Loading...
1/*
2 * arch/arm/include/asm/pgtable-2level.h
3 *
4 * Copyright (C) 1995-2002 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#ifndef _ASM_PGTABLE_2LEVEL_H
11#define _ASM_PGTABLE_2LEVEL_H
12
13/*
14 * Hardware-wise, we have a two level page table structure, where the first
15 * level has 4096 entries, and the second level has 256 entries. Each entry
16 * is one 32-bit word. Most of the bits in the second level entry are used
17 * by hardware, and there aren't any "accessed" and "dirty" bits.
18 *
19 * Linux on the other hand has a three level page table structure, which can
20 * be wrapped to fit a two level page table structure easily - using the PGD
21 * and PTE only. However, Linux also expects one "PTE" table per page, and
22 * at least a "dirty" bit.
23 *
24 * Therefore, we tweak the implementation slightly - we tell Linux that we
25 * have 2048 entries in the first level, each of which is 8 bytes (iow, two
26 * hardware pointers to the second level.) The second level contains two
27 * hardware PTE tables arranged contiguously, preceded by Linux versions
28 * which contain the state information Linux needs. We, therefore, end up
29 * with 512 entries in the "PTE" level.
30 *
31 * This leads to the page tables having the following layout:
32 *
33 * pgd pte
34 * | |
35 * +--------+
36 * | | +------------+ +0
37 * +- - - - + | Linux pt 0 |
38 * | | +------------+ +1024
39 * +--------+ +0 | Linux pt 1 |
40 * | |-----> +------------+ +2048
41 * +- - - - + +4 | h/w pt 0 |
42 * | |-----> +------------+ +3072
43 * +--------+ +8 | h/w pt 1 |
44 * | | +------------+ +4096
45 *
46 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
47 * PTE_xxx for definitions of bits appearing in the "h/w pt".
48 *
49 * PMD_xxx definitions refer to bits in the first level page table.
50 *
51 * The "dirty" bit is emulated by only granting hardware write permission
52 * iff the page is marked "writable" and "dirty" in the Linux PTE. This
53 * means that a write to a clean page will cause a permission fault, and
54 * the Linux MM layer will mark the page dirty via handle_pte_fault().
55 * For the hardware to notice the permission change, the TLB entry must
56 * be flushed, and ptep_set_access_flags() does that for us.
57 *
58 * The "accessed" or "young" bit is emulated by a similar method; we only
59 * allow accesses to the page if the "young" bit is set. Accesses to the
60 * page will cause a fault, and handle_pte_fault() will set the young bit
61 * for us as long as the page is marked present in the corresponding Linux
62 * PTE entry. Again, ptep_set_access_flags() will ensure that the TLB is
63 * up to date.
64 *
65 * However, when the "young" bit is cleared, we deny access to the page
66 * by clearing the hardware PTE. Currently Linux does not flush the TLB
67 * for us in this case, which means the TLB will retain the transation
68 * until either the TLB entry is evicted under pressure, or a context
69 * switch which changes the user space mapping occurs.
70 */
71#define PTRS_PER_PTE 512
72#define PTRS_PER_PMD 1
73#define PTRS_PER_PGD 2048
74
75#define PTE_HWTABLE_PTRS (PTRS_PER_PTE)
76#define PTE_HWTABLE_OFF (PTE_HWTABLE_PTRS * sizeof(pte_t))
77#define PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(u32))
78
79/*
80 * PMD_SHIFT determines the size of the area a second-level page table can map
81 * PGDIR_SHIFT determines what a third-level page table entry can map
82 */
83#define PMD_SHIFT 21
84#define PGDIR_SHIFT 21
85
86#define PMD_SIZE (1UL << PMD_SHIFT)
87#define PMD_MASK (~(PMD_SIZE-1))
88#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
89#define PGDIR_MASK (~(PGDIR_SIZE-1))
90
91/*
92 * section address mask and size definitions.
93 */
94#define SECTION_SHIFT 20
95#define SECTION_SIZE (1UL << SECTION_SHIFT)
96#define SECTION_MASK (~(SECTION_SIZE-1))
97
98/*
99 * ARMv6 supersection address mask and size definitions.
100 */
101#define SUPERSECTION_SHIFT 24
102#define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT)
103#define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1))
104
105#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
106
107/*
108 * "Linux" PTE definitions.
109 *
110 * We keep two sets of PTEs - the hardware and the linux version.
111 * This allows greater flexibility in the way we map the Linux bits
112 * onto the hardware tables, and allows us to have YOUNG and DIRTY
113 * bits.
114 *
115 * The PTE table pointer refers to the hardware entries; the "Linux"
116 * entries are stored 1024 bytes below.
