Loading...
1/*
2 * Linux performance counter support for MIPS.
3 *
4 * Copyright (C) 2010 MIPS Technologies, Inc.
5 * Copyright (C) 2011 Cavium Networks, Inc.
6 * Author: Deng-Cheng Zhu
7 *
8 * This code is based on the implementation for ARM, which is in turn
9 * based on the sparc64 perf event code and the x86 code. Performance
10 * counter access is based on the MIPS Oprofile code. And the callchain
11 * support references the code of MIPS stacktrace.c.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18#include <linux/cpumask.h>
19#include <linux/interrupt.h>
20#include <linux/smp.h>
21#include <linux/kernel.h>
22#include <linux/perf_event.h>
23#include <linux/uaccess.h>
24
25#include <asm/irq.h>
26#include <asm/irq_regs.h>
27#include <asm/stacktrace.h>
28#include <asm/time.h> /* For perf_irq */
29
30#define MIPS_MAX_HWEVENTS 4
31
32struct cpu_hw_events {
33 /* Array of events on this cpu. */
34 struct perf_event *events[MIPS_MAX_HWEVENTS];
35
36 /*
37 * Set the bit (indexed by the counter number) when the counter
38 * is used for an event.
39 */
40 unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
41
42 /*
43 * Software copy of the control register for each performance counter.
44 * MIPS CPUs vary in performance counters. They use this differently,
45 * and even may not use it.
46 */
47 unsigned int saved_ctrl[MIPS_MAX_HWEVENTS];
48};
49DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
50 .saved_ctrl = {0},
51};
52
53/* The description of MIPS performance events. */
54struct mips_perf_event {
55 unsigned int event_id;
56 /*
57 * MIPS performance counters are indexed starting from 0.
58 * CNTR_EVEN indicates the indexes of the counters to be used are
59 * even numbers.
60 */
61 unsigned int cntr_mask;
62 #define CNTR_EVEN 0x55555555
63 #define CNTR_ODD 0xaaaaaaaa
64 #define CNTR_ALL 0xffffffff
65#ifdef CONFIG_MIPS_MT_SMP
66 enum {
67 T = 0,
68 V = 1,
69 P = 2,
70 } range;
71#else
72 #define T
73 #define V
74 #define P
75#endif
76};
77
78static struct mips_perf_event raw_event;
79static DEFINE_MUTEX(raw_event_mutex);
80
81#define UNSUPPORTED_PERF_EVENT_ID 0xffffffff
82#define C(x) PERF_COUNT_HW_CACHE_##x
83
84struct mips_pmu {
85 u64 max_period;
86 u64 valid_count;
87 u64 overflow;
88 const char *name;
89 int irq;
90 u64 (*read_counter)(unsigned int idx);
91 void (*write_counter)(unsigned int idx, u64 val);
92 const struct mips_perf_event *(*map_raw_event)(u64 config);
93 const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
94 const struct mips_perf_event (*cache_event_map)
95 [PERF_COUNT_HW_CACHE_MAX]
96 [PERF_COUNT_HW_CACHE_OP_MAX]
97 [PERF_COUNT_HW_CACHE_RESULT_MAX];
98 unsigned int num_counters;
99};
100
101static struct mips_pmu mipspmu;
102
103#define M_CONFIG1_PC (1 << 4)
104
105#define M_PERFCTL_EXL (1 << 0)
106#define M_PERFCTL_KERNEL (1 << 1)
107#define M_PERFCTL_SUPERVISOR (1 << 2)
108#define M_PERFCTL_USER (1 << 3)
109#define M_PERFCTL_INTERRUPT_ENABLE (1 << 4)
110#define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5)
111#define M_PERFCTL_VPEID(vpe) ((vpe) << 16)
112#define M_PERFCTL_MT_EN(filter) ((filter) << 20)
113#define M_TC_EN_ALL M_PERFCTL_MT_EN(0)
114#define M_TC_EN_VPE M_PERFCTL_MT_EN(1)
115#define M_TC_EN_TC M_PERFCTL_MT_EN(2)
116#define M_PERFCTL_TCID(tcid) ((tcid) << 22)
117#define M_PERFCTL_WIDE (1 << 30)
118#define M_PERFCTL_MORE (1 << 31)
119
120#define M_PERFCTL_COUNT_EVENT_WHENEVER (M_PERFCTL_EXL | \
121 M_PERFCTL_KERNEL | \
122 M_PERFCTL_USER | \
123 M_PERFCTL_SUPERVISOR | \
124 M_PERFCTL_INTERRUPT_ENABLE)
125
126#ifdef CONFIG_MIPS_MT_SMP
127#define M_PERFCTL_CONFIG_MASK 0x3fff801f
128#else
129#define M_PERFCTL_CONFIG_MASK 0x1f
130#endif
131#define M_PERFCTL_EVENT_MASK 0xfe0
132
133
134#ifdef CONFIG_MIPS_MT_SMP
135static int cpu_has_mipsmt_pertccounters;
136
137static DEFINE_RWLOCK(pmuint_rwlock);
138
139/*
140 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
141 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
142 */
143#if defined(CONFIG_HW_PERF_EVENTS)
144#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
145 0 : smp_processor_id())
146#else
147#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
148 0 : cpu_data[smp_processor_id()].vpe_id)
149#endif
150
151/* Copied from op_model_mipsxx.c */
152static unsigned int vpe_shift(void)
153{
154 if (num_possible_cpus() > 1)
155 return 1;
156
157 return 0;
158}
159
160static unsigned int counters_total_to_per_cpu(unsigned int counters)
161{
162 return counters >> vpe_shift();
163}
164
165#else /* !CONFIG_MIPS_MT_SMP */
166#define vpe_id() 0
167
168#endif /* CONFIG_MIPS_MT_SMP */
169
170static void resume_local_counters(void);
171static void pause_local_counters(void);
172static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
173static int mipsxx_pmu_handle_shared_irq(void);
174
175static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
176{
177 if (vpe_id() == 1)
178 idx = (idx + 2) & 3;
179 return idx;
180}
181
182static u64 mipsxx_pmu_read_counter(unsigned int idx)
183{
184 idx = mipsxx_pmu_swizzle_perf_idx(idx);
185
186 switch (idx) {
187 case 0:
188 /*
189 * The counters are unsigned, we must cast to truncate
190 * off the high bits.
191 */
192 return (u32)read_c0_perfcntr0();
193 case 1:
194 return (u32)read_c0_perfcntr1();
195 case 2:
196 return (u32)read_c0_perfcntr2();
197 case 3:
198 return (u32)read_c0_perfcntr3();
199 default:
200 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
201 return 0;
202 }
203}
204
205static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
206{
207 idx = mipsxx_pmu_swizzle_perf_idx(idx);
208
209 switch (idx) {
210 case 0:
211 return read_c0_perfcntr0_64();
212 case 1:
213 return read_c0_perfcntr1_64();
214 case 2:
215 return read_c0_perfcntr2_64();
216 case 3:
217 return read_c0_perfcntr3_64();
218 default:
219 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
220 return 0;
221 }
222}
223
224static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
225{
226 idx = mipsxx_pmu_swizzle_perf_idx(idx);
227
228 switch (idx) {
229 case 0:
230 write_c0_perfcntr0(val);
231 return;
232 case 1:
233 write_c0_perfcntr1(val);
234 return;
235 case 2:
236 write_c0_perfcntr2(val);
237 return;
238 case 3:
239 write_c0_perfcntr3(val);
240 return;
241 }
242}
243
244static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
245{
246 idx = mipsxx_pmu_swizzle_perf_idx(idx);
247
248 switch (idx) {
249 case 0:
250 write_c0_perfcntr0_64(val);
251 return;
252 case 1:
253 write_c0_perfcntr1_64(val);
254 return;
255 case 2:
256 write_c0_perfcntr2_64(val);
257 return;
258 case 3:
259 write_c0_perfcntr3_64(val);
260 return;
261 }
262}
263
264static unsigned int mipsxx_pmu_read_control(unsigned int idx)
265{
266 idx = mipsxx_pmu_swizzle_perf_idx(idx);
267
268 switch (idx) {
269 case 0:
270 return read_c0_perfctrl0();
271 case 1:
272 return read_c0_perfctrl1();
273 case 2:
274 return read_c0_perfctrl2();
275 case 3:
276 return read_c0_perfctrl3();
277 default:
278 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
279 return 0;
280 }
281}
282
283static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
284{
285 idx = mipsxx_pmu_swizzle_perf_idx(idx);
286
287 switch (idx) {
288 case 0:
289 write_c0_perfctrl0(val);
290 return;
291 case 1:
292 write_c0_perfctrl1(val);
293 return;
294 case 2:
295 write_c0_perfctrl2(val);
296 return;
297 case 3:
298 write_c0_perfctrl3(val);
299 return;
300 }
301}
302
303static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
304 struct hw_perf_event *hwc)
305{
306 int i;
307
308 /*
309 * We only need to care the counter mask. The range has been
310 * checked definitely.
311 */
312 unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
313
314 for (i = mipspmu.num_counters - 1; i >= 0; i--) {
315 /*
316 * Note that some MIPS perf events can be counted by both
317 * even and odd counters, wheresas many other are only by
318 * even _or_ odd counters. This introduces an issue that
319 * when the former kind of event takes the counter the
320 * latter kind of event wants to use, then the "counter
321 * allocation" for the latter event will fail. In fact if
322 * they can be dynamically swapped, they both feel happy.
323 * But here we leave this issue alone for now.
324 */
325 if (test_bit(i, &cntr_mask) &&
326 !test_and_set_bit(i, cpuc->used_mask))
327 return i;
328 }
329
330 return -EAGAIN;
331}
332
333static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
334{
335 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
336
337 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
338
339 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
340 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
341 /* Make sure interrupt enabled. */
342 M_PERFCTL_INTERRUPT_ENABLE;
343 /*
344 * We do not actually let the counter run. Leave it until start().
345 */
346}
347
348static void mipsxx_pmu_disable_event(int idx)
349{
350 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
351 unsigned long flags;
352
353 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
354
355 local_irq_save(flags);
356 cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
357 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
358 mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
359 local_irq_restore(flags);
360}
361
362static int mipspmu_event_set_period(struct perf_event *event,
363 struct hw_perf_event *hwc,
364 int idx)
365{
366 u64 left = local64_read(&hwc->period_left);
367 u64 period = hwc->sample_period;
368 int ret = 0;
369
370 if (unlikely((left + period) & (1ULL << 63))) {
371 /* left underflowed by more than period. */
372 left = period;
373 local64_set(&hwc->period_left, left);
374 hwc->last_period = period;
375 ret = 1;
376 } else if (unlikely((left + period) <= period)) {
377 /* left underflowed by less than period. */
378 left += period;
379 local64_set(&hwc->period_left, left);
380 hwc->last_period = period;
381 ret = 1;
382 }
383
384 if (left > mipspmu.max_period) {
385 left = mipspmu.max_period;
386 local64_set(&hwc->period_left, left);
387 }
388
389 local64_set(&hwc->prev_count, mipspmu.overflow - left);
390
391 mipspmu.write_counter(idx, mipspmu.overflow - left);
392
393 perf_event_update_userpage(event);
394
395 return ret;
396}
397
398static void mipspmu_event_update(struct perf_event *event,
399 struct hw_perf_event *hwc,
400 int idx)
401{
402 u64 prev_raw_count, new_raw_count;
403 u64 delta;
404
405again:
406 prev_raw_count = local64_read(&hwc->prev_count);
407 new_raw_count = mipspmu.read_counter(idx);
408
409 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
410 new_raw_count) != prev_raw_count)
411 goto again;
412
413 delta = new_raw_count - prev_raw_count;
414
415 local64_add(delta, &event->count);
416 local64_sub(delta, &hwc->period_left);
417}
418
419static void mipspmu_start(struct perf_event *event, int flags)
420{
421 struct hw_perf_event *hwc = &event->hw;
422
423 if (flags & PERF_EF_RELOAD)
424 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
425
426 hwc->state = 0;
427
428 /* Set the period for the event. */
429 mipspmu_event_set_period(event, hwc, hwc->idx);
430
431 /* Enable the event. */
432 mipsxx_pmu_enable_event(hwc, hwc->idx);
433}
434
435static void mipspmu_stop(struct perf_event *event, int flags)
436{
437 struct hw_perf_event *hwc = &event->hw;
438
439 if (!(hwc->state & PERF_HES_STOPPED)) {
440 /* We are working on a local event. */
441 mipsxx_pmu_disable_event(hwc->idx);
442 barrier();
443 mipspmu_event_update(event, hwc, hwc->idx);
444 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
445 }
446}
447
448static int mipspmu_add(struct perf_event *event, int flags)
449{
450 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
451 struct hw_perf_event *hwc = &event->hw;
452 int idx;
453 int err = 0;
454
455 perf_pmu_disable(event->pmu);
456
457 /* To look for a free counter for this event. */
458 idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
459 if (idx < 0) {
460 err = idx;
461 goto out;
462 }
463
464 /*
465 * If there is an event in the counter we are going to use then
466 * make sure it is disabled.
