Loading...
1/*
2 * Microchip ENC28J60 ethernet driver (MAC + PHY)
3 *
4 * Copyright (C) 2007 Eurek srl
5 * Author: Claudio Lanconelli <lanconelli.claudio@eptar.com>
6 * based on enc28j60.c written by David Anders for 2.4 kernel version
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * $Id: enc28j60.c,v 1.22 2007/12/20 10:47:01 claudio Exp $
14 */
15
16#include <linux/module.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/fcntl.h>
20#include <linux/interrupt.h>
21#include <linux/string.h>
22#include <linux/errno.h>
23#include <linux/init.h>
24#include <linux/netdevice.h>
25#include <linux/etherdevice.h>
26#include <linux/ethtool.h>
27#include <linux/tcp.h>
28#include <linux/skbuff.h>
29#include <linux/delay.h>
30#include <linux/spi/spi.h>
31
32#include "enc28j60_hw.h"
33
34#define DRV_NAME "enc28j60"
35#define DRV_VERSION "1.01"
36
37#define SPI_OPLEN 1
38
39#define ENC28J60_MSG_DEFAULT \
40 (NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN | NETIF_MSG_LINK)
41
42/* Buffer size required for the largest SPI transfer (i.e., reading a
43 * frame). */
44#define SPI_TRANSFER_BUF_LEN (4 + MAX_FRAMELEN)
45
46#define TX_TIMEOUT (4 * HZ)
47
48/* Max TX retries in case of collision as suggested by errata datasheet */
49#define MAX_TX_RETRYCOUNT 16
50
51enum {
52 RXFILTER_NORMAL,
53 RXFILTER_MULTI,
54 RXFILTER_PROMISC
55};
56
57/* Driver local data */
58struct enc28j60_net {
59 struct net_device *netdev;
60 struct spi_device *spi;
61 struct mutex lock;
62 struct sk_buff *tx_skb;
63 struct work_struct tx_work;
64 struct work_struct irq_work;
65 struct work_struct setrx_work;
66 struct work_struct restart_work;
67 u8 bank; /* current register bank selected */
68 u16 next_pk_ptr; /* next packet pointer within FIFO */
69 u16 max_pk_counter; /* statistics: max packet counter */
70 u16 tx_retry_count;
71 bool hw_enable;
72 bool full_duplex;
73 int rxfilter;
74 u32 msg_enable;
75 u8 spi_transfer_buf[SPI_TRANSFER_BUF_LEN];
76};
77
78/* use ethtool to change the level for any given device */
79static struct {
80 u32 msg_enable;
81} debug = { -1 };
82
83/*
84 * SPI read buffer
85 * wait for the SPI transfer and copy received data to destination
86 */
87static int
88spi_read_buf(struct enc28j60_net *priv, int len, u8 *data)
89{
90 u8 *rx_buf = priv->spi_transfer_buf + 4;
91 u8 *tx_buf = priv->spi_transfer_buf;
92 struct spi_transfer t = {
93 .tx_buf = tx_buf,
94 .rx_buf = rx_buf,
95 .len = SPI_OPLEN + len,
96 };
97 struct spi_message msg;
98 int ret;
99
100 tx_buf[0] = ENC28J60_READ_BUF_MEM;
101 tx_buf[1] = tx_buf[2] = tx_buf[3] = 0; /* don't care */
102
103 spi_message_init(&msg);
104 spi_message_add_tail(&t, &msg);
105 ret = spi_sync(priv->spi, &msg);
106 if (ret == 0) {
107 memcpy(data, &rx_buf[SPI_OPLEN], len);
108 ret = msg.status;
109 }
110 if (ret && netif_msg_drv(priv))
111 printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
112 __func__, ret);
113
114 return ret;
115}
116
117/*
118 * SPI write buffer
119 */
120static int spi_write_buf(struct enc28j60_net *priv, int len,
121 const u8 *data)
122{
123 int ret;
124
125 if (len > SPI_TRANSFER_BUF_LEN - 1 || len <= 0)
126 ret = -EINVAL;
127 else {
128 priv->spi_transfer_buf[0] = ENC28J60_WRITE_BUF_MEM;
129 memcpy(&priv->spi_transfer_buf[1], data, len);
130 ret = spi_write(priv->spi, priv->spi_transfer_buf, len + 1);
131 if (ret && netif_msg_drv(priv))
132 printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
133 __func__, ret);
134 }
135 return ret;
136}
137
138/*
139 * basic SPI read operation
140 */
141static u8 spi_read_op(struct enc28j60_net *priv, u8 op,
142 u8 addr)
143{
144 u8 tx_buf[2];
145 u8 rx_buf[4];
146 u8 val = 0;
147 int ret;
148 int slen = SPI_OPLEN;
149
150 /* do dummy read if needed */
151 if (addr & SPRD_MASK)
152 slen++;
153
154 tx_buf[0] = op | (addr & ADDR_MASK);
155 ret = spi_write_then_read(priv->spi, tx_buf, 1, rx_buf, slen);
156 if (ret)
157 printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
158 __func__, ret);
159 else
160 val = rx_buf[slen - 1];
161
162 return val;
163}
164
165/*
166 * basic SPI write operation
167 */
168static int spi_write_op(struct enc28j60_net *priv, u8 op,
169 u8 addr, u8 val)
170{
171 int ret;
172
173 priv->spi_transfer_buf[0] = op | (addr & ADDR_MASK);
174 priv->spi_transfer_buf[1] = val;
175 ret = spi_write(priv->spi, priv->spi_transfer_buf, 2);
176 if (ret && netif_msg_drv(priv))
177 printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
178 __func__, ret);
179 return ret;
180}
181
182static void enc28j60_soft_reset(struct enc28j60_net *priv)
183{
184 if (netif_msg_hw(priv))
185 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__);
186
187 spi_write_op(priv, ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET);
188 /* Errata workaround #1, CLKRDY check is unreliable,
189 * delay at least 1 mS instead */
190 udelay(2000);
191}
192
193/*
194 * select the current register bank if necessary
195 */
196static void enc28j60_set_bank(struct enc28j60_net *priv, u8 addr)
197{
198 u8 b = (addr & BANK_MASK) >> 5;
199
200 /* These registers (EIE, EIR, ESTAT, ECON2, ECON1)
201 * are present in all banks, no need to switch bank
202 */
203 if (addr >= EIE && addr <= ECON1)
204 return;
205
206 /* Clear or set each bank selection bit as needed */
207 if ((b & ECON1_BSEL0) != (priv->bank & ECON1_BSEL0)) {
208 if (b & ECON1_BSEL0)
209 spi_write_op(priv, ENC28J60_BIT_FIELD_SET, ECON1,
210 ECON1_BSEL0);
211 else
212 spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, ECON1,
213 ECON1_BSEL0);
214 }
215 if ((b & ECON1_BSEL1) != (priv->bank & ECON1_BSEL1)) {
216 if (b & ECON1_BSEL1)
217 spi_write_op(priv, ENC28J60_BIT_FIELD_SET, ECON1,
218 ECON1_BSEL1);
219 else
220 spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, ECON1,
221 ECON1_BSEL1);
222 }
223 priv->bank = b;
224}
225
226/*
227 * Register access routines through the SPI bus.
228 * Every register access comes in two flavours:
229 * - nolock_xxx: caller needs to invoke mutex_lock, usually to access
230 * atomically more than one register
231 * - locked_xxx: caller doesn't need to invoke mutex_lock, single access
232 *
233 * Some registers can be accessed through the bit field clear and
234 * bit field set to avoid a read modify write cycle.
235 */
236
237/*
238 * Register bit field Set
239 */
240static void nolock_reg_bfset(struct enc28j60_net *priv,
241 u8 addr, u8 mask)
242{
243 enc28j60_set_bank(priv, addr);
244 spi_write_op(priv, ENC28J60_BIT_FIELD_SET, addr, mask);
245}
246
247static void locked_reg_bfset(struct enc28j60_net *priv,
248 u8 addr, u8 mask)
249{
250 mutex_lock(&priv->lock);
251 nolock_reg_bfset(priv, addr, mask);
252 mutex_unlock(&priv->lock);
253}
254
255/*
256 * Register bit field Clear
257 */
258static void nolock_reg_bfclr(struct enc28j60_net *priv,
259 u8 addr, u8 mask)
260{
261 enc28j60_set_bank(priv, addr);
262 spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, addr, mask);
263}
264
265static void locked_reg_bfclr(struct enc28j60_net *priv,
266 u8 addr, u8 mask)
267{
268 mutex_lock(&priv->lock);
269 nolock_reg_bfclr(priv, addr, mask);
270 mutex_unlock(&priv->lock);
271}
272
273/*
274 * Register byte read
275 */
276static int nolock_regb_read(struct enc28j60_net *priv,
277 u8 address)
278{
279 enc28j60_set_bank(priv, address);
280 return spi_read_op(priv, ENC28J60_READ_CTRL_REG, address);
281}
282
283static int locked_regb_read(struct enc28j60_net *priv,
284 u8 address)
285{
286 int ret;
287
288 mutex_lock(&priv->lock);
289 ret = nolock_regb_read(priv, address);
290 mutex_unlock(&priv->lock);
291
292 return ret;
293}
294
295/*
296 * Register word read
297 */
298static int nolock_regw_read(struct enc28j60_net *priv,
299 u8 address)
300{
301 int rl, rh;
302
303 enc28j60_set_bank(priv, address);
304 rl = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address);
305 rh = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address + 1);
306
307 return (rh << 8) | rl;
308}
309
310static int locked_regw_read(struct enc28j60_net *priv,
311 u8 address)
312{
313 int ret;
314
315 mutex_lock(&priv->lock);
316 ret = nolock_regw_read(priv, address);
317 mutex_unlock(&priv->lock);
318
319 return ret;
320}
321
322/*
323 * Register byte write
324 */
325static void nolock_regb_write(struct enc28j60_net *priv,
326 u8 address, u8 data)
327{
328 enc28j60_set_bank(priv, address);
329 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, data);
330}
331
332static void locked_regb_write(struct enc28j60_net *priv,
333 u8 address, u8 data)
334{
335 mutex_lock(&priv->lock);
336 nolock_regb_write(priv, address, data);
337 mutex_unlock(&priv->lock);
338}
339
340/*
341 * Register word write
342 */
343static void nolock_regw_write(struct enc28j60_net *priv,
344 u8 address, u16 data)
345{
346 enc28j60_set_bank(priv, address);
347 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, (u8) data);
348 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address + 1,
349 (u8) (data >> 8));
350}
351
352static void locked_regw_write(struct enc28j60_net *priv,
353 u8 address, u16 data)
354{
355 mutex_lock(&priv->lock);
356 nolock_regw_write(priv, address, data);
357 mutex_unlock(&priv->lock);
358}
359
360/*
361 * Buffer memory read
362 * Select the starting address and execute a SPI buffer read
363 */
364static void enc28j60_mem_read(struct enc28j60_net *priv,
365 u16 addr, int len, u8 *data)
366{
367 mutex_lock(&priv->lock);
368 nolock_regw_write(priv, ERDPTL, addr);
369#ifdef CONFIG_ENC28J60_WRITEVERIFY
370 if (netif_msg_drv(priv)) {
371 u16 reg;
372 reg = nolock_regw_read(priv, ERDPTL);
373 if (reg != addr)
374 printk(KERN_DEBUG DRV_NAME ": %s() error writing ERDPT "
375 "(0x%04x - 0x%04x)\n", __func__, reg, addr);
376 }
377#endif
378 spi_read_buf(priv, len, data);
379 mutex_unlock(&priv->lock);
380}
381
382/*
383 * Write packet to enc28j60 TX buffer memory
384 */
385static void
386enc28j60_packet_write(struct enc28j60_net *priv, int len, const u8 *data)
387{
388 mutex_lock(&priv->lock);
389 /* Set the write pointer to start of transmit buffer area */
390 nolock_regw_write(priv, EWRPTL, TXSTART_INIT);
391#ifdef CONFIG_ENC28J60_WRITEVERIFY
392 if (netif_msg_drv(priv)) {
393 u16 reg;
394 reg = nolock_regw_read(priv, EWRPTL);
395 if (reg != TXSTART_INIT)
396 printk(KERN_DEBUG DRV_NAME
397 ": %s() ERWPT:0x%04x != 0x%04x\n",
398 __func__, reg, TXSTART_INIT);
399 }
400#endif
401 /* Set the TXND pointer to correspond to the packet size given */
402 nolock_regw_write(priv, ETXNDL, TXSTART_INIT + len);
403 /* write per-packet control byte */
404 spi_write_op(priv, ENC28J60_WRITE_BUF_MEM, 0, 0x00);
405 if (netif_msg_hw(priv))
406 printk(KERN_DEBUG DRV_NAME
407 ": %s() after control byte ERWPT:0x%04x\n",
408 __func__, nolock_regw_read(priv, EWRPTL));
409 /* copy the packet into the transmit buffer */
410 spi_write_buf(priv, len, data);
411 if (netif_msg_hw(priv))
412 printk(KERN_DEBUG DRV_NAME
413 ": %s() after write packet ERWPT:0x%04x, len=%d\n",
414 __func__, nolock_regw_read(priv, EWRPTL), len);
415 mutex_unlock(&priv->lock);
416}
417
418static unsigned long msec20_to_jiffies;
419
420static int poll_ready(struct enc28j60_net *priv, u8 reg, u8 mask, u8 val)
421{
422 unsigned long timeout = jiffies + msec20_to_jiffies;
423
424 /* 20 msec timeout read */
425 while ((nolock_regb_read(priv, reg) & mask) != val) {
426 if (time_after(jiffies, timeout)) {
427 if (netif_msg_drv(priv))
428 dev_dbg(&priv->spi->dev,
429 "reg %02x ready timeout!\n", reg);
430 return -ETIMEDOUT;
431 }
432 cpu_relax();
433 }
434 return 0;
435}
436
437/*
438 * Wait until the PHY operation is complete.
439 */
440static int wait_phy_ready(struct enc28j60_net *priv)
441{
442 return poll_ready(priv, MISTAT, MISTAT_BUSY, 0) ? 0 : 1;
443}
444
445/*
446 * PHY register read
447 * PHY registers are not accessed directly, but through the MII
448 */
449static u16 enc28j60_phy_read(struct enc28j60_net *priv, u8 address)
450{
451 u16 ret;
452
453 mutex_lock(&priv->lock);
454 /* set the PHY register address */
455 nolock_regb_write(priv, MIREGADR, address);
456 /* start the register read operation */
457 nolock_regb_write(priv, MICMD, MICMD_MIIRD);
458 /* wait until the PHY read completes */
459 wait_phy_ready(priv);
460 /* quit reading */
461 nolock_regb_write(priv, MICMD, 0x00);
462 /* return the data */
463 ret = nolock_regw_read(priv, MIRDL);
464 mutex_unlock(&priv->lock);
465
466 return ret;
467}
468
469static int enc28j60_phy_write(struct enc28j60_net *priv, u8 address, u16 data)
470{
471 int ret;
472
473 mutex_lock(&priv->lock);
474 /* set the PHY register address */
475 nolock_regb_write(priv, MIREGADR, address);
476 /* write the PHY data */
477 nolock_regw_write(priv, MIWRL, data);
478 /* wait until the PHY write completes and return */
479 ret = wait_phy_ready(priv);
480 mutex_unlock(&priv->lock);
481
482 return ret;
483}
484
485/*
486 * Program the hardware MAC address from dev->dev_addr.
487 */
488static int enc28j60_set_hw_macaddr(struct net_device *ndev)
489{
490 int ret;
491 struct enc28j60_net *priv = netdev_priv(ndev);
492
493 mutex_lock(&priv->lock);
494 if (!priv->hw_enable) {
495 if (netif_msg_drv(priv))
496 printk(KERN_INFO DRV_NAME
497 ": %s: Setting MAC address to %pM\n",
498 ndev->name, ndev->dev_addr);
499 /* NOTE: MAC address in ENC28J60 is byte-backward */
500 nolock_regb_write(priv, MAADR5, ndev->dev_addr[0]);
501 nolock_regb_write(priv, MAADR4, ndev->dev_addr[1]);
502 nolock_regb_write(priv, MAADR3, ndev->dev_addr[2]);
503 nolock_regb_write(priv, MAADR2, ndev->dev_addr[3]);
504 nolock_regb_write(priv, MAADR1, ndev->dev_addr[4]);
505 nolock_regb_write(priv, MAADR0, ndev->dev_addr[5]);
506 ret = 0;
507 } else {
508 if (netif_msg_drv(priv))
509 printk(KERN_DEBUG DRV_NAME
510 ": %s() Hardware must be disabled to set "
511 "Mac address\n", __func__);
512 ret = -EBUSY;
513 }
514 mutex_unlock(&priv->lock);
515 return ret;
516}
517
518/*
519 * Store the new hardware address in dev->dev_addr, and update the MAC.
