Loading...
1#include "builtin.h"
2#include "perf.h"
3
4#include "util/util.h"
5#include "util/evlist.h"
6#include "util/cache.h"
7#include "util/evsel.h"
8#include "util/symbol.h"
9#include "util/thread.h"
10#include "util/header.h"
11#include "util/session.h"
12#include "util/tool.h"
13
14#include "util/parse-options.h"
15#include "util/trace-event.h"
16
17#include "util/debug.h"
18
19#include <sys/prctl.h>
20#include <sys/resource.h>
21
22#include <semaphore.h>
23#include <pthread.h>
24#include <math.h>
25
26static const char *input_name;
27
28static char default_sort_order[] = "avg, max, switch, runtime";
29static const char *sort_order = default_sort_order;
30
31static int profile_cpu = -1;
32
33#define PR_SET_NAME 15 /* Set process name */
34#define MAX_CPUS 4096
35
36static u64 run_measurement_overhead;
37static u64 sleep_measurement_overhead;
38
39#define COMM_LEN 20
40#define SYM_LEN 129
41
42#define MAX_PID 65536
43
44static unsigned long nr_tasks;
45
46struct sched_atom;
47
48struct task_desc {
49 unsigned long nr;
50 unsigned long pid;
51 char comm[COMM_LEN];
52
53 unsigned long nr_events;
54 unsigned long curr_event;
55 struct sched_atom **atoms;
56
57 pthread_t thread;
58 sem_t sleep_sem;
59
60 sem_t ready_for_work;
61 sem_t work_done_sem;
62
63 u64 cpu_usage;
64};
65
66enum sched_event_type {
67 SCHED_EVENT_RUN,
68 SCHED_EVENT_SLEEP,
69 SCHED_EVENT_WAKEUP,
70 SCHED_EVENT_MIGRATION,
71};
72
73struct sched_atom {
74 enum sched_event_type type;
75 int specific_wait;
76 u64 timestamp;
77 u64 duration;
78 unsigned long nr;
79 sem_t *wait_sem;
80 struct task_desc *wakee;
81};
82
83static struct task_desc *pid_to_task[MAX_PID];
84
85static struct task_desc **tasks;
86
87static pthread_mutex_t start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
88static u64 start_time;
89
90static pthread_mutex_t work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
91
92static unsigned long nr_run_events;
93static unsigned long nr_sleep_events;
94static unsigned long nr_wakeup_events;
95
96static unsigned long nr_sleep_corrections;
97static unsigned long nr_run_events_optimized;
98
99static unsigned long targetless_wakeups;
100static unsigned long multitarget_wakeups;
101
102static u64 cpu_usage;
103static u64 runavg_cpu_usage;
104static u64 parent_cpu_usage;
105static u64 runavg_parent_cpu_usage;
106
107static unsigned long nr_runs;
108static u64 sum_runtime;
109static u64 sum_fluct;
110static u64 run_avg;
111
112static unsigned int replay_repeat = 10;
113static unsigned long nr_timestamps;
114static unsigned long nr_unordered_timestamps;
115static unsigned long nr_state_machine_bugs;
116static unsigned long nr_context_switch_bugs;
117static unsigned long nr_events;
118static unsigned long nr_lost_chunks;
119static unsigned long nr_lost_events;
120
121#define TASK_STATE_TO_CHAR_STR "RSDTtZX"
122
123enum thread_state {
124 THREAD_SLEEPING = 0,
125 THREAD_WAIT_CPU,
126 THREAD_SCHED_IN,
127 THREAD_IGNORE
128};
129
130struct work_atom {
131 struct list_head list;
132 enum thread_state state;
133 u64 sched_out_time;
134 u64 wake_up_time;
135 u64 sched_in_time;
136 u64 runtime;
137};
138
139struct work_atoms {
140 struct list_head work_list;
141 struct thread *thread;
142 struct rb_node node;
143 u64 max_lat;
144 u64 max_lat_at;
145 u64 total_lat;
146 u64 nb_atoms;
147 u64 total_runtime;
148};
149
150typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
151
152static struct rb_root atom_root, sorted_atom_root;
153
154static u64 all_runtime;
155static u64 all_count;
156
157
158static u64 get_nsecs(void)
159{
160 struct timespec ts;
161
162 clock_gettime(CLOCK_MONOTONIC, &ts);
163
164 return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
165}
166
167static void burn_nsecs(u64 nsecs)
168{
169 u64 T0 = get_nsecs(), T1;
170
171 do {
172 T1 = get_nsecs();
173 } while (T1 + run_measurement_overhead < T0 + nsecs);
174}
175
176static void sleep_nsecs(u64 nsecs)
177{
178 struct timespec ts;
179
180 ts.tv_nsec = nsecs % 999999999;
181 ts.tv_sec = nsecs / 999999999;
182
183 nanosleep(&ts, NULL);
184}
185
186static void calibrate_run_measurement_overhead(void)
187{
188 u64 T0, T1, delta, min_delta = 1000000000ULL;
189 int i;
190
191 for (i = 0; i < 10; i++) {
192 T0 = get_nsecs();
193 burn_nsecs(0);
194 T1 = get_nsecs();
195 delta = T1-T0;
196 min_delta = min(min_delta, delta);
197 }
198 run_measurement_overhead = min_delta;
199
200 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
201}
202
203static void calibrate_sleep_measurement_overhead(void)
204{
205 u64 T0, T1, delta, min_delta = 1000000000ULL;
206 int i;
207
208 for (i = 0; i < 10; i++) {
209 T0 = get_nsecs();
210 sleep_nsecs(10000);
211 T1 = get_nsecs();
212 delta = T1-T0;
213 min_delta = min(min_delta, delta);
214 }
215 min_delta -= 10000;
216 sleep_measurement_overhead = min_delta;
217
218 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
219}
220
221static struct sched_atom *
222get_new_event(struct task_desc *task, u64 timestamp)
223{
224 struct sched_atom *event = zalloc(sizeof(*event));
225 unsigned long idx = task->nr_events;
226 size_t size;
227
228 event->timestamp = timestamp;
229 event->nr = idx;
230
231 task->nr_events++;
232 size = sizeof(struct sched_atom *) * task->nr_events;
233 task->atoms = realloc(task->atoms, size);
234 BUG_ON(!task->atoms);
235
236 task->atoms[idx] = event;
237
238 return event;
239}
240
241static struct sched_atom *last_event(struct task_desc *task)
242{
243 if (!task->nr_events)
244 return NULL;
245
246 return task->atoms[task->nr_events - 1];
247}
248
249static void
250add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
251{
252 struct sched_atom *event, *curr_event = last_event(task);
253
254 /*
255 * optimize an existing RUN event by merging this one
256 * to it:
257 */
258 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
259 nr_run_events_optimized++;
260 curr_event->duration += duration;
261 return;
262 }
263
264 event = get_new_event(task, timestamp);
265
266 event->type = SCHED_EVENT_RUN;
267 event->duration = duration;
268
269 nr_run_events++;
270}
271
272static void
273add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
274 struct task_desc *wakee)
275{
276 struct sched_atom *event, *wakee_event;
277
278 event = get_new_event(task, timestamp);
279 event->type = SCHED_EVENT_WAKEUP;
280 event->wakee = wakee;
281
282 wakee_event = last_event(wakee);
283 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
284 targetless_wakeups++;
285 return;
286 }
287 if (wakee_event->wait_sem) {
288 multitarget_wakeups++;
289 return;
290 }
291
292 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
293 sem_init(wakee_event->wait_sem, 0, 0);
294 wakee_event->specific_wait = 1;
295 event->wait_sem = wakee_event->wait_sem;
296
297 nr_wakeup_events++;
298}
299
300static void
301add_sched_event_sleep(struct task_desc *task, u64 timestamp,
302 u64 task_state __used)
303{
304 struct sched_atom *event = get_new_event(task, timestamp);
305
306 event->type = SCHED_EVENT_SLEEP;
307
308 nr_sleep_events++;
309}
310
311static struct task_desc *register_pid(unsigned long pid, const char *comm)
312{
313 struct task_desc *task;
314
315 BUG_ON(pid >= MAX_PID);
316
317 task = pid_to_task[pid];
318
319 if (task)
320 return task;
321
322 task = zalloc(sizeof(*task));
323 task->pid = pid;
324 task->nr = nr_tasks;
325 strcpy(task->comm, comm);
326 /*
327 * every task starts in sleeping state - this gets ignored
328 * if there's no wakeup pointing to this sleep state:
329 */
330 add_sched_event_sleep(task, 0, 0);
331
332 pid_to_task[pid] = task;
333 nr_tasks++;
334 tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
335 BUG_ON(!tasks);
336 tasks[task->nr] = task;
337
338 if (verbose)
339 printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
340
341 return task;
342}
343
344
345static void print_task_traces(void)
346{
347 struct task_desc *task;
348 unsigned long i;
349
350 for (i = 0; i < nr_tasks; i++) {
351 task = tasks[i];
352 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
353 task->nr, task->comm, task->pid, task->nr_events);
354 }
355}
356
357static void add_cross_task_wakeups(void)
358{
359 struct task_desc *task1, *task2;
360 unsigned long i, j;
361
362 for (i = 0; i < nr_tasks; i++) {
363 task1 = tasks[i];
364 j = i + 1;
365 if (j == nr_tasks)
366 j = 0;
367 task2 = tasks[j];
368 add_sched_event_wakeup(task1, 0, task2);
369 }
370}
371
372static void
373process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
374{
375 int ret = 0;
376
377 switch (atom->type) {
378 case SCHED_EVENT_RUN:
379 burn_nsecs(atom->duration);
380 break;
381 case SCHED_EVENT_SLEEP:
382 if (atom->wait_sem)
383 ret = sem_wait(atom->wait_sem);
384 BUG_ON(ret);
385 break;
386 case SCHED_EVENT_WAKEUP:
387 if (atom->wait_sem)
388 ret = sem_post(atom->wait_sem);
389 BUG_ON(ret);
390 break;
391 case SCHED_EVENT_MIGRATION:
392 break;
393 default:
394 BUG_ON(1);
395 }
396}
397
398static u64 get_cpu_usage_nsec_parent(void)
399{
400 struct rusage ru;
401 u64 sum;
402 int err;
403
404 err = getrusage(RUSAGE_SELF, &ru);
405 BUG_ON(err);
406
407 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
408 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
409
410 return sum;
411}
412
413static int self_open_counters(void)
414{
415 struct perf_event_attr attr;
416 int fd;
417
418 memset(&attr, 0, sizeof(attr));
419
420 attr.type = PERF_TYPE_SOFTWARE;
421 attr.config = PERF_COUNT_SW_TASK_CLOCK;
422
423 fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
424
425 if (fd < 0)
426 die("Error: sys_perf_event_open() syscall returned"
427 "with %d (%s)\n", fd, strerror(errno));
428 return fd;
429}
430
431static u64 get_cpu_usage_nsec_self(int fd)
432{
433 u64 runtime;
434 int ret;
435
436 ret = read(fd, &runtime, sizeof(runtime));
437 BUG_ON(ret != sizeof(runtime));
438
439 return runtime;
440}
441
442static void *thread_func(void *ctx)
443{
444 struct task_desc *this_task = ctx;
445 u64 cpu_usage_0, cpu_usage_1;
446 unsigned long i, ret;
447 char comm2[22];
448 int fd;
449
450 sprintf(comm2, ":%s", this_task->comm);
451 prctl(PR_SET_NAME, comm2);
452 fd = self_open_counters();
453
454again:
455 ret = sem_post(&this_task->ready_for_work);
456 BUG_ON(ret);
457 ret = pthread_mutex_lock(&start_work_mutex);
458 BUG_ON(ret);
459 ret = pthread_mutex_unlock(&start_work_mutex);
460 BUG_ON(ret);
461
462 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
463
464 for (i = 0; i < this_task->nr_events; i++) {
465 this_task->curr_event = i;
466 process_sched_event(this_task, this_task->atoms[i]);
467 }
468
469 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
470 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
471 ret = sem_post(&this_task->work_done_sem);
472 BUG_ON(ret);
473
474 ret = pthread_mutex_lock(&work_done_wait_mutex);
475 BUG_ON(ret);
476 ret = pthread_mutex_unlock(&work_done_wait_mutex);
477 BUG_ON(ret);
478
479 goto again;
480}
481
482static void create_tasks(void)
483{
484 struct task_desc *task;
485 pthread_attr_t attr;
486 unsigned long i;
487 int err;
488
489 err = pthread_attr_init(&attr);
490 BUG_ON(err);
491 err = pthread_attr_setstacksize(&attr,
492 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
493 BUG_ON(err);
494 err = pthread_mutex_lock(&start_work_mutex);
495 BUG_ON(err);
496 err = pthread_mutex_lock(&work_done_wait_mutex);
497 BUG_ON(err);
498 for (i = 0; i < nr_tasks; i++) {
499 task = tasks[i];
500 sem_init(&task->sleep_sem, 0, 0);
501 sem_init(&task->ready_for_work, 0, 0);
502 sem_init(&task->work_done_sem, 0, 0);
503 task->curr_event = 0;
504 err = pthread_create(&task->thread, &attr, thread_func, task);
505 BUG_ON(err);
506 }
507}
508
509static void wait_for_tasks(void)
510{
511 u64 cpu_usage_0, cpu_usage_1;
512 struct task_desc *task;
513 unsigned long i, ret;
514
515 start_time = get_nsecs();
516 cpu_usage = 0;
517 pthread_mutex_unlock(&work_done_wait_mutex);
518
519 for (i = 0; i < nr_tasks; i++) {
520 task = tasks[i];
521 ret = sem_wait(&task->ready_for_work);
522 BUG_ON(ret);
523 sem_init(&task->ready_for_work, 0, 0);
524 }
525 ret = pthread_mutex_lock(&work_done_wait_mutex);
526 BUG_ON(ret);
527
528 cpu_usage_0 = get_cpu_usage_nsec_parent();
529
530 pthread_mutex_unlock(&start_work_mutex);
531
532 for (i = 0; i < nr_tasks; i++) {
533 task = tasks[i];
534 ret = sem_wait(&task->work_done_sem);
535 BUG_ON(ret);
536 sem_init(&task->work_done_sem, 0, 0);
537 cpu_usage += task->cpu_usage;
538 task->cpu_usage = 0;
539 }
540
541 cpu_usage_1 = get_cpu_usage_nsec_parent();
542 if (!runavg_cpu_usage)
543 runavg_cpu_usage = cpu_usage;
544 runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
545
546 parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
547 if (!runavg_parent_cpu_usage)
548 runavg_parent_cpu_usage = parent_cpu_usage;
549 runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
550 parent_cpu_usage)/10;
551
552 ret = pthread_mutex_lock(&start_work_mutex);
553 BUG_ON(ret);
554
555 for (i = 0; i < nr_tasks; i++) {
556 task = tasks[i];
557 sem_init(&task->sleep_sem, 0, 0);
558 task->curr_event = 0;
559 }
560}
561
562static void run_one_test(void)
563{
564 u64 T0, T1, delta, avg_delta, fluct;
565
566 T0 = get_nsecs();
567 wait_for_tasks();
568 T1 = get_nsecs();
569
570 delta = T1 - T0;
571 sum_runtime += delta;
572 nr_runs++;
573
574 avg_delta = sum_runtime / nr_runs;
575 if (delta < avg_delta)
576 fluct = avg_delta - delta;
577 else
578 fluct = delta - avg_delta;
579 sum_fluct += fluct;
580 if (!run_avg)
581 run_avg = delta;
582 run_avg = (run_avg*9 + delta)/10;
583
584 printf("#%-3ld: %0.3f, ",
585 nr_runs, (double)delta/1000000.0);
586
587 printf("ravg: %0.2f, ",
588 (double)run_avg/1e6);
589
590 printf("cpu: %0.2f / %0.2f",
591 (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
592
593#if 0
594 /*
595 * rusage statistics done by the parent, these are less
596 * accurate than the sum_exec_runtime based statistics:
597 */
598 printf(" [%0.2f / %0.2f]",
599 (double)parent_cpu_usage/1e6,
600 (double)runavg_parent_cpu_usage/1e6);
601#endif
602
603 printf("\n");
604
605 if (nr_sleep_corrections)
606 printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
607 nr_sleep_corrections = 0;
608}
609
610static void test_calibrations(void)
611{
612 u64 T0, T1;
613
614 T0 = get_nsecs();
615 burn_nsecs(1e6);
616 T1 = get_nsecs();
617
618 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
619
620 T0 = get_nsecs();
621 sleep_nsecs(1e6);
622 T1 = get_nsecs();
623
624 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
625}
626
627#define FILL_FIELD(ptr, field, event, data) \
628 ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
629
630#define FILL_ARRAY(ptr, array, event, data) \
631do { \
632 void *__array = raw_field_ptr(event, #array, data); \
633 memcpy(ptr.array, __array, sizeof(ptr.array)); \
634} while(0)
635
636#define FILL_COMMON_FIELDS(ptr, event, data) \
637do { \
638 FILL_FIELD(ptr, common_type, event, data); \
639 FILL_FIELD(ptr, common_flags, event, data); \
640 FILL_FIELD(ptr, common_preempt_count, event, data); \
641 FILL_FIELD(ptr, common_pid, event, data); \
642 FILL_FIELD(ptr, common_tgid, event, data); \
643} while (0)
644
645
646
647struct trace_switch_event {
648 u32 size;
649
650 u16 common_type;
651 u8 common_flags;
652 u8 common_preempt_count;
653 u32 common_pid;
654 u32 common_tgid;
655
656 char prev_comm[16];
657 u32 prev_pid;
658 u32 prev_prio;
659 u64 prev_state;
660 char next_comm[16];
661 u32 next_pid;
662 u32 next_prio;
663};
664
665struct trace_runtime_event {
666 u32 size;
667
668 u16 common_type;
669 u8 common_flags;
670 u8 common_preempt_count;
671 u32 common_pid;
672 u32 common_tgid;
673
674 char comm[16];
675 u32 pid;
676 u64 runtime;
677 u64 vruntime;
678};
679
680struct trace_wakeup_event {
681 u32 size;
682
683 u16 common_type;
684 u8 common_flags;
685 u8 common_preempt_count;
686 u32 common_pid;
687 u32 common_tgid;
688
689 char comm[16];
690 u32 pid;
691
692 u32 prio;
693 u32 success;
694 u32 cpu;
695};
696
697struct trace_fork_event {
698 u32 size;
699
700 u16 common_type;
701 u8 common_flags;
702 u8 common_preempt_count;
703 u32 common_pid;
704 u32 common_tgid;
705
706 char parent_comm[16];
707 u32 parent_pid;
708 char child_comm[16];
709 u32 child_pid;
710};
711
712struct trace_migrate_task_event {
713 u32 size;
714
715 u16 common_type;
716 u8 common_flags;
717 u8 common_preempt_count;
718 u32 common_pid;
719 u32 common_tgid;
720
721 char comm[16];
722 u32 pid;
723
724 u32 prio;
725 u32 cpu;
726};
727
728struct trace_sched_handler {
729 void (*switch_event)(struct trace_switch_event *,
730 struct machine *,
731 struct event_format *,
732 int cpu,
733 u64 timestamp,
734 struct thread *thread);
735
736 void (*runtime_event)(struct trace_runtime_event *,
737 struct machine *,
738 struct event_format *,
739 int cpu,
740 u64 timestamp,
741 struct thread *thread);
742
743 void (*wakeup_event)(struct trace_wakeup_event *,
744 struct machine *,
745 struct event_format *,
746 int cpu,
747 u64 timestamp,
748 struct thread *thread);
749
750 void (*fork_event)(struct trace_fork_event *,
751 struct event_format *,
752 int cpu,
753 u64 timestamp,
754 struct thread *thread);
755
756 void (*migrate_task_event)(struct trace_migrate_task_event *,
757 struct machine *machine,
758 struct event_format *,
759 int cpu,
760 u64 timestamp,
761 struct thread *thread);
762};
763
764
765static void
766replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
767 struct machine *machine __used,
768 struct event_format *event,
769 int cpu __used,
770 u64 timestamp __used,
771 struct thread *thread __used)
772{
773 struct task_desc *waker, *wakee;
774
775 if (verbose) {
776 printf("sched_wakeup event %p\n", event);
777
778 printf(" ... pid %d woke up %s/%d\n",
779 wakeup_event->common_pid,
780 wakeup_event->comm,
781 wakeup_event->pid);
782 }
783
784 waker = register_pid(wakeup_event->common_pid, "<unknown>");
785 wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
786
787 add_sched_event_wakeup(waker, timestamp, wakee);
788}
789
790static u64 cpu_last_switched[MAX_CPUS];
791
792static void
793replay_switch_event(struct trace_switch_event *switch_event,
794 struct machine *machine __used,
795 struct event_format *event,
796 int cpu,
797 u64 timestamp,
798 struct thread *thread __used)
799{
