Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/segment.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/bio.h>
  11#include <linux/blkdev.h>
  12#include <linux/prefetch.h>
  13#include <linux/kthread.h>
  14#include <linux/swap.h>
  15#include <linux/timer.h>
  16#include <linux/freezer.h>
  17#include <linux/sched/signal.h>
  18
  19#include "f2fs.h"
  20#include "segment.h"
  21#include "node.h"
  22#include "gc.h"
  23#include "trace.h"
  24#include <trace/events/f2fs.h>
  25
  26#define __reverse_ffz(x) __reverse_ffs(~(x))
  27
  28static struct kmem_cache *discard_entry_slab;
  29static struct kmem_cache *discard_cmd_slab;
  30static struct kmem_cache *sit_entry_set_slab;
  31static struct kmem_cache *inmem_entry_slab;
  32
  33static unsigned long __reverse_ulong(unsigned char *str)
  34{
  35	unsigned long tmp = 0;
  36	int shift = 24, idx = 0;
  37
  38#if BITS_PER_LONG == 64
  39	shift = 56;
  40#endif
  41	while (shift >= 0) {
  42		tmp |= (unsigned long)str[idx++] << shift;
  43		shift -= BITS_PER_BYTE;
  44	}
  45	return tmp;
  46}
  47
  48/*
  49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
  51 */
  52static inline unsigned long __reverse_ffs(unsigned long word)
  53{
  54	int num = 0;
  55
  56#if BITS_PER_LONG == 64
  57	if ((word & 0xffffffff00000000UL) == 0)
  58		num += 32;
  59	else
  60		word >>= 32;
  61#endif
  62	if ((word & 0xffff0000) == 0)
  63		num += 16;
  64	else
  65		word >>= 16;
  66
  67	if ((word & 0xff00) == 0)
  68		num += 8;
  69	else
  70		word >>= 8;
  71
  72	if ((word & 0xf0) == 0)
  73		num += 4;
  74	else
  75		word >>= 4;
  76
  77	if ((word & 0xc) == 0)
  78		num += 2;
  79	else
  80		word >>= 2;
  81
  82	if ((word & 0x2) == 0)
  83		num += 1;
  84	return num;
  85}
  86
  87/*
  88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
  90 * @size must be integral times of unsigned long.
  91 * Example:
  92 *                             MSB <--> LSB
  93 *   f2fs_set_bit(0, bitmap) => 1000 0000
  94 *   f2fs_set_bit(7, bitmap) => 0000 0001
  95 */
  96static unsigned long __find_rev_next_bit(const unsigned long *addr,
  97			unsigned long size, unsigned long offset)
  98{
  99	const unsigned long *p = addr + BIT_WORD(offset);
 100	unsigned long result = size;
 101	unsigned long tmp;
 102
 103	if (offset >= size)
 104		return size;
 105
 106	size -= (offset & ~(BITS_PER_LONG - 1));
 107	offset %= BITS_PER_LONG;
 108
 109	while (1) {
 110		if (*p == 0)
 111			goto pass;
 112
 113		tmp = __reverse_ulong((unsigned char *)p);
 114
 115		tmp &= ~0UL >> offset;
 116		if (size < BITS_PER_LONG)
 117			tmp &= (~0UL << (BITS_PER_LONG - size));
 118		if (tmp)
 119			goto found;
 120pass:
 121		if (size <= BITS_PER_LONG)
 122			break;
 123		size -= BITS_PER_LONG;
 124		offset = 0;
 125		p++;
 126	}
 127	return result;
 128found:
 129	return result - size + __reverse_ffs(tmp);
 130}
 131
 132static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 133			unsigned long size, unsigned long offset)
 134{
 135	const unsigned long *p = addr + BIT_WORD(offset);
 136	unsigned long result = size;
 137	unsigned long tmp;
 138
 139	if (offset >= size)
 140		return size;
 141
 142	size -= (offset & ~(BITS_PER_LONG - 1));
 143	offset %= BITS_PER_LONG;
 144
 145	while (1) {
 146		if (*p == ~0UL)
 147			goto pass;
 148
 149		tmp = __reverse_ulong((unsigned char *)p);
 150
 151		if (offset)
 152			tmp |= ~0UL << (BITS_PER_LONG - offset);
 153		if (size < BITS_PER_LONG)
 154			tmp |= ~0UL >> size;
 155		if (tmp != ~0UL)
 156			goto found;
 157pass:
 158		if (size <= BITS_PER_LONG)
 159			break;
 160		size -= BITS_PER_LONG;
 161		offset = 0;
 162		p++;
 163	}
 164	return result;
 165found:
 166	return result - size + __reverse_ffz(tmp);
 167}
 168
 169bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
 170{
 171	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 172	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 173	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
 174
 175	if (test_opt(sbi, LFS))
 176		return false;
 177	if (sbi->gc_mode == GC_URGENT)
 178		return true;
 179	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
 180		return true;
 181
 182	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
 183			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
 184}
 185
 186void f2fs_register_inmem_page(struct inode *inode, struct page *page)
 187{
 188	struct inmem_pages *new;
 189
 190	f2fs_trace_pid(page);
 191
 192	f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
 193
 194	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
 195
 196	/* add atomic page indices to the list */
 197	new->page = page;
 198	INIT_LIST_HEAD(&new->list);
 199
 200	/* increase reference count with clean state */
 201	get_page(page);
 202	mutex_lock(&F2FS_I(inode)->inmem_lock);
 203	list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
 204	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 205	mutex_unlock(&F2FS_I(inode)->inmem_lock);
 206
 207	trace_f2fs_register_inmem_page(page, INMEM);
 208}
 209
 210static int __revoke_inmem_pages(struct inode *inode,
 211				struct list_head *head, bool drop, bool recover,
 212				bool trylock)
 213{
 214	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 215	struct inmem_pages *cur, *tmp;
 216	int err = 0;
 217
 218	list_for_each_entry_safe(cur, tmp, head, list) {
 219		struct page *page = cur->page;
 220
 221		if (drop)
 222			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
 223
 224		if (trylock) {
 225			/*
 226			 * to avoid deadlock in between page lock and
 227			 * inmem_lock.
 228			 */
 229			if (!trylock_page(page))
 230				continue;
 231		} else {
 232			lock_page(page);
 233		}
 234
 235		f2fs_wait_on_page_writeback(page, DATA, true, true);
 236
 237		if (recover) {
 238			struct dnode_of_data dn;
 239			struct node_info ni;
 240
 241			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
 242retry:
 243			set_new_dnode(&dn, inode, NULL, NULL, 0);
 244			err = f2fs_get_dnode_of_data(&dn, page->index,
 245								LOOKUP_NODE);
 246			if (err) {
 247				if (err == -ENOMEM) {
 248					congestion_wait(BLK_RW_ASYNC, HZ/50);
 249					cond_resched();
 250					goto retry;
 251				}
 252				err = -EAGAIN;
 253				goto next;
 254			}
 255
 256			err = f2fs_get_node_info(sbi, dn.nid, &ni);
 257			if (err) {
 258				f2fs_put_dnode(&dn);
 259				return err;
 260			}
 261
 262			if (cur->old_addr == NEW_ADDR) {
 263				f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
 264				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
 265			} else
 266				f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 267					cur->old_addr, ni.version, true, true);
 268			f2fs_put_dnode(&dn);
 269		}
 270next:
 271		/* we don't need to invalidate this in the sccessful status */
 272		if (drop || recover) {
 273			ClearPageUptodate(page);
 274			clear_cold_data(page);
 275		}
 276		f2fs_clear_page_private(page);
 277		f2fs_put_page(page, 1);
 278
 279		list_del(&cur->list);
 280		kmem_cache_free(inmem_entry_slab, cur);
 281		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 282	}
 283	return err;
 284}
 285
 286void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
 287{
 288	struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
 289	struct inode *inode;
 290	struct f2fs_inode_info *fi;
 291next:
 292	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 293	if (list_empty(head)) {
 294		spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 295		return;
 296	}
 297	fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
 298	inode = igrab(&fi->vfs_inode);
 299	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 300
 301	if (inode) {
 302		if (gc_failure) {
 303			if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
 304				goto drop;
 305			goto skip;
 306		}
 307drop:
 308		set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
 309		f2fs_drop_inmem_pages(inode);
 310		iput(inode);
 311	}
 312skip:
 313	congestion_wait(BLK_RW_ASYNC, HZ/50);
 314	cond_resched();
 315	goto next;
 316}
 317
 318void f2fs_drop_inmem_pages(struct inode *inode)
 319{
 320	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 321	struct f2fs_inode_info *fi = F2FS_I(inode);
 322
 323	while (!list_empty(&fi->inmem_pages)) {
 324		mutex_lock(&fi->inmem_lock);
 325		__revoke_inmem_pages(inode, &fi->inmem_pages,
 326						true, false, true);
 327		mutex_unlock(&fi->inmem_lock);
 328	}
 329
 330	clear_inode_flag(inode, FI_ATOMIC_FILE);
 331	fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
 332	stat_dec_atomic_write(inode);
 333
 334	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 335	if (!list_empty(&fi->inmem_ilist))
 336		list_del_init(&fi->inmem_ilist);
 337	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 338}
 339
 340void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
 341{
 342	struct f2fs_inode_info *fi = F2FS_I(inode);
 343	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 344	struct list_head *head = &fi->inmem_pages;
 345	struct inmem_pages *cur = NULL;
 346
 347	f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
 348
 349	mutex_lock(&fi->inmem_lock);
 350	list_for_each_entry(cur, head, list) {
 351		if (cur->page == page)
 352			break;
 353	}
 354
 355	f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
 356	list_del(&cur->list);
 357	mutex_unlock(&fi->inmem_lock);
 358
 359	dec_page_count(sbi, F2FS_INMEM_PAGES);
 360	kmem_cache_free(inmem_entry_slab, cur);
 361
 362	ClearPageUptodate(page);
 363	f2fs_clear_page_private(page);
 364	f2fs_put_page(page, 0);
 365
 366	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
 367}
 368
 369static int __f2fs_commit_inmem_pages(struct inode *inode)
 370{
 371	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 372	struct f2fs_inode_info *fi = F2FS_I(inode);
 373	struct inmem_pages *cur, *tmp;
 374	struct f2fs_io_info fio = {
 375		.sbi = sbi,
 376		.ino = inode->i_ino,
 377		.type = DATA,
 378		.op = REQ_OP_WRITE,
 379		.op_flags = REQ_SYNC | REQ_PRIO,
 380		.io_type = FS_DATA_IO,
 381	};
 382	struct list_head revoke_list;
 383	bool submit_bio = false;
 384	int err = 0;
 385
 386	INIT_LIST_HEAD(&revoke_list);
 387
 388	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
 389		struct page *page = cur->page;
 390
 391		lock_page(page);
 392		if (page->mapping == inode->i_mapping) {
 393			trace_f2fs_commit_inmem_page(page, INMEM);
 394
 395			f2fs_wait_on_page_writeback(page, DATA, true, true);
 396
 397			set_page_dirty(page);
 398			if (clear_page_dirty_for_io(page)) {
 399				inode_dec_dirty_pages(inode);
 400				f2fs_remove_dirty_inode(inode);
 401			}
 402retry:
 403			fio.page = page;
 404			fio.old_blkaddr = NULL_ADDR;
 405			fio.encrypted_page = NULL;
 406			fio.need_lock = LOCK_DONE;
 407			err = f2fs_do_write_data_page(&fio);
 408			if (err) {
 409				if (err == -ENOMEM) {
 410					congestion_wait(BLK_RW_ASYNC, HZ/50);
 411					cond_resched();
 412					goto retry;
 413				}
 414				unlock_page(page);
 415				break;
 416			}
 417			/* record old blkaddr for revoking */
 418			cur->old_addr = fio.old_blkaddr;
 419			submit_bio = true;
 420		}
 421		unlock_page(page);
 422		list_move_tail(&cur->list, &revoke_list);
 423	}
 424
 425	if (submit_bio)
 426		f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
 427
 428	if (err) {
 429		/*
 430		 * try to revoke all committed pages, but still we could fail
 431		 * due to no memory or other reason, if that happened, EAGAIN
 432		 * will be returned, which means in such case, transaction is
 433		 * already not integrity, caller should use journal to do the
 434		 * recovery or rewrite & commit last transaction. For other
 435		 * error number, revoking was done by filesystem itself.
 436		 */
 437		err = __revoke_inmem_pages(inode, &revoke_list,
 438						false, true, false);
 439
 440		/* drop all uncommitted pages */
 441		__revoke_inmem_pages(inode, &fi->inmem_pages,
 442						true, false, false);
 443	} else {
 444		__revoke_inmem_pages(inode, &revoke_list,
 445						false, false, false);
 446	}
 447
 448	return err;
 449}
 450
 451int f2fs_commit_inmem_pages(struct inode *inode)
 452{
 453	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 454	struct f2fs_inode_info *fi = F2FS_I(inode);
 455	int err;
 456
 457	f2fs_balance_fs(sbi, true);
 458
 459	down_write(&fi->i_gc_rwsem[WRITE]);
 460
 461	f2fs_lock_op(sbi);
 462	set_inode_flag(inode, FI_ATOMIC_COMMIT);
 463
 464	mutex_lock(&fi->inmem_lock);
 465	err = __f2fs_commit_inmem_pages(inode);
 466	mutex_unlock(&fi->inmem_lock);
 467
 468	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
 469
 470	f2fs_unlock_op(sbi);
 471	up_write(&fi->i_gc_rwsem[WRITE]);
 472
 473	return err;
 474}
 475
 476/*
 477 * This function balances dirty node and dentry pages.
 478 * In addition, it controls garbage collection.
 479 */
 480void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
 481{
 482	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
 483		f2fs_show_injection_info(FAULT_CHECKPOINT);
 484		f2fs_stop_checkpoint(sbi, false);
 485	}
 486
 487	/* balance_fs_bg is able to be pending */
 488	if (need && excess_cached_nats(sbi))
 489		f2fs_balance_fs_bg(sbi);
 490
 491	if (!f2fs_is_checkpoint_ready(sbi))
 492		return;
 493
 494	/*
 495	 * We should do GC or end up with checkpoint, if there are so many dirty
 496	 * dir/node pages without enough free segments.