520 */
521static int enc28j60_set_mac_address(struct net_device *dev, void *addr)
522{
523 struct sockaddr *address = addr;
524
525 if (netif_running(dev))
526 return -EBUSY;
527 if (!is_valid_ether_addr(address->sa_data))
528 return -EADDRNOTAVAIL;
529
530 dev->addr_assign_type &= ~NET_ADDR_RANDOM;
531 memcpy(dev->dev_addr, address->sa_data, dev->addr_len);
532 return enc28j60_set_hw_macaddr(dev);
533}
534
535/*
536 * Debug routine to dump useful register contents
537 */
538static void enc28j60_dump_regs(struct enc28j60_net *priv, const char *msg)
539{
540 mutex_lock(&priv->lock);
541 printk(KERN_DEBUG DRV_NAME " %s\n"
542 "HwRevID: 0x%02x\n"
543 "Cntrl: ECON1 ECON2 ESTAT EIR EIE\n"
544 " 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x\n"
545 "MAC : MACON1 MACON3 MACON4\n"
546 " 0x%02x 0x%02x 0x%02x\n"
547 "Rx : ERXST ERXND ERXWRPT ERXRDPT ERXFCON EPKTCNT MAMXFL\n"
548 " 0x%04x 0x%04x 0x%04x 0x%04x "
549 "0x%02x 0x%02x 0x%04x\n"
550 "Tx : ETXST ETXND MACLCON1 MACLCON2 MAPHSUP\n"
551 " 0x%04x 0x%04x 0x%02x 0x%02x 0x%02x\n",
552 msg, nolock_regb_read(priv, EREVID),
553 nolock_regb_read(priv, ECON1), nolock_regb_read(priv, ECON2),
554 nolock_regb_read(priv, ESTAT), nolock_regb_read(priv, EIR),
555 nolock_regb_read(priv, EIE), nolock_regb_read(priv, MACON1),
556 nolock_regb_read(priv, MACON3), nolock_regb_read(priv, MACON4),
557 nolock_regw_read(priv, ERXSTL), nolock_regw_read(priv, ERXNDL),
558 nolock_regw_read(priv, ERXWRPTL),
559 nolock_regw_read(priv, ERXRDPTL),
560 nolock_regb_read(priv, ERXFCON),
561 nolock_regb_read(priv, EPKTCNT),
562 nolock_regw_read(priv, MAMXFLL), nolock_regw_read(priv, ETXSTL),
563 nolock_regw_read(priv, ETXNDL),
564 nolock_regb_read(priv, MACLCON1),
565 nolock_regb_read(priv, MACLCON2),
566 nolock_regb_read(priv, MAPHSUP));
567 mutex_unlock(&priv->lock);
568}
569
570/*
571 * ERXRDPT need to be set always at odd addresses, refer to errata datasheet
572 */
573static u16 erxrdpt_workaround(u16 next_packet_ptr, u16 start, u16 end)
574{
575 u16 erxrdpt;
576
577 if ((next_packet_ptr - 1 < start) || (next_packet_ptr - 1 > end))
578 erxrdpt = end;
579 else
580 erxrdpt = next_packet_ptr - 1;
581
582 return erxrdpt;
583}
584
585/*
586 * Calculate wrap around when reading beyond the end of the RX buffer
587 */
588static u16 rx_packet_start(u16 ptr)
589{
590 if (ptr + RSV_SIZE > RXEND_INIT)
591 return (ptr + RSV_SIZE) - (RXEND_INIT - RXSTART_INIT + 1);
592 else
593 return ptr + RSV_SIZE;
594}
595
596static void nolock_rxfifo_init(struct enc28j60_net *priv, u16 start, u16 end)
597{
598 u16 erxrdpt;
599
600 if (start > 0x1FFF || end > 0x1FFF || start > end) {
601 if (netif_msg_drv(priv))
602 printk(KERN_ERR DRV_NAME ": %s(%d, %d) RXFIFO "
603 "bad parameters!\n", __func__, start, end);
604 return;
605 }
606 /* set receive buffer start + end */
607 priv->next_pk_ptr = start;
608 nolock_regw_write(priv, ERXSTL, start);
609 erxrdpt = erxrdpt_workaround(priv->next_pk_ptr, start, end);
610 nolock_regw_write(priv, ERXRDPTL, erxrdpt);
611 nolock_regw_write(priv, ERXNDL, end);
612}
613
614static void nolock_txfifo_init(struct enc28j60_net *priv, u16 start, u16 end)
615{
616 if (start > 0x1FFF || end > 0x1FFF || start > end) {
617 if (netif_msg_drv(priv))
618 printk(KERN_ERR DRV_NAME ": %s(%d, %d) TXFIFO "
619 "bad parameters!\n", __func__, start, end);
620 return;
621 }
622 /* set transmit buffer start + end */
623 nolock_regw_write(priv, ETXSTL, start);
624 nolock_regw_write(priv, ETXNDL, end);
625}
626
627/*
628 * Low power mode shrinks power consumption about 100x, so we'd like
629 * the chip to be in that mode whenever it's inactive. (However, we
630 * can't stay in lowpower mode during suspend with WOL active.)
631 */
632static void enc28j60_lowpower(struct enc28j60_net *priv, bool is_low)
633{
634 if (netif_msg_drv(priv))
635 dev_dbg(&priv->spi->dev, "%s power...\n",
636 is_low ? "low" : "high");
637
638 mutex_lock(&priv->lock);
639 if (is_low) {
640 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN);
641 poll_ready(priv, ESTAT, ESTAT_RXBUSY, 0);
642 poll_ready(priv, ECON1, ECON1_TXRTS, 0);
643 /* ECON2_VRPS was set during initialization */
644 nolock_reg_bfset(priv, ECON2, ECON2_PWRSV);
645 } else {
646 nolock_reg_bfclr(priv, ECON2, ECON2_PWRSV);
647 poll_ready(priv, ESTAT, ESTAT_CLKRDY, ESTAT_CLKRDY);
648 /* caller sets ECON1_RXEN */
649 }
650 mutex_unlock(&priv->lock);
651}
652
653static int enc28j60_hw_init(struct enc28j60_net *priv)
654{
655 u8 reg;
656
657 if (netif_msg_drv(priv))
658 printk(KERN_DEBUG DRV_NAME ": %s() - %s\n", __func__,
659 priv->full_duplex ? "FullDuplex" : "HalfDuplex");
660
661 mutex_lock(&priv->lock);
662 /* first reset the chip */
663 enc28j60_soft_reset(priv);
664 /* Clear ECON1 */
665 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, ECON1, 0x00);
666 priv->bank = 0;
667 priv->hw_enable = false;
668 priv->tx_retry_count = 0;
669 priv->max_pk_counter = 0;
670 priv->rxfilter = RXFILTER_NORMAL;
671 /* enable address auto increment and voltage regulator powersave */
672 nolock_regb_write(priv, ECON2, ECON2_AUTOINC | ECON2_VRPS);
673
674 nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT);
675 nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT);
676 mutex_unlock(&priv->lock);
677
678 /*
679 * Check the RevID.
680 * If it's 0x00 or 0xFF probably the enc28j60 is not mounted or
681 * damaged
682 */
683 reg = locked_regb_read(priv, EREVID);
684 if (netif_msg_drv(priv))
685 printk(KERN_INFO DRV_NAME ": chip RevID: 0x%02x\n", reg);
686 if (reg == 0x00 || reg == 0xff) {
687 if (netif_msg_drv(priv))
688 printk(KERN_DEBUG DRV_NAME ": %s() Invalid RevId %d\n",
689 __func__, reg);
690 return 0;
691 }
692
693 /* default filter mode: (unicast OR broadcast) AND crc valid */
694 locked_regb_write(priv, ERXFCON,
695 ERXFCON_UCEN | ERXFCON_CRCEN | ERXFCON_BCEN);
696
697 /* enable MAC receive */
698 locked_regb_write(priv, MACON1,
699 MACON1_MARXEN | MACON1_TXPAUS | MACON1_RXPAUS);
700 /* enable automatic padding and CRC operations */
701 if (priv->full_duplex) {
702 locked_regb_write(priv, MACON3,
703 MACON3_PADCFG0 | MACON3_TXCRCEN |
704 MACON3_FRMLNEN | MACON3_FULDPX);
705 /* set inter-frame gap (non-back-to-back) */
706 locked_regb_write(priv, MAIPGL, 0x12);
707 /* set inter-frame gap (back-to-back) */
708 locked_regb_write(priv, MABBIPG, 0x15);
709 } else {
710 locked_regb_write(priv, MACON3,
711 MACON3_PADCFG0 | MACON3_TXCRCEN |
712 MACON3_FRMLNEN);
713 locked_regb_write(priv, MACON4, 1 << 6); /* DEFER bit */
714 /* set inter-frame gap (non-back-to-back) */
715 locked_regw_write(priv, MAIPGL, 0x0C12);
716 /* set inter-frame gap (back-to-back) */
717 locked_regb_write(priv, MABBIPG, 0x12);
718 }
719 /*
720 * MACLCON1 (default)
721 * MACLCON2 (default)
722 * Set the maximum packet size which the controller will accept
723 */
724 locked_regw_write(priv, MAMXFLL, MAX_FRAMELEN);
725
726 /* Configure LEDs */
727 if (!enc28j60_phy_write(priv, PHLCON, ENC28J60_LAMPS_MODE))
728 return 0;
729
730 if (priv->full_duplex) {
731 if (!enc28j60_phy_write(priv, PHCON1, PHCON1_PDPXMD))
732 return 0;
733 if (!enc28j60_phy_write(priv, PHCON2, 0x00))
734 return 0;
735 } else {
736 if (!enc28j60_phy_write(priv, PHCON1, 0x00))
737 return 0;
738 if (!enc28j60_phy_write(priv, PHCON2, PHCON2_HDLDIS))
739 return 0;
740 }
741 if (netif_msg_hw(priv))
742 enc28j60_dump_regs(priv, "Hw initialized.");
743
744 return 1;
745}
746
747static void enc28j60_hw_enable(struct enc28j60_net *priv)
748{
749 /* enable interrupts */
750 if (netif_msg_hw(priv))
751 printk(KERN_DEBUG DRV_NAME ": %s() enabling interrupts.\n",
752 __func__);
753
754 enc28j60_phy_write(priv, PHIE, PHIE_PGEIE | PHIE_PLNKIE);
755
756 mutex_lock(&priv->lock);
757 nolock_reg_bfclr(priv, EIR, EIR_DMAIF | EIR_LINKIF |
758 EIR_TXIF | EIR_TXERIF | EIR_RXERIF | EIR_PKTIF);
759 nolock_regb_write(priv, EIE, EIE_INTIE | EIE_PKTIE | EIE_LINKIE |
760 EIE_TXIE | EIE_TXERIE | EIE_RXERIE);
761
762 /* enable receive logic */
763 nolock_reg_bfset(priv, ECON1, ECON1_RXEN);
764 priv->hw_enable = true;
765 mutex_unlock(&priv->lock);
766}
767
768static void enc28j60_hw_disable(struct enc28j60_net *priv)
769{
770 mutex_lock(&priv->lock);
771 /* disable interrutps and packet reception */
772 nolock_regb_write(priv, EIE, 0x00);
773 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN);
774 priv->hw_enable = false;
775 mutex_unlock(&priv->lock);
776}
777
778static int
779enc28j60_setlink(struct net_device *ndev, u8 autoneg, u16 speed, u8 duplex)
780{
781 struct enc28j60_net *priv = netdev_priv(ndev);
782 int ret = 0;
783
784 if (!priv->hw_enable) {
785 /* link is in low power mode now; duplex setting
786 * will take effect on next enc28j60_hw_init().
787 */
788 if (autoneg == AUTONEG_DISABLE && speed == SPEED_10)
789 priv->full_duplex = (duplex == DUPLEX_FULL);
790 else {
791 if (netif_msg_link(priv))
792 dev_warn(&ndev->dev,
793 "unsupported link setting\n");
794 ret = -EOPNOTSUPP;
795 }
796 } else {
797 if (netif_msg_link(priv))
798 dev_warn(&ndev->dev, "Warning: hw must be disabled "
799 "to set link mode\n");
800 ret = -EBUSY;
801 }
802 return ret;
803}
804
805/*
806 * Read the Transmit Status Vector
807 */
808static void enc28j60_read_tsv(struct enc28j60_net *priv, u8 tsv[TSV_SIZE])
809{
810 int endptr;
811
812 endptr = locked_regw_read(priv, ETXNDL);
813 if (netif_msg_hw(priv))
814 printk(KERN_DEBUG DRV_NAME ": reading TSV at addr:0x%04x\n",
815 endptr + 1);
816 enc28j60_mem_read(priv, endptr + 1, TSV_SIZE, tsv);
817}
818
819static void enc28j60_dump_tsv(struct enc28j60_net *priv, const char *msg,
820 u8 tsv[TSV_SIZE])
821{
822 u16 tmp1, tmp2;
823
824 printk(KERN_DEBUG DRV_NAME ": %s - TSV:\n", msg);
825 tmp1 = tsv[1];
826 tmp1 <<= 8;
827 tmp1 |= tsv[0];
828
829 tmp2 = tsv[5];
830 tmp2 <<= 8;
831 tmp2 |= tsv[4];
832
833 printk(KERN_DEBUG DRV_NAME ": ByteCount: %d, CollisionCount: %d,"
834 " TotByteOnWire: %d\n", tmp1, tsv[2] & 0x0f, tmp2);
835 printk(KERN_DEBUG DRV_NAME ": TxDone: %d, CRCErr:%d, LenChkErr: %d,"
836 " LenOutOfRange: %d\n", TSV_GETBIT(tsv, TSV_TXDONE),
837 TSV_GETBIT(tsv, TSV_TXCRCERROR),
838 TSV_GETBIT(tsv, TSV_TXLENCHKERROR),
839 TSV_GETBIT(tsv, TSV_TXLENOUTOFRANGE));
840 printk(KERN_DEBUG DRV_NAME ": Multicast: %d, Broadcast: %d, "
841 "PacketDefer: %d, ExDefer: %d\n",
842 TSV_GETBIT(tsv, TSV_TXMULTICAST),
843 TSV_GETBIT(tsv, TSV_TXBROADCAST),
844 TSV_GETBIT(tsv, TSV_TXPACKETDEFER),
845 TSV_GETBIT(tsv, TSV_TXEXDEFER));
846 printk(KERN_DEBUG DRV_NAME ": ExCollision: %d, LateCollision: %d, "
847 "Giant: %d, Underrun: %d\n",
848 TSV_GETBIT(tsv, TSV_TXEXCOLLISION),
849 TSV_GETBIT(tsv, TSV_TXLATECOLLISION),
850 TSV_GETBIT(tsv, TSV_TXGIANT), TSV_GETBIT(tsv, TSV_TXUNDERRUN));
851 printk(KERN_DEBUG DRV_NAME ": ControlFrame: %d, PauseFrame: %d, "
852 "BackPressApp: %d, VLanTagFrame: %d\n",
853 TSV_GETBIT(tsv, TSV_TXCONTROLFRAME),
854 TSV_GETBIT(tsv, TSV_TXPAUSEFRAME),
855 TSV_GETBIT(tsv, TSV_BACKPRESSUREAPP),
856 TSV_GETBIT(tsv, TSV_TXVLANTAGFRAME));
857}
858
859/*
860 * Receive Status vector
861 */
862static void enc28j60_dump_rsv(struct enc28j60_net *priv, const char *msg,
863 u16 pk_ptr, int len, u16 sts)
864{
865 printk(KERN_DEBUG DRV_NAME ": %s - NextPk: 0x%04x - RSV:\n",
866 msg, pk_ptr);
867 printk(KERN_DEBUG DRV_NAME ": ByteCount: %d, DribbleNibble: %d\n", len,
868 RSV_GETBIT(sts, RSV_DRIBBLENIBBLE));
869 printk(KERN_DEBUG DRV_NAME ": RxOK: %d, CRCErr:%d, LenChkErr: %d,"
870 " LenOutOfRange: %d\n", RSV_GETBIT(sts, RSV_RXOK),
871 RSV_GETBIT(sts, RSV_CRCERROR),
872 RSV_GETBIT(sts, RSV_LENCHECKERR),
873 RSV_GETBIT(sts, RSV_LENOUTOFRANGE));
874 printk(KERN_DEBUG DRV_NAME ": Multicast: %d, Broadcast: %d, "
875 "LongDropEvent: %d, CarrierEvent: %d\n",
876 RSV_GETBIT(sts, RSV_RXMULTICAST),
877 RSV_GETBIT(sts, RSV_RXBROADCAST),
878 RSV_GETBIT(sts, RSV_RXLONGEVDROPEV),
879 RSV_GETBIT(sts, RSV_CARRIEREV));
880 printk(KERN_DEBUG DRV_NAME ": ControlFrame: %d, PauseFrame: %d,"
881 " UnknownOp: %d, VLanTagFrame: %d\n",
882 RSV_GETBIT(sts, RSV_RXCONTROLFRAME),
883 RSV_GETBIT(sts, RSV_RXPAUSEFRAME),
884 RSV_GETBIT(sts, RSV_RXUNKNOWNOPCODE),
885 RSV_GETBIT(sts, RSV_RXTYPEVLAN));
886}
887
888static void dump_packet(const char *msg, int len, const char *data)
889{
890 printk(KERN_DEBUG DRV_NAME ": %s - packet len:%d\n", msg, len);
891 print_hex_dump(KERN_DEBUG, "pk data: ", DUMP_PREFIX_OFFSET, 16, 1,
892 data, len, true);
893}
894
895/*
896 * Hardware receive function.