467 */
468 event->hw.idx = idx;
469 mipsxx_pmu_disable_event(idx);
470 cpuc->events[idx] = event;
471
472 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
473 if (flags & PERF_EF_START)
474 mipspmu_start(event, PERF_EF_RELOAD);
475
476 /* Propagate our changes to the userspace mapping. */
477 perf_event_update_userpage(event);
478
479out:
480 perf_pmu_enable(event->pmu);
481 return err;
482}
483
484static void mipspmu_del(struct perf_event *event, int flags)
485{
486 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
487 struct hw_perf_event *hwc = &event->hw;
488 int idx = hwc->idx;
489
490 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
491
492 mipspmu_stop(event, PERF_EF_UPDATE);
493 cpuc->events[idx] = NULL;
494 clear_bit(idx, cpuc->used_mask);
495
496 perf_event_update_userpage(event);
497}
498
499static void mipspmu_read(struct perf_event *event)
500{
501 struct hw_perf_event *hwc = &event->hw;
502
503 /* Don't read disabled counters! */
504 if (hwc->idx < 0)
505 return;
506
507 mipspmu_event_update(event, hwc, hwc->idx);
508}
509
510static void mipspmu_enable(struct pmu *pmu)
511{
512#ifdef CONFIG_MIPS_MT_SMP
513 write_unlock(&pmuint_rwlock);
514#endif
515 resume_local_counters();
516}
517
518/*
519 * MIPS performance counters can be per-TC. The control registers can
520 * not be directly accessed accross CPUs. Hence if we want to do global
521 * control, we need cross CPU calls. on_each_cpu() can help us, but we
522 * can not make sure this function is called with interrupts enabled. So
523 * here we pause local counters and then grab a rwlock and leave the
524 * counters on other CPUs alone. If any counter interrupt raises while
525 * we own the write lock, simply pause local counters on that CPU and
526 * spin in the handler. Also we know we won't be switched to another
527 * CPU after pausing local counters and before grabbing the lock.
528 */
529static void mipspmu_disable(struct pmu *pmu)
530{
531 pause_local_counters();
532#ifdef CONFIG_MIPS_MT_SMP
533 write_lock(&pmuint_rwlock);
534#endif
535}
536
537static atomic_t active_events = ATOMIC_INIT(0);
538static DEFINE_MUTEX(pmu_reserve_mutex);
539static int (*save_perf_irq)(void);
540
541static int mipspmu_get_irq(void)
542{
543 int err;
544
545 if (mipspmu.irq >= 0) {
546 /* Request my own irq handler. */
547 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
548 IRQF_PERCPU | IRQF_NOBALANCING,
549 "mips_perf_pmu", NULL);
550 if (err) {
551 pr_warning("Unable to request IRQ%d for MIPS "
552 "performance counters!\n", mipspmu.irq);
553 }
554 } else if (cp0_perfcount_irq < 0) {
555 /*
556 * We are sharing the irq number with the timer interrupt.
557 */
558 save_perf_irq = perf_irq;
559 perf_irq = mipsxx_pmu_handle_shared_irq;
560 err = 0;
561 } else {
562 pr_warning("The platform hasn't properly defined its "
563 "interrupt controller.\n");
564 err = -ENOENT;
565 }
566
567 return err;
568}
569
570static void mipspmu_free_irq(void)
571{
572 if (mipspmu.irq >= 0)
573 free_irq(mipspmu.irq, NULL);
574 else if (cp0_perfcount_irq < 0)
575 perf_irq = save_perf_irq;
576}
577
578/*
579 * mipsxx/rm9000/loongson2 have different performance counters, they have
580 * specific low-level init routines.
581 */
582static void reset_counters(void *arg);
583static int __hw_perf_event_init(struct perf_event *event);
584
585static void hw_perf_event_destroy(struct perf_event *event)
586{
587 if (atomic_dec_and_mutex_lock(&active_events,
588 &pmu_reserve_mutex)) {
589 /*
590 * We must not call the destroy function with interrupts
591 * disabled.
592 */
593 on_each_cpu(reset_counters,
594 (void *)(long)mipspmu.num_counters, 1);
595 mipspmu_free_irq();
596 mutex_unlock(&pmu_reserve_mutex);
597 }
598}
599
600static int mipspmu_event_init(struct perf_event *event)
601{
602 int err = 0;
603
604 /* does not support taken branch sampling */
605 if (has_branch_stack(event))
606 return -EOPNOTSUPP;
607
608 switch (event->attr.type) {
609 case PERF_TYPE_RAW:
610 case PERF_TYPE_HARDWARE:
611 case PERF_TYPE_HW_CACHE:
612 break;
613
614 default:
615 return -ENOENT;
616 }
617
618 if (event->cpu >= nr_cpumask_bits ||
619 (event->cpu >= 0 && !cpu_online(event->cpu)))
620 return -ENODEV;
621
622 if (!atomic_inc_not_zero(&active_events)) {
623 mutex_lock(&pmu_reserve_mutex);
624 if (atomic_read(&active_events) == 0)
625 err = mipspmu_get_irq();
626
627 if (!err)
628 atomic_inc(&active_events);
629 mutex_unlock(&pmu_reserve_mutex);
630 }
631
632 if (err)
633 return err;
634
635 return __hw_perf_event_init(event);
636}
637
638static struct pmu pmu = {
639 .pmu_enable = mipspmu_enable,
640 .pmu_disable = mipspmu_disable,
641 .event_init = mipspmu_event_init,
642 .add = mipspmu_add,
643 .del = mipspmu_del,
644 .start = mipspmu_start,
645 .stop = mipspmu_stop,
646 .read = mipspmu_read,
647};
648
649static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
650{
651/*
652 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
653 * event_id.
654 */
655#ifdef CONFIG_MIPS_MT_SMP
656 return ((unsigned int)pev->range << 24) |
657 (pev->cntr_mask & 0xffff00) |
658 (pev->event_id & 0xff);
659#else
660 return (pev->cntr_mask & 0xffff00) |
661 (pev->event_id & 0xff);
662#endif
663}
664
665static const struct mips_perf_event *mipspmu_map_general_event(int idx)
666{
667 const struct mips_perf_event *pev;
668
669 pev = ((*mipspmu.general_event_map)[idx].event_id ==
670 UNSUPPORTED_PERF_EVENT_ID ? ERR_PTR(-EOPNOTSUPP) :
671 &(*mipspmu.general_event_map)[idx]);
672
673 return pev;
674}
675
676static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
677{
678 unsigned int cache_type, cache_op, cache_result;
679 const struct mips_perf_event *pev;
680
681 cache_type = (config >> 0) & 0xff;
682 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
683 return ERR_PTR(-EINVAL);
684
685 cache_op = (config >> 8) & 0xff;
686 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
687 return ERR_PTR(-EINVAL);
688
689 cache_result = (config >> 16) & 0xff;
690 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
691 return ERR_PTR(-EINVAL);
692
693 pev = &((*mipspmu.cache_event_map)
694 [cache_type]
695 [cache_op]
696 [cache_result]);
697
698 if (pev->event_id == UNSUPPORTED_PERF_EVENT_ID)
699 return ERR_PTR(-EOPNOTSUPP);
700
701 return pev;
702
703}
704
705static int validate_group(struct perf_event *event)
706{
707 struct perf_event *sibling, *leader = event->group_leader;
708 struct cpu_hw_events fake_cpuc;
709
710 memset(&fake_cpuc, 0, sizeof(fake_cpuc));
711
712 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
713 return -EINVAL;
714
715 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
716 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
717 return -EINVAL;
718 }
719
720 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
721 return -EINVAL;
722
723 return 0;
724}
725
726/* This is needed by specific irq handlers in perf_event_*.c */
727static void handle_associated_event(struct cpu_hw_events *cpuc,
728 int idx, struct perf_sample_data *data,
729 struct pt_regs *regs)
730{
731 struct perf_event *event = cpuc->events[idx];
732 struct hw_perf_event *hwc = &event->hw;
733
734 mipspmu_event_update(event, hwc, idx);
735 data->period = event->hw.last_period;
736 if (!mipspmu_event_set_period(event, hwc, idx))
737 return;
738
739 if (perf_event_overflow(event, data, regs))
740 mipsxx_pmu_disable_event(idx);
741}
742
743
744static int __n_counters(void)
745{
746 if (!(read_c0_config1() & M_CONFIG1_PC))
747 return 0;
748 if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
749 return 1;
750 if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
751 return 2;
752 if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
753 return 3;
754
755 return 4;
756}
757
758static int n_counters(void)
759{
760 int counters;
761
762 switch (current_cpu_type()) {
763 case CPU_R10000:
764 counters = 2;
765 break;
766
767 case CPU_R12000:
768 case CPU_R14000:
769 counters = 4;
770 break;
771
772 default:
773 counters = __n_counters();
774 }
775
776 return counters;
777}
778
779static void reset_counters(void *arg)
780{
781 int counters = (int)(long)arg;
782 switch (counters) {
783 case 4:
784 mipsxx_pmu_write_control(3, 0);
785 mipspmu.write_counter(3, 0);
786 case 3:
787 mipsxx_pmu_write_control(2, 0);
788 mipspmu.write_counter(2, 0);
789 case 2:
790 mipsxx_pmu_write_control(1, 0);
791 mipspmu.write_counter(1, 0);
792 case 1:
793 mipsxx_pmu_write_control(0, 0);
794 mipspmu.write_counter(0, 0);
795 }
796}
797
798/* 24K/34K/1004K cores can share the same event map. */
799static const struct mips_perf_event mipsxxcore_event_map
800 [PERF_COUNT_HW_MAX] = {
801 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
802 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
803 [PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
804 [PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
805 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
806 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
807 [PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
808};
809
810/* 74K core has different branch event code. */
811static const struct mips_perf_event mipsxx74Kcore_event_map
812 [PERF_COUNT_HW_MAX] = {
813 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
814 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
815 [PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
816 [PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
817 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
818 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
819 [PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
820};
821
822static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
823 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
824 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
825 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
826 [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL },
827 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
828 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
829 [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
830};
831
832/* 24K/34K/1004K cores can share the same cache event map. */
833static const struct mips_perf_event mipsxxcore_cache_map
834 [PERF_COUNT_HW_CACHE_MAX]
835 [PERF_COUNT_HW_CACHE_OP_MAX]
836 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
837[C(L1D)] = {
838 /*
839 * Like some other architectures (e.g. ARM), the performance
840 * counters don't differentiate between read and write
841 * accesses/misses, so this isn't strictly correct, but it's the
842 * best we can do. Writes and reads get combined.
843 */
844 [C(OP_READ)] = {
845 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
846 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
847 },
848 [C(OP_WRITE)] = {
849 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
850 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
851 },
852 [C(OP_PREFETCH)] = {
853 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
854 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
855 },
856},
857[C(L1I)] = {
858 [C(OP_READ)] = {
859 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
860 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
861 },
862 [C(OP_WRITE)] = {
863 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
864 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
865 },
866 [C(OP_PREFETCH)] = {
867 [C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T },
868 /*
869 * Note that MIPS has only "hit" events countable for
870 * the prefetch operation.
