Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 *
  3 * Copyright (c) 2009, Microsoft Corporation.
  4 *
  5 * This program is free software; you can redistribute it and/or modify it
  6 * under the terms and conditions of the GNU General Public License,
  7 * version 2, as published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope it will be useful, but WITHOUT
 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 12 * more details.
 13 *
 14 * You should have received a copy of the GNU General Public License along with
 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 16 * Place - Suite 330, Boston, MA 02111-1307 USA.
 17 *
 18 * Authors:
 19 *   Haiyang Zhang <haiyangz@microsoft.com>
 20 *   Hank Janssen  <hjanssen@microsoft.com>
 21 *   K. Y. Srinivasan <kys@microsoft.com>
 22 *
 23 */
 24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 25
 26#include <linux/kernel.h>
 27#include <linux/mm.h>
 28#include <linux/hyperv.h>
 
 
 
 
 29
 30#include "hyperv_vmbus.h"
 31
 
 32
 33/*
 34 * hv_get_next_write_location()
 35 *
 36 * Get the next write location for the specified ring buffer
 37 *
 38 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 39static inline u32
 40hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
 41{
 42	u32 next = ring_info->ring_buffer->write_index;
 43
 44	return next;
 45}
 46
 47/*
 48 * hv_set_next_write_location()
 49 *
 50 * Set the next write location for the specified ring buffer
 51 *
 52 */
 53static inline void
 54hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
 55		     u32 next_write_location)
 56{
 57	ring_info->ring_buffer->write_index = next_write_location;
 58}
 59
 60/*
 61 * hv_get_next_read_location()
 62 *
 63 * Get the next read location for the specified ring buffer
 64 */
 65static inline u32
 66hv_get_next_read_location(struct hv_ring_buffer_info *ring_info)
 67{
 68	u32 next = ring_info->ring_buffer->read_index;
 69
 70	return next;
 71}
 72
 73/*
 74 * hv_get_next_readlocation_withoffset()
 75 *
 76 * Get the next read location + offset for the specified ring buffer.
 77 * This allows the caller to skip
 78 */
 79static inline u32
 80hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info,
 81				 u32 offset)
 82{
 83	u32 next = ring_info->ring_buffer->read_index;
 84
 85	next += offset;
 86	next %= ring_info->ring_datasize;
 87
 88	return next;
 89}
 90
 91/*
 92 *
 93 * hv_set_next_read_location()
 94 *
 95 * Set the next read location for the specified ring buffer
 96 *
 97 */
 98static inline void
 99hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
100		    u32 next_read_location)
101{
102	ring_info->ring_buffer->read_index = next_read_location;
 
