Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v3.5.6
 
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
 
 
 
 
 
 
  17#include <linux/fs.h>
 
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
 
  20#include <linux/security.h>
  21#include <linux/syscalls.h>
  22#include <linux/ptrace.h>
  23#include <linux/signal.h>
  24#include <linux/signalfd.h>
  25#include <linux/ratelimit.h>
  26#include <linux/tracehook.h>
  27#include <linux/capability.h>
  28#include <linux/freezer.h>
  29#include <linux/pid_namespace.h>
  30#include <linux/nsproxy.h>
  31#include <linux/user_namespace.h>
  32#include <linux/uprobes.h>
 
 
 
 
 
 
 
  33#define CREATE_TRACE_POINTS
  34#include <trace/events/signal.h>
  35
  36#include <asm/param.h>
  37#include <asm/uaccess.h>
  38#include <asm/unistd.h>
  39#include <asm/siginfo.h>
  40#include <asm/cacheflush.h>
  41#include "audit.h"	/* audit_signal_info() */
  42
  43/*
  44 * SLAB caches for signal bits.
  45 */
  46
  47static struct kmem_cache *sigqueue_cachep;
  48
  49int print_fatal_signals __read_mostly;
  50
  51static void __user *sig_handler(struct task_struct *t, int sig)
  52{
  53	return t->sighand->action[sig - 1].sa.sa_handler;
  54}
  55
  56static int sig_handler_ignored(void __user *handler, int sig)
  57{
  58	/* Is it explicitly or implicitly ignored? */
  59	return handler == SIG_IGN ||
  60		(handler == SIG_DFL && sig_kernel_ignore(sig));
  61}
  62
  63static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  64{
  65	void __user *handler;
  66
  67	handler = sig_handler(t, sig);
  68
 
 
 
 
  69	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  70			handler == SIG_DFL && !force)
  71		return 1;
 
 
 
 
 
  72
  73	return sig_handler_ignored(handler, sig);
  74}
  75
  76static int sig_ignored(struct task_struct *t, int sig, bool force)
  77{
  78	/*
  79	 * Blocked signals are never ignored, since the
  80	 * signal handler may change by the time it is
  81	 * unblocked.
  82	 */
  83	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  84		return 0;
  85
  86	if (!sig_task_ignored(t, sig, force))
  87		return 0;
  88
  89	/*
  90	 * Tracers may want to know about even ignored signals.
 
 
  91	 */
  92	return !t->ptrace;
 
 
 
  93}
  94
  95/*
  96 * Re-calculate pending state from the set of locally pending
  97 * signals, globally pending signals, and blocked signals.
  98 */
  99static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 100{
 101	unsigned long ready;
 102	long i;
 103
 104	switch (_NSIG_WORDS) {
 105	default:
 106		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 107			ready |= signal->sig[i] &~ blocked->sig[i];
 108		break;
 109
 110	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 111		ready |= signal->sig[2] &~ blocked->sig[2];
 112		ready |= signal->sig[1] &~ blocked->sig[1];
 113		ready |= signal->sig[0] &~ blocked->sig[0];
 114		break;
 115
 116	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 117		ready |= signal->sig[0] &~ blocked->sig[0];
 118		break;
 119
 120	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 121	}
 122	return ready !=	0;
 123}
 124
 125#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 126
 127static int recalc_sigpending_tsk(struct task_struct *t)
 128{
 129	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 130	    PENDING(&t->pending, &t->blocked) ||
 131	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 
 132		set_tsk_thread_flag(t, TIF_SIGPENDING);
 133		return 1;
 134	}
 
 135	/*
 136	 * We must never clear the flag in another thread, or in current
 137	 * when it's possible the current syscall is returning -ERESTART*.
 138	 * So we don't clear it here, and only callers who know they should do.
 139	 */
 140	return 0;
 141}
 142
 143/*
 144 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 145 * This is superfluous when called on current, the wakeup is a harmless no-op.
 146 */
 147void recalc_sigpending_and_wake(struct task_struct *t)
 148{
 149	if (recalc_sigpending_tsk(t))
 150		signal_wake_up(t, 0);
 151}
 152
 153void recalc_sigpending(void)
 154{
 155	if (!recalc_sigpending_tsk(current) && !freezing(current))
 156		clear_thread_flag(TIF_SIGPENDING);
 157
 158}
 
 
 
 
 
 
 
 
 
 
 
 
 159
 160/* Given the mask, find the first available signal that should be serviced. */
 161
 162#define SYNCHRONOUS_MASK \
 163	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 164	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 165
 166int next_signal(struct sigpending *pending, sigset_t *mask)
 167{
 168	unsigned long i, *s, *m, x;
 169	int sig = 0;
 170
 171	s = pending->signal.sig;
 172	m = mask->sig;
 173
 174	/*
 175	 * Handle the first word specially: it contains the
 176	 * synchronous signals that need to be dequeued first.
 177	 */
 178	x = *s &~ *m;
 179	if (x) {
 180		if (x & SYNCHRONOUS_MASK)
 181			x &= SYNCHRONOUS_MASK;
 182		sig = ffz(~x) + 1;
 183		return sig;
 184	}
 185
 186	switch (_NSIG_WORDS) {
 187	default:
 188		for (i = 1; i < _NSIG_WORDS; ++i) {
 189			x = *++s &~ *++m;
 190			if (!x)
 191				continue;
 192			sig = ffz(~x) + i*_NSIG_BPW + 1;
 193			break;
 194		}
 195		break;
 196
 197	case 2:
 198		x = s[1] &~ m[1];
 199		if (!x)
 200			break;
 201		sig = ffz(~x) + _NSIG_BPW + 1;
 202		break;
 203
 204	case 1:
 205		/* Nothing to do */
 206		break;
 207	}
 208
 209	return sig;
 210}
 211
 212static inline void print_dropped_signal(int sig)
 213{
 214	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 215
 216	if (!print_fatal_signals)
 217		return;
 218
 219	if (!__ratelimit(&ratelimit_state))
 220		return;
 221
 222	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 223				current->comm, current->pid, sig);
 224}
 225
 226/**
 227 * task_set_jobctl_pending - set jobctl pending bits
 228 * @task: target task
 229 * @mask: pending bits to set
 230 *
 231 * Clear @mask from @task->jobctl.  @mask must be subset of
 232 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 233 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 234 * cleared.  If @task is already being killed or exiting, this function
 235 * becomes noop.
 236 *
 237 * CONTEXT:
 238 * Must be called with @task->sighand->siglock held.
 239 *
 240 * RETURNS:
 241 * %true if @mask is set, %false if made noop because @task was dying.
 242 */
 243bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
 244{
 245	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 246			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 247	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 248
 249	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 250		return false;
 251
 252	if (mask & JOBCTL_STOP_SIGMASK)
 253		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 254
 255	task->jobctl |= mask;
 256	return true;
 257}
 258
 259/**
 260 * task_clear_jobctl_trapping - clear jobctl trapping bit
 261 * @task: target task
 262 *
 263 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 264 * Clear it and wake up the ptracer.  Note that we don't need any further
 265 * locking.  @task->siglock guarantees that @task->parent points to the
 266 * ptracer.
 267 *
 268 * CONTEXT:
 269 * Must be called with @task->sighand->siglock held.
 270 */
 271void task_clear_jobctl_trapping(struct task_struct *task)
 272{
 273	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 274		task->jobctl &= ~JOBCTL_TRAPPING;
 
 275		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 276	}
 277}
 278
 279/**
 280 * task_clear_jobctl_pending - clear jobctl pending bits
 281 * @task: target task
 282 * @mask: pending bits to clear
 283 *
 284 * Clear @mask from @task->jobctl.  @mask must be subset of
 285 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 286 * STOP bits are cleared together.
 287 *
 288 * If clearing of @mask leaves no stop or trap pending, this function calls
 289 * task_clear_jobctl_trapping().
 290 *
 291 * CONTEXT:
 292 * Must be called with @task->sighand->siglock held.
 293 */
 294void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
 295{
 296	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 297
 298	if (mask & JOBCTL_STOP_PENDING)
 299		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 300
 301	task->jobctl &= ~mask;
 302
 303	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 304		task_clear_jobctl_trapping(task);
 305}
 306
 307/**
 308 * task_participate_group_stop - participate in a group stop
 309 * @task: task participating in a group stop
 310 *
 311 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 312 * Group stop states are cleared and the group stop count is consumed if
 313 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 314 * stop, the appropriate %SIGNAL_* flags are set.
 315 *
 316 * CONTEXT:
 317 * Must be called with @task->sighand->siglock held.
 318 *
 319 * RETURNS:
 320 * %true if group stop completion should be notified to the parent, %false
 321 * otherwise.
 322 */
 323static bool task_participate_group_stop(struct task_struct *task)
 324{
 325	struct signal_struct *sig = task->signal;
 326	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 327
 328	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 329
 330	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 331
 332	if (!consume)
 333		return false;
 334
 335	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 336		sig->group_stop_count--;
 337
 338	/*
 339	 * Tell the caller to notify completion iff we are entering into a
 340	 * fresh group stop.  Read comment in do_signal_stop() for details.
 341	 */
 342	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 343		sig->flags = SIGNAL_STOP_STOPPED;
 344		return true;
 345	}
 346	return false;
 347}
 348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 349/*
 350 * allocate a new signal queue record
 351 * - this may be called without locks if and only if t == current, otherwise an
 352 *   appropriate lock must be held to stop the target task from exiting
 353 */
 354static struct sigqueue *
 355__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 
 356{
 357	struct sigqueue *q = NULL;
 358	struct user_struct *user;
 
 359
 360	/*
 361	 * Protect access to @t credentials. This can go away when all
 362	 * callers hold rcu read lock.
 
 
 
 
 363	 */
 364	rcu_read_lock();
 365	user = get_uid(__task_cred(t)->user);
 366	atomic_inc(&user->sigpending);
 367	rcu_read_unlock();
 
 
 368
 369	if (override_rlimit ||
 370	    atomic_read(&user->sigpending) <=
 371			task_rlimit(t, RLIMIT_SIGPENDING)) {
 372		q = kmem_cache_alloc(sigqueue_cachep, flags);
 373	} else {
 374		print_dropped_signal(sig);
 375	}
 376
 377	if (unlikely(q == NULL)) {
 378		atomic_dec(&user->sigpending);
 379		free_uid(user);
 380	} else {
 381		INIT_LIST_HEAD(&q->list);
 382		q->flags = 0;
 383		q->user = user;
 384	}
 385
 386	return q;
 387}
 388
 389static void __sigqueue_free(struct sigqueue *q)
 390{
 391	if (q->flags & SIGQUEUE_PREALLOC)
 392		return;
 393	atomic_dec(&q->user->sigpending);
 394	free_uid(q->user);
 
 
 395	kmem_cache_free(sigqueue_cachep, q);
 396}
 397
 398void flush_sigqueue(struct sigpending *queue)
 399{
 400	struct sigqueue *q;
 401
 402	sigemptyset(&queue->signal);
 403	while (!list_empty(&queue->list)) {
 404		q = list_entry(queue->list.next, struct sigqueue , list);
 405		list_del_init(&q->list);
 406		__sigqueue_free(q);
 407	}
 408}
 409
 410/*
 411 * Flush all pending signals for a task.
 412 */
 413void __flush_signals(struct task_struct *t)
 414{
 415	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 416	flush_sigqueue(&t->pending);
 417	flush_sigqueue(&t->signal->shared_pending);
 418}
 419
 420void flush_signals(struct task_struct *t)
 421{
 422	unsigned long flags;
 423
 424	spin_lock_irqsave(&t->sighand->siglock, flags);
 425	__flush_signals(t);
 
 
 426	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 427}
 
 428
 
 429static void __flush_itimer_signals(struct sigpending *pending)
 430{
 431	sigset_t signal, retain;
 432	struct sigqueue *q, *n;
 433
 434	signal = pending->signal;
 435	sigemptyset(&retain);
 436
 437	list_for_each_entry_safe(q, n, &pending->list, list) {
 438		int sig = q->info.si_signo;
 439
 440		if (likely(q->info.si_code != SI_TIMER)) {
 441			sigaddset(&retain, sig);
 442		} else {
 443			sigdelset(&signal, sig);
 444			list_del_init(&q->list);
 445			__sigqueue_free(q);
 446		}
 447	}
 448
 449	sigorsets(&pending->signal, &signal, &retain);
 450}
 451
 452void flush_itimer_signals(void)
 453{
 454	struct task_struct *tsk = current;
 455	unsigned long flags;
 456
 457	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 458	__flush_itimer_signals(&tsk->pending);
 459	__flush_itimer_signals(&tsk->signal->shared_pending);
 460	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 461}
 
 462
 463void ignore_signals(struct task_struct *t)
 464{
 465	int i;
 466
 467	for (i = 0; i < _NSIG; ++i)
 468		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 469
 470	flush_signals(t);
 471}
 472
 473/*
 474 * Flush all handlers for a task.
 475 */
 476
 477void
 478flush_signal_handlers(struct task_struct *t, int force_default)
 479{
 480	int i;
 481	struct k_sigaction *ka = &t->sighand->action[0];
 482	for (i = _NSIG ; i != 0 ; i--) {
 483		if (force_default || ka->sa.sa_handler != SIG_IGN)
 484			ka->sa.sa_handler = SIG_DFL;
 485		ka->sa.sa_flags = 0;
 
 
 
 486		sigemptyset(&ka->sa.sa_mask);
 487		ka++;
 488	}
 489}
 490
 491int unhandled_signal(struct task_struct *tsk, int sig)
 492{
 493	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 494	if (is_global_init(tsk))
 495		return 1;
 
 496	if (handler != SIG_IGN && handler != SIG_DFL)
 497		return 0;
 
 498	/* if ptraced, let the tracer determine */
 499	return !tsk->ptrace;
 500}
 501
 502/*
 503 * Notify the system that a driver wants to block all signals for this
 504 * process, and wants to be notified if any signals at all were to be
 505 * sent/acted upon.  If the notifier routine returns non-zero, then the
 506 * signal will be acted upon after all.  If the notifier routine returns 0,
 507 * then then signal will be blocked.  Only one block per process is
 508 * allowed.  priv is a pointer to private data that the notifier routine
 509 * can use to determine if the signal should be blocked or not.
 510 */
 511void
 512block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
 513{
 514	unsigned long flags;
 515
 516	spin_lock_irqsave(&current->sighand->siglock, flags);
 517	current->notifier_mask = mask;
 518	current->notifier_data = priv;
 519	current->notifier = notifier;
 520	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 521}
 522
 523/* Notify the system that blocking has ended. */
 524
 525void
 526unblock_all_signals(void)
 527{
 528	unsigned long flags;
 529
 530	spin_lock_irqsave(&current->sighand->siglock, flags);
 531	current->notifier = NULL;
 532	current->notifier_data = NULL;
 533	recalc_sigpending();
 534	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 535}
 536
 537static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 538{
 539	struct sigqueue *q, *first = NULL;
 540
 541	/*
 542	 * Collect the siginfo appropriate to this signal.  Check if
 543	 * there is another siginfo for the same signal.
 544	*/
 545	list_for_each_entry(q, &list->list, list) {
 546		if (q->info.si_signo == sig) {
 547			if (first)
 548				goto still_pending;
 549			first = q;
 550		}
 551	}
 552
 553	sigdelset(&list->signal, sig);
 554
 555	if (first) {
 556still_pending:
 557		list_del_init(&first->list);
 558		copy_siginfo(info, &first->info);
 