 497	 */
 498	if (has_not_enough_free_secs(sbi, 0, 0)) {
 499		mutex_lock(&sbi->gc_mutex);
 500		f2fs_gc(sbi, false, false, NULL_SEGNO);
 501	}
 502}
 503
 504void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
 505{
 506	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 507		return;
 508
 509	/* try to shrink extent cache when there is no enough memory */
 510	if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
 511		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
 512
 513	/* check the # of cached NAT entries */
 514	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
 515		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
 516
 517	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
 518		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
 519	else
 520		f2fs_build_free_nids(sbi, false, false);
 521
 522	if (!is_idle(sbi, REQ_TIME) &&
 523		(!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
 524		return;
 525
 526	/* checkpoint is the only way to shrink partial cached entries */
 527	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
 528			!f2fs_available_free_memory(sbi, INO_ENTRIES) ||
 529			excess_prefree_segs(sbi) ||
 530			excess_dirty_nats(sbi) ||
 531			excess_dirty_nodes(sbi) ||
 532			f2fs_time_over(sbi, CP_TIME)) {
 533		if (test_opt(sbi, DATA_FLUSH)) {
 534			struct blk_plug plug;
 535
 536			mutex_lock(&sbi->flush_lock);
 537
 538			blk_start_plug(&plug);
 539			f2fs_sync_dirty_inodes(sbi, FILE_INODE);
 540			blk_finish_plug(&plug);
 541
 542			mutex_unlock(&sbi->flush_lock);
 543		}
 544		f2fs_sync_fs(sbi->sb, true);
 545		stat_inc_bg_cp_count(sbi->stat_info);
 546	}
 547}
 548
 549static int __submit_flush_wait(struct f2fs_sb_info *sbi,
 550				struct block_device *bdev)
 551{
 552	struct bio *bio;
 553	int ret;
 554
 555	bio = f2fs_bio_alloc(sbi, 0, false);
 556	if (!bio)
 557		return -ENOMEM;
 558
 559	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
 560	bio_set_dev(bio, bdev);
 561	ret = submit_bio_wait(bio);
 562	bio_put(bio);
 563
 564	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
 565				test_opt(sbi, FLUSH_MERGE), ret);
 566	return ret;
 567}
 568
 569static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
 570{
 571	int ret = 0;
 572	int i;
 573
 574	if (!f2fs_is_multi_device(sbi))
 575		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
 576
 577	for (i = 0; i < sbi->s_ndevs; i++) {
 578		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
 579			continue;
 580		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 581		if (ret)
 582			break;
 583	}
 584	return ret;
 585}
 586
 587static int issue_flush_thread(void *data)
 588{
 589	struct f2fs_sb_info *sbi = data;
 590	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 591	wait_queue_head_t *q = &fcc->flush_wait_queue;
 592repeat:
 593	if (kthread_should_stop())
 594		return 0;
 595
 596	sb_start_intwrite(sbi->sb);
 597
 598	if (!llist_empty(&fcc->issue_list)) {
 599		struct flush_cmd *cmd, *next;
 600		int ret;
 601
 602		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 603		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 604
 605		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
 606
 607		ret = submit_flush_wait(sbi, cmd->ino);
 608		atomic_inc(&fcc->issued_flush);
 609
 610		llist_for_each_entry_safe(cmd, next,
 611					  fcc->dispatch_list, llnode) {
 612			cmd->ret = ret;
 613			complete(&cmd->wait);
 614		}
 615		fcc->dispatch_list = NULL;
 616	}
 617
 618	sb_end_intwrite(sbi->sb);
 619
 620	wait_event_interruptible(*q,
 621		kthread_should_stop() || !llist_empty(&fcc->issue_list));
 622	goto repeat;
 623}
 624
 625int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
 626{
 627	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 628	struct flush_cmd cmd;
 629	int ret;
 630
 631	if (test_opt(sbi, NOBARRIER))
 632		return 0;
 633
 634	if (!test_opt(sbi, FLUSH_MERGE)) {
 635		atomic_inc(&fcc->queued_flush);
 636		ret = submit_flush_wait(sbi, ino);
 637		atomic_dec(&fcc->queued_flush);
 638		atomic_inc(&fcc->issued_flush);
 639		return ret;
 640	}
 641
 642	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
 643	    f2fs_is_multi_device(sbi)) {
 644		ret = submit_flush_wait(sbi, ino);
 645		atomic_dec(&fcc->queued_flush);
 646
 647		atomic_inc(&fcc->issued_flush);
 648		return ret;
 649	}
 650
 651	cmd.ino = ino;
 652	init_completion(&cmd.wait);
 653
 654	llist_add(&cmd.llnode, &fcc->issue_list);
 655
 656	/* update issue_list before we wake up issue_flush thread */
 657	smp_mb();
 658
 659	if (waitqueue_active(&fcc->flush_wait_queue))
 660		wake_up(&fcc->flush_wait_queue);
 661
 662	if (fcc->f2fs_issue_flush) {
 663		wait_for_completion(&cmd.wait);
 664		atomic_dec(&fcc->queued_flush);
 665	} else {
 666		struct llist_node *list;
 667
 668		list = llist_del_all(&fcc->issue_list);
 669		if (!list) {
 670			wait_for_completion(&cmd.wait);
 671			atomic_dec(&fcc->queued_flush);
 672		} else {
 673			struct flush_cmd *tmp, *next;
 674
 675			ret = submit_flush_wait(sbi, ino);
 676
 677			llist_for_each_entry_safe(tmp, next, list, llnode) {
 678				if (tmp == &cmd) {
 679					cmd.ret = ret;
 680					atomic_dec(&fcc->queued_flush);
 681					continue;
 682				}
 683				tmp->ret = ret;
 684				complete(&tmp->wait);
 685			}
 686		}
 687	}
 688
 689	return cmd.ret;
 690}
 691
 692int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
 693{
 694	dev_t dev = sbi->sb->s_bdev->bd_dev;
 695	struct flush_cmd_control *fcc;
 696	int err = 0;
 697
 698	if (SM_I(sbi)->fcc_info) {
 699		fcc = SM_I(sbi)->fcc_info;
 700		if (fcc->f2fs_issue_flush)
 701			return err;
 702		goto init_thread;
 703	}
 704
 705	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
 706	if (!fcc)
 707		return -ENOMEM;
 708	atomic_set(&fcc->issued_flush, 0);
 709	atomic_set(&fcc->queued_flush, 0);
 710	init_waitqueue_head(&fcc->flush_wait_queue);
 711	init_llist_head(&fcc->issue_list);
 712	SM_I(sbi)->fcc_info = fcc;
 713	if (!test_opt(sbi, FLUSH_MERGE))
 714		return err;
 715
 716init_thread:
 717	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 718				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 719	if (IS_ERR(fcc->f2fs_issue_flush)) {
 720		err = PTR_ERR(fcc->f2fs_issue_flush);
 721		kvfree(fcc);
 722		SM_I(sbi)->fcc_info = NULL;
 723		return err;
 724	}
 725
 726	return err;
 727}
 728
 729void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
 730{
 731	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 732
 733	if (fcc && fcc->f2fs_issue_flush) {
 734		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
 735
 736		fcc->f2fs_issue_flush = NULL;
 737		kthread_stop(flush_thread);
 738	}
 739	if (free) {
 740		kvfree(fcc);
 741		SM_I(sbi)->fcc_info = NULL;
 742	}
 743}
 744
 745int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
 746{
 747	int ret = 0, i;
 748
 749	if (!f2fs_is_multi_device(sbi))
 750		return 0;
 751
 752	for (i = 1; i < sbi->s_ndevs; i++) {
 753		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
 754			continue;
 755		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 756		if (ret)
 757			break;
 758
 759		spin_lock(&sbi->dev_lock);
 760		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
 761		spin_unlock(&sbi->dev_lock);
 762	}
 763
 764	return ret;
 765}
 766
 767static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 768		enum dirty_type dirty_type)
 769{
 770	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 771
 772	/* need not be added */
 773	if (IS_CURSEG(sbi, segno))
 774		return;
 775
 776	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 777		dirty_i->nr_dirty[dirty_type]++;
 778
 779	if (dirty_type == DIRTY) {
 780		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 781		enum dirty_type t = sentry->type;
 782
 783		if (unlikely(t >= DIRTY)) {
 784			f2fs_bug_on(sbi, 1);
 785			return;
 786		}
 787		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 788			dirty_i->nr_dirty[t]++;
 789	}
 790}
 791
 792static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 793		enum dirty_type dirty_type)
 794{
 795	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 796
 797	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 798		dirty_i->nr_dirty[dirty_type]--;
 799
 800	if (dirty_type == DIRTY) {
 801		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 802		enum dirty_type t = sentry->type;
 803
 804		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 805			dirty_i->nr_dirty[t]--;
 806
 807		if (get_valid_blocks(sbi, segno, true) == 0) {
 808			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
 809						dirty_i->victim_secmap);
 810#ifdef CONFIG_F2FS_CHECK_FS
 811			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
 812#endif
 813		}
 814	}
 815}
 816
 817/*
 818 * Should not occur error such as -ENOMEM.
 819 * Adding dirty entry into seglist is not critical operation.
 820 * If a given segment is one of current working segments, it won't be added.
 821 */
 822static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 823{
 824	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 825	unsigned short valid_blocks, ckpt_valid_blocks;
 826
 827	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 828		return;
 829
 830	mutex_lock(&dirty_i->seglist_lock);
 831
 832	valid_blocks = get_valid_blocks(sbi, segno, false);
 833	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
 834
 835	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
 836				ckpt_valid_blocks == sbi->blocks_per_seg)) {
 837		__locate_dirty_segment(sbi, segno, PRE);
 838		__remove_dirty_segment(sbi, segno, DIRTY);
 839	} else if (valid_blocks < sbi->blocks_per_seg) {
 840		__locate_dirty_segment(sbi, segno, DIRTY);
 841	} else {
 842		/* Recovery routine with SSR needs this */
 843		__remove_dirty_segment(sbi, segno, DIRTY);
 844	}
 845
 846	mutex_unlock(&dirty_i->seglist_lock);
 847}
 848
 849/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
 850void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
 851{
 852	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 853	unsigned int segno;
 854
 855	mutex_lock(&dirty_i->seglist_lock);
 856	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 857		if (get_valid_blocks(sbi, segno, false))
 858			continue;
 859		if (IS_CURSEG(sbi, segno))
 860			continue;
 861		__locate_dirty_segment(sbi, segno, PRE);
 862		__remove_dirty_segment(sbi, segno, DIRTY);
 863	}
 864	mutex_unlock(&dirty_i->seglist_lock);
 865}
 866
 867block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
 868{
 869	int ovp_hole_segs =
 870		(overprovision_segments(sbi) - reserved_segments(sbi));
 871	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
 872	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 873	block_t holes[2] = {0, 0};	/* DATA and NODE */
 874	block_t unusable;
 875	struct seg_entry *se;
 876	unsigned int segno;
 877
 878	mutex_lock(&dirty_i->seglist_lock);
 879	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 880		se = get_seg_entry(sbi, segno);
 881		if (IS_NODESEG(se->type))
 882			holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
 883		else
 884			holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
 885	}
 886	mutex_unlock(&dirty_i->seglist_lock);
 887
 888	unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
 889	if (unusable > ovp_holes)
 890		return unusable - ovp_holes;
 891	return 0;
 892}
 893
 894int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
 895{
 896	int ovp_hole_segs =
 897		(overprovision_segments(sbi) - reserved_segments(sbi));
 898	if (unusable > F2FS_OPTION(sbi).unusable_cap)
 899		return -EAGAIN;
 900	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
 901		dirty_segments(sbi) > ovp_hole_segs)
 902		return -EAGAIN;
 903	return 0;
 904}
 905
 906/* This is only used by SBI_CP_DISABLED */
 907static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
 908{
 909	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 910	unsigned int segno = 0;
 911
 912	mutex_lock(&dirty_i->seglist_lock);
 913	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 914		if (get_valid_blocks(sbi, segno, false))
 915			continue;
 916		if (get_ckpt_valid_blocks(sbi, segno))
 917			continue;
 918		mutex_unlock(&dirty_i->seglist_lock);
 919		return segno;
 920	}
 921	mutex_unlock(&dirty_i->seglist_lock);
 922	return NULL_SEGNO;
 923}
 924
 925static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
 926		struct block_device *bdev, block_t lstart,
 927		block_t start, block_t len)
 928{
 929	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 930	struct list_head *pend_list;
 931	struct discard_cmd *dc;
 932
 933	f2fs_bug_on(sbi, !len);
 934
 935	pend_list = &dcc->pend_list[plist_idx(len)];
 936
 937	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
 938	INIT_LIST_HEAD(&dc->list);
 939	dc->bdev = bdev;
 940	dc->lstart = lstart;
 941	dc->start = start;
 942	dc->len = len;
 943	dc->ref = 0;
 944	dc->state = D_PREP;
 945	dc->queued = 0;
 946	dc->error = 0;
 947	init_completion(&dc->wait);
 948	list_add_tail(&dc->list, pend_list);
 949	spin_lock_init(&dc->lock);
 950	dc->bio_ref = 0;
 951	atomic_inc(&dcc->discard_cmd_cnt);
 952	dcc->undiscard_blks += len;
 953
 954	return dc;
 955}
 956
 957static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
 958				struct block_device *bdev, block_t lstart,
 959				block_t start, block_t len,
 960				struct rb_node *parent, struct rb_node **p,
 961				bool leftmost)
 962{
 963	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 964	struct discard_cmd *dc;
 965
 966	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
 967
 968	rb_link_node(&dc->rb_node, parent, p);
 969	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
 970
 971	return dc;
 972}
 973
 974static void __detach_discard_cmd(struct discard_cmd_control *dcc,
 975							struct discard_cmd *dc)
 976{
 977	if (dc->state == D_DONE)
 978		atomic_sub(dc->queued, &dcc->queued_discard);
 979
 980	list_del(&dc->list);
 981	rb_erase_cached(&dc->rb_node, &dcc->root);
 982	dcc->undiscard_blks -= dc->len;
 983
 984	kmem_cache_free(discard_cmd_slab, dc);
 985
 986	atomic_dec(&dcc->discard_cmd_cnt);
 987}
 988
 989static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
 990							struct discard_cmd *dc)
 991{
 992	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 993	unsigned long flags;
 994
 995	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
 996
 997	spin_lock_irqsave(&dc->lock, flags);
 998	if (dc->bio_ref) {
 999		spin_unlock_irqrestore(&dc->lock, flags);
1000		return;
1001	}
1002	spin_unlock_irqrestore(&dc->lock, flags);
1003
1004	f2fs_bug_on(sbi, dc->ref);
1005
1006	if (dc->error == -EOPNOTSUPP)
1007		dc->error = 0;
1008
1009	if (dc->error)
1010		printk_ratelimited(
1011			"%sF2FS-fs: Issue discard(%u, %u, %u) failed, ret: %d",
1012			KERN_INFO, dc->lstart, dc->start, dc->len, dc->error);
1013	__detach_discard_cmd(dcc, dc);
1014}
1015
1016static void f2fs_submit_discard_endio(struct bio *bio)
1017{
1018	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1019	unsigned long flags;
1020
1021	dc->error = blk_status_to_errno(bio->bi_status);
1022
1023	spin_lock_irqsave(&dc->lock, flags);
1024	dc->bio_ref--;
1025	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1026		dc->state = D_DONE;
1027		complete_all(&dc->wait);
1028	}
1029	spin_unlock_irqrestore(&dc->lock, flags);
1030	bio_put(bio);
1031}
1032
1033static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1034				block_t start, block_t end)
1035{
1036#ifdef CONFIG_F2FS_CHECK_FS
1037	struct seg_entry *sentry;
1038	unsigned int segno;
1039	block_t blk = start;
1040	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1041	unsigned long *map;
1042
1043	while (blk < end) {
1044		segno = GET_SEGNO(sbi, blk);
1045		sentry = get_seg_entry(sbi, segno);
1046		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1047
1048		if (end < START_BLOCK(sbi, segno + 1))
1049			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1050		else
1051			size = max_blocks;
1052		map = (unsigned long *)(sentry->cur_valid_map);
1053		offset = __find_rev_next_bit(map, size, offset);
1054		f2fs_bug_on(sbi, offset != size);
1055		blk = START_BLOCK(sbi, segno + 1);
1056	}
1057#endif
1058}
1059
1060static void __init_discard_policy(struct f2fs_sb_info *sbi,
1061				struct discard_policy *dpolicy,
1062				int discard_type, unsigned int granularity)
1063{
1064	/* common policy */
1065	dpolicy->type = discard_type;
