Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v3.5.6
 
   1#include "builtin.h"
   2#include "perf.h"
 
   3
   4#include "util/util.h"
   5#include "util/evlist.h"
   6#include "util/cache.h"
   7#include "util/evsel.h"
 
   8#include "util/symbol.h"
   9#include "util/thread.h"
  10#include "util/header.h"
  11#include "util/session.h"
  12#include "util/tool.h"
 
 
 
 
 
 
 
  13
  14#include "util/parse-options.h"
 
  15#include "util/trace-event.h"
  16
  17#include "util/debug.h"
 
  18
 
 
 
  19#include <sys/prctl.h>
  20#include <sys/resource.h>
 
  21
 
  22#include <semaphore.h>
  23#include <pthread.h>
  24#include <math.h>
 
 
 
 
  25
  26static const char		*input_name;
  27
  28static char			default_sort_order[] = "avg, max, switch, runtime";
  29static const char		*sort_order = default_sort_order;
  30
  31static int			profile_cpu = -1;
  32
  33#define PR_SET_NAME		15               /* Set process name */
  34#define MAX_CPUS		4096
  35
  36static u64			run_measurement_overhead;
  37static u64			sleep_measurement_overhead;
  38
  39#define COMM_LEN		20
  40#define SYM_LEN			129
 
  41
  42#define MAX_PID			65536
  43
  44static unsigned long		nr_tasks;
  45
  46struct sched_atom;
  47
  48struct task_desc {
  49	unsigned long		nr;
  50	unsigned long		pid;
  51	char			comm[COMM_LEN];
  52
  53	unsigned long		nr_events;
  54	unsigned long		curr_event;
  55	struct sched_atom	**atoms;
  56
  57	pthread_t		thread;
  58	sem_t			sleep_sem;
  59
  60	sem_t			ready_for_work;
  61	sem_t			work_done_sem;
  62
  63	u64			cpu_usage;
  64};
  65
  66enum sched_event_type {
  67	SCHED_EVENT_RUN,
  68	SCHED_EVENT_SLEEP,
  69	SCHED_EVENT_WAKEUP,
  70	SCHED_EVENT_MIGRATION,
  71};
  72
  73struct sched_atom {
  74	enum sched_event_type	type;
  75	int			specific_wait;
  76	u64			timestamp;
  77	u64			duration;
  78	unsigned long		nr;
  79	sem_t			*wait_sem;
  80	struct task_desc	*wakee;
  81};
  82
  83static struct task_desc		*pid_to_task[MAX_PID];
  84
  85static struct task_desc		**tasks;
  86
  87static pthread_mutex_t		start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
  88static u64			start_time;
  89
  90static pthread_mutex_t		work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
  91
  92static unsigned long		nr_run_events;
  93static unsigned long		nr_sleep_events;
  94static unsigned long		nr_wakeup_events;
  95
  96static unsigned long		nr_sleep_corrections;
  97static unsigned long		nr_run_events_optimized;
  98
  99static unsigned long		targetless_wakeups;
 100static unsigned long		multitarget_wakeups;
 101
 102static u64			cpu_usage;
 103static u64			runavg_cpu_usage;
 104static u64			parent_cpu_usage;
 105static u64			runavg_parent_cpu_usage;
 106
 107static unsigned long		nr_runs;
 108static u64			sum_runtime;
 109static u64			sum_fluct;
 110static u64			run_avg;
 111
 112static unsigned int		replay_repeat = 10;
 113static unsigned long		nr_timestamps;
 114static unsigned long		nr_unordered_timestamps;
 115static unsigned long		nr_state_machine_bugs;
 116static unsigned long		nr_context_switch_bugs;
 117static unsigned long		nr_events;
 118static unsigned long		nr_lost_chunks;
 119static unsigned long		nr_lost_events;
 120
 121#define TASK_STATE_TO_CHAR_STR "RSDTtZX"
 
 
 
 
 
 122
 123enum thread_state {
 124	THREAD_SLEEPING = 0,
 125	THREAD_WAIT_CPU,
 126	THREAD_SCHED_IN,
 127	THREAD_IGNORE
 128};
 129
 130struct work_atom {
 131	struct list_head	list;
 132	enum thread_state	state;
 133	u64			sched_out_time;
 134	u64			wake_up_time;
 135	u64			sched_in_time;
 136	u64			runtime;
 137};
 138
 139struct work_atoms {
 140	struct list_head	work_list;
 141	struct thread		*thread;
 142	struct rb_node		node;
 143	u64			max_lat;
 144	u64			max_lat_at;
 
 145	u64			total_lat;
 146	u64			nb_atoms;
 147	u64			total_runtime;
 
 148};
 149
 150typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 151
 152static struct rb_root		atom_root, sorted_atom_root;
 
 
 
 
 153
 154static u64			all_runtime;
 155static u64			all_count;
 156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 157
 158static u64 get_nsecs(void)
 159{
 160	struct timespec ts;
 161
 162	clock_gettime(CLOCK_MONOTONIC, &ts);
 163
 164	return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
 165}
 166
 167static void burn_nsecs(u64 nsecs)
 168{
 169	u64 T0 = get_nsecs(), T1;
 170
 171	do {
 172		T1 = get_nsecs();
 173	} while (T1 + run_measurement_overhead < T0 + nsecs);
 174}
 175
 176static void sleep_nsecs(u64 nsecs)
 177{
 178	struct timespec ts;
 179
 180	ts.tv_nsec = nsecs % 999999999;
 181	ts.tv_sec = nsecs / 999999999;
 182
 183	nanosleep(&ts, NULL);
 184}
 185
 186static void calibrate_run_measurement_overhead(void)
 187{
 188	u64 T0, T1, delta, min_delta = 1000000000ULL;
 189	int i;
 190
 191	for (i = 0; i < 10; i++) {
 192		T0 = get_nsecs();
 193		burn_nsecs(0);
 194		T1 = get_nsecs();
 195		delta = T1-T0;
 196		min_delta = min(min_delta, delta);
 197	}
 198	run_measurement_overhead = min_delta;
 199
 200	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 201}
 202
 203static void calibrate_sleep_measurement_overhead(void)
 204{
 205	u64 T0, T1, delta, min_delta = 1000000000ULL;
 206	int i;
 207
 208	for (i = 0; i < 10; i++) {
 209		T0 = get_nsecs();
 210		sleep_nsecs(10000);
 211		T1 = get_nsecs();
 212		delta = T1-T0;
 213		min_delta = min(min_delta, delta);
 214	}
 215	min_delta -= 10000;
 216	sleep_measurement_overhead = min_delta;
 217
 218	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 219}
 220
 221static struct sched_atom *
 222get_new_event(struct task_desc *task, u64 timestamp)
 223{
 224	struct sched_atom *event = zalloc(sizeof(*event));
 225	unsigned long idx = task->nr_events;
 226	size_t size;
 227
 228	event->timestamp = timestamp;
 229	event->nr = idx;
 230
 231	task->nr_events++;
 232	size = sizeof(struct sched_atom *) * task->nr_events;
 233	task->atoms = realloc(task->atoms, size);
 234	BUG_ON(!task->atoms);
 235
 236	task->atoms[idx] = event;
 237
 238	return event;
 239}
 240
 241static struct sched_atom *last_event(struct task_desc *task)
 242{
 243	if (!task->nr_events)
 244		return NULL;
 245
 246	return task->atoms[task->nr_events - 1];
 247}
 248
 249static void
 250add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
 251{
 252	struct sched_atom *event, *curr_event = last_event(task);
 253
 254	/*
 255	 * optimize an existing RUN event by merging this one
 256	 * to it:
 257	 */
 258	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 259		nr_run_events_optimized++;
 260		curr_event->duration += duration;
 261		return;
 262	}
 263
 264	event = get_new_event(task, timestamp);
 265
 266	event->type = SCHED_EVENT_RUN;
 267	event->duration = duration;
 268
 269	nr_run_events++;
 270}
 271
 272static void
 273add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
 274		       struct task_desc *wakee)
 275{
 276	struct sched_atom *event, *wakee_event;
 277
 278	event = get_new_event(task, timestamp);
 279	event->type = SCHED_EVENT_WAKEUP;
 280	event->wakee = wakee;
 281
 282	wakee_event = last_event(wakee);
 283	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 284		targetless_wakeups++;
 285		return;
 286	}
 287	if (wakee_event->wait_sem) {
 288		multitarget_wakeups++;
 289		return;
 290	}
 291
 292	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 293	sem_init(wakee_event->wait_sem, 0, 0);
 294	wakee_event->specific_wait = 1;
 295	event->wait_sem = wakee_event->wait_sem;
 296
 297	nr_wakeup_events++;
 298}
 299
 300static void
 301add_sched_event_sleep(struct task_desc *task, u64 timestamp,
 302		      u64 task_state __used)
 303{
 304	struct sched_atom *event = get_new_event(task, timestamp);
 305
 306	event->type = SCHED_EVENT_SLEEP;
 307
 308	nr_sleep_events++;
 309}
 310
 311static struct task_desc *register_pid(unsigned long pid, const char *comm)
 
 312{
 313	struct task_desc *task;
 
 314
 315	BUG_ON(pid >= MAX_PID);
 
 
 
 
 
 
 
 
 
 
 316
 317	task = pid_to_task[pid];
 318
 319	if (task)
 320		return task;
 321
 322	task = zalloc(sizeof(*task));
 323	task->pid = pid;
 324	task->nr = nr_tasks;
 325	strcpy(task->comm, comm);
 326	/*
 327	 * every task starts in sleeping state - this gets ignored
 328	 * if there's no wakeup pointing to this sleep state:
 329	 */
 330	add_sched_event_sleep(task, 0, 0);
 331
 332	pid_to_task[pid] = task;
 333	nr_tasks++;
 334	tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
 335	BUG_ON(!tasks);
 336	tasks[task->nr] = task;
 337
 338	if (verbose)
 339		printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
 340
 341	return task;
 342}
 343
 344
 345static void print_task_traces(void)
 346{
 347	struct task_desc *task;
 348	unsigned long i;
 349
 350	for (i = 0; i < nr_tasks; i++) {
 351		task = tasks[i];
 352		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 353			task->nr, task->comm, task->pid, task->nr_events);
 354	}
 355}
 356
 357static void add_cross_task_wakeups(void)
 358{
 359	struct task_desc *task1, *task2;
 360	unsigned long i, j;
 361
 362	for (i = 0; i < nr_tasks; i++) {
 363		task1 = tasks[i];
 364		j = i + 1;
 365		if (j == nr_tasks)
 366			j = 0;
 367		task2 = tasks[j];
 368		add_sched_event_wakeup(task1, 0, task2);
 369	}
 370}
 371
 372static void
 373process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
 374{
 375	int ret = 0;
 376
 377	switch (atom->type) {
 378		case SCHED_EVENT_RUN:
 379			burn_nsecs(atom->duration);
 380			break;
 381		case SCHED_EVENT_SLEEP:
 382			if (atom->wait_sem)
 383				ret = sem_wait(atom->wait_sem);
 384			BUG_ON(ret);
 385			break;
 386		case SCHED_EVENT_WAKEUP:
 387			if (atom->wait_sem)
 388				ret = sem_post(atom->wait_sem);
 389			BUG_ON(ret);
 390			break;
 391		case SCHED_EVENT_MIGRATION:
 392			break;
 393		default:
 394			BUG_ON(1);
 395	}
 396}
 397
 398static u64 get_cpu_usage_nsec_parent(void)
 399{
 400	struct rusage ru;
 401	u64 sum;
 402	int err;
 403
 404	err = getrusage(RUSAGE_SELF, &ru);
 405	BUG_ON(err);
 406
 407	sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
 408	sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
 409
 410	return sum;
 411}
 412
 413static int self_open_counters(void)
 414{
 415	struct perf_event_attr attr;
 
 416	int fd;
 
 
 417
 418	memset(&attr, 0, sizeof(attr));
 419
 420	attr.type = PERF_TYPE_SOFTWARE;
 421	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 422
 423	fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
 424
 425	if (fd < 0)
 426		die("Error: sys_perf_event_open() syscall returned"
 427		    "with %d (%s)\n", fd, strerror(errno));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428	return fd;
 429}
 430
 431static u64 get_cpu_usage_nsec_self(int fd)
 432{
 433	u64 runtime;
 434	int ret;
 435
 436	ret = read(fd, &runtime, sizeof(runtime));
 437	BUG_ON(ret != sizeof(runtime));
 438
 439	return runtime;
 440}
 441
 
 
 
 
 
 
 442static void *thread_func(void *ctx)
 443{
 444	struct task_desc *this_task = ctx;
 
 
 445	u64 cpu_usage_0, cpu_usage_1;
 446	unsigned long i, ret;
 447	char comm2[22];
 448	int fd;
 
 
 449
 450	sprintf(comm2, ":%s", this_task->comm);
 451	prctl(PR_SET_NAME, comm2);
 452	fd = self_open_counters();
 453
 454again:
 455	ret = sem_post(&this_task->ready_for_work);
 456	BUG_ON(ret);
 457	ret = pthread_mutex_lock(&start_work_mutex);
 458	BUG_ON(ret);
 459	ret = pthread_mutex_unlock(&start_work_mutex);
 460	BUG_ON(ret);
 461
 462	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 463
 464	for (i = 0; i < this_task->nr_events; i++) {
 465		this_task->curr_event = i;
 466		process_sched_event(this_task, this_task->atoms[i]);
 467	}
 468
 469	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 470	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 471	ret = sem_post(&this_task->work_done_sem);
 472	BUG_ON(ret);
 473
 474	ret = pthread_mutex_lock(&work_done_wait_mutex);
 475	BUG_ON(ret);
 476	ret = pthread_mutex_unlock(&work_done_wait_mutex);
 477	BUG_ON(ret);
 478
 479	goto again;
 480}
 481
 482static void create_tasks(void)
 483{
 484	struct task_desc *task;
 485	pthread_attr_t attr;
 486	unsigned long i;
 487	int err;
 488
 489	err = pthread_attr_init(&attr);
 490	BUG_ON(err);
 491	err = pthread_attr_setstacksize(&attr,
 492			(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
 493	BUG_ON(err);
 494	err = pthread_mutex_lock(&start_work_mutex);
 495	BUG_ON(err);
 496	err = pthread_mutex_lock(&work_done_wait_mutex);
 497	BUG_ON(err);
 498	for (i = 0; i < nr_tasks; i++) {
 499		task = tasks[i];
 
 
 
 
 500		sem_init(&task->sleep_sem, 0, 0);
 501		sem_init(&task->ready_for_work, 0, 0);
 502		sem_init(&task->work_done_sem, 0, 0);
 503		task->curr_event = 0;
 504		err = pthread_create(&task->thread, &attr, thread_func, task);
 505		BUG_ON(err);
 506	}
 507}
 508
 509static void wait_for_tasks(void)
 510{
 511	u64 cpu_usage_0, cpu_usage_1;
 512	struct task_desc *task;
 513	unsigned long i, ret;
 514
 515	start_time = get_nsecs();
 516	cpu_usage = 0;
 517	pthread_mutex_unlock(&work_done_wait_mutex);
 518
 519	for (i = 0; i < nr_tasks; i++) {
 520		task = tasks[i];
 521		ret = sem_wait(&task->ready_for_work);
 522		BUG_ON(ret);
 523		sem_init(&task->ready_for_work, 0, 0);
 524	}
 525	ret = pthread_mutex_lock(&work_done_wait_mutex);
 526	BUG_ON(ret);
 527
 528	cpu_usage_0 = get_cpu_usage_nsec_parent();
 529
 530	pthread_mutex_unlock(&start_work_mutex);
 531
 532	for (i = 0; i < nr_tasks; i++) {
 533		task = tasks[i];
 534		ret = sem_wait(&task->work_done_sem);
 535		BUG_ON(ret);
 536		sem_init(&task->work_done_sem, 0, 0);
 537		cpu_usage += task->cpu_usage;
 538		task->cpu_usage = 0;
 539	}
 540
 541	cpu_usage_1 = get_cpu_usage_nsec_parent();
 542	if (!runavg_cpu_usage)
 543		runavg_cpu_usage = cpu_usage;
 544	runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
 545
 546	parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 547	if (!runavg_parent_cpu_usage)
 548		runavg_parent_cpu_usage = parent_cpu_usage;
 549	runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
 550				   parent_cpu_usage)/10;
 551
 552	ret = pthread_mutex_lock(&start_work_mutex);
 553	BUG_ON(ret);
 554
 555	for (i = 0; i < nr_tasks; i++) {
 556		task = tasks[i];
 557		sem_init(&task->sleep_sem, 0, 0);
 558		task->curr_event = 0;
 559	}
 560}
 561
 562static void run_one_test(void)
 563{
 564	u64 T0, T1, delta, avg_delta, fluct;
 565
 566	T0 = get_nsecs();
 567	wait_for_tasks();
 568	T1 = get_nsecs();
 569
 570	delta = T1 - T0;
 571	sum_runtime += delta;
 572	nr_runs++;
 573
 574	avg_delta = sum_runtime / nr_runs;
 575	if (delta < avg_delta)
 576		fluct = avg_delta - delta;
 577	else
 578		fluct = delta - avg_delta;
 579	sum_fluct += fluct;
 580	if (!run_avg)
 581		run_avg = delta;
 582	run_avg = (run_avg*9 + delta)/10;
 583
 584	printf("#%-3ld: %0.3f, ",
 585		nr_runs, (double)delta/1000000.0);
 586
 587	printf("ravg: %0.2f, ",
 588		(double)run_avg/1e6);
 589
 590	printf("cpu: %0.2f / %0.2f",
 591		(double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
 592
 593#if 0
 594	/*
 595	 * rusage statistics done by the parent, these are less
 596	 * accurate than the sum_exec_runtime based statistics:
 597	 */
 598	printf(" [%0.2f / %0.2f]",
 599		(double)parent_cpu_usage/1e6,
 600		(double)runavg_parent_cpu_usage/1e6);
 601#endif
 602
 603	printf("\n");
 604
 605	if (nr_sleep_corrections)
 606		printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
 607	nr_sleep_corrections = 0;
 608}
 609
 610static void test_calibrations(void)
 611{
 612	u64 T0, T1;
 613
 614	T0 = get_nsecs();
 615	burn_nsecs(1e6);
 616	T1 = get_nsecs();
 617
 618	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 619
 620	T0 = get_nsecs();
 621	sleep_nsecs(1e6);
 622	T1 = get_nsecs();
 623
 624	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 625}
 626
 627#define FILL_FIELD(ptr, field, event, data)	\
 628	ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
 629
 630#define FILL_ARRAY(ptr, array, event, data)			\
 631do {								\
 632	void *__array = raw_field_ptr(event, #array, data);	\
 633	memcpy(ptr.array, __array, sizeof(ptr.array));	\
 634} while(0)
 635
 636#define FILL_COMMON_FIELDS(ptr, event, data)			\
 637do {								\
 638	FILL_FIELD(ptr, common_type, event, data);		\
 639	FILL_FIELD(ptr, common_flags, event, data);		\
 640	FILL_FIELD(ptr, common_preempt_count, event, data);	\
 641	FILL_FIELD(ptr, common_pid, event, data);		\
 642	FILL_FIELD(ptr, common_tgid, event, data);		\
 643} while (0)
 644
 645
 646
 647struct trace_switch_event {
 648	u32 size;
 649
 650	u16 common_type;
 651	u8 common_flags;
 652	u8 common_preempt_count;
 653	u32 common_pid;
 654	u32 common_tgid;
 655
 656	char prev_comm[16];
 657	u32 prev_pid;
 658	u32 prev_prio;
 659	u64 prev_state;
 660	char next_comm[16];
 661	u32 next_pid;
 662	u32 next_prio;
 663};
 664
 665struct trace_runtime_event {
 666	u32 size;
 667
 668	u16 common_type;
 669	u8 common_flags;
 670	u8 common_preempt_count;
 671	u32 common_pid;
 672	u32 common_tgid;
 673
 674	char comm[16];
 675	u32 pid;
 676	u64 runtime;
 677	u64 vruntime;
 678};
 679
 680struct trace_wakeup_event {
 681	u32 size;
 682
 683	u16 common_type;
 684	u8 common_flags;
 685	u8 common_preempt_count;
 686	u32 common_pid;
 687	u32 common_tgid;
 688
 689	char comm[16];
 690	u32 pid;
 691
 692	u32 prio;
 693	u32 success;
 694	u32 cpu;
 695};
 696
 697struct trace_fork_event {
 698	u32 size;
 699
 700	u16 common_type;
 701	u8 common_flags;
 702	u8 common_preempt_count;
 703	u32 common_pid;
 704	u32 common_tgid;
 705
 706	char parent_comm[16];
 707	u32 parent_pid;
 708	char child_comm[16];
 709	u32 child_pid;
 710};
 711
 712struct trace_migrate_task_event {
 713	u32 size;
 714
 715	u16 common_type;
 716	u8 common_flags;
 717	u8 common_preempt_count;
 718	u32 common_pid;
 719	u32 common_tgid;
 720
 721	char comm[16];
 722	u32 pid;
 723
 724	u32 prio;
 725	u32 cpu;
 726};
 727
 728struct trace_sched_handler {
 729	void (*switch_event)(struct trace_switch_event *,
 730			     struct machine *,
 731			     struct event_format *,
 732			     int cpu,
 733			     u64 timestamp,
 734			     struct thread *thread);
 735
 736	void (*runtime_event)(struct trace_runtime_event *,
 737			      struct machine *,
 738			      struct event_format *,
 739			      int cpu,
 740			      u64 timestamp,
 741			      struct thread *thread);
 742
 743	void (*wakeup_event)(struct trace_wakeup_event *,
 744			     struct machine *,
 745			     struct event_format *,
 746			     int cpu,
 747			     u64 timestamp,
 748			     struct thread *thread);
 749
 750	void (*fork_event)(struct trace_fork_event *,
 751			   struct event_format *,
 752			   int cpu,
 753			   u64 timestamp,
 754			   struct thread *thread);
 755
 756	void (*migrate_task_event)(struct trace_migrate_task_event *,
 757			   struct machine *machine,
 758			   struct event_format *,
 759			   int cpu,
 760			   u64 timestamp,
 761			   struct thread *thread);
 762};
 763
 764
 765static void
 766replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
 767		    struct machine *machine __used,
 768		    struct event_format *event,
 769		    int cpu __used,
 770		    u64 timestamp __used,
 771		    struct thread *thread __used)
 772{
 
