Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1#include <linux/proc_fs.h>
  2#include <linux/seq_file.h>
  3#include <linux/export.h>
  4#include <linux/suspend.h>
  5#include <linux/bcd.h>
  6#include <asm/uaccess.h>
  7
  8#include <acpi/acpi_bus.h>
  9#include <acpi/acpi_drivers.h>
 10
 11#ifdef CONFIG_X86
 12#include <linux/mc146818rtc.h>
 13#endif
 14
 15#include "sleep.h"
 
 16
 17#define _COMPONENT		ACPI_SYSTEM_COMPONENT
 18
 19/*
 20 * this file provides support for:
 21 * /proc/acpi/alarm
 22 * /proc/acpi/wakeup
 23 */
 24
 25ACPI_MODULE_NAME("sleep")
 26
 27#if defined(CONFIG_RTC_DRV_CMOS) || defined(CONFIG_RTC_DRV_CMOS_MODULE) || !defined(CONFIG_X86)
 28/* use /sys/class/rtc/rtcX/wakealarm instead; it's not ACPI-specific */
 29#else
 30#define	HAVE_ACPI_LEGACY_ALARM
 31#endif
 32
 33#ifdef	HAVE_ACPI_LEGACY_ALARM
 34
 35static u32 cmos_bcd_read(int offset, int rtc_control);
 36
 37static int acpi_system_alarm_seq_show(struct seq_file *seq, void *offset)
 38{
 39	u32 sec, min, hr;
 40	u32 day, mo, yr, cent = 0;
 41	u32 today = 0;
 42	unsigned char rtc_control = 0;
 43	unsigned long flags;
 44
 45	spin_lock_irqsave(&rtc_lock, flags);
 46
 47	rtc_control = CMOS_READ(RTC_CONTROL);
 48	sec = cmos_bcd_read(RTC_SECONDS_ALARM, rtc_control);
 49	min = cmos_bcd_read(RTC_MINUTES_ALARM, rtc_control);
 50	hr = cmos_bcd_read(RTC_HOURS_ALARM, rtc_control);
 51
 52	/* If we ever get an FACP with proper values... */
 53	if (acpi_gbl_FADT.day_alarm) {
 54		/* ACPI spec: only low 6 its should be cared */
 55		day = CMOS_READ(acpi_gbl_FADT.day_alarm) & 0x3F;
 56		if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
 57			day = bcd2bin(day);
 58	} else
 59		day = cmos_bcd_read(RTC_DAY_OF_MONTH, rtc_control);
 60	if (acpi_gbl_FADT.month_alarm)
 61		mo = cmos_bcd_read(acpi_gbl_FADT.month_alarm, rtc_control);
 62	else {
 63		mo = cmos_bcd_read(RTC_MONTH, rtc_control);
 64		today = cmos_bcd_read(RTC_DAY_OF_MONTH, rtc_control);
 65	}
 66	if (acpi_gbl_FADT.century)
 67		cent = cmos_bcd_read(acpi_gbl_FADT.century, rtc_control);
 68
 69	yr = cmos_bcd_read(RTC_YEAR, rtc_control);
 70
 71	spin_unlock_irqrestore(&rtc_lock, flags);
 72
 73	/* we're trusting the FADT (see above) */
 74	if (!acpi_gbl_FADT.century)
 75		/* If we're not trusting the FADT, we should at least make it
 76		 * right for _this_ century... ehm, what is _this_ century?
 77		 *
 78		 * TBD:
 79		 *  ASAP: find piece of code in the kernel, e.g. star tracker driver,
 80		 *        which we can trust to determine the century correctly. Atom
 81		 *        watch driver would be nice, too...
 82		 *
 83		 *  if that has not happened, change for first release in 2050:
 84		 *        if (yr<50)
 85		 *                yr += 2100;
 86		 *        else
 87		 *                yr += 2000;   // current line of code
 88		 *
 89		 *  if that has not happened either, please do on 2099/12/31:23:59:59
 90		 *        s/2000/2100
 91		 *
 92		 */
 93		yr += 2000;
 94	else
 95		yr += cent * 100;
 96
 97	/*
 98	 * Show correct dates for alarms up to a month into the future.
 99	 * This solves issues for nearly all situations with the common
100	 * 30-day alarm clocks in PC hardware.
101	 */
102	if (day < today) {