1066	dpolicy->sync = true;
1067	dpolicy->ordered = false;
1068	dpolicy->granularity = granularity;
1069
1070	dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1071	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1072	dpolicy->timeout = 0;
1073
1074	if (discard_type == DPOLICY_BG) {
1075		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1076		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1077		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1078		dpolicy->io_aware = true;
1079		dpolicy->sync = false;
1080		dpolicy->ordered = true;
1081		if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1082			dpolicy->granularity = 1;
1083			dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1084		}
1085	} else if (discard_type == DPOLICY_FORCE) {
1086		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1087		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1088		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1089		dpolicy->io_aware = false;
1090	} else if (discard_type == DPOLICY_FSTRIM) {
1091		dpolicy->io_aware = false;
1092	} else if (discard_type == DPOLICY_UMOUNT) {
1093		dpolicy->max_requests = UINT_MAX;
1094		dpolicy->io_aware = false;
1095		/* we need to issue all to keep CP_TRIMMED_FLAG */
1096		dpolicy->granularity = 1;
1097	}
1098}
1099
1100static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1101				struct block_device *bdev, block_t lstart,
1102				block_t start, block_t len);
1103/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1104static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1105						struct discard_policy *dpolicy,
1106						struct discard_cmd *dc,
1107						unsigned int *issued)
1108{
1109	struct block_device *bdev = dc->bdev;
1110	struct request_queue *q = bdev_get_queue(bdev);
1111	unsigned int max_discard_blocks =
1112			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1113	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1114	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1115					&(dcc->fstrim_list) : &(dcc->wait_list);
1116	int flag = dpolicy->sync ? REQ_SYNC : 0;
1117	block_t lstart, start, len, total_len;
1118	int err = 0;
1119
1120	if (dc->state != D_PREP)
1121		return 0;
1122
1123	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1124		return 0;
1125
1126	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1127
1128	lstart = dc->lstart;
1129	start = dc->start;
1130	len = dc->len;
1131	total_len = len;
1132
1133	dc->len = 0;
1134
1135	while (total_len && *issued < dpolicy->max_requests && !err) {
1136		struct bio *bio = NULL;
1137		unsigned long flags;
1138		bool last = true;
1139
1140		if (len > max_discard_blocks) {
1141			len = max_discard_blocks;
1142			last = false;
1143		}
1144
1145		(*issued)++;
1146		if (*issued == dpolicy->max_requests)
1147			last = true;
1148
1149		dc->len += len;
1150
1151		if (time_to_inject(sbi, FAULT_DISCARD)) {
1152			f2fs_show_injection_info(FAULT_DISCARD);
1153			err = -EIO;
1154			goto submit;
1155		}
1156		err = __blkdev_issue_discard(bdev,
1157					SECTOR_FROM_BLOCK(start),
1158					SECTOR_FROM_BLOCK(len),
1159					GFP_NOFS, 0, &bio);
1160submit:
1161		if (err) {
1162			spin_lock_irqsave(&dc->lock, flags);
1163			if (dc->state == D_PARTIAL)
1164				dc->state = D_SUBMIT;
1165			spin_unlock_irqrestore(&dc->lock, flags);
1166
1167			break;
1168		}
1169
1170		f2fs_bug_on(sbi, !bio);
1171
1172		/*
1173		 * should keep before submission to avoid D_DONE
1174		 * right away
1175		 */
1176		spin_lock_irqsave(&dc->lock, flags);
1177		if (last)
1178			dc->state = D_SUBMIT;
1179		else
1180			dc->state = D_PARTIAL;
1181		dc->bio_ref++;
1182		spin_unlock_irqrestore(&dc->lock, flags);
1183
1184		atomic_inc(&dcc->queued_discard);
1185		dc->queued++;
1186		list_move_tail(&dc->list, wait_list);
1187
1188		/* sanity check on discard range */
1189		__check_sit_bitmap(sbi, lstart, lstart + len);
1190
1191		bio->bi_private = dc;
1192		bio->bi_end_io = f2fs_submit_discard_endio;
1193		bio->bi_opf |= flag;
1194		submit_bio(bio);
1195
1196		atomic_inc(&dcc->issued_discard);
1197
1198		f2fs_update_iostat(sbi, FS_DISCARD, 1);
1199
1200		lstart += len;
1201		start += len;
1202		total_len -= len;
1203		len = total_len;
1204	}
1205
1206	if (!err && len)
1207		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1208	return err;
1209}
1210
1211static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1212				struct block_device *bdev, block_t lstart,
1213				block_t start, block_t len,
1214				struct rb_node **insert_p,
1215				struct rb_node *insert_parent)
1216{
1217	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1218	struct rb_node **p;
1219	struct rb_node *parent = NULL;
1220	struct discard_cmd *dc = NULL;
1221	bool leftmost = true;
1222
1223	if (insert_p && insert_parent) {
1224		parent = insert_parent;
1225		p = insert_p;
1226		goto do_insert;
1227	}
1228
1229	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1230							lstart, &leftmost);
1231do_insert:
1232	dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1233								p, leftmost);
1234	if (!dc)
1235		return NULL;
1236
1237	return dc;
1238}
1239
1240static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1241						struct discard_cmd *dc)
1242{
1243	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1244}
1245
1246static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1247				struct discard_cmd *dc, block_t blkaddr)
1248{
1249	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1250	struct discard_info di = dc->di;
1251	bool modified = false;
1252
1253	if (dc->state == D_DONE || dc->len == 1) {
1254		__remove_discard_cmd(sbi, dc);
1255		return;
1256	}
1257
1258	dcc->undiscard_blks -= di.len;
1259
1260	if (blkaddr > di.lstart) {
1261		dc->len = blkaddr - dc->lstart;
1262		dcc->undiscard_blks += dc->len;
1263		__relocate_discard_cmd(dcc, dc);
1264		modified = true;
1265	}
1266
1267	if (blkaddr < di.lstart + di.len - 1) {
1268		if (modified) {
1269			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1270					di.start + blkaddr + 1 - di.lstart,
1271					di.lstart + di.len - 1 - blkaddr,
1272					NULL, NULL);
1273		} else {
1274			dc->lstart++;
1275			dc->len--;
1276			dc->start++;
1277			dcc->undiscard_blks += dc->len;
1278			__relocate_discard_cmd(dcc, dc);
1279		}
1280	}
1281}
1282
1283static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1284				struct block_device *bdev, block_t lstart,
1285				block_t start, block_t len)
1286{
1287	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1288	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1289	struct discard_cmd *dc;
1290	struct discard_info di = {0};
1291	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1292	struct request_queue *q = bdev_get_queue(bdev);
1293	unsigned int max_discard_blocks =
1294			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1295	block_t end = lstart + len;
1296
1297	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1298					NULL, lstart,
1299					(struct rb_entry **)&prev_dc,
1300					(struct rb_entry **)&next_dc,
1301					&insert_p, &insert_parent, true, NULL);
1302	if (dc)
1303		prev_dc = dc;
1304
1305	if (!prev_dc) {
1306		di.lstart = lstart;
1307		di.len = next_dc ? next_dc->lstart - lstart : len;
1308		di.len = min(di.len, len);
1309		di.start = start;
1310	}
1311
1312	while (1) {
1313		struct rb_node *node;
1314		bool merged = false;
1315		struct discard_cmd *tdc = NULL;
1316
1317		if (prev_dc) {
1318			di.lstart = prev_dc->lstart + prev_dc->len;
1319			if (di.lstart < lstart)
1320				di.lstart = lstart;
1321			if (di.lstart >= end)
1322				break;
1323
1324			if (!next_dc || next_dc->lstart > end)
1325				di.len = end - di.lstart;
1326			else
1327				di.len = next_dc->lstart - di.lstart;
1328			di.start = start + di.lstart - lstart;
1329		}
1330
1331		if (!di.len)
1332			goto next;
1333
1334		if (prev_dc && prev_dc->state == D_PREP &&
1335			prev_dc->bdev == bdev &&
1336			__is_discard_back_mergeable(&di, &prev_dc->di,
1337							max_discard_blocks)) {
1338			prev_dc->di.len += di.len;
1339			dcc->undiscard_blks += di.len;
1340			__relocate_discard_cmd(dcc, prev_dc);
1341			di = prev_dc->di;
1342			tdc = prev_dc;
1343			merged = true;
1344		}
1345
1346		if (next_dc && next_dc->state == D_PREP &&
1347			next_dc->bdev == bdev &&
1348			__is_discard_front_mergeable(&di, &next_dc->di,
1349							max_discard_blocks)) {
1350			next_dc->di.lstart = di.lstart;
1351			next_dc->di.len += di.len;
1352			next_dc->di.start = di.start;
1353			dcc->undiscard_blks += di.len;
1354			__relocate_discard_cmd(dcc, next_dc);
1355			if (tdc)
1356				__remove_discard_cmd(sbi, tdc);
1357			merged = true;
1358		}
1359
1360		if (!merged) {
1361			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1362							di.len, NULL, NULL);
1363		}
1364 next:
1365		prev_dc = next_dc;
1366		if (!prev_dc)
1367			break;
1368
1369		node = rb_next(&prev_dc->rb_node);
1370		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1371	}
1372}
1373
1374static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1375		struct block_device *bdev, block_t blkstart, block_t blklen)
1376{
1377	block_t lblkstart = blkstart;
1378
1379	if (!f2fs_bdev_support_discard(bdev))
1380		return 0;
1381
1382	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1383
1384	if (f2fs_is_multi_device(sbi)) {
1385		int devi = f2fs_target_device_index(sbi, blkstart);
1386
1387		blkstart -= FDEV(devi).start_blk;
1388	}
1389	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1390	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1391	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1392	return 0;
1393}
1394
1395static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1396					struct discard_policy *dpolicy)
1397{
1398	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1399	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1400	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1401	struct discard_cmd *dc;
1402	struct blk_plug plug;
1403	unsigned int pos = dcc->next_pos;
1404	unsigned int issued = 0;
1405	bool io_interrupted = false;
1406
1407	mutex_lock(&dcc->cmd_lock);
1408	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1409					NULL, pos,
1410					(struct rb_entry **)&prev_dc,
1411					(struct rb_entry **)&next_dc,
1412					&insert_p, &insert_parent, true, NULL);
1413	if (!dc)
1414		dc = next_dc;
1415
1416	blk_start_plug(&plug);
1417
1418	while (dc) {
1419		struct rb_node *node;
1420		int err = 0;
1421
1422		if (dc->state != D_PREP)
1423			goto next;
1424
1425		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1426			io_interrupted = true;
1427			break;
1428		}
1429
1430		dcc->next_pos = dc->lstart + dc->len;
1431		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1432
1433		if (issued >= dpolicy->max_requests)
1434			break;
1435next:
1436		node = rb_next(&dc->rb_node);
1437		if (err)
1438			__remove_discard_cmd(sbi, dc);
1439		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1440	}
1441
1442	blk_finish_plug(&plug);
1443
1444	if (!dc)
1445		dcc->next_pos = 0;
1446
1447	mutex_unlock(&dcc->cmd_lock);
1448
1449	if (!issued && io_interrupted)
1450		issued = -1;
1451
1452	return issued;
1453}
1454
1455static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1456					struct discard_policy *dpolicy)
1457{
1458	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1459	struct list_head *pend_list;
1460	struct discard_cmd *dc, *tmp;
1461	struct blk_plug plug;
1462	int i, issued = 0;
1463	bool io_interrupted = false;
1464
1465	if (dpolicy->timeout != 0)
1466		f2fs_update_time(sbi, dpolicy->timeout);
1467
1468	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1469		if (dpolicy->timeout != 0 &&
1470				f2fs_time_over(sbi, dpolicy->timeout))
1471			break;
1472
1473		if (i + 1 < dpolicy->granularity)
1474			break;
1475
1476		if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1477			return __issue_discard_cmd_orderly(sbi, dpolicy);
1478
1479		pend_list = &dcc->pend_list[i];
1480
1481		mutex_lock(&dcc->cmd_lock);
1482		if (list_empty(pend_list))
1483			goto next;
1484		if (unlikely(dcc->rbtree_check))
1485			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1486								&dcc->root));
1487		blk_start_plug(&plug);
1488		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1489			f2fs_bug_on(sbi, dc->state != D_PREP);
1490
1491			if (dpolicy->timeout != 0 &&
1492				f2fs_time_over(sbi, dpolicy->timeout))
1493				break;
1494
1495			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1496						!is_idle(sbi, DISCARD_TIME)) {
1497				io_interrupted = true;
1498				break;
1499			}
1500
1501			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1502
1503			if (issued >= dpolicy->max_requests)
1504				break;
1505		}
1506		blk_finish_plug(&plug);
1507next:
1508		mutex_unlock(&dcc->cmd_lock);
1509
1510		if (issued >= dpolicy->max_requests || io_interrupted)
1511			break;
1512	}
1513
1514	if (!issued && io_interrupted)
1515		issued = -1;
1516
1517	return issued;
1518}
1519
1520static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1521{
1522	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1523	struct list_head *pend_list;
1524	struct discard_cmd *dc, *tmp;
1525	int i;
1526	bool dropped = false;
1527
1528	mutex_lock(&dcc->cmd_lock);
1529	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1530		pend_list = &dcc->pend_list[i];
1531		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1532			f2fs_bug_on(sbi, dc->state != D_PREP);
1533			__remove_discard_cmd(sbi, dc);
1534			dropped = true;
1535		}
1536	}
1537	mutex_unlock(&dcc->cmd_lock);
1538
1539	return dropped;
1540}
1541
1542void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1543{
1544	__drop_discard_cmd(sbi);
1545}
1546
1547static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1548							struct discard_cmd *dc)
1549{
1550	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1551	unsigned int len = 0;
1552
1553	wait_for_completion_io(&dc->wait);
1554	mutex_lock(&dcc->cmd_lock);
1555	f2fs_bug_on(sbi, dc->state != D_DONE);
1556	dc->ref--;
1557	if (!dc->ref) {
1558		if (!dc->error)
1559			len = dc->len;
1560		__remove_discard_cmd(sbi, dc);
1561	}
1562	mutex_unlock(&dcc->cmd_lock);
1563
1564	return len;
1565}
1566
1567static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1568						struct discard_policy *dpolicy,
1569						block_t start, block_t end)
1570{
1571	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1572	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1573					&(dcc->fstrim_list) : &(dcc->wait_list);
1574	struct discard_cmd *dc, *tmp;
1575	bool need_wait;
1576	unsigned int trimmed = 0;
1577
1578next:
1579	need_wait = false;
1580
1581	mutex_lock(&dcc->cmd_lock);
1582	list_for_each_entry_safe(dc, tmp, wait_list, list) {
1583		if (dc->lstart + dc->len <= start || end <= dc->lstart)
1584			continue;
1585		if (dc->len < dpolicy->granularity)
1586			continue;
1587		if (dc->state == D_DONE && !dc->ref) {
1588			wait_for_completion_io(&dc->wait);
1589			if (!dc->error)
1590				trimmed += dc->len;
1591			__remove_discard_cmd(sbi, dc);
1592		} else {
1593			dc->ref++;
1594			need_wait = true;
1595			break;
1596		}
1597	}
1598	mutex_unlock(&dcc->cmd_lock);
1599
1600	if (need_wait) {
1601		trimmed += __wait_one_discard_bio(sbi, dc);
1602		goto next;
1603	}
1604
1605	return trimmed;
1606}
1607
1608static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1609						struct discard_policy *dpolicy)
1610{
1611	struct discard_policy dp;
1612	unsigned int discard_blks;
1613
1614	if (dpolicy)
1615		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1616
1617	/* wait all */
1618	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1619	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1620	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1621	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1622
1623	return discard_blks;
1624}
1625
1626/* This should be covered by global mutex, &sit_i->sentry_lock */
1627static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1628{
1629	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1630	struct discard_cmd *dc;
1631	bool need_wait = false;
1632
1633	mutex_lock(&dcc->cmd_lock);
1634	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1635							NULL, blkaddr);
1636	if (dc) {
1637		if (dc->state == D_PREP) {
1638			__punch_discard_cmd(sbi, dc, blkaddr);
1639		} else {
1640			dc->ref++;
1641			need_wait = true;
1642		}
1643	}
1644	mutex_unlock(&dcc->cmd_lock);