800 struct task_desc *prev, __used *next;
801 u64 timestamp0;
802 s64 delta;
803
804 if (verbose)
805 printf("sched_switch event %p\n", event);
806
807 if (cpu >= MAX_CPUS || cpu < 0)
808 return;
809
810 timestamp0 = cpu_last_switched[cpu];
811 if (timestamp0)
812 delta = timestamp - timestamp0;
813 else
814 delta = 0;
815
816 if (delta < 0)
817 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
818
819 if (verbose) {
820 printf(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
821 switch_event->prev_comm, switch_event->prev_pid,
822 switch_event->next_comm, switch_event->next_pid,
823 delta);
824 }
825
826 prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
827 next = register_pid(switch_event->next_pid, switch_event->next_comm);
828
829 cpu_last_switched[cpu] = timestamp;
830
831 add_sched_event_run(prev, timestamp, delta);
832 add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
833}
834
835
836static void
837replay_fork_event(struct trace_fork_event *fork_event,
838 struct event_format *event,
839 int cpu __used,
840 u64 timestamp __used,
841 struct thread *thread __used)
842{
843 if (verbose) {
844 printf("sched_fork event %p\n", event);
845 printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
846 printf("... child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
847 }
848 register_pid(fork_event->parent_pid, fork_event->parent_comm);
849 register_pid(fork_event->child_pid, fork_event->child_comm);
850}
851
852static struct trace_sched_handler replay_ops = {
853 .wakeup_event = replay_wakeup_event,
854 .switch_event = replay_switch_event,
855 .fork_event = replay_fork_event,
856};
857
858struct sort_dimension {
859 const char *name;
860 sort_fn_t cmp;
861 struct list_head list;
862};
863
864static LIST_HEAD(cmp_pid);
865
866static int
867thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
868{
869 struct sort_dimension *sort;
870 int ret = 0;
871
872 BUG_ON(list_empty(list));
873
874 list_for_each_entry(sort, list, list) {
875 ret = sort->cmp(l, r);
876 if (ret)
877 return ret;
878 }
879
880 return ret;
881}
882
883static struct work_atoms *
884thread_atoms_search(struct rb_root *root, struct thread *thread,
885 struct list_head *sort_list)
886{
887 struct rb_node *node = root->rb_node;
888 struct work_atoms key = { .thread = thread };
889
890 while (node) {
891 struct work_atoms *atoms;
892 int cmp;
893
894 atoms = container_of(node, struct work_atoms, node);
895
896 cmp = thread_lat_cmp(sort_list, &key, atoms);
897 if (cmp > 0)
898 node = node->rb_left;
899 else if (cmp < 0)
900 node = node->rb_right;
901 else {
902 BUG_ON(thread != atoms->thread);
903 return atoms;
904 }
905 }
906 return NULL;
907}
908
909static void
910__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
911 struct list_head *sort_list)
912{
913 struct rb_node **new = &(root->rb_node), *parent = NULL;
914
915 while (*new) {
916 struct work_atoms *this;
917 int cmp;
918
919 this = container_of(*new, struct work_atoms, node);
920 parent = *new;
921
922 cmp = thread_lat_cmp(sort_list, data, this);
923
924 if (cmp > 0)
925 new = &((*new)->rb_left);
926 else
927 new = &((*new)->rb_right);
928 }
929
930 rb_link_node(&data->node, parent, new);
931 rb_insert_color(&data->node, root);
932}
933
934static void thread_atoms_insert(struct thread *thread)
935{
936 struct work_atoms *atoms = zalloc(sizeof(*atoms));
937 if (!atoms)
938 die("No memory");
939
940 atoms->thread = thread;
941 INIT_LIST_HEAD(&atoms->work_list);
942 __thread_latency_insert(&atom_root, atoms, &cmp_pid);
943}
944
945static void
946latency_fork_event(struct trace_fork_event *fork_event __used,
947 struct event_format *event __used,
948 int cpu __used,
949 u64 timestamp __used,
950 struct thread *thread __used)
951{
952 /* should insert the newcomer */
953}
954
955__used
956static char sched_out_state(struct trace_switch_event *switch_event)
957{
958 const char *str = TASK_STATE_TO_CHAR_STR;
959
960 return str[switch_event->prev_state];
961}
962
963static void
964add_sched_out_event(struct work_atoms *atoms,
965 char run_state,
966 u64 timestamp)
967{
968 struct work_atom *atom = zalloc(sizeof(*atom));
969 if (!atom)
970 die("Non memory");
971
972 atom->sched_out_time = timestamp;
973
974 if (run_state == 'R') {
975 atom->state = THREAD_WAIT_CPU;
976 atom->wake_up_time = atom->sched_out_time;
977 }
978
979 list_add_tail(&atom->list, &atoms->work_list);
980}
981
982static void
983add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
984{
985 struct work_atom *atom;
986
987 BUG_ON(list_empty(&atoms->work_list));
988
989 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
990
991 atom->runtime += delta;
992 atoms->total_runtime += delta;
993}
994
995static void
996add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
997{
998 struct work_atom *atom;
999 u64 delta;
1000
1001 if (list_empty(&atoms->work_list))
1002 return;
1003
1004 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1005
1006 if (atom->state != THREAD_WAIT_CPU)
1007 return;
1008
1009 if (timestamp < atom->wake_up_time) {
1010 atom->state = THREAD_IGNORE;
1011 return;
1012 }
1013
1014 atom->state = THREAD_SCHED_IN;
1015 atom->sched_in_time = timestamp;
1016
1017 delta = atom->sched_in_time - atom->wake_up_time;
1018 atoms->total_lat += delta;
1019 if (delta > atoms->max_lat) {
1020 atoms->max_lat = delta;
1021 atoms->max_lat_at = timestamp;
1022 }
1023 atoms->nb_atoms++;
1024}
1025
1026static void
1027latency_switch_event(struct trace_switch_event *switch_event,
1028 struct machine *machine,
1029 struct event_format *event __used,
1030 int cpu,
1031 u64 timestamp,
1032 struct thread *thread __used)
1033{
1034 struct work_atoms *out_events, *in_events;
1035 struct thread *sched_out, *sched_in;
1036 u64 timestamp0;
1037 s64 delta;
1038
1039 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1040
1041 timestamp0 = cpu_last_switched[cpu];
1042 cpu_last_switched[cpu] = timestamp;
1043 if (timestamp0)
1044 delta = timestamp - timestamp0;
1045 else
1046 delta = 0;
1047
1048 if (delta < 0)
1049 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1050
1051
1052 sched_out = machine__findnew_thread(machine, switch_event->prev_pid);
1053 sched_in = machine__findnew_thread(machine, switch_event->next_pid);
1054
1055 out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1056 if (!out_events) {
1057 thread_atoms_insert(sched_out);
1058 out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1059 if (!out_events)
1060 die("out-event: Internal tree error");
1061 }
1062 add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
1063
1064 in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1065 if (!in_events) {
1066 thread_atoms_insert(sched_in);
1067 in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1068 if (!in_events)
1069 die("in-event: Internal tree error");
1070 /*
1071 * Take came in we have not heard about yet,
1072 * add in an initial atom in runnable state:
1073 */
1074 add_sched_out_event(in_events, 'R', timestamp);
1075 }
1076 add_sched_in_event(in_events, timestamp);
1077}
1078
1079static void
1080latency_runtime_event(struct trace_runtime_event *runtime_event,
1081 struct machine *machine,
1082 struct event_format *event __used,
1083 int cpu,
1084 u64 timestamp,
1085 struct thread *this_thread __used)
1086{
1087 struct thread *thread = machine__findnew_thread(machine, runtime_event->pid);
1088 struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1089
1090 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1091 if (!atoms) {
1092 thread_atoms_insert(thread);
1093 atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1094 if (!atoms)
1095 die("in-event: Internal tree error");
1096 add_sched_out_event(atoms, 'R', timestamp);
1097 }
1098
1099 add_runtime_event(atoms, runtime_event->runtime, timestamp);
1100}
1101
1102static void
1103latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1104 struct machine *machine,
1105 struct event_format *__event __used,
1106 int cpu __used,
1107 u64 timestamp,
1108 struct thread *thread __used)
1109{
1110 struct work_atoms *atoms;
1111 struct work_atom *atom;
1112 struct thread *wakee;
1113
1114 /* Note for later, it may be interesting to observe the failing cases */
1115 if (!wakeup_event->success)
1116 return;
1117
1118 wakee = machine__findnew_thread(machine, wakeup_event->pid);
1119 atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1120 if (!atoms) {
1121 thread_atoms_insert(wakee);
1122 atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1123 if (!atoms)
1124 die("wakeup-event: Internal tree error");
1125 add_sched_out_event(atoms, 'S', timestamp);
1126 }
1127
1128 BUG_ON(list_empty(&atoms->work_list));
1129
1130 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1131
1132 /*
1133 * You WILL be missing events if you've recorded only
1134 * one CPU, or are only looking at only one, so don't
1135 * make useless noise.
1136 */
1137 if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1138 nr_state_machine_bugs++;
1139
1140 nr_timestamps++;
1141 if (atom->sched_out_time > timestamp) {
1142 nr_unordered_timestamps++;
1143 return;
1144 }
1145
1146 atom->state = THREAD_WAIT_CPU;
1147 atom->wake_up_time = timestamp;
1148}
1149
1150static void
1151latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
1152 struct machine *machine,
1153 struct event_format *__event __used,
1154 int cpu __used,
1155 u64 timestamp,
1156 struct thread *thread __used)
1157{
1158 struct work_atoms *atoms;
1159 struct work_atom *atom;
1160 struct thread *migrant;
1161
1162 /*
1163 * Only need to worry about migration when profiling one CPU.
1164 */
1165 if (profile_cpu == -1)
1166 return;
1167
1168 migrant = machine__findnew_thread(machine, migrate_task_event->pid);
1169 atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1170 if (!atoms) {
1171 thread_atoms_insert(migrant);
1172 register_pid(migrant->pid, migrant->comm);
1173 atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1174 if (!atoms)
1175 die("migration-event: Internal tree error");
1176 add_sched_out_event(atoms, 'R', timestamp);
1177 }
1178
1179 BUG_ON(list_empty(&atoms->work_list));
1180
1181 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1182 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1183
1184 nr_timestamps++;
1185
1186 if (atom->sched_out_time > timestamp)
1187 nr_unordered_timestamps++;
1188}
1189
1190static struct trace_sched_handler lat_ops = {
1191 .wakeup_event = latency_wakeup_event,
1192 .switch_event = latency_switch_event,
1193 .runtime_event = latency_runtime_event,
1194 .fork_event = latency_fork_event,
1195 .migrate_task_event = latency_migrate_task_event,
1196};
1197
1198static void output_lat_thread(struct work_atoms *work_list)
1199{
1200 int i;
1201 int ret;
1202 u64 avg;
1203
1204 if (!work_list->nb_atoms)
1205 return;
1206 /*
1207 * Ignore idle threads:
1208 */
1209 if (!strcmp(work_list->thread->comm, "swapper"))
1210 return;
1211
1212 all_runtime += work_list->total_runtime;
1213 all_count += work_list->nb_atoms;
1214
1215 ret = printf(" %s:%d ", work_list->thread->comm, work_list->thread->pid);
1216
1217 for (i = 0; i < 24 - ret; i++)
1218 printf(" ");
1219
1220 avg = work_list->total_lat / work_list->nb_atoms;
1221
1222 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1223 (double)work_list->total_runtime / 1e6,
1224 work_list->nb_atoms, (double)avg / 1e6,
1225 (double)work_list->max_lat / 1e6,
1226 (double)work_list->max_lat_at / 1e9);
1227}
1228
1229static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1230{
1231 if (l->thread->pid < r->thread->pid)
1232 return -1;
1233 if (l->thread->pid > r->thread->pid)
1234 return 1;
1235
1236 return 0;
1237}
1238
1239static struct sort_dimension pid_sort_dimension = {
1240 .name = "pid",
1241 .cmp = pid_cmp,
1242};
1243
1244static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1245{
1246 u64 avgl, avgr;
1247
1248 if (!l->nb_atoms)
1249 return -1;
1250
1251 if (!r->nb_atoms)
1252 return 1;
1253
1254 avgl = l->total_lat / l->nb_atoms;
1255 avgr = r->total_lat / r->nb_atoms;
1256
1257 if (avgl < avgr)
1258 return -1;
1259 if (avgl > avgr)
1260 return 1;
1261
1262 return 0;
1263}
1264
1265static struct sort_dimension avg_sort_dimension = {
1266 .name = "avg",
1267 .cmp = avg_cmp,
1268};
1269
1270static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1271{
1272 if (l->max_lat < r->max_lat)
1273 return -1;
1274 if (l->max_lat > r->max_lat)
1275 return 1;
1276
1277 return 0;
1278}
1279
1280static struct sort_dimension max_sort_dimension = {
1281 .name = "max",
1282 .cmp = max_cmp,
1283};
1284
1285static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1286{
1287 if (l->nb_atoms < r->nb_atoms)
1288 return -1;
1289 if (l->nb_atoms > r->nb_atoms)
1290 return 1;
1291
1292 return 0;
1293}
1294
1295static struct sort_dimension switch_sort_dimension = {
1296 .name = "switch",
1297 .cmp = switch_cmp,
1298};
1299
1300static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1301{
1302 if (l->total_runtime < r->total_runtime)
1303 return -1;
1304 if (l->total_runtime > r->total_runtime)
1305 return 1;
1306
1307 return 0;
1308}
1309
1310static struct sort_dimension runtime_sort_dimension = {
1311 .name = "runtime",
1312 .cmp = runtime_cmp,
1313};
1314
1315static struct sort_dimension *available_sorts[] = {
1316 &pid_sort_dimension,
1317 &avg_sort_dimension,
1318 &max_sort_dimension,
1319 &switch_sort_dimension,
1320 &runtime_sort_dimension,
1321};
1322
1323#define NB_AVAILABLE_SORTS (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1324
1325static LIST_HEAD(sort_list);
1326
1327static int sort_dimension__add(const char *tok, struct list_head *list)
1328{
1329 int i;
1330
1331 for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1332 if (!strcmp(available_sorts[i]->name, tok)) {
1333 list_add_tail(&available_sorts[i]->list, list);
1334
1335 return 0;
1336 }
1337 }
1338
1339 return -1;
1340}
1341
1342static void setup_sorting(void);
1343
1344static void sort_lat(void)
1345{
1346 struct rb_node *node;
1347
1348 for (;;) {
1349 struct work_atoms *data;
1350 node = rb_first(&atom_root);
1351 if (!node)
1352 break;
1353
1354 rb_erase(node, &atom_root);
1355 data = rb_entry(node, struct work_atoms, node);
1356 __thread_latency_insert(&sorted_atom_root, data, &sort_list);
1357 }
1358}
1359
1360static struct trace_sched_handler *trace_handler;
1361
1362static void
1363process_sched_wakeup_event(struct perf_tool *tool __used,
1364 struct event_format *event,
1365 struct perf_sample *sample,
1366 struct machine *machine,
1367 struct thread *thread)
1368{
1369 void *data = sample->raw_data;
1370 struct trace_wakeup_event wakeup_event;
1371
1372 FILL_COMMON_FIELDS(wakeup_event, event, data);
1373
1374 FILL_ARRAY(wakeup_event, comm, event, data);
1375 FILL_FIELD(wakeup_event, pid, event, data);
1376 FILL_FIELD(wakeup_event, prio, event, data);
1377 FILL_FIELD(wakeup_event, success, event, data);
1378 FILL_FIELD(wakeup_event, cpu, event, data);
1379
1380 if (trace_handler->wakeup_event)
1381 trace_handler->wakeup_event(&wakeup_event, machine, event,
1382 sample->cpu, sample->time, thread);
1383}
1384
1385/*
1386 * Track the current task - that way we can know whether there's any
1387 * weird events, such as a task being switched away that is not current.
1388 */
1389static int max_cpu;
1390
1391static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
1392
1393static struct thread *curr_thread[MAX_CPUS];
1394
1395static char next_shortname1 = 'A';
1396static char next_shortname2 = '0';
1397
1398static void
1399map_switch_event(struct trace_switch_event *switch_event,
1400 struct machine *machine,
1401 struct event_format *event __used,
1402 int this_cpu,
1403 u64 timestamp,
1404 struct thread *thread __used)
1405{
1406 struct thread *sched_out __used, *sched_in;
1407 int new_shortname;
1408 u64 timestamp0;
1409 s64 delta;
1410 int cpu;
1411
1412 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1413
1414 if (this_cpu > max_cpu)
1415 max_cpu = this_cpu;
1416
1417 timestamp0 = cpu_last_switched[this_cpu];
1418 cpu_last_switched[this_cpu] = timestamp;
1419 if (timestamp0)
1420 delta = timestamp - timestamp0;
1421 else
1422 delta = 0;
1423
1424 if (delta < 0)
1425 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1426
1427
1428 sched_out = machine__findnew_thread(machine, switch_event->prev_pid);
1429 sched_in = machine__findnew_thread(machine, switch_event->next_pid);
1430
1431 curr_thread[this_cpu] = sched_in;
1432
1433 printf(" ");
1434
1435 new_shortname = 0;
1436 if (!sched_in->shortname[0]) {
1437 sched_in->shortname[0] = next_shortname1;
1438 sched_in->shortname[1] = next_shortname2;
1439
1440 if (next_shortname1 < 'Z') {
1441 next_shortname1++;
1442 } else {
1443 next_shortname1='A';
1444 if (next_shortname2 < '9') {
1445 next_shortname2++;
1446 } else {
1447 next_shortname2='0';
1448 }
1449 }
1450 new_shortname = 1;
1451 }
1452
1453 for (cpu = 0; cpu <= max_cpu; cpu++) {
1454 if (cpu != this_cpu)
1455 printf(" ");
1456 else
1457 printf("*");
1458
1459 if (curr_thread[cpu]) {
1460 if (curr_thread[cpu]->pid)
1461 printf("%2s ", curr_thread[cpu]->shortname);
1462 else
1463 printf(". ");
1464 } else
1465 printf(" ");
1466 }
1467
1468 printf(" %12.6f secs ", (double)timestamp/1e9);
1469 if (new_shortname) {
1470 printf("%s => %s:%d\n",
1471 sched_in->shortname, sched_in->comm, sched_in->pid);
1472 } else {
1473 printf("\n");
1474 }
1475}
1476
1477static void
1478process_sched_switch_event(struct perf_tool *tool __used,
1479 struct event_format *event,
1480 struct perf_sample *sample,
1481 struct machine *machine,
1482 struct thread *thread)
1483{
1484 int this_cpu = sample->cpu;
1485 void *data = sample->raw_data;
1486 struct trace_switch_event switch_event;
1487
1488 FILL_COMMON_FIELDS(switch_event, event, data);
1489
1490 FILL_ARRAY(switch_event, prev_comm, event, data);
1491 FILL_FIELD(switch_event, prev_pid, event, data);
1492 FILL_FIELD(switch_event, prev_prio, event, data);
1493 FILL_FIELD(switch_event, prev_state, event, data);
1494 FILL_ARRAY(switch_event, next_comm, event, data);
1495 FILL_FIELD(switch_event, next_pid, event, data);
1496 FILL_FIELD(switch_event, next_prio, event, data);
1497
1498 if (curr_pid[this_cpu] != (u32)-1) {
1499 /*
1500 * Are we trying to switch away a PID that is
1501 * not current?