117 */
118#define L_PTE_PRESENT (_AT(pteval_t, 1) << 0)
119#define L_PTE_YOUNG (_AT(pteval_t, 1) << 1)
120#define L_PTE_FILE (_AT(pteval_t, 1) << 2) /* only when !PRESENT */
121#define L_PTE_DIRTY (_AT(pteval_t, 1) << 6)
122#define L_PTE_RDONLY (_AT(pteval_t, 1) << 7)
123#define L_PTE_USER (_AT(pteval_t, 1) << 8)
124#define L_PTE_XN (_AT(pteval_t, 1) << 9)
125#define L_PTE_SHARED (_AT(pteval_t, 1) << 10) /* shared(v6), coherent(xsc3) */
126
127/*
128 * These are the memory types, defined to be compatible with
129 * pre-ARMv6 CPUs cacheable and bufferable bits: XXCB
130 */
131#define L_PTE_MT_UNCACHED (_AT(pteval_t, 0x00) << 2) /* 0000 */
132#define L_PTE_MT_BUFFERABLE (_AT(pteval_t, 0x01) << 2) /* 0001 */
133#define L_PTE_MT_WRITETHROUGH (_AT(pteval_t, 0x02) << 2) /* 0010 */
134#define L_PTE_MT_WRITEBACK (_AT(pteval_t, 0x03) << 2) /* 0011 */
135#define L_PTE_MT_MINICACHE (_AT(pteval_t, 0x06) << 2) /* 0110 (sa1100, xscale) */
136#define L_PTE_MT_WRITEALLOC (_AT(pteval_t, 0x07) << 2) /* 0111 */
137#define L_PTE_MT_DEV_SHARED (_AT(pteval_t, 0x04) << 2) /* 0100 */
138#define L_PTE_MT_DEV_NONSHARED (_AT(pteval_t, 0x0c) << 2) /* 1100 */
139#define L_PTE_MT_DEV_WC (_AT(pteval_t, 0x09) << 2) /* 1001 */
140#define L_PTE_MT_DEV_CACHED (_AT(pteval_t, 0x0b) << 2) /* 1011 */
141#define L_PTE_MT_MASK (_AT(pteval_t, 0x0f) << 2)
142
143#ifndef __ASSEMBLY__
144
145/*
146 * The "pud_xxx()" functions here are trivial when the pmd is folded into
147 * the pud: the pud entry is never bad, always exists, and can't be set or
148 * cleared.
149 */
150#define pud_none(pud) (0)
151#define pud_bad(pud) (0)
152#define pud_present(pud) (1)
153#define pud_clear(pudp) do { } while (0)
154#define set_pud(pud,pudp) do { } while (0)
155
156static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
157{
158 return (pmd_t *)pud;
159}
160
161#define pmd_bad(pmd) (pmd_val(pmd) & 2)
162
163#define copy_pmd(pmdpd,pmdps) \
164 do { \
165 pmdpd[0] = pmdps[0]; \
166 pmdpd[1] = pmdps[1]; \
167 flush_pmd_entry(pmdpd); \
168 } while (0)
169
170#define pmd_clear(pmdp) \
171 do { \
172 pmdp[0] = __pmd(0); \
173 pmdp[1] = __pmd(0); \
174 clean_pmd_entry(pmdp); \
175 } while (0)
176
177/* we don't need complex calculations here as the pmd is folded into the pgd */
178#define pmd_addr_end(addr,end) (end)
179
180#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
181
182#endif /* __ASSEMBLY__ */
183
184#endif /* _ASM_PGTABLE_2LEVEL_H */
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * arch/arm/include/asm/pgtable-2level.h
4 *
5 * Copyright (C) 1995-2002 Russell King
6 */
7#ifndef _ASM_PGTABLE_2LEVEL_H
8#define _ASM_PGTABLE_2LEVEL_H
9
10#define __PAGETABLE_PMD_FOLDED 1
11
12/*
13 * Hardware-wise, we have a two level page table structure, where the first
14 * level has 4096 entries, and the second level has 256 entries. Each entry
15 * is one 32-bit word. Most of the bits in the second level entry are used
16 * by hardware, and there aren't any "accessed" and "dirty" bits.
17 *
18 * Linux on the other hand has a three level page table structure, which can
19 * be wrapped to fit a two level page table structure easily - using the PGD
20 * and PTE only. However, Linux also expects one "PTE" table per page, and
21 * at least a "dirty" bit.
22 *
23 * Therefore, we tweak the implementation slightly - we tell Linux that we
24 * have 2048 entries in the first level, each of which is 8 bytes (iow, two
25 * hardware pointers to the second level.) The second level contains two
26 * hardware PTE tables arranged contiguously, preceded by Linux versions
27 * which contain the state information Linux needs. We, therefore, end up
28 * with 512 entries in the "PTE" level.
