Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * Special handling for DW core on Intel MID platform
  3 *
  4 * Copyright (c) 2009, Intel Corporation.
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms and conditions of the GNU General Public License,
  8 * version 2, as published by the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope it will be useful, but WITHOUT
 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13 * more details.
 14 *
 15 * You should have received a copy of the GNU General Public License along
 16 * with this program; if not, write to the Free Software Foundation,
 17 * Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 18 */
 19
 20#include <linux/dma-mapping.h>
 21#include <linux/dmaengine.h>
 22#include <linux/interrupt.h>
 23#include <linux/slab.h>
 24#include <linux/spi/spi.h>
 25#include <linux/types.h>
 26
 27#include "spi-dw.h"
 28
 29#ifdef CONFIG_SPI_DW_MID_DMA
 30#include <linux/intel_mid_dma.h>
 31#include <linux/pci.h>
 
 32
 33struct mid_dma {
 34	struct intel_mid_dma_slave	dmas_tx;
 35	struct intel_mid_dma_slave	dmas_rx;
 36};
 
 37
 38static bool mid_spi_dma_chan_filter(struct dma_chan *chan, void *param)
 39{
 40	struct dw_spi *dws = param;
 41
 42	return dws->dmac && (&dws->dmac->dev == chan->device->dev);
 
 
 
 
 43}
 44
 45static int mid_spi_dma_init(struct dw_spi *dws)
 46{
 47	struct mid_dma *dw_dma = dws->dma_priv;
 48	struct intel_mid_dma_slave *rxs, *txs;
 
 49	dma_cap_mask_t mask;
 50
 51	/*
 52	 * Get pci device for DMA controller, currently it could only
 53	 * be the DMA controller of either Moorestown or Medfield
 54	 */
 55	dws->dmac = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0813, NULL);
 56	if (!dws->dmac)
 57		dws->dmac = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
 58
 59	dma_cap_zero(mask);
 60	dma_cap_set(DMA_SLAVE, mask);
 61
 62	/* 1. Init rx channel */
 63	dws->rxchan = dma_request_channel(mask, mid_spi_dma_chan_filter, dws);
 
 64	if (!dws->rxchan)
 65		goto err_exit;
 66	rxs = &dw_dma->dmas_rx;
 67	rxs->hs_mode = LNW_DMA_HW_HS;
 68	rxs->cfg_mode = LNW_DMA_PER_TO_MEM;
 69	dws->rxchan->private = rxs;
 70
 71	/* 2. Init tx channel */
 72	dws->txchan = dma_request_channel(mask, mid_spi_dma_chan_filter, dws);
 
 73	if (!dws->txchan)
 74		goto free_rxchan;
 75	txs = &dw_dma->dmas_tx;
 76	txs->hs_mode = LNW_DMA_HW_HS;
 77	txs->cfg_mode = LNW_DMA_MEM_TO_PER;
 78	dws->txchan->private = txs;
 79
 80	dws->dma_inited = 1;
 81	return 0;
 82
 83free_rxchan:
 84	dma_release_channel(dws->rxchan);
 85err_exit:
 86	return -1;
 87
 88}
 89
 90static void mid_spi_dma_exit(struct dw_spi *dws)
 91{
 
 
 
 
 92	dma_release_channel(dws->txchan);
 
 
 93	dma_release_channel(dws->rxchan);
 94}
 95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 96/*
 97 * dws->dma_chan_done is cleared before the dma transfer starts,
 98 * callback for rx/tx channel will each increment it by 1.
 99 * Reaching 2 means the whole spi transaction is done.
100 */
101static void dw_spi_dma_done(void *arg)
102{
103	struct dw_spi *dws = arg;
104
105	if (++dws->dma_chan_done != 2)
 
106		return;
107	dw_spi_xfer_done(dws);
108}
109
110static int mid_spi_dma_transfer(struct dw_spi *dws, int cs_change)
 