1645
1646	if (need_wait)
1647		__wait_one_discard_bio(sbi, dc);
1648}
1649
1650void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1651{
1652	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1653
1654	if (dcc && dcc->f2fs_issue_discard) {
1655		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1656
1657		dcc->f2fs_issue_discard = NULL;
1658		kthread_stop(discard_thread);
1659	}
1660}
1661
1662/* This comes from f2fs_put_super */
1663bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1664{
1665	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1666	struct discard_policy dpolicy;
1667	bool dropped;
1668
1669	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1670					dcc->discard_granularity);
1671	dpolicy.timeout = UMOUNT_DISCARD_TIMEOUT;
1672	__issue_discard_cmd(sbi, &dpolicy);
1673	dropped = __drop_discard_cmd(sbi);
1674
1675	/* just to make sure there is no pending discard commands */
1676	__wait_all_discard_cmd(sbi, NULL);
1677
1678	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1679	return dropped;
1680}
1681
1682static int issue_discard_thread(void *data)
1683{
1684	struct f2fs_sb_info *sbi = data;
1685	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1686	wait_queue_head_t *q = &dcc->discard_wait_queue;
1687	struct discard_policy dpolicy;
1688	unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1689	int issued;
1690
1691	set_freezable();
1692
1693	do {
1694		__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1695					dcc->discard_granularity);
1696
1697		wait_event_interruptible_timeout(*q,
1698				kthread_should_stop() || freezing(current) ||
1699				dcc->discard_wake,
1700				msecs_to_jiffies(wait_ms));
1701
1702		if (dcc->discard_wake)
1703			dcc->discard_wake = 0;
1704
1705		/* clean up pending candidates before going to sleep */
1706		if (atomic_read(&dcc->queued_discard))
1707			__wait_all_discard_cmd(sbi, NULL);
1708
1709		if (try_to_freeze())
1710			continue;
1711		if (f2fs_readonly(sbi->sb))
1712			continue;
1713		if (kthread_should_stop())
1714			return 0;
1715		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1716			wait_ms = dpolicy.max_interval;
1717			continue;
1718		}
1719
1720		if (sbi->gc_mode == GC_URGENT)
1721			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1722
1723		sb_start_intwrite(sbi->sb);
1724
1725		issued = __issue_discard_cmd(sbi, &dpolicy);
1726		if (issued > 0) {
1727			__wait_all_discard_cmd(sbi, &dpolicy);
1728			wait_ms = dpolicy.min_interval;
1729		} else if (issued == -1){
1730			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1731			if (!wait_ms)
1732				wait_ms = dpolicy.mid_interval;
1733		} else {
1734			wait_ms = dpolicy.max_interval;
1735		}
1736
1737		sb_end_intwrite(sbi->sb);
1738
1739	} while (!kthread_should_stop());
1740	return 0;
1741}
1742
1743#ifdef CONFIG_BLK_DEV_ZONED
1744static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1745		struct block_device *bdev, block_t blkstart, block_t blklen)
1746{
1747	sector_t sector, nr_sects;
1748	block_t lblkstart = blkstart;
1749	int devi = 0;
1750
1751	if (f2fs_is_multi_device(sbi)) {
1752		devi = f2fs_target_device_index(sbi, blkstart);
1753		if (blkstart < FDEV(devi).start_blk ||
1754		    blkstart > FDEV(devi).end_blk) {
1755			f2fs_err(sbi, "Invalid block %x", blkstart);
1756			return -EIO;
1757		}
1758		blkstart -= FDEV(devi).start_blk;
1759	}
1760
1761	/* For sequential zones, reset the zone write pointer */
1762	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1763		sector = SECTOR_FROM_BLOCK(blkstart);
1764		nr_sects = SECTOR_FROM_BLOCK(blklen);
1765
1766		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1767				nr_sects != bdev_zone_sectors(bdev)) {
1768			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1769				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1770				 blkstart, blklen);
1771			return -EIO;
1772		}
1773		trace_f2fs_issue_reset_zone(bdev, blkstart);
1774		return blkdev_reset_zones(bdev, sector, nr_sects, GFP_NOFS);
1775	}
1776
1777	/* For conventional zones, use regular discard if supported */
1778	return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1779}
1780#endif
1781
1782static int __issue_discard_async(struct f2fs_sb_info *sbi,
1783		struct block_device *bdev, block_t blkstart, block_t blklen)
1784{
1785#ifdef CONFIG_BLK_DEV_ZONED
1786	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1787		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1788#endif
1789	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1790}
1791
1792static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1793				block_t blkstart, block_t blklen)
1794{
1795	sector_t start = blkstart, len = 0;
1796	struct block_device *bdev;
1797	struct seg_entry *se;
1798	unsigned int offset;
1799	block_t i;
1800	int err = 0;
1801
1802	bdev = f2fs_target_device(sbi, blkstart, NULL);
1803
1804	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1805		if (i != start) {
1806			struct block_device *bdev2 =
1807				f2fs_target_device(sbi, i, NULL);
1808
1809			if (bdev2 != bdev) {
1810				err = __issue_discard_async(sbi, bdev,
1811						start, len);
1812				if (err)
1813					return err;
1814				bdev = bdev2;
1815				start = i;
1816				len = 0;
1817			}
1818		}
1819
1820		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1821		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1822
1823		if (!f2fs_test_and_set_bit(offset, se->discard_map))
1824			sbi->discard_blks--;
1825	}
1826
1827	if (len)
1828		err = __issue_discard_async(sbi, bdev, start, len);
1829	return err;
1830}
1831
1832static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1833							bool check_only)
1834{
1835	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1836	int max_blocks = sbi->blocks_per_seg;
1837	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1838	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1839	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1840	unsigned long *discard_map = (unsigned long *)se->discard_map;
1841	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1842	unsigned int start = 0, end = -1;
1843	bool force = (cpc->reason & CP_DISCARD);
1844	struct discard_entry *de = NULL;
1845	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1846	int i;
1847
1848	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1849		return false;
1850
1851	if (!force) {
1852		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1853			SM_I(sbi)->dcc_info->nr_discards >=
1854				SM_I(sbi)->dcc_info->max_discards)
1855			return false;
1856	}
1857
1858	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1859	for (i = 0; i < entries; i++)
1860		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1861				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1862
1863	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1864				SM_I(sbi)->dcc_info->max_discards) {
1865		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1866		if (start >= max_blocks)
1867			break;
1868
1869		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1870		if (force && start && end != max_blocks
1871					&& (end - start) < cpc->trim_minlen)
1872			continue;
1873
1874		if (check_only)
1875			return true;
1876
1877		if (!de) {
1878			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1879								GFP_F2FS_ZERO);
1880			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1881			list_add_tail(&de->list, head);
1882		}
1883
1884		for (i = start; i < end; i++)
1885			__set_bit_le(i, (void *)de->discard_map);
1886
1887		SM_I(sbi)->dcc_info->nr_discards += end - start;
1888	}
1889	return false;
1890}
1891
1892static void release_discard_addr(struct discard_entry *entry)
1893{
1894	list_del(&entry->list);
1895	kmem_cache_free(discard_entry_slab, entry);
1896}
1897
1898void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1899{
1900	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1901	struct discard_entry *entry, *this;
1902
1903	/* drop caches */
1904	list_for_each_entry_safe(entry, this, head, list)
1905		release_discard_addr(entry);
1906}
1907
1908/*
1909 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1910 */
1911static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1912{
1913	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1914	unsigned int segno;
1915
1916	mutex_lock(&dirty_i->seglist_lock);
1917	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1918		__set_test_and_free(sbi, segno);
1919	mutex_unlock(&dirty_i->seglist_lock);
1920}
1921
1922void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1923						struct cp_control *cpc)
1924{
1925	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1926	struct list_head *head = &dcc->entry_list;
1927	struct discard_entry *entry, *this;
1928	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1929	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1930	unsigned int start = 0, end = -1;
1931	unsigned int secno, start_segno;
1932	bool force = (cpc->reason & CP_DISCARD);
1933	bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
1934
1935	mutex_lock(&dirty_i->seglist_lock);
1936
1937	while (1) {
1938		int i;
1939
1940		if (need_align && end != -1)
1941			end--;
1942		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1943		if (start >= MAIN_SEGS(sbi))
1944			break;
1945		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1946								start + 1);
1947
1948		if (need_align) {
1949			start = rounddown(start, sbi->segs_per_sec);
1950			end = roundup(end, sbi->segs_per_sec);
1951		}
1952
1953		for (i = start; i < end; i++) {
1954			if (test_and_clear_bit(i, prefree_map))
1955				dirty_i->nr_dirty[PRE]--;
1956		}
1957
1958		if (!f2fs_realtime_discard_enable(sbi))
1959			continue;
1960
1961		if (force && start >= cpc->trim_start &&
1962					(end - 1) <= cpc->trim_end)
1963				continue;
1964
1965		if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) {
1966			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1967				(end - start) << sbi->log_blocks_per_seg);
1968			continue;
1969		}
1970next:
1971		secno = GET_SEC_FROM_SEG(sbi, start);
1972		start_segno = GET_SEG_FROM_SEC(sbi, secno);
1973		if (!IS_CURSEC(sbi, secno) &&
1974			!get_valid_blocks(sbi, start, true))
1975			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1976				sbi->segs_per_sec << sbi->log_blocks_per_seg);
1977
1978		start = start_segno + sbi->segs_per_sec;
1979		if (start < end)
1980			goto next;
1981		else
1982			end = start - 1;
1983	}
1984	mutex_unlock(&dirty_i->seglist_lock);
1985
1986	/* send small discards */
1987	list_for_each_entry_safe(entry, this, head, list) {
1988		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1989		bool is_valid = test_bit_le(0, entry->discard_map);
1990
1991find_next:
1992		if (is_valid) {
1993			next_pos = find_next_zero_bit_le(entry->discard_map,
1994					sbi->blocks_per_seg, cur_pos);
1995			len = next_pos - cur_pos;
1996
1997			if (f2fs_sb_has_blkzoned(sbi) ||
1998			    (force && len < cpc->trim_minlen))
1999				goto skip;
2000
2001			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2002									len);
2003			total_len += len;
2004		} else {
2005			next_pos = find_next_bit_le(entry->discard_map,
2006					sbi->blocks_per_seg, cur_pos);
2007		}
2008skip:
2009		cur_pos = next_pos;
2010		is_valid = !is_valid;
2011
2012		if (cur_pos < sbi->blocks_per_seg)
2013			goto find_next;
2014
2015		release_discard_addr(entry);
2016		dcc->nr_discards -= total_len;
2017	}
2018
2019	wake_up_discard_thread(sbi, false);
2020}
2021
2022static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2023{
2024	dev_t dev = sbi->sb->s_bdev->bd_dev;
2025	struct discard_cmd_control *dcc;
2026	int err = 0, i;
2027
2028	if (SM_I(sbi)->dcc_info) {
2029		dcc = SM_I(sbi)->dcc_info;
2030		goto init_thread;
2031	}
2032
2033	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2034	if (!dcc)
2035		return -ENOMEM;
2036
2037	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2038	INIT_LIST_HEAD(&dcc->entry_list);
2039	for (i = 0; i < MAX_PLIST_NUM; i++)
2040		INIT_LIST_HEAD(&dcc->pend_list[i]);
2041	INIT_LIST_HEAD(&dcc->wait_list);
2042	INIT_LIST_HEAD(&dcc->fstrim_list);
2043	mutex_init(&dcc->cmd_lock);
2044	atomic_set(&dcc->issued_discard, 0);
2045	atomic_set(&dcc->queued_discard, 0);
2046	atomic_set(&dcc->discard_cmd_cnt, 0);
2047	dcc->nr_discards = 0;
2048	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2049	dcc->undiscard_blks = 0;
2050	dcc->next_pos = 0;
2051	dcc->root = RB_ROOT_CACHED;
2052	dcc->rbtree_check = false;
2053
2054	init_waitqueue_head(&dcc->discard_wait_queue);
2055	SM_I(sbi)->dcc_info = dcc;
2056init_thread:
2057	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2058				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2059	if (IS_ERR(dcc->f2fs_issue_discard)) {
2060		err = PTR_ERR(dcc->f2fs_issue_discard);
2061		kvfree(dcc);
2062		SM_I(sbi)->dcc_info = NULL;
2063		return err;
2064	}
2065
2066	return err;
2067}
2068
2069static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2070{
2071	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2072
2073	if (!dcc)
2074		return;
2075
2076	f2fs_stop_discard_thread(sbi);
2077
2078	/*
2079	 * Recovery can cache discard commands, so in error path of
2080	 * fill_super(), it needs to give a chance to handle them.
2081	 */
2082	if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2083		f2fs_issue_discard_timeout(sbi);
2084
2085	kvfree(dcc);
2086	SM_I(sbi)->dcc_info = NULL;
2087}
2088
2089static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2090{
2091	struct sit_info *sit_i = SIT_I(sbi);
2092
2093	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2094		sit_i->dirty_sentries++;
2095		return false;
2096	}
2097
2098	return true;
2099}
2100
2101static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2102					unsigned int segno, int modified)
2103{
2104	struct seg_entry *se = get_seg_entry(sbi, segno);
2105	se->type = type;
2106	if (modified)
2107		__mark_sit_entry_dirty(sbi, segno);
2108}
2109
2110static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2111{
2112	struct seg_entry *se;
2113	unsigned int segno, offset;
2114	long int new_vblocks;
2115	bool exist;
2116#ifdef CONFIG_F2FS_CHECK_FS
2117	bool mir_exist;
2118#endif
2119
2120	segno = GET_SEGNO(sbi, blkaddr);
2121
2122	se = get_seg_entry(sbi, segno);
2123	new_vblocks = se->valid_blocks + del;
2124	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2125
2126	f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2127				(new_vblocks > sbi->blocks_per_seg)));
2128
2129	se->valid_blocks = new_vblocks;
2130	se->mtime = get_mtime(sbi, false);
2131	if (se->mtime > SIT_I(sbi)->max_mtime)
2132		SIT_I(sbi)->max_mtime = se->mtime;
2133
2134	/* Update valid block bitmap */
2135	if (del > 0) {
2136		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2137#ifdef CONFIG_F2FS_CHECK_FS
2138		mir_exist = f2fs_test_and_set_bit(offset,
2139						se->cur_valid_map_mir);
2140		if (unlikely(exist != mir_exist)) {
2141			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2142				 blkaddr, exist);
2143			f2fs_bug_on(sbi, 1);
2144		}
2145#endif
2146		if (unlikely(exist)) {
2147			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2148				 blkaddr);
2149			f2fs_bug_on(sbi, 1);
2150			se->valid_blocks--;
2151			del = 0;
2152		}
2153
2154		if (!f2fs_test_and_set_bit(offset, se->discard_map))
2155			sbi->discard_blks--;
2156
2157		/*
2158		 * SSR should never reuse block which is checkpointed
2159		 * or newly invalidated.
2160		 */
2161		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2162			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2163				se->ckpt_valid_blocks++;
2164		}
2165	} else {
2166		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2167#ifdef CONFIG_F2FS_CHECK_FS
2168		mir_exist = f2fs_test_and_clear_bit(offset,
2169						se->cur_valid_map_mir);
2170		if (unlikely(exist != mir_exist)) {
2171			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2172				 blkaddr, exist);
2173			f2fs_bug_on(sbi, 1);
2174		}
2175#endif
2176		if (unlikely(!exist)) {
2177			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2178				 blkaddr);
2179			f2fs_bug_on(sbi, 1);
2180			se->valid_blocks++;
2181			del = 0;
2182		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2183			/*
2184			 * If checkpoints are off, we must not reuse data that
2185			 * was used in the previous checkpoint. If it was used
2186			 * before, we must track that to know how much space we
2187			 * really have.