871 */
872 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
873 },
874},
875[C(LL)] = {
876 [C(OP_READ)] = {
877 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
878 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
879 },
880 [C(OP_WRITE)] = {
881 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
882 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
883 },
884 [C(OP_PREFETCH)] = {
885 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
886 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
887 },
888},
889[C(DTLB)] = {
890 [C(OP_READ)] = {
891 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
892 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
893 },
894 [C(OP_WRITE)] = {
895 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
896 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
897 },
898 [C(OP_PREFETCH)] = {
899 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
900 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
901 },
902},
903[C(ITLB)] = {
904 [C(OP_READ)] = {
905 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
906 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
907 },
908 [C(OP_WRITE)] = {
909 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
910 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
911 },
912 [C(OP_PREFETCH)] = {
913 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
914 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
915 },
916},
917[C(BPU)] = {
918 /* Using the same code for *HW_BRANCH* */
919 [C(OP_READ)] = {
920 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
921 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
922 },
923 [C(OP_WRITE)] = {
924 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
925 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
926 },
927 [C(OP_PREFETCH)] = {
928 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
929 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
930 },
931},
932[C(NODE)] = {
933 [C(OP_READ)] = {
934 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
935 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
936 },
937 [C(OP_WRITE)] = {
938 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
939 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
940 },
941 [C(OP_PREFETCH)] = {
942 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
943 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
944 },
945},
946};
947
948/* 74K core has completely different cache event map. */
949static const struct mips_perf_event mipsxx74Kcore_cache_map
950 [PERF_COUNT_HW_CACHE_MAX]
951 [PERF_COUNT_HW_CACHE_OP_MAX]
952 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
953[C(L1D)] = {
954 /*
955 * Like some other architectures (e.g. ARM), the performance
956 * counters don't differentiate between read and write
957 * accesses/misses, so this isn't strictly correct, but it's the
958 * best we can do. Writes and reads get combined.
959 */
960 [C(OP_READ)] = {
961 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
962 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
963 },
964 [C(OP_WRITE)] = {
965 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
966 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
967 },
968 [C(OP_PREFETCH)] = {
969 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
970 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
971 },
972},
973[C(L1I)] = {
974 [C(OP_READ)] = {
975 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
976 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
977 },
978 [C(OP_WRITE)] = {
979 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
980 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
981 },
982 [C(OP_PREFETCH)] = {
983 [C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T },
984 /*
985 * Note that MIPS has only "hit" events countable for
986 * the prefetch operation.
987 */
988 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
989 },
990},
991[C(LL)] = {
992 [C(OP_READ)] = {
993 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
994 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
995 },
996 [C(OP_WRITE)] = {
997 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
998 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
999 },
1000 [C(OP_PREFETCH)] = {
1001 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1002 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1003 },
1004},
1005[C(DTLB)] = {
1006 /* 74K core does not have specific DTLB events. */
1007 [C(OP_READ)] = {
1008 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1009 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1010 },
1011 [C(OP_WRITE)] = {
1012 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1013 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1014 },
1015 [C(OP_PREFETCH)] = {
1016 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1017 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1018 },
1019},
1020[C(ITLB)] = {
1021 [C(OP_READ)] = {
1022 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
1023 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
1024 },
1025 [C(OP_WRITE)] = {
1026 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
1027 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
1028 },
1029 [C(OP_PREFETCH)] = {
1030 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1031 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1032 },
1033},
1034[C(BPU)] = {
1035 /* Using the same code for *HW_BRANCH* */
1036 [C(OP_READ)] = {
1037 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
1038 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
1039 },
1040 [C(OP_WRITE)] = {
1041 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
1042 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
1043 },
1044 [C(OP_PREFETCH)] = {
1045 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1046 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1047 },
1048},
1049[C(NODE)] = {
1050 [C(OP_READ)] = {
1051 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1052 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1053 },
1054 [C(OP_WRITE)] = {
1055 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1056 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1057 },
1058 [C(OP_PREFETCH)] = {
1059 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1060 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1061 },
1062},
1063};
1064
1065
1066static const struct mips_perf_event octeon_cache_map
1067 [PERF_COUNT_HW_CACHE_MAX]
1068 [PERF_COUNT_HW_CACHE_OP_MAX]
1069 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1070[C(L1D)] = {
1071 [C(OP_READ)] = {
1072 [C(RESULT_ACCESS)] = { 0x2b, CNTR_ALL },
1073 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL },
1074 },
1075 [C(OP_WRITE)] = {
1076 [C(RESULT_ACCESS)] = { 0x30, CNTR_ALL },
1077 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1078 },
1079 [C(OP_PREFETCH)] = {
1080 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1081 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1082 },
1083},
1084[C(L1I)] = {
1085 [C(OP_READ)] = {
1086 [C(RESULT_ACCESS)] = { 0x18, CNTR_ALL },
1087 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1088 },
1089 [C(OP_WRITE)] = {
1090 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1091 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1092 },
1093 [C(OP_PREFETCH)] = {
1094 [C(RESULT_ACCESS)] = { 0x19, CNTR_ALL },
1095 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1096 },
1097},
1098[C(LL)] = {
1099 [C(OP_READ)] = {
1100 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1101 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1102 },
1103 [C(OP_WRITE)] = {
1104 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1105 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1106 },
1107 [C(OP_PREFETCH)] = {
1108 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1109 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1110 },
1111},
1112[C(DTLB)] = {
1113 /*
1114 * Only general DTLB misses are counted use the same event for
1115 * read and write.
1116 */
1117 [C(OP_READ)] = {
1118 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1119 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1120 },
1121 [C(OP_WRITE)] = {
1122 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1123 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1124 },
1125 [C(OP_PREFETCH)] = {
1126 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1127 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1128 },
1129},
1130[C(ITLB)] = {
1131 [C(OP_READ)] = {
1132 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1133 [C(RESULT_MISS)] = { 0x37, CNTR_ALL },
1134 },
1135 [C(OP_WRITE)] = {
1136 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1137 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1138 },
1139 [C(OP_PREFETCH)] = {
1140 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1141 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1142 },
1143},
1144[C(BPU)] = {
1145 /* Using the same code for *HW_BRANCH* */
1146 [C(OP_READ)] = {
1147 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1148 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1149 },
1150 [C(OP_WRITE)] = {
1151 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1152 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1153 },
1154 [C(OP_PREFETCH)] = {
1155 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1156 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1157 },
1158},
1159};
1160
1161#ifdef CONFIG_MIPS_MT_SMP
1162static void check_and_calc_range(struct perf_event *event,
1163 const struct mips_perf_event *pev)
1164{
1165 struct hw_perf_event *hwc = &event->hw;
1166
1167 if (event->cpu >= 0) {
1168 if (pev->range > V) {
1169 /*
1170 * The user selected an event that is processor
1171 * wide, while expecting it to be VPE wide.
1172 */
1173 hwc->config_base |= M_TC_EN_ALL;
1174 } else {
1175 /*
1176 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1177 * for both CPUs.
1178 */
1179 hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1180 hwc->config_base |= M_TC_EN_VPE;
1181 }
1182 } else
1183 hwc->config_base |= M_TC_EN_ALL;
1184}
1185#else
1186static void check_and_calc_range(struct perf_event *event,
1187 const struct mips_perf_event *pev)
1188{
1189}
1190#endif
1191
1192static int __hw_perf_event_init(struct perf_event *event)
1193{
1194 struct perf_event_attr *attr = &event->attr;
1195 struct hw_perf_event *hwc = &event->hw;
1196 const struct mips_perf_event *pev;
1197 int err;
1198
1199 /* Returning MIPS event descriptor for generic perf event. */
1200 if (PERF_TYPE_HARDWARE == event->attr.type) {
1201 if (event->attr.config >= PERF_COUNT_HW_MAX)
1202 return -EINVAL;
1203 pev = mipspmu_map_general_event(event->attr.config);
1204 } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1205 pev = mipspmu_map_cache_event(event->attr.config);
1206 } else if (PERF_TYPE_RAW == event->attr.type) {
1207 /* We are working on the global raw event. */
1208 mutex_lock(&raw_event_mutex);
1209 pev = mipspmu.map_raw_event(event->attr.config);
1210 } else {
1211 /* The event type is not (yet) supported. */
1212 return -EOPNOTSUPP;
1213 }
1214
1215 if (IS_ERR(pev)) {
1216 if (PERF_TYPE_RAW == event->attr.type)
1217 mutex_unlock(&raw_event_mutex);
1218 return PTR_ERR(pev);
1219 }
1220
1221 /*
1222 * We allow max flexibility on how each individual counter shared
1223 * by the single CPU operates (the mode exclusion and the range).
1224 */
1225 hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1226
1227 /* Calculate range bits and validate it. */
1228 if (num_possible_cpus() > 1)
1229 check_and_calc_range(event, pev);
1230
1231 hwc->event_base = mipspmu_perf_event_encode(pev);
1232 if (PERF_TYPE_RAW == event->attr.type)
1233 mutex_unlock(&raw_event_mutex);
1234
1235 if (!attr->exclude_user)
1236 hwc->config_base |= M_PERFCTL_USER;
1237 if (!attr->exclude_kernel) {
1238 hwc->config_base |= M_PERFCTL_KERNEL;
1239 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1240 hwc->config_base |= M_PERFCTL_EXL;
1241 }
1242 if (!attr->exclude_hv)
1243 hwc->config_base |= M_PERFCTL_SUPERVISOR;
1244
1245 hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1246 /*
1247 * The event can belong to another cpu. We do not assign a local
1248 * counter for it for now.
1249 */
1250 hwc->idx = -1;
1251 hwc->config = 0;
1252
1253 if (!hwc->sample_period) {
1254 hwc->sample_period = mipspmu.max_period;
1255 hwc->last_period = hwc->sample_period;
1256 local64_set(&hwc->period_left, hwc->sample_period);
1257 }
1258
1259 err = 0;
1260 if (event->group_leader != event)
1261 err = validate_group(event);
1262
1263 event->destroy = hw_perf_event_destroy;
1264
1265 if (err)
1266 event->destroy(event);
1267
1268 return err;
1269}
1270
1271static void pause_local_counters(void)
1272{
1273 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1274 int ctr = mipspmu.num_counters;
1275 unsigned long flags;
1276
1277 local_irq_save(flags);
1278 do {
1279 ctr--;
1280 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1281 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1282 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1283 } while (ctr > 0);
1284 local_irq_restore(flags);
1285}
1286
1287static void resume_local_counters(void)
1288{
1289 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1290 int ctr = mipspmu.num_counters;
1291
1292 do {
1293 ctr--;
1294 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1295 } while (ctr > 0);
1296}
1297
1298static int mipsxx_pmu_handle_shared_irq(void)
1299{
1300 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1301 struct perf_sample_data data;
1302 unsigned int counters = mipspmu.num_counters;
1303 u64 counter;
1304 int handled = IRQ_NONE;
1305 struct pt_regs *regs;
1306
1307 if (cpu_has_mips_r2 && !(read_c0_cause() & (1 << 26)))
1308 return handled;
1309 /*
1310 * First we pause the local counters, so that when we are locked
1311 * here, the counters are all paused. When it gets locked due to
1312 * perf_disable(), the timer interrupt handler will be delayed.
1313 *
1314 * See also mipsxx_pmu_start().
1315 */
1316 pause_local_counters();
1317#ifdef CONFIG_MIPS_MT_SMP
1318 read_lock(&pmuint_rwlock);
1319#endif
1320
1321 regs = get_irq_regs();
1322
1323 perf_sample_data_init(&data, 0, 0);
1324
1325 switch (counters) {
1326#define HANDLE_COUNTER(n) \
1327 case n + 1: \
1328 if (test_bit(n, cpuc->used_mask)) { \
1329 counter = mipspmu.read_counter(n); \
1330 if (counter & mipspmu.overflow) { \
1331 handle_associated_event(cpuc, n, &data, regs); \
1332 handled = IRQ_HANDLED; \
1333 } \
1334 }
1335 HANDLE_COUNTER(3)
1336 HANDLE_COUNTER(2)
1337 HANDLE_COUNTER(1)
1338 HANDLE_COUNTER(0)
1339 }
1340
1341 /*
1342 * Do all the work for the pending perf events. We can do this
1343 * in here because the performance counter interrupt is a regular
1344 * interrupt, not NMI.