1502 */
1503 if (curr_pid[this_cpu] != switch_event.prev_pid)
1504 nr_context_switch_bugs++;
1505 }
1506 if (trace_handler->switch_event)
1507 trace_handler->switch_event(&switch_event, machine, event,
1508 this_cpu, sample->time, thread);
1509
1510 curr_pid[this_cpu] = switch_event.next_pid;
1511}
1512
1513static void
1514process_sched_runtime_event(struct perf_tool *tool __used,
1515 struct event_format *event,
1516 struct perf_sample *sample,
1517 struct machine *machine,
1518 struct thread *thread)
1519{
1520 void *data = sample->raw_data;
1521 struct trace_runtime_event runtime_event;
1522
1523 FILL_ARRAY(runtime_event, comm, event, data);
1524 FILL_FIELD(runtime_event, pid, event, data);
1525 FILL_FIELD(runtime_event, runtime, event, data);
1526 FILL_FIELD(runtime_event, vruntime, event, data);
1527
1528 if (trace_handler->runtime_event)
1529 trace_handler->runtime_event(&runtime_event, machine, event,
1530 sample->cpu, sample->time, thread);
1531}
1532
1533static void
1534process_sched_fork_event(struct perf_tool *tool __used,
1535 struct event_format *event,
1536 struct perf_sample *sample,
1537 struct machine *machine __used,
1538 struct thread *thread)
1539{
1540 void *data = sample->raw_data;
1541 struct trace_fork_event fork_event;
1542
1543 FILL_COMMON_FIELDS(fork_event, event, data);
1544
1545 FILL_ARRAY(fork_event, parent_comm, event, data);
1546 FILL_FIELD(fork_event, parent_pid, event, data);
1547 FILL_ARRAY(fork_event, child_comm, event, data);
1548 FILL_FIELD(fork_event, child_pid, event, data);
1549
1550 if (trace_handler->fork_event)
1551 trace_handler->fork_event(&fork_event, event,
1552 sample->cpu, sample->time, thread);
1553}
1554
1555static void
1556process_sched_exit_event(struct perf_tool *tool __used,
1557 struct event_format *event,
1558 struct perf_sample *sample __used,
1559 struct machine *machine __used,
1560 struct thread *thread __used)
1561{
1562 if (verbose)
1563 printf("sched_exit event %p\n", event);
1564}
1565
1566static void
1567process_sched_migrate_task_event(struct perf_tool *tool __used,
1568 struct event_format *event,
1569 struct perf_sample *sample,
1570 struct machine *machine,
1571 struct thread *thread)
1572{
1573 void *data = sample->raw_data;
1574 struct trace_migrate_task_event migrate_task_event;
1575
1576 FILL_COMMON_FIELDS(migrate_task_event, event, data);
1577
1578 FILL_ARRAY(migrate_task_event, comm, event, data);
1579 FILL_FIELD(migrate_task_event, pid, event, data);
1580 FILL_FIELD(migrate_task_event, prio, event, data);
1581 FILL_FIELD(migrate_task_event, cpu, event, data);
1582
1583 if (trace_handler->migrate_task_event)
1584 trace_handler->migrate_task_event(&migrate_task_event, machine,
1585 event, sample->cpu,
1586 sample->time, thread);
1587}
1588
1589typedef void (*tracepoint_handler)(struct perf_tool *tool, struct event_format *event,
1590 struct perf_sample *sample,
1591 struct machine *machine,
1592 struct thread *thread);
1593
1594static int perf_sched__process_tracepoint_sample(struct perf_tool *tool,
1595 union perf_event *event __used,
1596 struct perf_sample *sample,
1597 struct perf_evsel *evsel,
1598 struct machine *machine)
1599{
1600 struct thread *thread = machine__findnew_thread(machine, sample->pid);
1601
1602 if (thread == NULL) {
1603 pr_debug("problem processing %s event, skipping it.\n",
1604 evsel->name);
1605 return -1;
1606 }
1607
1608 evsel->hists.stats.total_period += sample->period;
1609 hists__inc_nr_events(&evsel->hists, PERF_RECORD_SAMPLE);
1610
1611 if (evsel->handler.func != NULL) {
1612 tracepoint_handler f = evsel->handler.func;
1613
1614 if (evsel->handler.data == NULL)
1615 evsel->handler.data = trace_find_event(evsel->attr.config);
1616
1617 f(tool, evsel->handler.data, sample, machine, thread);
1618 }
1619
1620 return 0;
1621}
1622
1623static struct perf_tool perf_sched = {
1624 .sample = perf_sched__process_tracepoint_sample,
1625 .comm = perf_event__process_comm,
1626 .lost = perf_event__process_lost,
1627 .fork = perf_event__process_task,
1628 .ordered_samples = true,
1629};
1630
1631static void read_events(bool destroy, struct perf_session **psession)
1632{
1633 int err = -EINVAL;
1634 const struct perf_evsel_str_handler handlers[] = {
1635 { "sched:sched_switch", process_sched_switch_event, },
1636 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1637 { "sched:sched_wakeup", process_sched_wakeup_event, },
1638 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1639 { "sched:sched_process_fork", process_sched_fork_event, },
1640 { "sched:sched_process_exit", process_sched_exit_event, },
1641 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1642 };
1643 struct perf_session *session = perf_session__new(input_name, O_RDONLY,
1644 0, false, &perf_sched);
1645 if (session == NULL)
1646 die("No Memory");
1647
1648 err = perf_evlist__set_tracepoints_handlers_array(session->evlist, handlers);
1649 assert(err == 0);
1650
1651 if (perf_session__has_traces(session, "record -R")) {
1652 err = perf_session__process_events(session, &perf_sched);
1653 if (err)
1654 die("Failed to process events, error %d", err);
1655
1656 nr_events = session->hists.stats.nr_events[0];
1657 nr_lost_events = session->hists.stats.total_lost;
1658 nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
1659 }
1660
1661 if (destroy)
1662 perf_session__delete(session);
1663
1664 if (psession)
1665 *psession = session;
1666}
1667
1668static void print_bad_events(void)
1669{
1670 if (nr_unordered_timestamps && nr_timestamps) {
1671 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1672 (double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
1673 nr_unordered_timestamps, nr_timestamps);
1674 }
1675 if (nr_lost_events && nr_events) {
1676 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1677 (double)nr_lost_events/(double)nr_events*100.0,
1678 nr_lost_events, nr_events, nr_lost_chunks);
1679 }
1680 if (nr_state_machine_bugs && nr_timestamps) {
1681 printf(" INFO: %.3f%% state machine bugs (%ld out of %ld)",
1682 (double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
1683 nr_state_machine_bugs, nr_timestamps);
1684 if (nr_lost_events)
1685 printf(" (due to lost events?)");
1686 printf("\n");
1687 }
1688 if (nr_context_switch_bugs && nr_timestamps) {
1689 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1690 (double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
1691 nr_context_switch_bugs, nr_timestamps);
1692 if (nr_lost_events)
1693 printf(" (due to lost events?)");
1694 printf("\n");
1695 }
1696}
1697
1698static void __cmd_lat(void)
1699{
1700 struct rb_node *next;
1701 struct perf_session *session;
1702
1703 setup_pager();
1704 read_events(false, &session);
1705 sort_lat();
1706
1707 printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1708 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
1709 printf(" ---------------------------------------------------------------------------------------------------------------\n");
1710
1711 next = rb_first(&sorted_atom_root);
1712
1713 while (next) {
1714 struct work_atoms *work_list;
1715
1716 work_list = rb_entry(next, struct work_atoms, node);
1717 output_lat_thread(work_list);
1718 next = rb_next(next);
1719 }
1720
1721 printf(" -----------------------------------------------------------------------------------------\n");
1722 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
1723 (double)all_runtime/1e6, all_count);
1724
1725 printf(" ---------------------------------------------------\n");
1726
1727 print_bad_events();
1728 printf("\n");
1729
1730 perf_session__delete(session);
1731}
1732
1733static struct trace_sched_handler map_ops = {
1734 .wakeup_event = NULL,
1735 .switch_event = map_switch_event,
1736 .runtime_event = NULL,
1737 .fork_event = NULL,
1738};
1739
1740static void __cmd_map(void)
1741{
1742 max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1743
1744 setup_pager();
1745 read_events(true, NULL);
1746 print_bad_events();
1747}
1748
1749static void __cmd_replay(void)
1750{
1751 unsigned long i;
1752
1753 calibrate_run_measurement_overhead();
1754 calibrate_sleep_measurement_overhead();
1755
1756 test_calibrations();
1757
1758 read_events(true, NULL);
1759
1760 printf("nr_run_events: %ld\n", nr_run_events);
1761 printf("nr_sleep_events: %ld\n", nr_sleep_events);
1762 printf("nr_wakeup_events: %ld\n", nr_wakeup_events);
1763
1764 if (targetless_wakeups)
1765 printf("target-less wakeups: %ld\n", targetless_wakeups);
1766 if (multitarget_wakeups)
1767 printf("multi-target wakeups: %ld\n", multitarget_wakeups);
1768 if (nr_run_events_optimized)
1769 printf("run atoms optimized: %ld\n",
1770 nr_run_events_optimized);
1771
1772 print_task_traces();
1773 add_cross_task_wakeups();
1774
1775 create_tasks();
1776 printf("------------------------------------------------------------\n");
1777 for (i = 0; i < replay_repeat; i++)
1778 run_one_test();
1779}
1780
1781
1782static const char * const sched_usage[] = {
1783 "perf sched [<options>] {record|latency|map|replay|script}",
1784 NULL
1785};
1786
1787static const struct option sched_options[] = {
1788 OPT_STRING('i', "input", &input_name, "file",
1789 "input file name"),
1790 OPT_INCR('v', "verbose", &verbose,
1791 "be more verbose (show symbol address, etc)"),
1792 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1793 "dump raw trace in ASCII"),
1794 OPT_END()
1795};
1796
1797static const char * const latency_usage[] = {
1798 "perf sched latency [<options>]",
1799 NULL
1800};
1801
1802static const struct option latency_options[] = {
1803 OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1804 "sort by key(s): runtime, switch, avg, max"),
1805 OPT_INCR('v', "verbose", &verbose,
1806 "be more verbose (show symbol address, etc)"),
1807 OPT_INTEGER('C', "CPU", &profile_cpu,
1808 "CPU to profile on"),
1809 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1810 "dump raw trace in ASCII"),
1811 OPT_END()
1812};
1813
1814static const char * const replay_usage[] = {
1815 "perf sched replay [<options>]",
1816 NULL
1817};
1818
1819static const struct option replay_options[] = {
1820 OPT_UINTEGER('r', "repeat", &replay_repeat,
1821 "repeat the workload replay N times (-1: infinite)"),
1822 OPT_INCR('v', "verbose", &verbose,
1823 "be more verbose (show symbol address, etc)"),
1824 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1825 "dump raw trace in ASCII"),
1826 OPT_END()
1827};
1828
1829static void setup_sorting(void)
1830{
1831 char *tmp, *tok, *str = strdup(sort_order);
1832
1833 for (tok = strtok_r(str, ", ", &tmp);
1834 tok; tok = strtok_r(NULL, ", ", &tmp)) {
1835 if (sort_dimension__add(tok, &sort_list) < 0) {
1836 error("Unknown --sort key: `%s'", tok);
1837 usage_with_options(latency_usage, latency_options);
1838 }
1839 }
1840
1841 free(str);
1842
1843 sort_dimension__add("pid", &cmp_pid);
1844}
1845
1846static const char *record_args[] = {
1847 "record",
1848 "-a",
1849 "-R",
1850 "-f",
1851 "-m", "1024",
1852 "-c", "1",
1853 "-e", "sched:sched_switch",
1854 "-e", "sched:sched_stat_wait",
1855 "-e", "sched:sched_stat_sleep",
1856 "-e", "sched:sched_stat_iowait",
1857 "-e", "sched:sched_stat_runtime",
1858 "-e", "sched:sched_process_exit",
1859 "-e", "sched:sched_process_fork",
1860 "-e", "sched:sched_wakeup",
1861 "-e", "sched:sched_migrate_task",
1862};
1863
1864static int __cmd_record(int argc, const char **argv)
1865{
1866 unsigned int rec_argc, i, j;
1867 const char **rec_argv;
1868
1869 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1870 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1871
1872 if (rec_argv == NULL)
1873 return -ENOMEM;
1874
1875 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1876 rec_argv[i] = strdup(record_args[i]);
1877
1878 for (j = 1; j < (unsigned int)argc; j++, i++)
1879 rec_argv[i] = argv[j];
1880
1881 BUG_ON(i != rec_argc);
1882
1883 return cmd_record(i, rec_argv, NULL);
1884}
1885
1886int cmd_sched(int argc, const char **argv, const char *prefix __used)
1887{
1888 argc = parse_options(argc, argv, sched_options, sched_usage,
1889 PARSE_OPT_STOP_AT_NON_OPTION);
1890 if (!argc)
1891 usage_with_options(sched_usage, sched_options);
1892
1893 /*
1894 * Aliased to 'perf script' for now:
1895 */
1896 if (!strcmp(argv[0], "script"))
1897 return cmd_script(argc, argv, prefix);
1898
1899 symbol__init();
1900 if (!strncmp(argv[0], "rec", 3)) {
1901 return __cmd_record(argc, argv);
1902 } else if (!strncmp(argv[0], "lat", 3)) {
1903 trace_handler = &lat_ops;
1904 if (argc > 1) {
1905 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1906 if (argc)
1907 usage_with_options(latency_usage, latency_options);
1908 }
1909 setup_sorting();
1910 __cmd_lat();
1911 } else if (!strcmp(argv[0], "map")) {
1912 trace_handler = &map_ops;
1913 setup_sorting();
1914 __cmd_map();
1915 } else if (!strncmp(argv[0], "rep", 3)) {
1916 trace_handler = &replay_ops;
1917 if (argc) {
1918 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1919 if (argc)
1920 usage_with_options(replay_usage, replay_options);
1921 }
1922 __cmd_replay();
1923 } else {
1924 usage_with_options(sched_usage, sched_options);
1925 }
1926
1927 return 0;
1928}
1// SPDX-License-Identifier: GPL-2.0
2#include "builtin.h"
3#include "perf.h"
4#include "perf-sys.h"
5
6#include "util/cpumap.h"
7#include "util/evlist.h"
8#include "util/evsel.h"
9#include "util/evsel_fprintf.h"
10#include "util/symbol.h"
11#include "util/thread.h"
12#include "util/header.h"
13#include "util/session.h"
14#include "util/tool.h"
15#include "util/cloexec.h"
16#include "util/thread_map.h"
17#include "util/color.h"
18#include "util/stat.h"
19#include "util/string2.h"
20#include "util/callchain.h"
21#include "util/time-utils.h"
22
23#include <subcmd/pager.h>
24#include <subcmd/parse-options.h>
25#include "util/trace-event.h"
26
27#include "util/debug.h"
28#include "util/event.h"
29
30#include <linux/kernel.h>
31#include <linux/log2.h>
32#include <linux/zalloc.h>
33#include <sys/prctl.h>
34#include <sys/resource.h>
35#include <inttypes.h>
36
37#include <errno.h>
38#include <semaphore.h>
39#include <pthread.h>
40#include <math.h>
41#include <api/fs/fs.h>
42#include <perf/cpumap.h>
43#include <linux/time64.h>
44#include <linux/err.h>
45
46#include <linux/ctype.h>
47
48#define PR_SET_NAME 15 /* Set process name */
49#define MAX_CPUS 4096
50#define COMM_LEN 20
51#define SYM_LEN 129
52#define MAX_PID 1024000
53
54static const char *cpu_list;
55static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
56
57struct sched_atom;
58
59struct task_desc {
60 unsigned long nr;
61 unsigned long pid;
62 char comm[COMM_LEN];
63
64 unsigned long nr_events;
65 unsigned long curr_event;
66 struct sched_atom **atoms;
67
68 pthread_t thread;
69 sem_t sleep_sem;
70
71 sem_t ready_for_work;
72 sem_t work_done_sem;
73
74 u64 cpu_usage;
75};
76
77enum sched_event_type {
78 SCHED_EVENT_RUN,
79 SCHED_EVENT_SLEEP,
80 SCHED_EVENT_WAKEUP,
81 SCHED_EVENT_MIGRATION,
82};
83
84struct sched_atom {
85 enum sched_event_type type;
86 int specific_wait;
87 u64 timestamp;
88 u64 duration;
89 unsigned long nr;
90 sem_t *wait_sem;
91 struct task_desc *wakee;
92};
93
94#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
95
96/* task state bitmask, copied from include/linux/sched.h */
97#define TASK_RUNNING 0
98#define TASK_INTERRUPTIBLE 1
99#define TASK_UNINTERRUPTIBLE 2
100#define __TASK_STOPPED 4
101#define __TASK_TRACED 8
102/* in tsk->exit_state */
103#define EXIT_DEAD 16
104#define EXIT_ZOMBIE 32
105#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
106/* in tsk->state again */
107#define TASK_DEAD 64
108#define TASK_WAKEKILL 128
109#define TASK_WAKING 256
110#define TASK_PARKED 512
111
112enum thread_state {
113 THREAD_SLEEPING = 0,
114 THREAD_WAIT_CPU,
115 THREAD_SCHED_IN,
116 THREAD_IGNORE
117};
118
119struct work_atom {
120 struct list_head list;
121 enum thread_state state;
122 u64 sched_out_time;
123 u64 wake_up_time;
124 u64 sched_in_time;
125 u64 runtime;
126};
127
128struct work_atoms {
129 struct list_head work_list;
130 struct thread *thread;
131 struct rb_node node;
132 u64 max_lat;
133 u64 max_lat_start;
134 u64 max_lat_end;
135 u64 total_lat;
136 u64 nb_atoms;
137 u64 total_runtime;
138 int num_merged;
139};
140
141typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
142
143struct perf_sched;
144
145struct trace_sched_handler {
146 int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
147 struct perf_sample *sample, struct machine *machine);
148
149 int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
150 struct perf_sample *sample, struct machine *machine);
151
152 int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
153 struct perf_sample *sample, struct machine *machine);
154
155 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
156 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
157 struct machine *machine);
158
159 int (*migrate_task_event)(struct perf_sched *sched,
160 struct evsel *evsel,
161 struct perf_sample *sample,
162 struct machine *machine);
163};
164
165#define COLOR_PIDS PERF_COLOR_BLUE
166#define COLOR_CPUS PERF_COLOR_BG_RED
167
168struct perf_sched_map {
169 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
170 int *comp_cpus;
171 bool comp;
172 struct perf_thread_map *color_pids;
173 const char *color_pids_str;
174 struct perf_cpu_map *color_cpus;
175 const char *color_cpus_str;
176 struct perf_cpu_map *cpus;
177 const char *cpus_str;
178};
179
180struct perf_sched {
181 struct perf_tool tool;
182 const char *sort_order;
183 unsigned long nr_tasks;
184 struct task_desc **pid_to_task;
185 struct task_desc **tasks;
186 const struct trace_sched_handler *tp_handler;
187 pthread_mutex_t start_work_mutex;
188 pthread_mutex_t work_done_wait_mutex;
189 int profile_cpu;
190/*
191 * Track the current task - that way we can know whether there's any
192 * weird events, such as a task being switched away that is not current.
