Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 * Copyright (C) 2018 Exceet Electronics GmbH
  4 * Copyright (C) 2018 Bootlin
  5 *
  6 * Author: Boris Brezillon <boris.brezillon@bootlin.com>
  7 */
  8#include <linux/dmaengine.h>
  9#include <linux/pm_runtime.h>
 10#include <linux/spi/spi.h>
 11#include <linux/spi/spi-mem.h>
 12
 13#include "internals.h"
 14
 15#define SPI_MEM_MAX_BUSWIDTH		8
 16
 17/**
 18 * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
 19 *					  memory operation
 20 * @ctlr: the SPI controller requesting this dma_map()
 21 * @op: the memory operation containing the buffer to map
 22 * @sgt: a pointer to a non-initialized sg_table that will be filled by this
 23 *	 function
 24 *
 25 * Some controllers might want to do DMA on the data buffer embedded in @op.
 26 * This helper prepares everything for you and provides a ready-to-use
 27 * sg_table. This function is not intended to be called from spi drivers.
 28 * Only SPI controller drivers should use it.
 29 * Note that the caller must ensure the memory region pointed by
 30 * op->data.buf.{in,out} is DMA-able before calling this function.
 31 *
 32 * Return: 0 in case of success, a negative error code otherwise.
 33 */
 34int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
 35				       const struct spi_mem_op *op,
 36				       struct sg_table *sgt)
 37{
 38	struct device *dmadev;
 39
 40	if (!op->data.nbytes)
 41		return -EINVAL;
 42
 43	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
 44		dmadev = ctlr->dma_tx->device->dev;
 45	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
 46		dmadev = ctlr->dma_rx->device->dev;
 47	else
 48		dmadev = ctlr->dev.parent;
 49
 50	if (!dmadev)
 51		return -EINVAL;
 52
 53	return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
 54			   op->data.dir == SPI_MEM_DATA_IN ?
 55			   DMA_FROM_DEVICE : DMA_TO_DEVICE);
 56}
 57EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
 58
 59/**
 60 * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
 61 *					    memory operation
 62 * @ctlr: the SPI controller requesting this dma_unmap()
 63 * @op: the memory operation containing the buffer to unmap
 64 * @sgt: a pointer to an sg_table previously initialized by
 65 *	 spi_controller_dma_map_mem_op_data()
 66 *
 67 * Some controllers might want to do DMA on the data buffer embedded in @op.
 68 * This helper prepares things so that the CPU can access the
 69 * op->data.buf.{in,out} buffer again.
 70 *
 71 * This function is not intended to be called from SPI drivers. Only SPI
 72 * controller drivers should use it.
 73 *
 74 * This function should be called after the DMA operation has finished and is
 75 * only valid if the previous spi_controller_dma_map_mem_op_data() call
 76 * returned 0.
 77 *
 78 * Return: 0 in case of success, a negative error code otherwise.
 79 */
 80void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
 81					  const struct spi_mem_op *op,
 82					  struct sg_table *sgt)
 83{
 84	struct device *dmadev;
 85
 86	if (!op->data.nbytes)
 87		return;
 88
 89	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
 90		dmadev = ctlr->dma_tx->device->dev;
 91	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
 92		dmadev = ctlr->dma_rx->device->dev;
 93	else
 94		dmadev = ctlr->dev.parent;
 95
 96	spi_unmap_buf(ctlr, dmadev, sgt,
 97		      op->data.dir == SPI_MEM_DATA_IN ?