29 *
30 * This leads to the page tables having the following layout:
31 *
32 * pgd pte
33 * | |
34 * +--------+
35 * | | +------------+ +0
36 * +- - - - + | Linux pt 0 |
37 * | | +------------+ +1024
38 * +--------+ +0 | Linux pt 1 |
39 * | |-----> +------------+ +2048
40 * +- - - - + +4 | h/w pt 0 |
41 * | |-----> +------------+ +3072
42 * +--------+ +8 | h/w pt 1 |
43 * | | +------------+ +4096
44 *
45 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
46 * PTE_xxx for definitions of bits appearing in the "h/w pt".
47 *
48 * PMD_xxx definitions refer to bits in the first level page table.
49 *
50 * The "dirty" bit is emulated by only granting hardware write permission
51 * iff the page is marked "writable" and "dirty" in the Linux PTE. This
52 * means that a write to a clean page will cause a permission fault, and
53 * the Linux MM layer will mark the page dirty via handle_pte_fault().
54 * For the hardware to notice the permission change, the TLB entry must
55 * be flushed, and ptep_set_access_flags() does that for us.
56 *
57 * The "accessed" or "young" bit is emulated by a similar method; we only
58 * allow accesses to the page if the "young" bit is set. Accesses to the
59 * page will cause a fault, and handle_pte_fault() will set the young bit
60 * for us as long as the page is marked present in the corresponding Linux
61 * PTE entry. Again, ptep_set_access_flags() will ensure that the TLB is
62 * up to date.
63 *
64 * However, when the "young" bit is cleared, we deny access to the page
65 * by clearing the hardware PTE. Currently Linux does not flush the TLB
66 * for us in this case, which means the TLB will retain the transation
67 * until either the TLB entry is evicted under pressure, or a context
68 * switch which changes the user space mapping occurs.
69 */
70#define PTRS_PER_PTE 512
71#define PTRS_PER_PMD 1
72#define PTRS_PER_PGD 2048
73
74#define PTE_HWTABLE_PTRS (PTRS_PER_PTE)
75#define PTE_HWTABLE_OFF (PTE_HWTABLE_PTRS * sizeof(pte_t))
76#define PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(u32))
77
78/*
79 * PMD_SHIFT determines the size of the area a second-level page table can map
80 * PGDIR_SHIFT determines what a third-level page table entry can map
81 */
82#define PMD_SHIFT 21
83#define PGDIR_SHIFT 21
84
85#define PMD_SIZE (1UL << PMD_SHIFT)
86#define PMD_MASK (~(PMD_SIZE-1))
87#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
88#define PGDIR_MASK (~(PGDIR_SIZE-1))
89
90/*
91 * section address mask and size definitions.
92 */
93#define SECTION_SHIFT 20
94#define SECTION_SIZE (1UL << SECTION_SHIFT)
95#define SECTION_MASK (~(SECTION_SIZE-1))
96
97/*
98 * ARMv6 supersection address mask and size definitions.
99 */
100#define SUPERSECTION_SHIFT 24
101#define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT)
102#define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1))
103
104#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
105
106/*
107 * "Linux" PTE definitions.
108 *
109 * We keep two sets of PTEs - the hardware and the linux version.
110 * This allows greater flexibility in the way we map the Linux bits
111 * onto the hardware tables, and allows us to have YOUNG and DIRTY
112 * bits.
113 *
114 * The PTE table pointer refers to the hardware entries; the "Linux"
115 * entries are stored 1024 bytes below.
116 */
117#define L_PTE_VALID (_AT(pteval_t, 1) << 0) /* Valid */
118#define L_PTE_PRESENT (_AT(pteval_t, 1) << 0)
119#define L_PTE_YOUNG (_AT(pteval_t, 1) << 1)
120#define L_PTE_DIRTY (_AT(pteval_t, 1) << 6)
121#define L_PTE_RDONLY (_AT(pteval_t, 1) << 7)
122#define L_PTE_USER (_AT(pteval_t, 1) << 8)
123#define L_PTE_XN (_AT(pteval_t, 1) << 9)
124#define L_PTE_SHARED (_AT(pteval_t, 1) << 10) /* shared(v6), coherent(xsc3) */
125#define L_PTE_NONE (_AT(pteval_t, 1) << 11)
126
127/*
128 * These are the memory types, defined to be compatible with
129 * pre-ARMv6 CPUs cacheable and bufferable bits: n/a,n/a,C,B
130 * ARMv6+ without TEX remapping, they are a table index.
