Loading...
1#ifndef __ASM_SH_IO_H
2#define __ASM_SH_IO_H
3
4/*
5 * Convention:
6 * read{b,w,l,q}/write{b,w,l,q} are for PCI,
7 * while in{b,w,l}/out{b,w,l} are for ISA
8 *
9 * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p
10 * and 'string' versions: ins{b,w,l}/outs{b,w,l}
11 *
12 * While read{b,w,l,q} and write{b,w,l,q} contain memory barriers
13 * automatically, there are also __raw versions, which do not.
14 */
15#include <linux/errno.h>
16#include <asm/cache.h>
17#include <asm/addrspace.h>
18#include <asm/machvec.h>
19#include <asm/pgtable.h>
20#include <asm-generic/iomap.h>
21
22#ifdef __KERNEL__
23#define __IO_PREFIX generic
24#include <asm/io_generic.h>
25#include <asm/io_trapped.h>
26#include <mach/mangle-port.h>
27
28#define __raw_writeb(v,a) (__chk_io_ptr(a), *(volatile u8 __force *)(a) = (v))
29#define __raw_writew(v,a) (__chk_io_ptr(a), *(volatile u16 __force *)(a) = (v))
30#define __raw_writel(v,a) (__chk_io_ptr(a), *(volatile u32 __force *)(a) = (v))
31#define __raw_writeq(v,a) (__chk_io_ptr(a), *(volatile u64 __force *)(a) = (v))
32
33#define __raw_readb(a) (__chk_io_ptr(a), *(volatile u8 __force *)(a))
34#define __raw_readw(a) (__chk_io_ptr(a), *(volatile u16 __force *)(a))
35#define __raw_readl(a) (__chk_io_ptr(a), *(volatile u32 __force *)(a))
36#define __raw_readq(a) (__chk_io_ptr(a), *(volatile u64 __force *)(a))
37
38#define readb_relaxed(c) ({ u8 __v = ioswabb(__raw_readb(c)); __v; })
39#define readw_relaxed(c) ({ u16 __v = ioswabw(__raw_readw(c)); __v; })
40#define readl_relaxed(c) ({ u32 __v = ioswabl(__raw_readl(c)); __v; })
41#define readq_relaxed(c) ({ u64 __v = ioswabq(__raw_readq(c)); __v; })
42
43#define writeb_relaxed(v,c) ((void)__raw_writeb((__force u8)ioswabb(v),c))
44#define writew_relaxed(v,c) ((void)__raw_writew((__force u16)ioswabw(v),c))
45#define writel_relaxed(v,c) ((void)__raw_writel((__force u32)ioswabl(v),c))
46#define writeq_relaxed(v,c) ((void)__raw_writeq((__force u64)ioswabq(v),c))
47
48#define readb(a) ({ u8 r_ = readb_relaxed(a); rmb(); r_; })
49#define readw(a) ({ u16 r_ = readw_relaxed(a); rmb(); r_; })
50#define readl(a) ({ u32 r_ = readl_relaxed(a); rmb(); r_; })
51#define readq(a) ({ u64 r_ = readq_relaxed(a); rmb(); r_; })
52
53#define writeb(v,a) ({ wmb(); writeb_relaxed((v),(a)); })
54#define writew(v,a) ({ wmb(); writew_relaxed((v),(a)); })
55#define writel(v,a) ({ wmb(); writel_relaxed((v),(a)); })
56#define writeq(v,a) ({ wmb(); writeq_relaxed((v),(a)); })
57
58#define readsb(p,d,l) __raw_readsb(p,d,l)
59#define readsw(p,d,l) __raw_readsw(p,d,l)
60#define readsl(p,d,l) __raw_readsl(p,d,l)
61
62#define writesb(p,d,l) __raw_writesb(p,d,l)
63#define writesw(p,d,l) __raw_writesw(p,d,l)
64#define writesl(p,d,l) __raw_writesl(p,d,l)
65
66#define __BUILD_UNCACHED_IO(bwlq, type) \
67static inline type read##bwlq##_uncached(unsigned long addr) \
68{ \
69 type ret; \
70 jump_to_uncached(); \
71 ret = __raw_read##bwlq(addr); \
72 back_to_cached(); \
73 return ret; \
74} \
75 \
76static inline void write##bwlq##_uncached(type v, unsigned long addr) \
77{ \
78 jump_to_uncached(); \
79 __raw_write##bwlq(v, addr); \
80 back_to_cached(); \