 98		      DMA_FROM_DEVICE : DMA_TO_DEVICE);
 99}
100EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
101
102static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
103{
104	u32 mode = mem->spi->mode;
105
106	switch (buswidth) {
107	case 1:
108		return 0;
109
110	case 2:
111		if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) ||
112		    (!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD))))
113			return 0;
114
115		break;
116
117	case 4:
118		if ((tx && (mode & SPI_TX_QUAD)) ||
119		    (!tx && (mode & SPI_RX_QUAD)))
120			return 0;
121
122		break;
123
124	case 8:
125		if ((tx && (mode & SPI_TX_OCTAL)) ||
126		    (!tx && (mode & SPI_RX_OCTAL)))
127			return 0;
128
129		break;
130
131	default:
132		break;
133	}
134
135	return -ENOTSUPP;
136}
137
138bool spi_mem_default_supports_op(struct spi_mem *mem,
139				 const struct spi_mem_op *op)
140{
141	if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
142		return false;
143
144	if (op->addr.nbytes &&
145	    spi_check_buswidth_req(mem, op->addr.buswidth, true))
146		return false;
147
148	if (op->dummy.nbytes &&
149	    spi_check_buswidth_req(mem, op->dummy.buswidth, true))
150		return false;
151
152	if (op->data.dir != SPI_MEM_NO_DATA &&
153	    spi_check_buswidth_req(mem, op->data.buswidth,
154				   op->data.dir == SPI_MEM_DATA_OUT))
155		return false;
156
157	return true;
158}
159EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
160
161static bool spi_mem_buswidth_is_valid(u8 buswidth)
162{
163	if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH)
164		return false;
165
166	return true;
167}
168
169static int spi_mem_check_op(const struct spi_mem_op *op)
170{
171	if (!op->cmd.buswidth)
172		return -EINVAL;
173
174	if ((op->addr.nbytes && !op->addr.buswidth) ||
175	    (op->dummy.nbytes && !op->dummy.buswidth) ||
176	    (op->data.nbytes && !op->data.buswidth))
177		return -EINVAL;
178
179	if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) ||
180	    !spi_mem_buswidth_is_valid(op->addr.buswidth) ||
181	    !spi_mem_buswidth_is_valid(op->dummy.buswidth) ||
182	    !spi_mem_buswidth_is_valid(op->data.buswidth))
183		return -EINVAL;
184
185	return 0;
186}
187
188static bool spi_mem_internal_supports_op(struct spi_mem *mem,
189					 const struct spi_mem_op *op)
190{
191	struct spi_controller *ctlr = mem->spi->controller;
192
193	if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
194		return ctlr->mem_ops->supports_op(mem, op);
195
196	return spi_mem_default_supports_op(mem, op);
197}
198
199/**
200 * spi_mem_supports_op() - Check if a memory device and the controller it is
201 *			   connected to support a specific memory operation
202 * @mem: the SPI memory
203 * @op: the memory operation to check
204 *
205 * Some controllers are only supporting Single or Dual IOs, others might only
206 * support specific opcodes, or it can even be that the controller and device
207 * both support Quad IOs but the hardware prevents you from using it because
208 * only 2 IO lines are connected.
209 *
210 * This function checks whether a specific operation is supported.
211 *
212 * Return: true if @op is supported, false otherwise.
213 */
214bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
215{
216	if (spi_mem_check_op(op))
217		return false;
218
219	return spi_mem_internal_supports_op(mem, op);
220}
221EXPORT_SYMBOL_GPL(spi_mem_supports_op);
222
223static int spi_mem_access_start(struct spi_mem *mem)
224{
225	struct spi_controller *ctlr = mem->spi->controller;
226
227	/*
228	 * Flush the message queue before executing our SPI memory
229	 * operation to prevent preemption of regular SPI transfers.
230	 */
231	spi_flush_queue(ctlr);
232
233	if (ctlr->auto_runtime_pm) {
234		int ret;
235
236		ret = pm_runtime_get_sync(ctlr->dev.parent);
237		if (ret < 0) {
238			dev_err(&ctlr->dev, "Failed to power device: %d\n",
239				ret);
240			return ret;
241		}
242	}
243
244	mutex_lock(&ctlr->bus_lock_mutex);
245	mutex_lock(&ctlr->io_mutex);
246
247	return 0;
248}
249
250static void spi_mem_access_end(struct spi_mem *mem)
251{
252	struct spi_controller *ctlr = mem->spi->controller;
253
254	mutex_unlock(&ctlr->io_mutex);
255	mutex_unlock(&ctlr->bus_lock_mutex);
256
257	if (ctlr->auto_runtime_pm)
258		pm_runtime_put(ctlr->dev.parent);
259}
260
261/**
262 * spi_mem_exec_op() - Execute a memory operation
263 * @mem: the SPI memory
264 * @op: the memory operation to execute
265 *
266 * Executes a memory operation.