193 */
194 int max_cpu;
195 u32 curr_pid[MAX_CPUS];
196 struct thread *curr_thread[MAX_CPUS];
197 char next_shortname1;
198 char next_shortname2;
199 unsigned int replay_repeat;
200 unsigned long nr_run_events;
201 unsigned long nr_sleep_events;
202 unsigned long nr_wakeup_events;
203 unsigned long nr_sleep_corrections;
204 unsigned long nr_run_events_optimized;
205 unsigned long targetless_wakeups;
206 unsigned long multitarget_wakeups;
207 unsigned long nr_runs;
208 unsigned long nr_timestamps;
209 unsigned long nr_unordered_timestamps;
210 unsigned long nr_context_switch_bugs;
211 unsigned long nr_events;
212 unsigned long nr_lost_chunks;
213 unsigned long nr_lost_events;
214 u64 run_measurement_overhead;
215 u64 sleep_measurement_overhead;
216 u64 start_time;
217 u64 cpu_usage;
218 u64 runavg_cpu_usage;
219 u64 parent_cpu_usage;
220 u64 runavg_parent_cpu_usage;
221 u64 sum_runtime;
222 u64 sum_fluct;
223 u64 run_avg;
224 u64 all_runtime;
225 u64 all_count;
226 u64 cpu_last_switched[MAX_CPUS];
227 struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
228 struct list_head sort_list, cmp_pid;
229 bool force;
230 bool skip_merge;
231 struct perf_sched_map map;
232
233 /* options for timehist command */
234 bool summary;
235 bool summary_only;
236 bool idle_hist;
237 bool show_callchain;
238 unsigned int max_stack;
239 bool show_cpu_visual;
240 bool show_wakeups;
241 bool show_next;
242 bool show_migrations;
243 bool show_state;
244 u64 skipped_samples;
245 const char *time_str;
246 struct perf_time_interval ptime;
247 struct perf_time_interval hist_time;
248};
249
250/* per thread run time data */
251struct thread_runtime {
252 u64 last_time; /* time of previous sched in/out event */
253 u64 dt_run; /* run time */
254 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */
255 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */
256 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */
257 u64 dt_delay; /* time between wakeup and sched-in */
258 u64 ready_to_run; /* time of wakeup */
259
260 struct stats run_stats;
261 u64 total_run_time;
262 u64 total_sleep_time;
263 u64 total_iowait_time;
264 u64 total_preempt_time;
265 u64 total_delay_time;
266
267 int last_state;
268
269 char shortname[3];
270 bool comm_changed;
271
272 u64 migrations;
273};
274
275/* per event run time data */
276struct evsel_runtime {
277 u64 *last_time; /* time this event was last seen per cpu */
278 u32 ncpu; /* highest cpu slot allocated */
279};
280
281/* per cpu idle time data */
282struct idle_thread_runtime {
283 struct thread_runtime tr;
284 struct thread *last_thread;
285 struct rb_root_cached sorted_root;
286 struct callchain_root callchain;
287 struct callchain_cursor cursor;
288};
289
290/* track idle times per cpu */
291static struct thread **idle_threads;
292static int idle_max_cpu;
293static char idle_comm[] = "<idle>";
294
295static u64 get_nsecs(void)
296{
297 struct timespec ts;
298
299 clock_gettime(CLOCK_MONOTONIC, &ts);
300
301 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
302}
303
304static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
305{
306 u64 T0 = get_nsecs(), T1;
307
308 do {
309 T1 = get_nsecs();
310 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
311}
312
313static void sleep_nsecs(u64 nsecs)
314{
315 struct timespec ts;
316
317 ts.tv_nsec = nsecs % 999999999;
318 ts.tv_sec = nsecs / 999999999;
319
320 nanosleep(&ts, NULL);
321}
322
323static void calibrate_run_measurement_overhead(struct perf_sched *sched)
324{
325 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
326 int i;
327
328 for (i = 0; i < 10; i++) {
329 T0 = get_nsecs();
330 burn_nsecs(sched, 0);
331 T1 = get_nsecs();
332 delta = T1-T0;
333 min_delta = min(min_delta, delta);
334 }
335 sched->run_measurement_overhead = min_delta;
336
337 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
338}
339
340static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
341{
342 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
343 int i;
344
345 for (i = 0; i < 10; i++) {
346 T0 = get_nsecs();
347 sleep_nsecs(10000);
348 T1 = get_nsecs();
349 delta = T1-T0;
350 min_delta = min(min_delta, delta);
351 }
352 min_delta -= 10000;
353 sched->sleep_measurement_overhead = min_delta;
354
355 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
356}
357
358static struct sched_atom *
359get_new_event(struct task_desc *task, u64 timestamp)
360{
361 struct sched_atom *event = zalloc(sizeof(*event));
362 unsigned long idx = task->nr_events;
363 size_t size;
364
365 event->timestamp = timestamp;
366 event->nr = idx;
367
368 task->nr_events++;
369 size = sizeof(struct sched_atom *) * task->nr_events;
370 task->atoms = realloc(task->atoms, size);
371 BUG_ON(!task->atoms);
372
373 task->atoms[idx] = event;
374
375 return event;
376}
377
378static struct sched_atom *last_event(struct task_desc *task)
379{
380 if (!task->nr_events)
381 return NULL;
382
383 return task->atoms[task->nr_events - 1];
384}
385
386static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
387 u64 timestamp, u64 duration)
388{
389 struct sched_atom *event, *curr_event = last_event(task);
390
391 /*
392 * optimize an existing RUN event by merging this one
393 * to it:
394 */
395 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
396 sched->nr_run_events_optimized++;
397 curr_event->duration += duration;
398 return;
399 }
400
401 event = get_new_event(task, timestamp);
402
403 event->type = SCHED_EVENT_RUN;
404 event->duration = duration;
405
406 sched->nr_run_events++;
407}
408
409static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
410 u64 timestamp, struct task_desc *wakee)
411{
412 struct sched_atom *event, *wakee_event;
413
414 event = get_new_event(task, timestamp);
415 event->type = SCHED_EVENT_WAKEUP;
416 event->wakee = wakee;
417
418 wakee_event = last_event(wakee);
419 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
420 sched->targetless_wakeups++;
421 return;
422 }
423 if (wakee_event->wait_sem) {
424 sched->multitarget_wakeups++;
425 return;
426 }
427
428 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
429 sem_init(wakee_event->wait_sem, 0, 0);
430 wakee_event->specific_wait = 1;
431 event->wait_sem = wakee_event->wait_sem;
432
433 sched->nr_wakeup_events++;
434}
435
436static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
437 u64 timestamp, u64 task_state __maybe_unused)
438{
439 struct sched_atom *event = get_new_event(task, timestamp);
440
441 event->type = SCHED_EVENT_SLEEP;
442
443 sched->nr_sleep_events++;
444}
445
446static struct task_desc *register_pid(struct perf_sched *sched,
447 unsigned long pid, const char *comm)
448{
449 struct task_desc *task;
450 static int pid_max;
451
452 if (sched->pid_to_task == NULL) {
453 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
454 pid_max = MAX_PID;
455 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
456 }
457 if (pid >= (unsigned long)pid_max) {
458 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
459 sizeof(struct task_desc *))) == NULL);
460 while (pid >= (unsigned long)pid_max)
461 sched->pid_to_task[pid_max++] = NULL;
462 }
463
464 task = sched->pid_to_task[pid];
465
466 if (task)
467 return task;
468
469 task = zalloc(sizeof(*task));
470 task->pid = pid;
471 task->nr = sched->nr_tasks;
472 strcpy(task->comm, comm);
473 /*
474 * every task starts in sleeping state - this gets ignored
475 * if there's no wakeup pointing to this sleep state:
476 */
477 add_sched_event_sleep(sched, task, 0, 0);
478
479 sched->pid_to_task[pid] = task;
480 sched->nr_tasks++;
481 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
482 BUG_ON(!sched->tasks);
483 sched->tasks[task->nr] = task;
484
485 if (verbose > 0)
486 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
487
488 return task;
489}
490
491
492static void print_task_traces(struct perf_sched *sched)
493{
494 struct task_desc *task;
495 unsigned long i;
496
497 for (i = 0; i < sched->nr_tasks; i++) {
498 task = sched->tasks[i];
499 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
500 task->nr, task->comm, task->pid, task->nr_events);
501 }
502}
503
504static void add_cross_task_wakeups(struct perf_sched *sched)
505{
506 struct task_desc *task1, *task2;
507 unsigned long i, j;
508
509 for (i = 0; i < sched->nr_tasks; i++) {
510 task1 = sched->tasks[i];
511 j = i + 1;
512 if (j == sched->nr_tasks)
513 j = 0;
514 task2 = sched->tasks[j];
515 add_sched_event_wakeup(sched, task1, 0, task2);
516 }
517}
518
519static void perf_sched__process_event(struct perf_sched *sched,
520 struct sched_atom *atom)
521{
522 int ret = 0;
523
524 switch (atom->type) {
525 case SCHED_EVENT_RUN:
526 burn_nsecs(sched, atom->duration);
527 break;
528 case SCHED_EVENT_SLEEP:
529 if (atom->wait_sem)
530 ret = sem_wait(atom->wait_sem);
531 BUG_ON(ret);
532 break;
533 case SCHED_EVENT_WAKEUP:
534 if (atom->wait_sem)
535 ret = sem_post(atom->wait_sem);
536 BUG_ON(ret);
537 break;
538 case SCHED_EVENT_MIGRATION:
539 break;
540 default:
541 BUG_ON(1);
542 }
543}
544
545static u64 get_cpu_usage_nsec_parent(void)
546{
547 struct rusage ru;
548 u64 sum;
549 int err;
550
551 err = getrusage(RUSAGE_SELF, &ru);
552 BUG_ON(err);
553
554 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
555 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
556
557 return sum;
558}
559
560static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
561{
562 struct perf_event_attr attr;
563 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
564 int fd;
565 struct rlimit limit;
566 bool need_privilege = false;
567
568 memset(&attr, 0, sizeof(attr));
569
570 attr.type = PERF_TYPE_SOFTWARE;
571 attr.config = PERF_COUNT_SW_TASK_CLOCK;
572
573force_again:
574 fd = sys_perf_event_open(&attr, 0, -1, -1,
575 perf_event_open_cloexec_flag());
576
577 if (fd < 0) {
578 if (errno == EMFILE) {
579 if (sched->force) {
580 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
581 limit.rlim_cur += sched->nr_tasks - cur_task;
582 if (limit.rlim_cur > limit.rlim_max) {
583 limit.rlim_max = limit.rlim_cur;
584 need_privilege = true;
585 }
586 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
587 if (need_privilege && errno == EPERM)
588 strcpy(info, "Need privilege\n");
589 } else
590 goto force_again;
591 } else
592 strcpy(info, "Have a try with -f option\n");
593 }
594 pr_err("Error: sys_perf_event_open() syscall returned "
595 "with %d (%s)\n%s", fd,
596 str_error_r(errno, sbuf, sizeof(sbuf)), info);
597 exit(EXIT_FAILURE);
598 }
599 return fd;
600}
601
602static u64 get_cpu_usage_nsec_self(int fd)
603{
604 u64 runtime;
605 int ret;
606
607 ret = read(fd, &runtime, sizeof(runtime));
608 BUG_ON(ret != sizeof(runtime));
609
610 return runtime;
611}
612
613struct sched_thread_parms {
614 struct task_desc *task;
615 struct perf_sched *sched;
616 int fd;
617};
618
619static void *thread_func(void *ctx)
620{
621 struct sched_thread_parms *parms = ctx;
622 struct task_desc *this_task = parms->task;
623 struct perf_sched *sched = parms->sched;
624 u64 cpu_usage_0, cpu_usage_1;
625 unsigned long i, ret;
626 char comm2[22];
627 int fd = parms->fd;
628
629 zfree(&parms);
630
631 sprintf(comm2, ":%s", this_task->comm);
632 prctl(PR_SET_NAME, comm2);
633 if (fd < 0)
634 return NULL;
635again:
636 ret = sem_post(&this_task->ready_for_work);
637 BUG_ON(ret);
638 ret = pthread_mutex_lock(&sched->start_work_mutex);
639 BUG_ON(ret);
640 ret = pthread_mutex_unlock(&sched->start_work_mutex);
641 BUG_ON(ret);
642
643 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
644
645 for (i = 0; i < this_task->nr_events; i++) {
646 this_task->curr_event = i;
647 perf_sched__process_event(sched, this_task->atoms[i]);
648 }
649
650 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
651 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
652 ret = sem_post(&this_task->work_done_sem);
653 BUG_ON(ret);
654
655 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
656 BUG_ON(ret);
657 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
658 BUG_ON(ret);
659
660 goto again;
661}
662
663static void create_tasks(struct perf_sched *sched)
664{
665 struct task_desc *task;
666 pthread_attr_t attr;
667 unsigned long i;
668 int err;
669
670 err = pthread_attr_init(&attr);
671 BUG_ON(err);
672 err = pthread_attr_setstacksize(&attr,
673 (size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
674 BUG_ON(err);
675 err = pthread_mutex_lock(&sched->start_work_mutex);
676 BUG_ON(err);
677 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
678 BUG_ON(err);
679 for (i = 0; i < sched->nr_tasks; i++) {
680 struct sched_thread_parms *parms = malloc(sizeof(*parms));
681 BUG_ON(parms == NULL);
682 parms->task = task = sched->tasks[i];
683 parms->sched = sched;
684 parms->fd = self_open_counters(sched, i);
685 sem_init(&task->sleep_sem, 0, 0);
686 sem_init(&task->ready_for_work, 0, 0);
687 sem_init(&task->work_done_sem, 0, 0);
688 task->curr_event = 0;
689 err = pthread_create(&task->thread, &attr, thread_func, parms);
690 BUG_ON(err);
691 }
692}
693
694static void wait_for_tasks(struct perf_sched *sched)
695{
696 u64 cpu_usage_0, cpu_usage_1;
697 struct task_desc *task;
698 unsigned long i, ret;
699
700 sched->start_time = get_nsecs();
701 sched->cpu_usage = 0;
702 pthread_mutex_unlock(&sched->work_done_wait_mutex);
703
704 for (i = 0; i < sched->nr_tasks; i++) {
705 task = sched->tasks[i];
706 ret = sem_wait(&task->ready_for_work);
707 BUG_ON(ret);
708 sem_init(&task->ready_for_work, 0, 0);
709 }
710 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
711 BUG_ON(ret);
712
713 cpu_usage_0 = get_cpu_usage_nsec_parent();
714
715 pthread_mutex_unlock(&sched->start_work_mutex);
716
717 for (i = 0; i < sched->nr_tasks; i++) {
718 task = sched->tasks[i];
719 ret = sem_wait(&task->work_done_sem);
720 BUG_ON(ret);
721 sem_init(&task->work_done_sem, 0, 0);
722 sched->cpu_usage += task->cpu_usage;
723 task->cpu_usage = 0;
724 }
725
726 cpu_usage_1 = get_cpu_usage_nsec_parent();
727 if (!sched->runavg_cpu_usage)
728 sched->runavg_cpu_usage = sched->cpu_usage;
729 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
730
731 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
732 if (!sched->runavg_parent_cpu_usage)
733 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
734 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
735 sched->parent_cpu_usage)/sched->replay_repeat;
736
737 ret = pthread_mutex_lock(&sched->start_work_mutex);
738 BUG_ON(ret);
739
740 for (i = 0; i < sched->nr_tasks; i++) {
741 task = sched->tasks[i];
742 sem_init(&task->sleep_sem, 0, 0);
743 task->curr_event = 0;
744 }
745}
746
747static void run_one_test(struct perf_sched *sched)
748{
749 u64 T0, T1, delta, avg_delta, fluct;
750
751 T0 = get_nsecs();
752 wait_for_tasks(sched);
753 T1 = get_nsecs();
754
755 delta = T1 - T0;
756 sched->sum_runtime += delta;
757 sched->nr_runs++;
758
759 avg_delta = sched->sum_runtime / sched->nr_runs;
760 if (delta < avg_delta)
761 fluct = avg_delta - delta;
762 else
763 fluct = delta - avg_delta;
764 sched->sum_fluct += fluct;
765 if (!sched->run_avg)
766 sched->run_avg = delta;
767 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
768
769 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
770
771 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
772
773 printf("cpu: %0.2f / %0.2f",
774 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
775
776#if 0
777 /*
778 * rusage statistics done by the parent, these are less
779 * accurate than the sched->sum_exec_runtime based statistics:
780 */
781 printf(" [%0.2f / %0.2f]",
782 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
783 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
784#endif
785
786 printf("\n");
787
788 if (sched->nr_sleep_corrections)
789 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
790 sched->nr_sleep_corrections = 0;
791}
792
793static void test_calibrations(struct perf_sched *sched)
794{
795 u64 T0, T1;
796
797 T0 = get_nsecs();
798 burn_nsecs(sched, NSEC_PER_MSEC);
799 T1 = get_nsecs();
800
801 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
802
803 T0 = get_nsecs();
804 sleep_nsecs(NSEC_PER_MSEC);
805 T1 = get_nsecs();
806
807 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
808}
809
810static int
811replay_wakeup_event(struct perf_sched *sched,
812 struct evsel *evsel, struct perf_sample *sample,
813 struct machine *machine __maybe_unused)
814{
815 const char *comm = evsel__strval(evsel, sample, "comm");
816 const u32 pid = evsel__intval(evsel, sample, "pid");
817 struct task_desc *waker, *wakee;
818
819 if (verbose > 0) {
820 printf("sched_wakeup event %p\n", evsel);
821
822 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
823 }
824
825 waker = register_pid(sched, sample->tid, "<unknown>");
826 wakee = register_pid(sched, pid, comm);
827
828 add_sched_event_wakeup(sched, waker, sample->time, wakee);
829 return 0;
830}
831
832static int replay_switch_event(struct perf_sched *sched,
833 struct evsel *evsel,
834 struct perf_sample *sample,
835 struct machine *machine __maybe_unused)
836{
837 const char *prev_comm = evsel__strval(evsel, sample, "prev_comm"),
838 *next_comm = evsel__strval(evsel, sample, "next_comm");
839 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
840 next_pid = evsel__intval(evsel, sample, "next_pid");
841 const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
842 struct task_desc *prev, __maybe_unused *next;
843 u64 timestamp0, timestamp = sample->time;
844 int cpu = sample->cpu;
845 s64 delta;
846
847 if (verbose > 0)
848 printf("sched_switch event %p\n", evsel);
849
850 if (cpu >= MAX_CPUS || cpu < 0)
851 return 0;
852
853 timestamp0 = sched->cpu_last_switched[cpu];
854 if (timestamp0)
855 delta = timestamp - timestamp0;
856 else
857 delta = 0;
858
859 if (delta < 0) {
860 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
861 return -1;
862 }
863
864 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
865 prev_comm, prev_pid, next_comm, next_pid, delta);
866
867 prev = register_pid(sched, prev_pid, prev_comm);
868 next = register_pid(sched, next_pid, next_comm);
869
870 sched->cpu_last_switched[cpu] = timestamp;
871
872 add_sched_event_run(sched, prev, timestamp, delta);
873 add_sched_event_sleep(sched, prev, timestamp, prev_state);
874
875 return 0;
876}
877
878static int replay_fork_event(struct perf_sched *sched,
879 union perf_event *event,
880 struct machine *machine)
881{