111{
112	struct dma_async_tx_descriptor *txdesc = NULL, *rxdesc = NULL;
113	struct dma_chan *txchan, *rxchan;
114	struct dma_slave_config txconf, rxconf;
115	u16 dma_ctrl = 0;
116
117	/* 1. setup DMA related registers */
118	if (cs_change) {
119		spi_enable_chip(dws, 0);
120		dw_writew(dws, DW_SPI_DMARDLR, 0xf);
121		dw_writew(dws, DW_SPI_DMATDLR, 0x10);
122		if (dws->tx_dma)
123			dma_ctrl |= 0x2;
124		if (dws->rx_dma)
125			dma_ctrl |= 0x1;
126		dw_writew(dws, DW_SPI_DMACR, dma_ctrl);
127		spi_enable_chip(dws, 1);
128	}
129
130	dws->dma_chan_done = 0;
131	txchan = dws->txchan;
132	rxchan = dws->rxchan;
133
134	/* 2. Prepare the TX dma transfer */
135	txconf.direction = DMA_MEM_TO_DEV;
136	txconf.dst_addr = dws->dma_addr;
137	txconf.dst_maxburst = LNW_DMA_MSIZE_16;
138	txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
139	txconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
140	txconf.device_fc = false;
141
142	txchan->device->device_control(txchan, DMA_SLAVE_CONFIG,
143				       (unsigned long) &txconf);
144
145	memset(&dws->tx_sgl, 0, sizeof(dws->tx_sgl));
146	dws->tx_sgl.dma_address = dws->tx_dma;
147	dws->tx_sgl.length = dws->len;
148
149	txdesc = dmaengine_prep_slave_sg(txchan,
150				&dws->tx_sgl,
151				1,
152				DMA_MEM_TO_DEV,
153				DMA_PREP_INTERRUPT | DMA_COMPL_SKIP_DEST_UNMAP);
154	txdesc->callback = dw_spi_dma_done;
 
 
 
155	txdesc->callback_param = dws;
156
157	/* 3. Prepare the RX dma transfer */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158	rxconf.direction = DMA_DEV_TO_MEM;
159	rxconf.src_addr = dws->dma_addr;
160	rxconf.src_maxburst = LNW_DMA_MSIZE_16;
161	rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
162	rxconf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
163	rxconf.device_fc = false;
164
165	rxchan->device->device_control(rxchan, DMA_SLAVE_CONFIG,
166				       (unsigned long) &rxconf);
167
168	memset(&dws->rx_sgl, 0, sizeof(dws->rx_sgl));
169	dws->rx_sgl.dma_address = dws->rx_dma;
170	dws->rx_sgl.length = dws->len;
171
172	rxdesc = dmaengine_prep_slave_sg(rxchan,
173				&dws->rx_sgl,
174				1,
175				DMA_DEV_TO_MEM,
176				DMA_PREP_INTERRUPT | DMA_COMPL_SKIP_DEST_UNMAP);
177	rxdesc->callback = dw_spi_dma_done;
 
 
 
178	rxdesc->callback_param = dws;
179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
180	/* rx must be started before tx due to spi instinct */
181	rxdesc->tx_submit(rxdesc);
182	txdesc->tx_submit(txdesc);
 
 
 
 
 
 
 
 
 
 
183	return 0;
184}
185
186static struct dw_spi_dma_ops mid_dma_ops = {
 
 
 
 
 
 
 
 
 
 
 
 
187	.dma_init	= mid_spi_dma_init,
188	.dma_exit	= mid_spi_dma_exit,
 
 
189	.dma_transfer	= mid_spi_dma_transfer,
 
190};
191#endif
192
193/* Some specific info for SPI0 controller on Moorestown */
194
195/* HW info for MRST CLk Control Unit, one 32b reg */
196#define MRST_SPI_CLK_BASE	100000000	/* 100m */
197#define MRST_CLK_SPI0_REG	0xff11d86c
198#define CLK_SPI_BDIV_OFFSET	0
199#define CLK_SPI_BDIV_MASK	0x00000007
200#define CLK_SPI_CDIV_OFFSET	9
201#define CLK_SPI_CDIV_MASK	0x00000e00
202#define CLK_SPI_DISABLE_OFFSET	8
203
204int dw_spi_mid_init(struct dw_spi *dws)
205{
206	void __iomem *clk_reg;
207	u32 clk_cdiv;
208
209	clk_reg = ioremap_nocache(MRST_CLK_SPI0_REG, 16);
210	if (!clk_reg)
211		return -ENOMEM;
212
213	/* get SPI controller operating freq info */
214	clk_cdiv  = (readl(clk_reg) & CLK_SPI_CDIV_MASK) >> CLK_SPI_CDIV_OFFSET;
 