897 * Read the buffer memory, update the FIFO pointer to free the buffer,
898 * check the status vector and decrement the packet counter.
899 */
900static void enc28j60_hw_rx(struct net_device *ndev)
901{
902 struct enc28j60_net *priv = netdev_priv(ndev);
903 struct sk_buff *skb = NULL;
904 u16 erxrdpt, next_packet, rxstat;
905 u8 rsv[RSV_SIZE];
906 int len;
907
908 if (netif_msg_rx_status(priv))
909 printk(KERN_DEBUG DRV_NAME ": RX pk_addr:0x%04x\n",
910 priv->next_pk_ptr);
911
912 if (unlikely(priv->next_pk_ptr > RXEND_INIT)) {
913 if (netif_msg_rx_err(priv))
914 dev_err(&ndev->dev,
915 "%s() Invalid packet address!! 0x%04x\n",
916 __func__, priv->next_pk_ptr);
917 /* packet address corrupted: reset RX logic */
918 mutex_lock(&priv->lock);
919 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN);
920 nolock_reg_bfset(priv, ECON1, ECON1_RXRST);
921 nolock_reg_bfclr(priv, ECON1, ECON1_RXRST);
922 nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT);
923 nolock_reg_bfclr(priv, EIR, EIR_RXERIF);
924 nolock_reg_bfset(priv, ECON1, ECON1_RXEN);
925 mutex_unlock(&priv->lock);
926 ndev->stats.rx_errors++;
927 return;
928 }
929 /* Read next packet pointer and rx status vector */
930 enc28j60_mem_read(priv, priv->next_pk_ptr, sizeof(rsv), rsv);
931
932 next_packet = rsv[1];
933 next_packet <<= 8;
934 next_packet |= rsv[0];
935
936 len = rsv[3];
937 len <<= 8;
938 len |= rsv[2];
939
940 rxstat = rsv[5];
941 rxstat <<= 8;
942 rxstat |= rsv[4];
943
944 if (netif_msg_rx_status(priv))
945 enc28j60_dump_rsv(priv, __func__, next_packet, len, rxstat);
946
947 if (!RSV_GETBIT(rxstat, RSV_RXOK) || len > MAX_FRAMELEN) {
948 if (netif_msg_rx_err(priv))
949 dev_err(&ndev->dev, "Rx Error (%04x)\n", rxstat);
950 ndev->stats.rx_errors++;
951 if (RSV_GETBIT(rxstat, RSV_CRCERROR))
952 ndev->stats.rx_crc_errors++;
953 if (RSV_GETBIT(rxstat, RSV_LENCHECKERR))
954 ndev->stats.rx_frame_errors++;
955 if (len > MAX_FRAMELEN)
956 ndev->stats.rx_over_errors++;
957 } else {
958 skb = netdev_alloc_skb(ndev, len + NET_IP_ALIGN);
959 if (!skb) {
960 if (netif_msg_rx_err(priv))
961 dev_err(&ndev->dev,
962 "out of memory for Rx'd frame\n");
963 ndev->stats.rx_dropped++;
964 } else {
965 skb_reserve(skb, NET_IP_ALIGN);
966 /* copy the packet from the receive buffer */
967 enc28j60_mem_read(priv,
968 rx_packet_start(priv->next_pk_ptr),
969 len, skb_put(skb, len));
970 if (netif_msg_pktdata(priv))
971 dump_packet(__func__, skb->len, skb->data);
972 skb->protocol = eth_type_trans(skb, ndev);
973 /* update statistics */
974 ndev->stats.rx_packets++;
975 ndev->stats.rx_bytes += len;
976 netif_rx_ni(skb);
977 }
978 }
979 /*
980 * Move the RX read pointer to the start of the next
981 * received packet.
982 * This frees the memory we just read out
983 */
984 erxrdpt = erxrdpt_workaround(next_packet, RXSTART_INIT, RXEND_INIT);
985 if (netif_msg_hw(priv))
986 printk(KERN_DEBUG DRV_NAME ": %s() ERXRDPT:0x%04x\n",
987 __func__, erxrdpt);
988
989 mutex_lock(&priv->lock);
990 nolock_regw_write(priv, ERXRDPTL, erxrdpt);
991#ifdef CONFIG_ENC28J60_WRITEVERIFY
992 if (netif_msg_drv(priv)) {
993 u16 reg;
994 reg = nolock_regw_read(priv, ERXRDPTL);
995 if (reg != erxrdpt)
996 printk(KERN_DEBUG DRV_NAME ": %s() ERXRDPT verify "
997 "error (0x%04x - 0x%04x)\n", __func__,
998 reg, erxrdpt);
999 }
1000#endif
1001 priv->next_pk_ptr = next_packet;
1002 /* we are done with this packet, decrement the packet counter */
1003 nolock_reg_bfset(priv, ECON2, ECON2_PKTDEC);
1004 mutex_unlock(&priv->lock);
1005}
1006
1007/*
1008 * Calculate free space in RxFIFO
1009 */
1010static int enc28j60_get_free_rxfifo(struct enc28j60_net *priv)
1011{
1012 int epkcnt, erxst, erxnd, erxwr, erxrd;
1013 int free_space;
1014
1015 mutex_lock(&priv->lock);
1016 epkcnt = nolock_regb_read(priv, EPKTCNT);
1017 if (epkcnt >= 255)
1018 free_space = -1;
1019 else {
1020 erxst = nolock_regw_read(priv, ERXSTL);
1021 erxnd = nolock_regw_read(priv, ERXNDL);
1022 erxwr = nolock_regw_read(priv, ERXWRPTL);
1023 erxrd = nolock_regw_read(priv, ERXRDPTL);
1024
1025 if (erxwr > erxrd)
1026 free_space = (erxnd - erxst) - (erxwr - erxrd);
1027 else if (erxwr == erxrd)
1028 free_space = (erxnd - erxst);
1029 else
1030 free_space = erxrd - erxwr - 1;
1031 }
1032 mutex_unlock(&priv->lock);
1033 if (netif_msg_rx_status(priv))
1034 printk(KERN_DEBUG DRV_NAME ": %s() free_space = %d\n",
1035 __func__, free_space);
1036 return free_space;
1037}
1038
1039/*
1040 * Access the PHY to determine link status
1041 */
1042static void enc28j60_check_link_status(struct net_device *ndev)
1043{
1044 struct enc28j60_net *priv = netdev_priv(ndev);
1045 u16 reg;
1046 int duplex;
1047
1048 reg = enc28j60_phy_read(priv, PHSTAT2);
1049 if (netif_msg_hw(priv))
1050 printk(KERN_DEBUG DRV_NAME ": %s() PHSTAT1: %04x, "
1051 "PHSTAT2: %04x\n", __func__,
1052 enc28j60_phy_read(priv, PHSTAT1), reg);
1053 duplex = reg & PHSTAT2_DPXSTAT;
1054
1055 if (reg & PHSTAT2_LSTAT) {
1056 netif_carrier_on(ndev);
1057 if (netif_msg_ifup(priv))
1058 dev_info(&ndev->dev, "link up - %s\n",
1059 duplex ? "Full duplex" : "Half duplex");
1060 } else {
1061 if (netif_msg_ifdown(priv))
1062 dev_info(&ndev->dev, "link down\n");
1063 netif_carrier_off(ndev);
1064 }
1065}
1066
1067static void enc28j60_tx_clear(struct net_device *ndev, bool err)
1068{
1069 struct enc28j60_net *priv = netdev_priv(ndev);
1070
1071 if (err)
1072 ndev->stats.tx_errors++;
1073 else
1074 ndev->stats.tx_packets++;
1075
1076 if (priv->tx_skb) {
1077 if (!err)
1078 ndev->stats.tx_bytes += priv->tx_skb->len;
1079 dev_kfree_skb(priv->tx_skb);
1080 priv->tx_skb = NULL;
1081 }
1082 locked_reg_bfclr(priv, ECON1, ECON1_TXRTS);
1083 netif_wake_queue(ndev);
1084}
1085
1086/*
1087 * RX handler
1088 * ignore PKTIF because is unreliable! (look at the errata datasheet)
1089 * check EPKTCNT is the suggested workaround.
1090 * We don't need to clear interrupt flag, automatically done when
1091 * enc28j60_hw_rx() decrements the packet counter.
1092 * Returns how many packet processed.
1093 */
1094static int enc28j60_rx_interrupt(struct net_device *ndev)
1095{
1096 struct enc28j60_net *priv = netdev_priv(ndev);
1097 int pk_counter, ret;
1098
1099 pk_counter = locked_regb_read(priv, EPKTCNT);
1100 if (pk_counter && netif_msg_intr(priv))
1101 printk(KERN_DEBUG DRV_NAME ": intRX, pk_cnt: %d\n", pk_counter);
1102 if (pk_counter > priv->max_pk_counter) {
1103 /* update statistics */
1104 priv->max_pk_counter = pk_counter;
1105 if (netif_msg_rx_status(priv) && priv->max_pk_counter > 1)
1106 printk(KERN_DEBUG DRV_NAME ": RX max_pk_cnt: %d\n",
1107 priv->max_pk_counter);
1108 }
1109 ret = pk_counter;
1110 while (pk_counter-- > 0)
1111 enc28j60_hw_rx(ndev);
1112
1113 return ret;
1114}
1115
1116static void enc28j60_irq_work_handler(struct work_struct *work)
1117{
1118 struct enc28j60_net *priv =
1119 container_of(work, struct enc28j60_net, irq_work);
1120 struct net_device *ndev = priv->netdev;
1121 int intflags, loop;
1122
1123 if (netif_msg_intr(priv))
1124 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__);
1125 /* disable further interrupts */
1126 locked_reg_bfclr(priv, EIE, EIE_INTIE);
1127
1128 do {
1129 loop = 0;
1130 intflags = locked_regb_read(priv, EIR);
1131 /* DMA interrupt handler (not currently used) */
1132 if ((intflags & EIR_DMAIF) != 0) {
1133 loop++;
1134 if (netif_msg_intr(priv))
1135 printk(KERN_DEBUG DRV_NAME
1136 ": intDMA(%d)\n", loop);
1137 locked_reg_bfclr(priv, EIR, EIR_DMAIF);
1138 }
1139 /* LINK changed handler */
1140 if ((intflags & EIR_LINKIF) != 0) {
1141 loop++;
1142 if (netif_msg_intr(priv))
1143 printk(KERN_DEBUG DRV_NAME
1144 ": intLINK(%d)\n", loop);
1145 enc28j60_check_link_status(ndev);
1146 /* read PHIR to clear the flag */
1147 enc28j60_phy_read(priv, PHIR);
1148 }
1149 /* TX complete handler */
1150 if ((intflags & EIR_TXIF) != 0) {
1151 bool err = false;
1152 loop++;
1153 if (netif_msg_intr(priv))
1154 printk(KERN_DEBUG DRV_NAME
1155 ": intTX(%d)\n", loop);
1156 priv->tx_retry_count = 0;
1157 if (locked_regb_read(priv, ESTAT) & ESTAT_TXABRT) {
1158 if (netif_msg_tx_err(priv))
1159 dev_err(&ndev->dev,
1160 "Tx Error (aborted)\n");
1161 err = true;
1162 }
1163 if (netif_msg_tx_done(priv)) {
1164 u8 tsv[TSV_SIZE];
1165 enc28j60_read_tsv(priv, tsv);
1166 enc28j60_dump_tsv(priv, "Tx Done", tsv);
1167 }
1168 enc28j60_tx_clear(ndev, err);
1169 locked_reg_bfclr(priv, EIR, EIR_TXIF);
1170 }
1171 /* TX Error handler */
1172 if ((intflags & EIR_TXERIF) != 0) {
1173 u8 tsv[TSV_SIZE];
1174
1175 loop++;
1176 if (netif_msg_intr(priv))
1177 printk(KERN_DEBUG DRV_NAME
1178 ": intTXErr(%d)\n", loop);
1179 locked_reg_bfclr(priv, ECON1, ECON1_TXRTS);
1180 enc28j60_read_tsv(priv, tsv);
1181 if (netif_msg_tx_err(priv))
1182 enc28j60_dump_tsv(priv, "Tx Error", tsv);
1183 /* Reset TX logic */
1184 mutex_lock(&priv->lock);
1185 nolock_reg_bfset(priv, ECON1, ECON1_TXRST);
1186 nolock_reg_bfclr(priv, ECON1, ECON1_TXRST);
1187 nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT);
1188 mutex_unlock(&priv->lock);
1189 /* Transmit Late collision check for retransmit */
1190 if (TSV_GETBIT(tsv, TSV_TXLATECOLLISION)) {
1191 if (netif_msg_tx_err(priv))
1192 printk(KERN_DEBUG DRV_NAME
1193 ": LateCollision TXErr (%d)\n",
1194 priv->tx_retry_count);
1195 if (priv->tx_retry_count++ < MAX_TX_RETRYCOUNT)
1196 locked_reg_bfset(priv, ECON1,
1197 ECON1_TXRTS);
1198 else
1199 enc28j60_tx_clear(ndev, true);
1200 } else
1201 enc28j60_tx_clear(ndev, true);
1202 locked_reg_bfclr(priv, EIR, EIR_TXERIF);
1203 }
1204 /* RX Error handler */
1205 if ((intflags & EIR_RXERIF) != 0) {
1206 loop++;
1207 if (netif_msg_intr(priv))
1208 printk(KERN_DEBUG DRV_NAME
1209 ": intRXErr(%d)\n", loop);
1210 /* Check free FIFO space to flag RX overrun */
1211 if (enc28j60_get_free_rxfifo(priv) <= 0) {
1212 if (netif_msg_rx_err(priv))
1213 printk(KERN_DEBUG DRV_NAME
1214 ": RX Overrun\n");
1215 ndev->stats.rx_dropped++;
1216 }
1217 locked_reg_bfclr(priv, EIR, EIR_RXERIF);
1218 }
1219 /* RX handler */
1220 if (enc28j60_rx_interrupt(ndev))
1221 loop++;
1222 } while (loop);
1223
1224 /* re-enable interrupts */
1225 locked_reg_bfset(priv, EIE, EIE_INTIE);
1226 if (netif_msg_intr(priv))
1227 printk(KERN_DEBUG DRV_NAME ": %s() exit\n", __func__);
1228}
1229
1230/*
1231 * Hardware transmit function.