103}
104
105
106/*
107 *
108 * hv_get_ring_buffer()
109 *
110 * Get the start of the ring buffer
111 */
112static inline void *
113hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info)
114{
115	return (void *)ring_info->ring_buffer->buffer;
116}
117
118
119/*
120 *
121 * hv_get_ring_buffersize()
122 *
123 * Get the size of the ring buffer
124 */
125static inline u32
126hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info)
127{
128	return ring_info->ring_datasize;
129}
130
131/*
132 *
133 * hv_get_ring_bufferindices()
134 *
135 * Get the read and write indices as u64 of the specified ring buffer
136 *
137 */
138static inline u64
139hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
140{
141	return (u64)ring_info->ring_buffer->write_index << 32;
142}
143
144/*
145 *
146 * hv_copyfrom_ringbuffer()
147 *
148 * Helper routine to copy to source from ring buffer.
149 * Assume there is enough room. Handles wrap-around in src case only!!
150 *
151 */
152static u32 hv_copyfrom_ringbuffer(
153	struct hv_ring_buffer_info	*ring_info,
154	void				*dest,
155	u32				destlen,
156	u32				start_read_offset)
157{
158	void *ring_buffer = hv_get_ring_buffer(ring_info);
159	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
160
161	u32 frag_len;
162
163	/* wrap-around detected at the src */
164	if (destlen > ring_buffer_size - start_read_offset) {
165		frag_len = ring_buffer_size - start_read_offset;
166
167		memcpy(dest, ring_buffer + start_read_offset, frag_len);
168		memcpy(dest + frag_len, ring_buffer, destlen - frag_len);
169	} else
170
171		memcpy(dest, ring_buffer + start_read_offset, destlen);
172
173
174	start_read_offset += destlen;
175	start_read_offset %= ring_buffer_size;
176
177	return start_read_offset;
178}
179
180
181/*
182 *
183 * hv_copyto_ringbuffer()
184 *
185 * Helper routine to copy from source to ring buffer.
186 * Assume there is enough room. Handles wrap-around in dest case only!!
187 *
188 */
189static u32 hv_copyto_ringbuffer(
190	struct hv_ring_buffer_info	*ring_info,
191	u32				start_write_offset,
192	void				*src,
193	u32				srclen)
194{
195	void *ring_buffer = hv_get_ring_buffer(ring_info);
196	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
197	u32 frag_len;
198
199	/* wrap-around detected! */
200	if (srclen > ring_buffer_size - start_write_offset) {
201		frag_len = ring_buffer_size - start_write_offset;
202		memcpy(ring_buffer + start_write_offset, src, frag_len);
203		memcpy(ring_buffer, src + frag_len, srclen - frag_len);
204	} else
205		memcpy(ring_buffer + start_write_offset, src, srclen);
206
207	start_write_offset += srclen;
208	start_write_offset %= ring_buffer_size;
 
209
210	return start_write_offset;
211}
212
213/*
214 *
215 * hv_ringbuffer_get_debuginfo()
216 *
217 * Get various debug metrics for the specified ring buffer
218 *
 
 
219 */
220void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
221			    struct hv_ring_buffer_debug_info *debug_info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222{
223	u32 bytes_avail_towrite;
224	u32 bytes_avail_toread;
225
226	if (ring_info->ring_buffer) {
227		hv_get_ringbuffer_availbytes(ring_info,
228					&bytes_avail_toread,
229					&bytes_avail_towrite);
230
231		debug_info->bytes_avail_toread = bytes_avail_toread;
232		debug_info->bytes_avail_towrite = bytes_avail_towrite;
233		debug_info->current_read_index =
234			ring_info->ring_buffer->read_index;
235		debug_info->current_write_index =
236			ring_info->ring_buffer->write_index;
237		debug_info->current_interrupt_mask =
238			ring_info->ring_buffer->interrupt_mask;
239	}
240}
241
 
 
 
 
 
 
 
 
 
 
242
243/*
244 *
245 * hv_get_ringbuffer_interrupt_mask()
246 *
247 * Get the interrupt mask for the specified ring buffer
248 *
249 */
250u32 hv_get_ringbuffer_interrupt_mask(struct hv_ring_buffer_info *rbi)
251{
252	return rbi->ring_buffer->interrupt_mask;
 
253}
254
255/*
256 *
257 * hv_ringbuffer_init()
258 *
259 *Initialize the ring buffer
260 *
261 */
262int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
263		   void *buffer, u32 buflen)
264{
265	if (sizeof(struct hv_ring_buffer) != PAGE_SIZE)
266		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
267
268	memset(ring_info, 0, sizeof(struct hv_ring_buffer_info));
 
 
 
 
 
 
 
 
 
 
 
269
270	ring_info->ring_buffer = (struct hv_ring_buffer *)buffer;
271	ring_info->ring_buffer->read_index =
272		ring_info->ring_buffer->write_index = 0;
273
274	ring_info->ring_size = buflen;
275	ring_info->ring_datasize = buflen - sizeof(struct hv_ring_buffer);
 
 
 
 
 
 
 