 
 773	struct task_desc *waker, *wakee;
 774
 775	if (verbose) {
 776		printf("sched_wakeup event %p\n", event);
 777
 778		printf(" ... pid %d woke up %s/%d\n",
 779			wakeup_event->common_pid,
 780			wakeup_event->comm,
 781			wakeup_event->pid);
 782	}
 783
 784	waker = register_pid(wakeup_event->common_pid, "<unknown>");
 785	wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
 786
 787	add_sched_event_wakeup(waker, timestamp, wakee);
 
 788}
 789
 790static u64 cpu_last_switched[MAX_CPUS];
 791
 792static void
 793replay_switch_event(struct trace_switch_event *switch_event,
 794		    struct machine *machine __used,
 795		    struct event_format *event,
 796		    int cpu,
 797		    u64 timestamp,
 798		    struct thread *thread __used)
 799{
 800	struct task_desc *prev, __used *next;
 801	u64 timestamp0;
 
 802	s64 delta;
 803
 804	if (verbose)
 805		printf("sched_switch event %p\n", event);
 806
 807	if (cpu >= MAX_CPUS || cpu < 0)
 808		return;
 809
 810	timestamp0 = cpu_last_switched[cpu];
 811	if (timestamp0)
 812		delta = timestamp - timestamp0;
 813	else
 814		delta = 0;
 815
 816	if (delta < 0)
 817		die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 818
 819	if (verbose) {
 820		printf(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 821			switch_event->prev_comm, switch_event->prev_pid,
 822			switch_event->next_comm, switch_event->next_pid,
 823			delta);
 824	}
 825
 826	prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
 827	next = register_pid(switch_event->next_pid, switch_event->next_comm);
 828
 829	cpu_last_switched[cpu] = timestamp;
 
 830
 831	add_sched_event_run(prev, timestamp, delta);
 832	add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
 833}
 834
 
 
 835
 836static void
 837replay_fork_event(struct trace_fork_event *fork_event,
 838		  struct event_format *event,
 839		  int cpu __used,
 840		  u64 timestamp __used,
 841		  struct thread *thread __used)
 842{
 843	if (verbose) {
 844		printf("sched_fork event %p\n", event);
 845		printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
 846		printf("...  child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
 847	}
 848	register_pid(fork_event->parent_pid, fork_event->parent_comm);
 849	register_pid(fork_event->child_pid, fork_event->child_comm);
 850}
 851
 852static struct trace_sched_handler replay_ops  = {
 853	.wakeup_event		= replay_wakeup_event,
 854	.switch_event		= replay_switch_event,
 855	.fork_event		= replay_fork_event,
 856};
 
 
 
 
 
 
 
 
 
 
 
 
 857
 858struct sort_dimension {
 859	const char		*name;
 860	sort_fn_t		cmp;
 861	struct list_head	list;
 862};
 863
 864static LIST_HEAD(cmp_pid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 865
 866static int
 867thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 868{
 869	struct sort_dimension *sort;
 870	int ret = 0;
 871
 872	BUG_ON(list_empty(list));
 873
 874	list_for_each_entry(sort, list, list) {
 875		ret = sort->cmp(l, r);
 876		if (ret)
 877			return ret;
 878	}
 879
 880	return ret;
 881}
 882
 883static struct work_atoms *
 884thread_atoms_search(struct rb_root *root, struct thread *thread,
 885			 struct list_head *sort_list)
 886{
 887	struct rb_node *node = root->rb_node;
 888	struct work_atoms key = { .thread = thread };
 889
 890	while (node) {
 891		struct work_atoms *atoms;
 892		int cmp;
 893
 894		atoms = container_of(node, struct work_atoms, node);
 895
 896		cmp = thread_lat_cmp(sort_list, &key, atoms);
 897		if (cmp > 0)
 898			node = node->rb_left;
 899		else if (cmp < 0)
 900			node = node->rb_right;
 901		else {
 902			BUG_ON(thread != atoms->thread);
 903			return atoms;
 904		}
 905	}
 906	return NULL;
 907}
 908
 909static void
 910__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
 911			 struct list_head *sort_list)
 912{
 913	struct rb_node **new = &(root->rb_node), *parent = NULL;
 
 914
 915	while (*new) {
 916		struct work_atoms *this;
 917		int cmp;
 918
 919		this = container_of(*new, struct work_atoms, node);
 920		parent = *new;
 921
 922		cmp = thread_lat_cmp(sort_list, data, this);
 923
 924		if (cmp > 0)
 925			new = &((*new)->rb_left);
 926		else
 927			new = &((*new)->rb_right);
 
 
 928	}
 929
 930	rb_link_node(&data->node, parent, new);
 931	rb_insert_color(&data->node, root);
 932}
 933
 934static void thread_atoms_insert(struct thread *thread)
 935{
 936	struct work_atoms *atoms = zalloc(sizeof(*atoms));
 937	if (!atoms)
 938		die("No memory");
 
 
 939
 940	atoms->thread = thread;
 941	INIT_LIST_HEAD(&atoms->work_list);
 942	__thread_latency_insert(&atom_root, atoms, &cmp_pid);
 943}
 944
 945static void
 946latency_fork_event(struct trace_fork_event *fork_event __used,
 947		   struct event_format *event __used,
 948		   int cpu __used,
 949		   u64 timestamp __used,
 950		   struct thread *thread __used)
 951{
 952	/* should insert the newcomer */
 953}
 954
 955__used
 956static char sched_out_state(struct trace_switch_event *switch_event)
 957{
 958	const char *str = TASK_STATE_TO_CHAR_STR;
 959
 960	return str[switch_event->prev_state];
 961}
 962
 963static void
 964add_sched_out_event(struct work_atoms *atoms,
 965		    char run_state,
 966		    u64 timestamp)
 967{
 968	struct work_atom *atom = zalloc(sizeof(*atom));
 969	if (!atom)
 970		die("Non memory");
 
 
 971
 972	atom->sched_out_time = timestamp;
 973
 974	if (run_state == 'R') {
 975		atom->state = THREAD_WAIT_CPU;
 976		atom->wake_up_time = atom->sched_out_time;
 977	}
 978
 979	list_add_tail(&atom->list, &atoms->work_list);
 
 980}
 981
 982static void
 983add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
 
 984{
 985	struct work_atom *atom;
 986
 987	BUG_ON(list_empty(&atoms->work_list));
 988
 989	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
 990
 991	atom->runtime += delta;
 992	atoms->total_runtime += delta;
 993}
 994
 995static void
 996add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
 997{
 998	struct work_atom *atom;
 999	u64 delta;
1000
1001	if (list_empty(&atoms->work_list))
1002		return;
1003
1004	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1005
1006	if (atom->state != THREAD_WAIT_CPU)
1007		return;
1008
1009	if (timestamp < atom->wake_up_time) {
1010		atom->state = THREAD_IGNORE;
1011		return;
1012	}
1013
1014	atom->state = THREAD_SCHED_IN;
1015	atom->sched_in_time = timestamp;
1016
1017	delta = atom->sched_in_time - atom->wake_up_time;
1018	atoms->total_lat += delta;
1019	if (delta > atoms->max_lat) {
1020		atoms->max_lat = delta;
1021		atoms->max_lat_at = timestamp;
 
1022	}
1023	atoms->nb_atoms++;
1024}
1025
1026static void
1027latency_switch_event(struct trace_switch_event *switch_event,
1028		     struct machine *machine,
1029		     struct event_format *event __used,
1030		     int cpu,
1031		     u64 timestamp,
1032		     struct thread *thread __used)
1033{
1034	struct work_atoms *out_events, *in_events;
1035	struct thread *sched_out, *sched_in;
1036	u64 timestamp0;
 
1037	s64 delta;
1038
1039	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1040
1041	timestamp0 = cpu_last_switched[cpu];
1042	cpu_last_switched[cpu] = timestamp;
1043	if (timestamp0)
1044		delta = timestamp - timestamp0;
1045	else
1046		delta = 0;
1047
1048	if (delta < 0)
1049		die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1050
 
1051
1052	sched_out = machine__findnew_thread(machine, switch_event->prev_pid);
1053	sched_in = machine__findnew_thread(machine, switch_event->next_pid);
 
 
1054
1055	out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1056	if (!out_events) {
1057		thread_atoms_insert(sched_out);
1058		out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1059		if (!out_events)
1060			die("out-event: Internal tree error");
 
 
 
1061	}
1062	add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
 
1063
1064	in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1065	if (!in_events) {
1066		thread_atoms_insert(sched_in);
1067		in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1068		if (!in_events)
1069			die("in-event: Internal tree error");
 
 
 
1070		/*
1071		 * Take came in we have not heard about yet,
1072		 * add in an initial atom in runnable state:
1073		 */
1074		add_sched_out_event(in_events, 'R', timestamp);
 
1075	}
1076	add_sched_in_event(in_events, timestamp);
 
 
 
 
 
1077}
1078
1079static void
1080latency_runtime_event(struct trace_runtime_event *runtime_event,
1081		     struct machine *machine,
1082		     struct event_format *event __used,
1083		     int cpu,
1084		     u64 timestamp,
1085		     struct thread *this_thread __used)
1086{
1087	struct thread *thread = machine__findnew_thread(machine, runtime_event->pid);
1088	struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
 
 
 
 
 
 
 
1089
1090	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1091	if (!atoms) {
1092		thread_atoms_insert(thread);
1093		atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1094		if (!atoms)
1095			die("in-event: Internal tree error");
1096		add_sched_out_event(atoms, 'R', timestamp);
 
 
 
 
1097	}
1098
1099	add_runtime_event(atoms, runtime_event->runtime, timestamp);
 
 
 
 
1100}
1101
1102static void
1103latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1104		     struct machine *machine,
1105		     struct event_format *__event __used,
1106		     int cpu __used,
1107		     u64 timestamp,
1108		     struct thread *thread __used)
1109{
 
1110	struct work_atoms *atoms;
1111	struct work_atom *atom;
1112	struct thread *wakee;
 
 
1113
1114	/* Note for later, it may be interesting to observe the failing cases */
1115	if (!wakeup_event->success)
1116		return;
1117
1118	wakee = machine__findnew_thread(machine, wakeup_event->pid);
1119	atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1120	if (!atoms) {
1121		thread_atoms_insert(wakee);
1122		atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1123		if (!atoms)
1124			die("wakeup-event: Internal tree error");
1125		add_sched_out_event(atoms, 'S', timestamp);
 
 
 
 
1126	}
1127
1128	BUG_ON(list_empty(&atoms->work_list));
1129
1130	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1131
1132	/*
 
 
 
 
 
 
1133	 * You WILL be missing events if you've recorded only
1134	 * one CPU, or are only looking at only one, so don't
1135	 * make useless noise.
1136	 */
1137	if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1138		nr_state_machine_bugs++;
1139
1140	nr_timestamps++;
1141	if (atom->sched_out_time > timestamp) {
1142		nr_unordered_timestamps++;
1143		return;
1144	}
1145
1146	atom->state = THREAD_WAIT_CPU;
1147	atom->wake_up_time = timestamp;
 
 
 
 
 
1148}
1149
1150static void
1151latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
1152		     struct machine *machine,
1153		     struct event_format *__event __used,
1154		     int cpu __used,
1155		     u64 timestamp,
1156		     struct thread *thread __used)
1157{
 
 
1158	struct work_atoms *atoms;
1159	struct work_atom *atom;
1160	struct thread *migrant;
 
1161
1162	/*
1163	 * Only need to worry about migration when profiling one CPU.
1164	 */
1165	if (profile_cpu == -1)
1166		return;
1167
1168	migrant = machine__findnew_thread(machine, migrate_task_event->pid);
1169	atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
 
 
1170	if (!atoms) {
1171		thread_atoms_insert(migrant);
1172		register_pid(migrant->pid, migrant->comm);
1173		atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1174		if (!atoms)
1175			die("migration-event: Internal tree error");
1176		add_sched_out_event(atoms, 'R', timestamp);
 
 
 
 
1177	}
1178
1179	BUG_ON(list_empty(&atoms->work_list));
1180
1181	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1182	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1183
1184	nr_timestamps++;
1185
1186	if (atom->sched_out_time > timestamp)
1187		nr_unordered_timestamps++;
 
 
 
 
1188}
1189
1190static struct trace_sched_handler lat_ops  = {
1191	.wakeup_event		= latency_wakeup_event,
1192	.switch_event		= latency_switch_event,
1193	.runtime_event		= latency_runtime_event,
1194	.fork_event		= latency_fork_event,
1195	.migrate_task_event	= latency_migrate_task_event,
1196};
1197
1198static void output_lat_thread(struct work_atoms *work_list)
1199{
1200	int i;
1201	int ret;
1202	u64 avg;
 
1203
1204	if (!work_list->nb_atoms)
1205		return;
1206	/*
1207	 * Ignore idle threads:
1208	 */
1209	if (!strcmp(work_list->thread->comm, "swapper"))
1210		return;
1211
1212	all_runtime += work_list->total_runtime;
1213	all_count += work_list->nb_atoms;
1214
1215	ret = printf("  %s:%d ", work_list->thread->comm, work_list->thread->pid);
 
 
 
1216
1217	for (i = 0; i < 24 - ret; i++)
1218		printf(" ");
1219
1220	avg = work_list->total_lat / work_list->nb_atoms;
 
 
1221
1222	printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1223	      (double)work_list->total_runtime / 1e6,
1224		 work_list->nb_atoms, (double)avg / 1e6,
1225		 (double)work_list->max_lat / 1e6,
1226		 (double)work_list->max_lat_at / 1e9);
1227}
1228
1229static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1230{
1231	if (l->thread->pid < r->thread->pid)
 
 
1232		return -1;
1233	if (l->thread->pid > r->thread->pid)
1234		return 1;
1235
1236	return 0;
1237}
1238
1239static struct sort_dimension pid_sort_dimension = {
1240	.name			= "pid",
1241	.cmp			= pid_cmp,
1242};
1243
1244static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1245{
1246	u64 avgl, avgr;
1247
1248	if (!l->nb_atoms)
1249		return -1;
1250
1251	if (!r->nb_atoms)
1252		return 1;
1253
1254	avgl = l->total_lat / l->nb_atoms;
1255	avgr = r->total_lat / r->nb_atoms;
1256
1257	if (avgl < avgr)
1258		return -1;
1259	if (avgl > avgr)
1260		return 1;
1261
1262	return 0;
1263}
1264
1265static struct sort_dimension avg_sort_dimension = {
1266	.name			= "avg",
1267	.cmp			= avg_cmp,
1268};
1269
1270static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1271{
1272	if (l->max_lat < r->max_lat)
1273		return -1;
1274	if (l->max_lat > r->max_lat)
1275		return 1;
1276
1277	return 0;
1278}
1279
1280static struct sort_dimension max_sort_dimension = {
1281	.name			= "max",
1282	.cmp			= max_cmp,
1283};
1284
1285static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1286{
1287	if (l->nb_atoms < r->nb_atoms)
1288		return -1;
1289	if (l->nb_atoms > r->nb_atoms)
1290		return 1;
1291
1292	return 0;
1293}
1294
1295static struct sort_dimension switch_sort_dimension = {
1296	.name			= "switch",
1297	.cmp			= switch_cmp,
1298};
1299
1300static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1301{
1302	if (l->total_runtime < r->total_runtime)
1303		return -1;
1304	if (l->total_runtime > r->total_runtime)
1305		return 1;
1306
1307	return 0;
1308}
1309
1310static struct sort_dimension runtime_sort_dimension = {
1311	.name			= "runtime",
1312	.cmp			= runtime_cmp,
1313};
1314
1315static struct sort_dimension *available_sorts[] = {
1316	&pid_sort_dimension,
1317	&avg_sort_dimension,
1318	&max_sort_dimension,
1319	&switch_sort_dimension,
1320	&runtime_sort_dimension,
1321};
1322
1323#define NB_AVAILABLE_SORTS	(int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1324
1325static LIST_HEAD(sort_list);
1326
1327static int sort_dimension__add(const char *tok, struct list_head *list)
1328{
1329	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1330
1331	for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1332		if (!strcmp(available_sorts[i]->name, tok)) {
1333			list_add_tail(&available_sorts[i]->list, list);
1334
1335			return 0;
1336		}
1337	}
1338
1339	return -1;
1340}
1341
1342static void setup_sorting(void);
1343
1344static void sort_lat(void)
1345{
1346	struct rb_node *node;
1347
 
1348	for (;;) {
1349		struct work_atoms *data;
1350		node = rb_first(&atom_root);
1351		if (!node)
1352			break;
1353
1354		rb_erase(node, &atom_root);
1355		data = rb_entry(node, struct work_atoms, node);
1356		__thread_latency_insert(&sorted_atom_root, data, &sort_list);
 
 
 
 
1357	}
1358}
1359
1360static struct trace_sched_handler *trace_handler;
 
 
 
 
 
 
 
 
1361
1362static void
1363process_sched_wakeup_event(struct perf_tool *tool __used,
1364			   struct event_format *event,
1365			   struct perf_sample *sample,
1366			   struct machine *machine,
1367			   struct thread *thread)
1368{
1369	void *data = sample->raw_data;
1370	struct trace_wakeup_event wakeup_event;
1371
1372	FILL_COMMON_FIELDS(wakeup_event, event, data);
1373
1374	FILL_ARRAY(wakeup_event, comm, event, data);
1375	FILL_FIELD(wakeup_event, pid, event, data);
1376	FILL_FIELD(wakeup_event, prio, event, data);
1377	FILL_FIELD(wakeup_event, success, event, data);
1378	FILL_FIELD(wakeup_event, cpu, event, data);
1379
1380	if (trace_handler->wakeup_event)
1381		trace_handler->wakeup_event(&wakeup_event, machine, event,
1382					    sample->cpu, sample->time, thread);
1383}
1384
1385/*
1386 * Track the current task - that way we can know whether there's any
1387 * weird events, such as a task being switched away that is not current.
1388 */
1389static int max_cpu;
1390
1391static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
 
 
 
 
1392
1393static struct thread *curr_thread[MAX_CPUS];
 
 
 
 
 
 
 
 
 
1394
1395static char next_shortname1 = 'A';
1396static char next_shortname2 = '0';
1397
1398static void
1399map_switch_event(struct trace_switch_event *switch_event,
1400		 struct machine *machine,
1401		 struct event_format *event __used,
1402		 int this_cpu,
1403		 u64 timestamp,
1404		 struct thread *thread __used)
 
 
1405{
1406	struct thread *sched_out __used, *sched_in;
 
 
1407	int new_shortname;
1408	u64 timestamp0;
1409	s64 delta;
1410	int cpu;
 
 
 
 
1411
1412	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1413
1414	if (this_cpu > max_cpu)
1415		max_cpu = this_cpu;
 
 
 
 
 
 
 
 
 
1416
1417	timestamp0 = cpu_last_switched[this_cpu];
1418	cpu_last_switched[this_cpu] = timestamp;
1419	if (timestamp0)
1420		delta = timestamp - timestamp0;
1421	else
1422		delta = 0;
1423
1424	if (delta < 0)
1425		die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 
 