 
 
 
 
 
 559		__sigqueue_free(first);
 560	} else {
 561		/*
 562		 * Ok, it wasn't in the queue.  This must be
 563		 * a fast-pathed signal or we must have been
 564		 * out of queue space.  So zero out the info.
 565		 */
 
 566		info->si_signo = sig;
 567		info->si_errno = 0;
 568		info->si_code = SI_USER;
 569		info->si_pid = 0;
 570		info->si_uid = 0;
 571	}
 572}
 573
 574static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 575			siginfo_t *info)
 576{
 577	int sig = next_signal(pending, mask);
 578
 579	if (sig) {
 580		if (current->notifier) {
 581			if (sigismember(current->notifier_mask, sig)) {
 582				if (!(current->notifier)(current->notifier_data)) {
 583					clear_thread_flag(TIF_SIGPENDING);
 584					return 0;
 585				}
 586			}
 587		}
 588
 589		collect_signal(sig, pending, info);
 590	}
 591
 592	return sig;
 593}
 594
 595/*
 596 * Dequeue a signal and return the element to the caller, which is
 597 * expected to free it.
 598 *
 599 * All callers have to hold the siglock.
 600 */
 601int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 602{
 
 603	int signr;
 604
 605	/* We only dequeue private signals from ourselves, we don't let
 606	 * signalfd steal them
 607	 */
 608	signr = __dequeue_signal(&tsk->pending, mask, info);
 609	if (!signr) {
 610		signr = __dequeue_signal(&tsk->signal->shared_pending,
 611					 mask, info);
 
 612		/*
 613		 * itimer signal ?
 614		 *
 615		 * itimers are process shared and we restart periodic
 616		 * itimers in the signal delivery path to prevent DoS
 617		 * attacks in the high resolution timer case. This is
 618		 * compliant with the old way of self-restarting
 619		 * itimers, as the SIGALRM is a legacy signal and only
 620		 * queued once. Changing the restart behaviour to
 621		 * restart the timer in the signal dequeue path is
 622		 * reducing the timer noise on heavy loaded !highres
 623		 * systems too.
 624		 */
 625		if (unlikely(signr == SIGALRM)) {
 626			struct hrtimer *tmr = &tsk->signal->real_timer;
 627
 628			if (!hrtimer_is_queued(tmr) &&
 629			    tsk->signal->it_real_incr.tv64 != 0) {
 630				hrtimer_forward(tmr, tmr->base->get_time(),
 631						tsk->signal->it_real_incr);
 632				hrtimer_restart(tmr);
 633			}
 634		}
 
 635	}
 636
 637	recalc_sigpending();
 638	if (!signr)
 639		return 0;
 640
 641	if (unlikely(sig_kernel_stop(signr))) {
 642		/*
 643		 * Set a marker that we have dequeued a stop signal.  Our
 644		 * caller might release the siglock and then the pending
 645		 * stop signal it is about to process is no longer in the
 646		 * pending bitmasks, but must still be cleared by a SIGCONT
 647		 * (and overruled by a SIGKILL).  So those cases clear this
 648		 * shared flag after we've set it.  Note that this flag may
 649		 * remain set after the signal we return is ignored or
 650		 * handled.  That doesn't matter because its only purpose
 651		 * is to alert stop-signal processing code when another
 652		 * processor has come along and cleared the flag.
 653		 */
 654		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 655	}
 656	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 
 657		/*
 658		 * Release the siglock to ensure proper locking order
 659		 * of timer locks outside of siglocks.  Note, we leave
 660		 * irqs disabled here, since the posix-timers code is
 661		 * about to disable them again anyway.
 662		 */
 663		spin_unlock(&tsk->sighand->siglock);
 664		do_schedule_next_timer(info);
 665		spin_lock(&tsk->sighand->siglock);
 
 
 
 666	}
 
 667	return signr;
 668}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 669
 670/*
 671 * Tell a process that it has a new active signal..
 672 *
 673 * NOTE! we rely on the previous spin_lock to
 674 * lock interrupts for us! We can only be called with
 675 * "siglock" held, and the local interrupt must
 676 * have been disabled when that got acquired!
 677 *
 678 * No need to set need_resched since signal event passing
 679 * goes through ->blocked
 680 */
 681void signal_wake_up(struct task_struct *t, int resume)
 682{
 683	unsigned int mask;
 684
 685	set_tsk_thread_flag(t, TIF_SIGPENDING);
 686
 687	/*
 688	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
 689	 * case. We don't check t->state here because there is a race with it
 690	 * executing another processor and just now entering stopped state.
 691	 * By using wake_up_state, we ensure the process will wake up and
 692	 * handle its death signal.
 693	 */
 694	mask = TASK_INTERRUPTIBLE;
 695	if (resume)
 696		mask |= TASK_WAKEKILL;
 697	if (!wake_up_state(t, mask))
 698		kick_process(t);
 699}
 700
 701/*
 702 * Remove signals in mask from the pending set and queue.
 703 * Returns 1 if any signals were found.
 704 *
 705 * All callers must be holding the siglock.
 706 *
 707 * This version takes a sigset mask and looks at all signals,
 708 * not just those in the first mask word.
 709 */
 710static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
 711{
 712	struct sigqueue *q, *n;
 713	sigset_t m;
 714
 715	sigandsets(&m, mask, &s->signal);
 716	if (sigisemptyset(&m))
 717		return 0;
 718
 719	sigandnsets(&s->signal, &s->signal, mask);
 720	list_for_each_entry_safe(q, n, &s->list, list) {
 721		if (sigismember(mask, q->info.si_signo)) {
 722			list_del_init(&q->list);
 723			__sigqueue_free(q);
 724		}
 725	}
 726	return 1;
 727}
 728/*
 729 * Remove signals in mask from the pending set and queue.
 730 * Returns 1 if any signals were found.
 731 *
 732 * All callers must be holding the siglock.
 733 */
 734static int rm_from_queue(unsigned long mask, struct sigpending *s)
 735{
 736	struct sigqueue *q, *n;
 737
 738	if (!sigtestsetmask(&s->signal, mask))
 739		return 0;
 740
 741	sigdelsetmask(&s->signal, mask);
 742	list_for_each_entry_safe(q, n, &s->list, list) {
 743		if (q->info.si_signo < SIGRTMIN &&
 744		    (mask & sigmask(q->info.si_signo))) {
 745			list_del_init(&q->list);
 746			__sigqueue_free(q);
 747		}
 748	}
 749	return 1;
 750}
 751
 752static inline int is_si_special(const struct siginfo *info)
 753{
 754	return info <= SEND_SIG_FORCED;
 755}
 756
 757static inline bool si_fromuser(const struct siginfo *info)
 758{
 759	return info == SEND_SIG_NOINFO ||
 760		(!is_si_special(info) && SI_FROMUSER(info));
 761}
 762
 763/*
 764 * called with RCU read lock from check_kill_permission()
 765 */
 766static int kill_ok_by_cred(struct task_struct *t)
 767{
 768	const struct cred *cred = current_cred();
 769	const struct cred *tcred = __task_cred(t);
 770
 771	if (uid_eq(cred->euid, tcred->suid) ||
 772	    uid_eq(cred->euid, tcred->uid)  ||
 773	    uid_eq(cred->uid,  tcred->suid) ||
 774	    uid_eq(cred->uid,  tcred->uid))
 775		return 1;
 776
 777	if (ns_capable(tcred->user_ns, CAP_KILL))
 778		return 1;
 779
 780	return 0;
 781}
 782
 783/*
 784 * Bad permissions for sending the signal
 785 * - the caller must hold the RCU read lock
 786 */
 787static int check_kill_permission(int sig, struct siginfo *info,
 788				 struct task_struct *t)
 789{
 790	struct pid *sid;
 791	int error;
 792
 793	if (!valid_signal(sig))
 794		return -EINVAL;
 795
 796	if (!si_fromuser(info))
 797		return 0;
 798
 799	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 800	if (error)
 801		return error;
 802
 803	if (!same_thread_group(current, t) &&
 804	    !kill_ok_by_cred(t)) {
 805		switch (sig) {
 806		case SIGCONT:
 807			sid = task_session(t);
 808			/*
 809			 * We don't return the error if sid == NULL. The
 810			 * task was unhashed, the caller must notice this.
 811			 */
 812			if (!sid || sid == task_session(current))
 813				break;
 
 814		default:
 815			return -EPERM;
 816		}
 817	}
 818
 819	return security_task_kill(t, info, sig, 0);
 820}
 821
 822/**
 823 * ptrace_trap_notify - schedule trap to notify ptracer
 824 * @t: tracee wanting to notify tracer
 825 *
 826 * This function schedules sticky ptrace trap which is cleared on the next
 827 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 828 * ptracer.
 829 *
 830 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 831 * ptracer is listening for events, tracee is woken up so that it can
 832 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 833 * eventually taken without returning to userland after the existing traps
 834 * are finished by PTRACE_CONT.
 835 *
 836 * CONTEXT:
 837 * Must be called with @task->sighand->siglock held.
 838 */
 839static void ptrace_trap_notify(struct task_struct *t)
 840{
 841	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 842	assert_spin_locked(&t->sighand->siglock);
 843
 844	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 845	signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 846}
 847
 848/*
 849 * Handle magic process-wide effects of stop/continue signals. Unlike
 850 * the signal actions, these happen immediately at signal-generation
 851 * time regardless of blocking, ignoring, or handling.  This does the
 852 * actual continuing for SIGCONT, but not the actual stopping for stop
 853 * signals. The process stop is done as a signal action for SIG_DFL.
 854 *
 855 * Returns true if the signal should be actually delivered, otherwise
 856 * it should be dropped.
 857 */
 858static int prepare_signal(int sig, struct task_struct *p, bool force)
 859{
 860	struct signal_struct *signal = p->signal;
 861	struct task_struct *t;
 
 862
 863	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
 
 
 864		/*
 865		 * The process is in the middle of dying, nothing to do.
 866		 */
 867	} else if (sig_kernel_stop(sig)) {
 868		/*
 869		 * This is a stop signal.  Remove SIGCONT from all queues.
 870		 */
 871		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
 872		t = p;
 873		do {
 874			rm_from_queue(sigmask(SIGCONT), &t->pending);
 875		} while_each_thread(p, t);
 876	} else if (sig == SIGCONT) {
 877		unsigned int why;
 878		/*
 879		 * Remove all stop signals from all queues, wake all threads.
 880		 */
 881		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
 882		t = p;
 883		do {
 
 884			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 885			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
 886			if (likely(!(t->ptrace & PT_SEIZED)))
 887				wake_up_state(t, __TASK_STOPPED);
 888			else
 889				ptrace_trap_notify(t);
 890		} while_each_thread(p, t);
 891
 892		/*
 893		 * Notify the parent with CLD_CONTINUED if we were stopped.
 894		 *
 895		 * If we were in the middle of a group stop, we pretend it
 896		 * was already finished, and then continued. Since SIGCHLD
 897		 * doesn't queue we report only CLD_STOPPED, as if the next
 898		 * CLD_CONTINUED was dropped.
 899		 */
 900		why = 0;
 901		if (signal->flags & SIGNAL_STOP_STOPPED)
 902			why |= SIGNAL_CLD_CONTINUED;
 903		else if (signal->group_stop_count)
 904			why |= SIGNAL_CLD_STOPPED;
 905
 906		if (why) {
 907			/*
 908			 * The first thread which returns from do_signal_stop()
 909			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 910			 * notify its parent. See get_signal_to_deliver().
 911			 */
 912			signal->flags = why | SIGNAL_STOP_CONTINUED;
 913			signal->group_stop_count = 0;
 914			signal->group_exit_code = 0;
 915		}
 916	}
 917
 918	return !sig_ignored(p, sig, force);
 919}
 920
 921/*
 922 * Test if P wants to take SIG.  After we've checked all threads with this,
 923 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 924 * blocking SIG were ruled out because they are not running and already
 925 * have pending signals.  Such threads will dequeue from the shared queue
 926 * as soon as they're available, so putting the signal on the shared queue
 927 * will be equivalent to sending it to one such thread.
 928 */
 929static inline int wants_signal(int sig, struct task_struct *p)
 930{
 931	if (sigismember(&p->blocked, sig))
 932		return 0;
 
 933	if (p->flags & PF_EXITING)
 934		return 0;
 
 935	if (sig == SIGKILL)
 936		return 1;
 
 937	if (task_is_stopped_or_traced(p))
 938		return 0;
 939	return task_curr(p) || !signal_pending(p);
 
 940}
 941
 942static void complete_signal(int sig, struct task_struct *p, int group)
 943{
 944	struct signal_struct *signal = p->signal;
 945	struct task_struct *t;
 946
 947	/*
 948	 * Now find a thread we can wake up to take the signal off the queue.
 949	 *
 950	 * If the main thread wants the signal, it gets first crack.
 951	 * Probably the least surprising to the average bear.
 952	 */
 953	if (wants_signal(sig, p))
 954		t = p;
 955	else if (!group || thread_group_empty(p))
 956		/*
 957		 * There is just one thread and it does not need to be woken.
 958		 * It will dequeue unblocked signals before it runs again.
 959		 */
 960		return;
 961	else {
 962		/*
 963		 * Otherwise try to find a suitable thread.
 964		 */
 965		t = signal->curr_target;
 966		while (!wants_signal(sig, t)) {
 967			t = next_thread(t);
 968			if (t == signal->curr_target)
 969				/*
 970				 * No thread needs to be woken.
 971				 * Any eligible threads will see
 972				 * the signal in the queue soon.
 973				 */
 974				return;
 975		}
 976		signal->curr_target = t;
 977	}
 978
 979	/*
 980	 * Found a killable thread.  If the signal will be fatal,
 981	 * then start taking the whole group down immediately.
 982	 */
 983	if (sig_fatal(p, sig) &&
 984	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 985	    !sigismember(&t->real_blocked, sig) &&
 986	    (sig == SIGKILL || !t->ptrace)) {
 987		/*
 988		 * This signal will be fatal to the whole group.
 989		 */
 990		if (!sig_kernel_coredump(sig)) {
 991			/*
 992			 * Start a group exit and wake everybody up.
 993			 * This way we don't have other threads
 994			 * running and doing things after a slower
 995			 * thread has the fatal signal pending.
 996			 */
 997			signal->flags = SIGNAL_GROUP_EXIT;
 998			signal->group_exit_code = sig;
 999			signal->group_stop_count = 0;
1000			t = p;
1001			do {
1002				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1003				sigaddset(&t->pending.signal, SIGKILL);
1004				signal_wake_up(t, 1);
1005			} while_each_thread(p, t);
1006			return;
1007		}
1008	}
1009
1010	/*
1011	 * The signal is already in the shared-pending queue.
1012	 * Tell the chosen thread to wake up and dequeue it.
1013	 */
1014	signal_wake_up(t, sig == SIGKILL);
1015	return;
1016}
1017
1018static inline int legacy_queue(struct sigpending *signals, int sig)
1019{
1020	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1021}
1022
1023#ifdef CONFIG_USER_NS
1024static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1025{
1026	if (current_user_ns() == task_cred_xxx(t, user_ns))
1027		return;
1028
1029	if (SI_FROMKERNEL(info))
1030		return;
1031
1032	rcu_read_lock();
1033	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1034					make_kuid(current_user_ns(), info->si_uid));
1035	rcu_read_unlock();
1036}
1037#else
1038static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1039{
1040	return;
1041}
1042#endif
1043
1044static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1045			int group, int from_ancestor_ns)
1046{
1047	struct sigpending *pending;
1048	struct sigqueue *q;
1049	int override_rlimit;
1050	int ret = 0, result;
1051
1052	assert_spin_locked(&t->sighand->siglock);
1053
1054	result = TRACE_SIGNAL_IGNORED;
1055	if (!prepare_signal(sig, t,
1056			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1057		goto ret;
1058
1059	pending = group ? &t->signal->shared_pending : &t->pending;
1060	/*
1061	 * Short-circuit ignored signals and support queuing
1062	 * exactly one non-rt signal, so that we can get more
1063	 * detailed information about the cause of the signal.
1064	 */
1065	result = TRACE_SIGNAL_ALREADY_PENDING;
1066	if (legacy_queue(pending, sig))
1067		goto ret;
1068
1069	result = TRACE_SIGNAL_DELIVERED;
1070	/*
1071	 * fast-pathed signals for kernel-internal things like SIGSTOP
1072	 * or SIGKILL.
1073	 */
1074	if (info == SEND_SIG_FORCED)
1075		goto out_set;
1076
1077	/*
1078	 * Real-time signals must be queued if sent by sigqueue, or
1079	 * some other real-time mechanism.  It is implementation
1080	 * defined whether kill() does so.  We attempt to do so, on
1081	 * the principle of least surprise, but since kill is not
1082	 * allowed to fail with EAGAIN when low on memory we just
1083	 * make sure at least one signal gets delivered and don't
1084	 * pass on the info struct.
1085	 */
1086	if (sig < SIGRTMIN)
1087		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1088	else
1089		override_rlimit = 0;
1090
1091	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1092		override_rlimit);
1093	if (q) {
1094		list_add_tail(&q->list, &pending->list);
1095		switch ((unsigned long) info) {
1096		case (unsigned long) SEND_SIG_NOINFO:
 