276
277	spin_lock_init(&ring_info->ring_lock);
278
279	return 0;
280}
281
282/*
283 *
284 * hv_ringbuffer_cleanup()
285 *
286 * Cleanup the ring buffer
287 *
288 */
289void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
290{
 
 
 
 
291}
292
293/*
294 *
295 * hv_ringbuffer_write()
296 *
297 * Write to the ring buffer
298 *
299 */
300int hv_ringbuffer_write(struct hv_ring_buffer_info *outring_info,
301		    struct scatterlist *sglist, u32 sgcount)
302{
303	int i = 0;
304	u32 bytes_avail_towrite;
305	u32 bytes_avail_toread;
306	u32 totalbytes_towrite = 0;
307
308	struct scatterlist *sg;
309	u32 next_write_location;
310	u64 prev_indices = 0;
 
311	unsigned long flags;
 
312
313	for_each_sg(sglist, sg, sgcount, i)
314	{
315		totalbytes_towrite += sg->length;
316	}
317
318	totalbytes_towrite += sizeof(u64);
 
319
320	spin_lock_irqsave(&outring_info->ring_lock, flags);
321
322	hv_get_ringbuffer_availbytes(outring_info,
323				&bytes_avail_toread,
324				&bytes_avail_towrite);
325
326
327	/* If there is only room for the packet, assume it is full. */
328	/* Otherwise, the next time around, we think the ring buffer */
329	/* is empty since the read index == write index */
 
330	if (bytes_avail_towrite <= totalbytes_towrite) {
 
 
 
 
 
 
 
331		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
332		return -EAGAIN;
333	}
334
 
 
335	/* Write to the ring buffer */
336	next_write_location = hv_get_next_write_location(outring_info);
337
338	for_each_sg(sglist, sg, sgcount, i)
339	{
 
340		next_write_location = hv_copyto_ringbuffer(outring_info,
341						     next_write_location,
342						     sg_virt(sg),
343						     sg->length);
344	}
345
346	/* Set previous packet start */
347	prev_indices = hv_get_ring_bufferindices(outring_info);
348
349	next_write_location = hv_copyto_ringbuffer(outring_info,
350					     next_write_location,
351					     &prev_indices,
352					     sizeof(u64));
353
354	/* Make sure we flush all writes before updating the writeIndex */
355	smp_wmb();
356
357	/* Now, update the write location */
358	hv_set_next_write_location(outring_info, next_write_location);
359
360
361	spin_unlock_irqrestore(&outring_info->ring_lock, flags);
 
 
 
 
 
 
362	return 0;
363}
364
365
366/*
367 *
368 * hv_ringbuffer_peek()
369 *
370 * Read without advancing the read index
371 *
372 */
373int hv_ringbuffer_peek(struct hv_ring_buffer_info *Inring_info,
374		   void *Buffer, u32 buflen)
375{
376	u32 bytes_avail_towrite;
377	u32 bytes_avail_toread;
378	u32 next_read_location = 0;
379	unsigned long flags;
380
381	spin_lock_irqsave(&Inring_info->ring_lock, flags);
 
382
383	hv_get_ringbuffer_availbytes(Inring_info,
384				&bytes_avail_toread,
385				&bytes_avail_towrite);
386
387	/* Make sure there is something to read */
388	if (bytes_avail_toread < buflen) {
389
390		spin_unlock_irqrestore(&Inring_info->ring_lock, flags);
391
392		return -EAGAIN;
 
 
393	}
394
395	/* Convert to byte offset */
396	next_read_location = hv_get_next_read_location(Inring_info);
 
 
 
 
 
 
 
 
397
398	next_read_location = hv_copyfrom_ringbuffer(Inring_info,
399						Buffer,
400						buflen,
401						next_read_location);
402
403	spin_unlock_irqrestore(&Inring_info->ring_lock, flags);
 