81}
82
83__BUILD_UNCACHED_IO(b, u8)
84__BUILD_UNCACHED_IO(w, u16)
85__BUILD_UNCACHED_IO(l, u32)
86__BUILD_UNCACHED_IO(q, u64)
87
88#define __BUILD_MEMORY_STRING(pfx, bwlq, type) \
89 \
90static inline void \
91pfx##writes##bwlq(volatile void __iomem *mem, const void *addr, \
92 unsigned int count) \
93{ \
94 const volatile type *__addr = addr; \
95 \
96 while (count--) { \
97 __raw_write##bwlq(*__addr, mem); \
98 __addr++; \
99 } \
100} \
101 \
102static inline void pfx##reads##bwlq(volatile void __iomem *mem, \
103 void *addr, unsigned int count) \
104{ \
105 volatile type *__addr = addr; \
106 \
107 while (count--) { \
108 *__addr = __raw_read##bwlq(mem); \
109 __addr++; \
110 } \
111}
112
113__BUILD_MEMORY_STRING(__raw_, b, u8)
114__BUILD_MEMORY_STRING(__raw_, w, u16)
115
116#ifdef CONFIG_SUPERH32
117void __raw_writesl(void __iomem *addr, const void *data, int longlen);
118void __raw_readsl(const void __iomem *addr, void *data, int longlen);
119#else
120__BUILD_MEMORY_STRING(__raw_, l, u32)
121#endif
122
123__BUILD_MEMORY_STRING(__raw_, q, u64)
124
125#ifdef CONFIG_HAS_IOPORT
126
127/*
128 * Slowdown I/O port space accesses for antique hardware.
129 */
130#undef CONF_SLOWDOWN_IO
131
132/*
133 * On SuperH I/O ports are memory mapped, so we access them using normal
134 * load/store instructions. sh_io_port_base is the virtual address to
135 * which all ports are being mapped.
136 */
137extern const unsigned long sh_io_port_base;
138
139static inline void __set_io_port_base(unsigned long pbase)
140{
141 *(unsigned long *)&sh_io_port_base = pbase;
142 barrier();
143}
144
145#ifdef CONFIG_GENERIC_IOMAP
146#define __ioport_map ioport_map
147#else
148extern void __iomem *__ioport_map(unsigned long addr, unsigned int size);
149#endif
150
151#ifdef CONF_SLOWDOWN_IO
152#define SLOW_DOWN_IO __raw_readw(sh_io_port_base)
153#else
154#define SLOW_DOWN_IO
155#endif
156
157#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \
158 \
159static inline void pfx##out##bwlq##p(type val, unsigned long port) \
160{ \
161 volatile type *__addr; \
162 \
163 __addr = __ioport_map(port, sizeof(type)); \
164 *__addr = val; \
165 slow; \
166} \
167 \
168static inline type pfx##in##bwlq##p(unsigned long port) \
169{ \
170 volatile type *__addr; \
171 type __val; \
172 \
173 __addr = __ioport_map(port, sizeof(type)); \
174 __val = *__addr; \
175 slow; \
176 \
177 return __val; \
178}
179
180#define __BUILD_IOPORT_PFX(bus, bwlq, type) \
181 __BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \
182 __BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
183
184#define BUILDIO_IOPORT(bwlq, type) \
185 __BUILD_IOPORT_PFX(, bwlq, type)
186
187BUILDIO_IOPORT(b, u8)
188BUILDIO_IOPORT(w, u16)
189BUILDIO_IOPORT(l, u32)
190BUILDIO_IOPORT(q, u64)
191
192#define __BUILD_IOPORT_STRING(bwlq, type) \
193 \
194static inline void outs##bwlq(unsigned long port, const void *addr, \
195 unsigned int count) \
196{ \
197 const volatile type *__addr = addr; \
198 \
199 while (count--) { \
200 out##bwlq(*__addr, port); \
201 __addr++; \
202 } \
203} \
204 \
205static inline void ins##bwlq(unsigned long port, void *addr, \