1426
 
 
 
1427
1428	sched_out = machine__findnew_thread(machine, switch_event->prev_pid);
1429	sched_in = machine__findnew_thread(machine, switch_event->next_pid);
 
 
 
1430
1431	curr_thread[this_cpu] = sched_in;
1432
1433	printf("  ");
1434
1435	new_shortname = 0;
1436	if (!sched_in->shortname[0]) {
1437		sched_in->shortname[0] = next_shortname1;
1438		sched_in->shortname[1] = next_shortname2;
1439
1440		if (next_shortname1 < 'Z') {
1441			next_shortname1++;
 
 
1442		} else {
1443			next_shortname1='A';
1444			if (next_shortname2 < '9') {
1445				next_shortname2++;
 
 
1446			} else {
1447				next_shortname2='0';
 
 
 
 
1448			}
1449		}
1450		new_shortname = 1;
1451	}
1452
1453	for (cpu = 0; cpu <= max_cpu; cpu++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1454		if (cpu != this_cpu)
1455			printf(" ");
1456		else
1457			printf("*");
1458
1459		if (curr_thread[cpu]) {
1460			if (curr_thread[cpu]->pid)
1461				printf("%2s ", curr_thread[cpu]->shortname);
1462			else
1463				printf(".  ");
 
 
1464		} else
1465			printf("   ");
1466	}
1467
1468	printf("  %12.6f secs ", (double)timestamp/1e9);
1469	if (new_shortname) {
1470		printf("%s => %s:%d\n",
1471			sched_in->shortname, sched_in->comm, sched_in->pid);
1472	} else {
1473		printf("\n");
 
 
 
 
 
 
 
 
1474	}
1475}
1476
1477static void
1478process_sched_switch_event(struct perf_tool *tool __used,
1479			   struct event_format *event,
1480			   struct perf_sample *sample,
1481			   struct machine *machine,
1482			   struct thread *thread)
1483{
1484	int this_cpu = sample->cpu;
1485	void *data = sample->raw_data;
1486	struct trace_switch_event switch_event;
1487
1488	FILL_COMMON_FIELDS(switch_event, event, data);
1489
1490	FILL_ARRAY(switch_event, prev_comm, event, data);
1491	FILL_FIELD(switch_event, prev_pid, event, data);
1492	FILL_FIELD(switch_event, prev_prio, event, data);
1493	FILL_FIELD(switch_event, prev_state, event, data);
1494	FILL_ARRAY(switch_event, next_comm, event, data);
1495	FILL_FIELD(switch_event, next_pid, event, data);
1496	FILL_FIELD(switch_event, next_prio, event, data);
1497
1498	if (curr_pid[this_cpu] != (u32)-1) {
 
 
 
 
 
 
 
 
 
 
1499		/*
1500		 * Are we trying to switch away a PID that is
1501		 * not current?
1502		 */
1503		if (curr_pid[this_cpu] != switch_event.prev_pid)
1504			nr_context_switch_bugs++;
1505	}
1506	if (trace_handler->switch_event)
1507		trace_handler->switch_event(&switch_event, machine, event,
1508					    this_cpu, sample->time, thread);
1509
1510	curr_pid[this_cpu] = switch_event.next_pid;
1511}
1512
1513static void
1514process_sched_runtime_event(struct perf_tool *tool __used,
1515			    struct event_format *event,
1516			    struct perf_sample *sample,
1517			    struct machine *machine,
1518			    struct thread *thread)
1519{
1520	void *data = sample->raw_data;
1521	struct trace_runtime_event runtime_event;
1522
1523	FILL_ARRAY(runtime_event, comm, event, data);
1524	FILL_FIELD(runtime_event, pid, event, data);
1525	FILL_FIELD(runtime_event, runtime, event, data);
1526	FILL_FIELD(runtime_event, vruntime, event, data);
1527
1528	if (trace_handler->runtime_event)
1529		trace_handler->runtime_event(&runtime_event, machine, event,
1530					     sample->cpu, sample->time, thread);
1531}
1532
1533static void
1534process_sched_fork_event(struct perf_tool *tool __used,
1535			 struct event_format *event,
1536			 struct perf_sample *sample,
1537			 struct machine *machine __used,
1538			 struct thread *thread)
1539{
1540	void *data = sample->raw_data;
1541	struct trace_fork_event fork_event;
1542
1543	FILL_COMMON_FIELDS(fork_event, event, data);
1544
1545	FILL_ARRAY(fork_event, parent_comm, event, data);
1546	FILL_FIELD(fork_event, parent_pid, event, data);
1547	FILL_ARRAY(fork_event, child_comm, event, data);
1548	FILL_FIELD(fork_event, child_pid, event, data);
1549
1550	if (trace_handler->fork_event)
1551		trace_handler->fork_event(&fork_event, event,
1552					  sample->cpu, sample->time, thread);
1553}
1554
1555static void
1556process_sched_exit_event(struct perf_tool *tool __used,
1557			 struct event_format *event,
1558			 struct perf_sample *sample __used,
1559			 struct machine *machine __used,
1560			 struct thread *thread __used)
1561{
1562	if (verbose)
1563		printf("sched_exit event %p\n", event);
 
 
 
 
 
 
1564}
1565
1566static void
1567process_sched_migrate_task_event(struct perf_tool *tool __used,
1568				 struct event_format *event,
1569				 struct perf_sample *sample,
1570				 struct machine *machine,
1571				 struct thread *thread)
1572{
1573	void *data = sample->raw_data;
1574	struct trace_migrate_task_event migrate_task_event;
1575
1576	FILL_COMMON_FIELDS(migrate_task_event, event, data);
1577
1578	FILL_ARRAY(migrate_task_event, comm, event, data);
1579	FILL_FIELD(migrate_task_event, pid, event, data);
1580	FILL_FIELD(migrate_task_event, prio, event, data);
1581	FILL_FIELD(migrate_task_event, cpu, event, data);
1582
1583	if (trace_handler->migrate_task_event)
1584		trace_handler->migrate_task_event(&migrate_task_event, machine,
1585						  event, sample->cpu,
1586						  sample->time, thread);
1587}
1588
1589typedef void (*tracepoint_handler)(struct perf_tool *tool, struct event_format *event,
1590				   struct perf_sample *sample,
1591				   struct machine *machine,
1592				   struct thread *thread);
1593
1594static int perf_sched__process_tracepoint_sample(struct perf_tool *tool,
1595						 union perf_event *event __used,
1596						 struct perf_sample *sample,
1597						 struct perf_evsel *evsel,
1598						 struct machine *machine)
1599{
1600	struct thread *thread = machine__findnew_thread(machine, sample->pid);
1601
1602	if (thread == NULL) {
1603		pr_debug("problem processing %s event, skipping it.\n",
1604			 evsel->name);
1605		return -1;
1606	}
1607
1608	evsel->hists.stats.total_period += sample->period;
1609	hists__inc_nr_events(&evsel->hists, PERF_RECORD_SAMPLE);
1610
1611	if (evsel->handler.func != NULL) {
1612		tracepoint_handler f = evsel->handler.func;
 
 
 
 
 
 
1613
1614		if (evsel->handler.data == NULL)
1615			evsel->handler.data = trace_find_event(evsel->attr.config);
 
 
 
 
 
 
 
1616
1617		f(tool, evsel->handler.data, sample, machine, thread);
 
 
 
1618	}
1619
 
 
 
1620	return 0;
1621}
1622
1623static struct perf_tool perf_sched = {
1624	.sample			= perf_sched__process_tracepoint_sample,
1625	.comm			= perf_event__process_comm,
1626	.lost			= perf_event__process_lost,
1627	.fork			= perf_event__process_task,
1628	.ordered_samples	= true,
1629};
1630
1631static void read_events(bool destroy, struct perf_session **psession)
1632{
1633	int err = -EINVAL;
1634	const struct perf_evsel_str_handler handlers[] = {
1635		{ "sched:sched_switch",	      process_sched_switch_event, },
1636		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1637		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1638		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1639		{ "sched:sched_process_fork", process_sched_fork_event, },
1640		{ "sched:sched_process_exit", process_sched_exit_event, },
1641		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1642	};
1643	struct perf_session *session = perf_session__new(input_name, O_RDONLY,
1644							 0, false, &perf_sched);
1645	if (session == NULL)
1646		die("No Memory");
 
 
 
1647
1648	err = perf_evlist__set_tracepoints_handlers_array(session->evlist, handlers);
1649	assert(err == 0);
 
 
 
 
 
 
 
 
1650
1651	if (perf_session__has_traces(session, "record -R")) {
1652		err = perf_session__process_events(session, &perf_sched);
1653		if (err)
1654			die("Failed to process events, error %d", err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1655
1656		nr_events      = session->hists.stats.nr_events[0];
1657		nr_lost_events = session->hists.stats.total_lost;
1658		nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1659	}
1660
1661	if (destroy)
1662		perf_session__delete(session);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1663
1664	if (psession)
1665		*psession = session;
1666}
1667
1668static void print_bad_events(void)
 
1669{
1670	if (nr_unordered_timestamps && nr_timestamps) {
1671		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1672			(double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
1673			nr_unordered_timestamps, nr_timestamps);
1674	}
1675	if (nr_lost_events && nr_events) {
1676		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1677			(double)nr_lost_events/(double)nr_events*100.0,
1678			nr_lost_events, nr_events, nr_lost_chunks);
1679	}
1680	if (nr_state_machine_bugs && nr_timestamps) {
1681		printf("  INFO: %.3f%% state machine bugs (%ld out of %ld)",
1682			(double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
1683			nr_state_machine_bugs, nr_timestamps);
1684		if (nr_lost_events)
1685			printf(" (due to lost events?)");
1686		printf("\n");
1687	}
1688	if (nr_context_switch_bugs && nr_timestamps) {
1689		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1690			(double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
1691			nr_context_switch_bugs, nr_timestamps);
1692		if (nr_lost_events)
1693			printf(" (due to lost events?)");
1694		printf("\n");
1695	}
1696}
1697
1698static void __cmd_lat(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1699{
1700	struct rb_node *next;
1701	struct perf_session *session;
1702
1703	setup_pager();
1704	read_events(false, &session);
1705	sort_lat();
1706
1707	printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1708	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at     |\n");
1709	printf(" ---------------------------------------------------------------------------------------------------------------\n");
1710
1711	next = rb_first(&sorted_atom_root);
 
 
 
 
 
 
 
1712
1713	while (next) {
1714		struct work_atoms *work_list;
1715
1716		work_list = rb_entry(next, struct work_atoms, node);
1717		output_lat_thread(work_list);
1718		next = rb_next(next);
 
1719	}
1720
1721	printf(" -----------------------------------------------------------------------------------------\n");
1722	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
1723		(double)all_runtime/1e6, all_count);
1724
1725	printf(" ---------------------------------------------------\n");
1726
1727	print_bad_events();
1728	printf("\n");
1729
1730	perf_session__delete(session);
1731}
1732
1733static struct trace_sched_handler map_ops  = {
1734	.wakeup_event		= NULL,
1735	.switch_event		= map_switch_event,
1736	.runtime_event		= NULL,
1737	.fork_event		= NULL,
1738};
1739
1740static void __cmd_map(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1741{
1742	max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1743
1744	setup_pager();
1745	read_events(true, NULL);
1746	print_bad_events();
 
 
 
 
 
 
 
 
1747}
1748
1749static void __cmd_replay(void)
1750{
1751	unsigned long i;
1752
1753	calibrate_run_measurement_overhead();
1754	calibrate_sleep_measurement_overhead();
1755
1756	test_calibrations();
 
 
 
 
1757
1758	read_events(true, NULL);
 
 
1759
1760	printf("nr_run_events:        %ld\n", nr_run_events);
1761	printf("nr_sleep_events:      %ld\n", nr_sleep_events);
1762	printf("nr_wakeup_events:     %ld\n", nr_wakeup_events);
1763
1764	if (targetless_wakeups)
1765		printf("target-less wakeups:  %ld\n", targetless_wakeups);
1766	if (multitarget_wakeups)
1767		printf("multi-target wakeups: %ld\n", multitarget_wakeups);
1768	if (nr_run_events_optimized)
1769		printf("run atoms optimized: %ld\n",
1770			nr_run_events_optimized);
1771
1772	print_task_traces();
1773	add_cross_task_wakeups();
1774
1775	create_tasks();
1776	printf("------------------------------------------------------------\n");
1777	for (i = 0; i < replay_repeat; i++)
1778		run_one_test();
 
 
 
 
1779}
1780
 
 
 
1781
1782static const char * const sched_usage[] = {
1783	"perf sched [<options>] {record|latency|map|replay|script}",
1784	NULL
1785};
1786
1787static const struct option sched_options[] = {
1788	OPT_STRING('i', "input", &input_name, "file",
1789		    "input file name"),
1790	OPT_INCR('v', "verbose", &verbose,
1791		    "be more verbose (show symbol address, etc)"),
1792	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1793		    "dump raw trace in ASCII"),
1794	OPT_END()
1795};
1796
1797static const char * const latency_usage[] = {
1798	"perf sched latency [<options>]",
1799	NULL
1800};
1801
1802static const struct option latency_options[] = {
1803	OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1804		   "sort by key(s): runtime, switch, avg, max"),
1805	OPT_INCR('v', "verbose", &verbose,
1806		    "be more verbose (show symbol address, etc)"),
1807	OPT_INTEGER('C', "CPU", &profile_cpu,
1808		    "CPU to profile on"),
1809	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1810		    "dump raw trace in ASCII"),
1811	OPT_END()
1812};
1813
1814static const char * const replay_usage[] = {
1815	"perf sched replay [<options>]",
1816	NULL
1817};
1818
1819static const struct option replay_options[] = {
1820	OPT_UINTEGER('r', "repeat", &replay_repeat,
1821		     "repeat the workload replay N times (-1: infinite)"),
1822	OPT_INCR('v', "verbose", &verbose,
1823		    "be more verbose (show symbol address, etc)"),
1824	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1825		    "dump raw trace in ASCII"),
1826	OPT_END()
1827};
1828
1829static void setup_sorting(void)
 
1830{
1831	char *tmp, *tok, *str = strdup(sort_order);
1832
1833	for (tok = strtok_r(str, ", ", &tmp);
1834			tok; tok = strtok_r(NULL, ", ", &tmp)) {
1835		if (sort_dimension__add(tok, &sort_list) < 0) {
1836			error("Unknown --sort key: `%s'", tok);
1837			usage_with_options(latency_usage, latency_options);
1838		}
1839	}
1840
1841	free(str);
1842
1843	sort_dimension__add("pid", &cmp_pid);
1844}
1845
1846static const char *record_args[] = {
1847	"record",
1848	"-a",
1849	"-R",
1850	"-f",
1851	"-m", "1024",
1852	"-c", "1",
1853	"-e", "sched:sched_switch",
1854	"-e", "sched:sched_stat_wait",
1855	"-e", "sched:sched_stat_sleep",
1856	"-e", "sched:sched_stat_iowait",
1857	"-e", "sched:sched_stat_runtime",
1858	"-e", "sched:sched_process_exit",
1859	"-e", "sched:sched_process_fork",
1860	"-e", "sched:sched_wakeup",
1861	"-e", "sched:sched_migrate_task",
1862};
1863
1864static int __cmd_record(int argc, const char **argv)
1865{
1866	unsigned int rec_argc, i, j;
1867	const char **rec_argv;
 
 
 
 
 
 
 
 
 
 
 
 
1868
1869	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1870	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1871
1872	if (rec_argv == NULL)
1873		return -ENOMEM;
1874
1875	for (i = 0; i < ARRAY_SIZE(record_args); i++)
1876		rec_argv[i] = strdup(record_args[i]);
1877
 
 
 
 
 
 
 
 
 
 
1878	for (j = 1; j < (unsigned int)argc; j++, i++)
1879		rec_argv[i] = argv[j];
1880
1881	BUG_ON(i != rec_argc);
1882
1883	return cmd_record(i, rec_argv, NULL);
1884}
1885
1886int cmd_sched(int argc, const char **argv, const char *prefix __used)
1887{
1888	argc = parse_options(argc, argv, sched_options, sched_usage,
1889			     PARSE_OPT_STOP_AT_NON_OPTION);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1890	if (!argc)
1891		usage_with_options(sched_usage, sched_options);
1892
1893	/*
1894	 * Aliased to 'perf script' for now:
1895	 */
1896	if (!strcmp(argv[0], "script"))
1897		return cmd_script(argc, argv, prefix);
1898
1899	symbol__init();
1900	if (!strncmp(argv[0], "rec", 3)) {
1901		return __cmd_record(argc, argv);
1902	} else if (!strncmp(argv[0], "lat", 3)) {
1903		trace_handler = &lat_ops;
1904		if (argc > 1) {
1905			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1906			if (argc)
1907				usage_with_options(latency_usage, latency_options);
1908		}
1909		setup_sorting();
1910		__cmd_lat();
1911	} else if (!strcmp(argv[0], "map")) {
1912		trace_handler = &map_ops;
1913		setup_sorting();
1914		__cmd_map();
 
 
 
 
 
1915	} else if (!strncmp(argv[0], "rep", 3)) {
1916		trace_handler = &replay_ops;
1917		if (argc) {
1918			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1919			if (argc)
1920				usage_with_options(replay_usage, replay_options);
1921		}
1922		__cmd_replay();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1923	} else {
1924		usage_with_options(sched_usage, sched_options);
1925	}
1926
1927	return 0;
1928}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2#include "builtin.h"
   3#include "perf.h"
   4#include "perf-sys.h"
   5
   6#include "util/cpumap.h"
   7#include "util/evlist.h"
 
   8#include "util/evsel.h"
   9#include "util/evsel_fprintf.h"
  10#include "util/symbol.h"
  11#include "util/thread.h"
  12#include "util/header.h"
  13#include "util/session.h"
  14#include "util/tool.h"
  15#include "util/cloexec.h"
  16#include "util/thread_map.h"
  17#include "util/color.h"
  18#include "util/stat.h"
  19#include "util/string2.h"
  20#include "util/callchain.h"
  21#include "util/time-utils.h"
  22
  23#include <subcmd/pager.h>
  24#include <subcmd/parse-options.h>
  25#include "util/trace-event.h"
  26
  27#include "util/debug.h"
  28#include "util/event.h"
  29
  30#include <linux/kernel.h>
  31#include <linux/log2.h>
  32#include <linux/zalloc.h>
  33#include <sys/prctl.h>
  34#include <sys/resource.h>
  35#include <inttypes.h>
  36
  37#include <errno.h>
  38#include <semaphore.h>
  39#include <pthread.h>
  40#include <math.h>
  41#include <api/fs/fs.h>
  42#include <perf/cpumap.h>
  43#include <linux/time64.h>
  44#include <linux/err.h>
  45
  46#include <linux/ctype.h>
 
 
 
 
 
  47
  48#define PR_SET_NAME		15               /* Set process name */
  49#define MAX_CPUS		4096
 
 
 
 
  50#define COMM_LEN		20
  51#define SYM_LEN			129
  52#define MAX_PID			1024000
  53
  54static const char *cpu_list;
  55static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
 