404
405	return 0;
406}
407
408
409/*
 
 
410 *
411 * hv_ringbuffer_read()
412 *
413 * Read and advance the read index
414 *
415 */
416int hv_ringbuffer_read(struct hv_ring_buffer_info *inring_info, void *buffer,
417		   u32 buflen, u32 offset)
418{
419	u32 bytes_avail_towrite;
420	u32 bytes_avail_toread;
421	u32 next_read_location = 0;
422	u64 prev_indices = 0;
423	unsigned long flags;
424
425	if (buflen <= 0)
426		return -EINVAL;
427
428	spin_lock_irqsave(&inring_info->ring_lock, flags);
429
430	hv_get_ringbuffer_availbytes(inring_info,
431				&bytes_avail_toread,
432				&bytes_avail_towrite);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
433
434	/* Make sure there is something to read */
435	if (bytes_avail_toread < buflen) {
436		spin_unlock_irqrestore(&inring_info->ring_lock, flags);
437
438		return -EAGAIN;
439	}
440
441	next_read_location =
442		hv_get_next_readlocation_withoffset(inring_info, offset);
443
444	next_read_location = hv_copyfrom_ringbuffer(inring_info,
445						buffer,
446						buflen,
447						next_read_location);
448
449	next_read_location = hv_copyfrom_ringbuffer(inring_info,
450						&prev_indices,
451						sizeof(u64),
452						next_read_location);
453
454	/* Make sure all reads are done before we update the read index since */
455	/* the writer may start writing to the read area once the read index */
456	/*is updated */
457	smp_mb();
458
459	/* Update the read index */
460	hv_set_next_read_location(inring_info, next_read_location);
461
462	spin_unlock_irqrestore(&inring_info->ring_lock, flags);
463
464	return 0;
465}
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *
  4 * Copyright (c) 2009, Microsoft Corporation.
  5 *
 
 
 
 
 
 
 
 
 
 
 
 
 
  6 * Authors:
  7 *   Haiyang Zhang <haiyangz@microsoft.com>
  8 *   Hank Janssen  <hjanssen@microsoft.com>
  9 *   K. Y. Srinivasan <kys@microsoft.com>
 
 10 */
 11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 12
 13#include <linux/kernel.h>
 14#include <linux/mm.h>
 15#include <linux/hyperv.h>
 16#include <linux/uio.h>
 17#include <linux/vmalloc.h>
 18#include <linux/slab.h>
 19#include <linux/prefetch.h>
 20
 21#include "hyperv_vmbus.h"
 22
 23#define VMBUS_PKT_TRAILER	8
 24
 25/*
 26 * When we write to the ring buffer, check if the host needs to
 27 * be signaled. Here is the details of this protocol:
 
 28 *
 29 *	1. The host guarantees that while it is draining the
 30 *	   ring buffer, it will set the interrupt_mask to
 31 *	   indicate it does not need to be interrupted when
 32 *	   new data is placed.
 33 *
 34 *	2. The host guarantees that it will completely drain
 35 *	   the ring buffer before exiting the read loop. Further,
 36 *	   once the ring buffer is empty, it will clear the
 37 *	   interrupt_mask and re-check to see if new data has
 38 *	   arrived.
 39 *
 40 * KYS: Oct. 30, 2016:
 41 * It looks like Windows hosts have logic to deal with DOS attacks that
 42 * can be triggered if it receives interrupts when it is not expecting
 43 * the interrupt. The host expects interrupts only when the ring
 44 * transitions from empty to non-empty (or full to non full on the guest
 45 * to host ring).
 46 * So, base the signaling decision solely on the ring state until the
 47 * host logic is fixed.
 48 */
 49
 50static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
 51{
 52	struct hv_ring_buffer_info *rbi = &channel->outbound;
 53
 54	virt_mb();
 55	if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
 56		return;
 57
 58	/* check interrupt_mask before read_index */
 59	virt_rmb();
 60	/*
 61	 * This is the only case we need to signal when the
 62	 * ring transitions from being empty to non-empty.
 63	 */
 64	if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
 65		++channel->intr_out_empty;
 66		vmbus_setevent(channel);
 67	}
 68}
 69
 70/* Get the next write location for the specified ring buffer. */
 71static inline u32
 72hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
 73{
 74	u32 next = ring_info->ring_buffer->write_index;
 75
 76	return next;
 77}
 78
 79/* Set the next write location for the specified ring buffer. */
 