103		if (mo < 12) {
104			mo += 1;
105		} else {
106			mo = 1;
107			yr += 1;
108		}
109	}
110
111	seq_printf(seq, "%4.4u-", yr);
112	(mo > 12) ? seq_puts(seq, "**-") : seq_printf(seq, "%2.2u-", mo);
113	(day > 31) ? seq_puts(seq, "** ") : seq_printf(seq, "%2.2u ", day);
114	(hr > 23) ? seq_puts(seq, "**:") : seq_printf(seq, "%2.2u:", hr);
115	(min > 59) ? seq_puts(seq, "**:") : seq_printf(seq, "%2.2u:", min);
116	(sec > 59) ? seq_puts(seq, "**\n") : seq_printf(seq, "%2.2u\n", sec);
117
118	return 0;
119}
120
121static int acpi_system_alarm_open_fs(struct inode *inode, struct file *file)
122{
123	return single_open(file, acpi_system_alarm_seq_show, PDE(inode)->data);
124}
125
126static int get_date_field(char **p, u32 * value)
127{
128	char *next = NULL;
129	char *string_end = NULL;
130	int result = -EINVAL;
131
132	/*
133	 * Try to find delimeter, only to insert null.  The end of the
134	 * string won't have one, but is still valid.
135	 */
136	if (*p == NULL)
137		return result;
138
139	next = strpbrk(*p, "- :");
140	if (next)
141		*next++ = '\0';
142
143	*value = simple_strtoul(*p, &string_end, 10);
144
145	/* Signal success if we got a good digit */
146	if (string_end != *p)
147		result = 0;
148
149	if (next)
150		*p = next;
151	else
152		*p = NULL;
153
154	return result;
155}
156
157/* Read a possibly BCD register, always return binary */
158static u32 cmos_bcd_read(int offset, int rtc_control)
159{
160	u32 val = CMOS_READ(offset);
161	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
162		val = bcd2bin(val);
163	return val;
164}
165
166/* Write binary value into possibly BCD register */
167static void cmos_bcd_write(u32 val, int offset, int rtc_control)
168{
169	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
170		val = bin2bcd(val);
171	CMOS_WRITE(val, offset);
172}
173
174static ssize_t
175acpi_system_write_alarm(struct file *file,
176			const char __user * buffer, size_t count, loff_t * ppos)
177{
178	int result = 0;
179	char alarm_string[30] = { '\0' };
180	char *p = alarm_string;
181	u32 sec, min, hr, day, mo, yr;
182	int adjust = 0;
183	unsigned char rtc_control = 0;
184
185	if (count > sizeof(alarm_string) - 1)
186		return -EINVAL;
187
188	if (copy_from_user(alarm_string, buffer, count))
189		return -EFAULT;
190
191	alarm_string[count] = '\0';
192
193	/* check for time adjustment */
194	if (alarm_string[0] == '+') {
195		p++;
196		adjust = 1;
197	}
198
199	if ((result = get_date_field(&p, &yr)))
200		goto end;
201	if ((result = get_date_field(&p, &mo)))
202		goto end;
203	if ((result = get_date_field(&p, &day)))
204		goto end;
205	if ((result = get_date_field(&p, &hr)))
206		goto end;
207	if ((result = get_date_field(&p, &min)))
208		goto end;
209	if ((result = get_date_field(&p, &sec)))
210		goto end;
211
212	spin_lock_irq(&rtc_lock);
213
214	rtc_control = CMOS_READ(RTC_CONTROL);
215
216	if (adjust) {
217		yr += cmos_bcd_read(RTC_YEAR, rtc_control);
218		mo += cmos_bcd_read(RTC_MONTH, rtc_control);
219		day += cmos_bcd_read(RTC_DAY_OF_MONTH, rtc_control);
220		hr += cmos_bcd_read(RTC_HOURS, rtc_control);
221		min += cmos_bcd_read(RTC_MINUTES, rtc_control);
222		sec += cmos_bcd_read(RTC_SECONDS, rtc_control);
223	}
224
225	spin_unlock_irq(&rtc_lock);