206 unsigned int count) \
207{ \
208 volatile type *__addr = addr; \
209 \
210 while (count--) { \
211 *__addr = in##bwlq(port); \
212 __addr++; \
213 } \
214}
215
216__BUILD_IOPORT_STRING(b, u8)
217__BUILD_IOPORT_STRING(w, u16)
218__BUILD_IOPORT_STRING(l, u32)
219__BUILD_IOPORT_STRING(q, u64)
220
221#else /* !CONFIG_HAS_IOPORT */
222
223#include <asm/io_noioport.h>
224
225#endif
226
227
228#define IO_SPACE_LIMIT 0xffffffff
229
230/* synco on SH-4A, otherwise a nop */
231#define mmiowb() wmb()
232
233/* We really want to try and get these to memcpy etc */
234void memcpy_fromio(void *, const volatile void __iomem *, unsigned long);
235void memcpy_toio(volatile void __iomem *, const void *, unsigned long);
236void memset_io(volatile void __iomem *, int, unsigned long);
237
238/* Quad-word real-mode I/O, don't ask.. */
239unsigned long long peek_real_address_q(unsigned long long addr);
240unsigned long long poke_real_address_q(unsigned long long addr,
241 unsigned long long val);
242
243#if !defined(CONFIG_MMU)
244#define virt_to_phys(address) ((unsigned long)(address))
245#define phys_to_virt(address) ((void *)(address))
246#else
247#define virt_to_phys(address) (__pa(address))
248#define phys_to_virt(address) (__va(address))
249#endif
250
251/*
252 * On 32-bit SH, we traditionally have the whole physical address space
253 * mapped at all times (as MIPS does), so "ioremap()" and "iounmap()" do
254 * not need to do anything but place the address in the proper segment.
255 * This is true for P1 and P2 addresses, as well as some P3 ones.
256 * However, most of the P3 addresses and newer cores using extended
257 * addressing need to map through page tables, so the ioremap()
258 * implementation becomes a bit more complicated.
259 *
260 * See arch/sh/mm/ioremap.c for additional notes on this.
261 *
262 * We cheat a bit and always return uncachable areas until we've fixed
263 * the drivers to handle caching properly.
264 *
265 * On the SH-5 the concept of segmentation in the 1:1 PXSEG sense simply
266 * doesn't exist, so everything must go through page tables.
267 */
268#ifdef CONFIG_MMU
269void __iomem *__ioremap_caller(phys_addr_t offset, unsigned long size,
270 pgprot_t prot, void *caller);
271void __iounmap(void __iomem *addr);
272
273static inline void __iomem *
274__ioremap(phys_addr_t offset, unsigned long size, pgprot_t prot)
275{
276 return __ioremap_caller(offset, size, prot, __builtin_return_address(0));
277}
278
279static inline void __iomem *
280__ioremap_29bit(phys_addr_t offset, unsigned long size, pgprot_t prot)
281{
282#ifdef CONFIG_29BIT
283 phys_addr_t last_addr = offset + size - 1;
284
285 /*
286 * For P1 and P2 space this is trivial, as everything is already
287 * mapped. Uncached access for P1 addresses are done through P2.
288 * In the P3 case or for addresses outside of the 29-bit space,
289 * mapping must be done by the PMB or by using page tables.
290 */
291 if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) {
292 u64 flags = pgprot_val(prot);
293
294 /*
295 * Anything using the legacy PTEA space attributes needs
296 * to be kicked down to page table mappings.