 
 
 
 
 80static inline void
 81hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
 82		     u32 next_write_location)
 83{
 84	ring_info->ring_buffer->write_index = next_write_location;
 85}
 86
 87/* Set the next read location for the specified ring buffer. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 88static inline void
 89hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
 90		    u32 next_read_location)
 91{
 92	ring_info->ring_buffer->read_index = next_read_location;
 93	ring_info->priv_read_index = next_read_location;
 94}
 95
 96/* Get the size of the ring buffer. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 97static inline u32
 98hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
 99{
100	return ring_info->ring_datasize;
101}
102
103/* Get the read and write indices as u64 of the specified ring buffer. */
 
 
 
 
 
 
104static inline u64
105hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
106{
107	return (u64)ring_info->ring_buffer->write_index << 32;
108}
109
110/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111 * Helper routine to copy from source to ring buffer.
112 * Assume there is enough room. Handles wrap-around in dest case only!!
 
113 */
114static u32 hv_copyto_ringbuffer(
115	struct hv_ring_buffer_info	*ring_info,
116	u32				start_write_offset,
117	const void			*src,
118	u32				srclen)
119{
120	void *ring_buffer = hv_get_ring_buffer(ring_info);
121	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
 
122
123	memcpy(ring_buffer + start_write_offset, src, srclen);
 
 
 
 
 
 
124
125	start_write_offset += srclen;
126	if (start_write_offset >= ring_buffer_size)
127		start_write_offset -= ring_buffer_size;
128
129	return start_write_offset;
130}
131
132/*
133 *
134 * hv_get_ringbuffer_availbytes()
 
 
135 *
136 * Get number of bytes available to read and to write to
137 * for the specified ring buffer
138 */
139static void
140hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
141			     u32 *read, u32 *write)
142{
143	u32 read_loc, write_loc, dsize;
144
145	/* Capture the read/write indices before they changed */
146	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
147	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
148	dsize = rbi->ring_datasize;
149
150	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
151		read_loc - write_loc;
152	*read = dsize - *write;
153}
154
155/* Get various debug metrics for the specified ring buffer. */
156int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
157				struct hv_ring_buffer_debug_info *debug_info)
158{
159	u32 bytes_avail_towrite;
160	u32 bytes_avail_toread;
161
162	mutex_lock(&ring_info->ring_buffer_mutex);
163
164	if (!ring_info->ring_buffer) {
165		mutex_unlock(&ring_info->ring_buffer_mutex);
166		return -EINVAL;
 
 
 
 
 
 
 
 
167	}
 
168
169	hv_get_ringbuffer_availbytes(ring_info,
170				     &bytes_avail_toread,
171				     &bytes_avail_towrite);
172	debug_info->bytes_avail_toread = bytes_avail_toread;
173	debug_info->bytes_avail_towrite = bytes_avail_towrite;
174	debug_info->current_read_index = ring_info->ring_buffer->read_index;
175	debug_info->current_write_index = ring_info->ring_buffer->write_index;
176	debug_info->current_interrupt_mask
177		= ring_info->ring_buffer->interrupt_mask;
178	mutex_unlock(&ring_info->ring_buffer_mutex);
179
180	return 0;
181}
182EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
183
184/* Initialize a channel's ring buffer info mutex locks */
185void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
 
 
186{
187	mutex_init(&channel->inbound.ring_buffer_mutex);
188	mutex_init(&channel->outbound.ring_buffer_mutex);
189}
190
191/* Initialize the ring buffer. */
 
 
 
 
 