131 * ARMv6+ with TEX remapping, they correspond to n/a,TEX(0),C,B
132 *
133 * MT type Pre-ARMv6 ARMv6+ type / cacheable status
134 * UNCACHED Uncached Strongly ordered
135 * BUFFERABLE Bufferable Normal memory / non-cacheable
136 * WRITETHROUGH Writethrough Normal memory / write through
137 * WRITEBACK Writeback Normal memory / write back, read alloc
138 * MINICACHE Minicache N/A
139 * WRITEALLOC Writeback Normal memory / write back, write alloc
140 * DEV_SHARED Uncached Device memory (shared)
141 * DEV_NONSHARED Uncached Device memory (non-shared)
142 * DEV_WC Bufferable Normal memory / non-cacheable
143 * DEV_CACHED Writeback Normal memory / write back, read alloc
144 * VECTORS Variable Normal memory / variable
145 *
146 * All normal memory mappings have the following properties:
147 * - reads can be repeated with no side effects
148 * - repeated reads return the last value written
149 * - reads can fetch additional locations without side effects
150 * - writes can be repeated (in certain cases) with no side effects
151 * - writes can be merged before accessing the target
152 * - unaligned accesses can be supported
153 *
154 * All device mappings have the following properties:
155 * - no access speculation
156 * - no repetition (eg, on return from an exception)
157 * - number, order and size of accesses are maintained
158 * - unaligned accesses are "unpredictable"
159 */
160#define L_PTE_MT_UNCACHED (_AT(pteval_t, 0x00) << 2) /* 0000 */
161#define L_PTE_MT_BUFFERABLE (_AT(pteval_t, 0x01) << 2) /* 0001 */
162#define L_PTE_MT_WRITETHROUGH (_AT(pteval_t, 0x02) << 2) /* 0010 */
163#define L_PTE_MT_WRITEBACK (_AT(pteval_t, 0x03) << 2) /* 0011 */
164#define L_PTE_MT_MINICACHE (_AT(pteval_t, 0x06) << 2) /* 0110 (sa1100, xscale) */
165#define L_PTE_MT_WRITEALLOC (_AT(pteval_t, 0x07) << 2) /* 0111 */
166#define L_PTE_MT_DEV_SHARED (_AT(pteval_t, 0x04) << 2) /* 0100 */
167#define L_PTE_MT_DEV_NONSHARED (_AT(pteval_t, 0x0c) << 2) /* 1100 */
168#define L_PTE_MT_DEV_WC (_AT(pteval_t, 0x09) << 2) /* 1001 */
169#define L_PTE_MT_DEV_CACHED (_AT(pteval_t, 0x0b) << 2) /* 1011 */
170#define L_PTE_MT_VECTORS (_AT(pteval_t, 0x0f) << 2) /* 1111 */
171#define L_PTE_MT_MASK (_AT(pteval_t, 0x0f) << 2)
172
173#ifndef __ASSEMBLY__
174
175/*
176 * The "pud_xxx()" functions here are trivial when the pmd is folded into
177 * the pud: the pud entry is never bad, always exists, and can't be set or
178 * cleared.
179 */
180#define pud_none(pud) (0)
181#define pud_bad(pud) (0)
182#define pud_present(pud) (1)
183#define pud_clear(pudp) do { } while (0)
184#define set_pud(pud,pudp) do { } while (0)
185
186static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
187{
188 return (pmd_t *)pud;
189}
190
191#define pmd_large(pmd) (pmd_val(pmd) & 2)
192#define pmd_bad(pmd) (pmd_val(pmd) & 2)
193#define pmd_present(pmd) (pmd_val(pmd))
194
195#define copy_pmd(pmdpd,pmdps) \
196 do { \
197 pmdpd[0] = pmdps[0]; \
198 pmdpd[1] = pmdps[1]; \
199 flush_pmd_entry(pmdpd); \
200 } while (0)
201
202#define pmd_clear(pmdp) \
203 do { \
204 pmdp[0] = __pmd(0); \
205 pmdp[1] = __pmd(0); \
206 clean_pmd_entry(pmdp); \
207 } while (0)
208
209/* we don't need complex calculations here as the pmd is folded into the pgd */
210#define pmd_addr_end(addr,end) (end)
211
212#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
213#define pte_special(pte) (0)
214static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
215
216/*
217 * We don't have huge page support for short descriptors, for the moment
218 * define empty stubs for use by pin_page_for_write.
219 */
220#define pmd_hugewillfault(pmd) (0)
221#define pmd_thp_or_huge(pmd) (0)
222
223#endif /* __ASSEMBLY__ */
224
225#endif /* _ASM_PGTABLE_2LEVEL_H */