882 struct thread *child, *parent;
883
884 child = machine__findnew_thread(machine, event->fork.pid,
885 event->fork.tid);
886 parent = machine__findnew_thread(machine, event->fork.ppid,
887 event->fork.ptid);
888
889 if (child == NULL || parent == NULL) {
890 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
891 child, parent);
892 goto out_put;
893 }
894
895 if (verbose > 0) {
896 printf("fork event\n");
897 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
898 printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
899 }
900
901 register_pid(sched, parent->tid, thread__comm_str(parent));
902 register_pid(sched, child->tid, thread__comm_str(child));
903out_put:
904 thread__put(child);
905 thread__put(parent);
906 return 0;
907}
908
909struct sort_dimension {
910 const char *name;
911 sort_fn_t cmp;
912 struct list_head list;
913};
914
915/*
916 * handle runtime stats saved per thread
917 */
918static struct thread_runtime *thread__init_runtime(struct thread *thread)
919{
920 struct thread_runtime *r;
921
922 r = zalloc(sizeof(struct thread_runtime));
923 if (!r)
924 return NULL;
925
926 init_stats(&r->run_stats);
927 thread__set_priv(thread, r);
928
929 return r;
930}
931
932static struct thread_runtime *thread__get_runtime(struct thread *thread)
933{
934 struct thread_runtime *tr;
935
936 tr = thread__priv(thread);
937 if (tr == NULL) {
938 tr = thread__init_runtime(thread);
939 if (tr == NULL)
940 pr_debug("Failed to malloc memory for runtime data.\n");
941 }
942
943 return tr;
944}
945
946static int
947thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
948{
949 struct sort_dimension *sort;
950 int ret = 0;
951
952 BUG_ON(list_empty(list));
953
954 list_for_each_entry(sort, list, list) {
955 ret = sort->cmp(l, r);
956 if (ret)
957 return ret;
958 }
959
960 return ret;
961}
962
963static struct work_atoms *
964thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
965 struct list_head *sort_list)
966{
967 struct rb_node *node = root->rb_root.rb_node;
968 struct work_atoms key = { .thread = thread };
969
970 while (node) {
971 struct work_atoms *atoms;
972 int cmp;
973
974 atoms = container_of(node, struct work_atoms, node);
975
976 cmp = thread_lat_cmp(sort_list, &key, atoms);
977 if (cmp > 0)
978 node = node->rb_left;
979 else if (cmp < 0)
980 node = node->rb_right;
981 else {
982 BUG_ON(thread != atoms->thread);
983 return atoms;
984 }
985 }
986 return NULL;
987}
988
989static void
990__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
991 struct list_head *sort_list)
992{
993 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
994 bool leftmost = true;
995
996 while (*new) {
997 struct work_atoms *this;
998 int cmp;
999
1000 this = container_of(*new, struct work_atoms, node);
1001 parent = *new;
1002
1003 cmp = thread_lat_cmp(sort_list, data, this);
1004
1005 if (cmp > 0)
1006 new = &((*new)->rb_left);
1007 else {
1008 new = &((*new)->rb_right);
1009 leftmost = false;
1010 }
1011 }
1012
1013 rb_link_node(&data->node, parent, new);
1014 rb_insert_color_cached(&data->node, root, leftmost);
1015}
1016
1017static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1018{
1019 struct work_atoms *atoms = zalloc(sizeof(*atoms));
1020 if (!atoms) {
1021 pr_err("No memory at %s\n", __func__);
1022 return -1;
1023 }
1024
1025 atoms->thread = thread__get(thread);
1026 INIT_LIST_HEAD(&atoms->work_list);
1027 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1028 return 0;
1029}
1030
1031static char sched_out_state(u64 prev_state)
1032{
1033 const char *str = TASK_STATE_TO_CHAR_STR;
1034
1035 return str[prev_state];
1036}
1037
1038static int
1039add_sched_out_event(struct work_atoms *atoms,
1040 char run_state,
1041 u64 timestamp)
1042{
1043 struct work_atom *atom = zalloc(sizeof(*atom));
1044 if (!atom) {
1045 pr_err("Non memory at %s", __func__);
1046 return -1;
1047 }
1048
1049 atom->sched_out_time = timestamp;
1050
1051 if (run_state == 'R') {
1052 atom->state = THREAD_WAIT_CPU;
1053 atom->wake_up_time = atom->sched_out_time;
1054 }
1055
1056 list_add_tail(&atom->list, &atoms->work_list);
1057 return 0;
1058}
1059
1060static void
1061add_runtime_event(struct work_atoms *atoms, u64 delta,
1062 u64 timestamp __maybe_unused)
1063{
1064 struct work_atom *atom;
1065
1066 BUG_ON(list_empty(&atoms->work_list));
1067
1068 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1069
1070 atom->runtime += delta;
1071 atoms->total_runtime += delta;
1072}
1073
1074static void
1075add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1076{
1077 struct work_atom *atom;
1078 u64 delta;
1079
1080 if (list_empty(&atoms->work_list))
1081 return;
1082
1083 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1084
1085 if (atom->state != THREAD_WAIT_CPU)
1086 return;
1087
1088 if (timestamp < atom->wake_up_time) {
1089 atom->state = THREAD_IGNORE;
1090 return;
1091 }
1092
1093 atom->state = THREAD_SCHED_IN;
1094 atom->sched_in_time = timestamp;
1095
1096 delta = atom->sched_in_time - atom->wake_up_time;
1097 atoms->total_lat += delta;
1098 if (delta > atoms->max_lat) {
1099 atoms->max_lat = delta;
1100 atoms->max_lat_start = atom->wake_up_time;
1101 atoms->max_lat_end = timestamp;
1102 }
1103 atoms->nb_atoms++;
1104}
1105
1106static int latency_switch_event(struct perf_sched *sched,
1107 struct evsel *evsel,
1108 struct perf_sample *sample,
1109 struct machine *machine)
1110{
1111 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1112 next_pid = evsel__intval(evsel, sample, "next_pid");
1113 const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
1114 struct work_atoms *out_events, *in_events;
1115 struct thread *sched_out, *sched_in;
1116 u64 timestamp0, timestamp = sample->time;
1117 int cpu = sample->cpu, err = -1;
1118 s64 delta;
1119
1120 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1121
1122 timestamp0 = sched->cpu_last_switched[cpu];
1123 sched->cpu_last_switched[cpu] = timestamp;
1124 if (timestamp0)
1125 delta = timestamp - timestamp0;
1126 else
1127 delta = 0;
1128
1129 if (delta < 0) {
1130 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1131 return -1;
1132 }
1133
1134 sched_out = machine__findnew_thread(machine, -1, prev_pid);
1135 sched_in = machine__findnew_thread(machine, -1, next_pid);
1136 if (sched_out == NULL || sched_in == NULL)
1137 goto out_put;
1138
1139 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1140 if (!out_events) {
1141 if (thread_atoms_insert(sched, sched_out))
1142 goto out_put;
1143 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1144 if (!out_events) {
1145 pr_err("out-event: Internal tree error");
1146 goto out_put;
1147 }
1148 }
1149 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1150 return -1;
1151
1152 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1153 if (!in_events) {
1154 if (thread_atoms_insert(sched, sched_in))
1155 goto out_put;
1156 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1157 if (!in_events) {
1158 pr_err("in-event: Internal tree error");
1159 goto out_put;
1160 }
1161 /*
1162 * Take came in we have not heard about yet,
1163 * add in an initial atom in runnable state:
1164 */
1165 if (add_sched_out_event(in_events, 'R', timestamp))
1166 goto out_put;
1167 }
1168 add_sched_in_event(in_events, timestamp);
1169 err = 0;
1170out_put:
1171 thread__put(sched_out);
1172 thread__put(sched_in);
1173 return err;
1174}
1175
1176static int latency_runtime_event(struct perf_sched *sched,
1177 struct evsel *evsel,
1178 struct perf_sample *sample,
1179 struct machine *machine)
1180{
1181 const u32 pid = evsel__intval(evsel, sample, "pid");
1182 const u64 runtime = evsel__intval(evsel, sample, "runtime");
1183 struct thread *thread = machine__findnew_thread(machine, -1, pid);
1184 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1185 u64 timestamp = sample->time;
1186 int cpu = sample->cpu, err = -1;
1187
1188 if (thread == NULL)
1189 return -1;
1190
1191 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1192 if (!atoms) {
1193 if (thread_atoms_insert(sched, thread))
1194 goto out_put;
1195 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1196 if (!atoms) {
1197 pr_err("in-event: Internal tree error");
1198 goto out_put;
1199 }
1200 if (add_sched_out_event(atoms, 'R', timestamp))
1201 goto out_put;
1202 }
1203
1204 add_runtime_event(atoms, runtime, timestamp);
1205 err = 0;
1206out_put:
1207 thread__put(thread);
1208 return err;
1209}
1210
1211static int latency_wakeup_event(struct perf_sched *sched,
1212 struct evsel *evsel,
1213 struct perf_sample *sample,
1214 struct machine *machine)
1215{
1216 const u32 pid = evsel__intval(evsel, sample, "pid");
1217 struct work_atoms *atoms;
1218 struct work_atom *atom;
1219 struct thread *wakee;
1220 u64 timestamp = sample->time;
1221 int err = -1;
1222
1223 wakee = machine__findnew_thread(machine, -1, pid);
1224 if (wakee == NULL)
1225 return -1;
1226 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1227 if (!atoms) {
1228 if (thread_atoms_insert(sched, wakee))
1229 goto out_put;
1230 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1231 if (!atoms) {
1232 pr_err("wakeup-event: Internal tree error");
1233 goto out_put;
1234 }
1235 if (add_sched_out_event(atoms, 'S', timestamp))
1236 goto out_put;
1237 }
1238
1239 BUG_ON(list_empty(&atoms->work_list));
1240
1241 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1242
1243 /*
1244 * As we do not guarantee the wakeup event happens when
1245 * task is out of run queue, also may happen when task is
1246 * on run queue and wakeup only change ->state to TASK_RUNNING,
1247 * then we should not set the ->wake_up_time when wake up a
1248 * task which is on run queue.
1249 *
1250 * You WILL be missing events if you've recorded only
1251 * one CPU, or are only looking at only one, so don't
1252 * skip in this case.
1253 */
1254 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1255 goto out_ok;
1256
1257 sched->nr_timestamps++;
1258 if (atom->sched_out_time > timestamp) {
1259 sched->nr_unordered_timestamps++;
1260 goto out_ok;
1261 }
1262
1263 atom->state = THREAD_WAIT_CPU;
1264 atom->wake_up_time = timestamp;
1265out_ok:
1266 err = 0;
1267out_put:
1268 thread__put(wakee);
1269 return err;
1270}
1271
1272static int latency_migrate_task_event(struct perf_sched *sched,
1273 struct evsel *evsel,
1274 struct perf_sample *sample,
1275 struct machine *machine)
1276{
1277 const u32 pid = evsel__intval(evsel, sample, "pid");
1278 u64 timestamp = sample->time;
1279 struct work_atoms *atoms;
1280 struct work_atom *atom;
1281 struct thread *migrant;
1282 int err = -1;
1283
1284 /*
1285 * Only need to worry about migration when profiling one CPU.
1286 */
1287 if (sched->profile_cpu == -1)
1288 return 0;
1289
1290 migrant = machine__findnew_thread(machine, -1, pid);
1291 if (migrant == NULL)
1292 return -1;
1293 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1294 if (!atoms) {
1295 if (thread_atoms_insert(sched, migrant))
1296 goto out_put;
1297 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1298 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1299 if (!atoms) {
1300 pr_err("migration-event: Internal tree error");
1301 goto out_put;
1302 }
1303 if (add_sched_out_event(atoms, 'R', timestamp))
1304 goto out_put;
1305 }
1306
1307 BUG_ON(list_empty(&atoms->work_list));
1308
1309 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1310 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1311
1312 sched->nr_timestamps++;
1313
1314 if (atom->sched_out_time > timestamp)
1315 sched->nr_unordered_timestamps++;
1316 err = 0;
1317out_put:
1318 thread__put(migrant);
1319 return err;
1320}
1321
1322static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1323{
1324 int i;
1325 int ret;
1326 u64 avg;
1327 char max_lat_start[32], max_lat_end[32];
1328
1329 if (!work_list->nb_atoms)
1330 return;
1331 /*
1332 * Ignore idle threads:
1333 */
1334 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1335 return;
1336
1337 sched->all_runtime += work_list->total_runtime;
1338 sched->all_count += work_list->nb_atoms;
1339
1340 if (work_list->num_merged > 1)
1341 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1342 else
1343 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1344
1345 for (i = 0; i < 24 - ret; i++)
1346 printf(" ");
1347
1348 avg = work_list->total_lat / work_list->nb_atoms;
1349 timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1350 timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1351
1352 printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1353 (double)work_list->total_runtime / NSEC_PER_MSEC,
1354 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1355 (double)work_list->max_lat / NSEC_PER_MSEC,
1356 max_lat_start, max_lat_end);
1357}
1358
1359static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1360{
1361 if (l->thread == r->thread)
1362 return 0;
1363 if (l->thread->tid < r->thread->tid)
1364 return -1;
1365 if (l->thread->tid > r->thread->tid)
1366 return 1;
1367 return (int)(l->thread - r->thread);
1368}
1369
1370static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1371{
1372 u64 avgl, avgr;
1373
1374 if (!l->nb_atoms)
1375 return -1;
1376
1377 if (!r->nb_atoms)
1378 return 1;
1379
1380 avgl = l->total_lat / l->nb_atoms;
1381 avgr = r->total_lat / r->nb_atoms;
1382
1383 if (avgl < avgr)
1384 return -1;
1385 if (avgl > avgr)
1386 return 1;
1387
1388 return 0;
1389}
1390
1391static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1392{
1393 if (l->max_lat < r->max_lat)
1394 return -1;
1395 if (l->max_lat > r->max_lat)
1396 return 1;
1397
1398 return 0;
1399}
1400
1401static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1402{
1403 if (l->nb_atoms < r->nb_atoms)
1404 return -1;
1405 if (l->nb_atoms > r->nb_atoms)
1406 return 1;
1407
1408 return 0;
1409}
1410
1411static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1412{
1413 if (l->total_runtime < r->total_runtime)
1414 return -1;
1415 if (l->total_runtime > r->total_runtime)
1416 return 1;
1417
1418 return 0;
1419}
1420
1421static int sort_dimension__add(const char *tok, struct list_head *list)
1422{
1423 size_t i;
1424 static struct sort_dimension avg_sort_dimension = {
1425 .name = "avg",
1426 .cmp = avg_cmp,
1427 };
1428 static struct sort_dimension max_sort_dimension = {
1429 .name = "max",
1430 .cmp = max_cmp,
1431 };
1432 static struct sort_dimension pid_sort_dimension = {
1433 .name = "pid",
1434 .cmp = pid_cmp,
1435 };
1436 static struct sort_dimension runtime_sort_dimension = {
1437 .name = "runtime",
1438 .cmp = runtime_cmp,
1439 };
1440 static struct sort_dimension switch_sort_dimension = {
1441 .name = "switch",
1442 .cmp = switch_cmp,
1443 };
1444 struct sort_dimension *available_sorts[] = {
1445 &pid_sort_dimension,
1446 &avg_sort_dimension,
1447 &max_sort_dimension,
1448 &switch_sort_dimension,
1449 &runtime_sort_dimension,
1450 };
1451
1452 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1453 if (!strcmp(available_sorts[i]->name, tok)) {
1454 list_add_tail(&available_sorts[i]->list, list);
1455
1456 return 0;
1457 }
1458 }
1459
1460 return -1;
1461}
1462
1463static void perf_sched__sort_lat(struct perf_sched *sched)
1464{
1465 struct rb_node *node;
1466 struct rb_root_cached *root = &sched->atom_root;
1467again:
1468 for (;;) {
1469 struct work_atoms *data;
1470 node = rb_first_cached(root);
1471 if (!node)
1472 break;
1473
1474 rb_erase_cached(node, root);
1475 data = rb_entry(node, struct work_atoms, node);
1476 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1477 }
1478 if (root == &sched->atom_root) {
1479 root = &sched->merged_atom_root;
1480 goto again;
1481 }
1482}
1483
1484static int process_sched_wakeup_event(struct perf_tool *tool,
1485 struct evsel *evsel,
1486 struct perf_sample *sample,
1487 struct machine *machine)
1488{
1489 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1490
1491 if (sched->tp_handler->wakeup_event)
1492 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1493
1494 return 0;
1495}
1496
1497union map_priv {
1498 void *ptr;
1499 bool color;
1500};
1501
1502static bool thread__has_color(struct thread *thread)
1503{
1504 union map_priv priv = {
1505 .ptr = thread__priv(thread),
1506 };
1507
1508 return priv.color;
1509}
1510
1511static struct thread*
1512map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1513{
1514 struct thread *thread = machine__findnew_thread(machine, pid, tid);
1515 union map_priv priv = {
1516 .color = false,
1517 };
1518
1519 if (!sched->map.color_pids || !thread || thread__priv(thread))
1520 return thread;
1521
1522 if (thread_map__has(sched->map.color_pids, tid))
1523 priv.color = true;
1524
1525 thread__set_priv(thread, priv.ptr);
1526 return thread;
1527}
1528
1529static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1530 struct perf_sample *sample, struct machine *machine)
1531{
1532 const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1533 struct thread *sched_in;
1534 struct thread_runtime *tr;
1535 int new_shortname;
1536 u64 timestamp0, timestamp = sample->time;
1537 s64 delta;
1538 int i, this_cpu = sample->cpu;
1539 int cpus_nr;
1540 bool new_cpu = false;
1541 const char *color = PERF_COLOR_NORMAL;
1542 char stimestamp[32];
1543
1544 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1545
1546 if (this_cpu > sched->max_cpu)
1547 sched->max_cpu = this_cpu;
1548
1549 if (sched->map.comp) {
1550 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1551 if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1552 sched->map.comp_cpus[cpus_nr++] = this_cpu;
1553 new_cpu = true;
1554 }
1555 } else
1556 cpus_nr = sched->max_cpu;
1557
1558 timestamp0 = sched->cpu_last_switched[this_cpu];
1559 sched->cpu_last_switched[this_cpu] = timestamp;
1560 if (timestamp0)
1561 delta = timestamp - timestamp0;
1562 else
1563 delta = 0;
1564
1565 if (delta < 0) {
1566 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1567 return -1;
1568 }
1569
1570 sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1571 if (sched_in == NULL)
1572 return -1;
1573
1574 tr = thread__get_runtime(sched_in);
1575 if (tr == NULL) {
1576 thread__put(sched_in);
1577 return -1;
1578 }
1579
1580 sched->curr_thread[this_cpu] = thread__get(sched_in);
1581
1582 printf(" ");
1583
1584 new_shortname = 0;
1585 if (!tr->shortname[0]) {
1586 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1587 /*
1588 * Don't allocate a letter-number for swapper:0
1589 * as a shortname. Instead, we use '.' for it.