297 */
298 if (unlikely(flags & _PAGE_PCC_MASK))
299 return NULL;
300 if (unlikely(flags & _PAGE_CACHABLE))
301 return (void __iomem *)P1SEGADDR(offset);
302
303 return (void __iomem *)P2SEGADDR(offset);
304 }
305
306 /* P4 above the store queues are always mapped. */
307 if (unlikely(offset >= P3_ADDR_MAX))
308 return (void __iomem *)P4SEGADDR(offset);
309#endif
310
311 return NULL;
312}
313
314static inline void __iomem *
315__ioremap_mode(phys_addr_t offset, unsigned long size, pgprot_t prot)
316{
317 void __iomem *ret;
318
319 ret = __ioremap_trapped(offset, size);
320 if (ret)
321 return ret;
322
323 ret = __ioremap_29bit(offset, size, prot);
324 if (ret)
325 return ret;
326
327 return __ioremap(offset, size, prot);
328}
329#else
330#define __ioremap(offset, size, prot) ((void __iomem *)(offset))
331#define __ioremap_mode(offset, size, prot) ((void __iomem *)(offset))
332#define __iounmap(addr) do { } while (0)
333#endif /* CONFIG_MMU */
334
335static inline void __iomem *ioremap(phys_addr_t offset, unsigned long size)
336{
337 return __ioremap_mode(offset, size, PAGE_KERNEL_NOCACHE);
338}
339
340static inline void __iomem *
341ioremap_cache(phys_addr_t offset, unsigned long size)
342{
343 return __ioremap_mode(offset, size, PAGE_KERNEL);
344}
345
346#ifdef CONFIG_HAVE_IOREMAP_PROT
347static inline void __iomem *
348ioremap_prot(phys_addr_t offset, unsigned long size, unsigned long flags)
349{
350 return __ioremap_mode(offset, size, __pgprot(flags));
351}
352#endif
353
354#ifdef CONFIG_IOREMAP_FIXED
355extern void __iomem *ioremap_fixed(phys_addr_t, unsigned long, pgprot_t);
356extern int iounmap_fixed(void __iomem *);
357extern void ioremap_fixed_init(void);
358#else
359static inline void __iomem *
360ioremap_fixed(phys_addr_t phys_addr, unsigned long size, pgprot_t prot)
361{
362 BUG();
363 return NULL;
364}
365
366static inline void ioremap_fixed_init(void) { }
367static inline int iounmap_fixed(void __iomem *addr) { return -EINVAL; }
368#endif
369
370#define ioremap_nocache ioremap
371#define iounmap __iounmap
372
373/*
374 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
375 * access
376 */
377#define xlate_dev_mem_ptr(p) __va(p)
378
379/*
380 * Convert a virtual cached pointer to an uncached pointer
381 */
382#define xlate_dev_kmem_ptr(p) p
383
384#define ARCH_HAS_VALID_PHYS_ADDR_RANGE
385int valid_phys_addr_range(unsigned long addr, size_t size);
386int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
387
388#endif /* __KERNEL__ */
389
390#endif /* __ASM_SH_IO_H */
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef __ASM_SH_IO_H
3#define __ASM_SH_IO_H
4
5/*
6 * Convention:
7 * read{b,w,l,q}/write{b,w,l,q} are for PCI,
8 * while in{b,w,l}/out{b,w,l} are for ISA
9 *
10 * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p
11 * and 'string' versions: ins{b,w,l}/outs{b,w,l}
12 *
13 * While read{b,w,l,q} and write{b,w,l,q} contain memory barriers
14 * automatically, there are also __raw versions, which do not.
15 */
16#include <linux/errno.h>
17#include <asm/cache.h>
18#include <asm/addrspace.h>
19#include <asm/machvec.h>
20#include <asm/pgtable.h>
21#include <asm-generic/iomap.h>
22
23#ifdef __KERNEL__
24#define __IO_PREFIX generic
25#include <asm/io_generic.h>
26#include <asm/io_trapped.h>
27#include <asm-generic/pci_iomap.h>
28#include <mach/mangle-port.h>
29
30#define __raw_writeb(v,a) (__chk_io_ptr(a), *(volatile u8 __force *)(a) = (v))
31#define __raw_writew(v,a) (__chk_io_ptr(a), *(volatile u16 __force *)(a) = (v))
32#define __raw_writel(v,a) (__chk_io_ptr(a), *(volatile u32 __force *)(a) = (v))
