > mapping->bits) {
1184			spin_unlock_irqrestore(&mapping->lock, flags);
1185			return DMA_MAPPING_ERROR;
1186		}
1187
1188		bitmap_set(mapping->bitmaps[i], start, count);
1189	}
1190	spin_unlock_irqrestore(&mapping->lock, flags);
1191
1192	iova = mapping->base + (mapping_size * i);
1193	iova += start << PAGE_SHIFT;
1194
1195	return iova;
1196}
1197
1198static inline void __free_iova(struct dma_iommu_mapping *mapping,
1199			       dma_addr_t addr, size_t size)
1200{
1201	unsigned int start, count;
1202	size_t mapping_size = mapping->bits << PAGE_SHIFT;
 
 
1203	unsigned long flags;
1204	dma_addr_t bitmap_base;
1205	u32 bitmap_index;
1206
1207	if (!size)
1208		return;
1209
1210	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1211	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1212
1213	bitmap_base = mapping->base + mapping_size * bitmap_index;
1214
1215	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1216
1217	if (addr + size > bitmap_base + mapping_size) {
1218		/*
1219		 * The address range to be freed reaches into the iova
1220		 * range of the next bitmap. This should not happen as
1221		 * we don't allow this in __alloc_iova (at the
1222		 * moment).
1223		 */
1224		BUG();
1225	} else
1226		count = size >> PAGE_SHIFT;
1227
1228	spin_lock_irqsave(&mapping->lock, flags);
1229	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1230	spin_unlock_irqrestore(&mapping->lock, flags);
1231}
1232
1233/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1234static const int iommu_order_array[] = { 9, 8, 4, 0 };
1235
1236static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1237					  gfp_t gfp, unsigned long attrs,
1238					  int coherent_flag)
1239{
1240	struct page **pages;
1241	int count = size >> PAGE_SHIFT;
1242	int array_size = count * sizeof(struct page *);
1243	int i = 0;
1244	int order_idx = 0;
1245
1246	if (array_size <= PAGE_SIZE)
1247		pages = kzalloc(array_size, GFP_KERNEL);
1248	else
1249		pages = vzalloc(array_size);
1250	if (!pages)
1251		return NULL;
1252
1253	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1254	{
1255		unsigned long order = get_order(size);
1256		struct page *page;
1257
1258		page = dma_alloc_from_contiguous(dev, count, order,
1259						 gfp & __GFP_NOWARN);
1260		if (!page)
1261			goto error;
1262
1263		__dma_clear_buffer(page, size, coherent_flag);
1264
1265		for (i = 0; i < count; i++)
1266			pages[i] = page + i;
1267
1268		return pages;
1269	}
1270
1271	/* Go straight to 4K chunks if caller says it's OK. */
1272	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1273		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1274
1275	/*
1276	 * IOMMU can map any pages, so himem can also be used here
1277	 */
1278	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1279
1280	while (count) {
1281		int j, order;
1282
1283		order = iommu_order_array[order_idx];
 
 
 
 
1284
1285		/* Drop down when we get small */
1286		if (__fls(count) < order) {
1287			order_idx++;
1288			continue;
1289		}
1290
1291		if (order) {
1292			/* See if it's easy to allocate a high-order chunk */
1293			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1294
1295			/* Go down a notch at first sign of pressure */
1296			if (!pages[i]) {
1297				order_idx++;
1298				continue;
1299			}
1300		} else {
1301			pages[i] = alloc_pages(gfp, 0);
1302			if (!pages[i])
1303				goto error;
1304		}
1305
1306		if (order) {
1307			split_page(pages[i], order);
1308			j = 1 << order;
1309			while (--j)
1310				pages[i + j] = pages[i] + j;
1311		}
1312
1313		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1314		i += 1 << order;
1315		count -= 1 << order;
1316	}
1317
1318	return pages;
1319error:
1320	while (i--)
1321		if (pages[i])
1322			__free_pages(pages[i], 0);
1323	kvfree(pages);
 
 
 
1324	return NULL;
1325}
1326
1327static int __iommu_free_buffer(struct device *dev, struct page **pages,
1328			       size_t size, unsigned long attrs)
1329{
1330	int count = size >> PAGE_SHIFT;
 