1590 */
1591 tr->shortname[0] = '.';
1592 tr->shortname[1] = ' ';
1593 } else {
1594 tr->shortname[0] = sched->next_shortname1;
1595 tr->shortname[1] = sched->next_shortname2;
1596
1597 if (sched->next_shortname1 < 'Z') {
1598 sched->next_shortname1++;
1599 } else {
1600 sched->next_shortname1 = 'A';
1601 if (sched->next_shortname2 < '9')
1602 sched->next_shortname2++;
1603 else
1604 sched->next_shortname2 = '0';
1605 }
1606 }
1607 new_shortname = 1;
1608 }
1609
1610 for (i = 0; i < cpus_nr; i++) {
1611 int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1612 struct thread *curr_thread = sched->curr_thread[cpu];
1613 struct thread_runtime *curr_tr;
1614 const char *pid_color = color;
1615 const char *cpu_color = color;
1616
1617 if (curr_thread && thread__has_color(curr_thread))
1618 pid_color = COLOR_PIDS;
1619
1620 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1621 continue;
1622
1623 if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1624 cpu_color = COLOR_CPUS;
1625
1626 if (cpu != this_cpu)
1627 color_fprintf(stdout, color, " ");
1628 else
1629 color_fprintf(stdout, cpu_color, "*");
1630
1631 if (sched->curr_thread[cpu]) {
1632 curr_tr = thread__get_runtime(sched->curr_thread[cpu]);
1633 if (curr_tr == NULL) {
1634 thread__put(sched_in);
1635 return -1;
1636 }
1637 color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1638 } else
1639 color_fprintf(stdout, color, " ");
1640 }
1641
1642 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1643 goto out;
1644
1645 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1646 color_fprintf(stdout, color, " %12s secs ", stimestamp);
1647 if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1648 const char *pid_color = color;
1649
1650 if (thread__has_color(sched_in))
1651 pid_color = COLOR_PIDS;
1652
1653 color_fprintf(stdout, pid_color, "%s => %s:%d",
1654 tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1655 tr->comm_changed = false;
1656 }
1657
1658 if (sched->map.comp && new_cpu)
1659 color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1660
1661out:
1662 color_fprintf(stdout, color, "\n");
1663
1664 thread__put(sched_in);
1665
1666 return 0;
1667}
1668
1669static int process_sched_switch_event(struct perf_tool *tool,
1670 struct evsel *evsel,
1671 struct perf_sample *sample,
1672 struct machine *machine)
1673{
1674 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1675 int this_cpu = sample->cpu, err = 0;
1676 u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1677 next_pid = evsel__intval(evsel, sample, "next_pid");
1678
1679 if (sched->curr_pid[this_cpu] != (u32)-1) {
1680 /*
1681 * Are we trying to switch away a PID that is
1682 * not current?
1683 */
1684 if (sched->curr_pid[this_cpu] != prev_pid)
1685 sched->nr_context_switch_bugs++;
1686 }
1687
1688 if (sched->tp_handler->switch_event)
1689 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1690
1691 sched->curr_pid[this_cpu] = next_pid;
1692 return err;
1693}
1694
1695static int process_sched_runtime_event(struct perf_tool *tool,
1696 struct evsel *evsel,
1697 struct perf_sample *sample,
1698 struct machine *machine)
1699{
1700 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1701
1702 if (sched->tp_handler->runtime_event)
1703 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1704
1705 return 0;
1706}
1707
1708static int perf_sched__process_fork_event(struct perf_tool *tool,
1709 union perf_event *event,
1710 struct perf_sample *sample,
1711 struct machine *machine)
1712{
1713 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1714
1715 /* run the fork event through the perf machinery */
1716 perf_event__process_fork(tool, event, sample, machine);
1717
1718 /* and then run additional processing needed for this command */
1719 if (sched->tp_handler->fork_event)
1720 return sched->tp_handler->fork_event(sched, event, machine);
1721
1722 return 0;
1723}
1724
1725static int process_sched_migrate_task_event(struct perf_tool *tool,
1726 struct evsel *evsel,
1727 struct perf_sample *sample,
1728 struct machine *machine)
1729{
1730 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1731
1732 if (sched->tp_handler->migrate_task_event)
1733 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1734
1735 return 0;
1736}
1737
1738typedef int (*tracepoint_handler)(struct perf_tool *tool,
1739 struct evsel *evsel,
1740 struct perf_sample *sample,
1741 struct machine *machine);
1742
1743static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1744 union perf_event *event __maybe_unused,
1745 struct perf_sample *sample,
1746 struct evsel *evsel,
1747 struct machine *machine)
1748{
1749 int err = 0;
1750
1751 if (evsel->handler != NULL) {
1752 tracepoint_handler f = evsel->handler;
1753 err = f(tool, evsel, sample, machine);
1754 }
1755
1756 return err;
1757}
1758
1759static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1760 union perf_event *event,
1761 struct perf_sample *sample,
1762 struct machine *machine)
1763{
1764 struct thread *thread;
1765 struct thread_runtime *tr;
1766 int err;
1767
1768 err = perf_event__process_comm(tool, event, sample, machine);
1769 if (err)
1770 return err;
1771
1772 thread = machine__find_thread(machine, sample->pid, sample->tid);
1773 if (!thread) {
1774 pr_err("Internal error: can't find thread\n");
1775 return -1;
1776 }
1777
1778 tr = thread__get_runtime(thread);
1779 if (tr == NULL) {
1780 thread__put(thread);
1781 return -1;
1782 }
1783
1784 tr->comm_changed = true;
1785 thread__put(thread);
1786
1787 return 0;
1788}
1789
1790static int perf_sched__read_events(struct perf_sched *sched)
1791{
1792 const struct evsel_str_handler handlers[] = {
1793 { "sched:sched_switch", process_sched_switch_event, },
1794 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1795 { "sched:sched_wakeup", process_sched_wakeup_event, },
1796 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1797 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1798 };
1799 struct perf_session *session;
1800 struct perf_data data = {
1801 .path = input_name,
1802 .mode = PERF_DATA_MODE_READ,
1803 .force = sched->force,
1804 };
1805 int rc = -1;
1806
1807 session = perf_session__new(&data, false, &sched->tool);
1808 if (IS_ERR(session)) {
1809 pr_debug("Error creating perf session");
1810 return PTR_ERR(session);
1811 }
1812
1813 symbol__init(&session->header.env);
1814
1815 if (perf_session__set_tracepoints_handlers(session, handlers))
1816 goto out_delete;
1817
1818 if (perf_session__has_traces(session, "record -R")) {
1819 int err = perf_session__process_events(session);
1820 if (err) {
1821 pr_err("Failed to process events, error %d", err);
1822 goto out_delete;
1823 }
1824
1825 sched->nr_events = session->evlist->stats.nr_events[0];
1826 sched->nr_lost_events = session->evlist->stats.total_lost;
1827 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1828 }
1829
1830 rc = 0;
1831out_delete:
1832 perf_session__delete(session);
1833 return rc;
1834}
1835
1836/*
1837 * scheduling times are printed as msec.usec
1838 */
1839static inline void print_sched_time(unsigned long long nsecs, int width)
1840{
1841 unsigned long msecs;
1842 unsigned long usecs;
1843
1844 msecs = nsecs / NSEC_PER_MSEC;
1845 nsecs -= msecs * NSEC_PER_MSEC;
1846 usecs = nsecs / NSEC_PER_USEC;
1847 printf("%*lu.%03lu ", width, msecs, usecs);
1848}
1849
1850/*
1851 * returns runtime data for event, allocating memory for it the
1852 * first time it is used.
1853 */
1854static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1855{
1856 struct evsel_runtime *r = evsel->priv;
1857
1858 if (r == NULL) {
1859 r = zalloc(sizeof(struct evsel_runtime));
1860 evsel->priv = r;
1861 }
1862
1863 return r;
1864}
1865
1866/*
1867 * save last time event was seen per cpu
1868 */
1869static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1870{
1871 struct evsel_runtime *r = evsel__get_runtime(evsel);
1872
1873 if (r == NULL)
1874 return;
1875
1876 if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1877 int i, n = __roundup_pow_of_two(cpu+1);
1878 void *p = r->last_time;
1879
1880 p = realloc(r->last_time, n * sizeof(u64));
1881 if (!p)
1882 return;
1883
1884 r->last_time = p;
1885 for (i = r->ncpu; i < n; ++i)
1886 r->last_time[i] = (u64) 0;
1887
1888 r->ncpu = n;
1889 }
1890
1891 r->last_time[cpu] = timestamp;
1892}
1893
1894/* returns last time this event was seen on the given cpu */
1895static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
1896{
1897 struct evsel_runtime *r = evsel__get_runtime(evsel);
1898
1899 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1900 return 0;
1901
1902 return r->last_time[cpu];
1903}
1904
1905static int comm_width = 30;
1906
1907static char *timehist_get_commstr(struct thread *thread)
1908{
1909 static char str[32];
1910 const char *comm = thread__comm_str(thread);
1911 pid_t tid = thread->tid;
1912 pid_t pid = thread->pid_;
1913 int n;
1914
1915 if (pid == 0)
1916 n = scnprintf(str, sizeof(str), "%s", comm);
1917
1918 else if (tid != pid)
1919 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1920
1921 else
1922 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1923
1924 if (n > comm_width)
1925 comm_width = n;
1926
1927 return str;
1928}
1929
1930static void timehist_header(struct perf_sched *sched)
1931{
1932 u32 ncpus = sched->max_cpu + 1;
1933 u32 i, j;
1934
1935 printf("%15s %6s ", "time", "cpu");
1936
1937 if (sched->show_cpu_visual) {
1938 printf(" ");
1939 for (i = 0, j = 0; i < ncpus; ++i) {
1940 printf("%x", j++);
1941 if (j > 15)
1942 j = 0;
1943 }
1944 printf(" ");
1945 }
1946
1947 printf(" %-*s %9s %9s %9s", comm_width,
1948 "task name", "wait time", "sch delay", "run time");
1949
1950 if (sched->show_state)
1951 printf(" %s", "state");
1952
1953 printf("\n");
1954
1955 /*
1956 * units row
1957 */
1958 printf("%15s %-6s ", "", "");
1959
1960 if (sched->show_cpu_visual)
1961 printf(" %*s ", ncpus, "");
1962
1963 printf(" %-*s %9s %9s %9s", comm_width,
1964 "[tid/pid]", "(msec)", "(msec)", "(msec)");
1965
1966 if (sched->show_state)
1967 printf(" %5s", "");
1968
1969 printf("\n");
1970
1971 /*
1972 * separator
1973 */
1974 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1975
1976 if (sched->show_cpu_visual)
1977 printf(" %.*s ", ncpus, graph_dotted_line);
1978
1979 printf(" %.*s %.9s %.9s %.9s", comm_width,
1980 graph_dotted_line, graph_dotted_line, graph_dotted_line,
1981 graph_dotted_line);
1982
1983 if (sched->show_state)
1984 printf(" %.5s", graph_dotted_line);
1985
1986 printf("\n");
1987}
1988
1989static char task_state_char(struct thread *thread, int state)
1990{
1991 static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1992 unsigned bit = state ? ffs(state) : 0;
1993
1994 /* 'I' for idle */
1995 if (thread->tid == 0)
1996 return 'I';
1997
1998 return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1999}
2000
2001static void timehist_print_sample(struct perf_sched *sched,
2002 struct evsel *evsel,
2003 struct perf_sample *sample,
2004 struct addr_location *al,
2005 struct thread *thread,
2006 u64 t, int state)
2007{
2008 struct thread_runtime *tr = thread__priv(thread);
2009 const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2010 const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2011 u32 max_cpus = sched->max_cpu + 1;
2012 char tstr[64];
2013 char nstr[30];
2014 u64 wait_time;
2015
2016 if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2017 return;
2018
2019 timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2020 printf("%15s [%04d] ", tstr, sample->cpu);
2021
2022 if (sched->show_cpu_visual) {
2023 u32 i;
2024 char c;
2025
2026 printf(" ");
2027 for (i = 0; i < max_cpus; ++i) {
2028 /* flag idle times with 'i'; others are sched events */
2029 if (i == sample->cpu)
2030 c = (thread->tid == 0) ? 'i' : 's';
2031 else
2032 c = ' ';
2033 printf("%c", c);
2034 }
2035 printf(" ");
2036 }
2037
2038 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2039
2040 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2041 print_sched_time(wait_time, 6);
2042
2043 print_sched_time(tr->dt_delay, 6);
2044 print_sched_time(tr->dt_run, 6);
2045
2046 if (sched->show_state)
2047 printf(" %5c ", task_state_char(thread, state));
2048
2049 if (sched->show_next) {
2050 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2051 printf(" %-*s", comm_width, nstr);
2052 }
2053
2054 if (sched->show_wakeups && !sched->show_next)
2055 printf(" %-*s", comm_width, "");
2056
2057 if (thread->tid == 0)
2058 goto out;
2059
2060 if (sched->show_callchain)
2061 printf(" ");
2062
2063 sample__fprintf_sym(sample, al, 0,
2064 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2065 EVSEL__PRINT_CALLCHAIN_ARROW |
2066 EVSEL__PRINT_SKIP_IGNORED,
2067 &callchain_cursor, symbol_conf.bt_stop_list, stdout);
2068
2069out:
2070 printf("\n");
2071}
2072
2073/*
2074 * Explanation of delta-time stats:
2075 *
2076 * t = time of current schedule out event
2077 * tprev = time of previous sched out event
2078 * also time of schedule-in event for current task
2079 * last_time = time of last sched change event for current task
2080 * (i.e, time process was last scheduled out)
2081 * ready_to_run = time of wakeup for current task
2082 *
2083 * -----|------------|------------|------------|------
2084 * last ready tprev t
2085 * time to run
2086 *
2087 * |-------- dt_wait --------|
2088 * |- dt_delay -|-- dt_run --|
2089 *
2090 * dt_run = run time of current task
2091 * dt_wait = time between last schedule out event for task and tprev
2092 * represents time spent off the cpu
2093 * dt_delay = time between wakeup and schedule-in of task
2094 */
2095
2096static void timehist_update_runtime_stats(struct thread_runtime *r,
2097 u64 t, u64 tprev)
2098{
2099 r->dt_delay = 0;
2100 r->dt_sleep = 0;
2101 r->dt_iowait = 0;
2102 r->dt_preempt = 0;
2103 r->dt_run = 0;
2104
2105 if (tprev) {
2106 r->dt_run = t - tprev;
2107 if (r->ready_to_run) {
2108 if (r->ready_to_run > tprev)
2109 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2110 else
2111 r->dt_delay = tprev - r->ready_to_run;
2112 }
2113
2114 if (r->last_time > tprev)
2115 pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2116 else if (r->last_time) {
2117 u64 dt_wait = tprev - r->last_time;
2118
2119 if (r->last_state == TASK_RUNNING)
2120 r->dt_preempt = dt_wait;
2121 else if (r->last_state == TASK_UNINTERRUPTIBLE)
2122 r->dt_iowait = dt_wait;
2123 else
2124 r->dt_sleep = dt_wait;
2125 }
2126 }
2127
2128 update_stats(&r->run_stats, r->dt_run);
2129
2130 r->total_run_time += r->dt_run;
2131 r->total_delay_time += r->dt_delay;
2132 r->total_sleep_time += r->dt_sleep;
2133 r->total_iowait_time += r->dt_iowait;
2134 r->total_preempt_time += r->dt_preempt;
2135}
2136
2137static bool is_idle_sample(struct perf_sample *sample,
2138 struct evsel *evsel)
2139{
2140 /* pid 0 == swapper == idle task */
2141 if (strcmp(evsel__name(evsel), "sched:sched_switch") == 0)
2142 return evsel__intval(evsel, sample, "prev_pid") == 0;
2143
2144 return sample->pid == 0;
2145}
2146
2147static void save_task_callchain(struct perf_sched *sched,
2148 struct perf_sample *sample,
2149 struct evsel *evsel,
2150 struct machine *machine)
2151{
2152 struct callchain_cursor *cursor = &callchain_cursor;
2153 struct thread *thread;
2154
2155 /* want main thread for process - has maps */
2156 thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2157 if (thread == NULL) {
2158 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2159 return;
2160 }
2161
2162 if (!sched->show_callchain || sample->callchain == NULL)
2163 return;
2164
2165 if (thread__resolve_callchain(thread, cursor, evsel, sample,
2166 NULL, NULL, sched->max_stack + 2) != 0) {
2167 if (verbose > 0)
2168 pr_err("Failed to resolve callchain. Skipping\n");
2169
2170 return;
2171 }
2172
2173 callchain_cursor_commit(cursor);
2174
2175 while (true) {
2176 struct callchain_cursor_node *node;
2177 struct symbol *sym;
2178
2179 node = callchain_cursor_current(cursor);
2180 if (node == NULL)
2181 break;
2182
2183 sym = node->ms.sym;
2184 if (sym) {
2185 if (!strcmp(sym->name, "schedule") ||
2186 !strcmp(sym->name, "__schedule") ||
2187 !strcmp(sym->name, "preempt_schedule"))
2188 sym->ignore = 1;
2189 }
2190
2191 callchain_cursor_advance(cursor);
2192 }
2193}
2194
2195static int init_idle_thread(struct thread *thread)
2196{
2197 struct idle_thread_runtime *itr;
2198
2199 thread__set_comm(thread, idle_comm, 0);
2200
2201 itr = zalloc(sizeof(*itr));
2202 if (itr == NULL)
2203 return -ENOMEM;
2204
2205 init_stats(&itr->tr.run_stats);
2206 callchain_init(&itr->callchain);
2207 callchain_cursor_reset(&itr->cursor);
2208 thread__set_priv(thread, itr);
2209
2210 return 0;
2211}
2212
2213/*
2214 * Track idle stats per cpu by maintaining a local thread
2215 * struct for the idle task on each cpu.