  56
  57struct sched_atom;
  58
  59struct task_desc {
  60	unsigned long		nr;
  61	unsigned long		pid;
  62	char			comm[COMM_LEN];
  63
  64	unsigned long		nr_events;
  65	unsigned long		curr_event;
  66	struct sched_atom	**atoms;
  67
  68	pthread_t		thread;
  69	sem_t			sleep_sem;
  70
  71	sem_t			ready_for_work;
  72	sem_t			work_done_sem;
  73
  74	u64			cpu_usage;
  75};
  76
  77enum sched_event_type {
  78	SCHED_EVENT_RUN,
  79	SCHED_EVENT_SLEEP,
  80	SCHED_EVENT_WAKEUP,
  81	SCHED_EVENT_MIGRATION,
  82};
  83
  84struct sched_atom {
  85	enum sched_event_type	type;
  86	int			specific_wait;
  87	u64			timestamp;
  88	u64			duration;
  89	unsigned long		nr;
  90	sem_t			*wait_sem;
  91	struct task_desc	*wakee;
  92};
  93
  94#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  95
  96/* task state bitmask, copied from include/linux/sched.h */
  97#define TASK_RUNNING		0
  98#define TASK_INTERRUPTIBLE	1
  99#define TASK_UNINTERRUPTIBLE	2
 100#define __TASK_STOPPED		4
 101#define __TASK_TRACED		8
 102/* in tsk->exit_state */
 103#define EXIT_DEAD		16
 104#define EXIT_ZOMBIE		32
 105#define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
 106/* in tsk->state again */
 107#define TASK_DEAD		64
 108#define TASK_WAKEKILL		128
 109#define TASK_WAKING		256
 110#define TASK_PARKED		512
 111
 112enum thread_state {
 113	THREAD_SLEEPING = 0,
 114	THREAD_WAIT_CPU,
 115	THREAD_SCHED_IN,
 116	THREAD_IGNORE
 117};
 118
 119struct work_atom {
 120	struct list_head	list;
 121	enum thread_state	state;
 122	u64			sched_out_time;
 123	u64			wake_up_time;
 124	u64			sched_in_time;
 125	u64			runtime;
 126};
 127
 128struct work_atoms {
 129	struct list_head	work_list;
 130	struct thread		*thread;
 131	struct rb_node		node;
 132	u64			max_lat;
 133	u64			max_lat_start;
 134	u64			max_lat_end;
 135	u64			total_lat;
 136	u64			nb_atoms;
 137	u64			total_runtime;
 138	int			num_merged;
 139};
 140
 141typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 142
 143struct perf_sched;
 144
 145struct trace_sched_handler {
 146	int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
 147			    struct perf_sample *sample, struct machine *machine);
 148
 149	int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
 150			     struct perf_sample *sample, struct machine *machine);
 151
 152	int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
 153			    struct perf_sample *sample, struct machine *machine);
 154
 155	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 156	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 157			  struct machine *machine);
 158
 159	int (*migrate_task_event)(struct perf_sched *sched,
 160				  struct evsel *evsel,
 161				  struct perf_sample *sample,
 162				  struct machine *machine);
 163};
 164
 165#define COLOR_PIDS PERF_COLOR_BLUE
 166#define COLOR_CPUS PERF_COLOR_BG_RED
 167
 168struct perf_sched_map {
 169	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 170	int			*comp_cpus;
 171	bool			 comp;
 172	struct perf_thread_map *color_pids;
 173	const char		*color_pids_str;
 174	struct perf_cpu_map	*color_cpus;
 175	const char		*color_cpus_str;
 176	struct perf_cpu_map	*cpus;
 177	const char		*cpus_str;
 178};
 179
 180struct perf_sched {
 181	struct perf_tool tool;
 182	const char	 *sort_order;
 183	unsigned long	 nr_tasks;
 184	struct task_desc **pid_to_task;
 185	struct task_desc **tasks;
 186	const struct trace_sched_handler *tp_handler;
 187	pthread_mutex_t	 start_work_mutex;
 188	pthread_mutex_t	 work_done_wait_mutex;
 189	int		 profile_cpu;
 190/*
 191 * Track the current task - that way we can know whether there's any
 192 * weird events, such as a task being switched away that is not current.
 193 */
 194	int		 max_cpu;
 195	u32		 curr_pid[MAX_CPUS];
 196	struct thread	 *curr_thread[MAX_CPUS];
 197	char		 next_shortname1;
 198	char		 next_shortname2;
 199	unsigned int	 replay_repeat;
 200	unsigned long	 nr_run_events;
 201	unsigned long	 nr_sleep_events;
 202	unsigned long	 nr_wakeup_events;
 203	unsigned long	 nr_sleep_corrections;
 204	unsigned long	 nr_run_events_optimized;
 205	unsigned long	 targetless_wakeups;
 206	unsigned long	 multitarget_wakeups;
 207	unsigned long	 nr_runs;
 208	unsigned long	 nr_timestamps;
 209	unsigned long	 nr_unordered_timestamps;
 210	unsigned long	 nr_context_switch_bugs;
 211	unsigned long	 nr_events;
 212	unsigned long	 nr_lost_chunks;
 213	unsigned long	 nr_lost_events;
 214	u64		 run_measurement_overhead;
 215	u64		 sleep_measurement_overhead;
 216	u64		 start_time;
 217	u64		 cpu_usage;
 218	u64		 runavg_cpu_usage;
 219	u64		 parent_cpu_usage;
 220	u64		 runavg_parent_cpu_usage;
 221	u64		 sum_runtime;
 222	u64		 sum_fluct;
 223	u64		 run_avg;
 224	u64		 all_runtime;
 225	u64		 all_count;
 226	u64		 cpu_last_switched[MAX_CPUS];
 227	struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
 228	struct list_head sort_list, cmp_pid;
 229	bool force;
 230	bool skip_merge;
 231	struct perf_sched_map map;
 232
 233	/* options for timehist command */
 234	bool		summary;
 235	bool		summary_only;
 236	bool		idle_hist;
 237	bool		show_callchain;
 238	unsigned int	max_stack;
 239	bool		show_cpu_visual;
 240	bool		show_wakeups;
 241	bool		show_next;
 242	bool		show_migrations;
 243	bool		show_state;
 244	u64		skipped_samples;
 245	const char	*time_str;
 246	struct perf_time_interval ptime;
 247	struct perf_time_interval hist_time;
 248};
 249
 250/* per thread run time data */
 251struct thread_runtime {
 252	u64 last_time;      /* time of previous sched in/out event */
 253	u64 dt_run;         /* run time */
 254	u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
 255	u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
 256	u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
 257	u64 dt_delay;       /* time between wakeup and sched-in */
 258	u64 ready_to_run;   /* time of wakeup */
 259
 260	struct stats run_stats;
 261	u64 total_run_time;
 262	u64 total_sleep_time;
 263	u64 total_iowait_time;
 264	u64 total_preempt_time;
 265	u64 total_delay_time;
 266
 267	int last_state;
 268
 269	char shortname[3];
 270	bool comm_changed;
 271
 272	u64 migrations;
 273};
 274
 275/* per event run time data */
 276struct evsel_runtime {
 277	u64 *last_time; /* time this event was last seen per cpu */
 278	u32 ncpu;       /* highest cpu slot allocated */
 279};
 280
 281/* per cpu idle time data */
 282struct idle_thread_runtime {
 283	struct thread_runtime	tr;
 284	struct thread		*last_thread;
 285	struct rb_root_cached	sorted_root;
 286	struct callchain_root	callchain;
 287	struct callchain_cursor	cursor;
 288};
 289
 290/* track idle times per cpu */
 291static struct thread **idle_threads;
 292static int idle_max_cpu;
 293static char idle_comm[] = "<idle>";
 294
 295static u64 get_nsecs(void)
 296{
 297	struct timespec ts;
 298
 299	clock_gettime(CLOCK_MONOTONIC, &ts);
 300
 301	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 302}
 303
 304static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 305{
 306	u64 T0 = get_nsecs(), T1;
 307
 308	do {
 309		T1 = get_nsecs();
 310	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 311}
 312
 313static void sleep_nsecs(u64 nsecs)
 314{
 315	struct timespec ts;
 316
 317	ts.tv_nsec = nsecs % 999999999;
 318	ts.tv_sec = nsecs / 999999999;
 319
 320	nanosleep(&ts, NULL);
 321}
 322
 323static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 324{
 325	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 326	int i;
 327
 328	for (i = 0; i < 10; i++) {
 329		T0 = get_nsecs();
 330		burn_nsecs(sched, 0);
 331		T1 = get_nsecs();
 332		delta = T1-T0;
 333		min_delta = min(min_delta, delta);
 334	}
 335	sched->run_measurement_overhead = min_delta;
 336
 337	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 338}
 339
 340static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 341{
 342	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 343	int i;
 344
 345	for (i = 0; i < 10; i++) {
 346		T0 = get_nsecs();
 347		sleep_nsecs(10000);
 348		T1 = get_nsecs();
 349		delta = T1-T0;
 350		min_delta = min(min_delta, delta);
 351	}
 352	min_delta -= 10000;
 353	sched->sleep_measurement_overhead = min_delta;
 354
 355	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 356}
 357
 358static struct sched_atom *
 359get_new_event(struct task_desc *task, u64 timestamp)
 360{
 361	struct sched_atom *event = zalloc(sizeof(*event));
 362	unsigned long idx = task->nr_events;
 363	size_t size;
 364
 365	event->timestamp = timestamp;
 366	event->nr = idx;
 367
 368	task->nr_events++;
 369	size = sizeof(struct sched_atom *) * task->nr_events;
 370	task->atoms = realloc(task->atoms, size);
 371	BUG_ON(!task->atoms);
 372
 373	task->atoms[idx] = event;
 374
 375	return event;
 376}
 377
 378static struct sched_atom *last_event(struct task_desc *task)
 379{
 380	if (!task->nr_events)
 381		return NULL;
 382
 383	return task->atoms[task->nr_events - 1];
 384}
 385
 386static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 387				u64 timestamp, u64 duration)
 388{
 389	struct sched_atom *event, *curr_event = last_event(task);
 390
 391	/*
 392	 * optimize an existing RUN event by merging this one
 393	 * to it:
 394	 */
 395	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 396		sched->nr_run_events_optimized++;
 397		curr_event->duration += duration;
 398		return;
 399	}
 400
 401	event = get_new_event(task, timestamp);
 402
 403	event->type = SCHED_EVENT_RUN;
 404	event->duration = duration;
 405
 406	sched->nr_run_events++;
 407}
 408
 409static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 410				   u64 timestamp, struct task_desc *wakee)
 
 411{
 412	struct sched_atom *event, *wakee_event;
 413
 414	event = get_new_event(task, timestamp);
 415	event->type = SCHED_EVENT_WAKEUP;
 416	event->wakee = wakee;
 417
 418	wakee_event = last_event(wakee);
 419	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 420		sched->targetless_wakeups++;
 421		return;
 422	}
 423	if (wakee_event->wait_sem) {
 424		sched->multitarget_wakeups++;
 425		return;
 426	}
 427
 428	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 429	sem_init(wakee_event->wait_sem, 0, 0);
 430	wakee_event->specific_wait = 1;
 431	event->wait_sem = wakee_event->wait_sem;
 432
 433	sched->nr_wakeup_events++;
 434}
 435
 436static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 437				  u64 timestamp, u64 task_state __maybe_unused)
 
 438{
 439	struct sched_atom *event = get_new_event(task, timestamp);
 440
 441	event->type = SCHED_EVENT_SLEEP;
 442
 443	sched->nr_sleep_events++;
 444}
 445
 446static struct task_desc *register_pid(struct perf_sched *sched,
 447				      unsigned long pid, const char *comm)
 448{
 449	struct task_desc *task;
 450	static int pid_max;
 451
 452	if (sched->pid_to_task == NULL) {
 453		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 454			pid_max = MAX_PID;
 455		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 456	}
 457	if (pid >= (unsigned long)pid_max) {
 458		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 459			sizeof(struct task_desc *))) == NULL);
 460		while (pid >= (unsigned long)pid_max)
 461			sched->pid_to_task[pid_max++] = NULL;
 462	}
 463
 464	task = sched->pid_to_task[pid];
 465
 466	if (task)
 467		return task;
 468
 469	task = zalloc(sizeof(*task));
 470	task->pid = pid;
 471	task->nr = sched->nr_tasks;
 472	strcpy(task->comm, comm);
 473	/*
 474	 * every task starts in sleeping state - this gets ignored
 475	 * if there's no wakeup pointing to this sleep state:
 476	 */
 477	add_sched_event_sleep(sched, task, 0, 0);
 478
 479	sched->pid_to_task[pid] = task;
 480	sched->nr_tasks++;
 481	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 482	BUG_ON(!sched->tasks);
 483	sched->tasks[task->nr] = task;
 484
 485	if (verbose > 0)
 486		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 487
 488	return task;
 489}
 490
 491
 492static void print_task_traces(struct perf_sched *sched)
 493{
 494	struct task_desc *task;
 495	unsigned long i;
 496
 497	for (i = 0; i < sched->nr_tasks; i++) {
 498		task = sched->tasks[i];
 499		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 500			task->nr, task->comm, task->pid, task->nr_events);
 501	}
 502}
 503
 504static void add_cross_task_wakeups(struct perf_sched *sched)
 505{
 506	struct task_desc *task1, *task2;
 507	unsigned long i, j;
 508
 509	for (i = 0; i < sched->nr_tasks; i++) {
 510		task1 = sched->tasks[i];
 511		j = i + 1;
 512		if (j == sched->nr_tasks)
 513			j = 0;
 514		task2 = sched->tasks[j];
 515		add_sched_event_wakeup(sched, task1, 0, task2);
 516	}
 517}
 518
 519static void perf_sched__process_event(struct perf_sched *sched,
 520				      struct sched_atom *atom)
 521{
 522	int ret = 0;
 523
 524	switch (atom->type) {
 525		case SCHED_EVENT_RUN:
 526			burn_nsecs(sched, atom->duration);
 527			break;
 528		case SCHED_EVENT_SLEEP:
 529			if (atom->wait_sem)
 530				ret = sem_wait(atom->wait_sem);
 531			BUG_ON(ret);
 532			break;
 533		case SCHED_EVENT_WAKEUP:
 534			if (atom->wait_sem)
 535				ret = sem_post(atom->wait_sem);
 536			BUG_ON(ret);
 537			break;
 538		case SCHED_EVENT_MIGRATION:
 539			break;
 540		default:
 541			BUG_ON(1);
 542	}
 543}
 544
 545static u64 get_cpu_usage_nsec_parent(void)
 546{
 547	struct rusage ru;
 548	u64 sum;
 549	int err;
 550
 551	err = getrusage(RUSAGE_SELF, &ru);
 552	BUG_ON(err);
 553
 554	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 555	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 556
 557	return sum;
 558}
 559
 560static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 561{
 562	struct perf_event_attr attr;
 563	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 564	int fd;
 565	struct rlimit limit;
 566	bool need_privilege = false;
 567
 568	memset(&attr, 0, sizeof(attr));
 569
 570	attr.type = PERF_TYPE_SOFTWARE;
 571	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 572
 573force_again:
 574	fd = sys_perf_event_open(&attr, 0, -1, -1,
 575				 perf_event_open_cloexec_flag());
 576
 577	if (fd < 0) {
 578		if (errno == EMFILE) {
 579			if (sched->force) {
 580				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 581				limit.rlim_cur += sched->nr_tasks - cur_task;
 582				if (limit.rlim_cur > limit.rlim_max) {
 583					limit.rlim_max = limit.rlim_cur;
 584					need_privilege = true;
 585				}
 586				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 587					if (need_privilege && errno == EPERM)
 588						strcpy(info, "Need privilege\n");
 589				} else
 590					goto force_again;
 591			} else
 592				strcpy(info, "Have a try with -f option\n");
 593		}
 594		pr_err("Error: sys_perf_event_open() syscall returned "
 595		       "with %d (%s)\n%s", fd,
 596		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 597		exit(EXIT_FAILURE);
 598	}
 599	return fd;
 600}
 601
 602static u64 get_cpu_usage_nsec_self(int fd)
 603{
 604	u64 runtime;
 605	int ret;
 606
 607	ret = read(fd, &runtime, sizeof(runtime));
 608	BUG_ON(ret != sizeof(runtime));
 609
 610	return runtime;
 611}
 612
 613struct sched_thread_parms {
 614	struct task_desc  *task;
 615	struct perf_sched *sched;
 616	int fd;
 617};
 618
 619static void *thread_func(void *ctx)
 620{
 621	struct sched_thread_parms *parms = ctx;
 622	struct task_desc *this_task = parms->task;
 623	struct perf_sched *sched = parms->sched;
 624	u64 cpu_usage_0, cpu_usage_1;
 625	unsigned long i, ret;
 626	char comm2[22];
 627	int fd = parms->fd;
 628
 629	zfree(&parms);
 630
 631	sprintf(comm2, ":%s", this_task->comm);
 632	prctl(PR_SET_NAME, comm2);
 633	if (fd < 0)
 634		return NULL;
 635again:
 636	ret = sem_post(&this_task->ready_for_work);
 637	BUG_ON(ret);
 638	ret = pthread_mutex_lock(&sched->start_work_mutex);
 639	BUG_ON(ret);
 640	ret = pthread_mutex_unlock(&sched->start_work_mutex);
 641	BUG_ON(ret);
 642
 643	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 644
 645	for (i = 0; i < this_task->nr_events; i++) {
 646		this_task->curr_event = i;
 647		perf_sched__process_event(sched, this_task->atoms[i]);
 648	}
 649
 650	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 651	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 652	ret = sem_post(&this_task->work_done_sem);
 653	BUG_ON(ret);
 654
 655	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 656	BUG_ON(ret);
 657	ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
 658	BUG_ON(ret);
 659
 660	goto again;
 661}
 662
 663static void create_tasks(struct perf_sched *sched)
 664{
 665	struct task_desc *task;
 666	pthread_attr_t attr;
 667	unsigned long i;
 668	int err;
 669
 670	err = pthread_attr_init(&attr);
 671	BUG_ON(err);
 672	err = pthread_attr_setstacksize(&attr,
 673			(size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
 674	BUG_ON(err);
 675	err = pthread_mutex_lock(&sched->start_work_mutex);
 676	BUG_ON(err);
 677	err = pthread_mutex_lock(&sched->work_done_wait_mutex);
 678	BUG_ON(err);
 679	for (i = 0; i < sched->nr_tasks; i++) {
 680		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 681		BUG_ON(parms == NULL);
 682		parms->task = task = sched->tasks[i];
 683		parms->sched = sched;
 684		parms->fd = self_open_counters(sched, i);
 685		sem_init(&task->sleep_sem, 0, 0);
 686		sem_init(&task->ready_for_work, 0, 0);
 687		sem_init(&task->work_done_sem, 0, 0);
 688		task->curr_event = 0;
 689		err = pthread_create(&task->thread, &attr, thread_func, parms);
 690		BUG_ON(err);
 691	}
 692}
 693
 694static void wait_for_tasks(struct perf_sched *sched)
 695{
 696	u64 cpu_usage_0, cpu_usage_1;
 697	struct task_desc *task;
 698	unsigned long i, ret;
 699
 700	sched->start_time = get_nsecs();
 701	sched->cpu_usage = 0;
 702	pthread_mutex_unlock(&sched->work_done_wait_mutex);
 703
 704	for (i = 0; i < sched->nr_tasks; i++) {
 705		task = sched->tasks[i];
 706		ret = sem_wait(&task->ready_for_work);
 707		BUG_ON(ret);
 708		sem_init(&task->ready_for_work, 0, 0);
 709	}
 710	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 711	BUG_ON(ret);
 712
 713	cpu_usage_0 = get_cpu_usage_nsec_parent();
 714
 715	pthread_mutex_unlock(&sched->start_work_mutex);
 716
 717	for (i = 0; i < sched->nr_tasks; i++) {
 718		task = sched->tasks[i];
 719		ret = sem_wait(&task->work_done_sem);
 720		BUG_ON(ret);
 721		sem_init(&task->work_done_sem, 0, 0);
 722		sched->cpu_usage += task->cpu_usage;
 723		task->cpu_usage = 0;
 724	}
 725
 726	cpu_usage_1 = get_cpu_usage_nsec_parent();
 727	if (!sched->runavg_cpu_usage)
 728		sched->runavg_cpu_usage = sched->cpu_usage;
 729	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 730
 731	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 732	if (!sched->runavg_parent_cpu_usage)
 733		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 734	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 735					 sched->parent_cpu_usage)/sched->replay_repeat;
 736
 737	ret = pthread_mutex_lock(&sched->start_work_mutex);
 738	BUG_ON(ret);
 739
 740	for (i = 0; i < sched->nr_tasks; i++) {
 741		task = sched->tasks[i];
 742		sem_init(&task->sleep_sem, 0, 0);
 743		task->curr_event = 0;
 744	}
 745}
 746
 747static void run_one_test(struct perf_sched *sched)
 748{
 749	u64 T0, T1, delta, avg_delta, fluct;
 750
 751	T0 = get_nsecs();
 752	wait_for_tasks(sched);
 753	T1 = get_nsecs();
 754
 755	delta = T1 - T0;
 756	sched->sum_runtime += delta;
 757	sched->nr_runs++;
 758
 759	avg_delta = sched->sum_runtime / sched->nr_runs;
 760	if (delta < avg_delta)
 761		fluct = avg_delta - delta;
 762	else
 763		fluct = delta - avg_delta;
 764	sched->sum_fluct += fluct;
 765	if (!sched->run_avg)
 766		sched->run_avg = delta;
 767	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 768
 769	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 
 770
 771	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 
 772
 773	printf("cpu: %0.2f / %0.2f",
 774		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 775
 776#if 0
 777	/*
 778	 * rusage statistics done by the parent, these are less
 779	 * accurate than the sched->sum_exec_runtime based statistics:
 780	 */
 781	printf(" [%0.2f / %0.2f]",
 782		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 783		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 784#endif
 785
 786	printf("\n");
 787
 788	if (sched->nr_sleep_corrections)
 789		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 790	sched->nr_sleep_corrections = 0;
 791}
 792
 793static void test_calibrations(struct perf_sched *sched)
 794{
 795	u64 T0, T1;
 796
 797	T0 = get_nsecs();
 798	burn_nsecs(sched, NSEC_PER_MSEC);
 799	T1 = get_nsecs();
 800
 801	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 802
 803	T0 = get_nsecs();
 804	sleep_nsecs(NSEC_PER_MSEC);
 805	T1 = get_nsecs();
 806
 807	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 808}
 809
 810static int
 811replay_wakeup_event(struct perf_sched *sched,
 812		    struct evsel *evsel, struct perf_sample *sample,
 813		    struct machine *machine __maybe_unused)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 814{
 815	const char *comm = evsel__strval(evsel, sample, "comm");
 816	const u32 pid	 = evsel__intval(evsel, sample, "pid");
 817	struct task_desc *waker, *wakee;
 818
 819	if (verbose > 0) {
 820		printf("sched_wakeup event %p\n", evsel);
 821
 822		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 
 