226
227	if (sec > 59) {
228		min += sec/60;
229		sec = sec%60;
230	}
231	if (min > 59) {
232		hr += min/60;
233		min = min%60;
234	}
235	if (hr > 23) {
236		day += hr/24;
237		hr = hr%24;
238	}
239	if (day > 31) {
240		mo += day/32;
241		day = day%32;
242	}
243	if (mo > 12) {
244		yr += mo/13;
245		mo = mo%13;
246	}
247
248	spin_lock_irq(&rtc_lock);
249	/*
250	 * Disable alarm interrupt before setting alarm timer or else
251	 * when ACPI_EVENT_RTC is enabled, a spurious ACPI interrupt occurs
252	 */
253	rtc_control &= ~RTC_AIE;
254	CMOS_WRITE(rtc_control, RTC_CONTROL);
255	CMOS_READ(RTC_INTR_FLAGS);
256
257	/* write the fields the rtc knows about */
258	cmos_bcd_write(hr, RTC_HOURS_ALARM, rtc_control);
259	cmos_bcd_write(min, RTC_MINUTES_ALARM, rtc_control);
260	cmos_bcd_write(sec, RTC_SECONDS_ALARM, rtc_control);
261
262	/*
263	 * If the system supports an enhanced alarm it will have non-zero
264	 * offsets into the CMOS RAM here -- which for some reason are pointing
265	 * to the RTC area of memory.
266	 */
267	if (acpi_gbl_FADT.day_alarm)
268		cmos_bcd_write(day, acpi_gbl_FADT.day_alarm, rtc_control);
269	if (acpi_gbl_FADT.month_alarm)
270		cmos_bcd_write(mo, acpi_gbl_FADT.month_alarm, rtc_control);
271	if (acpi_gbl_FADT.century) {
272		if (adjust)
273			yr += cmos_bcd_read(acpi_gbl_FADT.century, rtc_control) * 100;
274		cmos_bcd_write(yr / 100, acpi_gbl_FADT.century, rtc_control);
275	}
276	/* enable the rtc alarm interrupt */
277	rtc_control |= RTC_AIE;
278	CMOS_WRITE(rtc_control, RTC_CONTROL);
279	CMOS_READ(RTC_INTR_FLAGS);
280
281	spin_unlock_irq(&rtc_lock);
282
283	acpi_clear_event(ACPI_EVENT_RTC);
284	acpi_enable_event(ACPI_EVENT_RTC, 0);
285
286	*ppos += count;
287
288	result = 0;
289      end:
290	return result ? result : count;
291}
292#endif				/* HAVE_ACPI_LEGACY_ALARM */
293
294static int
295acpi_system_wakeup_device_seq_show(struct seq_file *seq, void *offset)
296{
297	struct list_head *node, *next;
298
299	seq_printf(seq, "Device\tS-state\t  Status   Sysfs node\n");
300
301	mutex_lock(&acpi_device_lock);
302	list_for_each_safe(node, next, &acpi_wakeup_device_list) {
303		struct acpi_device *dev =
304		    container_of(node, struct acpi_device, wakeup_list);
305		struct device *ldev;
306
307		if (!dev->wakeup.flags.valid)
308			continue;
309
310		ldev = acpi_get_physical_device(dev->handle);
311		seq_printf(seq, "%s\t  S%d\t%c%-8s  ",
312			   dev->pnp.bus_id,
313			   (u32) dev->wakeup.sleep_state,
314			   dev->wakeup.flags.run_wake ? '*' : ' ',
315			   (device_may_wakeup(&dev->dev)
316			     || (ldev && device_may_wakeup(ldev))) ?
317			       "enabled" : "disabled");
318		if (ldev)
319			seq_printf(seq, "%s:%s",
320				   ldev->bus ? ldev->bus->name : "no-bus",
321				   dev_name(ldev));
322		seq_printf(seq, "\n");
323		put_device(ldev);
324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325	}
326	mutex_unlock(&acpi_device_lock);
327	return 0;
328}
329
330static void physical_device_enable_wakeup(struct acpi_device *adev)
331{
332	struct device *dev = acpi_get_physical_device(adev->handle);
333
334	if (dev && device_can_wakeup(dev)) {
335		bool enable = !device_may_wakeup(dev);
336		device_set_wakeup_enable(dev, enable);
337	}
 