267 *
268 * This function first checks that @op is supported and then tries to execute
269 * it.
270 *
271 * Return: 0 in case of success, a negative error code otherwise.
272 */
273int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
274{
275	unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
276	struct spi_controller *ctlr = mem->spi->controller;
277	struct spi_transfer xfers[4] = { };
278	struct spi_message msg;
279	u8 *tmpbuf;
280	int ret;
281
282	ret = spi_mem_check_op(op);
283	if (ret)
284		return ret;
285
286	if (!spi_mem_internal_supports_op(mem, op))
287		return -ENOTSUPP;
288
289	if (ctlr->mem_ops) {
290		ret = spi_mem_access_start(mem);
291		if (ret)
292			return ret;
293
294		ret = ctlr->mem_ops->exec_op(mem, op);
295
296		spi_mem_access_end(mem);
297
298		/*
299		 * Some controllers only optimize specific paths (typically the
300		 * read path) and expect the core to use the regular SPI
301		 * interface in other cases.
302		 */
303		if (!ret || ret != -ENOTSUPP)
304			return ret;
305	}
306
307	tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes +
308		     op->dummy.nbytes;
309
310	/*
311	 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
312	 * we're guaranteed that this buffer is DMA-able, as required by the
313	 * SPI layer.
314	 */
315	tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
316	if (!tmpbuf)
317		return -ENOMEM;
318
319	spi_message_init(&msg);
320
321	tmpbuf[0] = op->cmd.opcode;
322	xfers[xferpos].tx_buf = tmpbuf;
323	xfers[xferpos].len = sizeof(op->cmd.opcode);
324	xfers[xferpos].tx_nbits = op->cmd.buswidth;
325	spi_message_add_tail(&xfers[xferpos], &msg);
326	xferpos++;
327	totalxferlen++;
328
329	if (op->addr.nbytes) {
330		int i;
331
332		for (i = 0; i < op->addr.nbytes; i++)
333			tmpbuf[i + 1] = op->addr.val >>
334					(8 * (op->addr.nbytes - i - 1));
335
336		xfers[xferpos].tx_buf = tmpbuf + 1;
337		xfers[xferpos].len = op->addr.nbytes;
338		xfers[xferpos].tx_nbits = op->addr.buswidth;
339		spi_message_add_tail(&xfers[xferpos], &msg);
340		xferpos++;
341		totalxferlen += op->addr.nbytes;
342	}
343
344	if (op->dummy.nbytes) {
345		memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
346		xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
347		xfers[xferpos].len = op->dummy.nbytes;
348		xfers[xferpos].tx_nbits = op->dummy.buswidth;
349		spi_message_add_tail(&xfers[xferpos], &msg);
350		xferpos++;
351		totalxferlen += op->dummy.nbytes;
352	}
353
354	if (op->data.nbytes) {
355		if (op->data.dir == SPI_MEM_DATA_IN) {
356			xfers[xferpos].rx_buf = op->data.buf.in;
357			xfers[xferpos].rx_nbits = op->data.buswidth;
358		} else {
359			xfers[xferpos].tx_buf = op->data.buf.out;
360			xfers[xferpos].tx_nbits = op->data.buswidth;
361		}
362
363		xfers[xferpos].len = op->data.nbytes;
364		spi_message_add_tail(&xfers[xferpos], &msg);
365		xferpos++;
366		totalxferlen += op->data.nbytes;
367	}
368
369	ret = spi_sync(mem->spi, &msg);
370
371	kfree(tmpbuf);
372
373	if (ret)
374		return ret;
375
376	if (msg.actual_length != totalxferlen)
377		return -EIO;
378
379	return 0;
380}
381EXPORT_SYMBOL_GPL(spi_mem_exec_op);
382
383/**
384 * spi_mem_get_name() - Return the SPI mem device name to be used by the
385 *			upper layer if necessary
386 * @mem: the SPI memory
387 *
388 * This function allows SPI mem users to retrieve the SPI mem device name.