1097			q->info.si_signo = sig;
1098			q->info.si_errno = 0;
1099			q->info.si_code = SI_USER;
1100			q->info.si_pid = task_tgid_nr_ns(current,
1101							task_active_pid_ns(t));
1102			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
 
 
 
 
1103			break;
1104		case (unsigned long) SEND_SIG_PRIV:
 
1105			q->info.si_signo = sig;
1106			q->info.si_errno = 0;
1107			q->info.si_code = SI_KERNEL;
1108			q->info.si_pid = 0;
1109			q->info.si_uid = 0;
1110			break;
1111		default:
1112			copy_siginfo(&q->info, info);
1113			if (from_ancestor_ns)
1114				q->info.si_pid = 0;
1115			break;
1116		}
1117
1118		userns_fixup_signal_uid(&q->info, t);
1119
1120	} else if (!is_si_special(info)) {
1121		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1122			/*
1123			 * Queue overflow, abort.  We may abort if the
1124			 * signal was rt and sent by user using something
1125			 * other than kill().
1126			 */
1127			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1128			ret = -EAGAIN;
1129			goto ret;
1130		} else {
1131			/*
1132			 * This is a silent loss of information.  We still
1133			 * send the signal, but the *info bits are lost.
1134			 */
1135			result = TRACE_SIGNAL_LOSE_INFO;
1136		}
1137	}
1138
1139out_set:
1140	signalfd_notify(t, sig);
1141	sigaddset(&pending->signal, sig);
1142	complete_signal(sig, t, group);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1143ret:
1144	trace_signal_generate(sig, info, t, group, result);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1145	return ret;
1146}
1147
1148static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1149			int group)
1150{
1151	int from_ancestor_ns = 0;
 
1152
1153#ifdef CONFIG_PID_NS
1154	from_ancestor_ns = si_fromuser(info) &&
1155			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1156#endif
 
 
 
 
 
1157
1158	return __send_signal(sig, info, t, group, from_ancestor_ns);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1159}
1160
1161static void print_fatal_signal(struct pt_regs *regs, int signr)
1162{
1163	printk("%s/%d: potentially unexpected fatal signal %d.\n",
1164		current->comm, task_pid_nr(current), signr);
1165
1166#if defined(__i386__) && !defined(__arch_um__)
1167	printk("code at %08lx: ", regs->ip);
1168	{
1169		int i;
1170		for (i = 0; i < 16; i++) {
1171			unsigned char insn;
1172
1173			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1174				break;
1175			printk("%02x ", insn);
1176		}
1177	}
 
1178#endif
1179	printk("\n");
1180	preempt_disable();
1181	show_regs(regs);
1182	preempt_enable();
1183}
1184
1185static int __init setup_print_fatal_signals(char *str)
1186{
1187	get_option (&str, &print_fatal_signals);
1188
1189	return 1;
1190}
1191
1192__setup("print-fatal-signals=", setup_print_fatal_signals);
1193
1194int
1195__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1196{
1197	return send_signal(sig, info, p, 1);
1198}
1199
1200static int
1201specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1202{
1203	return send_signal(sig, info, t, 0);
1204}
1205
1206int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1207			bool group)
1208{
1209	unsigned long flags;
1210	int ret = -ESRCH;
1211
1212	if (lock_task_sighand(p, &flags)) {
1213		ret = send_signal(sig, info, p, group);
1214		unlock_task_sighand(p, &flags);
1215	}
1216
1217	return ret;
1218}
1219
1220/*
1221 * Force a signal that the process can't ignore: if necessary
1222 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1223 *
1224 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1225 * since we do not want to have a signal handler that was blocked
1226 * be invoked when user space had explicitly blocked it.
1227 *
1228 * We don't want to have recursive SIGSEGV's etc, for example,
1229 * that is why we also clear SIGNAL_UNKILLABLE.
1230 */
1231int
1232force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1233{
1234	unsigned long int flags;
1235	int ret, blocked, ignored;
1236	struct k_sigaction *action;
 
1237
1238	spin_lock_irqsave(&t->sighand->siglock, flags);
1239	action = &t->sighand->action[sig-1];
1240	ignored = action->sa.sa_handler == SIG_IGN;
1241	blocked = sigismember(&t->blocked, sig);
1242	if (blocked || ignored) {
1243		action->sa.sa_handler = SIG_DFL;
1244		if (blocked) {
1245			sigdelset(&t->blocked, sig);
1246			recalc_sigpending_and_wake(t);
1247		}
1248	}
1249	if (action->sa.sa_handler == SIG_DFL)
 
 
 
 
1250		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1251	ret = specific_send_sig_info(sig, info, t);
1252	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1253
1254	return ret;
1255}
1256
 
 
 
 
 
1257/*
1258 * Nuke all other threads in the group.
1259 */
1260int zap_other_threads(struct task_struct *p)
1261{
1262	struct task_struct *t = p;
1263	int count = 0;
1264
1265	p->signal->group_stop_count = 0;
1266
1267	while_each_thread(p, t) {
1268		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1269		count++;
1270
1271		/* Don't bother with already dead threads */
1272		if (t->exit_state)
1273			continue;
1274		sigaddset(&t->pending.signal, SIGKILL);
1275		signal_wake_up(t, 1);
1276	}
1277
1278	return count;
1279}
1280
1281struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1282					   unsigned long *flags)
1283{
1284	struct sighand_struct *sighand;
1285
 
1286	for (;;) {
1287		local_irq_save(*flags);
1288		rcu_read_lock();
1289		sighand = rcu_dereference(tsk->sighand);
1290		if (unlikely(sighand == NULL)) {
1291			rcu_read_unlock();
1292			local_irq_restore(*flags);
1293			break;
1294		}
1295
1296		spin_lock(&sighand->siglock);
1297		if (likely(sighand == tsk->sighand)) {
1298			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
1299			break;
1300		}
1301		spin_unlock(&sighand->siglock);
1302		rcu_read_unlock();
1303		local_irq_restore(*flags);
1304	}
 
1305
1306	return sighand;
1307}
1308
1309/*
1310 * send signal info to all the members of a group
1311 */
1312int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
 
1313{
1314	int ret;
1315
1316	rcu_read_lock();
1317	ret = check_kill_permission(sig, info, p);
1318	rcu_read_unlock();
1319
1320	if (!ret && sig)
1321		ret = do_send_sig_info(sig, info, p, true);
1322
1323	return ret;
1324}
1325
1326/*
1327 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1328 * control characters do (^C, ^Z etc)
1329 * - the caller must hold at least a readlock on tasklist_lock
1330 */
1331int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1332{
1333	struct task_struct *p = NULL;
1334	int retval, success;
1335
1336	success = 0;
1337	retval = -ESRCH;
1338	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1339		int err = group_send_sig_info(sig, info, p);
1340		success |= !err;
1341		retval = err;
1342	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1343	return success ? 0 : retval;
1344}
1345
1346int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1347{
1348	int error = -ESRCH;
1349	struct task_struct *p;
1350
1351	rcu_read_lock();
1352retry:
1353	p = pid_task(pid, PIDTYPE_PID);
1354	if (p) {
1355		error = group_send_sig_info(sig, info, p);
1356		if (unlikely(error == -ESRCH))
1357			/*
1358			 * The task was unhashed in between, try again.
1359			 * If it is dead, pid_task() will return NULL,
1360			 * if we race with de_thread() it will find the
1361			 * new leader.
1362			 */
1363			goto retry;
1364	}
1365	rcu_read_unlock();
1366
1367	return error;
 
 
 
 
 
1368}
1369
1370int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1371{
1372	int error;
1373	rcu_read_lock();
1374	error = kill_pid_info(sig, info, find_vpid(pid));
1375	rcu_read_unlock();
1376	return error;
1377}
1378
1379static int kill_as_cred_perm(const struct cred *cred,
1380			     struct task_struct *target)
1381{
1382	const struct cred *pcred = __task_cred(target);
1383	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1384	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1385		return 0;
1386	return 1;
 
1387}
1388
1389/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1390int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1391			 const struct cred *cred, u32 secid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1392{
1393	int ret = -EINVAL;
1394	struct task_struct *p;
1395	unsigned long flags;
 
1396
1397	if (!valid_signal(sig))
1398		return ret;
1399
 
 
 
 
 
 
1400	rcu_read_lock();
1401	p = pid_task(pid, PIDTYPE_PID);
1402	if (!p) {
1403		ret = -ESRCH;
1404		goto out_unlock;
1405	}
1406	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1407		ret = -EPERM;
1408		goto out_unlock;
1409	}
1410	ret = security_task_kill(p, info, sig, secid);
1411	if (ret)
1412		goto out_unlock;
1413
1414	if (sig) {
1415		if (lock_task_sighand(p, &flags)) {
1416			ret = __send_signal(sig, info, p, 1, 0);
1417			unlock_task_sighand(p, &flags);
1418		} else
1419			ret = -ESRCH;
1420	}
1421out_unlock:
1422	rcu_read_unlock();
1423	return ret;
1424}
1425EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1426
1427/*
1428 * kill_something_info() interprets pid in interesting ways just like kill(2).
1429 *
1430 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1431 * is probably wrong.  Should make it like BSD or SYSV.
1432 */
1433
1434static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1435{
1436	int ret;
1437
1438	if (pid > 0) {
1439		rcu_read_lock();
1440		ret = kill_pid_info(sig, info, find_vpid(pid));
1441		rcu_read_unlock();
1442		return ret;
1443	}
1444
1445	read_lock(&tasklist_lock);
1446	if (pid != -1) {
1447		ret = __kill_pgrp_info(sig, info,
1448				pid ? find_vpid(-pid) : task_pgrp(current));
1449	} else {
1450		int retval = 0, count = 0;
1451		struct task_struct * p;
1452
1453		for_each_process(p) {
1454			if (task_pid_vnr(p) > 1 &&
1455					!same_thread_group(p, current)) {
1456				int err = group_send_sig_info(sig, info, p);
 
1457				++count;
1458				if (err != -EPERM)
1459					retval = err;
1460			}
1461		}
1462		ret = count ? retval : -ESRCH;
1463	}
1464	read_unlock(&tasklist_lock);
1465
1466	return ret;
1467}
1468
1469/*
1470 * These are for backward compatibility with the rest of the kernel source.
1471 */
1472
1473int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1474{
1475	/*
1476	 * Make sure legacy kernel users don't send in bad values
1477	 * (normal paths check this in check_kill_permission).
1478	 */
1479	if (!valid_signal(sig))
1480		return -EINVAL;
1481
1482	return do_send_sig_info(sig, info, p, false);
1483}
 
1484
1485#define __si_special(priv) \
1486	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1487
1488int
1489send_sig(int sig, struct task_struct *p, int priv)
1490{
1491	return send_sig_info(sig, __si_special(priv), p);
1492}
 
1493
1494void
1495force_sig(int sig, struct task_struct *p)
1496{
1497	force_sig_info(sig, SEND_SIG_PRIV, p);
 
 
 
 
 
 
 
 
1498}
 
1499
1500/*
1501 * When things go south during signal handling, we
1502 * will force a SIGSEGV. And if the signal that caused
1503 * the problem was already a SIGSEGV, we'll want to
1504 * make sure we don't even try to deliver the signal..
1505 */
1506int
1507force_sigsegv(int sig, struct task_struct *p)
1508{
 
 
1509	if (sig == SIGSEGV) {
1510		unsigned long flags;
1511		spin_lock_irqsave(&p->sighand->siglock, flags);
1512		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1513		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1514	}
1515	force_sig(SIGSEGV, p);
1516	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1517}
1518
1519int kill_pgrp(struct pid *pid, int sig, int priv)
1520{
1521	int ret;
1522
1523	read_lock(&tasklist_lock);
1524	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1525	read_unlock(&tasklist_lock);
1526
1527	return ret;
1528}
1529EXPORT_SYMBOL(kill_pgrp);
1530
1531int kill_pid(struct pid *pid, int sig, int priv)
1532{
1533	return kill_pid_info(sig, __si_special(priv), pid);
1534}
1535EXPORT_SYMBOL(kill_pid);
1536
1537/*
1538 * These functions support sending signals using preallocated sigqueue
1539 * structures.  This is needed "because realtime applications cannot
1540 * afford to lose notifications of asynchronous events, like timer
1541 * expirations or I/O completions".  In the case of POSIX Timers
1542 * we allocate the sigqueue structure from the timer_create.  If this
1543 * allocation fails we are able to report the failure to the application
1544 * with an EAGAIN error.
1545 */
1546struct sigqueue *sigqueue_alloc(void)
1547{
1548	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1549
1550	if (q)
1551		q->flags |= SIGQUEUE_PREALLOC;
1552
1553	return q;
1554}
1555
1556void sigqueue_free(struct sigqueue *q)
1557{
1558	unsigned long flags;
1559	spinlock_t *lock = &current->sighand->siglock;
1560
1561	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1562	/*
1563	 * We must hold ->siglock while testing q->list
1564	 * to serialize with collect_signal() or with
1565	 * __exit_signal()->flush_sigqueue().
1566	 */
1567	spin_lock_irqsave(lock, flags);
1568	q->flags &= ~SIGQUEUE_PREALLOC;
1569	/*
1570	 * If it is queued it will be freed when dequeued,
1571	 * like the "regular" sigqueue.
1572	 */
1573	if (!list_empty(&q->list))
1574		q = NULL;
1575	spin_unlock_irqrestore(lock, flags);
1576
1577	if (q)
1578		__sigqueue_free(q);
1579}
1580
1581int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1582{
1583	int sig = q->info.si_signo;
1584	struct sigpending *pending;
 