 
 
 
 
 
338}
339
340static ssize_t
341acpi_system_write_wakeup_device(struct file *file,
342				const char __user * buffer,
343				size_t count, loff_t * ppos)
344{
345	struct list_head *node, *next;
346	char strbuf[5];
347	char str[5] = "";
348	unsigned int len = count;
349
350	if (len > 4)
351		len = 4;
352	if (len < 0)
353		return -EFAULT;
354
355	if (copy_from_user(strbuf, buffer, len))
356		return -EFAULT;
357	strbuf[len] = '\0';
358	sscanf(strbuf, "%s", str);
359
360	mutex_lock(&acpi_device_lock);
361	list_for_each_safe(node, next, &acpi_wakeup_device_list) {
362		struct acpi_device *dev =
363		    container_of(node, struct acpi_device, wakeup_list);
364		if (!dev->wakeup.flags.valid)
365			continue;
366
367		if (!strncmp(dev->pnp.bus_id, str, 4)) {
368			if (device_can_wakeup(&dev->dev)) {
369				bool enable = !device_may_wakeup(&dev->dev);
370				device_set_wakeup_enable(&dev->dev, enable);
371			} else {
372				physical_device_enable_wakeup(dev);
373			}
374			break;
375		}
376	}
377	mutex_unlock(&acpi_device_lock);
378	return count;
379}
380
381static int
382acpi_system_wakeup_device_open_fs(struct inode *inode, struct file *file)
383{
384	return single_open(file, acpi_system_wakeup_device_seq_show,
385			   PDE(inode)->data);
386}
387
388static const struct file_operations acpi_system_wakeup_device_fops = {
389	.owner = THIS_MODULE,
390	.open = acpi_system_wakeup_device_open_fs,
391	.read = seq_read,
392	.write = acpi_system_write_wakeup_device,
393	.llseek = seq_lseek,
394	.release = single_release,
395};
396
397#ifdef	HAVE_ACPI_LEGACY_ALARM
398static const struct file_operations acpi_system_alarm_fops = {
399	.owner = THIS_MODULE,
400	.open = acpi_system_alarm_open_fs,
401	.read = seq_read,
402	.write = acpi_system_write_alarm,
403	.llseek = seq_lseek,
404	.release = single_release,
405};
406
407static u32 rtc_handler(void *context)
408{
409	acpi_clear_event(ACPI_EVENT_RTC);
410	acpi_disable_event(ACPI_EVENT_RTC, 0);
411
412	return ACPI_INTERRUPT_HANDLED;
413}
414#endif				/* HAVE_ACPI_LEGACY_ALARM */
415
416int __init acpi_sleep_proc_init(void)
417{
418#ifdef	HAVE_ACPI_LEGACY_ALARM
419	/* 'alarm' [R/W] */
420	proc_create("alarm", S_IFREG | S_IRUGO | S_IWUSR,
421		    acpi_root_dir, &acpi_system_alarm_fops);
422
423	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, NULL);
424	/*
425	 * Disable the RTC event after installing RTC handler.
426	 * Only when RTC alarm is set will it be enabled.
427	 */
428	acpi_clear_event(ACPI_EVENT_RTC);
429	acpi_disable_event(ACPI_EVENT_RTC, 0);
430#endif				/* HAVE_ACPI_LEGACY_ALARM */
431
432	/* 'wakeup device' [R/W] */
433	proc_create("wakeup", S_IFREG | S_IRUGO | S_IWUSR,
434		    acpi_root_dir, &acpi_system_wakeup_device_fops);
435
436	return 0;
437}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/proc_fs.h>
  3#include <linux/seq_file.h>
  4#include <linux/export.h>
  5#include <linux/suspend.h>
  6#include <linux/bcd.h>
  7#include <linux/acpi.h>
  8#include <linux/uaccess.h>
 
 
 
 
 
 
  9
 10#include "sleep.h"
 11#include "internal.h"
 12
 13#define _COMPONENT		ACPI_SYSTEM_COMPONENT
 14
 15/*
 16 * this file provides support for:
 
 17 * /proc/acpi/wakeup
 18 */
 19
 20ACPI_MODULE_NAME("sleep")
 21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 22static int
 23acpi_system_wakeup_device_seq_show(struct seq_file *seq, void *offset)
 24{
 25	struct list_head *node, *next;
 26
 27	seq_printf(seq, "Device\tS-state\t  Status   Sysfs node\n");
 28
 29	mutex_lock(&acpi_device_lock);
 30	list_for_each_safe(node, next, &acpi_wakeup_device_list) {
 31		struct acpi_device *dev =
 32		    container_of(node, struct acpi_device, wakeup_list);
 33		struct acpi_device_physical_node *entry;
 34
 35		if (!dev->wakeup.flags.valid)
 36			continue;
 37
 38		seq_printf(seq, "%s\t  S%d\t",
 