1232 * Fill the buffer memory and send the contents of the transmit buffer
1233 * onto the network
1234 */
1235static void enc28j60_hw_tx(struct enc28j60_net *priv)
1236{
1237 if (netif_msg_tx_queued(priv))
1238 printk(KERN_DEBUG DRV_NAME
1239 ": Tx Packet Len:%d\n", priv->tx_skb->len);
1240
1241 if (netif_msg_pktdata(priv))
1242 dump_packet(__func__,
1243 priv->tx_skb->len, priv->tx_skb->data);
1244 enc28j60_packet_write(priv, priv->tx_skb->len, priv->tx_skb->data);
1245
1246#ifdef CONFIG_ENC28J60_WRITEVERIFY
1247 /* readback and verify written data */
1248 if (netif_msg_drv(priv)) {
1249 int test_len, k;
1250 u8 test_buf[64]; /* limit the test to the first 64 bytes */
1251 int okflag;
1252
1253 test_len = priv->tx_skb->len;
1254 if (test_len > sizeof(test_buf))
1255 test_len = sizeof(test_buf);
1256
1257 /* + 1 to skip control byte */
1258 enc28j60_mem_read(priv, TXSTART_INIT + 1, test_len, test_buf);
1259 okflag = 1;
1260 for (k = 0; k < test_len; k++) {
1261 if (priv->tx_skb->data[k] != test_buf[k]) {
1262 printk(KERN_DEBUG DRV_NAME
1263 ": Error, %d location differ: "
1264 "0x%02x-0x%02x\n", k,
1265 priv->tx_skb->data[k], test_buf[k]);
1266 okflag = 0;
1267 }
1268 }
1269 if (!okflag)
1270 printk(KERN_DEBUG DRV_NAME ": Tx write buffer, "
1271 "verify ERROR!\n");
1272 }
1273#endif
1274 /* set TX request flag */
1275 locked_reg_bfset(priv, ECON1, ECON1_TXRTS);
1276}
1277
1278static netdev_tx_t enc28j60_send_packet(struct sk_buff *skb,
1279 struct net_device *dev)
1280{
1281 struct enc28j60_net *priv = netdev_priv(dev);
1282
1283 if (netif_msg_tx_queued(priv))
1284 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__);
1285
1286 /* If some error occurs while trying to transmit this
1287 * packet, you should return '1' from this function.
1288 * In such a case you _may not_ do anything to the
1289 * SKB, it is still owned by the network queueing
1290 * layer when an error is returned. This means you
1291 * may not modify any SKB fields, you may not free
1292 * the SKB, etc.
1293 */
1294 netif_stop_queue(dev);
1295
1296 /* Remember the skb for deferred processing */
1297 priv->tx_skb = skb;
1298 schedule_work(&priv->tx_work);
1299
1300 return NETDEV_TX_OK;
1301}
1302
1303static void enc28j60_tx_work_handler(struct work_struct *work)
1304{
1305 struct enc28j60_net *priv =
1306 container_of(work, struct enc28j60_net, tx_work);
1307
1308 /* actual delivery of data */
1309 enc28j60_hw_tx(priv);
1310}
1311
1312static irqreturn_t enc28j60_irq(int irq, void *dev_id)
1313{
1314 struct enc28j60_net *priv = dev_id;
1315
1316 /*
1317 * Can't do anything in interrupt context because we need to
1318 * block (spi_sync() is blocking) so fire of the interrupt
1319 * handling workqueue.
1320 * Remember that we access enc28j60 registers through SPI bus
1321 * via spi_sync() call.
1322 */
1323 schedule_work(&priv->irq_work);
1324
1325 return IRQ_HANDLED;
1326}
1327
1328static void enc28j60_tx_timeout(struct net_device *ndev)
1329{
1330 struct enc28j60_net *priv = netdev_priv(ndev);
1331
1332 if (netif_msg_timer(priv))
1333 dev_err(&ndev->dev, DRV_NAME " tx timeout\n");
1334
1335 ndev->stats.tx_errors++;
1336 /* can't restart safely under softirq */
1337 schedule_work(&priv->restart_work);
1338}
1339
1340/*
1341 * Open/initialize the board. This is called (in the current kernel)
1342 * sometime after booting when the 'ifconfig' program is run.
1343 *
1344 * This routine should set everything up anew at each open, even
1345 * registers that "should" only need to be set once at boot, so that
1346 * there is non-reboot way to recover if something goes wrong.
1347 */
1348static int enc28j60_net_open(struct net_device *dev)
1349{
1350 struct enc28j60_net *priv = netdev_priv(dev);
1351
1352 if (netif_msg_drv(priv))
1353 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__);
1354
1355 if (!is_valid_ether_addr(dev->dev_addr)) {
1356 if (netif_msg_ifup(priv))
1357 dev_err(&dev->dev, "invalid MAC address %pM\n",
1358 dev->dev_addr);
1359 return -EADDRNOTAVAIL;
1360 }
1361 /* Reset the hardware here (and take it out of low power mode) */
1362 enc28j60_lowpower(priv, false);
1363 enc28j60_hw_disable(priv);
1364 if (!enc28j60_hw_init(priv)) {
1365 if (netif_msg_ifup(priv))
1366 dev_err(&dev->dev, "hw_reset() failed\n");
1367 return -EINVAL;
1368 }
1369 /* Update the MAC address (in case user has changed it) */
1370 enc28j60_set_hw_macaddr(dev);
1371 /* Enable interrupts */
1372 enc28j60_hw_enable(priv);
1373 /* check link status */
1374 enc28j60_check_link_status(dev);
1375 /* We are now ready to accept transmit requests from
1376 * the queueing layer of the networking.
1377 */
1378 netif_start_queue(dev);
1379
1380 return 0;
1381}
1382
1383/* The inverse routine to net_open(). */
1384static int enc28j60_net_close(struct net_device *dev)
1385{
1386 struct enc28j60_net *priv = netdev_priv(dev);
1387
1388 if (netif_msg_drv(priv))
1389 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__);
1390
1391 enc28j60_hw_disable(priv);
1392 enc28j60_lowpower(priv, true);
1393 netif_stop_queue(dev);
1394
1395 return 0;
1396}
1397
1398/*
1399 * Set or clear the multicast filter for this adapter
1400 * num_addrs == -1 Promiscuous mode, receive all packets
1401 * num_addrs == 0 Normal mode, filter out multicast packets
1402 * num_addrs > 0 Multicast mode, receive normal and MC packets
1403 */
1404static void enc28j60_set_multicast_list(struct net_device *dev)
1405{
1406 struct enc28j60_net *priv = netdev_priv(dev);
1407 int oldfilter = priv->rxfilter;
1408
1409 if (dev->flags & IFF_PROMISC) {
1410 if (netif_msg_link(priv))
1411 dev_info(&dev->dev, "promiscuous mode\n");
1412 priv->rxfilter = RXFILTER_PROMISC;
1413 } else if ((dev->flags & IFF_ALLMULTI) || !netdev_mc_empty(dev)) {
1414 if (netif_msg_link(priv))
1415 dev_info(&dev->dev, "%smulticast mode\n",
1416 (dev->flags & IFF_ALLMULTI) ? "all-" : "");
1417 priv->rxfilter = RXFILTER_MULTI;
1418 } else {
1419 if (netif_msg_link(priv))
1420 dev_info(&dev->dev, "normal mode\n");
1421 priv->rxfilter = RXFILTER_NORMAL;
1422 }
1423
1424 if (oldfilter != priv->rxfilter)
1425 schedule_work(&priv->setrx_work);
1426}
1427
1428static void enc28j60_setrx_work_handler(struct work_struct *work)
1429{
1430 struct enc28j60_net *priv =
1431 container_of(work, struct enc28j60_net, setrx_work);
1432
1433 if (priv->rxfilter == RXFILTER_PROMISC) {
1434 if (netif_msg_drv(priv))
1435 printk(KERN_DEBUG DRV_NAME ": promiscuous mode\n");
1436 locked_regb_write(priv, ERXFCON, 0x00);
1437 } else if (priv->rxfilter == RXFILTER_MULTI) {
1438 if (netif_msg_drv(priv))
1439 printk(KERN_DEBUG DRV_NAME ": multicast mode\n");
1440 locked_regb_write(priv, ERXFCON,
1441 ERXFCON_UCEN | ERXFCON_CRCEN |
1442 ERXFCON_BCEN | ERXFCON_MCEN);
1443 } else {
1444 if (netif_msg_drv(priv))
1445 printk(KERN_DEBUG DRV_NAME ": normal mode\n");
1446 locked_regb_write(priv, ERXFCON,
1447 ERXFCON_UCEN | ERXFCON_CRCEN |
1448 ERXFCON_BCEN);
1449 }
1450}
1451
1452static void enc28j60_restart_work_handler(struct work_struct *work)
1453{
1454 struct enc28j60_net *priv =
1455 container_of(work, struct enc28j60_net, restart_work);
1456 struct net_device *ndev = priv->netdev;
1457 int ret;
1458
1459 rtnl_lock();
1460 if (netif_running(ndev)) {
1461 enc28j60_net_close(ndev);
1462 ret = enc28j60_net_open(ndev);
1463 if (unlikely(ret)) {
1464 dev_info(&ndev->dev, " could not restart %d\n", ret);
1465 dev_close(ndev);
1466 }
1467 }
1468 rtnl_unlock();
1469}
1470
1471/* ......................... ETHTOOL SUPPORT ........................... */
1472
1473static void
1474enc28j60_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1475{
1476 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1477 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1478 strlcpy(info->bus_info,
1479 dev_name(dev->dev.parent), sizeof(info->bus_info));
1480}
1481
1482static int
1483enc28j60_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1484{
1485 struct enc28j60_net *priv = netdev_priv(dev);
1486
1487 cmd->transceiver = XCVR_INTERNAL;
1488 cmd->supported = SUPPORTED_10baseT_Half
1489 | SUPPORTED_10baseT_Full
1490 | SUPPORTED_TP;
1491 ethtool_cmd_speed_set(cmd, SPEED_10);
1492 cmd->duplex = priv->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1493 cmd->port = PORT_TP;
1494 cmd->autoneg = AUTONEG_DISABLE;
1495
1496 return 0;
1497}
1498
1499static int
1500enc28j60_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1501{
1502 return enc28j60_setlink(dev, cmd->autoneg,
1503 ethtool_cmd_speed(cmd), cmd->duplex);
1504}
1505
1506static u32 enc28j60_get_msglevel(struct net_device *dev)
1507{
1508 struct enc28j60_net *priv = netdev_priv(dev);
1509 return priv->msg_enable;
1510}
1511
1512static void enc28j60_set_msglevel(struct net_device *dev, u32 val)
1513{
1514 struct enc28j60_net *priv = netdev_priv(dev);
1515 priv->msg_enable = val;
1516}
1517
1518static const struct ethtool_ops enc28j60_ethtool_ops = {
1519 .get_settings = enc28j60_get_settings,
1520 .set_settings = enc28j60_set_settings,
1521 .get_drvinfo = enc28j60_get_drvinfo,
1522 .get_msglevel = enc28j60_get_msglevel,
1523 .set_msglevel = enc28j60_set_msglevel,
1524};
1525
1526static int enc28j60_chipset_init(struct net_device *dev)
1527{
1528 struct enc28j60_net *priv = netdev_priv(dev);
1529
1530 return enc28j60_hw_init(priv);
1531}
1532
1533static const struct net_device_ops enc28j60_netdev_ops = {
1534 .ndo_open = enc28j60_net_open,
1535 .ndo_stop = enc28j60_net_close,
1536 .ndo_start_xmit = enc28j60_send_packet,
1537 .ndo_set_rx_mode = enc28j60_set_multicast_list,
1538 .ndo_set_mac_address = enc28j60_set_mac_address,
1539 .ndo_tx_timeout = enc28j60_tx_timeout,
1540 .ndo_change_mtu = eth_change_mtu,
1541 .ndo_validate_addr = eth_validate_addr,
1542};
1543
1544static int __devinit enc28j60_probe(struct spi_device *spi)
1545{
1546 struct net_device *dev;
1547 struct enc28j60_net *priv;
1548 int ret = 0;
1549
1550 if (netif_msg_drv(&debug))
1551 dev_info(&spi->dev, DRV_NAME " Ethernet driver %s loaded\n",
1552 DRV_VERSION);
1553
1554 dev = alloc_etherdev(sizeof(struct enc28j60_net));
1555 if (!dev) {
1556 ret = -ENOMEM;
1557 goto error_alloc;
1558 }
1559 priv = netdev_priv(dev);
1560
1561 priv->netdev = dev; /* priv to netdev reference */
1562 priv->spi = spi; /* priv to spi reference */
1563 priv->msg_enable = netif_msg_init(debug.msg_enable,
1564 ENC28J60_MSG_DEFAULT);
1565 mutex_init(&priv->lock);
1566 INIT_WORK(&priv->tx_work, enc28j60_tx_work_handler);
1567 INIT_WORK(&priv->setrx_work, enc28j60_setrx_work_handler);
1568 INIT_WORK(&priv->irq_work, enc28j60_irq_work_handler);
1569 INIT_WORK(&priv->restart_work, enc28j60_restart_work_handler);
1570 dev_set_drvdata(&spi->dev, priv); /* spi to priv reference */
1571 SET_NETDEV_DEV(dev, &spi->dev);
1572
1573 if (!enc28j60_chipset_init(dev)) {
1574 if (netif_msg_probe(priv))
1575 dev_info(&spi->dev, DRV_NAME " chip not found\n");
1576 ret = -EIO;
1577 goto error_irq;
1578 }
1579 eth_hw_addr_random(dev);
1580 enc28j60_set_hw_macaddr(dev);
1581
1582 /* Board setup must set the relevant edge trigger type;
1583 * level triggers won't currently work.
1584 */
1585 ret = request_irq(spi->irq, enc28j60_irq, 0, DRV_NAME, priv);
1586 if (ret < 0) {
1587 if (netif_msg_probe(priv))
1588 dev_err(&spi->dev, DRV_NAME ": request irq %d failed "
1589 "(ret = %d)\n", spi->irq, ret);
1590 goto error_irq;
1591 }
1592
1593 dev->if_port = IF_PORT_10BASET;
1594 dev->irq = spi->irq;
1595 dev->netdev_ops = &enc28j60_netdev_ops;
1596 dev->watchdog_timeo = TX_TIMEOUT;
1597 SET_ETHTOOL_OPS(dev, &enc28j60_ethtool_ops);
1598
1599 enc28j60_lowpower(priv, true);
1600
1601 ret = register_netdev(dev);
1602 if (ret) {
1603 if (netif_msg_probe(priv))
1604 dev_err(&spi->dev, "register netdev " DRV_NAME
1605 " failed (ret = %d)\n", ret);
1606 goto error_register;
1607 }
1608 dev_info(&dev->dev, DRV_NAME " driver registered\n");
1609
1610 return 0;
1611
1612error_register:
1613 free_irq(spi->irq, priv);
1614error_irq:
1615 free_netdev(dev);
1616error_alloc:
1617 return ret;
1618}
1619
1620static int __devexit enc28j60_remove(struct spi_device *spi)
1621{
1622 struct enc28j60_net *priv = dev_get_drvdata(&spi->dev);
1623
1624 if (netif_msg_drv(priv))
1625 printk(KERN_DEBUG DRV_NAME ": remove\n");
1626
1627 unregister_netdev(priv->netdev);
1628 free_irq(spi->irq, priv);
1629 free_netdev(priv->netdev);
1630
1631 return 0;
1632}
1633
1634static struct spi_driver enc28j60_driver = {
1635 .driver = {
1636 .name = DRV_NAME,
1637 .owner = THIS_MODULE,
1638 },
1639 .probe = enc28j60_probe,
1640 .remove = __devexit_p(enc28j60_remove),
1641};
1642
1643static int __init enc28j60_init(void)
1644{
1645 msec20_to_jiffies = msecs_to_jiffies(20);
1646
1647 return spi_register_driver(&enc28j60_driver);
1648}
1649
1650module_init(enc28j60_init);
1651
1652static void __exit enc28j60_exit(void)
1653{
1654 spi_unregister_driver(&enc28j60_driver);
1655}
1656
1657module_exit(enc28j60_exit);
1658
1659MODULE_DESCRIPTION(DRV_NAME " ethernet driver");
1660MODULE_AUTHOR("Claudio Lanconelli <lanconelli.claudio@eptar.com>");
1661MODULE_LICENSE("GPL");
1662module_param_named(debug, debug.msg_enable, int, 0);
1663MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., ffff=all)");
1664MODULE_ALIAS("spi:" DRV_NAME);
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Microchip ENC28J60 ethernet driver (MAC + PHY)
4 *
5 * Copyright (C) 2007 Eurek srl
6 * Author: Claudio Lanconelli <lanconelli.claudio@eptar.com>
7 * based on enc28j60.c written by David Anders for 2.4 kernel version
8 *
9 * $Id: enc28j60.c,v 1.22 2007/12/20 10:47:01 claudio Exp $
10 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/fcntl.h>
16#include <linux/interrupt.h>
17#include <linux/property.h>
18#include <linux/string.h>
19#include <linux/errno.h>
20#include <linux/netdevice.h>
21#include <linux/etherdevice.h>
22#include <linux/ethtool.h>
23#include <linux/tcp.h>
24#include <linux/skbuff.h>
25#include <linux/delay.h>
26#include <linux/spi/spi.h>
27
28#include "enc28j60_hw.h"
29
30#define DRV_NAME "enc28j60"
31#define DRV_VERSION "1.02"
32
33#define SPI_OPLEN 1
34
35#define ENC28J60_MSG_DEFAULT \
36 (NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN | NETIF_MSG_LINK)
37
38/* Buffer size required for the largest SPI transfer (i.e., reading a
39 * frame).