1585	unsigned long flags;
1586	int ret, result;
1587
1588	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1589
1590	ret = -1;
1591	if (!likely(lock_task_sighand(t, &flags)))
 
 
1592		goto ret;
1593
1594	ret = 1; /* the signal is ignored */
1595	result = TRACE_SIGNAL_IGNORED;
1596	if (!prepare_signal(sig, t, false))
1597		goto out;
1598
1599	ret = 0;
1600	if (unlikely(!list_empty(&q->list))) {
1601		/*
1602		 * If an SI_TIMER entry is already queue just increment
1603		 * the overrun count.
1604		 */
1605		BUG_ON(q->info.si_code != SI_TIMER);
1606		q->info.si_overrun++;
1607		result = TRACE_SIGNAL_ALREADY_PENDING;
1608		goto out;
1609	}
1610	q->info.si_overrun = 0;
1611
1612	signalfd_notify(t, sig);
1613	pending = group ? &t->signal->shared_pending : &t->pending;
1614	list_add_tail(&q->list, &pending->list);
1615	sigaddset(&pending->signal, sig);
1616	complete_signal(sig, t, group);
1617	result = TRACE_SIGNAL_DELIVERED;
1618out:
1619	trace_signal_generate(sig, &q->info, t, group, result);
1620	unlock_task_sighand(t, &flags);
1621ret:
 
1622	return ret;
1623}
1624
 
 
 
 
 
 
 
 
 
1625/*
1626 * Let a parent know about the death of a child.
1627 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1628 *
1629 * Returns true if our parent ignored us and so we've switched to
1630 * self-reaping.
1631 */
1632bool do_notify_parent(struct task_struct *tsk, int sig)
1633{
1634	struct siginfo info;
1635	unsigned long flags;
1636	struct sighand_struct *psig;
1637	bool autoreap = false;
 
1638
1639	BUG_ON(sig == -1);
1640
1641 	/* do_notify_parent_cldstop should have been called instead.  */
1642 	BUG_ON(task_is_stopped_or_traced(tsk));
1643
1644	BUG_ON(!tsk->ptrace &&
1645	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1646
 
 
 
1647	if (sig != SIGCHLD) {
1648		/*
1649		 * This is only possible if parent == real_parent.
1650		 * Check if it has changed security domain.
1651		 */
1652		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1653			sig = SIGCHLD;
1654	}
1655
 
1656	info.si_signo = sig;
1657	info.si_errno = 0;
1658	/*
1659	 * We are under tasklist_lock here so our parent is tied to
1660	 * us and cannot change.
1661	 *
1662	 * task_active_pid_ns will always return the same pid namespace
1663	 * until a task passes through release_task.
1664	 *
1665	 * write_lock() currently calls preempt_disable() which is the
1666	 * same as rcu_read_lock(), but according to Oleg, this is not
1667	 * correct to rely on this
1668	 */
1669	rcu_read_lock();
1670	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1671	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1672				       task_uid(tsk));
1673	rcu_read_unlock();
1674
1675	info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime);
1676	info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime);
 
1677
1678	info.si_status = tsk->exit_code & 0x7f;
1679	if (tsk->exit_code & 0x80)
1680		info.si_code = CLD_DUMPED;
1681	else if (tsk->exit_code & 0x7f)
1682		info.si_code = CLD_KILLED;
1683	else {
1684		info.si_code = CLD_EXITED;
1685		info.si_status = tsk->exit_code >> 8;
1686	}
1687
1688	psig = tsk->parent->sighand;
1689	spin_lock_irqsave(&psig->siglock, flags);
1690	if (!tsk->ptrace && sig == SIGCHLD &&
1691	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1692	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1693		/*
1694		 * We are exiting and our parent doesn't care.  POSIX.1
1695		 * defines special semantics for setting SIGCHLD to SIG_IGN
1696		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1697		 * automatically and not left for our parent's wait4 call.
1698		 * Rather than having the parent do it as a magic kind of
1699		 * signal handler, we just set this to tell do_exit that we
1700		 * can be cleaned up without becoming a zombie.  Note that
1701		 * we still call __wake_up_parent in this case, because a
1702		 * blocked sys_wait4 might now return -ECHILD.
1703		 *
1704		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1705		 * is implementation-defined: we do (if you don't want
1706		 * it, just use SIG_IGN instead).
1707		 */
1708		autoreap = true;
1709		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1710			sig = 0;
1711	}
 
 
 
 
1712	if (valid_signal(sig) && sig)
1713		__group_send_sig_info(sig, &info, tsk->parent);
1714	__wake_up_parent(tsk, tsk->parent);
1715	spin_unlock_irqrestore(&psig->siglock, flags);
1716
1717	return autoreap;
1718}
1719
1720/**
1721 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1722 * @tsk: task reporting the state change
1723 * @for_ptracer: the notification is for ptracer
1724 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1725 *
1726 * Notify @tsk's parent that the stopped/continued state has changed.  If
1727 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1728 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1729 *
1730 * CONTEXT:
1731 * Must be called with tasklist_lock at least read locked.
1732 */
1733static void do_notify_parent_cldstop(struct task_struct *tsk,
1734				     bool for_ptracer, int why)
1735{
1736	struct siginfo info;
1737	unsigned long flags;
1738	struct task_struct *parent;
1739	struct sighand_struct *sighand;
 
1740
1741	if (for_ptracer) {
1742		parent = tsk->parent;
1743	} else {
1744		tsk = tsk->group_leader;
1745		parent = tsk->real_parent;
1746	}
1747
 
1748	info.si_signo = SIGCHLD;
1749	info.si_errno = 0;
1750	/*
1751	 * see comment in do_notify_parent() about the following 4 lines
1752	 */
1753	rcu_read_lock();
1754	info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1755	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1756	rcu_read_unlock();
1757
1758	info.si_utime = cputime_to_clock_t(tsk->utime);
1759	info.si_stime = cputime_to_clock_t(tsk->stime);
 
1760
1761 	info.si_code = why;
1762 	switch (why) {
1763 	case CLD_CONTINUED:
1764 		info.si_status = SIGCONT;
1765 		break;
1766 	case CLD_STOPPED:
1767 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1768 		break;
1769 	case CLD_TRAPPED:
1770 		info.si_status = tsk->exit_code & 0x7f;
1771 		break;
1772 	default:
1773 		BUG();
1774 	}
1775
1776	sighand = parent->sighand;
1777	spin_lock_irqsave(&sighand->siglock, flags);
1778	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1779	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1780		__group_send_sig_info(SIGCHLD, &info, parent);
1781	/*
1782	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1783	 */
1784	__wake_up_parent(tsk, parent);
1785	spin_unlock_irqrestore(&sighand->siglock, flags);
1786}
1787
1788static inline int may_ptrace_stop(void)
1789{
1790	if (!likely(current->ptrace))
1791		return 0;
1792	/*
1793	 * Are we in the middle of do_coredump?
1794	 * If so and our tracer is also part of the coredump stopping
1795	 * is a deadlock situation, and pointless because our tracer
1796	 * is dead so don't allow us to stop.
1797	 * If SIGKILL was already sent before the caller unlocked
1798	 * ->siglock we must see ->core_state != NULL. Otherwise it
1799	 * is safe to enter schedule().
 
 
 
 
1800	 */
1801	if (unlikely(current->mm->core_state) &&
1802	    unlikely(current->mm == current->parent->mm))
1803		return 0;
1804
1805	return 1;
1806}
1807
1808/*
1809 * Return non-zero if there is a SIGKILL that should be waking us up.
1810 * Called with the siglock held.
1811 */
1812static int sigkill_pending(struct task_struct *tsk)
1813{
1814	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1815		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1816}
1817
1818/*
1819 * This must be called with current->sighand->siglock held.
1820 *
1821 * This should be the path for all ptrace stops.
1822 * We always set current->last_siginfo while stopped here.
1823 * That makes it a way to test a stopped process for
1824 * being ptrace-stopped vs being job-control-stopped.
1825 *
1826 * If we actually decide not to stop at all because the tracer
1827 * is gone, we keep current->exit_code unless clear_code.
1828 */
1829static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1830	__releases(&current->sighand->siglock)
1831	__acquires(&current->sighand->siglock)
1832{
1833	bool gstop_done = false;
1834
1835	if (arch_ptrace_stop_needed(exit_code, info)) {
1836		/*
1837		 * The arch code has something special to do before a
1838		 * ptrace stop.  This is allowed to block, e.g. for faults
1839		 * on user stack pages.  We can't keep the siglock while
1840		 * calling arch_ptrace_stop, so we must release it now.
1841		 * To preserve proper semantics, we must do this before
1842		 * any signal bookkeeping like checking group_stop_count.
1843		 * Meanwhile, a SIGKILL could come in before we retake the
1844		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1845		 * So after regaining the lock, we must check for SIGKILL.
1846		 */
1847		spin_unlock_irq(&current->sighand->siglock);
1848		arch_ptrace_stop(exit_code, info);
1849		spin_lock_irq(&current->sighand->siglock);
1850		if (sigkill_pending(current))
1851			return;
1852	}
1853
 
 
1854	/*
1855	 * We're committing to trapping.  TRACED should be visible before
1856	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1857	 * Also, transition to TRACED and updates to ->jobctl should be
1858	 * atomic with respect to siglock and should be done after the arch
1859	 * hook as siglock is released and regrabbed across it.
 
 
 
 
 
 
 
 
 
 
 
1860	 */
1861	set_current_state(TASK_TRACED);
1862
1863	current->last_siginfo = info;
1864	current->exit_code = exit_code;
1865
1866	/*
1867	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1868	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1869	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1870	 * could be clear now.  We act as if SIGCONT is received after
1871	 * TASK_TRACED is entered - ignore it.
1872	 */
1873	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1874		gstop_done = task_participate_group_stop(current);
1875
1876	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1877	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1878	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1879		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1880
1881	/* entering a trap, clear TRAPPING */
1882	task_clear_jobctl_trapping(current);
1883
1884	spin_unlock_irq(&current->sighand->siglock);
1885	read_lock(&tasklist_lock);
1886	if (may_ptrace_stop()) {
1887		/*
1888		 * Notify parents of the stop.
1889		 *
1890		 * While ptraced, there are two parents - the ptracer and
1891		 * the real_parent of the group_leader.  The ptracer should
1892		 * know about every stop while the real parent is only
1893		 * interested in the completion of group stop.  The states
1894		 * for the two don't interact with each other.  Notify
1895		 * separately unless they're gonna be duplicates.
1896		 */
1897		do_notify_parent_cldstop(current, true, why);
1898		if (gstop_done && ptrace_reparented(current))
1899			do_notify_parent_cldstop(current, false, why);
1900
1901		/*
1902		 * Don't want to allow preemption here, because
1903		 * sys_ptrace() needs this task to be inactive.
1904		 *
1905		 * XXX: implement read_unlock_no_resched().
1906		 */
1907		preempt_disable();
1908		read_unlock(&tasklist_lock);
 
1909		preempt_enable_no_resched();
1910		schedule();
 
1911	} else {
1912		/*
1913		 * By the time we got the lock, our tracer went away.
1914		 * Don't drop the lock yet, another tracer may come.
1915		 *
1916		 * If @gstop_done, the ptracer went away between group stop
1917		 * completion and here.  During detach, it would have set
1918		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1919		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1920		 * the real parent of the group stop completion is enough.
1921		 */
1922		if (gstop_done)
1923			do_notify_parent_cldstop(current, false, why);
1924
 
1925		__set_current_state(TASK_RUNNING);
1926		if (clear_code)
1927			current->exit_code = 0;
1928		read_unlock(&tasklist_lock);
1929	}
1930
1931	/*
1932	 * While in TASK_TRACED, we were considered "frozen enough".
1933	 * Now that we woke up, it's crucial if we're supposed to be
1934	 * frozen that we freeze now before running anything substantial.
1935	 */
1936	try_to_freeze();
1937
1938	/*
1939	 * We are back.  Now reacquire the siglock before touching
1940	 * last_siginfo, so that we are sure to have synchronized with
1941	 * any signal-sending on another CPU that wants to examine it.
1942	 */
1943	spin_lock_irq(&current->sighand->siglock);
1944	current->last_siginfo = NULL;
1945
1946	/* LISTENING can be set only during STOP traps, clear it */
1947	current->jobctl &= ~JOBCTL_LISTENING;
1948
1949	/*
1950	 * Queued signals ignored us while we were stopped for tracing.
1951	 * So check for any that we should take before resuming user mode.
1952	 * This sets TIF_SIGPENDING, but never clears it.
1953	 */
1954	recalc_sigpending_tsk(current);
1955}
1956
1957static void ptrace_do_notify(int signr, int exit_code, int why)
1958{
1959	siginfo_t info;
1960
1961	memset(&info, 0, sizeof info);
1962	info.si_signo = signr;
1963	info.si_code = exit_code;
1964	info.si_pid = task_pid_vnr(current);
1965	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1966
1967	/* Let the debugger run.  */
1968	ptrace_stop(exit_code, why, 1, &info);
1969}
1970
1971void ptrace_notify(int exit_code)
1972{
1973	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
 