1345 */
1346 if (handled == IRQ_HANDLED)
1347 irq_work_run();
1348
1349#ifdef CONFIG_MIPS_MT_SMP
1350 read_unlock(&pmuint_rwlock);
1351#endif
1352 resume_local_counters();
1353 return handled;
1354}
1355
1356static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1357{
1358 return mipsxx_pmu_handle_shared_irq();
1359}
1360
1361/* 24K */
1362#define IS_BOTH_COUNTERS_24K_EVENT(b) \
1363 ((b) == 0 || (b) == 1 || (b) == 11)
1364
1365/* 34K */
1366#define IS_BOTH_COUNTERS_34K_EVENT(b) \
1367 ((b) == 0 || (b) == 1 || (b) == 11)
1368#ifdef CONFIG_MIPS_MT_SMP
1369#define IS_RANGE_P_34K_EVENT(r, b) \
1370 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1371 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
1372 (r) == 176 || ((b) >= 50 && (b) <= 55) || \
1373 ((b) >= 64 && (b) <= 67))
1374#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1375#endif
1376
1377/* 74K */
1378#define IS_BOTH_COUNTERS_74K_EVENT(b) \
1379 ((b) == 0 || (b) == 1)
1380
1381/* 1004K */
1382#define IS_BOTH_COUNTERS_1004K_EVENT(b) \
1383 ((b) == 0 || (b) == 1 || (b) == 11)
1384#ifdef CONFIG_MIPS_MT_SMP
1385#define IS_RANGE_P_1004K_EVENT(r, b) \
1386 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1387 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
1388 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
1389 (r) == 188 || (b) == 61 || (b) == 62 || \
1390 ((b) >= 64 && (b) <= 67))
1391#define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
1392#endif
1393
1394/*
1395 * User can use 0-255 raw events, where 0-127 for the events of even
1396 * counters, and 128-255 for odd counters. Note that bit 7 is used to
1397 * indicate the parity. So, for example, when user wants to take the
1398 * Event Num of 15 for odd counters (by referring to the user manual),
1399 * then 128 needs to be added to 15 as the input for the event config,
1400 * i.e., 143 (0x8F) to be used.
1401 */
1402static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1403{
1404 unsigned int raw_id = config & 0xff;
1405 unsigned int base_id = raw_id & 0x7f;
1406
1407 raw_event.event_id = base_id;
1408
1409 switch (current_cpu_type()) {
1410 case CPU_24K:
1411 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1412 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1413 else
1414 raw_event.cntr_mask =
1415 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1416#ifdef CONFIG_MIPS_MT_SMP
1417 /*
1418 * This is actually doing nothing. Non-multithreading
1419 * CPUs will not check and calculate the range.
1420 */
1421 raw_event.range = P;
1422#endif
1423 break;
1424 case CPU_34K:
1425 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1426 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1427 else
1428 raw_event.cntr_mask =
1429 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1430#ifdef CONFIG_MIPS_MT_SMP
1431 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1432 raw_event.range = P;
1433 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1434 raw_event.range = V;
1435 else
1436 raw_event.range = T;
1437#endif
1438 break;
1439 case CPU_74K:
1440 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1441 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1442 else
1443 raw_event.cntr_mask =
1444 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1445#ifdef CONFIG_MIPS_MT_SMP
1446 raw_event.range = P;
1447#endif
1448 break;
1449 case CPU_1004K:
1450 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1451 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1452 else
1453 raw_event.cntr_mask =
1454 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1455#ifdef CONFIG_MIPS_MT_SMP
1456 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1457 raw_event.range = P;
1458 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1459 raw_event.range = V;
1460 else
1461 raw_event.range = T;
1462#endif
1463 break;
1464 }
1465
1466 return &raw_event;
1467}
1468
1469static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1470{
1471 unsigned int raw_id = config & 0xff;
1472 unsigned int base_id = raw_id & 0x7f;
1473
1474
1475 raw_event.cntr_mask = CNTR_ALL;
1476 raw_event.event_id = base_id;
1477
1478 if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1479 if (base_id > 0x42)
1480 return ERR_PTR(-EOPNOTSUPP);
1481 } else {
1482 if (base_id > 0x3a)
1483 return ERR_PTR(-EOPNOTSUPP);
1484 }
1485
1486 switch (base_id) {
1487 case 0x00:
1488 case 0x0f:
1489 case 0x1e:
1490 case 0x1f:
1491 case 0x2f:
1492 case 0x34:
1493 case 0x3b ... 0x3f:
1494 return ERR_PTR(-EOPNOTSUPP);
1495 default:
1496 break;
1497 }
1498
1499 return &raw_event;
1500}
1501
1502static int __init
1503init_hw_perf_events(void)
1504{
1505 int counters, irq;
1506 int counter_bits;
1507
1508 pr_info("Performance counters: ");
1509
1510 counters = n_counters();
1511 if (counters == 0) {
1512 pr_cont("No available PMU.\n");
1513 return -ENODEV;
1514 }
1515
1516#ifdef CONFIG_MIPS_MT_SMP
1517 cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1518 if (!cpu_has_mipsmt_pertccounters)
1519 counters = counters_total_to_per_cpu(counters);
1520#endif
1521
1522#ifdef MSC01E_INT_BASE
1523 if (cpu_has_veic) {
1524 /*
1525 * Using platform specific interrupt controller defines.
1526 */
1527 irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
1528 } else {
1529#endif
1530 if ((cp0_perfcount_irq >= 0) &&
1531 (cp0_compare_irq != cp0_perfcount_irq))
1532 irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1533 else
1534 irq = -1;
1535#ifdef MSC01E_INT_BASE
1536 }
1537#endif
1538
1539 mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1540
1541 switch (current_cpu_type()) {
1542 case CPU_24K:
1543 mipspmu.name = "mips/24K";
1544 mipspmu.general_event_map = &mipsxxcore_event_map;
1545 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1546 break;
1547 case CPU_34K:
1548 mipspmu.name = "mips/34K";
1549 mipspmu.general_event_map = &mipsxxcore_event_map;
1550 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1551 break;
1552 case CPU_74K:
1553 mipspmu.name = "mips/74K";
1554 mipspmu.general_event_map = &mipsxx74Kcore_event_map;
1555 mipspmu.cache_event_map = &mipsxx74Kcore_cache_map;
1556 break;
1557 case CPU_1004K:
1558 mipspmu.name = "mips/1004K";
1559 mipspmu.general_event_map = &mipsxxcore_event_map;
1560 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1561 break;
1562 case CPU_CAVIUM_OCTEON:
1563 case CPU_CAVIUM_OCTEON_PLUS:
1564 case CPU_CAVIUM_OCTEON2:
1565 mipspmu.name = "octeon";
1566 mipspmu.general_event_map = &octeon_event_map;
1567 mipspmu.cache_event_map = &octeon_cache_map;
1568 mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1569 break;
1570 default:
1571 pr_cont("Either hardware does not support performance "
1572 "counters, or not yet implemented.\n");
1573 return -ENODEV;
1574 }
1575
1576 mipspmu.num_counters = counters;
1577 mipspmu.irq = irq;
1578
1579 if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1580 mipspmu.max_period = (1ULL << 63) - 1;
1581 mipspmu.valid_count = (1ULL << 63) - 1;
1582 mipspmu.overflow = 1ULL << 63;
1583 mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1584 mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1585 counter_bits = 64;
1586 } else {
1587 mipspmu.max_period = (1ULL << 31) - 1;
1588 mipspmu.valid_count = (1ULL << 31) - 1;
1589 mipspmu.overflow = 1ULL << 31;
1590 mipspmu.read_counter = mipsxx_pmu_read_counter;
1591 mipspmu.write_counter = mipsxx_pmu_write_counter;
1592 counter_bits = 32;
1593 }
1594
1595 on_each_cpu(reset_counters, (void *)(long)counters, 1);
1596
1597 pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1598 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1599 irq < 0 ? " (share with timer interrupt)" : "");
1600
1601 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1602
1603 return 0;
1604}
1605early_initcall(init_hw_perf_events);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Linux performance counter support for MIPS.
4 *
5 * Copyright (C) 2010 MIPS Technologies, Inc.
6 * Copyright (C) 2011 Cavium Networks, Inc.
7 * Author: Deng-Cheng Zhu
8 *
9 * This code is based on the implementation for ARM, which is in turn
10 * based on the sparc64 perf event code and the x86 code. Performance
11 * counter access is based on the MIPS Oprofile code. And the callchain
12 * support references the code of MIPS stacktrace.c.
13 */
14
15#include <linux/cpumask.h>
16#include <linux/interrupt.h>
17#include <linux/smp.h>
18#include <linux/kernel.h>
19#include <linux/perf_event.h>
20#include <linux/uaccess.h>
21
22#include <asm/irq.h>
23#include <asm/irq_regs.h>
24#include <asm/stacktrace.h>
25#include <asm/time.h> /* For perf_irq */
26
27#define MIPS_MAX_HWEVENTS 4
28#define MIPS_TCS_PER_COUNTER 2
29#define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
30
31struct cpu_hw_events {
32 /* Array of events on this cpu. */
33 struct perf_event *events[MIPS_MAX_HWEVENTS];
34
35 /*
36 * Set the bit (indexed by the counter number) when the counter
37 * is used for an event.
38 */
39 unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
40
41 /*
42 * Software copy of the control register for each performance counter.
43 * MIPS CPUs vary in performance counters. They use this differently,
44 * and even may not use it.
45 */
46 unsigned int saved_ctrl[MIPS_MAX_HWEVENTS];
47};
48DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
49 .saved_ctrl = {0},
50};
51
52/* The description of MIPS performance events. */
53struct mips_perf_event {
54 unsigned int event_id;
55 /*
56 * MIPS performance counters are indexed starting from 0.
57 * CNTR_EVEN indicates the indexes of the counters to be used are
58 * even numbers.
59 */
60 unsigned int cntr_mask;
61 #define CNTR_EVEN 0x55555555
62 #define CNTR_ODD 0xaaaaaaaa
63 #define CNTR_ALL 0xffffffff
64 enum {
65 T = 0,
66 V = 1,
67 P = 2,
68 } range;
69};
70
71static struct mips_perf_event raw_event;
72static DEFINE_MUTEX(raw_event_mutex);
73
74#define C(x) PERF_COUNT_HW_CACHE_##x
75
76struct mips_pmu {
77 u64 max_period;
78 u64 valid_count;
79 u64 overflow;
80 const char *name;
81 int irq;
82 u64 (*read_counter)(unsigned int idx);
83 void (*write_counter)(unsigned int idx, u64 val);
84 const struct mips_perf_event *(*map_raw_event)(u64 config);
85 const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
86 const struct mips_perf_event (*cache_event_map)
87 [PERF_COUNT_HW_CACHE_MAX]
88 [PERF_COUNT_HW_CACHE_OP_MAX]
89 [PERF_COUNT_HW_CACHE_RESULT_MAX];
90 unsigned int num_counters;
91};
92
93static struct mips_pmu mipspmu;
94
95#define M_PERFCTL_EVENT(event) (((event) << MIPS_PERFCTRL_EVENT_S) & \
96 MIPS_PERFCTRL_EVENT)
97#define M_PERFCTL_VPEID(vpe) ((vpe) << MIPS_PERFCTRL_VPEID_S)
98
99#ifdef CONFIG_CPU_BMIPS5000
100#define M_PERFCTL_MT_EN(filter) 0
101#else /* !CONFIG_CPU_BMIPS5000 */
102#define M_PERFCTL_MT_EN(filter) (filter)
103#endif /* CONFIG_CPU_BMIPS5000 */
104
105#define M_TC_EN_ALL M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_ALL)
106#define M_TC_EN_VPE M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_VPE)
107#define M_TC_EN_TC M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_TC)
108
109#define M_PERFCTL_COUNT_EVENT_WHENEVER (MIPS_PERFCTRL_EXL | \
110 MIPS_PERFCTRL_K | \
111 MIPS_PERFCTRL_U | \
112 MIPS_PERFCTRL_S | \
113 MIPS_PERFCTRL_IE)
114
115#ifdef CONFIG_MIPS_MT_SMP
116#define M_PERFCTL_CONFIG_MASK 0x3fff801f
117#else
118#define M_PERFCTL_CONFIG_MASK 0x1f
119#endif
120
121
122#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
123static DEFINE_RWLOCK(pmuint_rwlock);
124
125#if defined(CONFIG_CPU_BMIPS5000)
126#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
127 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
128#else
129#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
130 0 : cpu_vpe_id(¤t_cpu_data))
131#endif
132
133/* Copied from op_model_mipsxx.c */
134static unsigned int vpe_shift(void)
135{
136 if (num_possible_cpus() > 1)
137 return 1;
138
139 return 0;
140}
141
142static unsigned int counters_total_to_per_cpu(unsigned int counters)
143{
144 return counters >> vpe_shift();
145}
146
147#else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
148#define vpe_id() 0
149
150#endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
151
152static void resume_local_counters(void);
153static void pause_local_counters(void);
154static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
155static int mipsxx_pmu_handle_shared_irq(void);
156
157static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
158{
159 if (vpe_id() == 1)
160 idx = (idx + 2) & 3;
161 return idx;
162}
163
164static u64 mipsxx_pmu_read_counter(unsigned int idx)
165{
166 idx = mipsxx_pmu_swizzle_perf_idx(idx);
167
168 switch (idx) {
169 case 0:
170 /*
171 * The counters are unsigned, we must cast to truncate
172 * off the high bits.