389 * It is useful if the upper layer needs to expose a custom name for
390 * compatibility reasons.
391 *
392 * Return: a string containing the name of the memory device to be used
393 *	   by the SPI mem user
394 */
395const char *spi_mem_get_name(struct spi_mem *mem)
396{
397	return mem->name;
398}
399EXPORT_SYMBOL_GPL(spi_mem_get_name);
400
401/**
402 * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
403 *			      match controller limitations
404 * @mem: the SPI memory
405 * @op: the operation to adjust
406 *
407 * Some controllers have FIFO limitations and must split a data transfer
408 * operation into multiple ones, others require a specific alignment for
409 * optimized accesses. This function allows SPI mem drivers to split a single
410 * operation into multiple sub-operations when required.
411 *
412 * Return: a negative error code if the controller can't properly adjust @op,
413 *	   0 otherwise. Note that @op->data.nbytes will be updated if @op
414 *	   can't be handled in a single step.
415 */
416int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
417{
418	struct spi_controller *ctlr = mem->spi->controller;
419	size_t len;
420
421	len = sizeof(op->cmd.opcode) + op->addr.nbytes + op->dummy.nbytes;
422
423	if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
424		return ctlr->mem_ops->adjust_op_size(mem, op);
425
426	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
427		if (len > spi_max_transfer_size(mem->spi))
428			return -EINVAL;
429
430		op->data.nbytes = min3((size_t)op->data.nbytes,
431				       spi_max_transfer_size(mem->spi),
432				       spi_max_message_size(mem->spi) -
433				       len);
434		if (!op->data.nbytes)
435			return -EINVAL;
436	}
437
438	return 0;
439}
440EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
441
442static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
443				      u64 offs, size_t len, void *buf)
444{
445	struct spi_mem_op op = desc->info.op_tmpl;
446	int ret;
447
448	op.addr.val = desc->info.offset + offs;
449	op.data.buf.in = buf;
450	op.data.nbytes = len;
451	ret = spi_mem_adjust_op_size(desc->mem, &op);
452	if (ret)
453		return ret;
454
455	ret = spi_mem_exec_op(desc->mem, &op);
456	if (ret)
457		return ret;
458
459	return op.data.nbytes;
460}
461
462static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
463				       u64 offs, size_t len, const void *buf)
464{
465	struct spi_mem_op op = desc->info.op_tmpl;
466	int ret;
467
468	op.addr.val = desc->info.offset + offs;
469	op.data.buf.out = buf;
470	op.data.nbytes = len;
471	ret = spi_mem_adjust_op_size(desc->mem, &op);
472	if (ret)
473		return ret;
474
475	ret = spi_mem_exec_op(desc->mem, &op);
476	if (ret)
477		return ret;
478
479	return op.data.nbytes;
480}
481
482/**
483 * spi_mem_dirmap_create() - Create a direct mapping descriptor
484 * @mem: SPI mem device this direct mapping should be created for
485 * @info: direct mapping information
486 *
487 * This function is creating a direct mapping descriptor which can then be used
488 * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
489 * If the SPI controller driver does not support direct mapping, this function
490 * fallback to an implementation using spi_mem_exec_op(), so that the caller
491 * doesn't have to bother implementing a fallback on his own.