 
1974
1975	spin_lock_irq(&current->sighand->siglock);
1976	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1977	spin_unlock_irq(&current->sighand->siglock);
1978}
1979
1980/**
1981 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1982 * @signr: signr causing group stop if initiating
1983 *
1984 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1985 * and participate in it.  If already set, participate in the existing
1986 * group stop.  If participated in a group stop (and thus slept), %true is
1987 * returned with siglock released.
1988 *
1989 * If ptraced, this function doesn't handle stop itself.  Instead,
1990 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1991 * untouched.  The caller must ensure that INTERRUPT trap handling takes
1992 * places afterwards.
1993 *
1994 * CONTEXT:
1995 * Must be called with @current->sighand->siglock held, which is released
1996 * on %true return.
1997 *
1998 * RETURNS:
1999 * %false if group stop is already cancelled or ptrace trap is scheduled.
2000 * %true if participated in group stop.
2001 */
2002static bool do_signal_stop(int signr)
2003	__releases(&current->sighand->siglock)
2004{
2005	struct signal_struct *sig = current->signal;
2006
2007	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2008		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2009		struct task_struct *t;
2010
2011		/* signr will be recorded in task->jobctl for retries */
2012		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2013
2014		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2015		    unlikely(signal_group_exit(sig)))
2016			return false;
2017		/*
2018		 * There is no group stop already in progress.  We must
2019		 * initiate one now.
2020		 *
2021		 * While ptraced, a task may be resumed while group stop is
2022		 * still in effect and then receive a stop signal and
2023		 * initiate another group stop.  This deviates from the
2024		 * usual behavior as two consecutive stop signals can't
2025		 * cause two group stops when !ptraced.  That is why we
2026		 * also check !task_is_stopped(t) below.
2027		 *
2028		 * The condition can be distinguished by testing whether
2029		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2030		 * group_exit_code in such case.
2031		 *
2032		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2033		 * an intervening stop signal is required to cause two
2034		 * continued events regardless of ptrace.
2035		 */
2036		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2037			sig->group_exit_code = signr;
2038
2039		sig->group_stop_count = 0;
2040
2041		if (task_set_jobctl_pending(current, signr | gstop))
2042			sig->group_stop_count++;
2043
2044		for (t = next_thread(current); t != current;
2045		     t = next_thread(t)) {
2046			/*
2047			 * Setting state to TASK_STOPPED for a group
2048			 * stop is always done with the siglock held,
2049			 * so this check has no races.
2050			 */
2051			if (!task_is_stopped(t) &&
2052			    task_set_jobctl_pending(t, signr | gstop)) {
2053				sig->group_stop_count++;
2054				if (likely(!(t->ptrace & PT_SEIZED)))
2055					signal_wake_up(t, 0);
2056				else
2057					ptrace_trap_notify(t);
2058			}
2059		}
2060	}
2061
2062	if (likely(!current->ptrace)) {
2063		int notify = 0;
2064
2065		/*
2066		 * If there are no other threads in the group, or if there
2067		 * is a group stop in progress and we are the last to stop,
2068		 * report to the parent.
2069		 */
2070		if (task_participate_group_stop(current))
2071			notify = CLD_STOPPED;
2072
2073		__set_current_state(TASK_STOPPED);
2074		spin_unlock_irq(&current->sighand->siglock);
2075
2076		/*
2077		 * Notify the parent of the group stop completion.  Because
2078		 * we're not holding either the siglock or tasklist_lock
2079		 * here, ptracer may attach inbetween; however, this is for
2080		 * group stop and should always be delivered to the real
2081		 * parent of the group leader.  The new ptracer will get
2082		 * its notification when this task transitions into
2083		 * TASK_TRACED.
2084		 */
2085		if (notify) {
2086			read_lock(&tasklist_lock);
2087			do_notify_parent_cldstop(current, false, notify);
2088			read_unlock(&tasklist_lock);
2089		}
2090
2091		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2092		schedule();
 
2093		return true;
2094	} else {
2095		/*
2096		 * While ptraced, group stop is handled by STOP trap.
2097		 * Schedule it and let the caller deal with it.
2098		 */
2099		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2100		return false;
2101	}
2102}
2103
2104/**
2105 * do_jobctl_trap - take care of ptrace jobctl traps
2106 *
2107 * When PT_SEIZED, it's used for both group stop and explicit
2108 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2109 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2110 * the stop signal; otherwise, %SIGTRAP.
2111 *
2112 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2113 * number as exit_code and no siginfo.
2114 *
2115 * CONTEXT:
2116 * Must be called with @current->sighand->siglock held, which may be
2117 * released and re-acquired before returning with intervening sleep.
2118 */
2119static void do_jobctl_trap(void)
2120{
2121	struct signal_struct *signal = current->signal;
2122	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2123
2124	if (current->ptrace & PT_SEIZED) {
2125		if (!signal->group_stop_count &&
2126		    !(signal->flags & SIGNAL_STOP_STOPPED))
2127			signr = SIGTRAP;
2128		WARN_ON_ONCE(!signr);
2129		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2130				 CLD_STOPPED);
2131	} else {
2132		WARN_ON_ONCE(!signr);
2133		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2134		current->exit_code = 0;
2135	}
2136}
2137
2138static int ptrace_signal(int signr, siginfo_t *info,
2139			 struct pt_regs *regs, void *cookie)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2140{
2141	ptrace_signal_deliver(regs, cookie);
2142	/*
2143	 * We do not check sig_kernel_stop(signr) but set this marker
2144	 * unconditionally because we do not know whether debugger will
2145	 * change signr. This flag has no meaning unless we are going
2146	 * to stop after return from ptrace_stop(). In this case it will
2147	 * be checked in do_signal_stop(), we should only stop if it was
2148	 * not cleared by SIGCONT while we were sleeping. See also the
2149	 * comment in dequeue_signal().
2150	 */
2151	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2152	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2153
2154	/* We're back.  Did the debugger cancel the sig?  */
2155	signr = current->exit_code;
2156	if (signr == 0)
2157		return signr;
2158
2159	current->exit_code = 0;
2160
2161	/*
2162	 * Update the siginfo structure if the signal has
2163	 * changed.  If the debugger wanted something
2164	 * specific in the siginfo structure then it should
2165	 * have updated *info via PTRACE_SETSIGINFO.
2166	 */
2167	if (signr != info->si_signo) {
 
2168		info->si_signo = signr;
2169		info->si_errno = 0;
2170		info->si_code = SI_USER;
2171		rcu_read_lock();
2172		info->si_pid = task_pid_vnr(current->parent);
2173		info->si_uid = from_kuid_munged(current_user_ns(),
2174						task_uid(current->parent));
2175		rcu_read_unlock();
2176	}
2177
2178	/* If the (new) signal is now blocked, requeue it.  */
2179	if (sigismember(&current->blocked, signr)) {
2180		specific_send_sig_info(signr, info, current);
2181		signr = 0;
2182	}
2183
2184	return signr;
2185}
2186
2187int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2188			  struct pt_regs *regs, void *cookie)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2189{
2190	struct sighand_struct *sighand = current->sighand;
2191	struct signal_struct *signal = current->signal;
2192	int signr;
2193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2194	if (unlikely(uprobe_deny_signal()))
2195		return 0;
2196
2197relock:
2198	/*
2199	 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2200	 * While in TASK_STOPPED, we were considered "frozen enough".
2201	 * Now that we woke up, it's crucial if we're supposed to be
2202	 * frozen that we freeze now before running anything substantial.
2203	 */
2204	try_to_freeze();
2205
 
2206	spin_lock_irq(&sighand->siglock);
 
2207	/*
2208	 * Every stopped thread goes here after wakeup. Check to see if
2209	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2210	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2211	 */
2212	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2213		int why;
2214
2215		if (signal->flags & SIGNAL_CLD_CONTINUED)
2216			why = CLD_CONTINUED;
2217		else
2218			why = CLD_STOPPED;
2219
2220		signal->flags &= ~SIGNAL_CLD_MASK;
2221
2222		spin_unlock_irq(&sighand->siglock);
2223
2224		/*
2225		 * Notify the parent that we're continuing.  This event is
2226		 * always per-process and doesn't make whole lot of sense
2227		 * for ptracers, who shouldn't consume the state via
2228		 * wait(2) either, but, for backward compatibility, notify
2229		 * the ptracer of the group leader too unless it's gonna be
2230		 * a duplicate.
2231		 */
2232		read_lock(&tasklist_lock);
2233		do_notify_parent_cldstop(current, false, why);
2234
2235		if (ptrace_reparented(current->group_leader))
2236			do_notify_parent_cldstop(current->group_leader,
2237						true, why);
2238		read_unlock(&tasklist_lock);
2239
2240		goto relock;
2241	}
2242
 
 
 
 
 
 
 
 
 
 
2243	for (;;) {
2244		struct k_sigaction *ka;
2245
2246		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2247		    do_signal_stop(0))
2248			goto relock;
2249
2250		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2251			do_jobctl_trap();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2252			spin_unlock_irq(&sighand->siglock);
 
2253			goto relock;
2254		}
2255
2256		signr = dequeue_signal(current, &current->blocked, info);
 
 
 
 
 
 
 
 
2257
2258		if (!signr)
2259			break; /* will return 0 */
2260
2261		if (unlikely(current->ptrace) && signr != SIGKILL) {
2262			signr = ptrace_signal(signr, info,
2263					      regs, cookie);
2264			if (!signr)
2265				continue;
2266		}
2267
2268		ka = &sighand->action[signr-1];
2269
2270		/* Trace actually delivered signals. */
2271		trace_signal_deliver(signr, info, ka);
2272
2273		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2274			continue;
2275		if (ka->sa.sa_handler != SIG_DFL) {
2276			/* Run the handler.  */
2277			*return_ka = *ka;
2278
2279			if (ka->sa.sa_flags & SA_ONESHOT)
2280				ka->sa.sa_handler = SIG_DFL;
2281
2282			break; /* will return non-zero "signr" value */
2283		}
2284
2285		/*
2286		 * Now we are doing the default action for this signal.
2287		 */
2288		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2289			continue;
2290
2291		/*
2292		 * Global init gets no signals it doesn't want.
2293		 * Container-init gets no signals it doesn't want from same
2294		 * container.
2295		 *
2296		 * Note that if global/container-init sees a sig_kernel_only()
2297		 * signal here, the signal must have been generated internally
2298		 * or must have come from an ancestor namespace. In either
2299		 * case, the signal cannot be dropped.
2300		 */
2301		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2302				!sig_kernel_only(signr))
2303			continue;
2304
2305		if (sig_kernel_stop(signr)) {
2306			/*
2307			 * The default action is to stop all threads in
2308			 * the thread group.  The job control signals
2309			 * do nothing in an orphaned pgrp, but SIGSTOP
2310			 * always works.  Note that siglock needs to be
2311			 * dropped during the call to is_orphaned_pgrp()
2312			 * because of lock ordering with tasklist_lock.
2313			 * This allows an intervening SIGCONT to be posted.
2314			 * We need to check for that and bail out if necessary.
2315			 */
2316			if (signr != SIGSTOP) {
2317				spin_unlock_irq(&sighand->siglock);
2318
2319				/* signals can be posted during this window */
2320
2321				if (is_current_pgrp_orphaned())
2322					goto relock;
2323
2324				spin_lock_irq(&sighand->siglock);
2325			}
2326
2327			if (likely(do_signal_stop(info->si_signo))) {
2328				/* It released the siglock.  */
2329				goto relock;
2330			}
2331
2332			/*
2333			 * We didn't actually stop, due to a race
2334			 * with SIGCONT or something like that.
2335			 */
2336			continue;
2337		}
2338
 
2339		spin_unlock_irq(&sighand->siglock);
 
 
2340
2341		/*
2342		 * Anything else is fatal, maybe with a core dump.
2343		 */
2344		current->flags |= PF_SIGNALED;
2345
2346		if (sig_kernel_coredump(signr)) {
2347			if (print_fatal_signals)
2348				print_fatal_signal(regs, info->si_signo);
 
2349			/*
2350			 * If it was able to dump core, this kills all
2351			 * other threads in the group and synchronizes with
2352			 * their demise.  If we lost the race with another
2353			 * thread getting here, it set group_exit_code
2354			 * first and our do_group_exit call below will use
2355			 * that value and ignore the one we pass it.
2356			 */
2357			do_coredump(info->si_signo, info->si_signo, regs);
2358		}
2359
2360		/*
 
 
 
 
 
 
 
 
2361		 * Death signals, no core dump.
2362		 */
2363		do_group_exit(info->si_signo);
2364		/* NOTREACHED */
2365	}
2366	spin_unlock_irq(&sighand->siglock);
2367	return signr;
 
 
 
 
 
 
2368}
2369
2370/**
2371 * signal_delivered - 
2372 * @sig:		number of signal being delivered
2373 * @info:		siginfo_t of signal being delivered
2374 * @ka:			sigaction setting that chose the handler
2375 * @regs:		user register state
2376 * @stepping:		nonzero if debugger single-step or block-step in use
2377 *
2378 * This function should be called when a signal has succesfully been
2379 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2380 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2381 * is set in @ka->sa.sa_flags.  Tracing is notified.
2382 */
2383void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2384			struct pt_regs *regs, int stepping)
2385{
2386	sigset_t blocked;
2387
2388	/* A signal was successfully delivered, and the
2389	   saved sigmask was stored on the signal frame,
2390	   and will be restored by sigreturn.  So we can
2391	   simply clear the restore sigmask flag.  */
2392	clear_restore_sigmask();
2393
2394	sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2395	if (!(ka->sa.sa_flags & SA_NODEFER))
2396		sigaddset(&blocked, sig);
2397	set_current_blocked(&blocked);
2398	tracehook_signal_handler(sig, info, ka, regs, stepping);
 
 
 
 
 
 
 
 
 
 
2399}
2400
2401/*
2402 * It could be that complete_signal() picked us to notify about the
2403 * group-wide signal. Other threads should be notified now to take
2404 * the shared signals in @which since we will not.
2405 */
2406static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2407{
2408	sigset_t retarget;
2409	struct task_struct *t;
2410
2411	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2412	if (sigisemptyset(&retarget))
2413		return;
2414
2415	t = tsk;
2416	while_each_thread(tsk, t) {
2417		if (t->flags & PF_EXITING)
2418			continue;
2419
2420		if (!has_pending_signals(&retarget, &t->blocked))
2421			continue;
2422		/* Remove the signals this thread can handle. */
2423		sigandsets(&retarget, &retarget, &t->blocked);
2424
2425		if (!signal_pending(t))
2426			signal_wake_up(t, 0);
2427
2428		if (sigisemptyset(&retarget))
2429			break;
2430	}
2431}
2432
2433void exit_signals(struct task_struct *tsk)
2434{
2435	int group_stop = 0;
2436	sigset_t unblocked;
2437
2438	/*
2439	 * @tsk is about to have PF_EXITING set - lock out users which
2440	 * expect stable threadgroup.
2441	 */
2442	threadgroup_change_begin(tsk);
2443
2444	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2445		tsk->flags |= PF_EXITING;
2446		threadgroup_change_end(tsk);
2447		return;
2448	}
2449
2450	spin_lock_irq(&tsk->sighand->siglock);
2451	/*
2452	 * From now this task is not visible for group-wide signals,
2453	 * see wants_signal(), do_signal_stop().
2454	 */
2455	tsk->flags |= PF_EXITING;
2456
2457	threadgroup_change_end(tsk);
2458
2459	if (!signal_pending(tsk))
2460		goto out;
2461
2462	unblocked = tsk->blocked;
2463	signotset(&unblocked);
2464	retarget_shared_pending(tsk, &unblocked);
2465
2466	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2467	    task_participate_group_stop(tsk))
2468		group_stop = CLD_STOPPED;
2469out:
2470	spin_unlock_irq(&tsk->sighand->siglock);
2471
2472	/*
2473	 * If group stop has completed, deliver the notification.  This
2474	 * should always go to the real parent of the group leader.
2475	 */
2476	if (unlikely(group_stop)) {
2477		read_lock(&tasklist_lock);
2478		do_notify_parent_cldstop(tsk, false, group_stop);
2479		read_unlock(&tasklist_lock);
2480	}
2481}
2482
2483EXPORT_SYMBOL(recalc_sigpending);
2484EXPORT_SYMBOL_GPL(dequeue_signal);
2485EXPORT_SYMBOL(flush_signals);
2486EXPORT_SYMBOL(force_sig);
2487EXPORT_SYMBOL(send_sig);
2488EXPORT_SYMBOL(send_sig_info);
2489EXPORT_SYMBOL(sigprocmask);
2490EXPORT_SYMBOL(block_all_signals);
2491EXPORT_SYMBOL(unblock_all_signals);
2492
2493
2494/*
2495 * System call entry points.
2496 */
2497
2498/**
2499 *  sys_restart_syscall - restart a system call
2500 */
2501SYSCALL_DEFINE0(restart_syscall)
2502{
2503	struct restart_block *restart = &current_thread_info()->restart_block;
2504	return restart->fn(restart);
2505}
2506
2507long do_no_restart_syscall(struct restart_block *param)
2508{
2509	return -EINTR;
2510}
2511
2512static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2513{
2514	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2515		sigset_t newblocked;
2516		/* A set of now blocked but previously unblocked signals. */
2517		sigandnsets(&newblocked, newset, &current->blocked);
2518		retarget_shared_pending(tsk, &newblocked);
2519	}
2520	tsk->blocked = *newset;
2521	recalc_sigpending();
2522}
2523
2524/**
2525 * set_current_blocked - change current->blocked mask
2526 * @newset: new mask
2527 *
2528 * It is wrong to change ->blocked directly, this helper should be used
2529 * to ensure the process can't miss a shared signal we are going to block.
2530 */
2531void set_current_blocked(sigset_t *newset)
2532{
2533	struct task_struct *tsk = current;
2534	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2535	spin_lock_irq(&tsk->sighand->siglock);
2536	__set_task_blocked(tsk, newset);
2537	spin_unlock_irq(&tsk->sighand->siglock);
2538}
2539
2540void __set_current_blocked(const sigset_t *newset)
2541{
2542	struct task_struct *tsk = current;
2543
 