33#define __raw_writeq(v,a) (__chk_io_ptr(a), *(volatile u64 __force *)(a) = (v))
34
35#define __raw_readb(a) (__chk_io_ptr(a), *(volatile u8 __force *)(a))
36#define __raw_readw(a) (__chk_io_ptr(a), *(volatile u16 __force *)(a))
37#define __raw_readl(a) (__chk_io_ptr(a), *(volatile u32 __force *)(a))
38#define __raw_readq(a) (__chk_io_ptr(a), *(volatile u64 __force *)(a))
39
40#define readb_relaxed(c) ({ u8 __v = ioswabb(__raw_readb(c)); __v; })
41#define readw_relaxed(c) ({ u16 __v = ioswabw(__raw_readw(c)); __v; })
42#define readl_relaxed(c) ({ u32 __v = ioswabl(__raw_readl(c)); __v; })
43#define readq_relaxed(c) ({ u64 __v = ioswabq(__raw_readq(c)); __v; })
44
45#define writeb_relaxed(v,c) ((void)__raw_writeb((__force u8)ioswabb(v),c))
46#define writew_relaxed(v,c) ((void)__raw_writew((__force u16)ioswabw(v),c))
47#define writel_relaxed(v,c) ((void)__raw_writel((__force u32)ioswabl(v),c))
48#define writeq_relaxed(v,c) ((void)__raw_writeq((__force u64)ioswabq(v),c))
49
50#define readb(a) ({ u8 r_ = readb_relaxed(a); rmb(); r_; })
51#define readw(a) ({ u16 r_ = readw_relaxed(a); rmb(); r_; })
52#define readl(a) ({ u32 r_ = readl_relaxed(a); rmb(); r_; })
53#define readq(a) ({ u64 r_ = readq_relaxed(a); rmb(); r_; })
54
55#define writeb(v,a) ({ wmb(); writeb_relaxed((v),(a)); })
56#define writew(v,a) ({ wmb(); writew_relaxed((v),(a)); })
57#define writel(v,a) ({ wmb(); writel_relaxed((v),(a)); })
58#define writeq(v,a) ({ wmb(); writeq_relaxed((v),(a)); })
59
60#define readsb(p,d,l) __raw_readsb(p,d,l)
61#define readsw(p,d,l) __raw_readsw(p,d,l)
62#define readsl(p,d,l) __raw_readsl(p,d,l)
63
64#define writesb(p,d,l) __raw_writesb(p,d,l)
65#define writesw(p,d,l) __raw_writesw(p,d,l)
66#define writesl(p,d,l) __raw_writesl(p,d,l)
67
68#define __BUILD_UNCACHED_IO(bwlq, type) \
69static inline type read##bwlq##_uncached(unsigned long addr) \
70{ \
71 type ret; \
72 jump_to_uncached(); \
73 ret = __raw_read##bwlq(addr); \
74 back_to_cached(); \
75 return ret; \
76} \
77 \
78static inline void write##bwlq##_uncached(type v, unsigned long addr) \
79{ \
80 jump_to_uncached(); \
81 __raw_write##bwlq(v, addr); \
82 back_to_cached(); \
83}
84
85__BUILD_UNCACHED_IO(b, u8)
86__BUILD_UNCACHED_IO(w, u16)
87__BUILD_UNCACHED_IO(l, u32)
88__BUILD_UNCACHED_IO(q, u64)
89
90#define __BUILD_MEMORY_STRING(pfx, bwlq, type) \
91 \
92static inline void \
93pfx##writes##bwlq(volatile void __iomem *mem, const void *addr, \
94 unsigned int count) \
95{ \
96 const volatile type *__addr = addr; \
97 \
98 while (count--) { \
99 __raw_write##bwlq(*__addr, mem); \
100 __addr++; \
101 } \
102} \
103 \
104static inline void pfx##reads##bwlq(volatile void __iomem *mem, \
105 void *addr, unsigned int count) \
106{ \
107 volatile type *__addr = addr; \
108 \
109 while (count--) { \
110 *__addr = __raw_read##bwlq(mem); \
111 __addr++; \
112 } \
113}
114
115__BUILD_MEMORY_STRING(__raw_, b, u8)
116__BUILD_MEMORY_STRING(__raw_, w, u16)
117
118#ifdef CONFIG_SUPERH32
119void __raw_writesl(void __iomem *addr, const void *data, int longlen);
120void __raw_readsl(const void __iomem *addr, void *data, int longlen);
121#else
122__BUILD_MEMORY_STRING(__raw_, l, u32)
123#endif
124
125__BUILD_MEMORY_STRING(__raw_, q, u64)
126
127#ifdef CONFIG_HAS_IOPORT_MAP
128
129/*
130 * Slowdown I/O port space accesses for antique hardware.
131 */
132#undef CONF_SLOWDOWN_IO
133
134/*
135 * On SuperH I/O ports are memory mapped, so we access them using normal
136 * load/store instructions. sh_io_port_base is the virtual address to
137 * which all ports are being mapped.