173 */
174 return (u32)read_c0_perfcntr0();
175 case 1:
176 return (u32)read_c0_perfcntr1();
177 case 2:
178 return (u32)read_c0_perfcntr2();
179 case 3:
180 return (u32)read_c0_perfcntr3();
181 default:
182 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
183 return 0;
184 }
185}
186
187static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
188{
189 idx = mipsxx_pmu_swizzle_perf_idx(idx);
190
191 switch (idx) {
192 case 0:
193 return read_c0_perfcntr0_64();
194 case 1:
195 return read_c0_perfcntr1_64();
196 case 2:
197 return read_c0_perfcntr2_64();
198 case 3:
199 return read_c0_perfcntr3_64();
200 default:
201 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
202 return 0;
203 }
204}
205
206static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
207{
208 idx = mipsxx_pmu_swizzle_perf_idx(idx);
209
210 switch (idx) {
211 case 0:
212 write_c0_perfcntr0(val);
213 return;
214 case 1:
215 write_c0_perfcntr1(val);
216 return;
217 case 2:
218 write_c0_perfcntr2(val);
219 return;
220 case 3:
221 write_c0_perfcntr3(val);
222 return;
223 }
224}
225
226static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
227{
228 idx = mipsxx_pmu_swizzle_perf_idx(idx);
229
230 switch (idx) {
231 case 0:
232 write_c0_perfcntr0_64(val);
233 return;
234 case 1:
235 write_c0_perfcntr1_64(val);
236 return;
237 case 2:
238 write_c0_perfcntr2_64(val);
239 return;
240 case 3:
241 write_c0_perfcntr3_64(val);
242 return;
243 }
244}
245
246static unsigned int mipsxx_pmu_read_control(unsigned int idx)
247{
248 idx = mipsxx_pmu_swizzle_perf_idx(idx);
249
250 switch (idx) {
251 case 0:
252 return read_c0_perfctrl0();
253 case 1:
254 return read_c0_perfctrl1();
255 case 2:
256 return read_c0_perfctrl2();
257 case 3:
258 return read_c0_perfctrl3();
259 default:
260 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
261 return 0;
262 }
263}
264
265static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
266{
267 idx = mipsxx_pmu_swizzle_perf_idx(idx);
268
269 switch (idx) {
270 case 0:
271 write_c0_perfctrl0(val);
272 return;
273 case 1:
274 write_c0_perfctrl1(val);
275 return;
276 case 2:
277 write_c0_perfctrl2(val);
278 return;
279 case 3:
280 write_c0_perfctrl3(val);
281 return;
282 }
283}
284
285static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
286 struct hw_perf_event *hwc)
287{
288 int i;
289
290 /*
291 * We only need to care the counter mask. The range has been
292 * checked definitely.
293 */
294 unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
295
296 for (i = mipspmu.num_counters - 1; i >= 0; i--) {
297 /*
298 * Note that some MIPS perf events can be counted by both
299 * even and odd counters, wheresas many other are only by
300 * even _or_ odd counters. This introduces an issue that
301 * when the former kind of event takes the counter the
302 * latter kind of event wants to use, then the "counter
303 * allocation" for the latter event will fail. In fact if
304 * they can be dynamically swapped, they both feel happy.
305 * But here we leave this issue alone for now.
306 */
307 if (test_bit(i, &cntr_mask) &&
308 !test_and_set_bit(i, cpuc->used_mask))
309 return i;
310 }
311
312 return -EAGAIN;
313}
314
315static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
316{
317 struct perf_event *event = container_of(evt, struct perf_event, hw);
318 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
319 unsigned int range = evt->event_base >> 24;
320
321 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
322
323 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
324 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
325 /* Make sure interrupt enabled. */
326 MIPS_PERFCTRL_IE;
327
328 if (IS_ENABLED(CONFIG_CPU_BMIPS5000)) {
329 /* enable the counter for the calling thread */
330 cpuc->saved_ctrl[idx] |=
331 (1 << (12 + vpe_id())) | BRCM_PERFCTRL_TC;
332 } else if (IS_ENABLED(CONFIG_MIPS_MT_SMP) && range > V) {
333 /* The counter is processor wide. Set it up to count all TCs. */
334 pr_debug("Enabling perf counter for all TCs\n");
335 cpuc->saved_ctrl[idx] |= M_TC_EN_ALL;
336 } else {
337 unsigned int cpu, ctrl;
338
339 /*
340 * Set up the counter for a particular CPU when event->cpu is
341 * a valid CPU number. Otherwise set up the counter for the CPU
342 * scheduling this thread.
343 */
344 cpu = (event->cpu >= 0) ? event->cpu : smp_processor_id();
345
346 ctrl = M_PERFCTL_VPEID(cpu_vpe_id(&cpu_data[cpu]));
347 ctrl |= M_TC_EN_VPE;
348 cpuc->saved_ctrl[idx] |= ctrl;
349 pr_debug("Enabling perf counter for CPU%d\n", cpu);
350 }
351 /*
352 * We do not actually let the counter run. Leave it until start().
353 */
354}
355
356static void mipsxx_pmu_disable_event(int idx)
357{
358 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
359 unsigned long flags;
360
361 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
362
363 local_irq_save(flags);
364 cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
365 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
366 mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
367 local_irq_restore(flags);
368}
369
370static int mipspmu_event_set_period(struct perf_event *event,
371 struct hw_perf_event *hwc,
372 int idx)
373{
374 u64 left = local64_read(&hwc->period_left);
375 u64 period = hwc->sample_period;
376 int ret = 0;
377
378 if (unlikely((left + period) & (1ULL << 63))) {
379 /* left underflowed by more than period. */
380 left = period;
381 local64_set(&hwc->period_left, left);
382 hwc->last_period = period;
383 ret = 1;
384 } else if (unlikely((left + period) <= period)) {
385 /* left underflowed by less than period. */
386 left += period;
387 local64_set(&hwc->period_left, left);
388 hwc->last_period = period;
389 ret = 1;
390 }
391
392 if (left > mipspmu.max_period) {
393 left = mipspmu.max_period;
394 local64_set(&hwc->period_left, left);
395 }
396
397 local64_set(&hwc->prev_count, mipspmu.overflow - left);
398
399 mipspmu.write_counter(idx, mipspmu.overflow - left);
400
401 perf_event_update_userpage(event);
402
403 return ret;
404}
405
406static void mipspmu_event_update(struct perf_event *event,
407 struct hw_perf_event *hwc,
408 int idx)
409{
410 u64 prev_raw_count, new_raw_count;
411 u64 delta;
412
413again:
414 prev_raw_count = local64_read(&hwc->prev_count);
415 new_raw_count = mipspmu.read_counter(idx);
416
417 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
418 new_raw_count) != prev_raw_count)
419 goto again;
420
421 delta = new_raw_count - prev_raw_count;
422
423 local64_add(delta, &event->count);
424 local64_sub(delta, &hwc->period_left);
425}
426
427static void mipspmu_start(struct perf_event *event, int flags)
428{
429 struct hw_perf_event *hwc = &event->hw;
430
431 if (flags & PERF_EF_RELOAD)
432 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
433
434 hwc->state = 0;
435
436 /* Set the period for the event. */
437 mipspmu_event_set_period(event, hwc, hwc->idx);
438
439 /* Enable the event. */
440 mipsxx_pmu_enable_event(hwc, hwc->idx);
441}
442
443static void mipspmu_stop(struct perf_event *event, int flags)
444{
445 struct hw_perf_event *hwc = &event->hw;
446
447 if (!(hwc->state & PERF_HES_STOPPED)) {
448 /* We are working on a local event. */
449 mipsxx_pmu_disable_event(hwc->idx);
450 barrier();
451 mipspmu_event_update(event, hwc, hwc->idx);
452 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
453 }
454}
455
456static int mipspmu_add(struct perf_event *event, int flags)
457{
458 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
459 struct hw_perf_event *hwc = &event->hw;
460 int idx;
461 int err = 0;
462
463 perf_pmu_disable(event->pmu);
464
465 /* To look for a free counter for this event. */
466 idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
467 if (idx < 0) {
468 err = idx;
469 goto out;
470 }
471
472 /*
473 * If there is an event in the counter we are going to use then
474 * make sure it is disabled.
475 */
476 event->hw.idx = idx;
477 mipsxx_pmu_disable_event(idx);
478 cpuc->events[idx] = event;
479
480 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
481 if (flags & PERF_EF_START)
482 mipspmu_start(event, PERF_EF_RELOAD);
483
484 /* Propagate our changes to the userspace mapping. */
485 perf_event_update_userpage(event);
486
487out:
488 perf_pmu_enable(event->pmu);
489 return err;
490}
491
492static void mipspmu_del(struct perf_event *event, int flags)
493{
494 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
495 struct hw_perf_event *hwc = &event->hw;
496 int idx = hwc->idx;
497
498 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
499
500 mipspmu_stop(event, PERF_EF_UPDATE);
501 cpuc->events[idx] = NULL;
502 clear_bit(idx, cpuc->used_mask);
503
504 perf_event_update_userpage(event);
505}
506
507static void mipspmu_read(struct perf_event *event)
508{
509 struct hw_perf_event *hwc = &event->hw;
510
511 /* Don't read disabled counters! */
512 if (hwc->idx < 0)
513 return;
514
515 mipspmu_event_update(event, hwc, hwc->idx);
516}
517
518static void mipspmu_enable(struct pmu *pmu)
519{
520#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
521 write_unlock(&pmuint_rwlock);
522#endif
523 resume_local_counters();
524}
525
526/*
527 * MIPS performance counters can be per-TC. The control registers can
528 * not be directly accessed across CPUs. Hence if we want to do global
529 * control, we need cross CPU calls. on_each_cpu() can help us, but we
530 * can not make sure this function is called with interrupts enabled. So
531 * here we pause local counters and then grab a rwlock and leave the
532 * counters on other CPUs alone. If any counter interrupt raises while
533 * we own the write lock, simply pause local counters on that CPU and
534 * spin in the handler. Also we know we won't be switched to another
535 * CPU after pausing local counters and before grabbing the lock.
536 */
537static void mipspmu_disable(struct pmu *pmu)
538{
539 pause_local_counters();
540#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
541 write_lock(&pmuint_rwlock);
542#endif
543}
544
545static atomic_t active_events = ATOMIC_INIT(0);
546static DEFINE_MUTEX(pmu_reserve_mutex);
547static int (*save_perf_irq)(void);
548
549static int mipspmu_get_irq(void)
550{
551 int err;
552
553 if (mipspmu.irq >= 0) {
554 /* Request my own irq handler. */
555 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
556 IRQF_PERCPU | IRQF_NOBALANCING |
557 IRQF_NO_THREAD | IRQF_NO_SUSPEND |
558 IRQF_SHARED,
559 "mips_perf_pmu", &mipspmu);
560 if (err) {
561 pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
562 mipspmu.irq);
563 }
564 } else if (cp0_perfcount_irq < 0) {
565 /*
566 * We are sharing the irq number with the timer interrupt.
567 */
568 save_perf_irq = perf_irq;
569 perf_irq = mipsxx_pmu_handle_shared_irq;
570 err = 0;
571 } else {
572 pr_warn("The platform hasn't properly defined its interrupt controller\n");
573 err = -ENOENT;
574 }
575
576 return err;
577}
578
579static void mipspmu_free_irq(void)
580{
581 if (mipspmu.irq >= 0)
582 free_irq(mipspmu.irq, &mipspmu);
583 else if (cp0_perfcount_irq < 0)
584 perf_irq = save_perf_irq;
585}
586
587/*
588 * mipsxx/rm9000/loongson2 have different performance counters, they have
589 * specific low-level init routines.
590 */
591static void reset_counters(void *arg);
592static int __hw_perf_event_init(struct perf_event *event);
593
594static void hw_perf_event_destroy(struct perf_event *event)
595{
596 if (atomic_dec_and_mutex_lock(&active_events,
597 &pmu_reserve_mutex)) {
598 /*
599 * We must not call the destroy function with interrupts
600 * disabled.