 
 
 
 
 
 
2544	spin_lock_irq(&tsk->sighand->siglock);
2545	__set_task_blocked(tsk, newset);
2546	spin_unlock_irq(&tsk->sighand->siglock);
2547}
2548
2549/*
2550 * This is also useful for kernel threads that want to temporarily
2551 * (or permanently) block certain signals.
2552 *
2553 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2554 * interface happily blocks "unblockable" signals like SIGKILL
2555 * and friends.
2556 */
2557int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2558{
2559	struct task_struct *tsk = current;
2560	sigset_t newset;
2561
2562	/* Lockless, only current can change ->blocked, never from irq */
2563	if (oldset)
2564		*oldset = tsk->blocked;
2565
2566	switch (how) {
2567	case SIG_BLOCK:
2568		sigorsets(&newset, &tsk->blocked, set);
2569		break;
2570	case SIG_UNBLOCK:
2571		sigandnsets(&newset, &tsk->blocked, set);
2572		break;
2573	case SIG_SETMASK:
2574		newset = *set;
2575		break;
2576	default:
2577		return -EINVAL;
2578	}
2579
2580	__set_current_blocked(&newset);
2581	return 0;
2582}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2583
2584/**
2585 *  sys_rt_sigprocmask - change the list of currently blocked signals
2586 *  @how: whether to add, remove, or set signals
2587 *  @nset: stores pending signals
2588 *  @oset: previous value of signal mask if non-null
2589 *  @sigsetsize: size of sigset_t type
2590 */
2591SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2592		sigset_t __user *, oset, size_t, sigsetsize)
2593{
2594	sigset_t old_set, new_set;
2595	int error;
2596
2597	/* XXX: Don't preclude handling different sized sigset_t's.  */
2598	if (sigsetsize != sizeof(sigset_t))
2599		return -EINVAL;
2600
2601	old_set = current->blocked;
2602
2603	if (nset) {
2604		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2605			return -EFAULT;
2606		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2607
2608		error = sigprocmask(how, &new_set, NULL);
2609		if (error)
2610			return error;
2611	}
2612
2613	if (oset) {
2614		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2615			return -EFAULT;
2616	}
2617
2618	return 0;
2619}
2620
2621long do_sigpending(void __user *set, unsigned long sigsetsize)
 
 
2622{
2623	long error = -EINVAL;
2624	sigset_t pending;
2625
2626	if (sigsetsize > sizeof(sigset_t))
2627		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2628
 
 
2629	spin_lock_irq(&current->sighand->siglock);
2630	sigorsets(&pending, &current->pending.signal,
2631		  &current->signal->shared_pending.signal);
2632	spin_unlock_irq(&current->sighand->siglock);
2633
2634	/* Outside the lock because only this thread touches it.  */
2635	sigandsets(&pending, &current->blocked, &pending);
2636
2637	error = -EFAULT;
2638	if (!copy_to_user(set, &pending, sigsetsize))
2639		error = 0;
2640
2641out:
2642	return error;
2643}
2644
2645/**
2646 *  sys_rt_sigpending - examine a pending signal that has been raised
2647 *			while blocked
2648 *  @set: stores pending signals
2649 *  @sigsetsize: size of sigset_t type or larger
2650 */
2651SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2652{
2653	return do_sigpending(set, sigsetsize);
 
 
 
 
 
 
 
2654}
 
2655
2656#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2657
2658int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2659{
2660	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2661
2662	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2663		return -EFAULT;
2664	if (from->si_code < 0)
2665		return __copy_to_user(to, from, sizeof(siginfo_t))
2666			? -EFAULT : 0;
2667	/*
2668	 * If you change siginfo_t structure, please be sure
2669	 * this code is fixed accordingly.
2670	 * Please remember to update the signalfd_copyinfo() function
2671	 * inside fs/signalfd.c too, in case siginfo_t changes.
2672	 * It should never copy any pad contained in the structure
2673	 * to avoid security leaks, but must copy the generic
2674	 * 3 ints plus the relevant union member.
2675	 */
2676	err = __put_user(from->si_signo, &to->si_signo);
2677	err |= __put_user(from->si_errno, &to->si_errno);
2678	err |= __put_user((short)from->si_code, &to->si_code);
2679	switch (from->si_code & __SI_MASK) {
2680	case __SI_KILL:
2681		err |= __put_user(from->si_pid, &to->si_pid);
2682		err |= __put_user(from->si_uid, &to->si_uid);
2683		break;
2684	case __SI_TIMER:
2685		 err |= __put_user(from->si_tid, &to->si_tid);
2686		 err |= __put_user(from->si_overrun, &to->si_overrun);
2687		 err |= __put_user(from->si_ptr, &to->si_ptr);
2688		break;
2689	case __SI_POLL:
2690		err |= __put_user(from->si_band, &to->si_band);
2691		err |= __put_user(from->si_fd, &to->si_fd);
2692		break;
2693	case __SI_FAULT:
2694		err |= __put_user(from->si_addr, &to->si_addr);
2695#ifdef __ARCH_SI_TRAPNO
2696		err |= __put_user(from->si_trapno, &to->si_trapno);
 
2697#endif
2698#ifdef BUS_MCEERR_AO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2699		/*
2700		 * Other callers might not initialize the si_lsb field,
2701		 * so check explicitly for the right codes here.
 
 
2702		 */
2703		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2704			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2705#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2706		break;
2707	case __SI_CHLD:
2708		err |= __put_user(from->si_pid, &to->si_pid);
2709		err |= __put_user(from->si_uid, &to->si_uid);
2710		err |= __put_user(from->si_status, &to->si_status);
2711		err |= __put_user(from->si_utime, &to->si_utime);
2712		err |= __put_user(from->si_stime, &to->si_stime);
2713		break;
2714	case __SI_RT: /* This is not generated by the kernel as of now. */
2715	case __SI_MESGQ: /* But this is */
2716		err |= __put_user(from->si_pid, &to->si_pid);
2717		err |= __put_user(from->si_uid, &to->si_uid);
2718		err |= __put_user(from->si_ptr, &to->si_ptr);
2719		break;
2720#ifdef __ARCH_SIGSYS
2721	case __SI_SYS:
2722		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2723		err |= __put_user(from->si_syscall, &to->si_syscall);
2724		err |= __put_user(from->si_arch, &to->si_arch);
2725		break;
2726#endif
2727	default: /* this is just in case for now ... */
2728		err |= __put_user(from->si_pid, &to->si_pid);
2729		err |= __put_user(from->si_uid, &to->si_uid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2730		break;
2731	}
2732	return err;
2733}
2734
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2735#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2736
2737/**
2738 *  do_sigtimedwait - wait for queued signals specified in @which
2739 *  @which: queued signals to wait for
2740 *  @info: if non-null, the signal's siginfo is returned here
2741 *  @ts: upper bound on process time suspension
2742 */
2743int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2744			const struct timespec *ts)
2745{
 
2746	struct task_struct *tsk = current;
2747	long timeout = MAX_SCHEDULE_TIMEOUT;
2748	sigset_t mask = *which;
2749	int sig;
2750
2751	if (ts) {
2752		if (!timespec_valid(ts))
2753			return -EINVAL;
2754		timeout = timespec_to_jiffies(ts);
2755		/*
2756		 * We can be close to the next tick, add another one
2757		 * to ensure we will wait at least the time asked for.
2758		 */
2759		if (ts->tv_sec || ts->tv_nsec)
2760			timeout++;
2761	}
2762
2763	/*
2764	 * Invert the set of allowed signals to get those we want to block.
2765	 */
2766	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2767	signotset(&mask);
2768
2769	spin_lock_irq(&tsk->sighand->siglock);
2770	sig = dequeue_signal(tsk, &mask, info);
2771	if (!sig && timeout) {
2772		/*
2773		 * None ready, temporarily unblock those we're interested
2774		 * while we are sleeping in so that we'll be awakened when
2775		 * they arrive. Unblocking is always fine, we can avoid
2776		 * set_current_blocked().
2777		 */
2778		tsk->real_blocked = tsk->blocked;
2779		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2780		recalc_sigpending();
2781		spin_unlock_irq(&tsk->sighand->siglock);
2782
2783		timeout = schedule_timeout_interruptible(timeout);
2784
 
2785		spin_lock_irq(&tsk->sighand->siglock);
2786		__set_task_blocked(tsk, &tsk->real_blocked);
2787		siginitset(&tsk->real_blocked, 0);
2788		sig = dequeue_signal(tsk, &mask, info);
2789	}
2790	spin_unlock_irq(&tsk->sighand->siglock);
2791
2792	if (sig)
2793		return sig;
2794	return timeout ? -EINTR : -EAGAIN;
2795}
2796
2797/**
2798 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2799 *			in @uthese
2800 *  @uthese: queued signals to wait for
2801 *  @uinfo: if non-null, the signal's siginfo is returned here
2802 *  @uts: upper bound on process time suspension
2803 *  @sigsetsize: size of sigset_t type
2804 */
2805SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2806		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
 
2807		size_t, sigsetsize)
2808{
2809	sigset_t these;
2810	struct timespec ts;
2811	siginfo_t info;
2812	int ret;
2813
2814	/* XXX: Don't preclude handling different sized sigset_t's.  */
2815	if (sigsetsize != sizeof(sigset_t))
2816		return -EINVAL;
2817
2818	if (copy_from_user(&these, uthese, sizeof(these)))
2819		return -EFAULT;
2820
2821	if (uts) {
2822		if (copy_from_user(&ts, uts, sizeof(ts)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2823			return -EFAULT;
2824	}
2825
2826	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2827
2828	if (ret > 0 && uinfo) {
2829		if (copy_siginfo_to_user(uinfo, &info))
2830			ret = -EFAULT;
2831	}
2832
2833	return ret;
2834}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2835
2836/**
2837 *  sys_kill - send a signal to a process
2838 *  @pid: the PID of the process
2839 *  @sig: signal to be sent
2840 */
2841SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2842{
2843	struct siginfo info;
2844
2845	info.si_signo = sig;
2846	info.si_errno = 0;
2847	info.si_code = SI_USER;
2848	info.si_pid = task_tgid_vnr(current);
2849	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2850
2851	return kill_something_info(sig, &info, pid);
2852}
2853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2854static int
2855do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2856{
2857	struct task_struct *p;
2858	int error = -ESRCH;
2859
2860	rcu_read_lock();
2861	p = find_task_by_vpid(pid);
2862	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2863		error = check_kill_permission(sig, info, p);
2864		/*
2865		 * The null signal is a permissions and process existence
2866		 * probe.  No signal is actually delivered.
2867		 */
2868		if (!error && sig) {
2869			error = do_send_sig_info(sig, info, p, false);
2870			/*
2871			 * If lock_task_sighand() failed we pretend the task
2872			 * dies after receiving the signal. The window is tiny,
2873			 * and the signal is private anyway.
2874			 */
2875			if (unlikely(error == -ESRCH))
2876				error = 0;
2877		}
2878	}
2879	rcu_read_unlock();
2880
2881	return error;
2882}
2883
2884static int do_tkill(pid_t tgid, pid_t pid, int sig)
2885{
2886	struct siginfo info;
2887
 
2888	info.si_signo = sig;
2889	info.si_errno = 0;
2890	info.si_code = SI_TKILL;
2891	info.si_pid = task_tgid_vnr(current);
2892	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2893
2894	return do_send_specific(tgid, pid, sig, &info);
2895}
2896
2897/**
2898 *  sys_tgkill - send signal to one specific thread
2899 *  @tgid: the thread group ID of the thread
2900 *  @pid: the PID of the thread
2901 *  @sig: signal to be sent
2902 *
2903 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2904 *  exists but it's not belonging to the target process anymore. This
2905 *  method solves the problem of threads exiting and PIDs getting reused.
2906 */
2907SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2908{
2909	/* This is only valid for single tasks */
2910	if (pid <= 0 || tgid <= 0)
2911		return -EINVAL;
2912
2913	return do_tkill(tgid, pid, sig);
2914}
2915
2916/**
2917 *  sys_tkill - send signal to one specific task
2918 *  @pid: the PID of the task
2919 *  @sig: signal to be sent
2920 *
2921 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2922 */
2923SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2924{
2925	/* This is only valid for single tasks */
2926	if (pid <= 0)
2927		return -EINVAL;
2928
2929	return do_tkill(0, pid, sig);
2930}
2931
 
 
 
 
 
 
 
 
 
 
 
 
 
2932/**
2933 *  sys_rt_sigqueueinfo - send signal information to a signal
2934 *  @pid: the PID of the thread
2935 *  @sig: signal to be sent
2936 *  @uinfo: signal info to be sent
2937 */
2938SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2939		siginfo_t __user *, uinfo)
2940{
2941	siginfo_t info;
2942
2943	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2944		return -EFAULT;
2945
2946	/* Not even root can pretend to send signals from the kernel.
2947	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2948	 */
2949	if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2950		/* We used to allow any < 0 si_code */
2951		WARN_ON_ONCE(info.si_code < 0);
2952		return -EPERM;
2953	}
2954	info.si_signo = sig;
2955
2956	/* POSIX.1b doesn't mention process groups.  */
2957	return kill_proc_info(sig, &info, pid);
 
 
 
 
 
 
 
 
 
2958}
 
2959
2960long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2961{
2962	/* This is only valid for single tasks */
2963	if (pid <= 0 || tgid <= 0)
2964		return -EINVAL;
2965
2966	/* Not even root can pretend to send signals from the kernel.
2967	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2968	 */
2969	if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2970		/* We used to allow any < 0 si_code */
2971		WARN_ON_ONCE(info->si_code < 0);
2972		return -EPERM;
2973	}
2974	info->si_signo = sig;
2975
2976	return do_send_specific(tgid, pid, sig, info);
2977}
2978
2979SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2980		siginfo_t __user *, uinfo)
2981{
2982	siginfo_t info;
2983
2984	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2985		return -EFAULT;
 
 
2986
 
 
 
 
 
 
 
 
 
 
 