2188			 */
2189			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2190				spin_lock(&sbi->stat_lock);
2191				sbi->unusable_block_count++;
2192				spin_unlock(&sbi->stat_lock);
2193			}
2194		}
2195
2196		if (f2fs_test_and_clear_bit(offset, se->discard_map))
2197			sbi->discard_blks++;
2198	}
2199	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2200		se->ckpt_valid_blocks += del;
2201
2202	__mark_sit_entry_dirty(sbi, segno);
2203
2204	/* update total number of valid blocks to be written in ckpt area */
2205	SIT_I(sbi)->written_valid_blocks += del;
2206
2207	if (__is_large_section(sbi))
2208		get_sec_entry(sbi, segno)->valid_blocks += del;
2209}
2210
2211void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2212{
2213	unsigned int segno = GET_SEGNO(sbi, addr);
2214	struct sit_info *sit_i = SIT_I(sbi);
2215
2216	f2fs_bug_on(sbi, addr == NULL_ADDR);
2217	if (addr == NEW_ADDR)
2218		return;
2219
2220	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2221
2222	/* add it into sit main buffer */
2223	down_write(&sit_i->sentry_lock);
2224
2225	update_sit_entry(sbi, addr, -1);
2226
2227	/* add it into dirty seglist */
2228	locate_dirty_segment(sbi, segno);
2229
2230	up_write(&sit_i->sentry_lock);
2231}
2232
2233bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2234{
2235	struct sit_info *sit_i = SIT_I(sbi);
2236	unsigned int segno, offset;
2237	struct seg_entry *se;
2238	bool is_cp = false;
2239
2240	if (!__is_valid_data_blkaddr(blkaddr))
2241		return true;
2242
2243	down_read(&sit_i->sentry_lock);
2244
2245	segno = GET_SEGNO(sbi, blkaddr);
2246	se = get_seg_entry(sbi, segno);
2247	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2248
2249	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2250		is_cp = true;
2251
2252	up_read(&sit_i->sentry_lock);
2253
2254	return is_cp;
2255}
2256
2257/*
2258 * This function should be resided under the curseg_mutex lock
2259 */
2260static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2261					struct f2fs_summary *sum)
2262{
2263	struct curseg_info *curseg = CURSEG_I(sbi, type);
2264	void *addr = curseg->sum_blk;
2265	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2266	memcpy(addr, sum, sizeof(struct f2fs_summary));
2267}
2268
2269/*
2270 * Calculate the number of current summary pages for writing
2271 */
2272int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2273{
2274	int valid_sum_count = 0;
2275	int i, sum_in_page;
2276
2277	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2278		if (sbi->ckpt->alloc_type[i] == SSR)
2279			valid_sum_count += sbi->blocks_per_seg;
2280		else {
2281			if (for_ra)
2282				valid_sum_count += le16_to_cpu(
2283					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2284			else
2285				valid_sum_count += curseg_blkoff(sbi, i);
2286		}
2287	}
2288
2289	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2290			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2291	if (valid_sum_count <= sum_in_page)
2292		return 1;
2293	else if ((valid_sum_count - sum_in_page) <=
2294		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2295		return 2;
2296	return 3;
2297}
2298
2299/*
2300 * Caller should put this summary page
2301 */
2302struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2303{
2304	return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2305}
2306
2307void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2308					void *src, block_t blk_addr)
2309{
2310	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2311
2312	memcpy(page_address(page), src, PAGE_SIZE);
2313	set_page_dirty(page);
2314	f2fs_put_page(page, 1);
2315}
2316
2317static void write_sum_page(struct f2fs_sb_info *sbi,
2318			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2319{
2320	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2321}
2322
2323static void write_current_sum_page(struct f2fs_sb_info *sbi,
2324						int type, block_t blk_addr)
2325{
2326	struct curseg_info *curseg = CURSEG_I(sbi, type);
2327	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2328	struct f2fs_summary_block *src = curseg->sum_blk;
2329	struct f2fs_summary_block *dst;
2330
2331	dst = (struct f2fs_summary_block *)page_address(page);
2332	memset(dst, 0, PAGE_SIZE);
2333
2334	mutex_lock(&curseg->curseg_mutex);
2335
2336	down_read(&curseg->journal_rwsem);
2337	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2338	up_read(&curseg->journal_rwsem);
2339
2340	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2341	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2342
2343	mutex_unlock(&curseg->curseg_mutex);
2344
2345	set_page_dirty(page);
2346	f2fs_put_page(page, 1);
2347}
2348
2349static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2350{
2351	struct curseg_info *curseg = CURSEG_I(sbi, type);
2352	unsigned int segno = curseg->segno + 1;
2353	struct free_segmap_info *free_i = FREE_I(sbi);
2354
2355	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2356		return !test_bit(segno, free_i->free_segmap);
2357	return 0;
2358}
2359
2360/*
2361 * Find a new segment from the free segments bitmap to right order
2362 * This function should be returned with success, otherwise BUG
2363 */
2364static void get_new_segment(struct f2fs_sb_info *sbi,
2365			unsigned int *newseg, bool new_sec, int dir)
2366{
2367	struct free_segmap_info *free_i = FREE_I(sbi);
2368	unsigned int segno, secno, zoneno;
2369	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2370	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2371	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2372	unsigned int left_start = hint;
2373	bool init = true;
2374	int go_left = 0;
2375	int i;
2376
2377	spin_lock(&free_i->segmap_lock);
2378
2379	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2380		segno = find_next_zero_bit(free_i->free_segmap,
2381			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2382		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2383			goto got_it;
2384	}
2385find_other_zone:
2386	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2387	if (secno >= MAIN_SECS(sbi)) {
2388		if (dir == ALLOC_RIGHT) {
2389			secno = find_next_zero_bit(free_i->free_secmap,
2390							MAIN_SECS(sbi), 0);
2391			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2392		} else {
2393			go_left = 1;
2394			left_start = hint - 1;
2395		}
2396	}
2397	if (go_left == 0)
2398		goto skip_left;
2399
2400	while (test_bit(left_start, free_i->free_secmap)) {
2401		if (left_start > 0) {
2402			left_start--;
2403			continue;
2404		}
2405		left_start = find_next_zero_bit(free_i->free_secmap,
2406							MAIN_SECS(sbi), 0);
2407		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2408		break;
2409	}
2410	secno = left_start;
2411skip_left:
2412	segno = GET_SEG_FROM_SEC(sbi, secno);
2413	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2414
2415	/* give up on finding another zone */
2416	if (!init)
2417		goto got_it;
2418	if (sbi->secs_per_zone == 1)
2419		goto got_it;
2420	if (zoneno == old_zoneno)
2421		goto got_it;
2422	if (dir == ALLOC_LEFT) {
2423		if (!go_left && zoneno + 1 >= total_zones)
2424			goto got_it;
2425		if (go_left && zoneno == 0)
2426			goto got_it;
2427	}
2428	for (i = 0; i < NR_CURSEG_TYPE; i++)
2429		if (CURSEG_I(sbi, i)->zone == zoneno)
2430			break;
2431
2432	if (i < NR_CURSEG_TYPE) {
2433		/* zone is in user, try another */
2434		if (go_left)
2435			hint = zoneno * sbi->secs_per_zone - 1;
2436		else if (zoneno + 1 >= total_zones)
2437			hint = 0;
2438		else
2439			hint = (zoneno + 1) * sbi->secs_per_zone;
2440		init = false;
2441		goto find_other_zone;
2442	}
2443got_it:
2444	/* set it as dirty segment in free segmap */
2445	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2446	__set_inuse(sbi, segno);
2447	*newseg = segno;
2448	spin_unlock(&free_i->segmap_lock);
2449}
2450
2451static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2452{
2453	struct curseg_info *curseg = CURSEG_I(sbi, type);
2454	struct summary_footer *sum_footer;
2455
2456	curseg->segno = curseg->next_segno;
2457	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2458	curseg->next_blkoff = 0;
2459	curseg->next_segno = NULL_SEGNO;
2460
2461	sum_footer = &(curseg->sum_blk->footer);
2462	memset(sum_footer, 0, sizeof(struct summary_footer));
2463	if (IS_DATASEG(type))
2464		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2465	if (IS_NODESEG(type))
2466		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2467	__set_sit_entry_type(sbi, type, curseg->segno, modified);
2468}
2469
2470static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2471{
2472	/* if segs_per_sec is large than 1, we need to keep original policy. */
2473	if (__is_large_section(sbi))
2474		return CURSEG_I(sbi, type)->segno;
2475
2476	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2477		return 0;
2478
2479	if (test_opt(sbi, NOHEAP) &&
2480		(type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2481		return 0;
2482
2483	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2484		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2485
2486	/* find segments from 0 to reuse freed segments */
2487	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2488		return 0;
2489
2490	return CURSEG_I(sbi, type)->segno;
2491}
2492
2493/*
2494 * Allocate a current working segment.
2495 * This function always allocates a free segment in LFS manner.
2496 */
2497static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2498{
2499	struct curseg_info *curseg = CURSEG_I(sbi, type);
2500	unsigned int segno = curseg->segno;
2501	int dir = ALLOC_LEFT;
2502
2503	write_sum_page(sbi, curseg->sum_blk,
2504				GET_SUM_BLOCK(sbi, segno));
2505	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2506		dir = ALLOC_RIGHT;
2507
2508	if (test_opt(sbi, NOHEAP))
2509		dir = ALLOC_RIGHT;
2510
2511	segno = __get_next_segno(sbi, type);
2512	get_new_segment(sbi, &segno, new_sec, dir);
2513	curseg->next_segno = segno;
2514	reset_curseg(sbi, type, 1);
2515	curseg->alloc_type = LFS;
2516}
2517
2518static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2519			struct curseg_info *seg, block_t start)
2520{
2521	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2522	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2523	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2524	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2525	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2526	int i, pos;
2527
2528	for (i = 0; i < entries; i++)
2529		target_map[i] = ckpt_map[i] | cur_map[i];
2530
2531	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2532
2533	seg->next_blkoff = pos;
2534}
2535
2536/*
2537 * If a segment is written by LFS manner, next block offset is just obtained
2538 * by increasing the current block offset. However, if a segment is written by
2539 * SSR manner, next block offset obtained by calling __next_free_blkoff
2540 */
2541static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2542				struct curseg_info *seg)
2543{
2544	if (seg->alloc_type == SSR)
2545		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2546	else
2547		seg->next_blkoff++;
2548}
2549
2550/*
2551 * This function always allocates a used segment(from dirty seglist) by SSR
2552 * manner, so it should recover the existing segment information of valid blocks
2553 */
2554static void change_curseg(struct f2fs_sb_info *sbi, int type)
2555{
2556	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2557	struct curseg_info *curseg = CURSEG_I(sbi, type);
2558	unsigned int new_segno = curseg->next_segno;
2559	struct f2fs_summary_block *sum_node;
2560	struct page *sum_page;
2561
2562	write_sum_page(sbi, curseg->sum_blk,
2563				GET_SUM_BLOCK(sbi, curseg->segno));
2564	__set_test_and_inuse(sbi, new_segno);
2565
2566	mutex_lock(&dirty_i->seglist_lock);
2567	__remove_dirty_segment(sbi, new_segno, PRE);
2568	__remove_dirty_segment(sbi, new_segno, DIRTY);
2569	mutex_unlock(&dirty_i->seglist_lock);
2570
2571	reset_curseg(sbi, type, 1);
2572	curseg->alloc_type = SSR;
2573	__next_free_blkoff(sbi, curseg, 0);
2574
2575	sum_page = f2fs_get_sum_page(sbi, new_segno);
2576	f2fs_bug_on(sbi, IS_ERR(sum_page));
2577	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2578	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2579	f2fs_put_page(sum_page, 1);
2580}
2581
2582static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2583{
2584	struct curseg_info *curseg = CURSEG_I(sbi, type);
2585	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2586	unsigned segno = NULL_SEGNO;
2587	int i, cnt;
2588	bool reversed = false;
2589
2590	/* f2fs_need_SSR() already forces to do this */
2591	if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2592		curseg->next_segno = segno;
2593		return 1;
2594	}
2595
2596	/* For node segments, let's do SSR more intensively */
2597	if (IS_NODESEG(type)) {
2598		if (type >= CURSEG_WARM_NODE) {
2599			reversed = true;
2600			i = CURSEG_COLD_NODE;
2601		} else {
2602			i = CURSEG_HOT_NODE;
2603		}
2604		cnt = NR_CURSEG_NODE_TYPE;
2605	} else {
2606		if (type >= CURSEG_WARM_DATA) {
2607			reversed = true;
2608			i = CURSEG_COLD_DATA;
2609		} else {
2610			i = CURSEG_HOT_DATA;
2611		}
2612		cnt = NR_CURSEG_DATA_TYPE;
2613	}
2614
2615	for (; cnt-- > 0; reversed ? i-- : i++) {
2616		if (i == type)
2617			continue;
2618		if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2619			curseg->next_segno = segno;
2620			return 1;
2621		}
2622	}
2623
2624	/* find valid_blocks=0 in dirty list */
2625	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2626		segno = get_free_segment(sbi);
2627		if (segno != NULL_SEGNO) {
2628			curseg->next_segno = segno;
2629			return 1;
2630		}
2631	}
2632	return 0;
2633}
2634
2635/*
2636 * flush out current segment and replace it with new segment
2637 * This function should be returned with success, otherwise BUG
2638 */
2639static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2640						int type, bool force)
2641{
2642	struct curseg_info *curseg = CURSEG_I(sbi, type);
2643
2644	if (force)
2645		new_curseg(sbi, type, true);
2646	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2647					type == CURSEG_WARM_NODE)
2648		new_curseg(sbi, type, false);
2649	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2650			likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2651		new_curseg(sbi, type, false);
2652	else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2653		change_curseg(sbi, type);
2654	else
2655		new_curseg(sbi, type, false);
2656
2657	stat_inc_seg_type(sbi, curseg);
2658}
2659
2660void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2661					unsigned int start, unsigned int end)
2662{
2663	struct curseg_info *curseg = CURSEG_I(sbi, type);
2664	unsigned int segno;
2665
2666	down_read(&SM_I(sbi)->curseg_lock);
2667	mutex_lock(&curseg->curseg_mutex);
2668	down_write(&SIT_I(sbi)->sentry_lock);
2669
2670	segno = CURSEG_I(sbi, type)->segno;
2671	if (segno < start || segno > end)
2672		goto unlock;
2673
2674	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2675		change_curseg(sbi, type);
2676	else
2677		new_curseg(sbi, type, true);
2678
2679	stat_inc_seg_type(sbi, curseg);
2680
2681	locate_dirty_segment(sbi, segno);
2682unlock:
2683	up_write(&SIT_I(sbi)->sentry_lock);
2684
2685	if (segno != curseg->segno)
2686		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2687			    type, segno, curseg->segno);
2688
2689	mutex_unlock(&curseg->curseg_mutex);
2690	up_read(&SM_I(sbi)->curseg_lock);
2691}
2692
2693void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2694{
2695	struct curseg_info *curseg;
2696	unsigned int old_segno;
2697	int i;
2698
2699	down_write(&SIT_I(sbi)->sentry_lock);
2700
2701	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2702		curseg = CURSEG_I(sbi, i);
2703		old_segno = curseg->segno;
2704		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2705		locate_dirty_segment(sbi, old_segno);
2706	}
2707
2708	up_write(&SIT_I(sbi)->sentry_lock);
2709}
2710
2711static const struct segment_allocation default_salloc_ops = {
2712	.allocate_segment = allocate_segment_by_default,
2713};
2714
2715bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2716						struct cp_control *cpc)
2717{
2718	__u64 trim_start = cpc->trim_start;
2719	bool has_candidate = false;
2720
2721	down_write(&SIT_I(sbi)->sentry_lock);
2722	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2723		if (add_discard_addrs(sbi, cpc, true)) {
2724			has_candidate = true;
2725			break;
2726		}
2727	}
2728	up_write(&SIT_I(sbi)->sentry_lock);
2729
2730	cpc->trim_start = trim_start;
2731	return has_candidate;
2732}
2733
2734static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2735					struct discard_policy *dpolicy,
2736					unsigned int start, unsigned int end)
2737{
2738	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2739	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2740	struct rb_node **insert_p = NULL, *insert_parent = NULL;
2741	struct discard_cmd *dc;
2742	struct blk_plug plug;
2743	int issued;
2744	unsigned int trimmed = 0;
2745
2746next:
2747	issued = 0;
2748
2749	mutex_lock(&dcc->cmd_lock);
2750	if (unlikely(dcc->rbtree_check))
2751		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2752								&dcc->root));
2753
2754	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2755					NULL, start,
2756					(struct rb_entry **)&prev_dc,
2757					(struct rb_entry **)&next_dc,
2758					&insert_p, &insert_parent, true, NULL);
2759	if (!dc)
2760		dc = next_dc;
2761
2762	blk_start_plug(&plug);
2763
2764	while (dc && dc->lstart <= end) {
2765		struct rb_node *node;
2766		int err = 0;
2767
2768		if (dc->len < dpolicy->granularity)
2769			goto skip;
2770
2771		if (dc->state != D_PREP) {
2772			list_move_tail(&dc->list, &dcc->fstrim_list);
2773			goto skip;
2774		}
2775
2776		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2777
2778		if (issued >= dpolicy->max_requests) {
2779			start = dc->lstart + dc->len;
2780
2781			if (err)
2782				__remove_discard_cmd(sbi, dc);
2783
2784			blk_finish_plug(&plug);
2785			mutex_unlock(&dcc->cmd_lock);
2786			trimmed += __wait_all_discard_cmd(sbi, NULL);
2787			congestion_wait(BLK_RW_ASYNC, HZ/50);
2788			goto next;
2789		}
2790skip:
2791		node = rb_next(&dc->rb_node);
2792		if (err)
2793			__remove_discard_cmd(sbi, dc);
2794		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2795
2796		if (fatal_signal_pending(current))
2797			break;
2798	}
2799
2800	blk_finish_plug(&plug);
2801	mutex_unlock(&dcc->cmd_lock);
2802
2803	return trimmed;
2804}
2805
2806int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2807{
2808	__u64 start = F2FS_BYTES_TO_BLK(range->start);
2809	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2810	unsigned int start_segno, end_segno;
2811	block_t start_block, end_block;
2812	struct cp_control cpc;
2813	struct discard_policy dpolicy;
2814	unsigned long long trimmed = 0;
2815	int err = 0;
2816	bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
2817
2818	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2819		return -EINVAL;
2820
2821	if (end < MAIN_BLKADDR(sbi))
2822		goto out;
2823
2824	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2825		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
2826		return -EFSCORRUPTED;
2827	}
2828
2829	/* start/end segment number in main_area */
2830	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2831	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2832						GET_SEGNO(sbi, end);
2833	if (need_align) {
2834		start_segno = rounddown(start_segno, sbi->segs_per_sec);
2835		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2836	}
2837
2838	cpc.reason = CP_DISCARD;
2839	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2840	cpc.trim_start = start_segno;
2841	cpc.trim_end = end_segno;
2842
2843	if (sbi->discard_blks == 0)
2844		goto out;
2845
2846	mutex_lock(&sbi->gc_mutex);
2847	err = f2fs_write_checkpoint(sbi, &cpc);
2848	mutex_unlock(&sbi->gc_mutex);
2849	if (err)
2850		goto out;
2851
2852	/*
2853	 * We filed discard candidates, but actually we don't need to wait for
2854	 * all of them, since they'll be issued in idle time along with runtime
2855	 * discard option. User configuration looks like using runtime discard
2856	 * or periodic fstrim instead of it.