601 */
602 on_each_cpu(reset_counters,
603 (void *)(long)mipspmu.num_counters, 1);
604 mipspmu_free_irq();
605 mutex_unlock(&pmu_reserve_mutex);
606 }
607}
608
609static int mipspmu_event_init(struct perf_event *event)
610{
611 int err = 0;
612
613 /* does not support taken branch sampling */
614 if (has_branch_stack(event))
615 return -EOPNOTSUPP;
616
617 switch (event->attr.type) {
618 case PERF_TYPE_RAW:
619 case PERF_TYPE_HARDWARE:
620 case PERF_TYPE_HW_CACHE:
621 break;
622
623 default:
624 return -ENOENT;
625 }
626
627 if (event->cpu >= 0 && !cpu_online(event->cpu))
628 return -ENODEV;
629
630 if (!atomic_inc_not_zero(&active_events)) {
631 mutex_lock(&pmu_reserve_mutex);
632 if (atomic_read(&active_events) == 0)
633 err = mipspmu_get_irq();
634
635 if (!err)
636 atomic_inc(&active_events);
637 mutex_unlock(&pmu_reserve_mutex);
638 }
639
640 if (err)
641 return err;
642
643 return __hw_perf_event_init(event);
644}
645
646static struct pmu pmu = {
647 .pmu_enable = mipspmu_enable,
648 .pmu_disable = mipspmu_disable,
649 .event_init = mipspmu_event_init,
650 .add = mipspmu_add,
651 .del = mipspmu_del,
652 .start = mipspmu_start,
653 .stop = mipspmu_stop,
654 .read = mipspmu_read,
655};
656
657static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
658{
659/*
660 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
661 * event_id.
662 */
663#ifdef CONFIG_MIPS_MT_SMP
664 if (num_possible_cpus() > 1)
665 return ((unsigned int)pev->range << 24) |
666 (pev->cntr_mask & 0xffff00) |
667 (pev->event_id & 0xff);
668 else
669#endif /* CONFIG_MIPS_MT_SMP */
670 return ((pev->cntr_mask & 0xffff00) |
671 (pev->event_id & 0xff));
672}
673
674static const struct mips_perf_event *mipspmu_map_general_event(int idx)
675{
676
677 if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
678 return ERR_PTR(-EOPNOTSUPP);
679 return &(*mipspmu.general_event_map)[idx];
680}
681
682static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
683{
684 unsigned int cache_type, cache_op, cache_result;
685 const struct mips_perf_event *pev;
686
687 cache_type = (config >> 0) & 0xff;
688 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
689 return ERR_PTR(-EINVAL);
690
691 cache_op = (config >> 8) & 0xff;
692 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
693 return ERR_PTR(-EINVAL);
694
695 cache_result = (config >> 16) & 0xff;
696 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
697 return ERR_PTR(-EINVAL);
698
699 pev = &((*mipspmu.cache_event_map)
700 [cache_type]
701 [cache_op]
702 [cache_result]);
703
704 if (pev->cntr_mask == 0)
705 return ERR_PTR(-EOPNOTSUPP);
706
707 return pev;
708
709}
710
711static int validate_group(struct perf_event *event)
712{
713 struct perf_event *sibling, *leader = event->group_leader;
714 struct cpu_hw_events fake_cpuc;
715
716 memset(&fake_cpuc, 0, sizeof(fake_cpuc));
717
718 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
719 return -EINVAL;
720
721 for_each_sibling_event(sibling, leader) {
722 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
723 return -EINVAL;
724 }
725
726 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
727 return -EINVAL;
728
729 return 0;
730}
731
732/* This is needed by specific irq handlers in perf_event_*.c */
733static void handle_associated_event(struct cpu_hw_events *cpuc,
734 int idx, struct perf_sample_data *data,
735 struct pt_regs *regs)
736{
737 struct perf_event *event = cpuc->events[idx];
738 struct hw_perf_event *hwc = &event->hw;
739
740 mipspmu_event_update(event, hwc, idx);
741 data->period = event->hw.last_period;
742 if (!mipspmu_event_set_period(event, hwc, idx))
743 return;
744
745 if (perf_event_overflow(event, data, regs))
746 mipsxx_pmu_disable_event(idx);
747}
748
749
750static int __n_counters(void)
751{
752 if (!cpu_has_perf)
753 return 0;
754 if (!(read_c0_perfctrl0() & MIPS_PERFCTRL_M))
755 return 1;
756 if (!(read_c0_perfctrl1() & MIPS_PERFCTRL_M))
757 return 2;
758 if (!(read_c0_perfctrl2() & MIPS_PERFCTRL_M))
759 return 3;
760
761 return 4;
762}
763
764static int n_counters(void)
765{
766 int counters;
767
768 switch (current_cpu_type()) {
769 case CPU_R10000:
770 counters = 2;
771 break;
772
773 case CPU_R12000:
774 case CPU_R14000:
775 case CPU_R16000:
776 counters = 4;
777 break;
778
779 default:
780 counters = __n_counters();
781 }
782
783 return counters;
784}
785
786static void reset_counters(void *arg)
787{
788 int counters = (int)(long)arg;
789 switch (counters) {
790 case 4:
791 mipsxx_pmu_write_control(3, 0);
792 mipspmu.write_counter(3, 0);
793 /* fall through */
794 case 3:
795 mipsxx_pmu_write_control(2, 0);
796 mipspmu.write_counter(2, 0);
797 /* fall through */
798 case 2:
799 mipsxx_pmu_write_control(1, 0);
800 mipspmu.write_counter(1, 0);
801 /* fall through */
802 case 1:
803 mipsxx_pmu_write_control(0, 0);
804 mipspmu.write_counter(0, 0);
805 /* fall through */
806 }
807}
808
809/* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
810static const struct mips_perf_event mipsxxcore_event_map
811 [PERF_COUNT_HW_MAX] = {
812 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
813 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
814 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
815 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
816};
817
818/* 74K/proAptiv core has different branch event code. */
819static const struct mips_perf_event mipsxxcore_event_map2
820 [PERF_COUNT_HW_MAX] = {
821 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
822 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
823 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
824 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
825};
826
827static const struct mips_perf_event i6x00_event_map[PERF_COUNT_HW_MAX] = {
828 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD },
829 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD },
830 /* These only count dcache, not icache */
831 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x45, CNTR_EVEN | CNTR_ODD },
832 [PERF_COUNT_HW_CACHE_MISSES] = { 0x48, CNTR_EVEN | CNTR_ODD },
833 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x15, CNTR_EVEN | CNTR_ODD },
834 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x16, CNTR_EVEN | CNTR_ODD },
835};
836
837static const struct mips_perf_event loongson3_event_map[PERF_COUNT_HW_MAX] = {
838 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
839 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
840 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
841 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
842};
843
844static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
845 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
846 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
847 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
848 [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL },
849 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
850 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
851 [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
852};
853
854static const struct mips_perf_event bmips5000_event_map
855 [PERF_COUNT_HW_MAX] = {
856 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
857 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
858 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
859};
860
861static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
862 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
863 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
864 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
865 [PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
866 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
867 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
868};
869
870/* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
871static const struct mips_perf_event mipsxxcore_cache_map
872 [PERF_COUNT_HW_CACHE_MAX]
873 [PERF_COUNT_HW_CACHE_OP_MAX]
874 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
875[C(L1D)] = {
876 /*
877 * Like some other architectures (e.g. ARM), the performance
878 * counters don't differentiate between read and write
879 * accesses/misses, so this isn't strictly correct, but it's the
880 * best we can do. Writes and reads get combined.
881 */
882 [C(OP_READ)] = {
883 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
884 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
885 },
886 [C(OP_WRITE)] = {
887 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
888 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
889 },
890},
891[C(L1I)] = {
892 [C(OP_READ)] = {
893 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
894 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
895 },
896 [C(OP_WRITE)] = {
897 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
898 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
899 },
900 [C(OP_PREFETCH)] = {
901 [C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T },
902 /*
903 * Note that MIPS has only "hit" events countable for
904 * the prefetch operation.
905 */
906 },
907},
908[C(LL)] = {
909 [C(OP_READ)] = {
910 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
911 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
912 },
913 [C(OP_WRITE)] = {
914 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
915 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
916 },
917},
918[C(DTLB)] = {
919 [C(OP_READ)] = {
920 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
921 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
922 },
923 [C(OP_WRITE)] = {
924 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
925 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
926 },
927},
928[C(ITLB)] = {
929 [C(OP_READ)] = {
930 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
931 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
932 },
933 [C(OP_WRITE)] = {
934 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
935 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
936 },
937},
938[C(BPU)] = {
939 /* Using the same code for *HW_BRANCH* */
940 [C(OP_READ)] = {
941 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
942 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
943 },
944 [C(OP_WRITE)] = {
945 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
946 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
947 },
948},
949};
950
951/* 74K/proAptiv core has completely different cache event map. */
952static const struct mips_perf_event mipsxxcore_cache_map2
953 [PERF_COUNT_HW_CACHE_MAX]
954 [PERF_COUNT_HW_CACHE_OP_MAX]
955 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
956[C(L1D)] = {
957 /*
958 * Like some other architectures (e.g. ARM), the performance
959 * counters don't differentiate between read and write
960 * accesses/misses, so this isn't strictly correct, but it's the
961 * best we can do. Writes and reads get combined.
962 */
963 [C(OP_READ)] = {
964 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
965 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
966 },
967 [C(OP_WRITE)] = {
968 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
969 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
970 },
971},
972[C(L1I)] = {
973 [C(OP_READ)] = {
974 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
975 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
976 },
977 [C(OP_WRITE)] = {
978 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
979 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
980 },
981 [C(OP_PREFETCH)] = {
982 [C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T },
983 /*
984 * Note that MIPS has only "hit" events countable for
985 * the prefetch operation.
986 */
987 },
988},
989[C(LL)] = {
990 [C(OP_READ)] = {
991 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
992 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P },
993 },
994 [C(OP_WRITE)] = {
995 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
996 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P },
997 },
998},
999/*
1000 * 74K core does not have specific DTLB events. proAptiv core has
1001 * "speculative" DTLB events which are numbered 0x63 (even/odd) and
1002 * not included here. One can use raw events if really needed.
1003 */
1004[C(ITLB)] = {
1005 [C(OP_READ)] = {
1006 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
1007 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
1008 },
1009 [C(OP_WRITE)] = {
1010 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
1011 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
1012 },
1013},
1014[C(BPU)] = {
1015 /* Using the same code for *HW_BRANCH* */
1016 [C(OP_READ)] = {
1017 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
1018 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
1019 },
1020 [C(OP_WRITE)] = {
1021 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
1022 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
1023 },
1024},
1025};
1026
1027static const struct mips_perf_event i6x00_cache_map
1028 [PERF_COUNT_HW_CACHE_MAX]
1029 [PERF_COUNT_HW_CACHE_OP_MAX]
1030 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1031[C(L1D)] = {
1032 [C(OP_READ)] = {
1033 [C(RESULT_ACCESS)] = { 0x46, CNTR_EVEN | CNTR_ODD },
1034 [C(RESULT_MISS)] = { 0x49, CNTR_EVEN | CNTR_ODD },
1035 },
1036 [C(OP_WRITE)] = {
1037 [C(RESULT_ACCESS)] = { 0x47, CNTR_EVEN | CNTR_ODD },
1038 [C(RESULT_MISS)] = { 0x4a, CNTR_EVEN | CNTR_ODD },
1039 },
1040},
1041[C(L1I)] = {
1042 [C(OP_READ)] = {
1043 [C(RESULT_ACCESS)] = { 0x84, CNTR_EVEN | CNTR_ODD },
1044 [C(RESULT_MISS)] = { 0x85, CNTR_EVEN | CNTR_ODD },
1045 },
1046},
1047[C(DTLB)] = {
1048 /* Can't distinguish read & write */
1049 [C(OP_READ)] = {
1050 [C(RESULT_ACCESS)] = { 0x40, CNTR_EVEN | CNTR_ODD },
1051 [C(RESULT_MISS)] = { 0x41, CNTR_EVEN | CNTR_ODD },
1052 },
1053 [C(OP_WRITE)] = {
1054 [C(RESULT_ACCESS)] = { 0x40, CNTR_EVEN | CNTR_ODD },
1055 [C(RESULT_MISS)] = { 0x41, CNTR_EVEN | CNTR_ODD },
1056 },
1057},
1058[C(BPU)] = {
1059 /* Conditional branches / mispredicted */
1060 [C(OP_READ)] = {
1061 [C(RESULT_ACCESS)] = { 0x15, CNTR_EVEN | CNTR_ODD },
1062 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN | CNTR_ODD },
1063 },
1064},
1065};
1066
1067static const struct mips_perf_event loongson3_cache_map
1068 [PERF_COUNT_HW_CACHE_MAX]
1069 [PERF_COUNT_HW_CACHE_OP_MAX]
1070 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1071[C(L1D)] = {
1072 /*
1073 * Like some other architectures (e.g. ARM), the performance
1074 * counters don't differentiate between read and write
1075 * accesses/misses, so this isn't strictly correct, but it's the
1076 * best we can do. Writes and reads get combined.