 
 823	}
 824
 825	waker = register_pid(sched, sample->tid, "<unknown>");
 826	wakee = register_pid(sched, pid, comm);
 827
 828	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 829	return 0;
 830}
 831
 832static int replay_switch_event(struct perf_sched *sched,
 833			       struct evsel *evsel,
 834			       struct perf_sample *sample,
 835			       struct machine *machine __maybe_unused)
 836{
 837	const char *prev_comm  = evsel__strval(evsel, sample, "prev_comm"),
 838		   *next_comm  = evsel__strval(evsel, sample, "next_comm");
 839	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
 840		  next_pid = evsel__intval(evsel, sample, "next_pid");
 841	const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
 842	struct task_desc *prev, __maybe_unused *next;
 843	u64 timestamp0, timestamp = sample->time;
 844	int cpu = sample->cpu;
 845	s64 delta;
 846
 847	if (verbose > 0)
 848		printf("sched_switch event %p\n", evsel);
 849
 850	if (cpu >= MAX_CPUS || cpu < 0)
 851		return 0;
 852
 853	timestamp0 = sched->cpu_last_switched[cpu];
 854	if (timestamp0)
 855		delta = timestamp - timestamp0;
 856	else
 857		delta = 0;
 858
 859	if (delta < 0) {
 860		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 861		return -1;
 
 
 
 
 
 862	}
 863
 864	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 865		 prev_comm, prev_pid, next_comm, next_pid, delta);
 866
 867	prev = register_pid(sched, prev_pid, prev_comm);
 868	next = register_pid(sched, next_pid, next_comm);
 869
 870	sched->cpu_last_switched[cpu] = timestamp;
 
 
 871
 872	add_sched_event_run(sched, prev, timestamp, delta);
 873	add_sched_event_sleep(sched, prev, timestamp, prev_state);
 874
 875	return 0;
 876}
 877
 878static int replay_fork_event(struct perf_sched *sched,
 879			     union perf_event *event,
 880			     struct machine *machine)
 881{
 882	struct thread *child, *parent;
 883
 884	child = machine__findnew_thread(machine, event->fork.pid,
 885					event->fork.tid);
 886	parent = machine__findnew_thread(machine, event->fork.ppid,
 887					 event->fork.ptid);
 888
 889	if (child == NULL || parent == NULL) {
 890		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 891				 child, parent);
 892		goto out_put;
 893	}
 894
 895	if (verbose > 0) {
 896		printf("fork event\n");
 897		printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 898		printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 899	}
 900
 901	register_pid(sched, parent->tid, thread__comm_str(parent));
 902	register_pid(sched, child->tid, thread__comm_str(child));
 903out_put:
 904	thread__put(child);
 905	thread__put(parent);
 906	return 0;
 907}
 908
 909struct sort_dimension {
 910	const char		*name;
 911	sort_fn_t		cmp;
 912	struct list_head	list;
 913};
 914
 915/*
 916 * handle runtime stats saved per thread
 917 */
 918static struct thread_runtime *thread__init_runtime(struct thread *thread)
 919{
 920	struct thread_runtime *r;
 921
 922	r = zalloc(sizeof(struct thread_runtime));
 923	if (!r)
 924		return NULL;
 925
 926	init_stats(&r->run_stats);
 927	thread__set_priv(thread, r);
 928
 929	return r;
 930}
 931
 932static struct thread_runtime *thread__get_runtime(struct thread *thread)
 933{
 934	struct thread_runtime *tr;
 935
 936	tr = thread__priv(thread);
 937	if (tr == NULL) {
 938		tr = thread__init_runtime(thread);
 939		if (tr == NULL)
 940			pr_debug("Failed to malloc memory for runtime data.\n");
 941	}
 942
 943	return tr;
 944}
 945
 946static int
 947thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 948{
 949	struct sort_dimension *sort;
 950	int ret = 0;
 951
 952	BUG_ON(list_empty(list));
 953
 954	list_for_each_entry(sort, list, list) {
 955		ret = sort->cmp(l, r);
 956		if (ret)
 957			return ret;
 958	}
 959
 960	return ret;
 961}
 962
 963static struct work_atoms *
 964thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
 965			 struct list_head *sort_list)
 966{
 967	struct rb_node *node = root->rb_root.rb_node;
 968	struct work_atoms key = { .thread = thread };
 969
 970	while (node) {
 971		struct work_atoms *atoms;
 972		int cmp;
 973
 974		atoms = container_of(node, struct work_atoms, node);
 975
 976		cmp = thread_lat_cmp(sort_list, &key, atoms);
 977		if (cmp > 0)
 978			node = node->rb_left;
 979		else if (cmp < 0)
 980			node = node->rb_right;
 981		else {
 982			BUG_ON(thread != atoms->thread);
 983			return atoms;
 984		}
 985	}
 986	return NULL;
 987}
 988
 989static void
 990__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
 991			 struct list_head *sort_list)
 992{
 993	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
 994	bool leftmost = true;
 995
 996	while (*new) {
 997		struct work_atoms *this;
 998		int cmp;
 999
1000		this = container_of(*new, struct work_atoms, node);
1001		parent = *new;
1002
1003		cmp = thread_lat_cmp(sort_list, data, this);
1004
1005		if (cmp > 0)
1006			new = &((*new)->rb_left);
1007		else {
1008			new = &((*new)->rb_right);
1009			leftmost = false;
1010		}
1011	}
1012
1013	rb_link_node(&data->node, parent, new);
1014	rb_insert_color_cached(&data->node, root, leftmost);
1015}
1016
1017static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1018{
1019	struct work_atoms *atoms = zalloc(sizeof(*atoms));
1020	if (!atoms) {
1021		pr_err("No memory at %s\n", __func__);
1022		return -1;
1023	}
1024
1025	atoms->thread = thread__get(thread);
1026	INIT_LIST_HEAD(&atoms->work_list);
1027	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1028	return 0;
 
 
 
 
 
 
 
 
 
1029}
1030
1031static char sched_out_state(u64 prev_state)
 
1032{
1033	const char *str = TASK_STATE_TO_CHAR_STR;
1034
1035	return str[prev_state];
1036}
1037
1038static int
1039add_sched_out_event(struct work_atoms *atoms,
1040		    char run_state,
1041		    u64 timestamp)
1042{
1043	struct work_atom *atom = zalloc(sizeof(*atom));
1044	if (!atom) {
1045		pr_err("Non memory at %s", __func__);
1046		return -1;
1047	}
1048
1049	atom->sched_out_time = timestamp;
1050
1051	if (run_state == 'R') {
1052		atom->state = THREAD_WAIT_CPU;
1053		atom->wake_up_time = atom->sched_out_time;
1054	}
1055
1056	list_add_tail(&atom->list, &atoms->work_list);
1057	return 0;
1058}
1059
1060static void
1061add_runtime_event(struct work_atoms *atoms, u64 delta,
1062		  u64 timestamp __maybe_unused)
1063{
1064	struct work_atom *atom;
1065
1066	BUG_ON(list_empty(&atoms->work_list));
1067
1068	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1069
1070	atom->runtime += delta;
1071	atoms->total_runtime += delta;
1072}
1073
1074static void
1075add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1076{
1077	struct work_atom *atom;
1078	u64 delta;
1079
1080	if (list_empty(&atoms->work_list))
1081		return;
1082
1083	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1084
1085	if (atom->state != THREAD_WAIT_CPU)
1086		return;
1087
1088	if (timestamp < atom->wake_up_time) {
1089		atom->state = THREAD_IGNORE;
1090		return;
1091	}
1092
1093	atom->state = THREAD_SCHED_IN;
1094	atom->sched_in_time = timestamp;
1095
1096	delta = atom->sched_in_time - atom->wake_up_time;
1097	atoms->total_lat += delta;
1098	if (delta > atoms->max_lat) {
1099		atoms->max_lat = delta;
1100		atoms->max_lat_start = atom->wake_up_time;
1101		atoms->max_lat_end = timestamp;
1102	}
1103	atoms->nb_atoms++;
1104}
1105
1106static int latency_switch_event(struct perf_sched *sched,
1107				struct evsel *evsel,
1108				struct perf_sample *sample,
1109				struct machine *machine)
1110{
1111	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1112		  next_pid = evsel__intval(evsel, sample, "next_pid");
1113	const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
1114	struct work_atoms *out_events, *in_events;
1115	struct thread *sched_out, *sched_in;
1116	u64 timestamp0, timestamp = sample->time;
1117	int cpu = sample->cpu, err = -1;
1118	s64 delta;
1119
1120	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1121
1122	timestamp0 = sched->cpu_last_switched[cpu];
1123	sched->cpu_last_switched[cpu] = timestamp;
1124	if (timestamp0)
1125		delta = timestamp - timestamp0;
1126	else
1127		delta = 0;
1128
1129	if (delta < 0) {
1130		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1131		return -1;
1132	}
1133
1134	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1135	sched_in = machine__findnew_thread(machine, -1, next_pid);
1136	if (sched_out == NULL || sched_in == NULL)
1137		goto out_put;
1138
1139	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1140	if (!out_events) {
1141		if (thread_atoms_insert(sched, sched_out))
1142			goto out_put;
1143		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1144		if (!out_events) {
1145			pr_err("out-event: Internal tree error");
1146			goto out_put;
1147		}
1148	}
1149	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1150		return -1;
1151
1152	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1153	if (!in_events) {
1154		if (thread_atoms_insert(sched, sched_in))
1155			goto out_put;
1156		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1157		if (!in_events) {
1158			pr_err("in-event: Internal tree error");
1159			goto out_put;
1160		}
1161		/*
1162		 * Take came in we have not heard about yet,
1163		 * add in an initial atom in runnable state:
1164		 */
1165		if (add_sched_out_event(in_events, 'R', timestamp))
1166			goto out_put;
1167	}
1168	add_sched_in_event(in_events, timestamp);
1169	err = 0;
1170out_put:
1171	thread__put(sched_out);
1172	thread__put(sched_in);
1173	return err;
1174}
1175
1176static int latency_runtime_event(struct perf_sched *sched,
1177				 struct evsel *evsel,
1178				 struct perf_sample *sample,
1179				 struct machine *machine)
 
 
 
1180{
1181	const u32 pid	   = evsel__intval(evsel, sample, "pid");
1182	const u64 runtime  = evsel__intval(evsel, sample, "runtime");
1183	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1184	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1185	u64 timestamp = sample->time;
1186	int cpu = sample->cpu, err = -1;
1187
1188	if (thread == NULL)
1189		return -1;
1190
1191	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1192	if (!atoms) {
1193		if (thread_atoms_insert(sched, thread))
1194			goto out_put;
1195		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1196		if (!atoms) {
1197			pr_err("in-event: Internal tree error");
1198			goto out_put;
1199		}
1200		if (add_sched_out_event(atoms, 'R', timestamp))
1201			goto out_put;
1202	}
1203
1204	add_runtime_event(atoms, runtime, timestamp);
1205	err = 0;
1206out_put:
1207	thread__put(thread);
1208	return err;
1209}
1210
1211static int latency_wakeup_event(struct perf_sched *sched,
1212				struct evsel *evsel,
1213				struct perf_sample *sample,
1214				struct machine *machine)
 
 
 
1215{
1216	const u32 pid	  = evsel__intval(evsel, sample, "pid");
1217	struct work_atoms *atoms;
1218	struct work_atom *atom;
1219	struct thread *wakee;
1220	u64 timestamp = sample->time;
1221	int err = -1;
1222
1223	wakee = machine__findnew_thread(machine, -1, pid);
1224	if (wakee == NULL)
1225		return -1;
1226	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
 
 
1227	if (!atoms) {
1228		if (thread_atoms_insert(sched, wakee))
1229			goto out_put;
1230		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1231		if (!atoms) {
1232			pr_err("wakeup-event: Internal tree error");
1233			goto out_put;
1234		}
1235		if (add_sched_out_event(atoms, 'S', timestamp))
1236			goto out_put;
1237	}
1238
1239	BUG_ON(list_empty(&atoms->work_list));
1240
1241	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1242
1243	/*
1244	 * As we do not guarantee the wakeup event happens when
1245	 * task is out of run queue, also may happen when task is
1246	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1247	 * then we should not set the ->wake_up_time when wake up a
1248	 * task which is on run queue.
1249	 *
1250	 * You WILL be missing events if you've recorded only
1251	 * one CPU, or are only looking at only one, so don't
1252	 * skip in this case.
1253	 */
1254	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1255		goto out_ok;
1256
1257	sched->nr_timestamps++;
1258	if (atom->sched_out_time > timestamp) {
1259		sched->nr_unordered_timestamps++;
1260		goto out_ok;
1261	}
1262
1263	atom->state = THREAD_WAIT_CPU;
1264	atom->wake_up_time = timestamp;
1265out_ok:
1266	err = 0;
1267out_put:
1268	thread__put(wakee);
1269	return err;
1270}
1271
1272static int latency_migrate_task_event(struct perf_sched *sched,
1273				      struct evsel *evsel,
1274				      struct perf_sample *sample,
1275				      struct machine *machine)
 
 
 
1276{
1277	const u32 pid = evsel__intval(evsel, sample, "pid");
1278	u64 timestamp = sample->time;
1279	struct work_atoms *atoms;
1280	struct work_atom *atom;
1281	struct thread *migrant;
1282	int err = -1;
1283
1284	/*
1285	 * Only need to worry about migration when profiling one CPU.
1286	 */
1287	if (sched->profile_cpu == -1)
1288		return 0;
1289
1290	migrant = machine__findnew_thread(machine, -1, pid);
1291	if (migrant == NULL)
1292		return -1;
1293	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1294	if (!atoms) {
1295		if (thread_atoms_insert(sched, migrant))
1296			goto out_put;
1297		register_pid(sched, migrant->tid, thread__comm_str(migrant));
1298		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1299		if (!atoms) {
1300			pr_err("migration-event: Internal tree error");
1301			goto out_put;
1302		}
1303		if (add_sched_out_event(atoms, 'R', timestamp))
1304			goto out_put;
1305	}
1306
1307	BUG_ON(list_empty(&atoms->work_list));
1308
1309	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1310	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1311
1312	sched->nr_timestamps++;
1313
1314	if (atom->sched_out_time > timestamp)
1315		sched->nr_unordered_timestamps++;
1316	err = 0;
1317out_put:
1318	thread__put(migrant);
1319	return err;
1320}
1321
1322static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
 
 
 
 
 
 
 
 
1323{
1324	int i;
1325	int ret;
1326	u64 avg;
1327	char max_lat_start[32], max_lat_end[32];
1328
1329	if (!work_list->nb_atoms)
1330		return;
1331	/*
1332	 * Ignore idle threads:
1333	 */
1334	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1335		return;
1336
1337	sched->all_runtime += work_list->total_runtime;
1338	sched->all_count   += work_list->nb_atoms;
1339
1340	if (work_list->num_merged > 1)
1341		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1342	else
1343		ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1344
1345	for (i = 0; i < 24 - ret; i++)
1346		printf(" ");
1347
1348	avg = work_list->total_lat / work_list->nb_atoms;
1349	timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1350	timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1351
1352	printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1353	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1354		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1355		 (double)work_list->max_lat / NSEC_PER_MSEC,
1356		 max_lat_start, max_lat_end);
1357}
1358
1359static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1360{
1361	if (l->thread == r->thread)
1362		return 0;
1363	if (l->thread->tid < r->thread->tid)
1364		return -1;
1365	if (l->thread->tid > r->thread->tid)
1366		return 1;
1367	return (int)(l->thread - r->thread);
 
1368}
1369
 
 
 
 
 
1370static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1371{
1372	u64 avgl, avgr;
1373
1374	if (!l->nb_atoms)
1375		return -1;
1376
1377	if (!r->nb_atoms)
1378		return 1;
1379
1380	avgl = l->total_lat / l->nb_atoms;
1381	avgr = r->total_lat / r->nb_atoms;
1382
1383	if (avgl < avgr)
1384		return -1;
1385	if (avgl > avgr)
1386		return 1;
1387
1388	return 0;
1389}
1390
 
 
 
 
 
1391static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1392{
1393	if (l->max_lat < r->max_lat)
1394		return -1;
1395	if (l->max_lat > r->max_lat)
1396		return 1;
1397
1398	return 0;
1399}
1400
 
 
 
 
 
1401static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1402{
1403	if (l->nb_atoms < r->nb_atoms)
1404		return -1;
1405	if (l->nb_atoms > r->nb_atoms)
1406		return 1;
1407
1408	return 0;
1409}
1410
 
 
 
 
 
1411static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1412{
1413	if (l->total_runtime < r->total_runtime)
1414		return -1;
1415	if (l->total_runtime > r->total_runtime)
1416		return 1;
1417
1418	return 0;
1419}
1420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1421static int sort_dimension__add(const char *tok, struct list_head *list)
1422{
1423	size_t i;
1424	static struct sort_dimension avg_sort_dimension = {
1425		.name = "avg",
1426		.cmp  = avg_cmp,
1427	};
1428	static struct sort_dimension max_sort_dimension = {
1429		.name = "max",
1430		.cmp  = max_cmp,
1431	};
1432	static struct sort_dimension pid_sort_dimension = {
1433		.name = "pid",
1434		.cmp  = pid_cmp,
1435	};
1436	static struct sort_dimension runtime_sort_dimension = {
1437		.name = "runtime",
1438		.cmp  = runtime_cmp,
1439	};
1440	static struct sort_dimension switch_sort_dimension = {
1441		.name = "switch",
1442		.cmp  = switch_cmp,
1443	};
1444	struct sort_dimension *available_sorts[] = {
1445		&pid_sort_dimension,
1446		&avg_sort_dimension,
1447		&max_sort_dimension,
1448		&switch_sort_dimension,
1449		&runtime_sort_dimension,
1450	};
1451
1452	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1453		if (!strcmp(available_sorts[i]->name, tok)) {
1454			list_add_tail(&available_sorts[i]->list, list);
1455
1456			return 0;
1457		}
1458	}
1459
1460	return -1;
1461}
1462
1463static void perf_sched__sort_lat(struct perf_sched *sched)
 
 
1464{
1465	struct rb_node *node;
1466	struct rb_root_cached *root = &sched->atom_root;
1467again:
1468	for (;;) {
1469		struct work_atoms *data;
1470		node = rb_first_cached(root);
1471		if (!node)
1472			break;
1473
1474		rb_erase_cached(node, root);
1475		data = rb_entry(node, struct work_atoms, node);
1476		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1477	}
1478	if (root == &sched->atom_root) {
1479		root = &sched->merged_atom_root;
1480		goto again;
1481	}
1482}
1483
1484static int process_sched_wakeup_event(struct perf_tool *tool,
1485				      struct evsel *evsel,
1486				      struct perf_sample *sample,
1487				      struct machine *machine)
1488{
1489	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1490
1491	if (sched->tp_handler->wakeup_event)
1492		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1493
1494	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1495}
1496
1497union map_priv {
1498	void	*ptr;
1499	bool	 color;
1500};
 