492 *
493 * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
494 */
495struct spi_mem_dirmap_desc *
496spi_mem_dirmap_create(struct spi_mem *mem,
497		      const struct spi_mem_dirmap_info *info)
498{
499	struct spi_controller *ctlr = mem->spi->controller;
500	struct spi_mem_dirmap_desc *desc;
501	int ret = -ENOTSUPP;
502
503	/* Make sure the number of address cycles is between 1 and 8 bytes. */
504	if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
505		return ERR_PTR(-EINVAL);
506
507	/* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
508	if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
509		return ERR_PTR(-EINVAL);
510
511	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
512	if (!desc)
513		return ERR_PTR(-ENOMEM);
514
515	desc->mem = mem;
516	desc->info = *info;
517	if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create)
518		ret = ctlr->mem_ops->dirmap_create(desc);
519
520	if (ret) {
521		desc->nodirmap = true;
522		if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
523			ret = -ENOTSUPP;
524		else
525			ret = 0;
526	}
527
528	if (ret) {
529		kfree(desc);
530		return ERR_PTR(ret);
531	}
532
533	return desc;
534}
535EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
536
537/**
538 * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
539 * @desc: the direct mapping descriptor to destroy
540 *
541 * This function destroys a direct mapping descriptor previously created by
542 * spi_mem_dirmap_create().
543 */
544void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
545{
546	struct spi_controller *ctlr = desc->mem->spi->controller;
547
548	if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy)
549		ctlr->mem_ops->dirmap_destroy(desc);
550
551	kfree(desc);
552}
553EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
554
555static void devm_spi_mem_dirmap_release(struct device *dev, void *res)
556{
557	struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res;
558
559	spi_mem_dirmap_destroy(desc);
560}
561
562/**
563 * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
564 *				  it to a device
565 * @dev: device the dirmap desc will be attached to
566 * @mem: SPI mem device this direct mapping should be created for
567 * @info: direct mapping information
568 *
569 * devm_ variant of the spi_mem_dirmap_create() function. See
570 * spi_mem_dirmap_create() for more details.
571 *
572 * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
573 */
574struct spi_mem_dirmap_desc *
575devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
576			   const struct spi_mem_dirmap_info *info)
577{
578	struct spi_mem_dirmap_desc **ptr, *desc;
579
580	ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr),
581			   GFP_KERNEL);
582	if (!ptr)
583		return ERR_PTR(-ENOMEM);
584
585	desc = spi_mem_dirmap_create(mem, info);
586	if (IS_ERR(desc)) {
587		devres_free(ptr);
588	} else {
589		*ptr = desc;
590		devres_add(dev, ptr);
591	}
592
593	return desc;
594}
595EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create);
596
597static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data)
598{
599        struct spi_mem_dirmap_desc **ptr = res;
600
601        if (WARN_ON(!ptr || !*ptr))
602                return 0;
603
604	return *ptr == data;
605}
606
607/**
608 * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
609 *				   to a device
610 * @dev: device the dirmap desc is attached to
611 * @desc: the direct mapping descriptor to destroy
612 *
613 * devm_ variant of the spi_mem_dirmap_destroy() function. See
614 * spi_mem_dirmap_destroy() for more details.
615 */
616void devm_spi_mem_dirmap_destroy(struct device *dev,
617				 struct spi_mem_dirmap_desc *desc)
618{
619	devres_release(dev, devm_spi_mem_dirmap_release,
620		       devm_spi_mem_dirmap_match, desc);
621}
622EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy);
623
624/**
625 * spi_mem_dirmap_read() - Read data through a direct mapping
626 * @desc: direct mapping descriptor
627 * @offs: offset to start reading from. Note that this is not an absolute
628 *	  offset, but the offset within the direct mapping which already has
629 *	  its own offset
630 * @len: length in bytes
631 * @buf: destination buffer. This buffer must be DMA-able
632 *
633 * This function reads data from a memory device using a direct mapping
634 * previously instantiated with spi_mem_dirmap_create().
635 *
636 * Return: the amount of data read from the memory device or a negative error
637 * code. Note that the returned size might be smaller than @len, and the caller
638 * is responsible for calling spi_mem_dirmap_read() again when that happens.