 39			   dev->pnp.bus_id,
 40			   (u32) dev->wakeup.sleep_state);
 41
 42		mutex_lock(&dev->physical_node_lock);
 
 
 
 
 
 
 
 
 43
 44		if (!dev->physical_node_count) {
 45			seq_printf(seq, "%c%-8s\n",
 46				dev->wakeup.flags.valid ? '*' : ' ',
 47				device_may_wakeup(&dev->dev) ?
 48					"enabled" : "disabled");
 49		} else {
 50			struct device *ldev;
 51			list_for_each_entry(entry, &dev->physical_node_list,
 52					node) {
 53				ldev = get_device(entry->dev);
 54				if (!ldev)
 55					continue;
 56
 57				if (&entry->node !=
 58						dev->physical_node_list.next)
 59					seq_printf(seq, "\t\t");
 60
 61				seq_printf(seq, "%c%-8s  %s:%s\n",
 62					dev->wakeup.flags.valid ? '*' : ' ',
 63					(device_may_wakeup(&dev->dev) ||
 64					device_may_wakeup(ldev)) ?
 65					"enabled" : "disabled",
 66					ldev->bus ? ldev->bus->name :
 67					"no-bus", dev_name(ldev));
 68				put_device(ldev);
 69			}
 70		}
 71
 72		mutex_unlock(&dev->physical_node_lock);
 73	}
 74	mutex_unlock(&acpi_device_lock);
 75	return 0;
 76}
 77
 78static void physical_device_enable_wakeup(struct acpi_device *adev)
 79{
 80	struct acpi_device_physical_node *entry;
 81
 82	mutex_lock(&adev->physical_node_lock);
 83
 84	list_for_each_entry(entry,
 85		&adev->physical_node_list, node)
 86		if (entry->dev && device_can_wakeup(entry->dev)) {
 87			bool enable = !device_may_wakeup(entry->dev);
 88			device_set_wakeup_enable(entry->dev, enable);
 89		}
 90
 91	mutex_unlock(&adev->physical_node_lock);
 92}
 93
 94static ssize_t
 95acpi_system_write_wakeup_device(struct file *file,
 96				const char __user * buffer,
 97				size_t count, loff_t * ppos)
 98{
 99	struct list_head *node, *next;
100	char strbuf[5];
101	char str[5] = "";
 
102
103	if (count > 4)
104		count = 4;
 
 
105
106	if (copy_from_user(strbuf, buffer, count))
107		return -EFAULT;
108	strbuf[count] = '\0';
109	sscanf(strbuf, "%s", str);
110
111	mutex_lock(&acpi_device_lock);
112	list_for_each_safe(node, next, &acpi_wakeup_device_list) {
113		struct acpi_device *dev =
114		    container_of(node, struct acpi_device, wakeup_list);
115		if (!dev->wakeup.flags.valid)
116			continue;
117
118		if (!strncmp(dev->pnp.bus_id, str, 4)) {
119			if (device_can_wakeup(&dev->dev)) {
120				bool enable = !device_may_wakeup(&dev->dev);
121				device_set_wakeup_enable(&dev->dev, enable);
122			} else {
123				physical_device_enable_wakeup(dev);
124			}
125			break;
126		}
127	}
128	mutex_unlock(&acpi_device_lock);
129	return count;
130}
131
132static int
133acpi_system_wakeup_device_open_fs(struct inode *inode, struct file *file)
134{
135	return single_open(file, acpi_system_wakeup_device_seq_show,
136			   PDE_DATA(inode));
137}
138
139static const struct file_operations acpi_system_wakeup_device_fops = {
140	.owner = THIS_MODULE,
141	.open = acpi_system_wakeup_device_open_fs,
142	.read = seq_read,
143	.write = acpi_system_write_wakeup_device,
144	.llseek = seq_lseek,
145	.release = single_release,
146};
147
148void __init acpi_sleep_proc_init(void)
 
 
 
 
 
 
 
 
 
 
149{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150	/* 'wakeup device' [R/W] */
151	proc_create("wakeup", S_IFREG | S_IRUGO | S_IWUSR,
152		    acpi_root_dir, &acpi_system_wakeup_device_fops);
 
 
153}