1501
1502static bool thread__has_color(struct thread *thread)
1503{
1504	union map_priv priv = {
1505		.ptr = thread__priv(thread),
1506	};
1507
1508	return priv.color;
1509}
1510
1511static struct thread*
1512map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1513{
1514	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1515	union map_priv priv = {
1516		.color = false,
1517	};
1518
1519	if (!sched->map.color_pids || !thread || thread__priv(thread))
1520		return thread;
1521
1522	if (thread_map__has(sched->map.color_pids, tid))
1523		priv.color = true;
1524
1525	thread__set_priv(thread, priv.ptr);
1526	return thread;
1527}
1528
1529static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1530			    struct perf_sample *sample, struct machine *machine)
1531{
1532	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1533	struct thread *sched_in;
1534	struct thread_runtime *tr;
1535	int new_shortname;
1536	u64 timestamp0, timestamp = sample->time;
1537	s64 delta;
1538	int i, this_cpu = sample->cpu;
1539	int cpus_nr;
1540	bool new_cpu = false;
1541	const char *color = PERF_COLOR_NORMAL;
1542	char stimestamp[32];
1543
1544	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1545
1546	if (this_cpu > sched->max_cpu)
1547		sched->max_cpu = this_cpu;
1548
1549	if (sched->map.comp) {
1550		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1551		if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1552			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1553			new_cpu = true;
1554		}
1555	} else
1556		cpus_nr = sched->max_cpu;
1557
1558	timestamp0 = sched->cpu_last_switched[this_cpu];
1559	sched->cpu_last_switched[this_cpu] = timestamp;
1560	if (timestamp0)
1561		delta = timestamp - timestamp0;
1562	else
1563		delta = 0;
1564
1565	if (delta < 0) {
1566		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1567		return -1;
1568	}
1569
1570	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1571	if (sched_in == NULL)
1572		return -1;
1573
1574	tr = thread__get_runtime(sched_in);
1575	if (tr == NULL) {
1576		thread__put(sched_in);
1577		return -1;
1578	}
1579
1580	sched->curr_thread[this_cpu] = thread__get(sched_in);
1581
1582	printf("  ");
1583
1584	new_shortname = 0;
1585	if (!tr->shortname[0]) {
1586		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1587			/*
1588			 * Don't allocate a letter-number for swapper:0
1589			 * as a shortname. Instead, we use '.' for it.
1590			 */
1591			tr->shortname[0] = '.';
1592			tr->shortname[1] = ' ';
1593		} else {
1594			tr->shortname[0] = sched->next_shortname1;
1595			tr->shortname[1] = sched->next_shortname2;
1596
1597			if (sched->next_shortname1 < 'Z') {
1598				sched->next_shortname1++;
1599			} else {
1600				sched->next_shortname1 = 'A';
1601				if (sched->next_shortname2 < '9')
1602					sched->next_shortname2++;
1603				else
1604					sched->next_shortname2 = '0';
1605			}
1606		}
1607		new_shortname = 1;
1608	}
1609
1610	for (i = 0; i < cpus_nr; i++) {
1611		int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1612		struct thread *curr_thread = sched->curr_thread[cpu];
1613		struct thread_runtime *curr_tr;
1614		const char *pid_color = color;
1615		const char *cpu_color = color;
1616
1617		if (curr_thread && thread__has_color(curr_thread))
1618			pid_color = COLOR_PIDS;
1619
1620		if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1621			continue;
1622
1623		if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1624			cpu_color = COLOR_CPUS;
1625
1626		if (cpu != this_cpu)
1627			color_fprintf(stdout, color, " ");
1628		else
1629			color_fprintf(stdout, cpu_color, "*");
1630
1631		if (sched->curr_thread[cpu]) {
1632			curr_tr = thread__get_runtime(sched->curr_thread[cpu]);
1633			if (curr_tr == NULL) {
1634				thread__put(sched_in);
1635				return -1;
1636			}
1637			color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1638		} else
1639			color_fprintf(stdout, color, "   ");
1640	}
1641
1642	if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1643		goto out;
1644
1645	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1646	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1647	if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1648		const char *pid_color = color;
1649
1650		if (thread__has_color(sched_in))
1651			pid_color = COLOR_PIDS;
1652
1653		color_fprintf(stdout, pid_color, "%s => %s:%d",
1654		       tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1655		tr->comm_changed = false;
1656	}
 
1657
1658	if (sched->map.comp && new_cpu)
1659		color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1660
1661out:
1662	color_fprintf(stdout, color, "\n");
 
 
 
 
 
1663
1664	thread__put(sched_in);
1665
1666	return 0;
1667}
 
 
 
 
 
1668
1669static int process_sched_switch_event(struct perf_tool *tool,
1670				      struct evsel *evsel,
1671				      struct perf_sample *sample,
1672				      struct machine *machine)
1673{
1674	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1675	int this_cpu = sample->cpu, err = 0;
1676	u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1677	    next_pid = evsel__intval(evsel, sample, "next_pid");
1678
1679	if (sched->curr_pid[this_cpu] != (u32)-1) {
1680		/*
1681		 * Are we trying to switch away a PID that is
1682		 * not current?
1683		 */
1684		if (sched->curr_pid[this_cpu] != prev_pid)
1685			sched->nr_context_switch_bugs++;
1686	}
 
 
 
1687
1688	if (sched->tp_handler->switch_event)
1689		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1690
1691	sched->curr_pid[this_cpu] = next_pid;
1692	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1693}
1694
1695static int process_sched_runtime_event(struct perf_tool *tool,
1696				       struct evsel *evsel,
1697				       struct perf_sample *sample,
1698				       struct machine *machine)
1699{
1700	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1701
1702	if (sched->tp_handler->runtime_event)
1703		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1704
1705	return 0;
 
 
 
 
 
 
 
 
 
1706}
1707
1708static int perf_sched__process_fork_event(struct perf_tool *tool,
1709					  union perf_event *event,
1710					  struct perf_sample *sample,
1711					  struct machine *machine)
1712{
1713	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1714
1715	/* run the fork event through the perf machinery */
1716	perf_event__process_fork(tool, event, sample, machine);
1717
1718	/* and then run additional processing needed for this command */
1719	if (sched->tp_handler->fork_event)
1720		return sched->tp_handler->fork_event(sched, event, machine);
1721
1722	return 0;
1723}
1724
1725static int process_sched_migrate_task_event(struct perf_tool *tool,
1726					    struct evsel *evsel,
1727					    struct perf_sample *sample,
1728					    struct machine *machine)
 
 
1729{
1730	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
 
 
 
1731
1732	if (sched->tp_handler->migrate_task_event)
1733		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
 
 
1734
1735	return 0;
 
 
 
1736}
1737
1738typedef int (*tracepoint_handler)(struct perf_tool *tool,
1739				  struct evsel *evsel,
1740				  struct perf_sample *sample,
1741				  struct machine *machine);
1742
1743static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1744						 union perf_event *event __maybe_unused,
1745						 struct perf_sample *sample,
1746						 struct evsel *evsel,
1747						 struct machine *machine)
1748{
1749	int err = 0;
1750
1751	if (evsel->handler != NULL) {
1752		tracepoint_handler f = evsel->handler;
1753		err = f(tool, evsel, sample, machine);
 
1754	}
1755
1756	return err;
1757}
1758
1759static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1760				    union perf_event *event,
1761				    struct perf_sample *sample,
1762				    struct machine *machine)
1763{
1764	struct thread *thread;
1765	struct thread_runtime *tr;
1766	int err;
1767
1768	err = perf_event__process_comm(tool, event, sample, machine);
1769	if (err)
1770		return err;
1771
1772	thread = machine__find_thread(machine, sample->pid, sample->tid);
1773	if (!thread) {
1774		pr_err("Internal error: can't find thread\n");
1775		return -1;
1776	}
1777
1778	tr = thread__get_runtime(thread);
1779	if (tr == NULL) {
1780		thread__put(thread);
1781		return -1;
1782	}
1783
1784	tr->comm_changed = true;
1785	thread__put(thread);
1786
1787	return 0;
1788}
1789
1790static int perf_sched__read_events(struct perf_sched *sched)
 
 
 
 
 
 
 
 
1791{
1792	const struct evsel_str_handler handlers[] = {
 
1793		{ "sched:sched_switch",	      process_sched_switch_event, },
1794		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1795		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1796		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
 