639 */
640ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
641			    u64 offs, size_t len, void *buf)
642{
643	struct spi_controller *ctlr = desc->mem->spi->controller;
644	ssize_t ret;
645
646	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
647		return -EINVAL;
648
649	if (!len)
650		return 0;
651
652	if (desc->nodirmap) {
653		ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
654	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) {
655		ret = spi_mem_access_start(desc->mem);
656		if (ret)
657			return ret;
658
659		ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf);
660
661		spi_mem_access_end(desc->mem);
662	} else {
663		ret = -ENOTSUPP;
664	}
665
666	return ret;
667}
668EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
669
670/**
671 * spi_mem_dirmap_write() - Write data through a direct mapping
672 * @desc: direct mapping descriptor
673 * @offs: offset to start writing from. Note that this is not an absolute
674 *	  offset, but the offset within the direct mapping which already has
675 *	  its own offset
676 * @len: length in bytes
677 * @buf: source buffer. This buffer must be DMA-able
678 *
679 * This function writes data to a memory device using a direct mapping
680 * previously instantiated with spi_mem_dirmap_create().
681 *
682 * Return: the amount of data written to the memory device or a negative error
683 * code. Note that the returned size might be smaller than @len, and the caller
684 * is responsible for calling spi_mem_dirmap_write() again when that happens.
685 */
686ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
687			     u64 offs, size_t len, const void *buf)
688{
689	struct spi_controller *ctlr = desc->mem->spi->controller;
690	ssize_t ret;
691
692	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
693		return -EINVAL;
694
695	if (!len)
696		return 0;
697
698	if (desc->nodirmap) {
699		ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
700	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) {
701		ret = spi_mem_access_start(desc->mem);
702		if (ret)
703			return ret;
704
705		ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf);
706
707		spi_mem_access_end(desc->mem);
708	} else {
709		ret = -ENOTSUPP;
710	}
711
712	return ret;
713}
714EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
715
716static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
717{
718	return container_of(drv, struct spi_mem_driver, spidrv.driver);
719}
720
721static int spi_mem_probe(struct spi_device *spi)
722{
723	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
724	struct spi_controller *ctlr = spi->controller;
725	struct spi_mem *mem;
726
727	mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
728	if (!mem)
729		return -ENOMEM;
730
731	mem->spi = spi;
732
733	if (ctlr->mem_ops && ctlr->mem_ops->get_name)
734		mem->name = ctlr->mem_ops->get_name(mem);
735	else
736		mem->name = dev_name(&spi->dev);
737
738	if (IS_ERR_OR_NULL(mem->name))
739		return PTR_ERR(mem->name);
740
741	spi_set_drvdata(spi, mem);
742
743	return memdrv->probe(mem);
744}
745
746static int spi_mem_remove(struct spi_device *spi)
747{
748	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
749	struct spi_mem *mem = spi_get_drvdata(spi);
750
751	if (memdrv->remove)
752		return memdrv->remove(mem);
753
754	return 0;
755}
756
757static void spi_mem_shutdown(struct spi_device *spi)
758{
759	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
760	struct spi_mem *mem = spi_get_drvdata(spi);
761
762	if (memdrv->shutdown)
763		memdrv->shutdown(mem);
764}
765
766/**
767 * spi_mem_driver_register_with_owner() - Register a SPI memory driver
768 * @memdrv: the SPI memory driver to register
769 * @owner: the owner of this driver
770 *
771 * Registers a SPI memory driver.
772 *
773 * Return: 0 in case of success, a negative error core otherwise.
774 */
775
776int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
777				       struct module *owner)
778{
779	memdrv->spidrv.probe = spi_mem_probe;
780	memdrv->spidrv.remove = spi_mem_remove;
781	memdrv->spidrv.shutdown = spi_mem_shutdown;
782
783	return __spi_register_driver(owner, &memdrv->spidrv);
784}
785EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
786
787/**
788 * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
789 * @memdrv: the SPI memory driver to unregister
790 *
791 * Unregisters a SPI memory driver.
792 */
793void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
794{
795	spi_unregister_driver(&memdrv->spidrv);
796}
797EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);