1331	int i;
 
 
 
 
 
 
 
 
 
1332
1333	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1334		dma_release_from_contiguous(dev, pages[0], count);
1335	} else {
1336		for (i = 0; i < count; i++)
1337			if (pages[i])
1338				__free_pages(pages[i], 0);
 
 
 
 
 
 
 
 
 
1339	}
1340
1341	kvfree(pages);
1342	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1343}
1344
1345/*
1346 * Create a mapping in device IO address space for specified pages
1347 */
1348static dma_addr_t
1349__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1350		       unsigned long attrs)
1351{
1352	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1353	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1354	dma_addr_t dma_addr, iova;
1355	int i;
1356
1357	dma_addr = __alloc_iova(mapping, size);
1358	if (dma_addr == DMA_MAPPING_ERROR)
1359		return dma_addr;
1360
1361	iova = dma_addr;
1362	for (i = 0; i < count; ) {
1363		int ret;
1364
1365		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1366		phys_addr_t phys = page_to_phys(pages[i]);
1367		unsigned int len, j;
1368
1369		for (j = i + 1; j < count; j++, next_pfn++)
1370			if (page_to_pfn(pages[j]) != next_pfn)
1371				break;
1372
1373		len = (j - i) << PAGE_SHIFT;
1374		ret = iommu_map(mapping->domain, iova, phys, len,
1375				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1376		if (ret < 0)
1377			goto fail;
1378		iova += len;
1379		i = j;
1380	}
1381	return dma_addr;
1382fail:
1383	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1384	__free_iova(mapping, dma_addr, size);
1385	return DMA_MAPPING_ERROR;
1386}
1387
1388static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1389{
1390	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1391
1392	/*
1393	 * add optional in-page offset from iova to size and align
1394	 * result to page size
1395	 */
1396	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1397	iova &= PAGE_MASK;
1398
1399	iommu_unmap(mapping->domain, iova, size);
1400	__free_iova(mapping, iova, size);
1401	return 0;
1402}
1403
1404static struct page **__atomic_get_pages(void *addr)
1405{
1406	struct page *page;
1407	phys_addr_t phys;
1408
1409	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1410	page = phys_to_page(phys);
1411
1412	return (struct page **)page;
1413}
1414
1415static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1416{
1417	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1418		return __atomic_get_pages(cpu_addr);
1419
1420	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1421		return cpu_addr;
1422
1423	return dma_common_find_pages(cpu_addr);
1424}
1425
1426static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1427				  dma_addr_t *handle, int coherent_flag,
1428				  unsigned long attrs)
1429{
1430	struct page *page;
1431	void *addr;
1432
1433	if (coherent_flag  == COHERENT)
1434		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1435	else
1436		addr = __alloc_from_pool(size, &page);
1437	if (!addr)
1438		return NULL;
1439
1440	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1441	if (*handle == DMA_MAPPING_ERROR)
1442		goto err_mapping;
1443
1444	return addr;
1445
1446err_mapping:
1447	__free_from_pool(addr, size);
1448	return NULL;
1449}
1450
1451static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1452			dma_addr_t handle, size_t size, int coherent_flag)
1453{
1454	__iommu_remove_mapping(dev, handle, size);
1455	if (coherent_flag == COHERENT)
1456		__dma_free_buffer(virt_to_page(cpu_addr), size);
1457	else
1458		__free_from_pool(cpu_addr, size);
1459}
1460
1461static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1462	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1463	    int coherent_flag)
1464{
1465	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1466	struct page **pages;
1467	void *addr = NULL;
1468
1469	*handle = DMA_MAPPING_ERROR;
1470	size = PAGE_ALIGN(size);
1471
1472	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1473		return __iommu_alloc_simple(dev, size, gfp, handle,
1474					    coherent_flag, attrs);
1475
1476	/*
1477	 * Following is a work-around (a.k.a. hack) to prevent pages
1478	 * with __GFP_COMP being passed to split_page() which cannot
1479	 * handle them.  The real problem is that this flag probably
1480	 * should be 0 on ARM as it is not supported on this
1481	 * platform; see CONFIG_HUGETLBFS.
1482	 */
1483	gfp &= ~(__GFP_COMP);
1484
1485	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1486	if (!pages)
1487		return NULL;
1488
1489	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1490	if (*handle == DMA_MAPPING_ERROR)
1491		goto err_buffer;
1492
1493	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1494		return pages;
1495
1496	addr = dma_common_pages_remap(pages, size, prot,
1497				   __builtin_return_address(0));
1498	if (!addr)
1499		goto err_mapping;
1500
1501	return addr;
1502
1503err_mapping:
1504	__iommu_remove_mapping(dev, *handle, size);
1505err_buffer:
1506	__iommu_free_buffer(dev, pages, size, attrs);
1507	return NULL;
1508}
1509
1510static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1511	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1512{
1513	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1514}
1515
1516static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1517		    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1518{
1519	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1520}
1521
1522static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1523		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1524		    unsigned long attrs)
1525{
1526	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1527	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1528	int err;
1529
1530	if (!pages)
1531		return -ENXIO;
1532
1533	if (vma->vm_pgoff >= nr_pages)
1534		return -ENXIO;
1535
1536	err = vm_map_pages(vma, pages, nr_pages);
1537	if (err)
1538		pr_err("Remapping memory failed: %d\n", err);
 