2857	 */
2858	if (f2fs_realtime_discard_enable(sbi))
2859		goto out;
2860
2861	start_block = START_BLOCK(sbi, start_segno);
2862	end_block = START_BLOCK(sbi, end_segno + 1);
2863
2864	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2865	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2866					start_block, end_block);
2867
2868	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2869					start_block, end_block);
2870out:
2871	if (!err)
2872		range->len = F2FS_BLK_TO_BYTES(trimmed);
2873	return err;
2874}
2875
2876static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2877{
2878	struct curseg_info *curseg = CURSEG_I(sbi, type);
2879	if (curseg->next_blkoff < sbi->blocks_per_seg)
2880		return true;
2881	return false;
2882}
2883
2884int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2885{
2886	switch (hint) {
2887	case WRITE_LIFE_SHORT:
2888		return CURSEG_HOT_DATA;
2889	case WRITE_LIFE_EXTREME:
2890		return CURSEG_COLD_DATA;
2891	default:
2892		return CURSEG_WARM_DATA;
2893	}
2894}
2895
2896/* This returns write hints for each segment type. This hints will be
2897 * passed down to block layer. There are mapping tables which depend on
2898 * the mount option 'whint_mode'.
2899 *
2900 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2901 *
2902 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2903 *
2904 * User                  F2FS                     Block
2905 * ----                  ----                     -----
2906 *                       META                     WRITE_LIFE_NOT_SET
2907 *                       HOT_NODE                 "
2908 *                       WARM_NODE                "
2909 *                       COLD_NODE                "
2910 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2911 * extension list        "                        "
2912 *
2913 * -- buffered io
2914 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2915 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2916 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2917 * WRITE_LIFE_NONE       "                        "
2918 * WRITE_LIFE_MEDIUM     "                        "
2919 * WRITE_LIFE_LONG       "                        "
2920 *
2921 * -- direct io
2922 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2923 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2924 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2925 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2926 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2927 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2928 *
2929 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2930 *
2931 * User                  F2FS                     Block
2932 * ----                  ----                     -----
2933 *                       META                     WRITE_LIFE_MEDIUM;
2934 *                       HOT_NODE                 WRITE_LIFE_NOT_SET
2935 *                       WARM_NODE                "
2936 *                       COLD_NODE                WRITE_LIFE_NONE
2937 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2938 * extension list        "                        "
2939 *
2940 * -- buffered io
2941 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2942 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2943 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
2944 * WRITE_LIFE_NONE       "                        "
2945 * WRITE_LIFE_MEDIUM     "                        "
2946 * WRITE_LIFE_LONG       "                        "
2947 *
2948 * -- direct io
2949 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2950 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2951 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2952 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2953 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2954 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2955 */
2956
2957enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2958				enum page_type type, enum temp_type temp)
2959{
2960	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2961		if (type == DATA) {
2962			if (temp == WARM)
2963				return WRITE_LIFE_NOT_SET;
2964			else if (temp == HOT)
2965				return WRITE_LIFE_SHORT;
2966			else if (temp == COLD)
2967				return WRITE_LIFE_EXTREME;
2968		} else {
2969			return WRITE_LIFE_NOT_SET;
2970		}
2971	} else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2972		if (type == DATA) {
2973			if (temp == WARM)
2974				return WRITE_LIFE_LONG;
2975			else if (temp == HOT)
2976				return WRITE_LIFE_SHORT;
2977			else if (temp == COLD)
2978				return WRITE_LIFE_EXTREME;
2979		} else if (type == NODE) {
2980			if (temp == WARM || temp == HOT)
2981				return WRITE_LIFE_NOT_SET;
2982			else if (temp == COLD)
2983				return WRITE_LIFE_NONE;
2984		} else if (type == META) {
2985			return WRITE_LIFE_MEDIUM;
2986		}
2987	}
2988	return WRITE_LIFE_NOT_SET;
2989}
2990
2991static int __get_segment_type_2(struct f2fs_io_info *fio)
2992{
2993	if (fio->type == DATA)
2994		return CURSEG_HOT_DATA;
2995	else
2996		return CURSEG_HOT_NODE;
2997}
2998
2999static int __get_segment_type_4(struct f2fs_io_info *fio)
3000{
3001	if (fio->type == DATA) {
3002		struct inode *inode = fio->page->mapping->host;
3003
3004		if (S_ISDIR(inode->i_mode))
3005			return CURSEG_HOT_DATA;
3006		else
3007			return CURSEG_COLD_DATA;
3008	} else {
3009		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3010			return CURSEG_WARM_NODE;
3011		else
3012			return CURSEG_COLD_NODE;
3013	}
3014}
3015
3016static int __get_segment_type_6(struct f2fs_io_info *fio)
3017{
3018	if (fio->type == DATA) {
3019		struct inode *inode = fio->page->mapping->host;
3020
3021		if (is_cold_data(fio->page) || file_is_cold(inode))
3022			return CURSEG_COLD_DATA;
3023		if (file_is_hot(inode) ||
3024				is_inode_flag_set(inode, FI_HOT_DATA) ||
3025				f2fs_is_atomic_file(inode) ||
3026				f2fs_is_volatile_file(inode))
3027			return CURSEG_HOT_DATA;
3028		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3029	} else {
3030		if (IS_DNODE(fio->page))
3031			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3032						CURSEG_HOT_NODE;
3033		return CURSEG_COLD_NODE;
3034	}
3035}
3036
3037static int __get_segment_type(struct f2fs_io_info *fio)
3038{
3039	int type = 0;
3040
3041	switch (F2FS_OPTION(fio->sbi).active_logs) {
3042	case 2:
3043		type = __get_segment_type_2(fio);
3044		break;
3045	case 4:
3046		type = __get_segment_type_4(fio);
3047		break;
3048	case 6:
3049		type = __get_segment_type_6(fio);
3050		break;
3051	default:
3052		f2fs_bug_on(fio->sbi, true);
3053	}
3054
3055	if (IS_HOT(type))
3056		fio->temp = HOT;
3057	else if (IS_WARM(type))
3058		fio->temp = WARM;
3059	else
3060		fio->temp = COLD;
3061	return type;
3062}
3063
3064void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3065		block_t old_blkaddr, block_t *new_blkaddr,
3066		struct f2fs_summary *sum, int type,
3067		struct f2fs_io_info *fio, bool add_list)
3068{
3069	struct sit_info *sit_i = SIT_I(sbi);
3070	struct curseg_info *curseg = CURSEG_I(sbi, type);
3071
3072	down_read(&SM_I(sbi)->curseg_lock);
3073
3074	mutex_lock(&curseg->curseg_mutex);
3075	down_write(&sit_i->sentry_lock);
3076
3077	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3078
3079	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3080
3081	/*
3082	 * __add_sum_entry should be resided under the curseg_mutex
3083	 * because, this function updates a summary entry in the
3084	 * current summary block.
3085	 */
3086	__add_sum_entry(sbi, type, sum);
3087
3088	__refresh_next_blkoff(sbi, curseg);
3089
3090	stat_inc_block_count(sbi, curseg);
3091
3092	/*
3093	 * SIT information should be updated before segment allocation,
3094	 * since SSR needs latest valid block information.
3095	 */
3096	update_sit_entry(sbi, *new_blkaddr, 1);
3097	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3098		update_sit_entry(sbi, old_blkaddr, -1);
3099
3100	if (!__has_curseg_space(sbi, type))
3101		sit_i->s_ops->allocate_segment(sbi, type, false);
3102
3103	/*
3104	 * segment dirty status should be updated after segment allocation,
3105	 * so we just need to update status only one time after previous
3106	 * segment being closed.
3107	 */
3108	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3109	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3110
3111	up_write(&sit_i->sentry_lock);
3112
3113	if (page && IS_NODESEG(type)) {
3114		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3115
3116		f2fs_inode_chksum_set(sbi, page);
3117	}
3118
3119	if (F2FS_IO_ALIGNED(sbi))
3120		fio->retry = false;
3121
3122	if (add_list) {
3123		struct f2fs_bio_info *io;
3124
3125		INIT_LIST_HEAD(&fio->list);
3126		fio->in_list = true;
3127		io = sbi->write_io[fio->type] + fio->temp;
3128		spin_lock(&io->io_lock);
3129		list_add_tail(&fio->list, &io->io_list);
3130		spin_unlock(&io->io_lock);
3131	}
3132
3133	mutex_unlock(&curseg->curseg_mutex);
3134
3135	up_read(&SM_I(sbi)->curseg_lock);
3136}
3137
3138static void update_device_state(struct f2fs_io_info *fio)
3139{
3140	struct f2fs_sb_info *sbi = fio->sbi;
3141	unsigned int devidx;
3142
3143	if (!f2fs_is_multi_device(sbi))
3144		return;
3145
3146	devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3147
3148	/* update device state for fsync */
3149	f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3150
3151	/* update device state for checkpoint */
3152	if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3153		spin_lock(&sbi->dev_lock);
3154		f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3155		spin_unlock(&sbi->dev_lock);
3156	}
3157}
3158
3159static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3160{
3161	int type = __get_segment_type(fio);
3162	bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
3163
3164	if (keep_order)
3165		down_read(&fio->sbi->io_order_lock);
3166reallocate:
3167	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3168			&fio->new_blkaddr, sum, type, fio, true);
3169	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3170		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3171					fio->old_blkaddr, fio->old_blkaddr);
3172
3173	/* writeout dirty page into bdev */
3174	f2fs_submit_page_write(fio);
3175	if (fio->retry) {
3176		fio->old_blkaddr = fio->new_blkaddr;
3177		goto reallocate;
3178	}
3179
3180	update_device_state(fio);
3181
3182	if (keep_order)
3183		up_read(&fio->sbi->io_order_lock);
3184}
3185
3186void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3187					enum iostat_type io_type)
3188{
3189	struct f2fs_io_info fio = {
3190		.sbi = sbi,
3191		.type = META,
3192		.temp = HOT,
3193		.op = REQ_OP_WRITE,
3194		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3195		.old_blkaddr = page->index,
3196		.new_blkaddr = page->index,
3197		.page = page,
3198		.encrypted_page = NULL,
3199		.in_list = false,
3200	};
3201
3202	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3203		fio.op_flags &= ~REQ_META;
3204
3205	set_page_writeback(page);
3206	ClearPageError(page);
3207	f2fs_submit_page_write(&fio);
3208
3209	stat_inc_meta_count(sbi, page->index);
3210	f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3211}
3212
3213void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3214{
3215	struct f2fs_summary sum;
3216
3217	set_summary(&sum, nid, 0, 0);
3218	do_write_page(&sum, fio);
3219
3220	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3221}
3222
3223void f2fs_outplace_write_data(struct dnode_of_data *dn,
3224					struct f2fs_io_info *fio)
3225{
3226	struct f2fs_sb_info *sbi = fio->sbi;
3227	struct f2fs_summary sum;
3228
3229	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3230	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3231	do_write_page(&sum, fio);
3232	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3233
3234	f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3235}
3236
3237int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3238{
3239	int err;
3240	struct f2fs_sb_info *sbi = fio->sbi;
3241	unsigned int segno;
3242
3243	fio->new_blkaddr = fio->old_blkaddr;
3244	/* i/o temperature is needed for passing down write hints */
3245	__get_segment_type(fio);
3246
3247	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3248
3249	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3250		set_sbi_flag(sbi, SBI_NEED_FSCK);
3251		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3252			  __func__, segno);
3253		return -EFSCORRUPTED;
3254	}
3255
3256	stat_inc_inplace_blocks(fio->sbi);
3257
3258	if (fio->bio)
3259		err = f2fs_merge_page_bio(fio);
3260	else
3261		err = f2fs_submit_page_bio(fio);
3262	if (!err) {
3263		update_device_state(fio);
3264		f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3265	}
3266
3267	return err;
3268}
3269
3270static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3271						unsigned int segno)
3272{
3273	int i;
3274
3275	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3276		if (CURSEG_I(sbi, i)->segno == segno)
3277			break;
3278	}
3279	return i;
3280}
3281
3282void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3283				block_t old_blkaddr, block_t new_blkaddr,
3284				bool recover_curseg, bool recover_newaddr)
3285{
3286	struct sit_info *sit_i = SIT_I(sbi);
3287	struct curseg_info *curseg;
3288	unsigned int segno, old_cursegno;
3289	struct seg_entry *se;
3290	int type;
3291	unsigned short old_blkoff;
3292
3293	segno = GET_SEGNO(sbi, new_blkaddr);
3294	se = get_seg_entry(sbi, segno);
3295	type = se->type;
3296
3297	down_write(&SM_I(sbi)->curseg_lock);
3298
3299	if (!recover_curseg) {
3300		/* for recovery flow */
3301		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3302			if (old_blkaddr == NULL_ADDR)
3303				type = CURSEG_COLD_DATA;
3304			else
3305				type = CURSEG_WARM_DATA;
3306		}
3307	} else {
3308		if (IS_CURSEG(sbi, segno)) {
3309			/* se->type is volatile as SSR allocation */
3310			type = __f2fs_get_curseg(sbi, segno);
3311			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3312		} else {
3313			type = CURSEG_WARM_DATA;
3314		}
3315	}
3316
3317	f2fs_bug_on(sbi, !IS_DATASEG(type));
3318	curseg = CURSEG_I(sbi, type);
3319
3320	mutex_lock(&curseg->curseg_mutex);
3321	down_write(&sit_i->sentry_lock);
3322
3323	old_cursegno = curseg->segno;
3324	old_blkoff = curseg->next_blkoff;
3325
3326	/* change the current segment */
3327	if (segno != curseg->segno) {
3328		curseg->next_segno = segno;
3329		change_curseg(sbi, type);
3330	}
3331
3332	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3333	__add_sum_entry(sbi, type, sum);
3334
3335	if (!recover_curseg || recover_newaddr)
3336		update_sit_entry(sbi, new_blkaddr, 1);
3337	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3338		invalidate_mapping_pages(META_MAPPING(sbi),
3339					old_blkaddr, old_blkaddr);
3340		update_sit_entry(sbi, old_blkaddr, -1);
3341	}
3342
3343	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3344	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3345
3346	locate_dirty_segment(sbi, old_cursegno);
3347
3348	if (recover_curseg) {
3349		if (old_cursegno != curseg->segno) {
3350			curseg->next_segno = old_cursegno;
3351			change_curseg(sbi, type);
3352		}
3353		curseg->next_blkoff = old_blkoff;
3354	}
3355
3356	up_write(&sit_i->sentry_lock);
3357	mutex_unlock(&curseg->curseg_mutex);
3358	up_write(&SM_I(sbi)->curseg_lock);
3359}
3360
3361void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3362				block_t old_addr, block_t new_addr,
3363				unsigned char version, bool recover_curseg,
3364				bool recover_newaddr)
3365{
3366	struct f2fs_summary sum;
3367
3368	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3369
3370	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3371					recover_curseg, recover_newaddr);
3372
3373	f2fs_update_data_blkaddr(dn, new_addr);
3374}
3375
3376void f2fs_wait_on_page_writeback(struct page *page,
3377				enum page_type type, bool ordered, bool locked)
3378{
3379	if (PageWriteback(page)) {
3380		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3381
3382		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3383		if (ordered) {
3384			wait_on_page_writeback(page);
3385			f2fs_bug_on(sbi, locked && PageWriteback(page));
3386		} else {
3387			wait_for_stable_page(page);
3388		}
3389	}
3390}
3391
3392void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3393{
3394	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3395	struct page *cpage;
3396
3397	if (!f2fs_post_read_required(inode))
3398		return;
3399
3400	if (!__is_valid_data_blkaddr(blkaddr))
3401		return;
3402
3403	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3404	if (cpage) {
3405		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3406		f2fs_put_page(cpage, 1);
3407	}
3408}
3409
3410void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3411								block_t len)
3412{
3413	block_t i;
3414
3415	for (i = 0; i < len; i++)
3416		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3417}
3418
3419static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3420{
3421	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3422	struct curseg_info *seg_i;
3423	unsigned char *kaddr;
3424	struct page *page;
3425	block_t start;
3426	int i, j, offset;