2216 */
2217static int init_idle_threads(int ncpu)
2218{
2219 int i, ret;
2220
2221 idle_threads = zalloc(ncpu * sizeof(struct thread *));
2222 if (!idle_threads)
2223 return -ENOMEM;
2224
2225 idle_max_cpu = ncpu;
2226
2227 /* allocate the actual thread struct if needed */
2228 for (i = 0; i < ncpu; ++i) {
2229 idle_threads[i] = thread__new(0, 0);
2230 if (idle_threads[i] == NULL)
2231 return -ENOMEM;
2232
2233 ret = init_idle_thread(idle_threads[i]);
2234 if (ret < 0)
2235 return ret;
2236 }
2237
2238 return 0;
2239}
2240
2241static void free_idle_threads(void)
2242{
2243 int i;
2244
2245 if (idle_threads == NULL)
2246 return;
2247
2248 for (i = 0; i < idle_max_cpu; ++i) {
2249 if ((idle_threads[i]))
2250 thread__delete(idle_threads[i]);
2251 }
2252
2253 free(idle_threads);
2254}
2255
2256static struct thread *get_idle_thread(int cpu)
2257{
2258 /*
2259 * expand/allocate array of pointers to local thread
2260 * structs if needed
2261 */
2262 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2263 int i, j = __roundup_pow_of_two(cpu+1);
2264 void *p;
2265
2266 p = realloc(idle_threads, j * sizeof(struct thread *));
2267 if (!p)
2268 return NULL;
2269
2270 idle_threads = (struct thread **) p;
2271 for (i = idle_max_cpu; i < j; ++i)
2272 idle_threads[i] = NULL;
2273
2274 idle_max_cpu = j;
2275 }
2276
2277 /* allocate a new thread struct if needed */
2278 if (idle_threads[cpu] == NULL) {
2279 idle_threads[cpu] = thread__new(0, 0);
2280
2281 if (idle_threads[cpu]) {
2282 if (init_idle_thread(idle_threads[cpu]) < 0)
2283 return NULL;
2284 }
2285 }
2286
2287 return idle_threads[cpu];
2288}
2289
2290static void save_idle_callchain(struct perf_sched *sched,
2291 struct idle_thread_runtime *itr,
2292 struct perf_sample *sample)
2293{
2294 if (!sched->show_callchain || sample->callchain == NULL)
2295 return;
2296
2297 callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2298}
2299
2300static struct thread *timehist_get_thread(struct perf_sched *sched,
2301 struct perf_sample *sample,
2302 struct machine *machine,
2303 struct evsel *evsel)
2304{
2305 struct thread *thread;
2306
2307 if (is_idle_sample(sample, evsel)) {
2308 thread = get_idle_thread(sample->cpu);
2309 if (thread == NULL)
2310 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2311
2312 } else {
2313 /* there were samples with tid 0 but non-zero pid */
2314 thread = machine__findnew_thread(machine, sample->pid,
2315 sample->tid ?: sample->pid);
2316 if (thread == NULL) {
2317 pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2318 sample->tid);
2319 }
2320
2321 save_task_callchain(sched, sample, evsel, machine);
2322 if (sched->idle_hist) {
2323 struct thread *idle;
2324 struct idle_thread_runtime *itr;
2325
2326 idle = get_idle_thread(sample->cpu);
2327 if (idle == NULL) {
2328 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2329 return NULL;
2330 }
2331
2332 itr = thread__priv(idle);
2333 if (itr == NULL)
2334 return NULL;
2335
2336 itr->last_thread = thread;
2337
2338 /* copy task callchain when entering to idle */
2339 if (evsel__intval(evsel, sample, "next_pid") == 0)
2340 save_idle_callchain(sched, itr, sample);
2341 }
2342 }
2343
2344 return thread;
2345}
2346
2347static bool timehist_skip_sample(struct perf_sched *sched,
2348 struct thread *thread,
2349 struct evsel *evsel,
2350 struct perf_sample *sample)
2351{
2352 bool rc = false;
2353
2354 if (thread__is_filtered(thread)) {
2355 rc = true;
2356 sched->skipped_samples++;
2357 }
2358
2359 if (sched->idle_hist) {
2360 if (strcmp(evsel__name(evsel), "sched:sched_switch"))
2361 rc = true;
2362 else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2363 evsel__intval(evsel, sample, "next_pid") != 0)
2364 rc = true;
2365 }
2366
2367 return rc;
2368}
2369
2370static void timehist_print_wakeup_event(struct perf_sched *sched,
2371 struct evsel *evsel,
2372 struct perf_sample *sample,
2373 struct machine *machine,
2374 struct thread *awakened)
2375{
2376 struct thread *thread;
2377 char tstr[64];
2378
2379 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2380 if (thread == NULL)
2381 return;
2382
2383 /* show wakeup unless both awakee and awaker are filtered */
2384 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2385 timehist_skip_sample(sched, awakened, evsel, sample)) {
2386 return;
2387 }
2388
2389 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2390 printf("%15s [%04d] ", tstr, sample->cpu);
2391 if (sched->show_cpu_visual)
2392 printf(" %*s ", sched->max_cpu + 1, "");
2393
2394 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2395
2396 /* dt spacer */
2397 printf(" %9s %9s %9s ", "", "", "");
2398
2399 printf("awakened: %s", timehist_get_commstr(awakened));
2400
2401 printf("\n");
2402}
2403
2404static int timehist_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
2405 union perf_event *event __maybe_unused,
2406 struct evsel *evsel __maybe_unused,
2407 struct perf_sample *sample __maybe_unused,
2408 struct machine *machine __maybe_unused)
2409{
2410 return 0;
2411}
2412
2413static int timehist_sched_wakeup_event(struct perf_tool *tool,
2414 union perf_event *event __maybe_unused,
2415 struct evsel *evsel,
2416 struct perf_sample *sample,
2417 struct machine *machine)
2418{
2419 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2420 struct thread *thread;
2421 struct thread_runtime *tr = NULL;
2422 /* want pid of awakened task not pid in sample */
2423 const u32 pid = evsel__intval(evsel, sample, "pid");
2424
2425 thread = machine__findnew_thread(machine, 0, pid);
2426 if (thread == NULL)
2427 return -1;
2428
2429 tr = thread__get_runtime(thread);
2430 if (tr == NULL)
2431 return -1;
2432
2433 if (tr->ready_to_run == 0)
2434 tr->ready_to_run = sample->time;
2435
2436 /* show wakeups if requested */
2437 if (sched->show_wakeups &&
2438 !perf_time__skip_sample(&sched->ptime, sample->time))
2439 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2440
2441 return 0;
2442}
2443
2444static void timehist_print_migration_event(struct perf_sched *sched,
2445 struct evsel *evsel,
2446 struct perf_sample *sample,
2447 struct machine *machine,
2448 struct thread *migrated)
2449{
2450 struct thread *thread;
2451 char tstr[64];
2452 u32 max_cpus = sched->max_cpu + 1;
2453 u32 ocpu, dcpu;
2454
2455 if (sched->summary_only)
2456 return;
2457
2458 max_cpus = sched->max_cpu + 1;
2459 ocpu = evsel__intval(evsel, sample, "orig_cpu");
2460 dcpu = evsel__intval(evsel, sample, "dest_cpu");
2461
2462 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2463 if (thread == NULL)
2464 return;
2465
2466 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2467 timehist_skip_sample(sched, migrated, evsel, sample)) {
2468 return;
2469 }
2470
2471 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2472 printf("%15s [%04d] ", tstr, sample->cpu);
2473
2474 if (sched->show_cpu_visual) {
2475 u32 i;
2476 char c;
2477
2478 printf(" ");
2479 for (i = 0; i < max_cpus; ++i) {
2480 c = (i == sample->cpu) ? 'm' : ' ';
2481 printf("%c", c);
2482 }
2483 printf(" ");
2484 }
2485
2486 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2487
2488 /* dt spacer */
2489 printf(" %9s %9s %9s ", "", "", "");
2490
2491 printf("migrated: %s", timehist_get_commstr(migrated));
2492 printf(" cpu %d => %d", ocpu, dcpu);
2493
2494 printf("\n");
2495}
2496
2497static int timehist_migrate_task_event(struct perf_tool *tool,
2498 union perf_event *event __maybe_unused,
2499 struct evsel *evsel,
2500 struct perf_sample *sample,
2501 struct machine *machine)
2502{
2503 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2504 struct thread *thread;
2505 struct thread_runtime *tr = NULL;
2506 /* want pid of migrated task not pid in sample */
2507 const u32 pid = evsel__intval(evsel, sample, "pid");
2508
2509 thread = machine__findnew_thread(machine, 0, pid);
2510 if (thread == NULL)
2511 return -1;
2512
2513 tr = thread__get_runtime(thread);
2514 if (tr == NULL)
2515 return -1;
2516
2517 tr->migrations++;
2518
2519 /* show migrations if requested */
2520 timehist_print_migration_event(sched, evsel, sample, machine, thread);
2521
2522 return 0;
2523}
2524
2525static int timehist_sched_change_event(struct perf_tool *tool,
2526 union perf_event *event,
2527 struct evsel *evsel,
2528 struct perf_sample *sample,
2529 struct machine *machine)
2530{
2531 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2532 struct perf_time_interval *ptime = &sched->ptime;
2533 struct addr_location al;
2534 struct thread *thread;
2535 struct thread_runtime *tr = NULL;
2536 u64 tprev, t = sample->time;
2537 int rc = 0;
2538 int state = evsel__intval(evsel, sample, "prev_state");
2539
2540 if (machine__resolve(machine, &al, sample) < 0) {
2541 pr_err("problem processing %d event. skipping it\n",
2542 event->header.type);
2543 rc = -1;
2544 goto out;
2545 }
2546
2547 thread = timehist_get_thread(sched, sample, machine, evsel);
2548 if (thread == NULL) {
2549 rc = -1;
2550 goto out;
2551 }
2552
2553 if (timehist_skip_sample(sched, thread, evsel, sample))
2554 goto out;
2555
2556 tr = thread__get_runtime(thread);
2557 if (tr == NULL) {
2558 rc = -1;
2559 goto out;
2560 }
2561
2562 tprev = evsel__get_time(evsel, sample->cpu);
2563
2564 /*
2565 * If start time given:
2566 * - sample time is under window user cares about - skip sample
2567 * - tprev is under window user cares about - reset to start of window
2568 */
2569 if (ptime->start && ptime->start > t)
2570 goto out;
2571
2572 if (tprev && ptime->start > tprev)
2573 tprev = ptime->start;
2574
2575 /*
2576 * If end time given:
2577 * - previous sched event is out of window - we are done
2578 * - sample time is beyond window user cares about - reset it
2579 * to close out stats for time window interest
2580 */
2581 if (ptime->end) {
2582 if (tprev > ptime->end)
2583 goto out;
2584
2585 if (t > ptime->end)
2586 t = ptime->end;
2587 }
2588
2589 if (!sched->idle_hist || thread->tid == 0) {
2590 if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2591 timehist_update_runtime_stats(tr, t, tprev);
2592
2593 if (sched->idle_hist) {
2594 struct idle_thread_runtime *itr = (void *)tr;
2595 struct thread_runtime *last_tr;
2596
2597 BUG_ON(thread->tid != 0);
2598
2599 if (itr->last_thread == NULL)
2600 goto out;
2601
2602 /* add current idle time as last thread's runtime */
2603 last_tr = thread__get_runtime(itr->last_thread);
2604 if (last_tr == NULL)
2605 goto out;
2606
2607 timehist_update_runtime_stats(last_tr, t, tprev);
2608 /*
2609 * remove delta time of last thread as it's not updated
2610 * and otherwise it will show an invalid value next
2611 * time. we only care total run time and run stat.
2612 */
2613 last_tr->dt_run = 0;
2614 last_tr->dt_delay = 0;
2615 last_tr->dt_sleep = 0;
2616 last_tr->dt_iowait = 0;
2617 last_tr->dt_preempt = 0;
2618
2619 if (itr->cursor.nr)
2620 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2621
2622 itr->last_thread = NULL;
2623 }
2624 }
2625
2626 if (!sched->summary_only)
2627 timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2628
2629out:
2630 if (sched->hist_time.start == 0 && t >= ptime->start)
2631 sched->hist_time.start = t;
2632 if (ptime->end == 0 || t <= ptime->end)
2633 sched->hist_time.end = t;
2634
2635 if (tr) {
2636 /* time of this sched_switch event becomes last time task seen */
2637 tr->last_time = sample->time;
2638
2639 /* last state is used to determine where to account wait time */
2640 tr->last_state = state;
2641
2642 /* sched out event for task so reset ready to run time */
2643 tr->ready_to_run = 0;
2644 }
2645
2646 evsel__save_time(evsel, sample->time, sample->cpu);
2647
2648 return rc;
2649}
2650
2651static int timehist_sched_switch_event(struct perf_tool *tool,
2652 union perf_event *event,
2653 struct evsel *evsel,
2654 struct perf_sample *sample,
2655 struct machine *machine __maybe_unused)
2656{
2657 return timehist_sched_change_event(tool, event, evsel, sample, machine);
2658}
2659
2660static int process_lost(struct perf_tool *tool __maybe_unused,
2661 union perf_event *event,
2662 struct perf_sample *sample,
2663 struct machine *machine __maybe_unused)
2664{
2665 char tstr[64];
2666
2667 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2668 printf("%15s ", tstr);
2669 printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2670
2671 return 0;
2672}
2673
2674
2675static void print_thread_runtime(struct thread *t,
2676 struct thread_runtime *r)
2677{
2678 double mean = avg_stats(&r->run_stats);
2679 float stddev;
2680
2681 printf("%*s %5d %9" PRIu64 " ",
2682 comm_width, timehist_get_commstr(t), t->ppid,
2683 (u64) r->run_stats.n);
2684
2685 print_sched_time(r->total_run_time, 8);
2686 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2687 print_sched_time(r->run_stats.min, 6);
2688 printf(" ");
2689 print_sched_time((u64) mean, 6);
2690 printf(" ");
2691 print_sched_time(r->run_stats.max, 6);
2692 printf(" ");
2693 printf("%5.2f", stddev);
2694 printf(" %5" PRIu64, r->migrations);
2695 printf("\n");
2696}
2697
2698static void print_thread_waittime(struct thread *t,
2699 struct thread_runtime *r)
2700{
2701 printf("%*s %5d %9" PRIu64 " ",
2702 comm_width, timehist_get_commstr(t), t->ppid,
2703 (u64) r->run_stats.n);
2704
2705 print_sched_time(r->total_run_time, 8);
2706 print_sched_time(r->total_sleep_time, 6);
2707 printf(" ");
2708 print_sched_time(r->total_iowait_time, 6);
2709 printf(" ");
2710 print_sched_time(r->total_preempt_time, 6);
2711 printf(" ");
2712 print_sched_time(r->total_delay_time, 6);
2713 printf("\n");
2714}
2715
2716struct total_run_stats {
2717 struct perf_sched *sched;
2718 u64 sched_count;
2719 u64 task_count;
2720 u64 total_run_time;
2721};
2722
2723static int __show_thread_runtime(struct thread *t, void *priv)
2724{
2725 struct total_run_stats *stats = priv;
2726 struct thread_runtime *r;
2727
2728 if (thread__is_filtered(t))
2729 return 0;
2730
2731 r = thread__priv(t);
2732 if (r && r->run_stats.n) {
2733 stats->task_count++;
2734 stats->sched_count += r->run_stats.n;
2735 stats->total_run_time += r->total_run_time;
2736
2737 if (stats->sched->show_state)
2738 print_thread_waittime(t, r);
2739 else
2740 print_thread_runtime(t, r);
2741 }
2742
2743 return 0;
2744}
2745
2746static int show_thread_runtime(struct thread *t, void *priv)
2747{
2748 if (t->dead)
2749 return 0;
2750
2751 return __show_thread_runtime(t, priv);
2752}
2753
2754static int show_deadthread_runtime(struct thread *t, void *priv)
2755{
2756 if (!t->dead)
2757 return 0;
2758
2759 return __show_thread_runtime(t, priv);
2760}
2761
2762static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2763{
2764 const char *sep = " <- ";
2765 struct callchain_list *chain;
2766 size_t ret = 0;
2767 char bf[1024];
2768 bool first;
2769
2770 if (node == NULL)
2771 return 0;
2772
2773 ret = callchain__fprintf_folded(fp, node->parent);
2774 first = (ret == 0);
2775
2776 list_for_each_entry(chain, &node->val, list) {
2777 if (chain->ip >= PERF_CONTEXT_MAX)
2778 continue;
2779 if (chain->ms.sym && chain->ms.sym->ignore)
2780 continue;
2781 ret += fprintf(fp, "%s%s", first ? "" : sep,
2782 callchain_list__sym_name(chain, bf, sizeof(bf),
2783 false));
2784 first = false;
2785 }
2786
2787 return ret;
2788}
2789
2790static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2791{
2792 size_t ret = 0;
2793 FILE *fp = stdout;
2794 struct callchain_node *chain;
2795 struct rb_node *rb_node = rb_first_cached(root);
2796
2797 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains");
2798 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line,
2799 graph_dotted_line);
2800
2801 while (rb_node) {
2802 chain = rb_entry(rb_node, struct callchain_node, rb_node);
2803 rb_node = rb_next(rb_node);
2804
2805 ret += fprintf(fp, " ");
2806 print_sched_time(chain->hit, 12);
2807 ret += 16; /* print_sched_time returns 2nd arg + 4 */
2808 ret += fprintf(fp, " %8d ", chain->count);
2809 ret += callchain__fprintf_folded(fp, chain);
2810 ret += fprintf(fp, "\n");
2811 }
2812
2813 return ret;
2814}
2815
2816static void timehist_print_summary(struct perf_sched *sched,
2817 struct perf_session *session)
2818{
2819 struct machine *m = &session->machines.host;
2820 struct total_run_stats totals;
2821 u64 task_count;
2822 struct thread *t;
2823 struct thread_runtime *r;
2824 int i;
2825 u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2826
2827 memset(&totals, 0, sizeof(totals));
2828 totals.sched = sched;
2829
2830 if (sched->idle_hist) {
2831 printf("\nIdle-time summary\n");
2832 printf("%*s parent sched-out ", comm_width, "comm");
2833 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n");
2834 } else if (sched->show_state) {
2835 printf("\nWait-time summary\n");
2836 printf("%*s parent sched-in ", comm_width, "comm");
2837 printf(" run-time sleep iowait preempt delay\n");
2838 } else {
2839 printf("\nRuntime summary\n");
2840 printf("%*s parent sched-in ", comm_width, "comm");
2841 printf(" run-time min-run avg-run max-run stddev migrations\n");
2842 }
2843 printf("%*s (count) ", comm_width, "");
2844 printf(" (msec) (msec) (msec) (msec) %s\n",
2845 sched->show_state ? "(msec)" : "%");
2846 printf("%.117s\n", graph_dotted_line);
2847
2848 machine__for_each_thread(m, show_thread_runtime, &totals);
2849 task_count = totals.task_count;
2850 if (!task_count)
2851 printf("<no still running tasks>\n");
2852
2853 printf("\nTerminated tasks:\n");
2854 machine__for_each_thread(m, show_deadthread_runtime, &totals);
2855 if (task_count == totals.task_count)
2856 printf("<no terminated tasks>\n");
2857
2858 /* CPU idle stats not tracked when samples were skipped */
2859 if (sched->skipped_samples && !sched->idle_hist)
2860 return;
2861
2862 printf("\nIdle stats:\n");
2863 for (i = 0; i < idle_max_cpu; ++i) {
2864 if (cpu_list && !test_bit(i, cpu_bitmap))
2865 continue;
2866
2867 t = idle_threads[i];
2868 if (!t)
2869 continue;
2870
2871 r = thread__priv(t);
2872 if (r && r->run_stats.n) {
2873 totals.sched_count += r->run_stats.n;
2874 printf(" CPU %2d idle for ", i);
2875 print_sched_time(r->total_run_time, 6);
2876 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2877 } else
2878 printf(" CPU %2d idle entire time window\n", i);
2879 }
2880
2881 if (sched->idle_hist && sched->show_callchain) {
2882 callchain_param.mode = CHAIN_FOLDED;
2883 callchain_param.value = CCVAL_PERIOD;
2884
2885 callchain_register_param(&callchain_param);
2886
2887 printf("\nIdle stats by callchain:\n");
2888 for (i = 0; i < idle_max_cpu; ++i) {
2889 struct idle_thread_runtime *itr;
2890
2891 t = idle_threads[i];
2892 if (!t)
2893 continue;
2894
2895 itr = thread__priv(t);
2896 if (itr == NULL)
2897 continue;
2898
2899 callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2900 0, &callchain_param);
2901
2902 printf(" CPU %2d:", i);
2903 print_sched_time(itr->tr.total_run_time, 6);
2904 printf(" msec\n");
2905 timehist_print_idlehist_callchain(&itr->sorted_root);
2906 printf("\n");
2907 }
2908 }
2909
2910 printf("\n"
2911 " Total number of unique tasks: %" PRIu64 "\n"
2912 "Total number of context switches: %" PRIu64 "\n",
2913 totals.task_count, totals.sched_count);
2914
2915 printf(" Total run time (msec): ");
2916 print_sched_time(totals.total_run_time, 2);
2917 printf("\n");
2918
2919 printf(" Total scheduling time (msec): ");
2920 print_sched_time(hist_time, 2);
2921 printf(" (x %d)\n", sched->max_cpu);
2922}
2923
2924typedef int (*sched_handler)(struct perf_tool *tool,
2925 union perf_event *event,
2926 struct evsel *evsel,
2927 struct perf_sample *sample,
2928 struct machine *machine);
2929
2930static int perf_timehist__process_sample(struct perf_tool *tool,
2931 union perf_event *event,
2932 struct perf_sample *sample,
2933 struct evsel *evsel,
2934 struct machine *machine)
2935{
2936 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2937 int err = 0;
2938 int this_cpu = sample->cpu;
2939
2940 if (this_cpu > sched->max_cpu)
2941 sched->max_cpu = this_cpu;
2942
2943 if (evsel->handler != NULL) {
2944 sched_handler f = evsel->handler;
2945
2946 err = f(tool, event, evsel, sample, machine);
2947 }
2948
2949 return err;
2950}
2951
2952static int timehist_check_attr(struct perf_sched *sched,
2953 struct evlist *evlist)
2954{
2955 struct evsel *evsel;
2956 struct evsel_runtime *er;
2957