1077 */
1078 [C(OP_READ)] = {
1079 [C(RESULT_MISS)] = { 0x04, CNTR_ODD },
1080 },
1081 [C(OP_WRITE)] = {
1082 [C(RESULT_MISS)] = { 0x04, CNTR_ODD },
1083 },
1084},
1085[C(L1I)] = {
1086 [C(OP_READ)] = {
1087 [C(RESULT_MISS)] = { 0x04, CNTR_EVEN },
1088 },
1089 [C(OP_WRITE)] = {
1090 [C(RESULT_MISS)] = { 0x04, CNTR_EVEN },
1091 },
1092},
1093[C(DTLB)] = {
1094 [C(OP_READ)] = {
1095 [C(RESULT_MISS)] = { 0x09, CNTR_ODD },
1096 },
1097 [C(OP_WRITE)] = {
1098 [C(RESULT_MISS)] = { 0x09, CNTR_ODD },
1099 },
1100},
1101[C(ITLB)] = {
1102 [C(OP_READ)] = {
1103 [C(RESULT_MISS)] = { 0x0c, CNTR_ODD },
1104 },
1105 [C(OP_WRITE)] = {
1106 [C(RESULT_MISS)] = { 0x0c, CNTR_ODD },
1107 },
1108},
1109[C(BPU)] = {
1110 /* Using the same code for *HW_BRANCH* */
1111 [C(OP_READ)] = {
1112 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN },
1113 [C(RESULT_MISS)] = { 0x02, CNTR_ODD },
1114 },
1115 [C(OP_WRITE)] = {
1116 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN },
1117 [C(RESULT_MISS)] = { 0x02, CNTR_ODD },
1118 },
1119},
1120};
1121
1122/* BMIPS5000 */
1123static const struct mips_perf_event bmips5000_cache_map
1124 [PERF_COUNT_HW_CACHE_MAX]
1125 [PERF_COUNT_HW_CACHE_OP_MAX]
1126 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1127[C(L1D)] = {
1128 /*
1129 * Like some other architectures (e.g. ARM), the performance
1130 * counters don't differentiate between read and write
1131 * accesses/misses, so this isn't strictly correct, but it's the
1132 * best we can do. Writes and reads get combined.
1133 */
1134 [C(OP_READ)] = {
1135 [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
1136 [C(RESULT_MISS)] = { 12, CNTR_ODD, T },
1137 },
1138 [C(OP_WRITE)] = {
1139 [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
1140 [C(RESULT_MISS)] = { 12, CNTR_ODD, T },
1141 },
1142},
1143[C(L1I)] = {
1144 [C(OP_READ)] = {
1145 [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
1146 [C(RESULT_MISS)] = { 10, CNTR_ODD, T },
1147 },
1148 [C(OP_WRITE)] = {
1149 [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
1150 [C(RESULT_MISS)] = { 10, CNTR_ODD, T },
1151 },
1152 [C(OP_PREFETCH)] = {
1153 [C(RESULT_ACCESS)] = { 23, CNTR_EVEN, T },
1154 /*
1155 * Note that MIPS has only "hit" events countable for
1156 * the prefetch operation.
1157 */
1158 },
1159},
1160[C(LL)] = {
1161 [C(OP_READ)] = {
1162 [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
1163 [C(RESULT_MISS)] = { 28, CNTR_ODD, P },
1164 },
1165 [C(OP_WRITE)] = {
1166 [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
1167 [C(RESULT_MISS)] = { 28, CNTR_ODD, P },
1168 },
1169},
1170[C(BPU)] = {
1171 /* Using the same code for *HW_BRANCH* */
1172 [C(OP_READ)] = {
1173 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
1174 },
1175 [C(OP_WRITE)] = {
1176 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
1177 },
1178},
1179};
1180
1181
1182static const struct mips_perf_event octeon_cache_map
1183 [PERF_COUNT_HW_CACHE_MAX]
1184 [PERF_COUNT_HW_CACHE_OP_MAX]
1185 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1186[C(L1D)] = {
1187 [C(OP_READ)] = {
1188 [C(RESULT_ACCESS)] = { 0x2b, CNTR_ALL },
1189 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL },
1190 },
1191 [C(OP_WRITE)] = {
1192 [C(RESULT_ACCESS)] = { 0x30, CNTR_ALL },
1193 },
1194},
1195[C(L1I)] = {
1196 [C(OP_READ)] = {
1197 [C(RESULT_ACCESS)] = { 0x18, CNTR_ALL },
1198 },
1199 [C(OP_PREFETCH)] = {
1200 [C(RESULT_ACCESS)] = { 0x19, CNTR_ALL },
1201 },
1202},
1203[C(DTLB)] = {
1204 /*
1205 * Only general DTLB misses are counted use the same event for
1206 * read and write.
1207 */
1208 [C(OP_READ)] = {
1209 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1210 },
1211 [C(OP_WRITE)] = {
1212 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1213 },
1214},
1215[C(ITLB)] = {
1216 [C(OP_READ)] = {
1217 [C(RESULT_MISS)] = { 0x37, CNTR_ALL },
1218 },
1219},
1220};
1221
1222static const struct mips_perf_event xlp_cache_map
1223 [PERF_COUNT_HW_CACHE_MAX]
1224 [PERF_COUNT_HW_CACHE_OP_MAX]
1225 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1226[C(L1D)] = {
1227 [C(OP_READ)] = {
1228 [C(RESULT_ACCESS)] = { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1229 [C(RESULT_MISS)] = { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1230 },
1231 [C(OP_WRITE)] = {
1232 [C(RESULT_ACCESS)] = { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1233 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1234 },
1235},
1236[C(L1I)] = {
1237 [C(OP_READ)] = {
1238 [C(RESULT_ACCESS)] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1239 [C(RESULT_MISS)] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1240 },
1241},
1242[C(LL)] = {
1243 [C(OP_READ)] = {
1244 [C(RESULT_ACCESS)] = { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1245 [C(RESULT_MISS)] = { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1246 },
1247 [C(OP_WRITE)] = {
1248 [C(RESULT_ACCESS)] = { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1249 [C(RESULT_MISS)] = { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1250 },
1251},
1252[C(DTLB)] = {
1253 /*
1254 * Only general DTLB misses are counted use the same event for
1255 * read and write.
1256 */
1257 [C(OP_READ)] = {
1258 [C(RESULT_MISS)] = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1259 },
1260 [C(OP_WRITE)] = {
1261 [C(RESULT_MISS)] = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1262 },
1263},
1264[C(ITLB)] = {
1265 [C(OP_READ)] = {
1266 [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1267 },
1268 [C(OP_WRITE)] = {
1269 [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1270 },
1271},
1272[C(BPU)] = {
1273 [C(OP_READ)] = {
1274 [C(RESULT_MISS)] = { 0x25, CNTR_ALL },
1275 },
1276},
1277};
1278
1279static int __hw_perf_event_init(struct perf_event *event)
1280{
1281 struct perf_event_attr *attr = &event->attr;
1282 struct hw_perf_event *hwc = &event->hw;
1283 const struct mips_perf_event *pev;
1284 int err;
1285
1286 /* Returning MIPS event descriptor for generic perf event. */
1287 if (PERF_TYPE_HARDWARE == event->attr.type) {
1288 if (event->attr.config >= PERF_COUNT_HW_MAX)
1289 return -EINVAL;
1290 pev = mipspmu_map_general_event(event->attr.config);
1291 } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1292 pev = mipspmu_map_cache_event(event->attr.config);
1293 } else if (PERF_TYPE_RAW == event->attr.type) {
1294 /* We are working on the global raw event. */
1295 mutex_lock(&raw_event_mutex);
1296 pev = mipspmu.map_raw_event(event->attr.config);
1297 } else {
1298 /* The event type is not (yet) supported. */
1299 return -EOPNOTSUPP;
1300 }
1301
1302 if (IS_ERR(pev)) {
1303 if (PERF_TYPE_RAW == event->attr.type)
1304 mutex_unlock(&raw_event_mutex);
1305 return PTR_ERR(pev);
1306 }
1307
1308 /*
1309 * We allow max flexibility on how each individual counter shared
1310 * by the single CPU operates (the mode exclusion and the range).
1311 */
1312 hwc->config_base = MIPS_PERFCTRL_IE;
1313
1314 hwc->event_base = mipspmu_perf_event_encode(pev);
1315 if (PERF_TYPE_RAW == event->attr.type)
1316 mutex_unlock(&raw_event_mutex);
1317
1318 if (!attr->exclude_user)
1319 hwc->config_base |= MIPS_PERFCTRL_U;
1320 if (!attr->exclude_kernel) {
1321 hwc->config_base |= MIPS_PERFCTRL_K;
1322 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1323 hwc->config_base |= MIPS_PERFCTRL_EXL;
1324 }
1325 if (!attr->exclude_hv)
1326 hwc->config_base |= MIPS_PERFCTRL_S;
1327
1328 hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1329 /*
1330 * The event can belong to another cpu. We do not assign a local
1331 * counter for it for now.
1332 */
1333 hwc->idx = -1;
1334 hwc->config = 0;
1335
1336 if (!hwc->sample_period) {
1337 hwc->sample_period = mipspmu.max_period;
1338 hwc->last_period = hwc->sample_period;
1339 local64_set(&hwc->period_left, hwc->sample_period);
1340 }
1341
1342 err = 0;
1343 if (event->group_leader != event)
1344 err = validate_group(event);
1345
1346 event->destroy = hw_perf_event_destroy;
1347
1348 if (err)
1349 event->destroy(event);
1350
1351 return err;
1352}
1353
1354static void pause_local_counters(void)
1355{
1356 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1357 int ctr = mipspmu.num_counters;
1358 unsigned long flags;
1359
1360 local_irq_save(flags);
1361 do {
1362 ctr--;
1363 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1364 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1365 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1366 } while (ctr > 0);
1367 local_irq_restore(flags);
1368}
1369
1370static void resume_local_counters(void)
1371{
1372 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1373 int ctr = mipspmu.num_counters;
1374
1375 do {
1376 ctr--;
1377 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1378 } while (ctr > 0);
1379}
1380
1381static int mipsxx_pmu_handle_shared_irq(void)
1382{
1383 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1384 struct perf_sample_data data;
1385 unsigned int counters = mipspmu.num_counters;
1386 u64 counter;
1387 int n, handled = IRQ_NONE;
1388 struct pt_regs *regs;
1389
1390 if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1391 return handled;
1392 /*
1393 * First we pause the local counters, so that when we are locked
1394 * here, the counters are all paused. When it gets locked due to
1395 * perf_disable(), the timer interrupt handler will be delayed.
1396 *
1397 * See also mipsxx_pmu_start().
1398 */
1399 pause_local_counters();
1400#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1401 read_lock(&pmuint_rwlock);
1402#endif
1403
1404 regs = get_irq_regs();
1405
1406 perf_sample_data_init(&data, 0, 0);
1407
1408 for (n = counters - 1; n >= 0; n--) {
1409 if (!test_bit(n, cpuc->used_mask))
1410 continue;
1411
1412 counter = mipspmu.read_counter(n);
1413 if (!(counter & mipspmu.overflow))
1414 continue;
1415
1416 handle_associated_event(cpuc, n, &data, regs);
1417 handled = IRQ_HANDLED;
1418 }
1419
1420#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1421 read_unlock(&pmuint_rwlock);
1422#endif
1423 resume_local_counters();
1424
1425 /*
1426 * Do all the work for the pending perf events. We can do this
1427 * in here because the performance counter interrupt is a regular
1428 * interrupt, not NMI.