3427
3428	start = start_sum_block(sbi);
3429
3430	page = f2fs_get_meta_page(sbi, start++);
3431	if (IS_ERR(page))
3432		return PTR_ERR(page);
3433	kaddr = (unsigned char *)page_address(page);
3434
3435	/* Step 1: restore nat cache */
3436	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3437	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3438
3439	/* Step 2: restore sit cache */
3440	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3441	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3442	offset = 2 * SUM_JOURNAL_SIZE;
3443
3444	/* Step 3: restore summary entries */
3445	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3446		unsigned short blk_off;
3447		unsigned int segno;
3448
3449		seg_i = CURSEG_I(sbi, i);
3450		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3451		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3452		seg_i->next_segno = segno;
3453		reset_curseg(sbi, i, 0);
3454		seg_i->alloc_type = ckpt->alloc_type[i];
3455		seg_i->next_blkoff = blk_off;
3456
3457		if (seg_i->alloc_type == SSR)
3458			blk_off = sbi->blocks_per_seg;
3459
3460		for (j = 0; j < blk_off; j++) {
3461			struct f2fs_summary *s;
3462			s = (struct f2fs_summary *)(kaddr + offset);
3463			seg_i->sum_blk->entries[j] = *s;
3464			offset += SUMMARY_SIZE;
3465			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3466						SUM_FOOTER_SIZE)
3467				continue;
3468
3469			f2fs_put_page(page, 1);
3470			page = NULL;
3471
3472			page = f2fs_get_meta_page(sbi, start++);
3473			if (IS_ERR(page))
3474				return PTR_ERR(page);
3475			kaddr = (unsigned char *)page_address(page);
3476			offset = 0;
3477		}
3478	}
3479	f2fs_put_page(page, 1);
3480	return 0;
3481}
3482
3483static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3484{
3485	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3486	struct f2fs_summary_block *sum;
3487	struct curseg_info *curseg;
3488	struct page *new;
3489	unsigned short blk_off;
3490	unsigned int segno = 0;
3491	block_t blk_addr = 0;
3492	int err = 0;
3493
3494	/* get segment number and block addr */
3495	if (IS_DATASEG(type)) {
3496		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3497		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3498							CURSEG_HOT_DATA]);
3499		if (__exist_node_summaries(sbi))
3500			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3501		else
3502			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3503	} else {
3504		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3505							CURSEG_HOT_NODE]);
3506		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3507							CURSEG_HOT_NODE]);
3508		if (__exist_node_summaries(sbi))
3509			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3510							type - CURSEG_HOT_NODE);
3511		else
3512			blk_addr = GET_SUM_BLOCK(sbi, segno);
3513	}
3514
3515	new = f2fs_get_meta_page(sbi, blk_addr);
3516	if (IS_ERR(new))
3517		return PTR_ERR(new);
3518	sum = (struct f2fs_summary_block *)page_address(new);
3519
3520	if (IS_NODESEG(type)) {
3521		if (__exist_node_summaries(sbi)) {
3522			struct f2fs_summary *ns = &sum->entries[0];
3523			int i;
3524			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3525				ns->version = 0;
3526				ns->ofs_in_node = 0;
3527			}
3528		} else {
3529			err = f2fs_restore_node_summary(sbi, segno, sum);
3530			if (err)
3531				goto out;
3532		}
3533	}
3534
3535	/* set uncompleted segment to curseg */
3536	curseg = CURSEG_I(sbi, type);
3537	mutex_lock(&curseg->curseg_mutex);
3538
3539	/* update journal info */
3540	down_write(&curseg->journal_rwsem);
3541	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3542	up_write(&curseg->journal_rwsem);
3543
3544	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3545	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3546	curseg->next_segno = segno;
3547	reset_curseg(sbi, type, 0);
3548	curseg->alloc_type = ckpt->alloc_type[type];
3549	curseg->next_blkoff = blk_off;
3550	mutex_unlock(&curseg->curseg_mutex);
3551out:
3552	f2fs_put_page(new, 1);
3553	return err;
3554}
3555
3556static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3557{
3558	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3559	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3560	int type = CURSEG_HOT_DATA;
3561	int err;
3562
3563	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3564		int npages = f2fs_npages_for_summary_flush(sbi, true);
3565
3566		if (npages >= 2)
3567			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3568							META_CP, true);
3569
3570		/* restore for compacted data summary */
3571		err = read_compacted_summaries(sbi);
3572		if (err)
3573			return err;
3574		type = CURSEG_HOT_NODE;
3575	}
3576
3577	if (__exist_node_summaries(sbi))
3578		f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3579					NR_CURSEG_TYPE - type, META_CP, true);
3580
3581	for (; type <= CURSEG_COLD_NODE; type++) {
3582		err = read_normal_summaries(sbi, type);
3583		if (err)
3584			return err;
3585	}
3586
3587	/* sanity check for summary blocks */
3588	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3589			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3590		f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3591			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3592		return -EINVAL;
3593	}
3594
3595	return 0;
3596}
3597
3598static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3599{
3600	struct page *page;
3601	unsigned char *kaddr;
3602	struct f2fs_summary *summary;
3603	struct curseg_info *seg_i;
3604	int written_size = 0;
3605	int i, j;
3606
3607	page = f2fs_grab_meta_page(sbi, blkaddr++);
3608	kaddr = (unsigned char *)page_address(page);
3609	memset(kaddr, 0, PAGE_SIZE);
3610
3611	/* Step 1: write nat cache */
3612	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3613	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3614	written_size += SUM_JOURNAL_SIZE;
3615
3616	/* Step 2: write sit cache */
3617	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3618	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3619	written_size += SUM_JOURNAL_SIZE;
3620
3621	/* Step 3: write summary entries */
3622	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3623		unsigned short blkoff;
3624		seg_i = CURSEG_I(sbi, i);
3625		if (sbi->ckpt->alloc_type[i] == SSR)
3626			blkoff = sbi->blocks_per_seg;
3627		else
3628			blkoff = curseg_blkoff(sbi, i);
3629
3630		for (j = 0; j < blkoff; j++) {
3631			if (!page) {
3632				page = f2fs_grab_meta_page(sbi, blkaddr++);
3633				kaddr = (unsigned char *)page_address(page);
3634				memset(kaddr, 0, PAGE_SIZE);
3635				written_size = 0;
3636			}
3637			summary = (struct f2fs_summary *)(kaddr + written_size);
3638			*summary = seg_i->sum_blk->entries[j];
3639			written_size += SUMMARY_SIZE;
3640
3641			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3642							SUM_FOOTER_SIZE)
3643				continue;
3644
3645			set_page_dirty(page);
3646			f2fs_put_page(page, 1);
3647			page = NULL;
3648		}
3649	}
3650	if (page) {
3651		set_page_dirty(page);
3652		f2fs_put_page(page, 1);
3653	}
3654}
3655
3656static void write_normal_summaries(struct f2fs_sb_info *sbi,
3657					block_t blkaddr, int type)
3658{
3659	int i, end;
3660	if (IS_DATASEG(type))
3661		end = type + NR_CURSEG_DATA_TYPE;
3662	else
3663		end = type + NR_CURSEG_NODE_TYPE;
3664
3665	for (i = type; i < end; i++)
3666		write_current_sum_page(sbi, i, blkaddr + (i - type));
3667}
3668
3669void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3670{
3671	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3672		write_compacted_summaries(sbi, start_blk);
3673	else
3674		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3675}
3676
3677void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3678{
3679	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3680}
3681
3682int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3683					unsigned int val, int alloc)
3684{
3685	int i;
3686
3687	if (type == NAT_JOURNAL) {
3688		for (i = 0; i < nats_in_cursum(journal); i++) {
3689			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3690				return i;
3691		}
3692		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3693			return update_nats_in_cursum(journal, 1);
3694	} else if (type == SIT_JOURNAL) {
3695		for (i = 0; i < sits_in_cursum(journal); i++)
3696			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3697				return i;
3698		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3699			return update_sits_in_cursum(journal, 1);
3700	}
3701	return -1;
3702}
3703
3704static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3705					unsigned int segno)
3706{
3707	return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3708}
3709
3710static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3711					unsigned int start)
3712{
3713	struct sit_info *sit_i = SIT_I(sbi);
3714	struct page *page;
3715	pgoff_t src_off, dst_off;
3716
3717	src_off = current_sit_addr(sbi, start);
3718	dst_off = next_sit_addr(sbi, src_off);
3719
3720	page = f2fs_grab_meta_page(sbi, dst_off);
3721	seg_info_to_sit_page(sbi, page, start);
3722
3723	set_page_dirty(page);
3724	set_to_next_sit(sit_i, start);
3725
3726	return page;
3727}
3728
3729static struct sit_entry_set *grab_sit_entry_set(void)
3730{
3731	struct sit_entry_set *ses =
3732			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3733
3734	ses->entry_cnt = 0;
3735	INIT_LIST_HEAD(&ses->set_list);
3736	return ses;
3737}
3738
3739static void release_sit_entry_set(struct sit_entry_set *ses)
3740{
3741	list_del(&ses->set_list);
3742	kmem_cache_free(sit_entry_set_slab, ses);
3743}
3744
3745static void adjust_sit_entry_set(struct sit_entry_set *ses,
3746						struct list_head *head)
3747{
3748	struct sit_entry_set *next = ses;
3749
3750	if (list_is_last(&ses->set_list, head))
3751		return;
3752
3753	list_for_each_entry_continue(next, head, set_list)
3754		if (ses->entry_cnt <= next->entry_cnt)
3755			break;
3756
3757	list_move_tail(&ses->set_list, &next->set_list);
3758}
3759
3760static void add_sit_entry(unsigned int segno, struct list_head *head)
3761{
3762	struct sit_entry_set *ses;
3763	unsigned int start_segno = START_SEGNO(segno);
3764
3765	list_for_each_entry(ses, head, set_list) {
3766		if (ses->start_segno == start_segno) {
3767			ses->entry_cnt++;
3768			adjust_sit_entry_set(ses, head);
3769			return;
3770		}
3771	}
3772
3773	ses = grab_sit_entry_set();
3774
3775	ses->start_segno = start_segno;
3776	ses->entry_cnt++;
3777	list_add(&ses->set_list, head);
3778}
3779
3780static void add_sits_in_set(struct f2fs_sb_info *sbi)
3781{
3782	struct f2fs_sm_info *sm_info = SM_I(sbi);
3783	struct list_head *set_list = &sm_info->sit_entry_set;
3784	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3785	unsigned int segno;
3786
3787	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3788		add_sit_entry(segno, set_list);
3789}
3790
3791static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3792{
3793	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3794	struct f2fs_journal *journal = curseg->journal;
3795	int i;
3796
3797	down_write(&curseg->journal_rwsem);
3798	for (i = 0; i < sits_in_cursum(journal); i++) {
3799		unsigned int segno;
3800		bool dirtied;
3801
3802		segno = le32_to_cpu(segno_in_journal(journal, i));
3803		dirtied = __mark_sit_entry_dirty(sbi, segno);
3804
3805		if (!dirtied)
3806			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3807	}
3808	update_sits_in_cursum(journal, -i);
3809	up_write(&curseg->journal_rwsem);
3810}
3811
3812/*
3813 * CP calls this function, which flushes SIT entries including sit_journal,
3814 * and moves prefree segs to free segs.
3815 */
3816void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3817{
3818	struct sit_info *sit_i = SIT_I(sbi);
3819	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3820	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3821	struct f2fs_journal *journal = curseg->journal;
3822	struct sit_entry_set *ses, *tmp;
3823	struct list_head *head = &SM_I(sbi)->sit_entry_set;
3824	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
3825	struct seg_entry *se;
3826
3827	down_write(&sit_i->sentry_lock);
3828
3829	if (!sit_i->dirty_sentries)
3830		goto out;
3831
3832	/*
3833	 * add and account sit entries of dirty bitmap in sit entry
3834	 * set temporarily
3835	 */
3836	add_sits_in_set(sbi);
3837
3838	/*
3839	 * if there are no enough space in journal to store dirty sit
3840	 * entries, remove all entries from journal and add and account
3841	 * them in sit entry set.
3842	 */
3843	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
3844								!to_journal)
3845		remove_sits_in_journal(sbi);
3846
3847	/*
3848	 * there are two steps to flush sit entries:
3849	 * #1, flush sit entries to journal in current cold data summary block.
3850	 * #2, flush sit entries to sit page.
3851	 */
3852	list_for_each_entry_safe(ses, tmp, head, set_list) {
3853		struct page *page = NULL;
3854		struct f2fs_sit_block *raw_sit = NULL;
3855		unsigned int start_segno = ses->start_segno;
3856		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3857						(unsigned long)MAIN_SEGS(sbi));
3858		unsigned int segno = start_segno;
3859
3860		if (to_journal &&
3861			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3862			to_journal = false;
3863
3864		if (to_journal) {
3865			down_write(&curseg->journal_rwsem);
3866		} else {
3867			page = get_next_sit_page(sbi, start_segno);
3868			raw_sit = page_address(page);
3869		}
3870
3871		/* flush dirty sit entries in region of current sit set */
3872		for_each_set_bit_from(segno, bitmap, end) {
3873			int offset, sit_offset;
3874
3875			se = get_seg_entry(sbi, segno);
3876#ifdef CONFIG_F2FS_CHECK_FS
3877			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3878						SIT_VBLOCK_MAP_SIZE))
3879				f2fs_bug_on(sbi, 1);
3880#endif
3881
3882			/* add discard candidates */
3883			if (!(cpc->reason & CP_DISCARD)) {
3884				cpc->trim_start = segno;
3885				add_discard_addrs(sbi, cpc, false);
3886			}
3887
3888			if (to_journal) {
3889				offset = f2fs_lookup_journal_in_cursum(journal,
3890							SIT_JOURNAL, segno, 1);
3891				f2fs_bug_on(sbi, offset < 0);
3892				segno_in_journal(journal, offset) =
3893							cpu_to_le32(segno);
3894				seg_info_to_raw_sit(se,
3895					&sit_in_journal(journal, offset));
3896				check_block_count(sbi, segno,
3897					&sit_in_journal(journal, offset));
3898			} else {
3899				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3900				seg_info_to_raw_sit(se,
3901						&raw_sit->entries[sit_offset]);
3902				check_block_count(sbi, segno,
3903						&raw_sit->entries[sit_offset]);
3904			}
3905
3906			__clear_bit(segno, bitmap);
3907			sit_i->dirty_sentries--;
3908			ses->entry_cnt--;
3909		}
3910
3911		if (to_journal)
3912			up_write(&curseg->journal_rwsem);
3913		else
3914			f2fs_put_page(page, 1);
3915
3916		f2fs_bug_on(sbi, ses->entry_cnt);
3917		release_sit_entry_set(ses);
3918	}
3919
3920	f2fs_bug_on(sbi, !list_empty(head));
3921	f2fs_bug_on(sbi, sit_i->dirty_sentries);
3922out:
3923	if (cpc->reason & CP_DISCARD) {
3924		__u64 trim_start = cpc->trim_start;
3925
3926		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3927			add_discard_addrs(sbi, cpc, false);
3928
3929		cpc->trim_start = trim_start;
3930	}
3931	up_write(&sit_i->sentry_lock);
3932
3933	set_prefree_as_free_segments(sbi);
3934}
3935
3936static int build_sit_info(struct f2fs_sb_info *sbi)
3937{
3938	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3939	struct sit_info *sit_i;
3940	unsigned int sit_segs, start;
3941	char *src_bitmap, *bitmap;
3942	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
3943
3944	/* allocate memory for SIT information */
3945	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3946	if (!sit_i)
3947		return -ENOMEM;
3948
3949	SM_I(sbi)->sit_info = sit_i;
3950
3951	sit_i->sentries =
3952		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3953					      MAIN_SEGS(sbi)),
3954			      GFP_KERNEL);
3955	if (!sit_i->sentries)
3956		return -ENOMEM;
3957
3958	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3959	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
3960								GFP_KERNEL);
3961	if (!sit_i->dirty_sentries_bitmap)
3962		return -ENOMEM;
3963
3964#ifdef CONFIG_F2FS_CHECK_FS
3965	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
3966#else
3967	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
3968#endif
3969	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
3970	if (!sit_i->bitmap)
3971		return -ENOMEM;
3972
3973	bitmap = sit_i->bitmap;
3974
3975	for (start = 0; start < MAIN_SEGS(sbi); start++) {
3976		sit_i->sentries[start].cur_valid_map = bitmap;
3977		bitmap += SIT_VBLOCK_MAP_SIZE;
3978
3979		sit_i->sentries[start].ckpt_valid_map = bitmap;
3980		bitmap += SIT_VBLOCK_MAP_SIZE;
3981
3982#ifdef CONFIG_F2FS_CHECK_FS
3983		sit_i->sentries[start].cur_valid_map_mir = bitmap;
3984		bitmap += SIT_VBLOCK_MAP_SIZE;
3985#endif
3986
3987		sit_i->sentries[start].discard_map = bitmap;
3988		bitmap += SIT_VBLOCK_MAP_SIZE;
3989	}
3990
3991	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3992	if (!sit_i->tmp_map)
3993		return -ENOMEM;
3994
3995	if (__is_large_section(sbi)) {
3996		sit_i->sec_entries =