 
215	dws->max_freq = MRST_SPI_CLK_BASE / (clk_cdiv + 1);
216	iounmap(clk_reg);
217
218	dws->num_cs = 16;
219	dws->fifo_len = 40;	/* FIFO has 40 words buffer */
220
221#ifdef CONFIG_SPI_DW_MID_DMA
222	dws->dma_priv = kzalloc(sizeof(struct mid_dma), GFP_KERNEL);
223	if (!dws->dma_priv)
224		return -ENOMEM;
225	dws->dma_ops = &mid_dma_ops;
226#endif
227	return 0;
228}
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Special handling for DW core on Intel MID platform
  4 *
  5 * Copyright (c) 2009, 2014 Intel Corporation.
 
 
 
 
 
 
 
 
 
 
 
 
 
  6 */
  7
  8#include <linux/dma-mapping.h>
  9#include <linux/dmaengine.h>
 10#include <linux/interrupt.h>
 11#include <linux/slab.h>
 12#include <linux/spi/spi.h>
 13#include <linux/types.h>
 14
 15#include "spi-dw.h"
 16
 17#ifdef CONFIG_SPI_DW_MID_DMA
 
 18#include <linux/pci.h>
 19#include <linux/platform_data/dma-dw.h>
 20
 21#define RX_BUSY		0
 22#define TX_BUSY		1
 23
 24static struct dw_dma_slave mid_dma_tx = { .dst_id = 1 };
 25static struct dw_dma_slave mid_dma_rx = { .src_id = 0 };
 26
 27static bool mid_spi_dma_chan_filter(struct dma_chan *chan, void *param)
 28{
 29	struct dw_dma_slave *s = param;
 30
 31	if (s->dma_dev != chan->device->dev)
 32		return false;
 33
 34	chan->private = s;
 35	return true;
 36}
 37
 38static int mid_spi_dma_init(struct dw_spi *dws)
 39{
 40	struct pci_dev *dma_dev;
 41	struct dw_dma_slave *tx = dws->dma_tx;
 42	struct dw_dma_slave *rx = dws->dma_rx;
 43	dma_cap_mask_t mask;
 44
 45	/*
 46	 * Get pci device for DMA controller, currently it could only
 47	 * be the DMA controller of Medfield
 48	 */
 49	dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
 50	if (!dma_dev)
 51		return -ENODEV;
 52
 53	dma_cap_zero(mask);
 54	dma_cap_set(DMA_SLAVE, mask);
 55
 56	/* 1. Init rx channel */
 57	rx->dma_dev = &dma_dev->dev;
 58	dws->rxchan = dma_request_channel(mask, mid_spi_dma_chan_filter, rx);
 59	if (!dws->rxchan)
 60		goto err_exit;
 61	dws->master->dma_rx = dws->rxchan;
 
 
 
 62
 63	/* 2. Init tx channel */
 64	tx->dma_dev = &dma_dev->dev;
 65	dws->txchan = dma_request_channel(mask, mid_spi_dma_chan_filter, tx);
 66	if (!dws->txchan)
 67		goto free_rxchan;
 68	dws->master->dma_tx = dws->txchan;
 
 
 
 69
 70	dws->dma_inited = 1;
 71	return 0;
 72
 73free_rxchan:
 74	dma_release_channel(dws->rxchan);
 75err_exit:
 76	return -EBUSY;
 