 
 
 
 
 
 
 
 
1539
1540	return err;
1541}
1542static int arm_iommu_mmap_attrs(struct device *dev,
1543		struct vm_area_struct *vma, void *cpu_addr,
1544		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1545{
1546	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1547
1548	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1549}
1550
1551static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1552		struct vm_area_struct *vma, void *cpu_addr,
1553		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1554{
1555	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1556}
1557
1558/*
1559 * free a page as defined by the above mapping.
1560 * Must not be called with IRQs disabled.
1561 */
1562void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1563	dma_addr_t handle, unsigned long attrs, int coherent_flag)
1564{
1565	struct page **pages;
1566	size = PAGE_ALIGN(size);
1567
1568	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1569		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1570		return;
1571	}
1572
1573	pages = __iommu_get_pages(cpu_addr, attrs);
1574	if (!pages) {
1575		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1576		return;
1577	}
1578
1579	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1580		dma_common_free_remap(cpu_addr, size);
1581
1582	__iommu_remove_mapping(dev, handle, size);
1583	__iommu_free_buffer(dev, pages, size, attrs);
1584}
1585
1586void arm_iommu_free_attrs(struct device *dev, size_t size,
1587		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1588{
1589	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1590}
1591
1592void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1593		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1594{
1595	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1596}
1597
1598static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1599				 void *cpu_addr, dma_addr_t dma_addr,
1600				 size_t size, unsigned long attrs)
1601{
1602	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1603	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1604
1605	if (!pages)
1606		return -ENXIO;
1607
1608	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1609					 GFP_KERNEL);
1610}
1611
1612/*
1613 * Map a part of the scatter-gather list into contiguous io address space
1614 */
1615static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1616			  size_t size, dma_addr_t *handle,
1617			  enum dma_data_direction dir, unsigned long attrs,
1618			  bool is_coherent)
1619{
1620	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1621	dma_addr_t iova, iova_base;
1622	int ret = 0;
1623	unsigned int count;
1624	struct scatterlist *s;
1625	int prot;
1626
1627	size = PAGE_ALIGN(size);
1628	*handle = DMA_MAPPING_ERROR;
1629
1630	iova_base = iova = __alloc_iova(mapping, size);
1631	if (iova == DMA_MAPPING_ERROR)
1632		return -ENOMEM;
1633
1634	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1635		phys_addr_t phys = page_to_phys(sg_page(s));
1636		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1637
1638		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1639			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1640
1641		prot = __dma_info_to_prot(dir, attrs);
1642
1643		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1644		if (ret < 0)
1645			goto fail;
1646		count += len >> PAGE_SHIFT;
1647		iova += len;
1648	}
1649	*handle = iova_base;
1650
1651	return 0;
1652fail:
1653	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1654	__free_iova(mapping, iova_base, size);
1655	return ret;
1656}
1657
1658static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1659		     enum dma_data_direction dir, unsigned long attrs,
1660		     bool is_coherent)
 
 
 
 
 
 
 
 
 
 
 