40 */
41#define SPI_TRANSFER_BUF_LEN (4 + MAX_FRAMELEN)
42
43#define TX_TIMEOUT (4 * HZ)
44
45/* Max TX retries in case of collision as suggested by errata datasheet */
46#define MAX_TX_RETRYCOUNT 16
47
48enum {
49 RXFILTER_NORMAL,
50 RXFILTER_MULTI,
51 RXFILTER_PROMISC
52};
53
54/* Driver local data */
55struct enc28j60_net {
56 struct net_device *netdev;
57 struct spi_device *spi;
58 struct mutex lock;
59 struct sk_buff *tx_skb;
60 struct work_struct tx_work;
61 struct work_struct irq_work;
62 struct work_struct setrx_work;
63 struct work_struct restart_work;
64 u8 bank; /* current register bank selected */
65 u16 next_pk_ptr; /* next packet pointer within FIFO */
66 u16 max_pk_counter; /* statistics: max packet counter */
67 u16 tx_retry_count;
68 bool hw_enable;
69 bool full_duplex;
70 int rxfilter;
71 u32 msg_enable;
72 u8 spi_transfer_buf[SPI_TRANSFER_BUF_LEN];
73};
74
75/* use ethtool to change the level for any given device */
76static struct {
77 u32 msg_enable;
78} debug = { -1 };
79
80/*
81 * SPI read buffer
82 * Wait for the SPI transfer and copy received data to destination.
83 */
84static int
85spi_read_buf(struct enc28j60_net *priv, int len, u8 *data)
86{
87 struct device *dev = &priv->spi->dev;
88 u8 *rx_buf = priv->spi_transfer_buf + 4;
89 u8 *tx_buf = priv->spi_transfer_buf;
90 struct spi_transfer tx = {
91 .tx_buf = tx_buf,
92 .len = SPI_OPLEN,
93 };
94 struct spi_transfer rx = {
95 .rx_buf = rx_buf,
96 .len = len,
97 };
98 struct spi_message msg;
99 int ret;
100
101 tx_buf[0] = ENC28J60_READ_BUF_MEM;
102
103 spi_message_init(&msg);
104 spi_message_add_tail(&tx, &msg);
105 spi_message_add_tail(&rx, &msg);
106
107 ret = spi_sync(priv->spi, &msg);
108 if (ret == 0) {
109 memcpy(data, rx_buf, len);
110 ret = msg.status;
111 }
112 if (ret && netif_msg_drv(priv))
113 dev_printk(KERN_DEBUG, dev, "%s() failed: ret = %d\n",
114 __func__, ret);
115
116 return ret;
117}
118
119/*
120 * SPI write buffer
121 */
122static int spi_write_buf(struct enc28j60_net *priv, int len, const u8 *data)
123{
124 struct device *dev = &priv->spi->dev;
125 int ret;
126
127 if (len > SPI_TRANSFER_BUF_LEN - 1 || len <= 0)
128 ret = -EINVAL;
129 else {
130 priv->spi_transfer_buf[0] = ENC28J60_WRITE_BUF_MEM;
131 memcpy(&priv->spi_transfer_buf[1], data, len);
132 ret = spi_write(priv->spi, priv->spi_transfer_buf, len + 1);
133 if (ret && netif_msg_drv(priv))
134 dev_printk(KERN_DEBUG, dev, "%s() failed: ret = %d\n",
135 __func__, ret);
136 }
137 return ret;
138}
139
140/*
141 * basic SPI read operation
142 */
143static u8 spi_read_op(struct enc28j60_net *priv, u8 op, u8 addr)
144{
145 struct device *dev = &priv->spi->dev;
146 u8 tx_buf[2];
147 u8 rx_buf[4];
148 u8 val = 0;
149 int ret;
150 int slen = SPI_OPLEN;
151
152 /* do dummy read if needed */
153 if (addr & SPRD_MASK)
154 slen++;
155
156 tx_buf[0] = op | (addr & ADDR_MASK);
157 ret = spi_write_then_read(priv->spi, tx_buf, 1, rx_buf, slen);
158 if (ret)
159 dev_printk(KERN_DEBUG, dev, "%s() failed: ret = %d\n",
160 __func__, ret);
161 else
162 val = rx_buf[slen - 1];
163
164 return val;
165}
166
167/*
168 * basic SPI write operation
169 */
170static int spi_write_op(struct enc28j60_net *priv, u8 op, u8 addr, u8 val)
171{
172 struct device *dev = &priv->spi->dev;
173 int ret;
174
175 priv->spi_transfer_buf[0] = op | (addr & ADDR_MASK);
176 priv->spi_transfer_buf[1] = val;
177 ret = spi_write(priv->spi, priv->spi_transfer_buf, 2);
178 if (ret && netif_msg_drv(priv))
179 dev_printk(KERN_DEBUG, dev, "%s() failed: ret = %d\n",
180 __func__, ret);
181 return ret;
182}
183
184static void enc28j60_soft_reset(struct enc28j60_net *priv)
185{
186 spi_write_op(priv, ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET);
187 /* Errata workaround #1, CLKRDY check is unreliable,
188 * delay at least 1 ms instead */
189 udelay(2000);
190}
191
192/*
193 * select the current register bank if necessary
194 */
195static void enc28j60_set_bank(struct enc28j60_net *priv, u8 addr)
196{
197 u8 b = (addr & BANK_MASK) >> 5;
198
199 /* These registers (EIE, EIR, ESTAT, ECON2, ECON1)
200 * are present in all banks, no need to switch bank.
201 */
202 if (addr >= EIE && addr <= ECON1)
203 return;
204
205 /* Clear or set each bank selection bit as needed */
206 if ((b & ECON1_BSEL0) != (priv->bank & ECON1_BSEL0)) {
207 if (b & ECON1_BSEL0)
208 spi_write_op(priv, ENC28J60_BIT_FIELD_SET, ECON1,
209 ECON1_BSEL0);
210 else
211 spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, ECON1,
212 ECON1_BSEL0);
213 }
214 if ((b & ECON1_BSEL1) != (priv->bank & ECON1_BSEL1)) {
215 if (b & ECON1_BSEL1)
216 spi_write_op(priv, ENC28J60_BIT_FIELD_SET, ECON1,
217 ECON1_BSEL1);
218 else
219 spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, ECON1,
220 ECON1_BSEL1);
221 }
222 priv->bank = b;
223}
224
225/*
226 * Register access routines through the SPI bus.
227 * Every register access comes in two flavours:
228 * - nolock_xxx: caller needs to invoke mutex_lock, usually to access
229 * atomically more than one register
230 * - locked_xxx: caller doesn't need to invoke mutex_lock, single access
231 *
232 * Some registers can be accessed through the bit field clear and
233 * bit field set to avoid a read modify write cycle.
234 */
235
236/*
237 * Register bit field Set
238 */
239static void nolock_reg_bfset(struct enc28j60_net *priv, u8 addr, u8 mask)
240{
241 enc28j60_set_bank(priv, addr);
242 spi_write_op(priv, ENC28J60_BIT_FIELD_SET, addr, mask);
243}
244
245static void locked_reg_bfset(struct enc28j60_net *priv, u8 addr, u8 mask)
246{
247 mutex_lock(&priv->lock);
248 nolock_reg_bfset(priv, addr, mask);
249 mutex_unlock(&priv->lock);
250}
251
252/*
253 * Register bit field Clear
254 */
255static void nolock_reg_bfclr(struct enc28j60_net *priv, u8 addr, u8 mask)
256{
257 enc28j60_set_bank(priv, addr);
258 spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, addr, mask);
259}
260
261static void locked_reg_bfclr(struct enc28j60_net *priv, u8 addr, u8 mask)
262{
263 mutex_lock(&priv->lock);
264 nolock_reg_bfclr(priv, addr, mask);
265 mutex_unlock(&priv->lock);
266}
267
268/*
269 * Register byte read
270 */
271static int nolock_regb_read(struct enc28j60_net *priv, u8 address)
272{
273 enc28j60_set_bank(priv, address);
274 return spi_read_op(priv, ENC28J60_READ_CTRL_REG, address);
275}
276
277static int locked_regb_read(struct enc28j60_net *priv, u8 address)
278{
279 int ret;
280
281 mutex_lock(&priv->lock);
282 ret = nolock_regb_read(priv, address);
283 mutex_unlock(&priv->lock);
284
285 return ret;
286}
287
288/*
289 * Register word read
290 */
291static int nolock_regw_read(struct enc28j60_net *priv, u8 address)
292{
293 int rl, rh;
294
295 enc28j60_set_bank(priv, address);
296 rl = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address);
297 rh = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address + 1);
298
299 return (rh << 8) | rl;
300}
301
302static int locked_regw_read(struct enc28j60_net *priv, u8 address)
303{
304 int ret;
305
306 mutex_lock(&priv->lock);
307 ret = nolock_regw_read(priv, address);
308 mutex_unlock(&priv->lock);
309
310 return ret;
311}
312
313/*
314 * Register byte write
315 */
316static void nolock_regb_write(struct enc28j60_net *priv, u8 address, u8 data)
317{
318 enc28j60_set_bank(priv, address);
319 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, data);
320}
321
322static void locked_regb_write(struct enc28j60_net *priv, u8 address, u8 data)
323{
324 mutex_lock(&priv->lock);
325 nolock_regb_write(priv, address, data);
326 mutex_unlock(&priv->lock);
327}
328
329/*
330 * Register word write
331 */
332static void nolock_regw_write(struct enc28j60_net *priv, u8 address, u16 data)
333{
334 enc28j60_set_bank(priv, address);
335 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, (u8) data);
336 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address + 1,
337 (u8) (data >> 8));
338}
339
340static void locked_regw_write(struct enc28j60_net *priv, u8 address, u16 data)
341{
342 mutex_lock(&priv->lock);
343 nolock_regw_write(priv, address, data);
344 mutex_unlock(&priv->lock);
345}
346
347/*
348 * Buffer memory read
349 * Select the starting address and execute a SPI buffer read.
350 */
351static void enc28j60_mem_read(struct enc28j60_net *priv, u16 addr, int len,
352 u8 *data)
353{
354 mutex_lock(&priv->lock);
355 nolock_regw_write(priv, ERDPTL, addr);
356#ifdef CONFIG_ENC28J60_WRITEVERIFY
357 if (netif_msg_drv(priv)) {
358 struct device *dev = &priv->spi->dev;
359 u16 reg;
360
361 reg = nolock_regw_read(priv, ERDPTL);
362 if (reg != addr)
363 dev_printk(KERN_DEBUG, dev,
364 "%s() error writing ERDPT (0x%04x - 0x%04x)\n",
365 __func__, reg, addr);
366 }
367#endif
368 spi_read_buf(priv, len, data);
369 mutex_unlock(&priv->lock);
370}
371
372/*
373 * Write packet to enc28j60 TX buffer memory
374 */
375static void
376enc28j60_packet_write(struct enc28j60_net *priv, int len, const u8 *data)
377{
378 struct device *dev = &priv->spi->dev;
379
380 mutex_lock(&priv->lock);
381 /* Set the write pointer to start of transmit buffer area */
382 nolock_regw_write(priv, EWRPTL, TXSTART_INIT);
383#ifdef CONFIG_ENC28J60_WRITEVERIFY
384 if (netif_msg_drv(priv)) {
385 u16 reg;
386 reg = nolock_regw_read(priv, EWRPTL);
387 if (reg != TXSTART_INIT)
388 dev_printk(KERN_DEBUG, dev,
389 "%s() ERWPT:0x%04x != 0x%04x\n",
390 __func__, reg, TXSTART_INIT);
391 }
392#endif
393 /* Set the TXND pointer to correspond to the packet size given */
394 nolock_regw_write(priv, ETXNDL, TXSTART_INIT + len);
395 /* write per-packet control byte */
396 spi_write_op(priv, ENC28J60_WRITE_BUF_MEM, 0, 0x00);
397 if (netif_msg_hw(priv))
398 dev_printk(KERN_DEBUG, dev,
399 "%s() after control byte ERWPT:0x%04x\n",
400 __func__, nolock_regw_read(priv, EWRPTL));
401 /* copy the packet into the transmit buffer */
402 spi_write_buf(priv, len, data);
403 if (netif_msg_hw(priv))
404 dev_printk(KERN_DEBUG, dev,
405 "%s() after write packet ERWPT:0x%04x, len=%d\n",
406 __func__, nolock_regw_read(priv, EWRPTL), len);
407 mutex_unlock(&priv->lock);
408}
409
410static int poll_ready(struct enc28j60_net *priv, u8 reg, u8 mask, u8 val)
411{
412 struct device *dev = &priv->spi->dev;
413 unsigned long timeout = jiffies + msecs_to_jiffies(20);
414
415 /* 20 msec timeout read */
416 while ((nolock_regb_read(priv, reg) & mask) != val) {
417 if (time_after(jiffies, timeout)) {
418 if (netif_msg_drv(priv))
419 dev_dbg(dev, "reg %02x ready timeout!\n", reg);
420 return -ETIMEDOUT;
421 }
422 cpu_relax();
423 }
424 return 0;
425}
426
427/*
428 * Wait until the PHY operation is complete.
429 */
430static int wait_phy_ready(struct enc28j60_net *priv)
431{
432 return poll_ready(priv, MISTAT, MISTAT_BUSY, 0) ? 0 : 1;
433}
434
435/*
436 * PHY register read
437 * PHY registers are not accessed directly, but through the MII.
438 */
439static u16 enc28j60_phy_read(struct enc28j60_net *priv, u8 address)
440{
441 u16 ret;
442
443 mutex_lock(&priv->lock);
444 /* set the PHY register address */
445 nolock_regb_write(priv, MIREGADR, address);
446 /* start the register read operation */
447 nolock_regb_write(priv, MICMD, MICMD_MIIRD);
448 /* wait until the PHY read completes */
449 wait_phy_ready(priv);
450 /* quit reading */
451 nolock_regb_write(priv, MICMD, 0x00);
452 /* return the data */
453 ret = nolock_regw_read(priv, MIRDL);
454 mutex_unlock(&priv->lock);
455
456 return ret;
457}
458
459static int enc28j60_phy_write(struct enc28j60_net *priv, u8 address, u16 data)
460{
461 int ret;
462
463 mutex_lock(&priv->lock);
464 /* set the PHY register address */
465 nolock_regb_write(priv, MIREGADR, address);
466 /* write the PHY data */
467 nolock_regw_write(priv, MIWRL, data);
468 /* wait until the PHY write completes and return */
469 ret = wait_phy_ready(priv);
470 mutex_unlock(&priv->lock);
471
472 return ret;
473}
474
475/*
476 * Program the hardware MAC address from dev->dev_addr.
477 */
478static int enc28j60_set_hw_macaddr(struct net_device *ndev)
479{
480 int ret;
481 struct enc28j60_net *priv = netdev_priv(ndev);
482 struct device *dev = &priv->spi->dev;
483
484 mutex_lock(&priv->lock);
485 if (!priv->hw_enable) {
486 if (netif_msg_drv(priv))
487 dev_info(dev, "%s: Setting MAC address to %pM\n",
488 ndev->name, ndev->dev_addr);
489 /* NOTE: MAC address in ENC28J60 is byte-backward */
490 nolock_regb_write(priv, MAADR5, ndev->dev_addr[0]);
491 nolock_regb_write(priv, MAADR4, ndev->dev_addr[1]);
492 nolock_regb_write(priv, MAADR3, ndev->dev_addr[2]);
493 nolock_regb_write(priv, MAADR2, ndev->dev_addr[3]);
494 nolock_regb_write(priv, MAADR1, ndev->dev_addr[4]);
495 nolock_regb_write(priv, MAADR0, ndev->dev_addr[5]);
496 ret = 0;
497 } else {
498 if (netif_msg_drv(priv))
499 dev_printk(KERN_DEBUG, dev,
500 "%s() Hardware must be disabled to set Mac address\n",
501 __func__);
502 ret = -EBUSY;
503 }
504 mutex_unlock(&priv->lock);
505 return ret;
506}
507
508/*
509 * Store the new hardware address in dev->dev_addr, and update the MAC.