 77}
 78
 79static void mid_spi_dma_exit(struct dw_spi *dws)
 80{
 81	if (!dws->dma_inited)
 82		return;
 83
 84	dmaengine_terminate_sync(dws->txchan);
 85	dma_release_channel(dws->txchan);
 86
 87	dmaengine_terminate_sync(dws->rxchan);
 88	dma_release_channel(dws->rxchan);
 89}
 90
 91static irqreturn_t dma_transfer(struct dw_spi *dws)
 92{
 93	u16 irq_status = dw_readl(dws, DW_SPI_ISR);
 94
 95	if (!irq_status)
 96		return IRQ_NONE;
 97
 98	dw_readl(dws, DW_SPI_ICR);
 99	spi_reset_chip(dws);
100
101	dev_err(&dws->master->dev, "%s: FIFO overrun/underrun\n", __func__);
102	dws->master->cur_msg->status = -EIO;
103	spi_finalize_current_transfer(dws->master);
104	return IRQ_HANDLED;
105}
106
107static bool mid_spi_can_dma(struct spi_controller *master,
108		struct spi_device *spi, struct spi_transfer *xfer)
109{
110	struct dw_spi *dws = spi_controller_get_devdata(master);
111
112	if (!dws->dma_inited)
113		return false;
114
115	return xfer->len > dws->fifo_len;
116}
117
118static enum dma_slave_buswidth convert_dma_width(u32 dma_width) {
119	if (dma_width == 1)
120		return DMA_SLAVE_BUSWIDTH_1_BYTE;
121	else if (dma_width == 2)
122		return DMA_SLAVE_BUSWIDTH_2_BYTES;
123
124	return DMA_SLAVE_BUSWIDTH_UNDEFINED;
125}
126
127/*
128 * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
129 * channel will clear a corresponding bit.
 
130 */
131static void dw_spi_dma_tx_done(void *arg)
132{
133	struct dw_spi *dws = arg;
134
135	clear_bit(TX_BUSY, &dws->dma_chan_busy);
136	if (test_bit(RX_BUSY, &dws->dma_chan_busy))
137		return;
138	spi_finalize_current_transfer(dws->master);
139}
140
141static struct dma_async_tx_descriptor *dw_spi_dma_prepare_tx(struct dw_spi *dws,
142		struct spi_transfer *xfer)
143{
144	struct dma_slave_config txconf;
145	struct dma_async_tx_descriptor *txdesc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
147	if (!xfer->tx_buf)
148		return NULL;
 
149
 
150	txconf.direction = DMA_MEM_TO_DEV;
151	txconf.dst_addr = dws->dma_addr;
152	txconf.dst_maxburst = 16;
153	txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
154	txconf.dst_addr_width = convert_dma_width(dws->dma_width);
155	txconf.device_fc = false;
156
157	dmaengine_slave_config(dws->txchan, &txconf);
 
158
159	txdesc = dmaengine_prep_slave_sg(dws->txchan,
160				xfer->tx_sg.sgl,
161				xfer->tx_sg.nents,
 
 
 
 
162				DMA_MEM_TO_DEV,
163				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
164	if (!txdesc)
165		return NULL;
166
167	txdesc->callback = dw_spi_dma_tx_done;
168	txdesc->callback_param = dws;
169
170	return txdesc;
171}
172
173/*
174 * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
175 * channel will clear a corresponding bit.
176 */
177static void dw_spi_dma_rx_done(void *arg)
178{
179	struct dw_spi *dws = arg;
180
181	clear_bit(RX_BUSY, &dws->dma_chan_busy);
182	if (test_bit(TX_BUSY, &dws->dma_chan_busy))
183		return;
184	spi_finalize_current_transfer(dws->master);
185}
186
187static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws,
188		struct spi_transfer *xfer)
189{
190	struct dma_slave_config rxconf;
191	struct dma_async_tx_descriptor *rxdesc;
192
193	if (!xfer->rx_buf)
194		return NULL;
195
196	rxconf.direction = DMA_DEV_TO_MEM;
197	rxconf.src_addr = dws->dma_addr;
198	rxconf.src_maxburst = 16;
199	rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
200	rxconf.src_addr_width = convert_dma_width(dws->dma_width);
201	rxconf.device_fc = false;
202
203	dmaengine_slave_config(dws->rxchan, &rxconf);
 
204
205	rxdesc = dmaengine_prep_slave_sg(dws->rxchan,
206				xfer->rx_sg.sgl,
207				xfer->rx_sg.nents,
 
 
 