1661{
1662	struct scatterlist *s = sg, *dma = sg, *start = sg;
1663	int i, count = 0;
1664	unsigned int offset = s->offset;
1665	unsigned int size = s->offset + s->length;
1666	unsigned int max = dma_get_max_seg_size(dev);
1667
1668	for (i = 1; i < nents; i++) {
1669		s = sg_next(s);
1670
1671		s->dma_address = DMA_MAPPING_ERROR;
1672		s->dma_length = 0;
1673
1674		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1675			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1676			    dir, attrs, is_coherent) < 0)
1677				goto bad_mapping;
1678
1679			dma->dma_address += offset;
1680			dma->dma_length = size - offset;
1681
1682			size = offset = s->offset;
1683			start = s;
1684			dma = sg_next(dma);
1685			count += 1;
1686		}
1687		size += s->length;
1688	}
1689	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1690		is_coherent) < 0)
1691		goto bad_mapping;
1692
1693	dma->dma_address += offset;
1694	dma->dma_length = size - offset;
1695
1696	return count+1;
1697
1698bad_mapping:
1699	for_each_sg(sg, s, count, i)
1700		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1701	return 0;
1702}
1703
1704/**
1705 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1706 * @dev: valid struct device pointer
1707 * @sg: list of buffers
1708 * @nents: number of buffers to map
1709 * @dir: DMA transfer direction
1710 *
1711 * Map a set of i/o coherent buffers described by scatterlist in streaming
1712 * mode for DMA. The scatter gather list elements are merged together (if
1713 * possible) and tagged with the appropriate dma address and length. They are
1714 * obtained via sg_dma_{address,length}.
1715 */
1716int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1717		int nents, enum dma_data_direction dir, unsigned long attrs)
1718{
1719	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1720}
1721
1722/**
1723 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1724 * @dev: valid struct device pointer
1725 * @sg: list of buffers
1726 * @nents: number of buffers to map
1727 * @dir: DMA transfer direction
1728 *
1729 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1730 * The scatter gather list elements are merged together (if possible) and
1731 * tagged with the appropriate dma address and length. They are obtained via
1732 * sg_dma_{address,length}.
1733 */
1734int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1735		int nents, enum dma_data_direction dir, unsigned long attrs)
1736{
1737	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1738}
1739
1740static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1741		int nents, enum dma_data_direction dir,
1742		unsigned long attrs, bool is_coherent)
1743{
1744	struct scatterlist *s;
1745	int i;
1746
1747	for_each_sg(sg, s, nents, i) {
1748		if (sg_dma_len(s))
1749			__iommu_remove_mapping(dev, sg_dma_address(s),
1750					       sg_dma_len(s));
1751		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1752			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1753					      s->length, dir);
1754	}
1755}
1756
1757/**
1758 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1759 * @dev: valid struct device pointer
1760 * @sg: list of buffers
1761 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1762 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1763 *
1764 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1765 * rules concerning calls here are the same as for dma_unmap_single().
1766 */
1767void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1768		int nents, enum dma_data_direction dir,
1769		unsigned long attrs)
1770{
1771	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1772}
1773
1774/**
1775 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1776 * @dev: valid struct device pointer
1777 * @sg: list of buffers
1778 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1779 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1780 *
1781 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1782 * rules concerning calls here are the same as for dma_unmap_single().
1783 */
1784void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1785			enum dma_data_direction dir,
1786			unsigned long attrs)
1787{
1788	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1789}
1790
1791/**
1792 * arm_iommu_sync_sg_for_cpu
1793 * @dev: valid struct device pointer
1794 * @sg: list of buffers
1795 * @nents: number of buffers to map (returned from dma_map_sg)
1796 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1797 */
1798void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1799			int nents, enum dma_data_direction dir)
1800{
1801	struct scatterlist *s;
1802	int i;
1803
1804	for_each_sg(sg, s, nents, i)
1805		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
 
1806
1807}
1808
1809/**
1810 * arm_iommu_sync_sg_for_device
1811 * @dev: valid struct device pointer
1812 * @sg: list of buffers
1813 * @nents: number of buffers to map (returned from dma_map_sg)
1814 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1815 */
1816void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1817			int nents, enum dma_data_direction dir)
1818{
1819	struct scatterlist *s;
1820	int i;
1821
1822	for_each_sg(sg, s, nents, i)
1823		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
 