510 */
511static int enc28j60_set_mac_address(struct net_device *dev, void *addr)
512{
513 struct sockaddr *address = addr;
514
515 if (netif_running(dev))
516 return -EBUSY;
517 if (!is_valid_ether_addr(address->sa_data))
518 return -EADDRNOTAVAIL;
519
520 ether_addr_copy(dev->dev_addr, address->sa_data);
521 return enc28j60_set_hw_macaddr(dev);
522}
523
524/*
525 * Debug routine to dump useful register contents
526 */
527static void enc28j60_dump_regs(struct enc28j60_net *priv, const char *msg)
528{
529 struct device *dev = &priv->spi->dev;
530
531 mutex_lock(&priv->lock);
532 dev_printk(KERN_DEBUG, dev,
533 " %s\n"
534 "HwRevID: 0x%02x\n"
535 "Cntrl: ECON1 ECON2 ESTAT EIR EIE\n"
536 " 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x\n"
537 "MAC : MACON1 MACON3 MACON4\n"
538 " 0x%02x 0x%02x 0x%02x\n"
539 "Rx : ERXST ERXND ERXWRPT ERXRDPT ERXFCON EPKTCNT MAMXFL\n"
540 " 0x%04x 0x%04x 0x%04x 0x%04x "
541 "0x%02x 0x%02x 0x%04x\n"
542 "Tx : ETXST ETXND MACLCON1 MACLCON2 MAPHSUP\n"
543 " 0x%04x 0x%04x 0x%02x 0x%02x 0x%02x\n",
544 msg, nolock_regb_read(priv, EREVID),
545 nolock_regb_read(priv, ECON1), nolock_regb_read(priv, ECON2),
546 nolock_regb_read(priv, ESTAT), nolock_regb_read(priv, EIR),
547 nolock_regb_read(priv, EIE), nolock_regb_read(priv, MACON1),
548 nolock_regb_read(priv, MACON3), nolock_regb_read(priv, MACON4),
549 nolock_regw_read(priv, ERXSTL), nolock_regw_read(priv, ERXNDL),
550 nolock_regw_read(priv, ERXWRPTL),
551 nolock_regw_read(priv, ERXRDPTL),
552 nolock_regb_read(priv, ERXFCON),
553 nolock_regb_read(priv, EPKTCNT),
554 nolock_regw_read(priv, MAMXFLL), nolock_regw_read(priv, ETXSTL),
555 nolock_regw_read(priv, ETXNDL),
556 nolock_regb_read(priv, MACLCON1),
557 nolock_regb_read(priv, MACLCON2),
558 nolock_regb_read(priv, MAPHSUP));
559 mutex_unlock(&priv->lock);
560}
561
562/*
563 * ERXRDPT need to be set always at odd addresses, refer to errata datasheet
564 */
565static u16 erxrdpt_workaround(u16 next_packet_ptr, u16 start, u16 end)
566{
567 u16 erxrdpt;
568
569 if ((next_packet_ptr - 1 < start) || (next_packet_ptr - 1 > end))
570 erxrdpt = end;
571 else
572 erxrdpt = next_packet_ptr - 1;
573
574 return erxrdpt;
575}
576
577/*
578 * Calculate wrap around when reading beyond the end of the RX buffer
579 */
580static u16 rx_packet_start(u16 ptr)
581{
582 if (ptr + RSV_SIZE > RXEND_INIT)
583 return (ptr + RSV_SIZE) - (RXEND_INIT - RXSTART_INIT + 1);
584 else
585 return ptr + RSV_SIZE;
586}
587
588static void nolock_rxfifo_init(struct enc28j60_net *priv, u16 start, u16 end)
589{
590 struct device *dev = &priv->spi->dev;
591 u16 erxrdpt;
592
593 if (start > 0x1FFF || end > 0x1FFF || start > end) {
594 if (netif_msg_drv(priv))
595 dev_err(dev, "%s(%d, %d) RXFIFO bad parameters!\n",
596 __func__, start, end);
597 return;
598 }
599 /* set receive buffer start + end */
600 priv->next_pk_ptr = start;
601 nolock_regw_write(priv, ERXSTL, start);
602 erxrdpt = erxrdpt_workaround(priv->next_pk_ptr, start, end);
603 nolock_regw_write(priv, ERXRDPTL, erxrdpt);
604 nolock_regw_write(priv, ERXNDL, end);
605}
606
607static void nolock_txfifo_init(struct enc28j60_net *priv, u16 start, u16 end)
608{
609 struct device *dev = &priv->spi->dev;
610
611 if (start > 0x1FFF || end > 0x1FFF || start > end) {
612 if (netif_msg_drv(priv))
613 dev_err(dev, "%s(%d, %d) TXFIFO bad parameters!\n",
614 __func__, start, end);
615 return;
616 }
617 /* set transmit buffer start + end */
618 nolock_regw_write(priv, ETXSTL, start);
619 nolock_regw_write(priv, ETXNDL, end);
620}
621
622/*
623 * Low power mode shrinks power consumption about 100x, so we'd like
624 * the chip to be in that mode whenever it's inactive. (However, we
625 * can't stay in low power mode during suspend with WOL active.)
626 */
627static void enc28j60_lowpower(struct enc28j60_net *priv, bool is_low)
628{
629 struct device *dev = &priv->spi->dev;
630
631 if (netif_msg_drv(priv))
632 dev_dbg(dev, "%s power...\n", is_low ? "low" : "high");
633
634 mutex_lock(&priv->lock);
635 if (is_low) {
636 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN);
637 poll_ready(priv, ESTAT, ESTAT_RXBUSY, 0);
638 poll_ready(priv, ECON1, ECON1_TXRTS, 0);
639 /* ECON2_VRPS was set during initialization */
640 nolock_reg_bfset(priv, ECON2, ECON2_PWRSV);
641 } else {
642 nolock_reg_bfclr(priv, ECON2, ECON2_PWRSV);
643 poll_ready(priv, ESTAT, ESTAT_CLKRDY, ESTAT_CLKRDY);
644 /* caller sets ECON1_RXEN */
645 }
646 mutex_unlock(&priv->lock);
647}
648
649static int enc28j60_hw_init(struct enc28j60_net *priv)
650{
651 struct device *dev = &priv->spi->dev;
652 u8 reg;
653
654 if (netif_msg_drv(priv))
655 dev_printk(KERN_DEBUG, dev, "%s() - %s\n", __func__,
656 priv->full_duplex ? "FullDuplex" : "HalfDuplex");
657
658 mutex_lock(&priv->lock);
659 /* first reset the chip */
660 enc28j60_soft_reset(priv);
661 /* Clear ECON1 */
662 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, ECON1, 0x00);
663 priv->bank = 0;
664 priv->hw_enable = false;
665 priv->tx_retry_count = 0;
666 priv->max_pk_counter = 0;
667 priv->rxfilter = RXFILTER_NORMAL;
668 /* enable address auto increment and voltage regulator powersave */
669 nolock_regb_write(priv, ECON2, ECON2_AUTOINC | ECON2_VRPS);
670
671 nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT);
672 nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT);
673 mutex_unlock(&priv->lock);
674
675 /*
676 * Check the RevID.
677 * If it's 0x00 or 0xFF probably the enc28j60 is not mounted or
678 * damaged.
679 */
680 reg = locked_regb_read(priv, EREVID);
681 if (netif_msg_drv(priv))
682 dev_info(dev, "chip RevID: 0x%02x\n", reg);
683 if (reg == 0x00 || reg == 0xff) {
684 if (netif_msg_drv(priv))
685 dev_printk(KERN_DEBUG, dev, "%s() Invalid RevId %d\n",
686 __func__, reg);
687 return 0;
688 }
689
690 /* default filter mode: (unicast OR broadcast) AND crc valid */
691 locked_regb_write(priv, ERXFCON,
692 ERXFCON_UCEN | ERXFCON_CRCEN | ERXFCON_BCEN);
693
694 /* enable MAC receive */
695 locked_regb_write(priv, MACON1,
696 MACON1_MARXEN | MACON1_TXPAUS | MACON1_RXPAUS);
697 /* enable automatic padding and CRC operations */
698 if (priv->full_duplex) {
699 locked_regb_write(priv, MACON3,
700 MACON3_PADCFG0 | MACON3_TXCRCEN |
701 MACON3_FRMLNEN | MACON3_FULDPX);
702 /* set inter-frame gap (non-back-to-back) */
703 locked_regb_write(priv, MAIPGL, 0x12);
704 /* set inter-frame gap (back-to-back) */
705 locked_regb_write(priv, MABBIPG, 0x15);
706 } else {
707 locked_regb_write(priv, MACON3,
708 MACON3_PADCFG0 | MACON3_TXCRCEN |
709 MACON3_FRMLNEN);
710 locked_regb_write(priv, MACON4, 1 << 6); /* DEFER bit */
711 /* set inter-frame gap (non-back-to-back) */
712 locked_regw_write(priv, MAIPGL, 0x0C12);
713 /* set inter-frame gap (back-to-back) */
714 locked_regb_write(priv, MABBIPG, 0x12);
715 }
716 /*
717 * MACLCON1 (default)
718 * MACLCON2 (default)
719 * Set the maximum packet size which the controller will accept.
720 */
721 locked_regw_write(priv, MAMXFLL, MAX_FRAMELEN);
722
723 /* Configure LEDs */
724 if (!enc28j60_phy_write(priv, PHLCON, ENC28J60_LAMPS_MODE))
725 return 0;
726
727 if (priv->full_duplex) {
728 if (!enc28j60_phy_write(priv, PHCON1, PHCON1_PDPXMD))
729 return 0;
730 if (!enc28j60_phy_write(priv, PHCON2, 0x00))
731 return 0;
732 } else {
733 if (!enc28j60_phy_write(priv, PHCON1, 0x00))
734 return 0;
735 if (!enc28j60_phy_write(priv, PHCON2, PHCON2_HDLDIS))
736 return 0;
737 }
738 if (netif_msg_hw(priv))
739 enc28j60_dump_regs(priv, "Hw initialized.");
740
741 return 1;
742}
743
744static void enc28j60_hw_enable(struct enc28j60_net *priv)
745{
746 struct device *dev = &priv->spi->dev;
747
748 /* enable interrupts */
749 if (netif_msg_hw(priv))
750 dev_printk(KERN_DEBUG, dev, "%s() enabling interrupts.\n",
751 __func__);
752
753 enc28j60_phy_write(priv, PHIE, PHIE_PGEIE | PHIE_PLNKIE);
754
755 mutex_lock(&priv->lock);
756 nolock_reg_bfclr(priv, EIR, EIR_DMAIF | EIR_LINKIF |
757 EIR_TXIF | EIR_TXERIF | EIR_RXERIF | EIR_PKTIF);
758 nolock_regb_write(priv, EIE, EIE_INTIE | EIE_PKTIE | EIE_LINKIE |
759 EIE_TXIE | EIE_TXERIE | EIE_RXERIE);
760
761 /* enable receive logic */
762 nolock_reg_bfset(priv, ECON1, ECON1_RXEN);
763 priv->hw_enable = true;
764 mutex_unlock(&priv->lock);
765}
766
767static void enc28j60_hw_disable(struct enc28j60_net *priv)
768{
769 mutex_lock(&priv->lock);
770 /* disable interrupts and packet reception */
771 nolock_regb_write(priv, EIE, 0x00);
772 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN);
773 priv->hw_enable = false;
774 mutex_unlock(&priv->lock);
775}
776
777static int
778enc28j60_setlink(struct net_device *ndev, u8 autoneg, u16 speed, u8 duplex)
779{
780 struct enc28j60_net *priv = netdev_priv(ndev);
781 int ret = 0;
782
783 if (!priv->hw_enable) {
784 /* link is in low power mode now; duplex setting
785 * will take effect on next enc28j60_hw_init().
786 */
787 if (autoneg == AUTONEG_DISABLE && speed == SPEED_10)
788 priv->full_duplex = (duplex == DUPLEX_FULL);
789 else {
790 if (netif_msg_link(priv))
791 netdev_warn(ndev, "unsupported link setting\n");
792 ret = -EOPNOTSUPP;
793 }
794 } else {
795 if (netif_msg_link(priv))
796 netdev_warn(ndev, "Warning: hw must be disabled to set link mode\n");
797 ret = -EBUSY;
798 }
799 return ret;
800}
801
802/*
803 * Read the Transmit Status Vector
804 */
805static void enc28j60_read_tsv(struct enc28j60_net *priv, u8 tsv[TSV_SIZE])
806{
807 struct device *dev = &priv->spi->dev;
808 int endptr;
809
810 endptr = locked_regw_read(priv, ETXNDL);
811 if (netif_msg_hw(priv))
812 dev_printk(KERN_DEBUG, dev, "reading TSV at addr:0x%04x\n",
813 endptr + 1);
814 enc28j60_mem_read(priv, endptr + 1, TSV_SIZE, tsv);
815}
816
817static void enc28j60_dump_tsv(struct enc28j60_net *priv, const char *msg,
818 u8 tsv[TSV_SIZE])
819{
820 struct device *dev = &priv->spi->dev;
821 u16 tmp1, tmp2;
822
823 dev_printk(KERN_DEBUG, dev, "%s - TSV:\n", msg);
824 tmp1 = tsv[1];
825 tmp1 <<= 8;
826 tmp1 |= tsv[0];
827
828 tmp2 = tsv[5];
829 tmp2 <<= 8;
830 tmp2 |= tsv[4];
831
832 dev_printk(KERN_DEBUG, dev,
833 "ByteCount: %d, CollisionCount: %d, TotByteOnWire: %d\n",
834 tmp1, tsv[2] & 0x0f, tmp2);
835 dev_printk(KERN_DEBUG, dev,
836 "TxDone: %d, CRCErr:%d, LenChkErr: %d, LenOutOfRange: %d\n",
837 TSV_GETBIT(tsv, TSV_TXDONE),
838 TSV_GETBIT(tsv, TSV_TXCRCERROR),
839 TSV_GETBIT(tsv, TSV_TXLENCHKERROR),
840 TSV_GETBIT(tsv, TSV_TXLENOUTOFRANGE));
841 dev_printk(KERN_DEBUG, dev,
842 "Multicast: %d, Broadcast: %d, PacketDefer: %d, ExDefer: %d\n",
843 TSV_GETBIT(tsv, TSV_TXMULTICAST),
844 TSV_GETBIT(tsv, TSV_TXBROADCAST),
845 TSV_GETBIT(tsv, TSV_TXPACKETDEFER),
846 TSV_GETBIT(tsv, TSV_TXEXDEFER));
847 dev_printk(KERN_DEBUG, dev,
848 "ExCollision: %d, LateCollision: %d, Giant: %d, Underrun: %d\n",
849 TSV_GETBIT(tsv, TSV_TXEXCOLLISION),
850 TSV_GETBIT(tsv, TSV_TXLATECOLLISION),
851 TSV_GETBIT(tsv, TSV_TXGIANT), TSV_GETBIT(tsv, TSV_TXUNDERRUN));
852 dev_printk(KERN_DEBUG, dev,
853 "ControlFrame: %d, PauseFrame: %d, BackPressApp: %d, VLanTagFrame: %d\n",
854 TSV_GETBIT(tsv, TSV_TXCONTROLFRAME),
855 TSV_GETBIT(tsv, TSV_TXPAUSEFRAME),
856 TSV_GETBIT(tsv, TSV_BACKPRESSUREAPP),
857 TSV_GETBIT(tsv, TSV_TXVLANTAGFRAME));
858}
859
860/*
861 * Receive Status vector
862 */
863static void enc28j60_dump_rsv(struct enc28j60_net *priv, const char *msg,
864 u16 pk_ptr, int len, u16 sts)
865{
866 struct device *dev = &priv->spi->dev;
867
868 dev_printk(KERN_DEBUG, dev, "%s - NextPk: 0x%04x - RSV:\n", msg, pk_ptr);
869 dev_printk(KERN_DEBUG, dev, "ByteCount: %d, DribbleNibble: %d\n",
870 len, RSV_GETBIT(sts, RSV_DRIBBLENIBBLE));
871 dev_printk(KERN_DEBUG, dev,
872 "RxOK: %d, CRCErr:%d, LenChkErr: %d, LenOutOfRange: %d\n",
873 RSV_GETBIT(sts, RSV_RXOK),
874 RSV_GETBIT(sts, RSV_CRCERROR),
875 RSV_GETBIT(sts, RSV_LENCHECKERR),
876 RSV_GETBIT(sts, RSV_LENOUTOFRANGE));
877 dev_printk(KERN_DEBUG, dev,
878 "Multicast: %d, Broadcast: %d, LongDropEvent: %d, CarrierEvent: %d\n",
879 RSV_GETBIT(sts, RSV_RXMULTICAST),
880 RSV_GETBIT(sts, RSV_RXBROADCAST),
881 RSV_GETBIT(sts, RSV_RXLONGEVDROPEV),
882 RSV_GETBIT(sts, RSV_CARRIEREV));
883 dev_printk(KERN_DEBUG, dev,
884 "ControlFrame: %d, PauseFrame: %d, UnknownOp: %d, VLanTagFrame: %d\n",
885 RSV_GETBIT(sts, RSV_RXCONTROLFRAME),
886 RSV_GETBIT(sts, RSV_RXPAUSEFRAME),
887 RSV_GETBIT(sts, RSV_RXUNKNOWNOPCODE),
888 RSV_GETBIT(sts, RSV_RXTYPEVLAN));
889}
890
891static void dump_packet(const char *msg, int len, const char *data)
892{
893 printk(KERN_DEBUG DRV_NAME ": %s - packet len:%d\n", msg, len);
894 print_hex_dump(KERN_DEBUG, "pk data: ", DUMP_PREFIX_OFFSET, 16, 1,
895 data, len, true);
896}
897
898/*
899 * Hardware receive function.