 
192int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
193		       struct page *pages, u32 page_cnt)
194{
195	int i;
196	struct page **pages_wraparound;
197
198	BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
199
200	/*
201	 * First page holds struct hv_ring_buffer, do wraparound mapping for
202	 * the rest.
203	 */
204	pages_wraparound = kcalloc(page_cnt * 2 - 1, sizeof(struct page *),
205				   GFP_KERNEL);
206	if (!pages_wraparound)
207		return -ENOMEM;
208
209	pages_wraparound[0] = pages;
210	for (i = 0; i < 2 * (page_cnt - 1); i++)
211		pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1];
212
213	ring_info->ring_buffer = (struct hv_ring_buffer *)
214		vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, PAGE_KERNEL);
215
216	kfree(pages_wraparound);
217
218
219	if (!ring_info->ring_buffer)
220		return -ENOMEM;
221
 
222	ring_info->ring_buffer->read_index =
223		ring_info->ring_buffer->write_index = 0;
224
225	/* Set the feature bit for enabling flow control. */
226	ring_info->ring_buffer->feature_bits.value = 1;
227
228	ring_info->ring_size = page_cnt << PAGE_SHIFT;
229	ring_info->ring_size_div10_reciprocal =
230		reciprocal_value(ring_info->ring_size / 10);
231	ring_info->ring_datasize = ring_info->ring_size -
232		sizeof(struct hv_ring_buffer);
233	ring_info->priv_read_index = 0;
234
235	spin_lock_init(&ring_info->ring_lock);
236
237	return 0;
238}
239
240/* Cleanup the ring buffer. */
 
 
 
 
 
 
241void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
242{
243	mutex_lock(&ring_info->ring_buffer_mutex);
244	vunmap(ring_info->ring_buffer);
245	ring_info->ring_buffer = NULL;
246	mutex_unlock(&ring_info->ring_buffer_mutex);
247}
248
249/* Write to the ring buffer. */
250int hv_ringbuffer_write(struct vmbus_channel *channel,
251			const struct kvec *kv_list, u32 kv_count)
 
 
 
 
 
 
252{
253	int i;
254	u32 bytes_avail_towrite;
255	u32 totalbytes_towrite = sizeof(u64);
 
 
 
256	u32 next_write_location;
257	u32 old_write;
258	u64 prev_indices;
259	unsigned long flags;
260	struct hv_ring_buffer_info *outring_info = &channel->outbound;
261
262	if (channel->rescind)
263		return -ENODEV;
 
 
264
265	for (i = 0; i < kv_count; i++)
266		totalbytes_towrite += kv_list[i].iov_len;
267
268	spin_lock_irqsave(&outring_info->ring_lock, flags);
269
270	bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
 
 
271
272	/*
273	 * If there is only room for the packet, assume it is full.
274	 * Otherwise, the next time around, we think the ring buffer
275	 * is empty since the read index == write index.
276	 */
277	if (bytes_avail_towrite <= totalbytes_towrite) {
278		++channel->out_full_total;
279
280		if (!channel->out_full_flag) {
281			++channel->out_full_first;
282			channel->out_full_flag = true;
283		}
284
285		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
286		return -EAGAIN;
287	}
288
289	channel->out_full_flag = false;
290
291	/* Write to the ring buffer */
292	next_write_location = hv_get_next_write_location(outring_info);
293
294	old_write = next_write_location;
295
296	for (i = 0; i < kv_count; i++) {
297		next_write_location = hv_copyto_ringbuffer(outring_info,
298						     next_write_location,
299						     kv_list[i].iov_base,
300						     kv_list[i].iov_len);
301	}
302
303	/* Set previous packet start */
304	prev_indices = hv_get_ring_bufferindices(outring_info);
305
306	next_write_location = hv_copyto_ringbuffer(outring_info,
307					     next_write_location,
308					     &prev_indices,
309					     sizeof(u64));
310
311	/* Issue a full memory barrier before updating the write index */
312	virt_mb();
313
314	/* Now, update the write location */
315	hv_set_next_write_location(outring_info, next_write_location);
316
317
318	spin_unlock_irqrestore(&outring_info->ring_lock, flags);
319
320	hv_signal_on_write(old_write, channel);
321
322	if (channel->rescind)
323		return -ENODEV;
324
325	return 0;
326}
327
328int hv_ringbuffer_read(struct vmbus_channel *channel,
329		       void *buffer, u32 buflen, u32 *buffer_actual_len,
330		       u64 *requestid, bool raw)
 