3997			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
3998						      MAIN_SECS(sbi)),
3999				      GFP_KERNEL);
4000		if (!sit_i->sec_entries)
4001			return -ENOMEM;
4002	}
4003
4004	/* get information related with SIT */
4005	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4006
4007	/* setup SIT bitmap from ckeckpoint pack */
4008	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4009	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4010
4011	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4012	if (!sit_i->sit_bitmap)
4013		return -ENOMEM;
4014
4015#ifdef CONFIG_F2FS_CHECK_FS
4016	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4017					sit_bitmap_size, GFP_KERNEL);
4018	if (!sit_i->sit_bitmap_mir)
4019		return -ENOMEM;
4020
4021	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4022					main_bitmap_size, GFP_KERNEL);
4023	if (!sit_i->invalid_segmap)
4024		return -ENOMEM;
4025#endif
4026
4027	/* init SIT information */
4028	sit_i->s_ops = &default_salloc_ops;
4029
4030	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4031	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4032	sit_i->written_valid_blocks = 0;
4033	sit_i->bitmap_size = sit_bitmap_size;
4034	sit_i->dirty_sentries = 0;
4035	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4036	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4037	sit_i->mounted_time = ktime_get_real_seconds();
4038	init_rwsem(&sit_i->sentry_lock);
4039	return 0;
4040}
4041
4042static int build_free_segmap(struct f2fs_sb_info *sbi)
4043{
4044	struct free_segmap_info *free_i;
4045	unsigned int bitmap_size, sec_bitmap_size;
4046
4047	/* allocate memory for free segmap information */
4048	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4049	if (!free_i)
4050		return -ENOMEM;
4051
4052	SM_I(sbi)->free_info = free_i;
4053
4054	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4055	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4056	if (!free_i->free_segmap)
4057		return -ENOMEM;
4058
4059	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4060	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4061	if (!free_i->free_secmap)
4062		return -ENOMEM;
4063
4064	/* set all segments as dirty temporarily */
4065	memset(free_i->free_segmap, 0xff, bitmap_size);
4066	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4067
4068	/* init free segmap information */
4069	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4070	free_i->free_segments = 0;
4071	free_i->free_sections = 0;
4072	spin_lock_init(&free_i->segmap_lock);
4073	return 0;
4074}
4075
4076static int build_curseg(struct f2fs_sb_info *sbi)
4077{
4078	struct curseg_info *array;
4079	int i;
4080
4081	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
4082			     GFP_KERNEL);
4083	if (!array)
4084		return -ENOMEM;
4085
4086	SM_I(sbi)->curseg_array = array;
4087
4088	for (i = 0; i < NR_CURSEG_TYPE; i++) {
4089		mutex_init(&array[i].curseg_mutex);
4090		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4091		if (!array[i].sum_blk)
4092			return -ENOMEM;
4093		init_rwsem(&array[i].journal_rwsem);
4094		array[i].journal = f2fs_kzalloc(sbi,
4095				sizeof(struct f2fs_journal), GFP_KERNEL);
4096		if (!array[i].journal)
4097			return -ENOMEM;
4098		array[i].segno = NULL_SEGNO;
4099		array[i].next_blkoff = 0;
4100	}
4101	return restore_curseg_summaries(sbi);
4102}
4103
4104static int build_sit_entries(struct f2fs_sb_info *sbi)
4105{
4106	struct sit_info *sit_i = SIT_I(sbi);
4107	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4108	struct f2fs_journal *journal = curseg->journal;
4109	struct seg_entry *se;
4110	struct f2fs_sit_entry sit;
4111	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4112	unsigned int i, start, end;
4113	unsigned int readed, start_blk = 0;
4114	int err = 0;
4115	block_t total_node_blocks = 0;
4116
4117	do {
4118		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4119							META_SIT, true);
4120
4121		start = start_blk * sit_i->sents_per_block;
4122		end = (start_blk + readed) * sit_i->sents_per_block;
4123
4124		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4125			struct f2fs_sit_block *sit_blk;
4126			struct page *page;
4127
4128			se = &sit_i->sentries[start];
4129			page = get_current_sit_page(sbi, start);
4130			if (IS_ERR(page))
4131				return PTR_ERR(page);
4132			sit_blk = (struct f2fs_sit_block *)page_address(page);
4133			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4134			f2fs_put_page(page, 1);
4135
4136			err = check_block_count(sbi, start, &sit);
4137			if (err)
4138				return err;
4139			seg_info_from_raw_sit(se, &sit);
4140			if (IS_NODESEG(se->type))
4141				total_node_blocks += se->valid_blocks;
4142
4143			/* build discard map only one time */
4144			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4145				memset(se->discard_map, 0xff,
4146					SIT_VBLOCK_MAP_SIZE);
4147			} else {
4148				memcpy(se->discard_map,
4149					se->cur_valid_map,
4150					SIT_VBLOCK_MAP_SIZE);
4151				sbi->discard_blks +=
4152					sbi->blocks_per_seg -
4153					se->valid_blocks;
4154			}
4155
4156			if (__is_large_section(sbi))
4157				get_sec_entry(sbi, start)->valid_blocks +=
4158							se->valid_blocks;
4159		}
4160		start_blk += readed;
4161	} while (start_blk < sit_blk_cnt);
4162
4163	down_read(&curseg->journal_rwsem);
4164	for (i = 0; i < sits_in_cursum(journal); i++) {
4165		unsigned int old_valid_blocks;
4166
4167		start = le32_to_cpu(segno_in_journal(journal, i));
4168		if (start >= MAIN_SEGS(sbi)) {
4169			f2fs_err(sbi, "Wrong journal entry on segno %u",
4170				 start);
4171			err = -EFSCORRUPTED;
4172			break;
4173		}
4174
4175		se = &sit_i->sentries[start];
4176		sit = sit_in_journal(journal, i);
4177
4178		old_valid_blocks = se->valid_blocks;
4179		if (IS_NODESEG(se->type))
4180			total_node_blocks -= old_valid_blocks;
4181
4182		err = check_block_count(sbi, start, &sit);
4183		if (err)
4184			break;
4185		seg_info_from_raw_sit(se, &sit);
4186		if (IS_NODESEG(se->type))
4187			total_node_blocks += se->valid_blocks;
4188
4189		if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4190			memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4191		} else {
4192			memcpy(se->discard_map, se->cur_valid_map,
4193						SIT_VBLOCK_MAP_SIZE);
4194			sbi->discard_blks += old_valid_blocks;
4195			sbi->discard_blks -= se->valid_blocks;
4196		}
4197
4198		if (__is_large_section(sbi)) {
4199			get_sec_entry(sbi, start)->valid_blocks +=
4200							se->valid_blocks;
4201			get_sec_entry(sbi, start)->valid_blocks -=
4202							old_valid_blocks;
4203		}
4204	}
4205	up_read(&curseg->journal_rwsem);
4206
4207	if (!err && total_node_blocks != valid_node_count(sbi)) {
4208		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4209			 total_node_blocks, valid_node_count(sbi));
4210		err = -EFSCORRUPTED;
4211	}
4212
4213	return err;
4214}
4215
4216static void init_free_segmap(struct f2fs_sb_info *sbi)
4217{
4218	unsigned int start;
4219	int type;
4220
4221	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4222		struct seg_entry *sentry = get_seg_entry(sbi, start);
4223		if (!sentry->valid_blocks)
4224			__set_free(sbi, start);
4225		else
4226			SIT_I(sbi)->written_valid_blocks +=
4227						sentry->valid_blocks;
4228	}
4229
4230	/* set use the current segments */
4231	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4232		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4233		__set_test_and_inuse(sbi, curseg_t->segno);
4234	}
4235}
4236
4237static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4238{
4239	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4240	struct free_segmap_info *free_i = FREE_I(sbi);
4241	unsigned int segno = 0, offset = 0;
4242	unsigned short valid_blocks;
4243
4244	while (1) {
4245		/* find dirty segment based on free segmap */
4246		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4247		if (segno >= MAIN_SEGS(sbi))
4248			break;
4249		offset = segno + 1;
4250		valid_blocks = get_valid_blocks(sbi, segno, false);
4251		if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4252			continue;
4253		if (valid_blocks > sbi->blocks_per_seg) {
4254			f2fs_bug_on(sbi, 1);
4255			continue;
4256		}
4257		mutex_lock(&dirty_i->seglist_lock);
4258		__locate_dirty_segment(sbi, segno, DIRTY);
4259		mutex_unlock(&dirty_i->seglist_lock);
4260	}
4261}
4262
4263static int init_victim_secmap(struct f2fs_sb_info *sbi)
4264{
4265	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4266	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4267
4268	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4269	if (!dirty_i->victim_secmap)
4270		return -ENOMEM;
4271	return 0;
4272}
4273
4274static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4275{
4276	struct dirty_seglist_info *dirty_i;
4277	unsigned int bitmap_size, i;
4278
4279	/* allocate memory for dirty segments list information */
4280	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4281								GFP_KERNEL);
4282	if (!dirty_i)
4283		return -ENOMEM;
4284
4285	SM_I(sbi)->dirty_info = dirty_i;
4286	mutex_init(&dirty_i->seglist_lock);
4287
4288	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4289
4290	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4291		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4292								GFP_KERNEL);
4293		if (!dirty_i->dirty_segmap[i])
4294			return -ENOMEM;
4295	}
4296
4297	init_dirty_segmap(sbi);
4298	return init_victim_secmap(sbi);
4299}
4300
4301static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4302{
4303	int i;
4304
4305	/*
4306	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4307	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4308	 */
4309	for (i = 0; i < NO_CHECK_TYPE; i++) {
4310		struct curseg_info *curseg = CURSEG_I(sbi, i);
4311		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4312		unsigned int blkofs = curseg->next_blkoff;
4313
4314		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4315			goto out;
4316
4317		if (curseg->alloc_type == SSR)
4318			continue;
4319
4320		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4321			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4322				continue;
4323out:
4324			f2fs_err(sbi,
4325				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4326				 i, curseg->segno, curseg->alloc_type,
4327				 curseg->next_blkoff, blkofs);
4328			return -EFSCORRUPTED;
4329		}
4330	}
4331	return 0;
4332}
4333
4334/*
4335 * Update min, max modified time for cost-benefit GC algorithm
4336 */
4337static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4338{
4339	struct sit_info *sit_i = SIT_I(sbi);
4340	unsigned int segno;
4341
4342	down_write(&sit_i->sentry_lock);
4343
4344	sit_i->min_mtime = ULLONG_MAX;
4345
4346	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4347		unsigned int i;
4348		unsigned long long mtime = 0;
4349
4350		for (i = 0; i < sbi->segs_per_sec; i++)
4351			mtime += get_seg_entry(sbi, segno + i)->mtime;
4352
4353		mtime = div_u64(mtime, sbi->segs_per_sec);
4354
4355		if (sit_i->min_mtime > mtime)
4356			sit_i->min_mtime = mtime;
4357	}
4358	sit_i->max_mtime = get_mtime(sbi, false);
4359	up_write(&sit_i->sentry_lock);
4360}
4361
4362int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4363{
4364	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4365	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4366	struct f2fs_sm_info *sm_info;
4367	int err;
4368
4369	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4370	if (!sm_info)
4371		return -ENOMEM;
4372
4373	/* init sm info */
4374	sbi->sm_info = sm_info;
4375	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4376	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4377	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4378	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4379	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4380	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4381	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4382	sm_info->rec_prefree_segments = sm_info->main_segments *
4383					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4384	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4385		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4386
4387	if (!test_opt(sbi, LFS))
4388		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4389	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4390	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4391	sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4392	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4393	sm_info->min_ssr_sections = reserved_sections(sbi);
4394
4395	INIT_LIST_HEAD(&sm_info->sit_entry_set);
4396
4397	init_rwsem(&sm_info->curseg_lock);
4398
4399	if (!f2fs_readonly(sbi->sb)) {
4400		err = f2fs_create_flush_cmd_control(sbi);
4401		if (err)
4402			return err;
4403	}
4404
4405	err = create_discard_cmd_control(sbi);
4406	if (err)
4407		return err;
4408
4409	err = build_sit_info(sbi);
4410	if (err)
4411		return err;
4412	err = build_free_segmap(sbi);
4413	if (err)
4414		return err;
4415	err = build_curseg(sbi);
4416	if (err)
4417		return err;
4418
4419	/* reinit free segmap based on SIT */
4420	err = build_sit_entries(sbi);
4421	if (err)
4422		return err;
4423
4424	init_free_segmap(sbi);
4425	err = build_dirty_segmap(sbi);
4426	if (err)
4427		return err;
4428
4429	err = sanity_check_curseg(sbi);
4430	if (err)
4431		return err;
4432
4433	init_min_max_mtime(sbi);
4434	return 0;
4435}
4436
4437static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4438		enum dirty_type dirty_type)
4439{
4440	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4441
4442	mutex_lock(&dirty_i->seglist_lock);
4443	kvfree(dirty_i->dirty_segmap[dirty_type]);
4444	dirty_i->nr_dirty[dirty_type] = 0;
4445	mutex_unlock(&dirty_i->seglist_lock);
4446}
4447
4448static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4449{
4450	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4451	kvfree(dirty_i->victim_secmap);
4452}
4453
4454static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4455{
4456	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4457	int i;
4458
4459	if (!dirty_i)
4460		return;
4461
4462	/* discard pre-free/dirty segments list */
4463	for (i = 0; i < NR_DIRTY_TYPE; i++)
4464		discard_dirty_segmap(sbi, i);
4465
4466	destroy_victim_secmap(sbi);
4467	SM_I(sbi)->dirty_info = NULL;
4468	kvfree(dirty_i);
4469}
4470
4471static void destroy_curseg(struct f2fs_sb_info *sbi)
4472{
4473	struct curseg_info *array = SM_I(sbi)->curseg_array;
4474	int i;
4475
4476	if (!array)
4477		return;
4478	SM_I(sbi)->curseg_array = NULL;
4479	for (i = 0; i < NR_CURSEG_TYPE; i++) {
4480		kvfree(array[i].sum_blk);
4481		kvfree(array[i].journal);
4482	}
4483	kvfree(array);
4484}
4485
4486static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4487{
4488	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4489	if (!free_i)
4490		return;
4491	SM_I(sbi)->free_info = NULL;
4492	kvfree(free_i->free_segmap);
4493	kvfree(free_i->free_secmap);
4494	kvfree(free_i);
4495}
4496
4497static void destroy_sit_info(struct f2fs_sb_info *sbi)
4498{
4499	struct sit_info *sit_i = SIT_I(sbi);
4500
4501	if (!sit_i)
4502		return;
4503
4504	if (sit_i->sentries)
4505		kvfree(sit_i->bitmap);
4506	kvfree(sit_i->tmp_map);
4507
4508	kvfree(sit_i->sentries);
4509	kvfree(sit_i->sec_entries);
4510	kvfree(sit_i->dirty_sentries_bitmap);
4511
4512	SM_I(sbi)->sit_info = NULL;
4513	kvfree(sit_i->sit_bitmap);
4514#ifdef CONFIG_F2FS_CHECK_FS
4515	kvfree(sit_i->sit_bitmap_mir);
4516	kvfree(sit_i->invalid_segmap);
4517#endif
4518	kvfree(sit_i);
4519}
4520
4521void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4522{
4523	struct f2fs_sm_info *sm_info = SM_I(sbi);
4524
4525	if (!sm_info)
4526		return;
4527	f2fs_destroy_flush_cmd_control(sbi, true);
4528	destroy_discard_cmd_control(sbi);
4529	destroy_dirty_segmap(sbi);
4530	destroy_curseg(sbi);
4531	destroy_free_segmap(sbi);
4532	destroy_sit_info(sbi);
4533	sbi->sm_info = NULL;
4534	kvfree(sm_info);
4535}
4536
4537int __init f2fs_create_segment_manager_caches(void)
4538{
4539	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4540			sizeof(struct discard_entry));
4541	if (!discard_entry_slab)
4542		goto fail;
4543
4544	discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4545			sizeof(struct discard_cmd));
4546	if (!discard_cmd_slab)
4547		goto destroy_discard_entry;
4548
4549	sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4550			sizeof(struct sit_entry_set));
4551	if (!sit_entry_set_slab)
4552		goto destroy_discard_cmd;
4553
4554	inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4555			sizeof(struct inmem_pages));
4556	if (!inmem_entry_slab)
4557		goto destroy_sit_entry_set;
4558	return 0;
4559
4560destroy_sit_entry_set:
4561	kmem_cache_destroy(sit_entry_set_slab);
4562destroy_discard_cmd:
4563	kmem_cache_destroy(discard_cmd_slab);
4564destroy_discard_entry:
4565	kmem_cache_destroy(discard_entry_slab);
4566fail:
4567	return -ENOMEM;
4568}
4569
4570void f2fs_destroy_segment_manager_caches(void)
4571{
4572	kmem_cache_destroy(sit_entry_set_slab);
4573	kmem_cache_destroy(discard_cmd_slab);
4574	kmem_cache_destroy(discard_entry_slab);
4575	kmem_cache_destroy(inmem_entry_slab);
4576}