2958 list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2959 er = evsel__get_runtime(evsel);
2960 if (er == NULL) {
2961 pr_err("Failed to allocate memory for evsel runtime data\n");
2962 return -1;
2963 }
2964
2965 if (sched->show_callchain && !evsel__has_callchain(evsel)) {
2966 pr_info("Samples do not have callchains.\n");
2967 sched->show_callchain = 0;
2968 symbol_conf.use_callchain = 0;
2969 }
2970 }
2971
2972 return 0;
2973}
2974
2975static int perf_sched__timehist(struct perf_sched *sched)
2976{
2977 struct evsel_str_handler handlers[] = {
2978 { "sched:sched_switch", timehist_sched_switch_event, },
2979 { "sched:sched_wakeup", timehist_sched_wakeup_event, },
2980 { "sched:sched_waking", timehist_sched_wakeup_event, },
2981 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, },
2982 };
2983 const struct evsel_str_handler migrate_handlers[] = {
2984 { "sched:sched_migrate_task", timehist_migrate_task_event, },
2985 };
2986 struct perf_data data = {
2987 .path = input_name,
2988 .mode = PERF_DATA_MODE_READ,
2989 .force = sched->force,
2990 };
2991
2992 struct perf_session *session;
2993 struct evlist *evlist;
2994 int err = -1;
2995
2996 /*
2997 * event handlers for timehist option
2998 */
2999 sched->tool.sample = perf_timehist__process_sample;
3000 sched->tool.mmap = perf_event__process_mmap;
3001 sched->tool.comm = perf_event__process_comm;
3002 sched->tool.exit = perf_event__process_exit;
3003 sched->tool.fork = perf_event__process_fork;
3004 sched->tool.lost = process_lost;
3005 sched->tool.attr = perf_event__process_attr;
3006 sched->tool.tracing_data = perf_event__process_tracing_data;
3007 sched->tool.build_id = perf_event__process_build_id;
3008
3009 sched->tool.ordered_events = true;
3010 sched->tool.ordering_requires_timestamps = true;
3011
3012 symbol_conf.use_callchain = sched->show_callchain;
3013
3014 session = perf_session__new(&data, false, &sched->tool);
3015 if (IS_ERR(session))
3016 return PTR_ERR(session);
3017
3018 if (cpu_list) {
3019 err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3020 if (err < 0)
3021 goto out;
3022 }
3023
3024 evlist = session->evlist;
3025
3026 symbol__init(&session->header.env);
3027
3028 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3029 pr_err("Invalid time string\n");
3030 return -EINVAL;
3031 }
3032
3033 if (timehist_check_attr(sched, evlist) != 0)
3034 goto out;
3035
3036 setup_pager();
3037
3038 /* prefer sched_waking if it is captured */
3039 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3040 handlers[1].handler = timehist_sched_wakeup_ignore;
3041
3042 /* setup per-evsel handlers */
3043 if (perf_session__set_tracepoints_handlers(session, handlers))
3044 goto out;
3045
3046 /* sched_switch event at a minimum needs to exist */
3047 if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3048 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3049 goto out;
3050 }
3051
3052 if (sched->show_migrations &&
3053 perf_session__set_tracepoints_handlers(session, migrate_handlers))
3054 goto out;
3055
3056 /* pre-allocate struct for per-CPU idle stats */
3057 sched->max_cpu = session->header.env.nr_cpus_online;
3058 if (sched->max_cpu == 0)
3059 sched->max_cpu = 4;
3060 if (init_idle_threads(sched->max_cpu))
3061 goto out;
3062
3063 /* summary_only implies summary option, but don't overwrite summary if set */
3064 if (sched->summary_only)
3065 sched->summary = sched->summary_only;
3066
3067 if (!sched->summary_only)
3068 timehist_header(sched);
3069
3070 err = perf_session__process_events(session);
3071 if (err) {
3072 pr_err("Failed to process events, error %d", err);
3073 goto out;
3074 }
3075
3076 sched->nr_events = evlist->stats.nr_events[0];
3077 sched->nr_lost_events = evlist->stats.total_lost;
3078 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3079
3080 if (sched->summary)
3081 timehist_print_summary(sched, session);
3082
3083out:
3084 free_idle_threads();
3085 perf_session__delete(session);
3086
3087 return err;
3088}
3089
3090
3091static void print_bad_events(struct perf_sched *sched)
3092{
3093 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3094 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3095 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3096 sched->nr_unordered_timestamps, sched->nr_timestamps);
3097 }
3098 if (sched->nr_lost_events && sched->nr_events) {
3099 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3100 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3101 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3102 }
3103 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3104 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
3105 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3106 sched->nr_context_switch_bugs, sched->nr_timestamps);
3107 if (sched->nr_lost_events)
3108 printf(" (due to lost events?)");
3109 printf("\n");
3110 }
3111}
3112
3113static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3114{
3115 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3116 struct work_atoms *this;
3117 const char *comm = thread__comm_str(data->thread), *this_comm;
3118 bool leftmost = true;
3119
3120 while (*new) {
3121 int cmp;
3122
3123 this = container_of(*new, struct work_atoms, node);
3124 parent = *new;
3125
3126 this_comm = thread__comm_str(this->thread);
3127 cmp = strcmp(comm, this_comm);
3128 if (cmp > 0) {
3129 new = &((*new)->rb_left);
3130 } else if (cmp < 0) {
3131 new = &((*new)->rb_right);
3132 leftmost = false;
3133 } else {
3134 this->num_merged++;
3135 this->total_runtime += data->total_runtime;
3136 this->nb_atoms += data->nb_atoms;
3137 this->total_lat += data->total_lat;
3138 list_splice(&data->work_list, &this->work_list);
3139 if (this->max_lat < data->max_lat) {
3140 this->max_lat = data->max_lat;
3141 this->max_lat_start = data->max_lat_start;
3142 this->max_lat_end = data->max_lat_end;
3143 }
3144 zfree(&data);
3145 return;
3146 }
3147 }
3148
3149 data->num_merged++;
3150 rb_link_node(&data->node, parent, new);
3151 rb_insert_color_cached(&data->node, root, leftmost);
3152}
3153
3154static void perf_sched__merge_lat(struct perf_sched *sched)
3155{
3156 struct work_atoms *data;
3157 struct rb_node *node;
3158
3159 if (sched->skip_merge)
3160 return;
3161
3162 while ((node = rb_first_cached(&sched->atom_root))) {
3163 rb_erase_cached(node, &sched->atom_root);
3164 data = rb_entry(node, struct work_atoms, node);
3165 __merge_work_atoms(&sched->merged_atom_root, data);
3166 }
3167}
3168
3169static int perf_sched__lat(struct perf_sched *sched)
3170{
3171 struct rb_node *next;
3172
3173 setup_pager();
3174
3175 if (perf_sched__read_events(sched))
3176 return -1;
3177
3178 perf_sched__merge_lat(sched);
3179 perf_sched__sort_lat(sched);
3180
3181 printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3182 printf(" Task | Runtime ms | Switches | Avg delay ms | Max delay ms | Max delay start | Max delay end |\n");
3183 printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3184
3185 next = rb_first_cached(&sched->sorted_atom_root);
3186
3187 while (next) {
3188 struct work_atoms *work_list;
3189
3190 work_list = rb_entry(next, struct work_atoms, node);
3191 output_lat_thread(sched, work_list);
3192 next = rb_next(next);
3193 thread__zput(work_list->thread);
3194 }
3195
3196 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3197 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
3198 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3199
3200 printf(" ---------------------------------------------------\n");
3201
3202 print_bad_events(sched);
3203 printf("\n");
3204
3205 return 0;
3206}
3207
3208static int setup_map_cpus(struct perf_sched *sched)
3209{
3210 struct perf_cpu_map *map;
3211
3212 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
3213
3214 if (sched->map.comp) {
3215 sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3216 if (!sched->map.comp_cpus)
3217 return -1;
3218 }
3219
3220 if (!sched->map.cpus_str)
3221 return 0;
3222
3223 map = perf_cpu_map__new(sched->map.cpus_str);
3224 if (!map) {
3225 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3226 return -1;
3227 }
3228
3229 sched->map.cpus = map;
3230 return 0;
3231}
3232
3233static int setup_color_pids(struct perf_sched *sched)
3234{
3235 struct perf_thread_map *map;
3236
3237 if (!sched->map.color_pids_str)
3238 return 0;
3239
3240 map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3241 if (!map) {
3242 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3243 return -1;
3244 }
3245
3246 sched->map.color_pids = map;
3247 return 0;
3248}
3249
3250static int setup_color_cpus(struct perf_sched *sched)
3251{
3252 struct perf_cpu_map *map;
3253
3254 if (!sched->map.color_cpus_str)
3255 return 0;
3256
3257 map = perf_cpu_map__new(sched->map.color_cpus_str);
3258 if (!map) {
3259 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3260 return -1;
3261 }
3262
3263 sched->map.color_cpus = map;
3264 return 0;
3265}
3266
3267static int perf_sched__map(struct perf_sched *sched)
3268{
3269 if (setup_map_cpus(sched))
3270 return -1;
3271
3272 if (setup_color_pids(sched))
3273 return -1;
3274
3275 if (setup_color_cpus(sched))
3276 return -1;
3277
3278 setup_pager();
3279 if (perf_sched__read_events(sched))
3280 return -1;
3281 print_bad_events(sched);
3282 return 0;
3283}
3284
3285static int perf_sched__replay(struct perf_sched *sched)
3286{
3287 unsigned long i;
3288
3289 calibrate_run_measurement_overhead(sched);
3290 calibrate_sleep_measurement_overhead(sched);
3291
3292 test_calibrations(sched);
3293
3294 if (perf_sched__read_events(sched))
3295 return -1;
3296
3297 printf("nr_run_events: %ld\n", sched->nr_run_events);
3298 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
3299 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
3300
3301 if (sched->targetless_wakeups)
3302 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
3303 if (sched->multitarget_wakeups)
3304 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3305 if (sched->nr_run_events_optimized)
3306 printf("run atoms optimized: %ld\n",
3307 sched->nr_run_events_optimized);
3308
3309 print_task_traces(sched);
3310 add_cross_task_wakeups(sched);
3311
3312 create_tasks(sched);
3313 printf("------------------------------------------------------------\n");
3314 for (i = 0; i < sched->replay_repeat; i++)
3315 run_one_test(sched);
3316
3317 return 0;
3318}
3319
3320static void setup_sorting(struct perf_sched *sched, const struct option *options,
3321 const char * const usage_msg[])
3322{
3323 char *tmp, *tok, *str = strdup(sched->sort_order);
3324
3325 for (tok = strtok_r(str, ", ", &tmp);
3326 tok; tok = strtok_r(NULL, ", ", &tmp)) {
3327 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3328 usage_with_options_msg(usage_msg, options,
3329 "Unknown --sort key: `%s'", tok);
3330 }
3331 }
3332
3333 free(str);
3334
3335 sort_dimension__add("pid", &sched->cmp_pid);
3336}
3337
3338static bool schedstat_events_exposed(void)
3339{
3340 /*
3341 * Select "sched:sched_stat_wait" event to check
3342 * whether schedstat tracepoints are exposed.
3343 */
3344 return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3345 false : true;
3346}
3347
3348static int __cmd_record(int argc, const char **argv)
3349{
3350 unsigned int rec_argc, i, j;
3351 const char **rec_argv;
3352 const char * const record_args[] = {
3353 "record",
3354 "-a",
3355 "-R",
3356 "-m", "1024",
3357 "-c", "1",
3358 "-e", "sched:sched_switch",
3359 "-e", "sched:sched_stat_runtime",
3360 "-e", "sched:sched_process_fork",
3361 "-e", "sched:sched_wakeup_new",
3362 "-e", "sched:sched_migrate_task",
3363 };
3364
3365 /*
3366 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3367 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3368 * to prevent "perf sched record" execution failure, determine
3369 * whether to record schedstat events according to actual situation.
3370 */
3371 const char * const schedstat_args[] = {
3372 "-e", "sched:sched_stat_wait",
3373 "-e", "sched:sched_stat_sleep",
3374 "-e", "sched:sched_stat_iowait",
3375 };
3376 unsigned int schedstat_argc = schedstat_events_exposed() ?
3377 ARRAY_SIZE(schedstat_args) : 0;
3378
3379 struct tep_event *waking_event;
3380
3381 /*
3382 * +2 for either "-e", "sched:sched_wakeup" or
3383 * "-e", "sched:sched_waking"
3384 */
3385 rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3386 rec_argv = calloc(rec_argc + 1, sizeof(char *));
3387
3388 if (rec_argv == NULL)
3389 return -ENOMEM;
3390
3391 for (i = 0; i < ARRAY_SIZE(record_args); i++)
3392 rec_argv[i] = strdup(record_args[i]);
3393
3394 rec_argv[i++] = "-e";
3395 waking_event = trace_event__tp_format("sched", "sched_waking");
3396 if (!IS_ERR(waking_event))
3397 rec_argv[i++] = strdup("sched:sched_waking");
3398 else
3399 rec_argv[i++] = strdup("sched:sched_wakeup");
3400
3401 for (j = 0; j < schedstat_argc; j++)
3402 rec_argv[i++] = strdup(schedstat_args[j]);
3403
3404 for (j = 1; j < (unsigned int)argc; j++, i++)
3405 rec_argv[i] = argv[j];
3406
3407 BUG_ON(i != rec_argc);
3408
3409 return cmd_record(i, rec_argv);
3410}
3411
3412int cmd_sched(int argc, const char **argv)
3413{
3414 static const char default_sort_order[] = "avg, max, switch, runtime";
3415 struct perf_sched sched = {
3416 .tool = {
3417 .sample = perf_sched__process_tracepoint_sample,
3418 .comm = perf_sched__process_comm,
3419 .namespaces = perf_event__process_namespaces,
3420 .lost = perf_event__process_lost,
3421 .fork = perf_sched__process_fork_event,
3422 .ordered_events = true,
3423 },
3424 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
3425 .sort_list = LIST_HEAD_INIT(sched.sort_list),
3426 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
3427 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3428 .sort_order = default_sort_order,
3429 .replay_repeat = 10,
3430 .profile_cpu = -1,
3431 .next_shortname1 = 'A',
3432 .next_shortname2 = '0',
3433 .skip_merge = 0,
3434 .show_callchain = 1,
3435 .max_stack = 5,
3436 };
3437 const struct option sched_options[] = {
3438 OPT_STRING('i', "input", &input_name, "file",
3439 "input file name"),
3440 OPT_INCR('v', "verbose", &verbose,
3441 "be more verbose (show symbol address, etc)"),
3442 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3443 "dump raw trace in ASCII"),
3444 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3445 OPT_END()
3446 };
3447 const struct option latency_options[] = {
3448 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3449 "sort by key(s): runtime, switch, avg, max"),
3450 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3451 "CPU to profile on"),
3452 OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3453 "latency stats per pid instead of per comm"),
3454 OPT_PARENT(sched_options)
3455 };
3456 const struct option replay_options[] = {
3457 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3458 "repeat the workload replay N times (-1: infinite)"),
3459 OPT_PARENT(sched_options)
3460 };
3461 const struct option map_options[] = {
3462 OPT_BOOLEAN(0, "compact", &sched.map.comp,
3463 "map output in compact mode"),
3464 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3465 "highlight given pids in map"),
3466 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3467 "highlight given CPUs in map"),
3468 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3469 "display given CPUs in map"),
3470 OPT_PARENT(sched_options)
3471 };
3472 const struct option timehist_options[] = {
3473 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3474 "file", "vmlinux pathname"),
3475 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3476 "file", "kallsyms pathname"),
3477 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3478 "Display call chains if present (default on)"),
3479 OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3480 "Maximum number of functions to display backtrace."),
3481 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3482 "Look for files with symbols relative to this directory"),
3483 OPT_BOOLEAN('s', "summary", &sched.summary_only,
3484 "Show only syscall summary with statistics"),
3485 OPT_BOOLEAN('S', "with-summary", &sched.summary,
3486 "Show all syscalls and summary with statistics"),
3487 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3488 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3489 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3490 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3491 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3492 OPT_STRING(0, "time", &sched.time_str, "str",
3493 "Time span for analysis (start,stop)"),
3494 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3495 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3496 "analyze events only for given process id(s)"),
3497 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3498 "analyze events only for given thread id(s)"),
3499 OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3500 OPT_PARENT(sched_options)
3501 };
3502
3503 const char * const latency_usage[] = {
3504 "perf sched latency [<options>]",
3505 NULL
3506 };
3507 const char * const replay_usage[] = {
3508 "perf sched replay [<options>]",
3509 NULL
3510 };
3511 const char * const map_usage[] = {
3512 "perf sched map [<options>]",
3513 NULL
3514 };
3515 const char * const timehist_usage[] = {
3516 "perf sched timehist [<options>]",
3517 NULL
3518 };
3519 const char *const sched_subcommands[] = { "record", "latency", "map",
3520 "replay", "script",
3521 "timehist", NULL };
3522 const char *sched_usage[] = {
3523 NULL,
3524 NULL
3525 };
3526 struct trace_sched_handler lat_ops = {
3527 .wakeup_event = latency_wakeup_event,
3528 .switch_event = latency_switch_event,
3529 .runtime_event = latency_runtime_event,
3530 .migrate_task_event = latency_migrate_task_event,
3531 };
3532 struct trace_sched_handler map_ops = {
3533 .switch_event = map_switch_event,
3534 };
3535 struct trace_sched_handler replay_ops = {
3536 .wakeup_event = replay_wakeup_event,
3537 .switch_event = replay_switch_event,
3538 .fork_event = replay_fork_event,
3539 };
3540 unsigned int i;
3541
3542 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3543 sched.curr_pid[i] = -1;
3544
3545 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3546 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3547 if (!argc)
3548 usage_with_options(sched_usage, sched_options);
3549
3550 /*
3551 * Aliased to 'perf script' for now:
3552 */
3553 if (!strcmp(argv[0], "script"))
3554 return cmd_script(argc, argv);
3555
3556 if (!strncmp(argv[0], "rec", 3)) {
3557 return __cmd_record(argc, argv);
3558 } else if (!strncmp(argv[0], "lat", 3)) {
3559 sched.tp_handler = &lat_ops;
3560 if (argc > 1) {
3561 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3562 if (argc)
3563 usage_with_options(latency_usage, latency_options);
3564 }
3565 setup_sorting(&sched, latency_options, latency_usage);
3566 return perf_sched__lat(&sched);
3567 } else if (!strcmp(argv[0], "map")) {
3568 if (argc) {
3569 argc = parse_options(argc, argv, map_options, map_usage, 0);
3570 if (argc)
3571 usage_with_options(map_usage, map_options);
3572 }
3573 sched.tp_handler = &map_ops;
3574 setup_sorting(&sched, latency_options, latency_usage);
3575 return perf_sched__map(&sched);
3576 } else if (!strncmp(argv[0], "rep", 3)) {
3577 sched.tp_handler = &replay_ops;
3578 if (argc) {
3579 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3580 if (argc)
3581 usage_with_options(replay_usage, replay_options);
3582 }
3583 return perf_sched__replay(&sched);
3584 } else if (!strcmp(argv[0], "timehist")) {
3585 if (argc) {
3586 argc = parse_options(argc, argv, timehist_options,
3587 timehist_usage, 0);
3588 if (argc)
3589 usage_with_options(timehist_usage, timehist_options);
3590 }
3591 if ((sched.show_wakeups || sched.show_next) &&
3592 sched.summary_only) {
3593 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3594 parse_options_usage(timehist_usage, timehist_options, "s", true);
3595 if (sched.show_wakeups)
3596 parse_options_usage(NULL, timehist_options, "w", true);
3597 if (sched.show_next)
3598 parse_options_usage(NULL, timehist_options, "n", true);
3599 return -EINVAL;
3600 }
3601
3602 return perf_sched__timehist(&sched);
3603 } else {
3604 usage_with_options(sched_usage, sched_options);
3605 }
3606
3607 return 0;
3608}