1824}
1825
1826
1827/**
1828 * arm_coherent_iommu_map_page
1829 * @dev: valid struct device pointer
1830 * @page: page that buffer resides in
1831 * @offset: offset into page for start of buffer
1832 * @size: size of buffer to map
1833 * @dir: DMA transfer direction
1834 *
1835 * Coherent IOMMU aware version of arm_dma_map_page()
1836 */
1837static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1838	     unsigned long offset, size_t size, enum dma_data_direction dir,
1839	     unsigned long attrs)
1840{
1841	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1842	dma_addr_t dma_addr;
1843	int ret, prot, len = PAGE_ALIGN(size + offset);
 
 
 
1844
1845	dma_addr = __alloc_iova(mapping, len);
1846	if (dma_addr == DMA_MAPPING_ERROR)
1847		return dma_addr;
1848
1849	prot = __dma_info_to_prot(dir, attrs);
1850
1851	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1852	if (ret < 0)
1853		goto fail;
1854
1855	return dma_addr + offset;
1856fail:
1857	__free_iova(mapping, dma_addr, len);
1858	return DMA_MAPPING_ERROR;
1859}
1860
1861/**
1862 * arm_iommu_map_page
1863 * @dev: valid struct device pointer
1864 * @page: page that buffer resides in
1865 * @offset: offset into page for start of buffer
1866 * @size: size of buffer to map
1867 * @dir: DMA transfer direction
1868 *
1869 * IOMMU aware version of arm_dma_map_page()
1870 */
1871static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1872	     unsigned long offset, size_t size, enum dma_data_direction dir,
1873	     unsigned long attrs)
1874{
1875	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1876		__dma_page_cpu_to_dev(page, offset, size, dir);
1877
1878	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1879}
1880
1881/**
1882 * arm_coherent_iommu_unmap_page
1883 * @dev: valid struct device pointer
1884 * @handle: DMA address of buffer
1885 * @size: size of buffer (same as passed to dma_map_page)
1886 * @dir: DMA transfer direction (same as passed to dma_map_page)
1887 *
1888 * Coherent IOMMU aware version of arm_dma_unmap_page()
1889 */
1890static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1891		size_t size, enum dma_data_direction dir, unsigned long attrs)
1892{
1893	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1894	dma_addr_t iova = handle & PAGE_MASK;
1895	int offset = handle & ~PAGE_MASK;
1896	int len = PAGE_ALIGN(size + offset);
1897
1898	if (!iova)
1899		return;
1900
1901	iommu_unmap(mapping->domain, iova, len);
1902	__free_iova(mapping, iova, len);
1903}
1904
1905/**
1906 * arm_iommu_unmap_page
1907 * @dev: valid struct device pointer
1908 * @handle: DMA address of buffer
1909 * @size: size of buffer (same as passed to dma_map_page)
1910 * @dir: DMA transfer direction (same as passed to dma_map_page)
1911 *
1912 * IOMMU aware version of arm_dma_unmap_page()
1913 */
1914static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1915		size_t size, enum dma_data_direction dir, unsigned long attrs)
 