 
208				DMA_DEV_TO_MEM,
209				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
210	if (!rxdesc)
211		return NULL;
212
213	rxdesc->callback = dw_spi_dma_rx_done;
214	rxdesc->callback_param = dws;
215
216	return rxdesc;
217}
218
219static int mid_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
220{
221	u16 dma_ctrl = 0;
222
223	dw_writel(dws, DW_SPI_DMARDLR, 0xf);
224	dw_writel(dws, DW_SPI_DMATDLR, 0x10);
225
226	if (xfer->tx_buf)
227		dma_ctrl |= SPI_DMA_TDMAE;
228	if (xfer->rx_buf)
229		dma_ctrl |= SPI_DMA_RDMAE;
230	dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
231
232	/* Set the interrupt mask */
233	spi_umask_intr(dws, SPI_INT_TXOI | SPI_INT_RXUI | SPI_INT_RXOI);
234
235	dws->transfer_handler = dma_transfer;
236
237	return 0;
238}
239
240static int mid_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
241{
242	struct dma_async_tx_descriptor *txdesc, *rxdesc;
243
244	/* Prepare the TX dma transfer */
245	txdesc = dw_spi_dma_prepare_tx(dws, xfer);
246
247	/* Prepare the RX dma transfer */
248	rxdesc = dw_spi_dma_prepare_rx(dws, xfer);
249
250	/* rx must be started before tx due to spi instinct */
251	if (rxdesc) {
252		set_bit(RX_BUSY, &dws->dma_chan_busy);
253		dmaengine_submit(rxdesc);
254		dma_async_issue_pending(dws->rxchan);
255	}
256
257	if (txdesc) {
258		set_bit(TX_BUSY, &dws->dma_chan_busy);
259		dmaengine_submit(txdesc);
260		dma_async_issue_pending(dws->txchan);
261	}
262
263	return 0;
264}
265
266static void mid_spi_dma_stop(struct dw_spi *dws)
267{
268	if (test_bit(TX_BUSY, &dws->dma_chan_busy)) {
269		dmaengine_terminate_sync(dws->txchan);
270		clear_bit(TX_BUSY, &dws->dma_chan_busy);
271	}
272	if (test_bit(RX_BUSY, &dws->dma_chan_busy)) {
273		dmaengine_terminate_sync(dws->rxchan);
274		clear_bit(RX_BUSY, &dws->dma_chan_busy);
275	}
276}
277
278static const struct dw_spi_dma_ops mid_dma_ops = {
279	.dma_init	= mid_spi_dma_init,
280	.dma_exit	= mid_spi_dma_exit,
281	.dma_setup	= mid_spi_dma_setup,
282	.can_dma	= mid_spi_can_dma,
283	.dma_transfer	= mid_spi_dma_transfer,
284	.dma_stop	= mid_spi_dma_stop,
285};
286#endif
287
288/* Some specific info for SPI0 controller on Intel MID */
289
290/* HW info for MRST Clk Control Unit, 32b reg per controller */
291#define MRST_SPI_CLK_BASE	100000000	/* 100m */
292#define MRST_CLK_SPI_REG	0xff11d86c
293#define CLK_SPI_BDIV_OFFSET	0
294#define CLK_SPI_BDIV_MASK	0x00000007
295#define CLK_SPI_CDIV_OFFSET	9
296#define CLK_SPI_CDIV_MASK	0x00000e00
297#define CLK_SPI_DISABLE_OFFSET	8
298
299int dw_spi_mid_init(struct dw_spi *dws)
300{
301	void __iomem *clk_reg;
302	u32 clk_cdiv;
303
304	clk_reg = ioremap_nocache(MRST_CLK_SPI_REG, 16);
305	if (!clk_reg)
306		return -ENOMEM;
307
308	/* Get SPI controller operating freq info */
309	clk_cdiv = readl(clk_reg + dws->bus_num * sizeof(u32));
310	clk_cdiv &= CLK_SPI_CDIV_MASK;
311	clk_cdiv >>= CLK_SPI_CDIV_OFFSET;
312	dws->max_freq = MRST_SPI_CLK_BASE / (clk_cdiv + 1);
 
313
314	iounmap(clk_reg);
 
315
316#ifdef CONFIG_SPI_DW_MID_DMA
317	dws->dma_tx = &mid_dma_tx;
318	dws->dma_rx = &mid_dma_rx;
 
319	dws->dma_ops = &mid_dma_ops;
320#endif
321	return 0;
322}