138 */
139extern unsigned long sh_io_port_base;
140
141static inline void __set_io_port_base(unsigned long pbase)
142{
143 *(unsigned long *)&sh_io_port_base = pbase;
144 barrier();
145}
146
147#ifdef CONFIG_GENERIC_IOMAP
148#define __ioport_map ioport_map
149#else
150extern void __iomem *__ioport_map(unsigned long addr, unsigned int size);
151#endif
152
153#ifdef CONF_SLOWDOWN_IO
154#define SLOW_DOWN_IO __raw_readw(sh_io_port_base)
155#else
156#define SLOW_DOWN_IO
157#endif
158
159#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \
160 \
161static inline void pfx##out##bwlq##p(type val, unsigned long port) \
162{ \
163 volatile type *__addr; \
164 \
165 __addr = __ioport_map(port, sizeof(type)); \
166 *__addr = val; \
167 slow; \
168} \
169 \
170static inline type pfx##in##bwlq##p(unsigned long port) \
171{ \
172 volatile type *__addr; \
173 type __val; \
174 \
175 __addr = __ioport_map(port, sizeof(type)); \
176 __val = *__addr; \
177 slow; \
178 \
179 return __val; \
180}
181
182#define __BUILD_IOPORT_PFX(bus, bwlq, type) \
183 __BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \
184 __BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
185
186#define BUILDIO_IOPORT(bwlq, type) \
187 __BUILD_IOPORT_PFX(, bwlq, type)
188
189BUILDIO_IOPORT(b, u8)
190BUILDIO_IOPORT(w, u16)
191BUILDIO_IOPORT(l, u32)
192BUILDIO_IOPORT(q, u64)
193
194#define __BUILD_IOPORT_STRING(bwlq, type) \
195 \
196static inline void outs##bwlq(unsigned long port, const void *addr, \
197 unsigned int count) \
198{ \
199 const volatile type *__addr = addr; \
200 \
201 while (count--) { \
202 out##bwlq(*__addr, port); \
203 __addr++; \
204 } \
205} \
206 \
207static inline void ins##bwlq(unsigned long port, void *addr, \
208 unsigned int count) \
209{ \
210 volatile type *__addr = addr; \
211 \
212 while (count--) { \
213 *__addr = in##bwlq(port); \
214 __addr++; \
215 } \
216}
217
218__BUILD_IOPORT_STRING(b, u8)
219__BUILD_IOPORT_STRING(w, u16)
220__BUILD_IOPORT_STRING(l, u32)
221__BUILD_IOPORT_STRING(q, u64)
222
223#else /* !CONFIG_HAS_IOPORT_MAP */
224
225#include <asm/io_noioport.h>
226
227#endif
228
229
230#define IO_SPACE_LIMIT 0xffffffff
231
232/* We really want to try and get these to memcpy etc */
233void memcpy_fromio(void *, const volatile void __iomem *, unsigned long);
234void memcpy_toio(volatile void __iomem *, const void *, unsigned long);
235void memset_io(volatile void __iomem *, int, unsigned long);
236
237/* Quad-word real-mode I/O, don't ask.. */
238unsigned long long peek_real_address_q(unsigned long long addr);
239unsigned long long poke_real_address_q(unsigned long long addr,
240 unsigned long long val);
241
242#if !defined(CONFIG_MMU)
243#define virt_to_phys(address) ((unsigned long)(address))
244#define phys_to_virt(address) ((void *)(address))
245#else
246#define virt_to_phys(address) (__pa(address))
247#define phys_to_virt(address) (__va(address))
248#endif
249
250/*
251 * On 32-bit SH, we traditionally have the whole physical address space
252 * mapped at all times (as MIPS does), so "ioremap()" and "iounmap()" do
253 * not need to do anything but place the address in the proper segment.
254 * This is true for P1 and P2 addresses, as well as some P3 ones.
255 * However, most of the P3 addresses and newer cores using extended
256 * addressing need to map through page tables, so the ioremap()
257 * implementation becomes a bit more complicated.
258 *
259 * See arch/sh/mm/ioremap.c for additional notes on this.
260 *
261 * We cheat a bit and always return uncachable areas until we've fixed
262 * the drivers to handle caching properly.
263 *
264 * On the SH-5 the concept of segmentation in the 1:1 PXSEG sense simply
265 * doesn't exist, so everything must go through page tables.