1916{
1917	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1918	dma_addr_t iova = handle & PAGE_MASK;
1919	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1920	int offset = handle & ~PAGE_MASK;
1921	int len = PAGE_ALIGN(size + offset);
1922
1923	if (!iova)
1924		return;
1925
1926	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1927		__dma_page_dev_to_cpu(page, offset, size, dir);
1928
1929	iommu_unmap(mapping->domain, iova, len);
1930	__free_iova(mapping, iova, len);
1931}
1932
1933/**
1934 * arm_iommu_map_resource - map a device resource for DMA
1935 * @dev: valid struct device pointer
1936 * @phys_addr: physical address of resource
1937 * @size: size of resource to map
1938 * @dir: DMA transfer direction
1939 */
1940static dma_addr_t arm_iommu_map_resource(struct device *dev,
1941		phys_addr_t phys_addr, size_t size,
1942		enum dma_data_direction dir, unsigned long attrs)
1943{
1944	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1945	dma_addr_t dma_addr;
1946	int ret, prot;
1947	phys_addr_t addr = phys_addr & PAGE_MASK;
1948	unsigned int offset = phys_addr & ~PAGE_MASK;
1949	size_t len = PAGE_ALIGN(size + offset);
1950
1951	dma_addr = __alloc_iova(mapping, len);
1952	if (dma_addr == DMA_MAPPING_ERROR)
1953		return dma_addr;
1954
1955	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1956
1957	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1958	if (ret < 0)
1959		goto fail;
1960
1961	return dma_addr + offset;
1962fail:
1963	__free_iova(mapping, dma_addr, len);
1964	return DMA_MAPPING_ERROR;
1965}
1966
1967/**
1968 * arm_iommu_unmap_resource - unmap a device DMA resource
1969 * @dev: valid struct device pointer
1970 * @dma_handle: DMA address to resource
1971 * @size: size of resource to map
1972 * @dir: DMA transfer direction
1973 */
1974static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1975		size_t size, enum dma_data_direction dir,
1976		unsigned long attrs)
1977{
1978	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1979	dma_addr_t iova = dma_handle & PAGE_MASK;
1980	unsigned int offset = dma_handle & ~PAGE_MASK;
1981	size_t len = PAGE_ALIGN(size + offset);
1982
1983	if (!iova)
1984		return;
1985
1986	iommu_unmap(mapping->domain, iova, len);
1987	__free_iova(mapping, iova, len);
1988}
1989
1990static void arm_iommu_sync_single_for_cpu(struct device *dev,
1991		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1992{
1993	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1994	dma_addr_t iova = handle & PAGE_MASK;
1995	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1996	unsigned int offset = handle & ~PAGE_MASK;
1997
1998	if (!iova)
1999		return;
2000
2001	__dma_page_dev_to_cpu(page, offset, size, dir);
 
2002}
2003
2004static void arm_iommu_sync_single_for_device(struct device *dev,
2005		dma_addr_t handle, size_t size, enum dma_data_direction dir)
2006{
2007	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2008	dma_addr_t iova = handle & PAGE_MASK;
2009	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2010	unsigned int offset = handle & ~PAGE_MASK;
2011
2012	if (!iova)
2013		return;
2014
2015	__dma_page_cpu_to_dev(page, offset, size, dir);
2016}
2017
2018const struct dma_map_ops iommu_ops = {
2019	.alloc		= arm_iommu_alloc_attrs,
2020	.free		= arm_iommu_free_attrs,
2021	.mmap		= arm_iommu_mmap_attrs,
2022	.get_sgtable	= arm_iommu_get_sgtable,
2023
2024	.map_page		= arm_iommu_map_page,
2025	.unmap_page		= arm_iommu_unmap_page,
2026	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
2027	.sync_single_for_device	= arm_iommu_sync_single_for_device,
2028
2029	.map_sg			= arm_iommu_map_sg,
2030	.unmap_sg		= arm_iommu_unmap_sg,
2031	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
2032	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
2033
2034	.map_resource		= arm_iommu_map_resource,
2035	.unmap_resource		= arm_iommu_unmap_resource,
2036
2037	.dma_supported		= arm_dma_supported,
2038};
2039
2040const struct dma_map_ops iommu_coherent_ops = {
2041	.alloc		= arm_coherent_iommu_alloc_attrs,
2042	.free		= arm_coherent_iommu_free_attrs,
2043	.mmap		= arm_coherent_iommu_mmap_attrs,
2044	.get_sgtable	= arm_iommu_get_sgtable,
2045
2046	.map_page	= arm_coherent_iommu_map_page,
2047	.unmap_page	= arm_coherent_iommu_unmap_page,
2048
2049	.map_sg		= arm_coherent_iommu_map_sg,
2050	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2051
2052	.map_resource	= arm_iommu_map_resource,
2053	.unmap_resource	= arm_iommu_unmap_resource,
2054
2055	.dma_supported		= arm_dma_supported,
2056};
2057
2058/**
2059 * arm_iommu_create_mapping
2060 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2061 * @base: start address of the valid IO address space
2062 * @size: maximum size of the valid IO address space
 
2063 *
2064 * Creates a mapping structure which holds information about used/unused
2065 * IO address ranges, which is required to perform memory allocation and
2066 * mapping with IOMMU aware functions.
2067 *
2068 * The client device need to be attached to the mapping with
2069 * arm_iommu_attach_device function.
2070 */
2071struct dma_iommu_mapping *
2072arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
 