 
1797		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1798	};
1799	struct perf_session *session;
1800	struct perf_data data = {
1801		.path  = input_name,
1802		.mode  = PERF_DATA_MODE_READ,
1803		.force = sched->force,
1804	};
1805	int rc = -1;
1806
1807	session = perf_session__new(&data, false, &sched->tool);
1808	if (IS_ERR(session)) {
1809		pr_debug("Error creating perf session");
1810		return PTR_ERR(session);
1811	}
1812
1813	symbol__init(&session->header.env);
1814
1815	if (perf_session__set_tracepoints_handlers(session, handlers))
1816		goto out_delete;
1817
1818	if (perf_session__has_traces(session, "record -R")) {
1819		int err = perf_session__process_events(session);
1820		if (err) {
1821			pr_err("Failed to process events, error %d", err);
1822			goto out_delete;
1823		}
1824
1825		sched->nr_events      = session->evlist->stats.nr_events[0];
1826		sched->nr_lost_events = session->evlist->stats.total_lost;
1827		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1828	}
1829
1830	rc = 0;
1831out_delete:
1832	perf_session__delete(session);
1833	return rc;
1834}
1835
1836/*
1837 * scheduling times are printed as msec.usec
1838 */
1839static inline void print_sched_time(unsigned long long nsecs, int width)
1840{
1841	unsigned long msecs;
1842	unsigned long usecs;
1843
1844	msecs  = nsecs / NSEC_PER_MSEC;
1845	nsecs -= msecs * NSEC_PER_MSEC;
1846	usecs  = nsecs / NSEC_PER_USEC;
1847	printf("%*lu.%03lu ", width, msecs, usecs);
1848}
1849
1850/*
1851 * returns runtime data for event, allocating memory for it the
1852 * first time it is used.
1853 */
1854static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1855{
1856	struct evsel_runtime *r = evsel->priv;
1857
1858	if (r == NULL) {
1859		r = zalloc(sizeof(struct evsel_runtime));
1860		evsel->priv = r;
1861	}
1862
1863	return r;
1864}
1865
1866/*
1867 * save last time event was seen per cpu
1868 */
1869static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1870{
1871	struct evsel_runtime *r = evsel__get_runtime(evsel);
1872
1873	if (r == NULL)
1874		return;
1875
1876	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1877		int i, n = __roundup_pow_of_two(cpu+1);
1878		void *p = r->last_time;
1879
1880		p = realloc(r->last_time, n * sizeof(u64));
1881		if (!p)
1882			return;
1883
1884		r->last_time = p;
1885		for (i = r->ncpu; i < n; ++i)
1886			r->last_time[i] = (u64) 0;
1887
1888		r->ncpu = n;
1889	}
1890
1891	r->last_time[cpu] = timestamp;
1892}
1893
1894/* returns last time this event was seen on the given cpu */
1895static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
1896{
1897	struct evsel_runtime *r = evsel__get_runtime(evsel);
1898
1899	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1900		return 0;
1901
1902	return r->last_time[cpu];
1903}
1904
1905static int comm_width = 30;
1906
1907static char *timehist_get_commstr(struct thread *thread)
1908{
1909	static char str[32];
1910	const char *comm = thread__comm_str(thread);
1911	pid_t tid = thread->tid;
1912	pid_t pid = thread->pid_;
1913	int n;
1914
1915	if (pid == 0)
1916		n = scnprintf(str, sizeof(str), "%s", comm);
1917
1918	else if (tid != pid)
1919		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1920
1921	else
1922		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1923
1924	if (n > comm_width)
1925		comm_width = n;
1926
1927	return str;
1928}
1929
1930static void timehist_header(struct perf_sched *sched)
1931{
1932	u32 ncpus = sched->max_cpu + 1;
1933	u32 i, j;
1934
1935	printf("%15s %6s ", "time", "cpu");
1936
1937	if (sched->show_cpu_visual) {
1938		printf(" ");
1939		for (i = 0, j = 0; i < ncpus; ++i) {
1940			printf("%x", j++);
1941			if (j > 15)
1942				j = 0;
1943		}
1944		printf(" ");
1945	}
1946
1947	printf(" %-*s  %9s  %9s  %9s", comm_width,
1948		"task name", "wait time", "sch delay", "run time");
1949
1950	if (sched->show_state)
1951		printf("  %s", "state");
1952
1953	printf("\n");
1954
1955	/*
1956	 * units row
1957	 */
1958	printf("%15s %-6s ", "", "");
1959
1960	if (sched->show_cpu_visual)
1961		printf(" %*s ", ncpus, "");
1962
1963	printf(" %-*s  %9s  %9s  %9s", comm_width,
1964	       "[tid/pid]", "(msec)", "(msec)", "(msec)");
1965
1966	if (sched->show_state)
1967		printf("  %5s", "");
1968
1969	printf("\n");
1970
1971	/*
1972	 * separator
1973	 */
1974	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1975
1976	if (sched->show_cpu_visual)
1977		printf(" %.*s ", ncpus, graph_dotted_line);
1978
1979	printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
1980		graph_dotted_line, graph_dotted_line, graph_dotted_line,
1981		graph_dotted_line);
1982
1983	if (sched->show_state)
1984		printf("  %.5s", graph_dotted_line);
1985
1986	printf("\n");
1987}
1988
1989static char task_state_char(struct thread *thread, int state)
1990{
1991	static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1992	unsigned bit = state ? ffs(state) : 0;
1993
1994	/* 'I' for idle */
1995	if (thread->tid == 0)
1996		return 'I';
1997
1998	return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1999}
2000
2001static void timehist_print_sample(struct perf_sched *sched,
2002				  struct evsel *evsel,
2003				  struct perf_sample *sample,
2004				  struct addr_location *al,
2005				  struct thread *thread,
2006				  u64 t, int state)
2007{
2008	struct thread_runtime *tr = thread__priv(thread);
2009	const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2010	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2011	u32 max_cpus = sched->max_cpu + 1;
2012	char tstr[64];
2013	char nstr[30];
2014	u64 wait_time;
2015
2016	if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2017		return;
2018
2019	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2020	printf("%15s [%04d] ", tstr, sample->cpu);
2021
2022	if (sched->show_cpu_visual) {
2023		u32 i;
2024		char c;
2025
2026		printf(" ");
2027		for (i = 0; i < max_cpus; ++i) {
2028			/* flag idle times with 'i'; others are sched events */
2029			if (i == sample->cpu)
2030				c = (thread->tid == 0) ? 'i' : 's';
2031			else
2032				c = ' ';
2033			printf("%c", c);
2034		}
2035		printf(" ");
2036	}
2037
2038	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2039
2040	wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2041	print_sched_time(wait_time, 6);
2042
2043	print_sched_time(tr->dt_delay, 6);
2044	print_sched_time(tr->dt_run, 6);
2045
2046	if (sched->show_state)
2047		printf(" %5c ", task_state_char(thread, state));
2048
2049	if (sched->show_next) {
2050		snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2051		printf(" %-*s", comm_width, nstr);
2052	}
2053
2054	if (sched->show_wakeups && !sched->show_next)
2055		printf("  %-*s", comm_width, "");
2056
2057	if (thread->tid == 0)
2058		goto out;
2059
2060	if (sched->show_callchain)
2061		printf("  ");
2062
2063	sample__fprintf_sym(sample, al, 0,
2064			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2065			    EVSEL__PRINT_CALLCHAIN_ARROW |
2066			    EVSEL__PRINT_SKIP_IGNORED,
2067			    &callchain_cursor, symbol_conf.bt_stop_list,  stdout);
2068
2069out:
2070	printf("\n");
2071}
2072
2073/*
2074 * Explanation of delta-time stats:
2075 *
2076 *            t = time of current schedule out event
2077 *        tprev = time of previous sched out event
2078 *                also time of schedule-in event for current task
2079 *    last_time = time of last sched change event for current task
2080 *                (i.e, time process was last scheduled out)
2081 * ready_to_run = time of wakeup for current task
2082 *
2083 * -----|------------|------------|------------|------
2084 *    last         ready        tprev          t
2085 *    time         to run
2086 *
2087 *      |-------- dt_wait --------|
2088 *                   |- dt_delay -|-- dt_run --|
2089 *
2090 *   dt_run = run time of current task
2091 *  dt_wait = time between last schedule out event for task and tprev
2092 *            represents time spent off the cpu
2093 * dt_delay = time between wakeup and schedule-in of task
2094 */
2095
2096static void timehist_update_runtime_stats(struct thread_runtime *r,
2097					 u64 t, u64 tprev)
2098{
2099	r->dt_delay   = 0;
2100	r->dt_sleep   = 0;
2101	r->dt_iowait  = 0;
2102	r->dt_preempt = 0;
2103	r->dt_run     = 0;
2104
2105	if (tprev) {
2106		r->dt_run = t - tprev;
2107		if (r->ready_to_run) {
2108			if (r->ready_to_run > tprev)
2109				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2110			else
2111				r->dt_delay = tprev - r->ready_to_run;
2112		}
2113
2114		if (r->last_time > tprev)
2115			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2116		else if (r->last_time) {
2117			u64 dt_wait = tprev - r->last_time;
2118
2119			if (r->last_state == TASK_RUNNING)
2120				r->dt_preempt = dt_wait;
2121			else if (r->last_state == TASK_UNINTERRUPTIBLE)
2122				r->dt_iowait = dt_wait;
2123			else
2124				r->dt_sleep = dt_wait;
2125		}
2126	}
2127
2128	update_stats(&r->run_stats, r->dt_run);
2129
2130	r->total_run_time     += r->dt_run;
2131	r->total_delay_time   += r->dt_delay;
2132	r->total_sleep_time   += r->dt_sleep;
2133	r->total_iowait_time  += r->dt_iowait;
2134	r->total_preempt_time += r->dt_preempt;
2135}
2136
2137static bool is_idle_sample(struct perf_sample *sample,
2138			   struct evsel *evsel)
2139{
2140	/* pid 0 == swapper == idle task */
2141	if (strcmp(evsel__name(evsel), "sched:sched_switch") == 0)
2142		return evsel__intval(evsel, sample, "prev_pid") == 0;
2143
2144	return sample->pid == 0;
2145}
2146
2147static void save_task_callchain(struct perf_sched *sched,
2148				struct perf_sample *sample,
2149				struct evsel *evsel,
2150				struct machine *machine)
2151{
2152	struct callchain_cursor *cursor = &callchain_cursor;
2153	struct thread *thread;
2154
2155	/* want main thread for process - has maps */
2156	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2157	if (thread == NULL) {
2158		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2159		return;
2160	}
2161
2162	if (!sched->show_callchain || sample->callchain == NULL)
2163		return;
2164
2165	if (thread__resolve_callchain(thread, cursor, evsel, sample,
2166				      NULL, NULL, sched->max_stack + 2) != 0) {
2167		if (verbose > 0)
2168			pr_err("Failed to resolve callchain. Skipping\n");
2169
2170		return;
2171	}
2172
2173	callchain_cursor_commit(cursor);
2174
2175	while (true) {
2176		struct callchain_cursor_node *node;
2177		struct symbol *sym;
2178
2179		node = callchain_cursor_current(cursor);
2180		if (node == NULL)
2181			break;
2182
2183		sym = node->ms.sym;
2184		if (sym) {
2185			if (!strcmp(sym->name, "schedule") ||
2186			    !strcmp(sym->name, "__schedule") ||
2187			    !strcmp(sym->name, "preempt_schedule"))
2188				sym->ignore = 1;
2189		}
2190
2191		callchain_cursor_advance(cursor);
2192	}
2193}
2194
2195static int init_idle_thread(struct thread *thread)
2196{
2197	struct idle_thread_runtime *itr;
2198
2199	thread__set_comm(thread, idle_comm, 0);
2200
2201	itr = zalloc(sizeof(*itr));
2202	if (itr == NULL)
2203		return -ENOMEM;
2204
2205	init_stats(&itr->tr.run_stats);
2206	callchain_init(&itr->callchain);
2207	callchain_cursor_reset(&itr->cursor);
2208	thread__set_priv(thread, itr);
2209
2210	return 0;
2211}
2212
2213/*
2214 * Track idle stats per cpu by maintaining a local thread
2215 * struct for the idle task on each cpu.
2216 */
2217static int init_idle_threads(int ncpu)
2218{
2219	int i, ret;
2220
2221	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2222	if (!idle_threads)
2223		return -ENOMEM;
2224
2225	idle_max_cpu = ncpu;
2226
2227	/* allocate the actual thread struct if needed */
2228	for (i = 0; i < ncpu; ++i) {
2229		idle_threads[i] = thread__new(0, 0);
2230		if (idle_threads[i] == NULL)
2231			return -ENOMEM;
2232
2233		ret = init_idle_thread(idle_threads[i]);
2234		if (ret < 0)
2235			return ret;
2236	}
2237
2238	return 0;
2239}
2240
2241static void free_idle_threads(void)
2242{
2243	int i;
2244
2245	if (idle_threads == NULL)
2246		return;
2247
2248	for (i = 0; i < idle_max_cpu; ++i) {
2249		if ((idle_threads[i]))
2250			thread__delete(idle_threads[i]);
2251	}
2252
2253	free(idle_threads);
2254}
2255
2256static struct thread *get_idle_thread(int cpu)
2257{
2258	/*
2259	 * expand/allocate array of pointers to local thread
2260	 * structs if needed
2261	 */
2262	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2263		int i, j = __roundup_pow_of_two(cpu+1);
2264		void *p;
2265
2266		p = realloc(idle_threads, j * sizeof(struct thread *));
2267		if (!p)
2268			return NULL;
2269
2270		idle_threads = (struct thread **) p;
2271		for (i = idle_max_cpu; i < j; ++i)
2272			idle_threads[i] = NULL;
2273
2274		idle_max_cpu = j;
2275	}
2276
2277	/* allocate a new thread struct if needed */
2278	if (idle_threads[cpu] == NULL) {
2279		idle_threads[cpu] = thread__new(0, 0);
2280
2281		if (idle_threads[cpu]) {
2282			if (init_idle_thread(idle_threads[cpu]) < 0)
2283				return NULL;
2284		}
2285	}
2286
2287	return idle_threads[cpu];
2288}
2289
2290static void save_idle_callchain(struct perf_sched *sched,
2291				struct idle_thread_runtime *itr,
2292				struct perf_sample *sample)
2293{
2294	if (!sched->show_callchain || sample->callchain == NULL)
2295		return;
2296
2297	callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2298}
2299
2300static struct thread *timehist_get_thread(struct perf_sched *sched,
2301					  struct perf_sample *sample,
2302					  struct machine *machine,
2303					  struct evsel *evsel)
2304{
2305	struct thread *thread;
2306
2307	if (is_idle_sample(sample, evsel)) {
2308		thread = get_idle_thread(sample->cpu);
2309		if (thread == NULL)
2310			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2311
2312	} else {
2313		/* there were samples with tid 0 but non-zero pid */
2314		thread = machine__findnew_thread(machine, sample->pid,
2315						 sample->tid ?: sample->pid);
2316		if (thread == NULL) {
2317			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2318				 sample->tid);
2319		}
2320
2321		save_task_callchain(sched, sample, evsel, machine);
2322		if (sched->idle_hist) {
2323			struct thread *idle;
2324			struct idle_thread_runtime *itr;
2325
2326			idle = get_idle_thread(sample->cpu);
2327			if (idle == NULL) {
2328				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2329				return NULL;
2330			}
2331
2332			itr = thread__priv(idle);
2333			if (itr == NULL)
2334				return NULL;
2335
2336			itr->last_thread = thread;
2337
2338			/* copy task callchain when entering to idle */
2339			if (evsel__intval(evsel, sample, "next_pid") == 0)
2340				save_idle_callchain(sched, itr, sample);
2341		}
2342	}
2343
2344	return thread;
2345}
2346
2347static bool timehist_skip_sample(struct perf_sched *sched,
2348				 struct thread *thread,
2349				 struct evsel *evsel,
2350				 struct perf_sample *sample)
2351{
2352	bool rc = false;
2353
2354	if (thread__is_filtered(thread)) {
2355		rc = true;
2356		sched->skipped_samples++;
2357	}
2358
2359	if (sched->idle_hist) {
2360		if (strcmp(evsel__name(evsel), "sched:sched_switch"))
2361			rc = true;
2362		else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2363			 evsel__intval(evsel, sample, "next_pid") != 0)
2364			rc = true;
2365	}
2366
2367	return rc;
2368}
2369
2370static void timehist_print_wakeup_event(struct perf_sched *sched,
2371					struct evsel *evsel,
2372					struct perf_sample *sample,
2373					struct machine *machine,
2374					struct thread *awakened)
2375{
2376	struct thread *thread;
2377	char tstr[64];
2378
2379	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2380	if (thread == NULL)
2381		return;
2382
2383	/* show wakeup unless both awakee and awaker are filtered */
2384	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2385	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2386		return;
2387	}
2388
2389	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2390	printf("%15s [%04d] ", tstr, sample->cpu);
2391	if (sched->show_cpu_visual)
2392		printf(" %*s ", sched->max_cpu + 1, "");
2393
2394	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2395
2396	/* dt spacer */
2397	printf("  %9s  %9s  %9s ", "", "", "");
2398
2399	printf("awakened: %s", timehist_get_commstr(awakened));
2400
2401	printf("\n");
2402}
2403
2404static int timehist_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
2405					union perf_event *event __maybe_unused,
2406					struct evsel *evsel __maybe_unused,
2407					struct perf_sample *sample __maybe_unused,
2408					struct machine *machine __maybe_unused)
2409{
2410	return 0;
2411}
2412
2413static int timehist_sched_wakeup_event(struct perf_tool *tool,
2414				       union perf_event *event __maybe_unused,
2415				       struct evsel *evsel,
2416				       struct perf_sample *sample,
2417				       struct machine *machine)
2418{
2419	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2420	struct thread *thread;
2421	struct thread_runtime *tr = NULL;
2422	/* want pid of awakened task not pid in sample */
2423	const u32 pid = evsel__intval(evsel, sample, "pid");
2424
2425	thread = machine__findnew_thread(machine, 0, pid);
2426	if (thread == NULL)
2427		return -1;
2428
2429	tr = thread__get_runtime(thread);
2430	if (tr == NULL)
2431		return -1;
2432
2433	if (tr->ready_to_run == 0)
2434		tr->ready_to_run = sample->time;
2435
2436	/* show wakeups if requested */
2437	if (sched->show_wakeups &&
2438	    !perf_time__skip_sample(&sched->ptime, sample->time))
2439		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2440
2441	return 0;
2442}
2443
2444static void timehist_print_migration_event(struct perf_sched *sched,
2445					struct evsel *evsel,
2446					struct perf_sample *sample,
2447					struct machine *machine,
2448					struct thread *migrated)
2449{
2450	struct thread *thread;
2451	char tstr[64];
2452	u32 max_cpus = sched->max_cpu + 1;
2453	u32 ocpu, dcpu;
2454
2455	if (sched->summary_only)
2456		return;
2457
2458	max_cpus = sched->max_cpu + 1;
2459	ocpu = evsel__intval(evsel, sample, "orig_cpu");
2460	dcpu = evsel__intval(evsel, sample, "dest_cpu");
2461
2462	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2463	if (thread == NULL)
2464		return;
2465
2466	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2467	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2468		return;
2469	}
2470
2471	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2472	printf("%15s [%04d] ", tstr, sample->cpu);
2473
2474	if (sched->show_cpu_visual) {
2475		u32 i;
2476		char c;
2477
2478		printf("  ");
2479		for (i = 0; i < max_cpus; ++i) {
2480			c = (i == sample->cpu) ? 'm' : ' ';
2481			printf("%c", c);
2482		}
2483		printf("  ");
2484	}
2485
2486	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2487
2488	/* dt spacer */
2489	printf("  %9s  %9s  %9s ", "", "", "");
2490
2491	printf("migrated: %s", timehist_get_commstr(migrated));
2492	printf(" cpu %d => %d", ocpu, dcpu);
2493
2494	printf("\n");
2495}
2496
2497static int timehist_migrate_task_event(struct perf_tool *tool,
2498				       union perf_event *event __maybe_unused,
2499				       struct evsel *evsel,
2500				       struct perf_sample *sample,
2501				       struct machine *machine)
2502{
2503	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2504	struct thread *thread;
2505	struct thread_runtime *tr = NULL;
2506	/* want pid of migrated task not pid in sample */
2507	const u32 pid = evsel__intval(evsel, sample, "pid");
2508
2509	thread = machine__findnew_thread(machine, 0, pid);
2510	if (thread == NULL)
2511		return -1;
2512
2513	tr = thread__get_runtime(thread);
2514	if (tr == NULL)
2515		return -1;
2516
2517	tr->migrations++;
2518
2519	/* show migrations if requested */
2520	timehist_print_migration_event(sched, evsel, sample, machine, thread);
2521
2522	return 0;
2523}
2524
2525static int timehist_sched_change_event(struct perf_tool *tool,
2526				       union perf_event *event,
2527				       struct evsel *evsel,
2528				       struct perf_sample *sample,
2529				       struct machine *machine)
2530{
2531	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2532	struct perf_time_interval *ptime = &sched->ptime;
2533	struct addr_location al;
2534	struct thread *thread;
2535	struct thread_runtime *tr = NULL;
2536	u64 tprev, t = sample->time;
2537	int rc = 0;
2538	int state = evsel__intval(evsel, sample, "prev_state");
2539
2540	if (machine__resolve(machine, &al, sample) < 0) {
2541		pr_err("problem processing %d event. skipping it\n",
2542		       event->header.type);
2543		rc = -1;
2544		goto out;
2545	}
2546
2547	thread = timehist_get_thread(sched, sample, machine, evsel);
2548	if (thread == NULL) {
2549		rc = -1;
2550		goto out;
2551	}
2552
2553	if (timehist_skip_sample(sched, thread, evsel, sample))
2554		goto out;
2555
2556	tr = thread__get_runtime(thread);
2557	if (tr == NULL) {
2558		rc = -1;
2559		goto out;
2560	}
2561
2562	tprev = evsel__get_time(evsel, sample->cpu);
2563
2564	/*
2565	 * If start time given:
2566	 * - sample time is under window user cares about - skip sample
2567	 * - tprev is under window user cares about  - reset to start of window
2568	 */
2569	if (ptime->start && ptime->start > t)
2570		goto out;
2571
2572	if (tprev && ptime->start > tprev)
2573		tprev = ptime->start;
2574
2575	/*
2576	 * If end time given:
2577	 * - previous sched event is out of window - we are done
2578	 * - sample time is beyond window user cares about - reset it
2579	 *   to close out stats for time window interest
2580	 */
2581	if (ptime->end) {
2582		if (tprev > ptime->end)
2583			goto out;
2584
2585		if (t > ptime->end)
2586			t = ptime->end;
2587	}
2588
2589	if (!sched->idle_hist || thread->tid == 0) {
2590		if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2591			timehist_update_runtime_stats(tr, t, tprev);
2592
2593		if (sched->idle_hist) {
2594			struct idle_thread_runtime *itr = (void *)tr;
2595			struct thread_runtime *last_tr;
2596
2597			BUG_ON(thread->tid != 0);
2598
2599			if (itr->last_thread == NULL)
2600				goto out;
2601
2602			/* add current idle time as last thread's runtime */
2603			last_tr = thread__get_runtime(itr->last_thread);
2604			if (last_tr == NULL)
2605				goto out;
2606
2607			timehist_update_runtime_stats(last_tr, t, tprev);
2608			/*
2609			 * remove delta time of last thread as it's not updated
2610			 * and otherwise it will show an invalid value next
2611			 * time.  we only care total run time and run stat.
2612			 */
2613			last_tr->dt_run = 0;
2614			last_tr->dt_delay = 0;
2615			last_tr->dt_sleep = 0;
2616			last_tr->dt_iowait = 0;
2617			last_tr->dt_preempt = 0;
2618
2619			if (itr->cursor.nr)
2620				callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2621
2622			itr->last_thread = NULL;
2623		}
2624	}
2625
2626	if (!sched->summary_only)
2627		timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2628
2629out:
2630	if (sched->hist_time.start == 0 && t >= ptime->start)
2631		sched->hist_time.start = t;
2632	if (ptime->end == 0 || t <= ptime->end)
2633		sched->hist_time.end = t;
2634
2635	if (tr) {
2636		/* time of this sched_switch event becomes last time task seen */
2637		tr->last_time = sample->time;
2638
2639		/* last state is used to determine where to account wait time */
2640		tr->last_state = state;
2641
2642		/* sched out event for task so reset ready to run time */
2643		tr->ready_to_run = 0;
2644	}
2645
2646	evsel__save_time(evsel, sample->time, sample->cpu);
2647
2648	return rc;
2649}
2650
2651static int timehist_sched_switch_event(struct perf_tool *tool,
2652			     union perf_event *event,
2653			     struct evsel *evsel,
2654			     struct perf_sample *sample,
2655			     struct machine *machine __maybe_unused)
2656{
2657	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2658}
2659
2660static int process_lost(struct perf_tool *tool __maybe_unused,
2661			union perf_event *event,
2662			struct perf_sample *sample,
2663			struct machine *machine __maybe_unused)
2664{
2665	char tstr[64];
2666
2667	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2668	printf("%15s ", tstr);
2669	printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2670
2671	return 0;
2672}
2673
2674
2675static void print_thread_runtime(struct thread *t,
2676				 struct thread_runtime *r)
2677{
2678	double mean = avg_stats(&r->run_stats);
2679	float stddev;
2680
2681	printf("%*s   %5d  %9" PRIu64 " ",
2682	       comm_width, timehist_get_commstr(t), t->ppid,
2683	       (u64) r->run_stats.n);
2684
2685	print_sched_time(r->total_run_time, 8);
2686	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2687	print_sched_time(r->run_stats.min, 6);
2688	printf(" ");
2689	print_sched_time((u64) mean, 6);
2690	printf(" ");
2691	print_sched_time(r->run_stats.max, 6);
2692	printf("  ");
2693	printf("%5.2f", stddev);
2694	printf("   %5" PRIu64, r->migrations);
2695	printf("\n");
2696}
2697
2698static void print_thread_waittime(struct thread *t,
2699				  struct thread_runtime *r)
2700{
2701	printf("%*s   %5d  %9" PRIu64 " ",
2702	       comm_width, timehist_get_commstr(t), t->ppid,
2703	       (u64) r->run_stats.n);
2704
2705	print_sched_time(r->total_run_time, 8);
2706	print_sched_time(r->total_sleep_time, 6);
2707	printf(" ");
2708	print_sched_time(r->total_iowait_time, 6);
2709	printf(" ");
2710	print_sched_time(r->total_preempt_time, 6);
2711	printf(" ");
2712	print_sched_time(r->total_delay_time, 6);
2713	printf("\n");
2714}
2715
2716struct total_run_stats {
2717	struct perf_sched *sched;
2718	u64  sched_count;
2719	u64  task_count;
2720	u64  total_run_time;
2721};
2722
2723static int __show_thread_runtime(struct thread *t, void *priv)
2724{
2725	struct total_run_stats *stats = priv;
2726	struct thread_runtime *r;
2727
2728	if (thread__is_filtered(t))
2729		return 0;
2730
2731	r = thread__priv(t);
2732	if (r && r->run_stats.n) {
2733		stats->task_count++;
2734		stats->sched_count += r->run_stats.n;
2735		stats->total_run_time += r->total_run_time;
2736
2737		if (stats->sched->show_state)
2738			print_thread_waittime(t, r);
2739		else
2740			print_thread_runtime(t, r);
2741	}
2742
2743	return 0;
2744}
2745
2746static int show_thread_runtime(struct thread *t, void *priv)
2747{
2748	if (t->dead)
2749		return 0;
2750
2751	return __show_thread_runtime(t, priv);
2752}
2753
2754static int show_deadthread_runtime(struct thread *t, void *priv)
2755{
2756	if (!t->dead)
2757		return 0;
2758
2759	return __show_thread_runtime(t, priv);
2760}
2761
2762static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2763{
2764	const char *sep = " <- ";
2765	struct callchain_list *chain;
2766	size_t ret = 0;
2767	char bf[1024];
2768	bool first;
2769
2770	if (node == NULL)
2771		return 0;
2772
2773	ret = callchain__fprintf_folded(fp, node->parent);
2774	first = (ret == 0);
2775
2776	list_for_each_entry(chain, &node->val, list) {
2777		if (chain->ip >= PERF_CONTEXT_MAX)
2778			continue;
2779		if (chain->ms.sym && chain->ms.sym->ignore)
2780			continue;
2781		ret += fprintf(fp, "%s%s", first ? "" : sep,
2782			       callchain_list__sym_name(chain, bf, sizeof(bf),
2783							false));
2784		first = false;
2785	}
2786
2787	return ret;
2788}
2789
2790static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2791{
2792	size_t ret = 0;
2793	FILE *fp = stdout;
2794	struct callchain_node *chain;
2795	struct rb_node *rb_node = rb_first_cached(root);
2796
2797	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2798	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2799	       graph_dotted_line);
2800
2801	while (rb_node) {
2802		chain = rb_entry(rb_node, struct callchain_node, rb_node);
2803		rb_node = rb_next(rb_node);
2804
2805		ret += fprintf(fp, "  ");
2806		print_sched_time(chain->hit, 12);
2807		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2808		ret += fprintf(fp, " %8d  ", chain->count);
2809		ret += callchain__fprintf_folded(fp, chain);
2810		ret += fprintf(fp, "\n");
2811	}
2812
2813	return ret;
2814}
2815
2816static void timehist_print_summary(struct perf_sched *sched,
2817				   struct perf_session *session)
2818{
2819	struct machine *m = &session->machines.host;
2820	struct total_run_stats totals;
2821	u64 task_count;
2822	struct thread *t;
2823	struct thread_runtime *r;
2824	int i;
2825	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2826
2827	memset(&totals, 0, sizeof(totals));
2828	totals.sched = sched;
2829
2830	if (sched->idle_hist) {
2831		printf("\nIdle-time summary\n");
2832		printf("%*s  parent  sched-out  ", comm_width, "comm");
2833		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2834	} else if (sched->show_state) {
2835		printf("\nWait-time summary\n");
2836		printf("%*s  parent   sched-in  ", comm_width, "comm");
2837		printf("   run-time      sleep      iowait     preempt       delay\n");
2838	} else {
2839		printf("\nRuntime summary\n");
2840		printf("%*s  parent   sched-in  ", comm_width, "comm");
2841		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2842	}
2843	printf("%*s            (count)  ", comm_width, "");
2844	printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2845	       sched->show_state ? "(msec)" : "%");
2846	printf("%.117s\n", graph_dotted_line);
2847
2848	machine__for_each_thread(m, show_thread_runtime, &totals);
2849	task_count = totals.task_count;
2850	if (!task_count)
2851		printf("<no still running tasks>\n");
2852
2853	printf("\nTerminated tasks:\n");
2854	machine__for_each_thread(m, show_deadthread_runtime, &totals);
2855	if (task_count == totals.task_count)
2856		printf("<no terminated tasks>\n");
2857
2858	/* CPU idle stats not tracked when samples were skipped */
2859	if (sched->skipped_samples && !sched->idle_hist)
2860		return;
2861
2862	printf("\nIdle stats:\n");
2863	for (i = 0; i < idle_max_cpu; ++i) {
2864		if (cpu_list && !test_bit(i, cpu_bitmap))
2865			continue;
2866
2867		t = idle_threads[i];
2868		if (!t)
2869			continue;
2870
2871		r = thread__priv(t);
2872		if (r && r->run_stats.n) {
2873			totals.sched_count += r->run_stats.n;
2874			printf("    CPU %2d idle for ", i);
2875			print_sched_time(r->total_run_time, 6);
2876			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2877		} else
2878			printf("    CPU %2d idle entire time window\n", i);
2879	}
2880
2881	if (sched->idle_hist && sched->show_callchain) {
2882		callchain_param.mode  = CHAIN_FOLDED;
2883		callchain_param.value = CCVAL_PERIOD;
2884
2885		callchain_register_param(&callchain_param);
2886
2887		printf("\nIdle stats by callchain:\n");
2888		for (i = 0; i < idle_max_cpu; ++i) {
2889			struct idle_thread_runtime *itr;
2890
2891			t = idle_threads[i];
2892			if (!t)
2893				continue;
2894
2895			itr = thread__priv(t);
2896			if (itr == NULL)
2897				continue;
2898
2899			callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2900					     0, &callchain_param);
2901
2902			printf("  CPU %2d:", i);
2903			print_sched_time(itr->tr.total_run_time, 6);
2904			printf(" msec\n");
2905			timehist_print_idlehist_callchain(&itr->sorted_root);
2906			printf("\n");
2907		}
2908	}
2909
2910	printf("\n"
2911	       "    Total number of unique tasks: %" PRIu64 "\n"
2912	       "Total number of context switches: %" PRIu64 "\n",
2913	       totals.task_count, totals.sched_count);
2914
2915	printf("           Total run time (msec): ");
2916	print_sched_time(totals.total_run_time, 2);
2917	printf("\n");
2918
2919	printf("    Total scheduling time (msec): ");
2920	print_sched_time(hist_time, 2);
2921	printf(" (x %d)\n", sched->max_cpu);
2922}
2923
2924typedef int (*sched_handler)(struct perf_tool *tool,
2925			  union perf_event *event,
2926			  struct evsel *evsel,
2927			  struct perf_sample *sample,
2928			  struct machine *machine);
2929
2930static int perf_timehist__process_sample(struct perf_tool *tool,
2931					 union perf_event *event,
2932					 struct perf_sample *sample,
2933					 struct evsel *evsel,
2934					 struct machine *machine)
2935{
2936	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2937	int err = 0;
2938	int this_cpu = sample->cpu;
2939
2940	if (this_cpu > sched->max_cpu)
2941		sched->max_cpu = this_cpu;
2942
2943	if (evsel->handler != NULL) {
2944		sched_handler f = evsel->handler;
2945
2946		err = f(tool, event, evsel, sample, machine);
2947	}
2948
2949	return err;
2950}
2951
2952static int timehist_check_attr(struct perf_sched *sched,
2953			       struct evlist *evlist)
2954{
2955	struct evsel *evsel;
2956	struct evsel_runtime *er;
2957
2958	list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2959		er = evsel__get_runtime(evsel);
2960		if (er == NULL) {
2961			pr_err("Failed to allocate memory for evsel runtime data\n");
2962			return -1;
2963		}
2964
2965		if (sched->show_callchain && !evsel__has_callchain(evsel)) {
2966			pr_info("Samples do not have callchains.\n");
2967			sched->show_callchain = 0;
2968			symbol_conf.use_callchain = 0;
2969		}
2970	}
2971
2972	return 0;
2973}
2974
2975static int perf_sched__timehist(struct perf_sched *sched)
2976{
2977	struct evsel_str_handler handlers[] = {
2978		{ "sched:sched_switch",       timehist_sched_switch_event, },
2979		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
2980		{ "sched:sched_waking",       timehist_sched_wakeup_event, },
2981		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2982	};
2983	const struct evsel_str_handler migrate_handlers[] = {
2984		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
2985	};
2986	struct perf_data data = {
2987		.path  = input_name,
2988		.mode  = PERF_DATA_MODE_READ,
2989		.force = sched->force,
2990	};
2991
2992	struct perf_session *session;
2993	struct evlist *evlist;
2994	int err = -1;
2995
2996	/*
2997	 * event handlers for timehist option
2998	 */
2999	sched->tool.sample	 = perf_timehist__process_sample;
3000	sched->tool.mmap	 = perf_event__process_mmap;
3001	sched->tool.comm	 = perf_event__process_comm;
3002	sched->tool.exit	 = perf_event__process_exit;
3003	sched->tool.fork	 = perf_event__process_fork;
3004	sched->tool.lost	 = process_lost;
3005	sched->tool.attr	 = perf_event__process_attr;
3006	sched->tool.tracing_data = perf_event__process_tracing_data;
3007	sched->tool.build_id	 = perf_event__process_build_id;
3008
3009	sched->tool.ordered_events = true;
3010	sched->tool.ordering_requires_timestamps = true;
3011
3012	symbol_conf.use_callchain = sched->show_callchain;
3013
3014	session = perf_session__new(&data, false, &sched->tool);
3015	if (IS_ERR(session))
3016		return PTR_ERR(session);
3017
3018	if (cpu_list) {
3019		err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3020		if (err < 0)
3021			goto out;
3022	}
3023
3024	evlist = session->evlist;
3025
3026	symbol__init(&session->header.env);
3027
3028	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3029		pr_err("Invalid time string\n");
3030		return -EINVAL;
3031	}
3032
3033	if (timehist_check_attr(sched, evlist) != 0)
3034		goto out;
3035
3036	setup_pager();
3037
3038	/* prefer sched_waking if it is captured */
3039	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3040		handlers[1].handler = timehist_sched_wakeup_ignore;
3041
3042	/* setup per-evsel handlers */
3043	if (perf_session__set_tracepoints_handlers(session, handlers))
3044		goto out;
3045
3046	/* sched_switch event at a minimum needs to exist */
3047	if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3048		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3049		goto out;
3050	}
3051
3052	if (sched->show_migrations &&
3053	    perf_session__set_tracepoints_handlers(session, migrate_handlers))
3054		goto out;
3055
3056	/* pre-allocate struct for per-CPU idle stats */
3057	sched->max_cpu = session->header.env.nr_cpus_online;
3058	if (sched->max_cpu == 0)
3059		sched->max_cpu = 4;
3060	if (init_idle_threads(sched->max_cpu))
3061		goto out;
3062
3063	/* summary_only implies summary option, but don't overwrite summary if set */
3064	if (sched->summary_only)
3065		sched->summary = sched->summary_only;
3066
3067	if (!sched->summary_only)
3068		timehist_header(sched);
3069
3070	err = perf_session__process_events(session);
3071	if (err) {
3072		pr_err("Failed to process events, error %d", err);
3073		goto out;
3074	}
3075
3076	sched->nr_events      = evlist->stats.nr_events[0];
3077	sched->nr_lost_events = evlist->stats.total_lost;
3078	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3079
3080	if (sched->summary)
3081		timehist_print_summary(sched, session);
3082
3083out:
3084	free_idle_threads();
3085	perf_session__delete(session);
3086
3087	return err;
 