266 */
267#ifdef CONFIG_MMU
268void __iomem *__ioremap_caller(phys_addr_t offset, unsigned long size,
269 pgprot_t prot, void *caller);
270void __iounmap(void __iomem *addr);
271
272static inline void __iomem *
273__ioremap(phys_addr_t offset, unsigned long size, pgprot_t prot)
274{
275 return __ioremap_caller(offset, size, prot, __builtin_return_address(0));
276}
277
278static inline void __iomem *
279__ioremap_29bit(phys_addr_t offset, unsigned long size, pgprot_t prot)
280{
281#ifdef CONFIG_29BIT
282 phys_addr_t last_addr = offset + size - 1;
283
284 /*
285 * For P1 and P2 space this is trivial, as everything is already
286 * mapped. Uncached access for P1 addresses are done through P2.
287 * In the P3 case or for addresses outside of the 29-bit space,
288 * mapping must be done by the PMB or by using page tables.
289 */
290 if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) {
291 u64 flags = pgprot_val(prot);
292
293 /*
294 * Anything using the legacy PTEA space attributes needs
295 * to be kicked down to page table mappings.
296 */
297 if (unlikely(flags & _PAGE_PCC_MASK))
298 return NULL;
299 if (unlikely(flags & _PAGE_CACHABLE))
300 return (void __iomem *)P1SEGADDR(offset);
301
302 return (void __iomem *)P2SEGADDR(offset);
303 }
304
305 /* P4 above the store queues are always mapped. */
306 if (unlikely(offset >= P3_ADDR_MAX))
307 return (void __iomem *)P4SEGADDR(offset);
308#endif
309
310 return NULL;
311}
312
313static inline void __iomem *
314__ioremap_mode(phys_addr_t offset, unsigned long size, pgprot_t prot)
315{
316 void __iomem *ret;
317
318 ret = __ioremap_trapped(offset, size);
319 if (ret)
320 return ret;
321
322 ret = __ioremap_29bit(offset, size, prot);
323 if (ret)
324 return ret;
325
326 return __ioremap(offset, size, prot);
327}
328#else
329#define __ioremap(offset, size, prot) ((void __iomem *)(offset))
330#define __ioremap_mode(offset, size, prot) ((void __iomem *)(offset))
331#define __iounmap(addr) do { } while (0)
332#endif /* CONFIG_MMU */
333
334static inline void __iomem *ioremap(phys_addr_t offset, unsigned long size)
335{
336 return __ioremap_mode(offset, size, PAGE_KERNEL_NOCACHE);
337}
338
339static inline void __iomem *
340ioremap_cache(phys_addr_t offset, unsigned long size)
341{
342 return __ioremap_mode(offset, size, PAGE_KERNEL);
343}
344#define ioremap_cache ioremap_cache
345
346#ifdef CONFIG_HAVE_IOREMAP_PROT
347static inline void __iomem *
348ioremap_prot(phys_addr_t offset, unsigned long size, unsigned long flags)
349{
350 return __ioremap_mode(offset, size, __pgprot(flags));
351}
352#endif
353
354#ifdef CONFIG_IOREMAP_FIXED
355extern void __iomem *ioremap_fixed(phys_addr_t, unsigned long, pgprot_t);
356extern int iounmap_fixed(void __iomem *);
357extern void ioremap_fixed_init(void);
358#else
359static inline void __iomem *
360ioremap_fixed(phys_addr_t phys_addr, unsigned long size, pgprot_t prot)
361{
362 BUG();
363 return NULL;
364}
365
366static inline void ioremap_fixed_init(void) { }
367static inline int iounmap_fixed(void __iomem *addr) { return -EINVAL; }
368#endif
369
370#define ioremap_nocache ioremap
371#define ioremap_uc ioremap
372
373static inline void iounmap(void __iomem *addr)
374{
375 __iounmap(addr);
376}
377
378/*
379 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
380 * access
381 */
382#define xlate_dev_mem_ptr(p) __va(p)
383
384/*
385 * Convert a virtual cached pointer to an uncached pointer
386 */
387#define xlate_dev_kmem_ptr(p) p
388
389#define ARCH_HAS_VALID_PHYS_ADDR_RANGE
390int valid_phys_addr_range(phys_addr_t addr, size_t size);
391int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
392
393#endif /* __KERNEL__ */
394
395#endif /* __ASM_SH_IO_H */