2987	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2988}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2989
2990int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2991{
2992	struct task_struct *t = current;
2993	struct k_sigaction *k;
2994	sigset_t mask;
2995
2996	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2997		return -EINVAL;
2998
2999	k = &t->sighand->action[sig-1];
3000
3001	spin_lock_irq(&current->sighand->siglock);
3002	if (oact)
3003		*oact = *k;
3004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3005	if (act) {
3006		sigdelsetmask(&act->sa.sa_mask,
3007			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3008		*k = *act;
3009		/*
3010		 * POSIX 3.3.1.3:
3011		 *  "Setting a signal action to SIG_IGN for a signal that is
3012		 *   pending shall cause the pending signal to be discarded,
3013		 *   whether or not it is blocked."
3014		 *
3015		 *  "Setting a signal action to SIG_DFL for a signal that is
3016		 *   pending and whose default action is to ignore the signal
3017		 *   (for example, SIGCHLD), shall cause the pending signal to
3018		 *   be discarded, whether or not it is blocked"
3019		 */
3020		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3021			sigemptyset(&mask);
3022			sigaddset(&mask, sig);
3023			rm_from_queue_full(&mask, &t->signal->shared_pending);
3024			do {
3025				rm_from_queue_full(&mask, &t->pending);
3026				t = next_thread(t);
3027			} while (t != current);
3028		}
3029	}
3030
3031	spin_unlock_irq(&current->sighand->siglock);
3032	return 0;
3033}
3034
3035int 
3036do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
 
3037{
3038	stack_t oss;
3039	int error;
3040
3041	oss.ss_sp = (void __user *) current->sas_ss_sp;
3042	oss.ss_size = current->sas_ss_size;
3043	oss.ss_flags = sas_ss_flags(sp);
3044
3045	if (uss) {
3046		void __user *ss_sp;
3047		size_t ss_size;
3048		int ss_flags;
3049
3050		error = -EFAULT;
3051		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3052			goto out;
3053		error = __get_user(ss_sp, &uss->ss_sp) |
3054			__get_user(ss_flags, &uss->ss_flags) |
3055			__get_user(ss_size, &uss->ss_size);
3056		if (error)
3057			goto out;
3058
3059		error = -EPERM;
3060		if (on_sig_stack(sp))
3061			goto out;
3062
3063		error = -EINVAL;
3064		/*
3065		 * Note - this code used to test ss_flags incorrectly:
3066		 *  	  old code may have been written using ss_flags==0
3067		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3068		 *	  way that worked) - this fix preserves that older
3069		 *	  mechanism.
3070		 */
3071		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3072			goto out;
3073
3074		if (ss_flags == SS_DISABLE) {
3075			ss_size = 0;
3076			ss_sp = NULL;
3077		} else {
3078			error = -ENOMEM;
3079			if (ss_size < MINSIGSTKSZ)
3080				goto out;
3081		}
3082
3083		current->sas_ss_sp = (unsigned long) ss_sp;
3084		current->sas_ss_size = ss_size;
 
3085	}
 
 
3086
3087	error = 0;
3088	if (uoss) {
3089		error = -EFAULT;
3090		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3091			goto out;
3092		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3093			__put_user(oss.ss_size, &uoss->ss_size) |
3094			__put_user(oss.ss_flags, &uoss->ss_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3095	}
 
 
3096
3097out:
3098	return error;
 
 
 
3099}
3100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3101#ifdef __ARCH_WANT_SYS_SIGPENDING
3102
3103/**
3104 *  sys_sigpending - examine pending signals
3105 *  @set: where mask of pending signal is returned
3106 */
3107SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3108{
3109	return do_sigpending(set, sizeof(*set));
 
 
 
 
3110}
 
3111
3112#endif
3113
3114#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3115/**
3116 *  sys_sigprocmask - examine and change blocked signals
3117 *  @how: whether to add, remove, or set signals
3118 *  @nset: signals to add or remove (if non-null)
3119 *  @oset: previous value of signal mask if non-null
3120 *
3121 * Some platforms have their own version with special arguments;
3122 * others support only sys_rt_sigprocmask.
3123 */
3124
3125SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3126		old_sigset_t __user *, oset)
3127{
3128	old_sigset_t old_set, new_set;
3129	sigset_t new_blocked;
3130
3131	old_set = current->blocked.sig[0];
3132
3133	if (nset) {
3134		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3135			return -EFAULT;
3136		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3137
3138		new_blocked = current->blocked;
3139
3140		switch (how) {
3141		case SIG_BLOCK:
3142			sigaddsetmask(&new_blocked, new_set);
3143			break;
3144		case SIG_UNBLOCK:
3145			sigdelsetmask(&new_blocked, new_set);
3146			break;
3147		case SIG_SETMASK:
3148			new_blocked.sig[0] = new_set;
3149			break;
3150		default:
3151			return -EINVAL;
3152		}
3153
3154		__set_current_blocked(&new_blocked);
3155	}
3156
3157	if (oset) {
3158		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3159			return -EFAULT;
3160	}
3161
3162	return 0;
3163}
3164#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3165
3166#ifdef __ARCH_WANT_SYS_RT_SIGACTION
3167/**
3168 *  sys_rt_sigaction - alter an action taken by a process
3169 *  @sig: signal to be sent
3170 *  @act: new sigaction
3171 *  @oact: used to save the previous sigaction
3172 *  @sigsetsize: size of sigset_t type
3173 */
3174SYSCALL_DEFINE4(rt_sigaction, int, sig,
3175		const struct sigaction __user *, act,
3176		struct sigaction __user *, oact,
3177		size_t, sigsetsize)
3178{
3179	struct k_sigaction new_sa, old_sa;
3180	int ret = -EINVAL;
3181
3182	/* XXX: Don't preclude handling different sized sigset_t's.  */
3183	if (sigsetsize != sizeof(sigset_t))
3184		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3185
3186	if (act) {
3187		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
 
 
 
 
 
 
 
 
 
3188			return -EFAULT;
3189	}
3190
3191	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3192
3193	if (!ret && oact) {
3194		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3195			return -EFAULT;
3196	}
3197out:
3198	return ret;
3199}
3200#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3201
3202#ifdef __ARCH_WANT_SYS_SGETMASK
3203
3204/*
3205 * For backwards compatibility.  Functionality superseded by sigprocmask.
3206 */
3207SYSCALL_DEFINE0(sgetmask)
3208{
3209	/* SMP safe */
3210	return current->blocked.sig[0];
3211}
3212
3213SYSCALL_DEFINE1(ssetmask, int, newmask)
3214{
3215	int old = current->blocked.sig[0];
3216	sigset_t newset;
3217
 
3218	set_current_blocked(&newset);
3219
3220	return old;
3221}
3222#endif /* __ARCH_WANT_SGETMASK */
3223
3224#ifdef __ARCH_WANT_SYS_SIGNAL
3225/*
3226 * For backwards compatibility.  Functionality superseded by sigaction.
3227 */
3228SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3229{
3230	struct k_sigaction new_sa, old_sa;
3231	int ret;
3232
3233	new_sa.sa.sa_handler = handler;
3234	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3235	sigemptyset(&new_sa.sa.sa_mask);
3236
3237	ret = do_sigaction(sig, &new_sa, &old_sa);
3238
3239	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3240}
3241#endif /* __ARCH_WANT_SYS_SIGNAL */
3242
3243#ifdef __ARCH_WANT_SYS_PAUSE
3244
3245SYSCALL_DEFINE0(pause)
3246{
3247	while (!signal_pending(current)) {
3248		current->state = TASK_INTERRUPTIBLE;
3249		schedule();
3250	}
3251	return -ERESTARTNOHAND;
3252}
3253
3254#endif
3255
3256int sigsuspend(sigset_t *set)
3257{
3258	current->saved_sigmask = current->blocked;
3259	set_current_blocked(set);
3260
3261	current->state = TASK_INTERRUPTIBLE;
3262	schedule();
 
 
3263	set_restore_sigmask();
3264	return -ERESTARTNOHAND;
3265}
3266
3267#ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3268/**
3269 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3270 *	@unewset value until a signal is received
3271 *  @unewset: new signal mask value
3272 *  @sigsetsize: size of sigset_t type
3273 */
3274SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3275{
3276	sigset_t newset;
3277
3278	/* XXX: Don't preclude handling different sized sigset_t's.  */
3279	if (sigsetsize != sizeof(sigset_t))
3280		return -EINVAL;
3281
3282	if (copy_from_user(&newset, unewset, sizeof(newset)))
3283		return -EFAULT;
3284	return sigsuspend(&newset);
3285}
3286#endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
 
 
 
 
3287
3288__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3289{
3290	return NULL;
3291}
3292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293void __init signals_init(void)
3294{
 
 
3295	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3296}
3297
3298#ifdef CONFIG_KGDB_KDB
3299#include <linux/kdb.h>
3300/*
3301 * kdb_send_sig_info - Allows kdb to send signals without exposing
3302 * signal internals.  This function checks if the required locks are
3303 * available before calling the main signal code, to avoid kdb
3304 * deadlocks.
3305 */
3306void
3307kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3308{
3309	static struct task_struct *kdb_prev_t;
3310	int sig, new_t;
3311	if (!spin_trylock(&t->sighand->siglock)) {
3312		kdb_printf("Can't do kill command now.\n"
3313			   "The sigmask lock is held somewhere else in "
3314			   "kernel, try again later\n");
3315		return;
3316	}
3317	spin_unlock(&t->sighand->siglock);
3318	new_t = kdb_prev_t != t;
3319	kdb_prev_t = t;
3320	if (t->state != TASK_RUNNING && new_t) {
 
3321		kdb_printf("Process is not RUNNING, sending a signal from "
3322			   "kdb risks deadlock\n"
3323			   "on the run queue locks. "
3324			   "The signal has _not_ been sent.\n"
3325			   "Reissue the kill command if you want to risk "
3326			   "the deadlock.\n");
3327		return;
3328	}
3329	sig = info->si_signo;
3330	if (send_sig_info(sig, info, t))
 
3331		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3332			   sig, t->pid);
3333	else
3334		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3335}
3336#endif	/* CONFIG_KGDB_KDB */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/proc_fs.h>
  26#include <linux/tty.h>
  27#include <linux/binfmts.h>
  28#include <linux/coredump.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/ptrace.h>
  32#include <linux/signal.h>
  33#include <linux/signalfd.h>
  34#include <linux/ratelimit.h>
  35#include <linux/tracehook.h>
  36#include <linux/capability.h>
  37#include <linux/freezer.h>
  38#include <linux/pid_namespace.h>
  39#include <linux/nsproxy.h>
  40#include <linux/user_namespace.h>
  41#include <linux/uprobes.h>
  42#include <linux/compat.h>
  43#include <linux/cn_proc.h>
  44#include <linux/compiler.h>
  45#include <linux/posix-timers.h>
  46#include <linux/cgroup.h>
  47#include <linux/audit.h>
  48
  49#define CREATE_TRACE_POINTS
  50#include <trace/events/signal.h>
  51
  52#include <asm/param.h>
  53#include <linux/uaccess.h>
  54#include <asm/unistd.h>
  55#include <asm/siginfo.h>
  56#include <asm/cacheflush.h>
 
  57
  58/*
  59 * SLAB caches for signal bits.
  60 */
  61
  62static struct kmem_cache *sigqueue_cachep;
  63
  64int print_fatal_signals __read_mostly;
  65
  66static void __user *sig_handler(struct task_struct *t, int sig)
  67{
  68	return t->sighand->action[sig - 1].sa.sa_handler;
  69}
  70
  71static inline bool sig_handler_ignored(void __user *handler, int sig)
  72{
  73	/* Is it explicitly or implicitly ignored? */
  74	return handler == SIG_IGN ||
  75	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  76}
  77
  78static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  79{
  80	void __user *handler;
  81
  82	handler = sig_handler(t, sig);
  83
  84	/* SIGKILL and SIGSTOP may not be sent to the global init */
  85	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  86		return true;
  87
  88	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  89	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  90		return true;
  91
  92	/* Only allow kernel generated signals to this kthread */
  93	if (unlikely((t->flags & PF_KTHREAD) &&
  94		     (handler == SIG_KTHREAD_KERNEL) && !force))
  95		return true;
  96
  97	return sig_handler_ignored(handler, sig);
  98}
  99
 100static bool sig_ignored(struct task_struct *t, int sig, bool force)
 101{
 102	/*
 103	 * Blocked signals are never ignored, since the
 104	 * signal handler may change by the time it is
 105	 * unblocked.
 106	 */
 107	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 108		return false;
 
 
 