2073{
2074	unsigned int bits = size >> PAGE_SHIFT;
2075	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2076	struct dma_iommu_mapping *mapping;
2077	int extensions = 1;
2078	int err = -ENOMEM;
2079
2080	/* currently only 32-bit DMA address space is supported */
2081	if (size > DMA_BIT_MASK(32) + 1)
2082		return ERR_PTR(-ERANGE);
2083
2084	if (!bitmap_size)
2085		return ERR_PTR(-EINVAL);
2086
2087	if (bitmap_size > PAGE_SIZE) {
2088		extensions = bitmap_size / PAGE_SIZE;
2089		bitmap_size = PAGE_SIZE;
2090	}
2091
2092	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2093	if (!mapping)
2094		goto err;
2095
2096	mapping->bitmap_size = bitmap_size;
2097	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2098				   GFP_KERNEL);
2099	if (!mapping->bitmaps)
2100		goto err2;
2101
2102	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2103	if (!mapping->bitmaps[0])
2104		goto err3;
2105
2106	mapping->nr_bitmaps = 1;
2107	mapping->extensions = extensions;
2108	mapping->base = base;
2109	mapping->bits = BITS_PER_BYTE * bitmap_size;
2110
2111	spin_lock_init(&mapping->lock);
2112
2113	mapping->domain = iommu_domain_alloc(bus);
2114	if (!mapping->domain)
2115		goto err4;
2116
2117	kref_init(&mapping->kref);
2118	return mapping;
2119err4:
2120	kfree(mapping->bitmaps[0]);
2121err3:
2122	kfree(mapping->bitmaps);
2123err2:
2124	kfree(mapping);
2125err:
2126	return ERR_PTR(err);
2127}
2128EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2129
2130static void release_iommu_mapping(struct kref *kref)
2131{
2132	int i;
2133	struct dma_iommu_mapping *mapping =
2134		container_of(kref, struct dma_iommu_mapping, kref);
2135
2136	iommu_domain_free(mapping->domain);
2137	for (i = 0; i < mapping->nr_bitmaps; i++)
2138		kfree(mapping->bitmaps[i]);
2139	kfree(mapping->bitmaps);
2140	kfree(mapping);
2141}
2142
2143static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2144{
2145	int next_bitmap;
2146
2147	if (mapping->nr_bitmaps >= mapping->extensions)
2148		return -EINVAL;
2149
2150	next_bitmap = mapping->nr_bitmaps;
2151	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2152						GFP_ATOMIC);
2153	if (!mapping->bitmaps[next_bitmap])
2154		return -ENOMEM;
2155
2156	mapping->nr_bitmaps++;
2157
2158	return 0;
2159}
2160
2161void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2162{
2163	if (mapping)
2164		kref_put(&mapping->kref, release_iommu_mapping);
2165}
2166EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2167
2168static int __arm_iommu_attach_device(struct device *dev,
2169				     struct dma_iommu_mapping *mapping)
2170{
2171	int err;
2172
2173	err = iommu_attach_device(mapping->domain, dev);
2174	if (err)
2175		return err;
2176
2177	kref_get(&mapping->kref);
2178	to_dma_iommu_mapping(dev) = mapping;
2179
2180	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2181	return 0;
2182}
2183
2184/**
2185 * arm_iommu_attach_device
2186 * @dev: valid struct device pointer
2187 * @mapping: io address space mapping structure (returned from
2188 *	arm_iommu_create_mapping)
2189 *
2190 * Attaches specified io address space mapping to the provided device.
2191 * This replaces the dma operations (dma_map_ops pointer) with the
2192 * IOMMU aware version.
2193 *
2194 * More than one client might be attached to the same io address space
2195 * mapping.
2196 */
2197int arm_iommu_attach_device(struct device *dev,
2198			    struct dma_iommu_mapping *mapping)
2199{
2200	int err;
2201
2202	err = __arm_iommu_attach_device(dev, mapping);
2203	if (err)
2204		return err;
2205
 
 
2206	set_dma_ops(dev, &iommu_ops);
 