900 * Read the buffer memory, update the FIFO pointer to free the buffer,
901 * check the status vector and decrement the packet counter.
902 */
903static void enc28j60_hw_rx(struct net_device *ndev)
904{
905 struct enc28j60_net *priv = netdev_priv(ndev);
906 struct device *dev = &priv->spi->dev;
907 struct sk_buff *skb = NULL;
908 u16 erxrdpt, next_packet, rxstat;
909 u8 rsv[RSV_SIZE];
910 int len;
911
912 if (netif_msg_rx_status(priv))
913 netdev_printk(KERN_DEBUG, ndev, "RX pk_addr:0x%04x\n",
914 priv->next_pk_ptr);
915
916 if (unlikely(priv->next_pk_ptr > RXEND_INIT)) {
917 if (netif_msg_rx_err(priv))
918 netdev_err(ndev, "%s() Invalid packet address!! 0x%04x\n",
919 __func__, priv->next_pk_ptr);
920 /* packet address corrupted: reset RX logic */
921 mutex_lock(&priv->lock);
922 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN);
923 nolock_reg_bfset(priv, ECON1, ECON1_RXRST);
924 nolock_reg_bfclr(priv, ECON1, ECON1_RXRST);
925 nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT);
926 nolock_reg_bfclr(priv, EIR, EIR_RXERIF);
927 nolock_reg_bfset(priv, ECON1, ECON1_RXEN);
928 mutex_unlock(&priv->lock);
929 ndev->stats.rx_errors++;
930 return;
931 }
932 /* Read next packet pointer and rx status vector */
933 enc28j60_mem_read(priv, priv->next_pk_ptr, sizeof(rsv), rsv);
934
935 next_packet = rsv[1];
936 next_packet <<= 8;
937 next_packet |= rsv[0];
938
939 len = rsv[3];
940 len <<= 8;
941 len |= rsv[2];
942
943 rxstat = rsv[5];
944 rxstat <<= 8;
945 rxstat |= rsv[4];
946
947 if (netif_msg_rx_status(priv))
948 enc28j60_dump_rsv(priv, __func__, next_packet, len, rxstat);
949
950 if (!RSV_GETBIT(rxstat, RSV_RXOK) || len > MAX_FRAMELEN) {
951 if (netif_msg_rx_err(priv))
952 netdev_err(ndev, "Rx Error (%04x)\n", rxstat);
953 ndev->stats.rx_errors++;
954 if (RSV_GETBIT(rxstat, RSV_CRCERROR))
955 ndev->stats.rx_crc_errors++;
956 if (RSV_GETBIT(rxstat, RSV_LENCHECKERR))
957 ndev->stats.rx_frame_errors++;
958 if (len > MAX_FRAMELEN)
959 ndev->stats.rx_over_errors++;
960 } else {
961 skb = netdev_alloc_skb(ndev, len + NET_IP_ALIGN);
962 if (!skb) {
963 if (netif_msg_rx_err(priv))
964 netdev_err(ndev, "out of memory for Rx'd frame\n");
965 ndev->stats.rx_dropped++;
966 } else {
967 skb_reserve(skb, NET_IP_ALIGN);
968 /* copy the packet from the receive buffer */
969 enc28j60_mem_read(priv,
970 rx_packet_start(priv->next_pk_ptr),
971 len, skb_put(skb, len));
972 if (netif_msg_pktdata(priv))
973 dump_packet(__func__, skb->len, skb->data);
974 skb->protocol = eth_type_trans(skb, ndev);
975 /* update statistics */
976 ndev->stats.rx_packets++;
977 ndev->stats.rx_bytes += len;
978 netif_rx_ni(skb);
979 }
980 }
981 /*
982 * Move the RX read pointer to the start of the next
983 * received packet.
984 * This frees the memory we just read out.
985 */
986 erxrdpt = erxrdpt_workaround(next_packet, RXSTART_INIT, RXEND_INIT);
987 if (netif_msg_hw(priv))
988 dev_printk(KERN_DEBUG, dev, "%s() ERXRDPT:0x%04x\n",
989 __func__, erxrdpt);
990
991 mutex_lock(&priv->lock);
992 nolock_regw_write(priv, ERXRDPTL, erxrdpt);
993#ifdef CONFIG_ENC28J60_WRITEVERIFY
994 if (netif_msg_drv(priv)) {
995 u16 reg;
996 reg = nolock_regw_read(priv, ERXRDPTL);
997 if (reg != erxrdpt)
998 dev_printk(KERN_DEBUG, dev,
999 "%s() ERXRDPT verify error (0x%04x - 0x%04x)\n",
1000 __func__, reg, erxrdpt);
1001 }
1002#endif
1003 priv->next_pk_ptr = next_packet;
1004 /* we are done with this packet, decrement the packet counter */
1005 nolock_reg_bfset(priv, ECON2, ECON2_PKTDEC);
1006 mutex_unlock(&priv->lock);
1007}
1008
1009/*
1010 * Calculate free space in RxFIFO
1011 */
1012static int enc28j60_get_free_rxfifo(struct enc28j60_net *priv)
1013{
1014 struct net_device *ndev = priv->netdev;
1015 int epkcnt, erxst, erxnd, erxwr, erxrd;
1016 int free_space;
1017
1018 mutex_lock(&priv->lock);
1019 epkcnt = nolock_regb_read(priv, EPKTCNT);
1020 if (epkcnt >= 255)
1021 free_space = -1;
1022 else {
1023 erxst = nolock_regw_read(priv, ERXSTL);
1024 erxnd = nolock_regw_read(priv, ERXNDL);
1025 erxwr = nolock_regw_read(priv, ERXWRPTL);
1026 erxrd = nolock_regw_read(priv, ERXRDPTL);
1027
1028 if (erxwr > erxrd)
1029 free_space = (erxnd - erxst) - (erxwr - erxrd);
1030 else if (erxwr == erxrd)
1031 free_space = (erxnd - erxst);
1032 else
1033 free_space = erxrd - erxwr - 1;
1034 }
1035 mutex_unlock(&priv->lock);
1036 if (netif_msg_rx_status(priv))
1037 netdev_printk(KERN_DEBUG, ndev, "%s() free_space = %d\n",
1038 __func__, free_space);
1039 return free_space;
1040}
1041
1042/*
1043 * Access the PHY to determine link status
1044 */
1045static void enc28j60_check_link_status(struct net_device *ndev)
1046{
1047 struct enc28j60_net *priv = netdev_priv(ndev);
1048 struct device *dev = &priv->spi->dev;
1049 u16 reg;
1050 int duplex;
1051
1052 reg = enc28j60_phy_read(priv, PHSTAT2);
1053 if (netif_msg_hw(priv))
1054 dev_printk(KERN_DEBUG, dev,
1055 "%s() PHSTAT1: %04x, PHSTAT2: %04x\n", __func__,
1056 enc28j60_phy_read(priv, PHSTAT1), reg);
1057 duplex = reg & PHSTAT2_DPXSTAT;
1058
1059 if (reg & PHSTAT2_LSTAT) {
1060 netif_carrier_on(ndev);
1061 if (netif_msg_ifup(priv))
1062 netdev_info(ndev, "link up - %s\n",
1063 duplex ? "Full duplex" : "Half duplex");
1064 } else {
1065 if (netif_msg_ifdown(priv))
1066 netdev_info(ndev, "link down\n");
1067 netif_carrier_off(ndev);
1068 }
1069}
1070
1071static void enc28j60_tx_clear(struct net_device *ndev, bool err)
1072{
1073 struct enc28j60_net *priv = netdev_priv(ndev);
1074
1075 if (err)
1076 ndev->stats.tx_errors++;
1077 else
1078 ndev->stats.tx_packets++;
1079
1080 if (priv->tx_skb) {
1081 if (!err)
1082 ndev->stats.tx_bytes += priv->tx_skb->len;
1083 dev_kfree_skb(priv->tx_skb);
1084 priv->tx_skb = NULL;
1085 }
1086 locked_reg_bfclr(priv, ECON1, ECON1_TXRTS);
1087 netif_wake_queue(ndev);
1088}
1089
1090/*
1091 * RX handler
1092 * Ignore PKTIF because is unreliable! (Look at the errata datasheet)
1093 * Check EPKTCNT is the suggested workaround.
1094 * We don't need to clear interrupt flag, automatically done when
1095 * enc28j60_hw_rx() decrements the packet counter.
1096 * Returns how many packet processed.
1097 */
1098static int enc28j60_rx_interrupt(struct net_device *ndev)
1099{
1100 struct enc28j60_net *priv = netdev_priv(ndev);
1101 int pk_counter, ret;
1102
1103 pk_counter = locked_regb_read(priv, EPKTCNT);
1104 if (pk_counter && netif_msg_intr(priv))
1105 netdev_printk(KERN_DEBUG, ndev, "intRX, pk_cnt: %d\n",
1106 pk_counter);
1107 if (pk_counter > priv->max_pk_counter) {
1108 /* update statistics */
1109 priv->max_pk_counter = pk_counter;
1110 if (netif_msg_rx_status(priv) && priv->max_pk_counter > 1)
1111 netdev_printk(KERN_DEBUG, ndev, "RX max_pk_cnt: %d\n",
1112 priv->max_pk_counter);
1113 }
1114 ret = pk_counter;
1115 while (pk_counter-- > 0)
1116 enc28j60_hw_rx(ndev);
1117
1118 return ret;
1119}
1120
1121static void enc28j60_irq_work_handler(struct work_struct *work)
1122{
1123 struct enc28j60_net *priv =
1124 container_of(work, struct enc28j60_net, irq_work);
1125 struct net_device *ndev = priv->netdev;
1126 int intflags, loop;
1127
1128 /* disable further interrupts */
1129 locked_reg_bfclr(priv, EIE, EIE_INTIE);
1130
1131 do {
1132 loop = 0;
1133 intflags = locked_regb_read(priv, EIR);
1134 /* DMA interrupt handler (not currently used) */
1135 if ((intflags & EIR_DMAIF) != 0) {
1136 loop++;
1137 if (netif_msg_intr(priv))
1138 netdev_printk(KERN_DEBUG, ndev, "intDMA(%d)\n",
1139 loop);
1140 locked_reg_bfclr(priv, EIR, EIR_DMAIF);
1141 }
1142 /* LINK changed handler */
1143 if ((intflags & EIR_LINKIF) != 0) {
1144 loop++;
1145 if (netif_msg_intr(priv))
1146 netdev_printk(KERN_DEBUG, ndev, "intLINK(%d)\n",
1147 loop);
1148 enc28j60_check_link_status(ndev);
1149 /* read PHIR to clear the flag */
1150 enc28j60_phy_read(priv, PHIR);
1151 }
1152 /* TX complete handler */
1153 if (((intflags & EIR_TXIF) != 0) &&
1154 ((intflags & EIR_TXERIF) == 0)) {
1155 bool err = false;
1156 loop++;
1157 if (netif_msg_intr(priv))
1158 netdev_printk(KERN_DEBUG, ndev, "intTX(%d)\n",
1159 loop);
1160 priv->tx_retry_count = 0;
1161 if (locked_regb_read(priv, ESTAT) & ESTAT_TXABRT) {
1162 if (netif_msg_tx_err(priv))
1163 netdev_err(ndev, "Tx Error (aborted)\n");
1164 err = true;
1165 }
1166 if (netif_msg_tx_done(priv)) {
1167 u8 tsv[TSV_SIZE];
1168 enc28j60_read_tsv(priv, tsv);
1169 enc28j60_dump_tsv(priv, "Tx Done", tsv);
1170 }
1171 enc28j60_tx_clear(ndev, err);
1172 locked_reg_bfclr(priv, EIR, EIR_TXIF);
1173 }
1174 /* TX Error handler */
1175 if ((intflags & EIR_TXERIF) != 0) {
1176 u8 tsv[TSV_SIZE];
1177
1178 loop++;
1179 if (netif_msg_intr(priv))
1180 netdev_printk(KERN_DEBUG, ndev, "intTXErr(%d)\n",
1181 loop);
1182 locked_reg_bfclr(priv, ECON1, ECON1_TXRTS);
1183 enc28j60_read_tsv(priv, tsv);
1184 if (netif_msg_tx_err(priv))
1185 enc28j60_dump_tsv(priv, "Tx Error", tsv);
1186 /* Reset TX logic */
1187 mutex_lock(&priv->lock);
1188 nolock_reg_bfset(priv, ECON1, ECON1_TXRST);
1189 nolock_reg_bfclr(priv, ECON1, ECON1_TXRST);
1190 nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT);
1191 mutex_unlock(&priv->lock);
1192 /* Transmit Late collision check for retransmit */
1193 if (TSV_GETBIT(tsv, TSV_TXLATECOLLISION)) {
1194 if (netif_msg_tx_err(priv))
1195 netdev_printk(KERN_DEBUG, ndev,
1196 "LateCollision TXErr (%d)\n",
1197 priv->tx_retry_count);
1198 if (priv->tx_retry_count++ < MAX_TX_RETRYCOUNT)
1199 locked_reg_bfset(priv, ECON1,
1200 ECON1_TXRTS);
1201 else
1202 enc28j60_tx_clear(ndev, true);
1203 } else
1204 enc28j60_tx_clear(ndev, true);
1205 locked_reg_bfclr(priv, EIR, EIR_TXERIF | EIR_TXIF);
1206 }
1207 /* RX Error handler */
1208 if ((intflags & EIR_RXERIF) != 0) {
1209 loop++;
1210 if (netif_msg_intr(priv))
1211 netdev_printk(KERN_DEBUG, ndev, "intRXErr(%d)\n",
1212 loop);
1213 /* Check free FIFO space to flag RX overrun */
1214 if (enc28j60_get_free_rxfifo(priv) <= 0) {
1215 if (netif_msg_rx_err(priv))
1216 netdev_printk(KERN_DEBUG, ndev, "RX Overrun\n");
1217 ndev->stats.rx_dropped++;
1218 }
1219 locked_reg_bfclr(priv, EIR, EIR_RXERIF);
1220 }
1221 /* RX handler */
1222 if (enc28j60_rx_interrupt(ndev))
1223 loop++;
1224 } while (loop);
1225
1226 /* re-enable interrupts */
1227 locked_reg_bfset(priv, EIE, EIE_INTIE);
1228}
1229
1230/*
1231 * Hardware transmit function.