1429 */
1430 if (handled == IRQ_HANDLED)
1431 irq_work_run();
1432
1433 return handled;
1434}
1435
1436static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1437{
1438 return mipsxx_pmu_handle_shared_irq();
1439}
1440
1441/* 24K */
1442#define IS_BOTH_COUNTERS_24K_EVENT(b) \
1443 ((b) == 0 || (b) == 1 || (b) == 11)
1444
1445/* 34K */
1446#define IS_BOTH_COUNTERS_34K_EVENT(b) \
1447 ((b) == 0 || (b) == 1 || (b) == 11)
1448#ifdef CONFIG_MIPS_MT_SMP
1449#define IS_RANGE_P_34K_EVENT(r, b) \
1450 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1451 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
1452 (r) == 176 || ((b) >= 50 && (b) <= 55) || \
1453 ((b) >= 64 && (b) <= 67))
1454#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1455#endif
1456
1457/* 74K */
1458#define IS_BOTH_COUNTERS_74K_EVENT(b) \
1459 ((b) == 0 || (b) == 1)
1460
1461/* proAptiv */
1462#define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b) \
1463 ((b) == 0 || (b) == 1)
1464/* P5600 */
1465#define IS_BOTH_COUNTERS_P5600_EVENT(b) \
1466 ((b) == 0 || (b) == 1)
1467
1468/* 1004K */
1469#define IS_BOTH_COUNTERS_1004K_EVENT(b) \
1470 ((b) == 0 || (b) == 1 || (b) == 11)
1471#ifdef CONFIG_MIPS_MT_SMP
1472#define IS_RANGE_P_1004K_EVENT(r, b) \
1473 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1474 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
1475 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
1476 (r) == 188 || (b) == 61 || (b) == 62 || \
1477 ((b) >= 64 && (b) <= 67))
1478#define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
1479#endif
1480
1481/* interAptiv */
1482#define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b) \
1483 ((b) == 0 || (b) == 1 || (b) == 11)
1484#ifdef CONFIG_MIPS_MT_SMP
1485/* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1486#define IS_RANGE_P_INTERAPTIV_EVENT(r, b) \
1487 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1488 (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 || \
1489 (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 && \
1490 (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 || \
1491 ((b) >= 64 && (b) <= 67))
1492#define IS_RANGE_V_INTERAPTIV_EVENT(r) ((r) == 47 || (r) == 175)
1493#endif
1494
1495/* BMIPS5000 */
1496#define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b) \
1497 ((b) == 0 || (b) == 1)
1498
1499
1500/*
1501 * For most cores the user can use 0-255 raw events, where 0-127 for the events
1502 * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1503 * indicate the even/odd bank selector. So, for example, when user wants to take
1504 * the Event Num of 15 for odd counters (by referring to the user manual), then
1505 * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1506 * to be used.
1507 *
1508 * Some newer cores have even more events, in which case the user can use raw
1509 * events 0-511, where 0-255 are for the events of even counters, and 256-511
1510 * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1511 */
1512static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1513{
1514 /* currently most cores have 7-bit event numbers */
1515 unsigned int raw_id = config & 0xff;
1516 unsigned int base_id = raw_id & 0x7f;
1517
1518 switch (current_cpu_type()) {
1519 case CPU_24K:
1520 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1521 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1522 else
1523 raw_event.cntr_mask =
1524 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1525#ifdef CONFIG_MIPS_MT_SMP
1526 /*
1527 * This is actually doing nothing. Non-multithreading
1528 * CPUs will not check and calculate the range.
1529 */
1530 raw_event.range = P;
1531#endif
1532 break;
1533 case CPU_34K:
1534 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1535 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1536 else
1537 raw_event.cntr_mask =
1538 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1539#ifdef CONFIG_MIPS_MT_SMP
1540 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1541 raw_event.range = P;
1542 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1543 raw_event.range = V;
1544 else
1545 raw_event.range = T;
1546#endif
1547 break;
1548 case CPU_74K:
1549 case CPU_1074K:
1550 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1551 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1552 else
1553 raw_event.cntr_mask =
1554 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1555#ifdef CONFIG_MIPS_MT_SMP
1556 raw_event.range = P;
1557#endif
1558 break;
1559 case CPU_PROAPTIV:
1560 if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1561 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1562 else
1563 raw_event.cntr_mask =
1564 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1565#ifdef CONFIG_MIPS_MT_SMP
1566 raw_event.range = P;
1567#endif
1568 break;
1569 case CPU_P5600:
1570 case CPU_P6600:
1571 /* 8-bit event numbers */
1572 raw_id = config & 0x1ff;
1573 base_id = raw_id & 0xff;
1574 if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1575 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1576 else
1577 raw_event.cntr_mask =
1578 raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1579#ifdef CONFIG_MIPS_MT_SMP
1580 raw_event.range = P;
1581#endif
1582 break;
1583 case CPU_I6400:
1584 case CPU_I6500:
1585 /* 8-bit event numbers */
1586 base_id = config & 0xff;
1587 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1588 break;
1589 case CPU_1004K:
1590 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1591 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1592 else
1593 raw_event.cntr_mask =
1594 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1595#ifdef CONFIG_MIPS_MT_SMP
1596 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1597 raw_event.range = P;
1598 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1599 raw_event.range = V;
1600 else
1601 raw_event.range = T;
1602#endif
1603 break;
1604 case CPU_INTERAPTIV:
1605 if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1606 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1607 else
1608 raw_event.cntr_mask =
1609 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1610#ifdef CONFIG_MIPS_MT_SMP
1611 if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1612 raw_event.range = P;
1613 else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1614 raw_event.range = V;
1615 else
1616 raw_event.range = T;
1617#endif
1618 break;
1619 case CPU_BMIPS5000:
1620 if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1621 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1622 else
1623 raw_event.cntr_mask =
1624 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1625 break;
1626 case CPU_LOONGSON3:
1627 raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1628 break;
1629 }
1630
1631 raw_event.event_id = base_id;
1632
1633 return &raw_event;
1634}
1635
1636static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1637{
1638 unsigned int raw_id = config & 0xff;
1639 unsigned int base_id = raw_id & 0x7f;
1640
1641
1642 raw_event.cntr_mask = CNTR_ALL;
1643 raw_event.event_id = base_id;
1644
1645 if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1646 if (base_id > 0x42)
1647 return ERR_PTR(-EOPNOTSUPP);
1648 } else {
1649 if (base_id > 0x3a)
1650 return ERR_PTR(-EOPNOTSUPP);
1651 }
1652
1653 switch (base_id) {
1654 case 0x00:
1655 case 0x0f:
1656 case 0x1e:
1657 case 0x1f:
1658 case 0x2f:
1659 case 0x34:
1660 case 0x3b ... 0x3f:
1661 return ERR_PTR(-EOPNOTSUPP);
1662 default:
1663 break;
1664 }
1665
1666 return &raw_event;
1667}
1668
1669static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1670{
1671 unsigned int raw_id = config & 0xff;
1672
1673 /* Only 1-63 are defined */
1674 if ((raw_id < 0x01) || (raw_id > 0x3f))
1675 return ERR_PTR(-EOPNOTSUPP);
1676
1677 raw_event.cntr_mask = CNTR_ALL;
1678 raw_event.event_id = raw_id;
1679
1680 return &raw_event;
1681}
1682
1683static int __init
1684init_hw_perf_events(void)
1685{
1686 int counters, irq;
1687 int counter_bits;
1688
1689 pr_info("Performance counters: ");
1690
1691 counters = n_counters();
1692 if (counters == 0) {
1693 pr_cont("No available PMU.\n");
1694 return -ENODEV;
1695 }
1696
1697#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1698 if (!cpu_has_mipsmt_pertccounters)
1699 counters = counters_total_to_per_cpu(counters);
1700#endif
1701
1702 if (get_c0_perfcount_int)
1703 irq = get_c0_perfcount_int();
1704 else if (cp0_perfcount_irq >= 0)
1705 irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1706 else
1707 irq = -1;
1708
1709 mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1710
1711 switch (current_cpu_type()) {
1712 case CPU_24K:
1713 mipspmu.name = "mips/24K";
1714 mipspmu.general_event_map = &mipsxxcore_event_map;
1715 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1716 break;
1717 case CPU_34K:
1718 mipspmu.name = "mips/34K";
1719 mipspmu.general_event_map = &mipsxxcore_event_map;
1720 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1721 break;
1722 case CPU_74K:
1723 mipspmu.name = "mips/74K";
1724 mipspmu.general_event_map = &mipsxxcore_event_map2;
1725 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1726 break;
1727 case CPU_PROAPTIV:
1728 mipspmu.name = "mips/proAptiv";
1729 mipspmu.general_event_map = &mipsxxcore_event_map2;
1730 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1731 break;
1732 case CPU_P5600:
1733 mipspmu.name = "mips/P5600";
1734 mipspmu.general_event_map = &mipsxxcore_event_map2;
1735 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1736 break;
1737 case CPU_P6600:
1738 mipspmu.name = "mips/P6600";
1739 mipspmu.general_event_map = &mipsxxcore_event_map2;
1740 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1741 break;
1742 case CPU_I6400:
1743 mipspmu.name = "mips/I6400";
1744 mipspmu.general_event_map = &i6x00_event_map;
1745 mipspmu.cache_event_map = &i6x00_cache_map;
1746 break;
1747 case CPU_I6500:
1748 mipspmu.name = "mips/I6500";
1749 mipspmu.general_event_map = &i6x00_event_map;
1750 mipspmu.cache_event_map = &i6x00_cache_map;
1751 break;
1752 case CPU_1004K:
1753 mipspmu.name = "mips/1004K";
1754 mipspmu.general_event_map = &mipsxxcore_event_map;
1755 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1756 break;
1757 case CPU_1074K:
1758 mipspmu.name = "mips/1074K";
1759 mipspmu.general_event_map = &mipsxxcore_event_map;
1760 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1761 break;
1762 case CPU_INTERAPTIV:
1763 mipspmu.name = "mips/interAptiv";
1764 mipspmu.general_event_map = &mipsxxcore_event_map;
1765 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1766 break;
1767 case CPU_LOONGSON1:
1768 mipspmu.name = "mips/loongson1";
1769 mipspmu.general_event_map = &mipsxxcore_event_map;
1770 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1771 break;
1772 case CPU_LOONGSON3:
1773 mipspmu.name = "mips/loongson3";
1774 mipspmu.general_event_map = &loongson3_event_map;
1775 mipspmu.cache_event_map = &loongson3_cache_map;
1776 break;
1777 case CPU_CAVIUM_OCTEON:
1778 case CPU_CAVIUM_OCTEON_PLUS:
1779 case CPU_CAVIUM_OCTEON2:
1780 mipspmu.name = "octeon";
1781 mipspmu.general_event_map = &octeon_event_map;
1782 mipspmu.cache_event_map = &octeon_cache_map;
1783 mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1784 break;
1785 case CPU_BMIPS5000:
1786 mipspmu.name = "BMIPS5000";
1787 mipspmu.general_event_map = &bmips5000_event_map;
1788 mipspmu.cache_event_map = &bmips5000_cache_map;
1789 break;
1790 case CPU_XLP:
1791 mipspmu.name = "xlp";
1792 mipspmu.general_event_map = &xlp_event_map;
1793 mipspmu.cache_event_map = &xlp_cache_map;
1794 mipspmu.map_raw_event = xlp_pmu_map_raw_event;
1795 break;
1796 default:
1797 pr_cont("Either hardware does not support performance "
1798 "counters, or not yet implemented.\n");
1799 return -ENODEV;
1800 }
1801
1802 mipspmu.num_counters = counters;
1803 mipspmu.irq = irq;
1804
1805 if (read_c0_perfctrl0() & MIPS_PERFCTRL_W) {
1806 mipspmu.max_period = (1ULL << 63) - 1;
1807 mipspmu.valid_count = (1ULL << 63) - 1;
1808 mipspmu.overflow = 1ULL << 63;
1809 mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1810 mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1811 counter_bits = 64;
1812 } else {
1813 mipspmu.max_period = (1ULL << 31) - 1;
1814 mipspmu.valid_count = (1ULL << 31) - 1;
1815 mipspmu.overflow = 1ULL << 31;
1816 mipspmu.read_counter = mipsxx_pmu_read_counter;
1817 mipspmu.write_counter = mipsxx_pmu_write_counter;
1818 counter_bits = 32;
1819 }
1820
1821 on_each_cpu(reset_counters, (void *)(long)counters, 1);
1822
1823 pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1824 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1825 irq < 0 ? " (share with timer interrupt)" : "");
1826
1827 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1828
1829 return 0;
1830}
1831early_initcall(init_hw_perf_events);