 
 
 
 
 
 
331{
332	struct vmpacket_descriptor *desc;
333	u32 packetlen, offset;
 
 
334
335	if (unlikely(buflen == 0))
336		return -EINVAL;
337
338	*buffer_actual_len = 0;
339	*requestid = 0;
 
340
341	/* Make sure there is something to read */
342	desc = hv_pkt_iter_first(channel);
343	if (desc == NULL) {
344		/*
345		 * No error is set when there is even no header, drivers are
346		 * supposed to analyze buffer_actual_len.
347		 */
348		return 0;
349	}
350
351	offset = raw ? 0 : (desc->offset8 << 3);
352	packetlen = (desc->len8 << 3) - offset;
353	*buffer_actual_len = packetlen;
354	*requestid = desc->trans_id;
355
356	if (unlikely(packetlen > buflen))
357		return -ENOBUFS;
358
359	/* since ring is double mapped, only one copy is necessary */
360	memcpy(buffer, (const char *)desc + offset, packetlen);
361
362	/* Advance ring index to next packet descriptor */
363	__hv_pkt_iter_next(channel, desc);
 
 
364
365	/* Notify host of update */
366	hv_pkt_iter_close(channel);
367
368	return 0;
369}
370
 
371/*
372 * Determine number of bytes available in ring buffer after
373 * the current iterator (priv_read_index) location.
374 *
375 * This is similar to hv_get_bytes_to_read but with private
376 * read index instead.
 