1232 * Fill the buffer memory and send the contents of the transmit buffer
1233 * onto the network
1234 */
1235static void enc28j60_hw_tx(struct enc28j60_net *priv)
1236{
1237 struct net_device *ndev = priv->netdev;
1238
1239 BUG_ON(!priv->tx_skb);
1240
1241 if (netif_msg_tx_queued(priv))
1242 netdev_printk(KERN_DEBUG, ndev, "Tx Packet Len:%d\n",
1243 priv->tx_skb->len);
1244
1245 if (netif_msg_pktdata(priv))
1246 dump_packet(__func__,
1247 priv->tx_skb->len, priv->tx_skb->data);
1248 enc28j60_packet_write(priv, priv->tx_skb->len, priv->tx_skb->data);
1249
1250#ifdef CONFIG_ENC28J60_WRITEVERIFY
1251 /* readback and verify written data */
1252 if (netif_msg_drv(priv)) {
1253 struct device *dev = &priv->spi->dev;
1254 int test_len, k;
1255 u8 test_buf[64]; /* limit the test to the first 64 bytes */
1256 int okflag;
1257
1258 test_len = priv->tx_skb->len;
1259 if (test_len > sizeof(test_buf))
1260 test_len = sizeof(test_buf);
1261
1262 /* + 1 to skip control byte */
1263 enc28j60_mem_read(priv, TXSTART_INIT + 1, test_len, test_buf);
1264 okflag = 1;
1265 for (k = 0; k < test_len; k++) {
1266 if (priv->tx_skb->data[k] != test_buf[k]) {
1267 dev_printk(KERN_DEBUG, dev,
1268 "Error, %d location differ: 0x%02x-0x%02x\n",
1269 k, priv->tx_skb->data[k], test_buf[k]);
1270 okflag = 0;
1271 }
1272 }
1273 if (!okflag)
1274 dev_printk(KERN_DEBUG, dev, "Tx write buffer, verify ERROR!\n");
1275 }
1276#endif
1277 /* set TX request flag */
1278 locked_reg_bfset(priv, ECON1, ECON1_TXRTS);
1279}
1280
1281static netdev_tx_t enc28j60_send_packet(struct sk_buff *skb,
1282 struct net_device *dev)
1283{
1284 struct enc28j60_net *priv = netdev_priv(dev);
1285
1286 /* If some error occurs while trying to transmit this
1287 * packet, you should return '1' from this function.
1288 * In such a case you _may not_ do anything to the
1289 * SKB, it is still owned by the network queueing
1290 * layer when an error is returned. This means you
1291 * may not modify any SKB fields, you may not free
1292 * the SKB, etc.
1293 */
1294 netif_stop_queue(dev);
1295
1296 /* Remember the skb for deferred processing */
1297 priv->tx_skb = skb;
1298 schedule_work(&priv->tx_work);
1299
1300 return NETDEV_TX_OK;
1301}
1302
1303static void enc28j60_tx_work_handler(struct work_struct *work)
1304{
1305 struct enc28j60_net *priv =
1306 container_of(work, struct enc28j60_net, tx_work);
1307
1308 /* actual delivery of data */
1309 enc28j60_hw_tx(priv);
1310}
1311
1312static irqreturn_t enc28j60_irq(int irq, void *dev_id)
1313{
1314 struct enc28j60_net *priv = dev_id;
1315
1316 /*
1317 * Can't do anything in interrupt context because we need to
1318 * block (spi_sync() is blocking) so fire of the interrupt
1319 * handling workqueue.
1320 * Remember that we access enc28j60 registers through SPI bus
1321 * via spi_sync() call.
1322 */
1323 schedule_work(&priv->irq_work);
1324
1325 return IRQ_HANDLED;
1326}
1327
1328static void enc28j60_tx_timeout(struct net_device *ndev)
1329{
1330 struct enc28j60_net *priv = netdev_priv(ndev);
1331
1332 if (netif_msg_timer(priv))
1333 netdev_err(ndev, "tx timeout\n");
1334
1335 ndev->stats.tx_errors++;
1336 /* can't restart safely under softirq */
1337 schedule_work(&priv->restart_work);
1338}
1339
1340/*
1341 * Open/initialize the board. This is called (in the current kernel)
1342 * sometime after booting when the 'ifconfig' program is run.
1343 *
1344 * This routine should set everything up anew at each open, even
1345 * registers that "should" only need to be set once at boot, so that
1346 * there is non-reboot way to recover if something goes wrong.
1347 */
1348static int enc28j60_net_open(struct net_device *dev)
1349{
1350 struct enc28j60_net *priv = netdev_priv(dev);
1351
1352 if (!is_valid_ether_addr(dev->dev_addr)) {
1353 if (netif_msg_ifup(priv))
1354 netdev_err(dev, "invalid MAC address %pM\n", dev->dev_addr);
1355 return -EADDRNOTAVAIL;
1356 }
1357 /* Reset the hardware here (and take it out of low power mode) */
1358 enc28j60_lowpower(priv, false);
1359 enc28j60_hw_disable(priv);
1360 if (!enc28j60_hw_init(priv)) {
1361 if (netif_msg_ifup(priv))
1362 netdev_err(dev, "hw_reset() failed\n");
1363 return -EINVAL;
1364 }
1365 /* Update the MAC address (in case user has changed it) */
1366 enc28j60_set_hw_macaddr(dev);
1367 /* Enable interrupts */
1368 enc28j60_hw_enable(priv);
1369 /* check link status */
1370 enc28j60_check_link_status(dev);
1371 /* We are now ready to accept transmit requests from
1372 * the queueing layer of the networking.
1373 */
1374 netif_start_queue(dev);
1375
1376 return 0;
1377}
1378
1379/* The inverse routine to net_open(). */
1380static int enc28j60_net_close(struct net_device *dev)
1381{
1382 struct enc28j60_net *priv = netdev_priv(dev);
1383
1384 enc28j60_hw_disable(priv);
1385 enc28j60_lowpower(priv, true);
1386 netif_stop_queue(dev);
1387
1388 return 0;
1389}
1390
1391/*
1392 * Set or clear the multicast filter for this adapter
1393 * num_addrs == -1 Promiscuous mode, receive all packets
1394 * num_addrs == 0 Normal mode, filter out multicast packets
1395 * num_addrs > 0 Multicast mode, receive normal and MC packets
1396 */
1397static void enc28j60_set_multicast_list(struct net_device *dev)
1398{
1399 struct enc28j60_net *priv = netdev_priv(dev);
1400 int oldfilter = priv->rxfilter;
1401
1402 if (dev->flags & IFF_PROMISC) {
1403 if (netif_msg_link(priv))
1404 netdev_info(dev, "promiscuous mode\n");
1405 priv->rxfilter = RXFILTER_PROMISC;
1406 } else if ((dev->flags & IFF_ALLMULTI) || !netdev_mc_empty(dev)) {
1407 if (netif_msg_link(priv))
1408 netdev_info(dev, "%smulticast mode\n",
1409 (dev->flags & IFF_ALLMULTI) ? "all-" : "");
1410 priv->rxfilter = RXFILTER_MULTI;
1411 } else {
1412 if (netif_msg_link(priv))
1413 netdev_info(dev, "normal mode\n");
1414 priv->rxfilter = RXFILTER_NORMAL;
1415 }
1416
1417 if (oldfilter != priv->rxfilter)
1418 schedule_work(&priv->setrx_work);
1419}
1420
1421static void enc28j60_setrx_work_handler(struct work_struct *work)
1422{
1423 struct enc28j60_net *priv =
1424 container_of(work, struct enc28j60_net, setrx_work);
1425 struct device *dev = &priv->spi->dev;
1426
1427 if (priv->rxfilter == RXFILTER_PROMISC) {
1428 if (netif_msg_drv(priv))
1429 dev_printk(KERN_DEBUG, dev, "promiscuous mode\n");
1430 locked_regb_write(priv, ERXFCON, 0x00);
1431 } else if (priv->rxfilter == RXFILTER_MULTI) {
1432 if (netif_msg_drv(priv))
1433 dev_printk(KERN_DEBUG, dev, "multicast mode\n");
1434 locked_regb_write(priv, ERXFCON,
1435 ERXFCON_UCEN | ERXFCON_CRCEN |
1436 ERXFCON_BCEN | ERXFCON_MCEN);
1437 } else {
1438 if (netif_msg_drv(priv))
1439 dev_printk(KERN_DEBUG, dev, "normal mode\n");
1440 locked_regb_write(priv, ERXFCON,
1441 ERXFCON_UCEN | ERXFCON_CRCEN |
1442 ERXFCON_BCEN);
1443 }
1444}
1445
1446static void enc28j60_restart_work_handler(struct work_struct *work)
1447{
1448 struct enc28j60_net *priv =
1449 container_of(work, struct enc28j60_net, restart_work);
1450 struct net_device *ndev = priv->netdev;
1451 int ret;
1452
1453 rtnl_lock();
1454 if (netif_running(ndev)) {
1455 enc28j60_net_close(ndev);
1456 ret = enc28j60_net_open(ndev);
1457 if (unlikely(ret)) {
1458 netdev_info(ndev, "could not restart %d\n", ret);
1459 dev_close(ndev);
1460 }
1461 }
1462 rtnl_unlock();
1463}
1464
1465/* ......................... ETHTOOL SUPPORT ........................... */
1466
1467static void
1468enc28j60_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1469{
1470 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1471 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1472 strlcpy(info->bus_info,
1473 dev_name(dev->dev.parent), sizeof(info->bus_info));
1474}
1475
1476static int
1477enc28j60_get_link_ksettings(struct net_device *dev,
1478 struct ethtool_link_ksettings *cmd)
1479{
1480 struct enc28j60_net *priv = netdev_priv(dev);
1481
1482 ethtool_link_ksettings_zero_link_mode(cmd, supported);
1483 ethtool_link_ksettings_add_link_mode(cmd, supported, 10baseT_Half);
1484 ethtool_link_ksettings_add_link_mode(cmd, supported, 10baseT_Full);
1485 ethtool_link_ksettings_add_link_mode(cmd, supported, TP);
1486
1487 cmd->base.speed = SPEED_10;
1488 cmd->base.duplex = priv->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1489 cmd->base.port = PORT_TP;
1490 cmd->base.autoneg = AUTONEG_DISABLE;
1491
1492 return 0;
1493}
1494
1495static int
1496enc28j60_set_link_ksettings(struct net_device *dev,
1497 const struct ethtool_link_ksettings *cmd)
1498{
1499 return enc28j60_setlink(dev, cmd->base.autoneg,
1500 cmd->base.speed, cmd->base.duplex);
1501}
1502
1503static u32 enc28j60_get_msglevel(struct net_device *dev)
1504{
1505 struct enc28j60_net *priv = netdev_priv(dev);
1506 return priv->msg_enable;
1507}
1508
1509static void enc28j60_set_msglevel(struct net_device *dev, u32 val)
1510{
1511 struct enc28j60_net *priv = netdev_priv(dev);
1512 priv->msg_enable = val;
1513}
1514
1515static const struct ethtool_ops enc28j60_ethtool_ops = {
1516 .get_drvinfo = enc28j60_get_drvinfo,
1517 .get_msglevel = enc28j60_get_msglevel,
1518 .set_msglevel = enc28j60_set_msglevel,
1519 .get_link_ksettings = enc28j60_get_link_ksettings,
1520 .set_link_ksettings = enc28j60_set_link_ksettings,
1521};
1522
1523static int enc28j60_chipset_init(struct net_device *dev)
1524{
1525 struct enc28j60_net *priv = netdev_priv(dev);
1526
1527 return enc28j60_hw_init(priv);
1528}
1529
1530static const struct net_device_ops enc28j60_netdev_ops = {
1531 .ndo_open = enc28j60_net_open,
1532 .ndo_stop = enc28j60_net_close,
1533 .ndo_start_xmit = enc28j60_send_packet,
1534 .ndo_set_rx_mode = enc28j60_set_multicast_list,
1535 .ndo_set_mac_address = enc28j60_set_mac_address,
1536 .ndo_tx_timeout = enc28j60_tx_timeout,
1537 .ndo_validate_addr = eth_validate_addr,
1538};
1539
1540static int enc28j60_probe(struct spi_device *spi)
1541{
1542 unsigned char macaddr[ETH_ALEN];
1543 struct net_device *dev;
1544 struct enc28j60_net *priv;
1545 int ret = 0;
1546
1547 if (netif_msg_drv(&debug))
1548 dev_info(&spi->dev, "Ethernet driver %s loaded\n", DRV_VERSION);
1549
1550 dev = alloc_etherdev(sizeof(struct enc28j60_net));
1551 if (!dev) {
1552 ret = -ENOMEM;
1553 goto error_alloc;
1554 }
1555 priv = netdev_priv(dev);
1556
1557 priv->netdev = dev; /* priv to netdev reference */
1558 priv->spi = spi; /* priv to spi reference */
1559 priv->msg_enable = netif_msg_init(debug.msg_enable, ENC28J60_MSG_DEFAULT);
1560 mutex_init(&priv->lock);
1561 INIT_WORK(&priv->tx_work, enc28j60_tx_work_handler);
1562 INIT_WORK(&priv->setrx_work, enc28j60_setrx_work_handler);
1563 INIT_WORK(&priv->irq_work, enc28j60_irq_work_handler);
1564 INIT_WORK(&priv->restart_work, enc28j60_restart_work_handler);
1565 spi_set_drvdata(spi, priv); /* spi to priv reference */
1566 SET_NETDEV_DEV(dev, &spi->dev);
1567
1568 if (!enc28j60_chipset_init(dev)) {
1569 if (netif_msg_probe(priv))
1570 dev_info(&spi->dev, "chip not found\n");
1571 ret = -EIO;
1572 goto error_irq;
1573 }
1574
1575 if (device_get_mac_address(&spi->dev, macaddr, sizeof(macaddr)))
1576 ether_addr_copy(dev->dev_addr, macaddr);
1577 else
1578 eth_hw_addr_random(dev);
1579 enc28j60_set_hw_macaddr(dev);
1580
1581 /* Board setup must set the relevant edge trigger type;
1582 * level triggers won't currently work.
1583 */
1584 ret = request_irq(spi->irq, enc28j60_irq, 0, DRV_NAME, priv);
1585 if (ret < 0) {
1586 if (netif_msg_probe(priv))
1587 dev_err(&spi->dev, "request irq %d failed (ret = %d)\n",
1588 spi->irq, ret);
1589 goto error_irq;
1590 }
1591
1592 dev->if_port = IF_PORT_10BASET;
1593 dev->irq = spi->irq;
1594 dev->netdev_ops = &enc28j60_netdev_ops;
1595 dev->watchdog_timeo = TX_TIMEOUT;
1596 dev->ethtool_ops = &enc28j60_ethtool_ops;
1597
1598 enc28j60_lowpower(priv, true);
1599
1600 ret = register_netdev(dev);
1601 if (ret) {
1602 if (netif_msg_probe(priv))
1603 dev_err(&spi->dev, "register netdev failed (ret = %d)\n",
1604 ret);
1605 goto error_register;
1606 }
1607
1608 return 0;
1609
1610error_register:
1611 free_irq(spi->irq, priv);
1612error_irq:
1613 free_netdev(dev);
1614error_alloc:
1615 return ret;
1616}
1617
1618static int enc28j60_remove(struct spi_device *spi)
1619{
1620 struct enc28j60_net *priv = spi_get_drvdata(spi);
1621
1622 unregister_netdev(priv->netdev);
1623 free_irq(spi->irq, priv);
1624 free_netdev(priv->netdev);
1625
1626 return 0;
1627}
1628
1629static const struct of_device_id enc28j60_dt_ids[] = {
1630 { .compatible = "microchip,enc28j60" },
1631 { /* sentinel */ }
1632};
1633MODULE_DEVICE_TABLE(of, enc28j60_dt_ids);
1634
1635static struct spi_driver enc28j60_driver = {
1636 .driver = {
1637 .name = DRV_NAME,
1638 .of_match_table = enc28j60_dt_ids,
1639 },
1640 .probe = enc28j60_probe,
1641 .remove = enc28j60_remove,
1642};
1643module_spi_driver(enc28j60_driver);
1644
1645MODULE_DESCRIPTION(DRV_NAME " ethernet driver");
1646MODULE_AUTHOR("Claudio Lanconelli <lanconelli.claudio@eptar.com>");
1647MODULE_LICENSE("GPL");
1648module_param_named(debug, debug.msg_enable, int, 0);
1649MODULE_PARM_DESC(debug, "Debug verbosity level in amount of bits set (0=none, ..., 31=all)");
1650MODULE_ALIAS("spi:" DRV_NAME);