3088}
3089
3090
3091static void print_bad_events(struct perf_sched *sched)
3092{
3093	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3094		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3095			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3096			sched->nr_unordered_timestamps, sched->nr_timestamps);
3097	}
3098	if (sched->nr_lost_events && sched->nr_events) {
3099		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3100			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3101			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
 
 
 
 
 
 
 
 
3102	}
3103	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3104		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3105			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3106			sched->nr_context_switch_bugs, sched->nr_timestamps);
3107		if (sched->nr_lost_events)
3108			printf(" (due to lost events?)");
3109		printf("\n");
3110	}
3111}
3112
3113static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3114{
3115	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3116	struct work_atoms *this;
3117	const char *comm = thread__comm_str(data->thread), *this_comm;
3118	bool leftmost = true;
3119
3120	while (*new) {
3121		int cmp;
3122
3123		this = container_of(*new, struct work_atoms, node);
3124		parent = *new;
3125
3126		this_comm = thread__comm_str(this->thread);
3127		cmp = strcmp(comm, this_comm);
3128		if (cmp > 0) {
3129			new = &((*new)->rb_left);
3130		} else if (cmp < 0) {
3131			new = &((*new)->rb_right);
3132			leftmost = false;
3133		} else {
3134			this->num_merged++;
3135			this->total_runtime += data->total_runtime;
3136			this->nb_atoms += data->nb_atoms;
3137			this->total_lat += data->total_lat;
3138			list_splice(&data->work_list, &this->work_list);
3139			if (this->max_lat < data->max_lat) {
3140				this->max_lat = data->max_lat;
3141				this->max_lat_start = data->max_lat_start;
3142				this->max_lat_end = data->max_lat_end;
3143			}
3144			zfree(&data);
3145			return;
3146		}
3147	}
3148
3149	data->num_merged++;
3150	rb_link_node(&data->node, parent, new);
3151	rb_insert_color_cached(&data->node, root, leftmost);
3152}
3153
3154static void perf_sched__merge_lat(struct perf_sched *sched)
3155{
3156	struct work_atoms *data;
3157	struct rb_node *node;
3158
3159	if (sched->skip_merge)
3160		return;
3161
3162	while ((node = rb_first_cached(&sched->atom_root))) {
3163		rb_erase_cached(node, &sched->atom_root);
3164		data = rb_entry(node, struct work_atoms, node);
3165		__merge_work_atoms(&sched->merged_atom_root, data);
3166	}
3167}
3168
3169static int perf_sched__lat(struct perf_sched *sched)
3170{
3171	struct rb_node *next;
 
3172
3173	setup_pager();
 
 
3174
3175	if (perf_sched__read_events(sched))
3176		return -1;
 
3177
3178	perf_sched__merge_lat(sched);
3179	perf_sched__sort_lat(sched);
3180
3181	printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3182	printf("  Task                  |   Runtime ms  | Switches | Avg delay ms    | Max delay ms    | Max delay start           | Max delay end          |\n");
3183	printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3184
3185	next = rb_first_cached(&sched->sorted_atom_root);
3186
3187	while (next) {
3188		struct work_atoms *work_list;
3189
3190		work_list = rb_entry(next, struct work_atoms, node);
3191		output_lat_thread(sched, work_list);
3192		next = rb_next(next);
3193		thread__zput(work_list->thread);
3194	}
3195
3196	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3197	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3198		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3199
3200	printf(" ---------------------------------------------------\n");
3201
3202	print_bad_events(sched);
3203	printf("\n");
3204
3205	return 0;
3206}
3207
3208static int setup_map_cpus(struct perf_sched *sched)
3209{
3210	struct perf_cpu_map *map;
 
 
 
3211
3212	sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);
3213
3214	if (sched->map.comp) {
3215		sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3216		if (!sched->map.comp_cpus)
3217			return -1;
3218	}
3219
3220	if (!sched->map.cpus_str)
3221		return 0;
3222
3223	map = perf_cpu_map__new(sched->map.cpus_str);
3224	if (!map) {
3225		pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3226		return -1;
3227	}
3228
3229	sched->map.cpus = map;
3230	return 0;
3231}
3232
3233static int setup_color_pids(struct perf_sched *sched)
3234{
3235	struct perf_thread_map *map;
3236
3237	if (!sched->map.color_pids_str)
3238		return 0;
3239
3240	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3241	if (!map) {
3242		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3243		return -1;
3244	}
3245
3246	sched->map.color_pids = map;
3247	return 0;
3248}
3249
3250static int setup_color_cpus(struct perf_sched *sched)
3251{
3252	struct perf_cpu_map *map;
3253
3254	if (!sched->map.color_cpus_str)
3255		return 0;
3256
3257	map = perf_cpu_map__new(sched->map.color_cpus_str);
3258	if (!map) {
3259		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3260		return -1;
3261	}
3262
3263	sched->map.color_cpus = map;
3264	return 0;
3265}
3266
3267static int perf_sched__map(struct perf_sched *sched)
3268{
3269	if (setup_map_cpus(sched))
3270		return -1;
 
 
 
 
 
 
 
3271
3272	if (setup_color_pids(sched))
3273		return -1;
3274
3275	if (setup_color_cpus(sched))
3276		return -1;
3277
3278	setup_pager();
3279	if (perf_sched__read_events(sched))
3280		return -1;
3281	print_bad_events(sched);
3282	return 0;
3283}
3284
3285static int perf_sched__replay(struct perf_sched *sched)
3286{
3287	unsigned long i;
3288
3289	calibrate_run_measurement_overhead(sched);
3290	calibrate_sleep_measurement_overhead(sched);
 
 
3291
3292	test_calibrations(sched);
 
 
 
 
 
 
 
 
3293
3294	if (perf_sched__read_events(sched))
3295		return -1;
 
 
3296
3297	printf("nr_run_events:        %ld\n", sched->nr_run_events);
3298	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3299	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3300
3301	if (sched->targetless_wakeups)
3302		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3303	if (sched->multitarget_wakeups)
3304		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3305	if (sched->nr_run_events_optimized)
3306		printf("run atoms optimized: %ld\n",
3307			sched->nr_run_events_optimized);
3308
3309	print_task_traces(sched);
3310	add_cross_task_wakeups(sched);
 
 
3311
3312	create_tasks(sched);
3313	printf("------------------------------------------------------------\n");
3314	for (i = 0; i < sched->replay_repeat; i++)
3315		run_one_test(sched);
3316
3317	return 0;
3318}
 
 
3319
3320static void setup_sorting(struct perf_sched *sched, const struct option *options,
3321			  const char * const usage_msg[])
3322{
3323	char *tmp, *tok, *str = strdup(sched->sort_order);
3324
3325	for (tok = strtok_r(str, ", ", &tmp);
3326			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3327		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3328			usage_with_options_msg(usage_msg, options,
3329					"Unknown --sort key: `%s'", tok);
3330		}
3331	}
3332
3333	free(str);
3334
3335	sort_dimension__add("pid", &sched->cmp_pid);
3336}
3337
3338static bool schedstat_events_exposed(void)
3339{
3340	/*
3341	 * Select "sched:sched_stat_wait" event to check
3342	 * whether schedstat tracepoints are exposed.
3343	 */
3344	return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3345		false : true;
3346}
 
 
 
 
 
 
 
 
3347
3348static int __cmd_record(int argc, const char **argv)
3349{
3350	unsigned int rec_argc, i, j;
3351	const char **rec_argv;
3352	const char * const record_args[] = {
3353		"record",
3354		"-a",
3355		"-R",
3356		"-m", "1024",
3357		"-c", "1",
3358		"-e", "sched:sched_switch",
3359		"-e", "sched:sched_stat_runtime",
3360		"-e", "sched:sched_process_fork",
3361		"-e", "sched:sched_wakeup_new",
3362		"-e", "sched:sched_migrate_task",
3363	};
3364
3365	/*
3366	 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3367	 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3368	 * to prevent "perf sched record" execution failure, determine
3369	 * whether to record schedstat events according to actual situation.
3370	 */
3371	const char * const schedstat_args[] = {
3372		"-e", "sched:sched_stat_wait",
3373		"-e", "sched:sched_stat_sleep",
3374		"-e", "sched:sched_stat_iowait",
3375	};
3376	unsigned int schedstat_argc = schedstat_events_exposed() ?
3377		ARRAY_SIZE(schedstat_args) : 0;
3378
3379	struct tep_event *waking_event;
3380
3381	/*
3382	 * +2 for either "-e", "sched:sched_wakeup" or
3383	 * "-e", "sched:sched_waking"
3384	 */
3385	rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3386	rec_argv = calloc(rec_argc + 1, sizeof(char *));
3387
3388	if (rec_argv == NULL)
3389		return -ENOMEM;
3390
3391	for (i = 0; i < ARRAY_SIZE(record_args); i++)
3392		rec_argv[i] = strdup(record_args[i]);
3393
3394	rec_argv[i++] = "-e";
3395	waking_event = trace_event__tp_format("sched", "sched_waking");
3396	if (!IS_ERR(waking_event))
3397		rec_argv[i++] = strdup("sched:sched_waking");
3398	else
3399		rec_argv[i++] = strdup("sched:sched_wakeup");
3400
3401	for (j = 0; j < schedstat_argc; j++)
3402		rec_argv[i++] = strdup(schedstat_args[j]);
3403
3404	for (j = 1; j < (unsigned int)argc; j++, i++)
3405		rec_argv[i] = argv[j];
3406
3407	BUG_ON(i != rec_argc);
3408
3409	return cmd_record(i, rec_argv);
3410}
3411
3412int cmd_sched(int argc, const char **argv)
3413{
3414	static const char default_sort_order[] = "avg, max, switch, runtime";
3415	struct perf_sched sched = {
3416		.tool = {
3417			.sample		 = perf_sched__process_tracepoint_sample,
3418			.comm		 = perf_sched__process_comm,
3419			.namespaces	 = perf_event__process_namespaces,
3420			.lost		 = perf_event__process_lost,
3421			.fork		 = perf_sched__process_fork_event,
3422			.ordered_events = true,
3423		},
3424		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
3425		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
3426		.start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
3427		.work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3428		.sort_order	      = default_sort_order,
3429		.replay_repeat	      = 10,
3430		.profile_cpu	      = -1,
3431		.next_shortname1      = 'A',
3432		.next_shortname2      = '0',
3433		.skip_merge           = 0,
3434		.show_callchain	      = 1,
3435		.max_stack            = 5,
3436	};
3437	const struct option sched_options[] = {
3438	OPT_STRING('i', "input", &input_name, "file",
3439		    "input file name"),
3440	OPT_INCR('v', "verbose", &verbose,
3441		    "be more verbose (show symbol address, etc)"),
3442	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3443		    "dump raw trace in ASCII"),
3444	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3445	OPT_END()
3446	};
3447	const struct option latency_options[] = {
3448	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3449		   "sort by key(s): runtime, switch, avg, max"),
3450	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3451		    "CPU to profile on"),
3452	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3453		    "latency stats per pid instead of per comm"),
3454	OPT_PARENT(sched_options)
3455	};
3456	const struct option replay_options[] = {
3457	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3458		     "repeat the workload replay N times (-1: infinite)"),
3459	OPT_PARENT(sched_options)
3460	};
3461	const struct option map_options[] = {
3462	OPT_BOOLEAN(0, "compact", &sched.map.comp,
3463		    "map output in compact mode"),
3464	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3465		   "highlight given pids in map"),
3466	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3467                    "highlight given CPUs in map"),
3468	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3469                    "display given CPUs in map"),
3470	OPT_PARENT(sched_options)
3471	};
3472	const struct option timehist_options[] = {
3473	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3474		   "file", "vmlinux pathname"),
3475	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3476		   "file", "kallsyms pathname"),
3477	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3478		    "Display call chains if present (default on)"),
3479	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3480		   "Maximum number of functions to display backtrace."),
3481	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3482		    "Look for files with symbols relative to this directory"),
3483	OPT_BOOLEAN('s', "summary", &sched.summary_only,
3484		    "Show only syscall summary with statistics"),
3485	OPT_BOOLEAN('S', "with-summary", &sched.summary,
3486		    "Show all syscalls and summary with statistics"),
3487	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3488	OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3489	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3490	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3491	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3492	OPT_STRING(0, "time", &sched.time_str, "str",
3493		   "Time span for analysis (start,stop)"),
3494	OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3495	OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3496		   "analyze events only for given process id(s)"),
3497	OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3498		   "analyze events only for given thread id(s)"),
3499	OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3500	OPT_PARENT(sched_options)
3501	};
3502
3503	const char * const latency_usage[] = {
3504		"perf sched latency [<options>]",
3505		NULL
3506	};
3507	const char * const replay_usage[] = {
3508		"perf sched replay [<options>]",
3509		NULL
3510	};
3511	const char * const map_usage[] = {
3512		"perf sched map [<options>]",
3513		NULL
3514	};
3515	const char * const timehist_usage[] = {
3516		"perf sched timehist [<options>]",
3517		NULL
3518	};
3519	const char *const sched_subcommands[] = { "record", "latency", "map",
3520						  "replay", "script",
3521						  "timehist", NULL };
3522	const char *sched_usage[] = {
3523		NULL,
3524		NULL
3525	};
3526	struct trace_sched_handler lat_ops  = {
3527		.wakeup_event	    = latency_wakeup_event,
3528		.switch_event	    = latency_switch_event,
3529		.runtime_event	    = latency_runtime_event,
3530		.migrate_task_event = latency_migrate_task_event,
3531	};
3532	struct trace_sched_handler map_ops  = {
3533		.switch_event	    = map_switch_event,
3534	};
3535	struct trace_sched_handler replay_ops  = {
3536		.wakeup_event	    = replay_wakeup_event,
3537		.switch_event	    = replay_switch_event,
3538		.fork_event	    = replay_fork_event,
3539	};
3540	unsigned int i;
3541
3542	for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3543		sched.curr_pid[i] = -1;
3544
3545	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3546					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3547	if (!argc)
3548		usage_with_options(sched_usage, sched_options);
3549
3550	/*
3551	 * Aliased to 'perf script' for now:
3552	 */
3553	if (!strcmp(argv[0], "script"))
3554		return cmd_script(argc, argv);
3555
 
3556	if (!strncmp(argv[0], "rec", 3)) {
3557		return __cmd_record(argc, argv);
3558	} else if (!strncmp(argv[0], "lat", 3)) {
3559		sched.tp_handler = &lat_ops;
3560		if (argc > 1) {
3561			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3562			if (argc)
3563				usage_with_options(latency_usage, latency_options);
3564		}
3565		setup_sorting(&sched, latency_options, latency_usage);
3566		return perf_sched__lat(&sched);
3567	} else if (!strcmp(argv[0], "map")) {
3568		if (argc) {
3569			argc = parse_options(argc, argv, map_options, map_usage, 0);
3570			if (argc)
3571				usage_with_options(map_usage, map_options);
3572		}
3573		sched.tp_handler = &map_ops;
3574		setup_sorting(&sched, latency_options, latency_usage);
3575		return perf_sched__map(&sched);
3576	} else if (!strncmp(argv[0], "rep", 3)) {
3577		sched.tp_handler = &replay_ops;
3578		if (argc) {
3579			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3580			if (argc)
3581				usage_with_options(replay_usage, replay_options);
3582		}
3583		return perf_sched__replay(&sched);
3584	} else if (!strcmp(argv[0], "timehist")) {
3585		if (argc) {
3586			argc = parse_options(argc, argv, timehist_options,
3587					     timehist_usage, 0);
3588			if (argc)
3589				usage_with_options(timehist_usage, timehist_options);
3590		}
3591		if ((sched.show_wakeups || sched.show_next) &&
3592		    sched.summary_only) {
3593			pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3594			parse_options_usage(timehist_usage, timehist_options, "s", true);
3595			if (sched.show_wakeups)
3596				parse_options_usage(NULL, timehist_options, "w", true);
3597			if (sched.show_next)
3598				parse_options_usage(NULL, timehist_options, "n", true);
3599			return -EINVAL;
3600		}
3601
3602		return perf_sched__timehist(&sched);
3603	} else {
3604		usage_with_options(sched_usage, sched_options);
3605	}
3606
3607	return 0;
3608}