 
377 */
378static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
 
379{
380	u32 priv_read_loc = rbi->priv_read_index;
381	u32 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
382
383	if (write_loc >= priv_read_loc)
384		return write_loc - priv_read_loc;
385	else
386		return (rbi->ring_datasize - priv_read_loc) + write_loc;
387}
388
389/*
390 * Get first vmbus packet from ring buffer after read_index
391 *
392 * If ring buffer is empty, returns NULL and no other action needed.
393 */
394struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
395{
396	struct hv_ring_buffer_info *rbi = &channel->inbound;
397	struct vmpacket_descriptor *desc;
398
399	if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor))
400		return NULL;
401
402	desc = hv_get_ring_buffer(rbi) + rbi->priv_read_index;
403	if (desc)
404		prefetch((char *)desc + (desc->len8 << 3));
405
406	return desc;
407}
408EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
409
410/*
411 * Get next vmbus packet from ring buffer.
412 *
413 * Advances the current location (priv_read_index) and checks for more
414 * data. If the end of the ring buffer is reached, then return NULL.
415 */
416struct vmpacket_descriptor *
417__hv_pkt_iter_next(struct vmbus_channel *channel,
418		   const struct vmpacket_descriptor *desc)
419{
420	struct hv_ring_buffer_info *rbi = &channel->inbound;
421	u32 packetlen = desc->len8 << 3;
422	u32 dsize = rbi->ring_datasize;
423
424	/* bump offset to next potential packet */
425	rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
426	if (rbi->priv_read_index >= dsize)
427		rbi->priv_read_index -= dsize;
428
429	/* more data? */
430	return hv_pkt_iter_first(channel);
431}
432EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
433
434/* How many bytes were read in this iterator cycle */
435static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
436					u32 start_read_index)
437{
438	if (rbi->priv_read_index >= start_read_index)
439		return rbi->priv_read_index - start_read_index;
440	else
441		return rbi->ring_datasize - start_read_index +
442			rbi->priv_read_index;
443}
444
445/*
446 * Update host ring buffer after iterating over packets. If the host has
447 * stopped queuing new entries because it found the ring buffer full, and
448 * sufficient space is being freed up, signal the host. But be careful to
449 * only signal the host when necessary, both for performance reasons and
450 * because Hyper-V protects itself by throttling guests that signal
451 * inappropriately.
452 *
453 * Determining when to signal is tricky. There are three key data inputs
454 * that must be handled in this order to avoid race conditions:
455 *
456 * 1. Update the read_index
457 * 2. Read the pending_send_sz
458 * 3. Read the current write_index
459 *
460 * The interrupt_mask is not used to determine when to signal. The
461 * interrupt_mask is used only on the guest->host ring buffer when
462 * sending requests to the host. The host does not use it on the host->
463 * guest ring buffer to indicate whether it should be signaled.
464 */
465void hv_pkt_iter_close(struct vmbus_channel *channel)
466{
467	struct hv_ring_buffer_info *rbi = &channel->inbound;
468	u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
469
470	/*
471	 * Make sure all reads are done before we update the read index since
472	 * the writer may start writing to the read area once the read index
473	 * is updated.
474	 */
475	virt_rmb();
476	start_read_index = rbi->ring_buffer->read_index;
477	rbi->ring_buffer->read_index = rbi->priv_read_index;
478
479	/*
480	 * Older versions of Hyper-V (before WS2102 and Win8) do not
481	 * implement pending_send_sz and simply poll if the host->guest
482	 * ring buffer is full.  No signaling is needed or expected.
483	 */
484	if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
485		return;
486
487	/*
488	 * Issue a full memory barrier before making the signaling decision.
489	 * If reading pending_send_sz were to be reordered and happen
490	 * before we commit the new read_index, a race could occur.  If the
491	 * host were to set the pending_send_sz after we have sampled
492	 * pending_send_sz, and the ring buffer blocks before we commit the
493	 * read index, we could miss sending the interrupt. Issue a full
494	 * memory barrier to address this.
495	 */
496	virt_mb();
497
498	/*
499	 * If the pending_send_sz is zero, then the ring buffer is not
500	 * blocked and there is no need to signal.  This is far by the
501	 * most common case, so exit quickly for best performance.
502	 */
503	pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
504	if (!pending_sz)
505		return;
506
507	/*
508	 * Ensure the read of write_index in hv_get_bytes_to_write()
509	 * happens after the read of pending_send_sz.
510	 */
511	virt_rmb();
512	curr_write_sz = hv_get_bytes_to_write(rbi);
513	bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
514
515	/*
516	 * We want to signal the host only if we're transitioning
517	 * from a "not enough free space" state to a "enough free
518	 * space" state.  For example, it's possible that this function
519	 * could run and free up enough space to signal the host, and then
520	 * run again and free up additional space before the host has a
521	 * chance to clear the pending_send_sz.  The 2nd invocation would
522	 * be a null transition from "enough free space" to "enough free
523	 * space", which doesn't warrant a signal.
524	 *
525	 * Exactly filling the ring buffer is treated as "not enough
526	 * space". The ring buffer always must have at least one byte
527	 * empty so the empty and full conditions are distinguishable.
528	 * hv_get_bytes_to_write() doesn't fully tell the truth in
529	 * this regard.
530	 *
531	 * So first check if we were in the "enough free space" state
532	 * before we began the iteration. If so, the host was not
533	 * blocked, and there's no need to signal.
534	 */
535	if (curr_write_sz - bytes_read > pending_sz)
536		return;
537
538	/*
539	 * Similarly, if the new state is "not enough space", then
540	 * there's no need to signal.
541	 */
542	if (curr_write_sz <= pending_sz)
543		return;
544
545	++channel->intr_in_full;
546	vmbus_setevent(channel);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
547}
548EXPORT_SYMBOL_GPL(hv_pkt_iter_close);