 
2207	return 0;
2208}
2209EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2210
2211/**
2212 * arm_iommu_detach_device
2213 * @dev: valid struct device pointer
2214 *
2215 * Detaches the provided device from a previously attached map.
2216 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2217 */
2218void arm_iommu_detach_device(struct device *dev)
2219{
2220	struct dma_iommu_mapping *mapping;
2221
2222	mapping = to_dma_iommu_mapping(dev);
2223	if (!mapping) {
2224		dev_warn(dev, "Not attached\n");
2225		return;
2226	}
2227
2228	iommu_detach_device(mapping->domain, dev);
2229	kref_put(&mapping->kref, release_iommu_mapping);
2230	to_dma_iommu_mapping(dev) = NULL;
2231	set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
2232
2233	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2234}
2235EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2236
2237static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2238{
2239	return coherent ? &iommu_coherent_ops : &iommu_ops;
2240}
2241
2242static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2243				    const struct iommu_ops *iommu)
2244{
2245	struct dma_iommu_mapping *mapping;
2246
2247	if (!iommu)
2248		return false;
2249
2250	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2251	if (IS_ERR(mapping)) {
2252		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2253				size, dev_name(dev));
2254		return false;
2255	}
2256
2257	if (__arm_iommu_attach_device(dev, mapping)) {
2258		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2259				dev_name(dev));
2260		arm_iommu_release_mapping(mapping);
2261		return false;
2262	}
2263
2264	return true;
2265}
2266
2267static void arm_teardown_iommu_dma_ops(struct device *dev)
2268{
2269	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2270
2271	if (!mapping)
2272		return;
2273
2274	arm_iommu_detach_device(dev);
2275	arm_iommu_release_mapping(mapping);
2276}
2277
2278#else
2279
2280static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2281				    const struct iommu_ops *iommu)
2282{
2283	return false;
2284}
2285
2286static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2287
2288#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2289
2290#endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2291
2292void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2293			const struct iommu_ops *iommu, bool coherent)
2294{
2295	const struct dma_map_ops *dma_ops;
2296
2297	dev->archdata.dma_coherent = coherent;
2298#ifdef CONFIG_SWIOTLB
2299	dev->dma_coherent = coherent;
2300#endif
2301
2302	/*
2303	 * Don't override the dma_ops if they have already been set. Ideally
2304	 * this should be the only location where dma_ops are set, remove this
2305	 * check when all other callers of set_dma_ops will have disappeared.
2306	 */
2307	if (dev->dma_ops)
2308		return;
2309
2310	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2311		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2312	else
2313		dma_ops = arm_get_dma_map_ops(coherent);
2314
2315	set_dma_ops(dev, dma_ops);
2316
2317#ifdef CONFIG_XEN
2318	if (xen_initial_domain())
2319		dev->dma_ops = &xen_swiotlb_dma_ops;
2320#endif
2321	dev->archdata.dma_ops_setup = true;
2322}
2323
2324void arch_teardown_dma_ops(struct device *dev)
2325{
2326	if (!dev->archdata.dma_ops_setup)
2327		return;
2328
2329	arm_teardown_iommu_dma_ops(dev);
2330	/* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2331	set_dma_ops(dev, NULL);
2332}
2333
2334#ifdef CONFIG_SWIOTLB
2335void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
2336		size_t size, enum dma_data_direction dir)
2337{
2338	__dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2339			      size, dir);
2340}
2341
2342void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
2343		size_t size, enum dma_data_direction dir)
2344{
2345	__dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2346			      size, dir);
2347}
2348
2349long arch_dma_coherent_to_pfn(struct device *dev, void *cpu_addr,
2350		dma_addr_t dma_addr)
2351{
2352	return dma_to_pfn(dev, dma_addr);
2353}
2354
2355void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
2356		gfp_t gfp, unsigned long attrs)
2357{
2358	return __dma_alloc(dev, size, dma_handle, gfp,
2359			   __get_dma_pgprot(attrs, PAGE_KERNEL), false,
2360			   attrs, __builtin_return_address(0));
2361}
2362
2363void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
2364		dma_addr_t dma_handle, unsigned long attrs)
2365{
2366	__arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
2367}
2368#endif /* CONFIG_SWIOTLB */