 109
 110	/*
 111	 * Tracers may want to know about even ignored signal unless it
 112	 * is SIGKILL which can't be reported anyway but can be ignored
 113	 * by SIGNAL_UNKILLABLE task.
 114	 */
 115	if (t->ptrace && sig != SIGKILL)
 116		return false;
 117
 118	return sig_task_ignored(t, sig, force);
 119}
 120
 121/*
 122 * Re-calculate pending state from the set of locally pending
 123 * signals, globally pending signals, and blocked signals.
 124 */
 125static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 126{
 127	unsigned long ready;
 128	long i;
 129
 130	switch (_NSIG_WORDS) {
 131	default:
 132		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 133			ready |= signal->sig[i] &~ blocked->sig[i];
 134		break;
 135
 136	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 137		ready |= signal->sig[2] &~ blocked->sig[2];
 138		ready |= signal->sig[1] &~ blocked->sig[1];
 139		ready |= signal->sig[0] &~ blocked->sig[0];
 140		break;
 141
 142	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 143		ready |= signal->sig[0] &~ blocked->sig[0];
 144		break;
 145
 146	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 147	}
 148	return ready !=	0;
 149}
 150
 151#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 152
 153static bool recalc_sigpending_tsk(struct task_struct *t)
 154{
 155	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 156	    PENDING(&t->pending, &t->blocked) ||
 157	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 158	    cgroup_task_frozen(t)) {
 159		set_tsk_thread_flag(t, TIF_SIGPENDING);
 160		return true;
 161	}
 162
 163	/*
 164	 * We must never clear the flag in another thread, or in current
 165	 * when it's possible the current syscall is returning -ERESTART*.
 166	 * So we don't clear it here, and only callers who know they should do.
 167	 */
 168	return false;
 169}
 170
 171/*
 172 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 173 * This is superfluous when called on current, the wakeup is a harmless no-op.
 174 */
 175void recalc_sigpending_and_wake(struct task_struct *t)
 176{
 177	if (recalc_sigpending_tsk(t))
 178		signal_wake_up(t, 0);
 179}
 180
 181void recalc_sigpending(void)
 182{
 183	if (!recalc_sigpending_tsk(current) && !freezing(current))
 184		clear_thread_flag(TIF_SIGPENDING);
 185
 186}
 187EXPORT_SYMBOL(recalc_sigpending);
 188
 189void calculate_sigpending(void)
 190{
 191	/* Have any signals or users of TIF_SIGPENDING been delayed
 192	 * until after fork?
 193	 */
 194	spin_lock_irq(&current->sighand->siglock);
 195	set_tsk_thread_flag(current, TIF_SIGPENDING);
 196	recalc_sigpending();
 197	spin_unlock_irq(&current->sighand->siglock);
 198}
 199
 200/* Given the mask, find the first available signal that should be serviced. */
 201
 202#define SYNCHRONOUS_MASK \
 203	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 204	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 205
 206int next_signal(struct sigpending *pending, sigset_t *mask)
 207{
 208	unsigned long i, *s, *m, x;
 209	int sig = 0;
 210
 211	s = pending->signal.sig;
 212	m = mask->sig;
 213
 214	/*
 215	 * Handle the first word specially: it contains the
 216	 * synchronous signals that need to be dequeued first.
 217	 */
 218	x = *s &~ *m;
 219	if (x) {
 220		if (x & SYNCHRONOUS_MASK)
 221			x &= SYNCHRONOUS_MASK;
 222		sig = ffz(~x) + 1;
 223		return sig;
 224	}
 225
 226	switch (_NSIG_WORDS) {
 227	default:
 228		for (i = 1; i < _NSIG_WORDS; ++i) {
 229			x = *++s &~ *++m;
 230			if (!x)
 231				continue;
 232			sig = ffz(~x) + i*_NSIG_BPW + 1;
 233			break;
 234		}
 235		break;
 236
 237	case 2:
 238		x = s[1] &~ m[1];
 239		if (!x)
 240			break;
 241		sig = ffz(~x) + _NSIG_BPW + 1;
 242		break;
 243
 244	case 1:
 245		/* Nothing to do */
 246		break;
 247	}
 248
 249	return sig;
 250}
 251
 252static inline void print_dropped_signal(int sig)
 253{
 254	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 255
 256	if (!print_fatal_signals)
 257		return;
 258
 259	if (!__ratelimit(&ratelimit_state))
 260		return;
 261
 262	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 263				current->comm, current->pid, sig);
 264}
 265
 266/**
 267 * task_set_jobctl_pending - set jobctl pending bits
 268 * @task: target task
 269 * @mask: pending bits to set
 270 *
 271 * Clear @mask from @task->jobctl.  @mask must be subset of
 272 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 273 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 274 * cleared.  If @task is already being killed or exiting, this function
 275 * becomes noop.
 276 *
 277 * CONTEXT:
 278 * Must be called with @task->sighand->siglock held.
 279 *
 280 * RETURNS:
 281 * %true if @mask is set, %false if made noop because @task was dying.
 282 */
 283bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 284{
 285	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 286			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 287	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 288
 289	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 290		return false;
 291
 292	if (mask & JOBCTL_STOP_SIGMASK)
 293		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 294
 295	task->jobctl |= mask;
 296	return true;
 297}
 298
 299/**
 300 * task_clear_jobctl_trapping - clear jobctl trapping bit
 301 * @task: target task
 302 *
 303 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 304 * Clear it and wake up the ptracer.  Note that we don't need any further
 305 * locking.  @task->siglock guarantees that @task->parent points to the
 306 * ptracer.
 307 *
 308 * CONTEXT:
 309 * Must be called with @task->sighand->siglock held.
 310 */
 311void task_clear_jobctl_trapping(struct task_struct *task)
 312{
 313	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 314		task->jobctl &= ~JOBCTL_TRAPPING;
 315		smp_mb();	/* advised by wake_up_bit() */
 316		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 317	}
 318}
 319
 320/**
 321 * task_clear_jobctl_pending - clear jobctl pending bits
 322 * @task: target task
 323 * @mask: pending bits to clear
 324 *
 325 * Clear @mask from @task->jobctl.  @mask must be subset of
 326 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 327 * STOP bits are cleared together.
 328 *
 329 * If clearing of @mask leaves no stop or trap pending, this function calls
 330 * task_clear_jobctl_trapping().
 331 *
 332 * CONTEXT:
 333 * Must be called with @task->sighand->siglock held.
 334 */
 335void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 336{
 337	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 338
 339	if (mask & JOBCTL_STOP_PENDING)
 340		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 341
 342	task->jobctl &= ~mask;
 343
 344	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 345		task_clear_jobctl_trapping(task);
 346}
 347
 348/**
 349 * task_participate_group_stop - participate in a group stop
 350 * @task: task participating in a group stop
 351 *
 352 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 353 * Group stop states are cleared and the group stop count is consumed if
 354 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 355 * stop, the appropriate `SIGNAL_*` flags are set.
 356 *
 357 * CONTEXT:
 358 * Must be called with @task->sighand->siglock held.
 359 *
 360 * RETURNS:
 361 * %true if group stop completion should be notified to the parent, %false
 362 * otherwise.
 363 */
 364static bool task_participate_group_stop(struct task_struct *task)
 365{
 366	struct signal_struct *sig = task->signal;
 367	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 368
 369	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 370
 371	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 372
 373	if (!consume)
 374		return false;
 375
 376	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 377		sig->group_stop_count--;
 378
 379	/*
 380	 * Tell the caller to notify completion iff we are entering into a
 381	 * fresh group stop.  Read comment in do_signal_stop() for details.
 382	 */
 383	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 384		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 385		return true;
 386	}
 387	return false;
 388}
 389
 390void task_join_group_stop(struct task_struct *task)
 391{
 392	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
 393	struct signal_struct *sig = current->signal;
 394
 395	if (sig->group_stop_count) {
 396		sig->group_stop_count++;
 397		mask |= JOBCTL_STOP_CONSUME;
 398	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
 399		return;
 400
 401	/* Have the new thread join an on-going signal group stop */
 402	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
 403}
 404
 405/*
 406 * allocate a new signal queue record
 407 * - this may be called without locks if and only if t == current, otherwise an
 408 *   appropriate lock must be held to stop the target task from exiting
 409 */
 410static struct sigqueue *
 411__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
 412		 int override_rlimit, const unsigned int sigqueue_flags)
 413{
 414	struct sigqueue *q = NULL;
 415	struct ucounts *ucounts = NULL;
 416	long sigpending;
 417
 418	/*
 419	 * Protect access to @t credentials. This can go away when all
 420	 * callers hold rcu read lock.
 421	 *
 422	 * NOTE! A pending signal will hold on to the user refcount,
 423	 * and we get/put the refcount only when the sigpending count
 424	 * changes from/to zero.
 425	 */
 426	rcu_read_lock();
 427	ucounts = task_ucounts(t);
 428	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 429	rcu_read_unlock();
 430	if (!sigpending)
 431		return NULL;
 432
 433	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
 434		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
 
 
 435	} else {
 436		print_dropped_signal(sig);
 437	}
 438
 439	if (unlikely(q == NULL)) {
 440		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 
 441	} else {
 442		INIT_LIST_HEAD(&q->list);
 443		q->flags = sigqueue_flags;
 444		q->ucounts = ucounts;
 445	}
 
 446	return q;
 447}
 448
 449static void __sigqueue_free(struct sigqueue *q)
 450{
 451	if (q->flags & SIGQUEUE_PREALLOC)
 452		return;
 453	if (q->ucounts) {
 454		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
 455		q->ucounts = NULL;
 456	}
 457	kmem_cache_free(sigqueue_cachep, q);
 458}
 459
 460void flush_sigqueue(struct sigpending *queue)
 461{
 462	struct sigqueue *q;
 463
 464	sigemptyset(&queue->signal);
 465	while (!list_empty(&queue->list)) {
 466		q = list_entry(queue->list.next, struct sigqueue , list);
 467		list_del_init(&q->list);
 468		__sigqueue_free(q);
 469	}
 470}
 471
 472/*
 473 * Flush all pending signals for this kthread.
 474 */
 
 
 
 
 
 
 
 475void flush_signals(struct task_struct *t)
 476{
 477	unsigned long flags;
 478
 479	spin_lock_irqsave(&t->sighand->siglock, flags);
 480	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 481	flush_sigqueue(&t->pending);
 482	flush_sigqueue(&t->signal->shared_pending);
 483	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 484}
 485EXPORT_SYMBOL(flush_signals);
 486
 487#ifdef CONFIG_POSIX_TIMERS
 488static void __flush_itimer_signals(struct sigpending *pending)
 489{
 490	sigset_t signal, retain;
 491	struct sigqueue *q, *n;
 492
 493	signal = pending->signal;
 494	sigemptyset(&retain);
 495
 496	list_for_each_entry_safe(q, n, &pending->list, list) {
 497		int sig = q->info.si_signo;
 498
 499		if (likely(q->info.si_code != SI_TIMER)) {
 500			sigaddset(&retain, sig);
 501		} else {
 502			sigdelset(&signal, sig);
 503			list_del_init(&q->list);
 504			__sigqueue_free(q);
 505		}
 506	}
 507
 508	sigorsets(&pending->signal, &signal, &retain);
 509}
 510
 511void flush_itimer_signals(void)
 512{
 513	struct task_struct *tsk = current;
 514	unsigned long flags;
 515
 516	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 517	__flush_itimer_signals(&tsk->pending);
 518	__flush_itimer_signals(&tsk->signal->shared_pending);
 519	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 520}
 521#endif
 522
 523void ignore_signals(struct task_struct *t)
 524{
 525	int i;
 526
 527	for (i = 0; i < _NSIG; ++i)
 528		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 529
 530	flush_signals(t);
 531}
 532
 533/*
 534 * Flush all handlers for a task.
 535 */
 536
 537void
 538flush_signal_handlers(struct task_struct *t, int force_default)
 539{
 540	int i;
 541	struct k_sigaction *ka = &t->sighand->action[0];
 542	for (i = _NSIG ; i != 0 ; i--) {
 543		if (force_default || ka->sa.sa_handler != SIG_IGN)
 544			ka->sa.sa_handler = SIG_DFL;
 545		ka->sa.sa_flags = 0;
 546#ifdef __ARCH_HAS_SA_RESTORER
 547		ka->sa.sa_restorer = NULL;
 548#endif
 549		sigemptyset(&ka->sa.sa_mask);
 550		ka++;
 551	}
 552}
 553
 554bool unhandled_signal(struct task_struct *tsk, int sig)
 555{
 556	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 557	if (is_global_init(tsk))
 558		return true;
 559
 560	if (handler != SIG_IGN && handler != SIG_DFL)
 561		return false;
 562
 563	/* if ptraced, let the tracer determine */
 564	return !tsk->ptrace;
 565}
 566
 567static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 568			   bool *resched_timer)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 569{
 570	struct sigqueue *q, *first = NULL;
 571
 572	/*
 573	 * Collect the siginfo appropriate to this signal.  Check if
 574	 * there is another siginfo for the same signal.
 575	*/
 576	list_for_each_entry(q, &list->list, list) {
 577		if (q->info.si_signo == sig) {
 578			if (first)
 579				goto still_pending;
 580			first = q;
 581		}
 582	}
 583
 584	sigdelset(&list->signal, sig);
 585
 586	if (first) {
 587still_pending:
 588		list_del_init(&first->list);
 589		copy_siginfo(info, &first->info);
 590
 591		*resched_timer =
 592			(first->flags & SIGQUEUE_PREALLOC) &&
 593			(info->si_code == SI_TIMER) &&
 594			(info->si_sys_private);
 595
 596		__sigqueue_free(first);
 597	} else {
 598		/*
 599		 * Ok, it wasn't in the queue.  This must be
 600		 * a fast-pathed signal or we must have been
 601		 * out of queue space.  So zero out the info.
 602		 */
 603		clear_siginfo(info);
 604		info->si_signo = sig;
 605		info->si_errno = 0;
 606		info->si_code = SI_USER;
 607		info->si_pid = 0;
 608		info->si_uid = 0;
 609	}
 610}
 611
 612static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 613			kernel_siginfo_t *info, bool *resched_timer)
 614{
 615	int sig = next_signal(pending, mask);
 616
 617	if (sig)
 618		collect_signal(sig, pending, info, resched_timer);
 
 
 
 
 
 
 
 
 
 
 
 619	return sig;
 620}
 621
 622/*
 623 * Dequeue a signal and return the element to the caller, which is
 624 * expected to free it.
 625 *
 626 * All callers have to hold the siglock.
 627 */
 628int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
 629{
 630	bool resched_timer = false;
 631	int signr;
 632
 633	/* We only dequeue private signals from ourselves, we don't let
 634	 * signalfd steal them
 635	 */
 636	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 637	if (!signr) {
 638		signr = __dequeue_signal(&tsk->signal->shared_pending,
 639					 mask, info, &resched_timer);
 640#ifdef CONFIG_POSIX_TIMERS
 641		/*
 642		 * itimer signal ?
 643		 *
 644		 * itimers are process shared and we restart periodic
 645		 * itimers in the signal delivery path to prevent DoS
 646		 * attacks in the high resolution timer case. This is
 647		 * compliant with the old way of self-restarting
 648		 * itimers, as the SIGALRM is a legacy signal and only
 649		 * queued once. Changing the restart behaviour to
 650		 * restart the timer in the signal dequeue path is
 651		 * reducing the timer noise on heavy loaded !highres
 652		 * systems too.
 653		 */
 654		if (unlikely(signr == SIGALRM)) {
 655			struct hrtimer *tmr = &tsk->signal->real_timer;
 656
 657			if (!hrtimer_is_queued(tmr) &&
 658			    tsk->signal->it_real_incr != 0) {
 659				hrtimer_forward(tmr, tmr->base->get_time(),
 660						tsk->signal->it_real_incr);
 661				hrtimer_restart(tmr);
 662			}
 663		}
 664#endif
 665	}
 666
 667	recalc_sigpending();
 668	if (!signr)
 669		return 0;
 670
 671	if (unlikely(sig_kernel_stop(signr))) {
 672		/*
 673		 * Set a marker that we have dequeued a stop signal.  Our
 674		 * caller might release the siglock and then the pending
 675		 * stop signal it is about to process is no longer in the
 676		 * pending bitmasks, but must still be cleared by a SIGCONT
 677		 * (and overruled by a SIGKILL).  So those cases clear this
 678		 * shared flag after we've set it.  Note that this flag may
 679		 * remain set after the signal we return is ignored or
 680		 * handled.  That doesn't matter because its only purpose
 681		 * is to alert stop-signal processing code when another
 682		 * processor has come along and cleared the flag.
 683		 */
 684		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 685	}
 686#ifdef CONFIG_POSIX_TIMERS
 687	if (resched_timer) {
 688		/*
 689		 * Release the siglock to ensure proper locking order
 690		 * of timer locks outside of siglocks.  Note, we leave
 691		 * irqs disabled here, since the posix-timers code is
 692		 * about to disable them again anyway.
 693		 */
 694		spin_unlock(&tsk->sighand->siglock);
 695		posixtimer_rearm(info);
 696		spin_lock(&tsk->sighand->siglock);
 697
 698		/* Don't expose the si_sys_private value to userspace */
 699		info->si_sys_private = 0;
 700	}
 701#endif
 702	return signr;
 703}
 704EXPORT_SYMBOL_GPL(dequeue_signal);
 705
 706static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 707{
 708	struct task_struct *tsk = current;
 709	struct sigpending *pending = &tsk->pending;
 710	struct sigqueue *q, *sync = NULL;
 711
 712	/*
 713	 * Might a synchronous signal be in the queue?
 714	 */
 715	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 716		return 0;
 717
 718	/*
 719	 * Return the first synchronous signal in the queue.
 720	 */
 721	list_for_each_entry(q, &pending->list, list) {
 722		/* Synchronous signals have a positive si_code */
 723		if ((q->info.si_code > SI_USER) &&
 724		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 725			sync = q;
 726			goto next;
 727		}
 728	}
 729	return 0;
 730next:
 731	/*
 732	 * Check if there is another siginfo for the same signal.
 733	 */
 734	list_for_each_entry_continue(q, &pending->list, list) {
 735		if (q->info.si_signo == sync->info.si_signo)
 736			goto still_pending;
 737	}
 738
 739	sigdelset(&pending->signal, sync->info.si_signo);
 740	recalc_sigpending();
 741still_pending:
 742	list_del_init(&sync->list);
 743	copy_siginfo(info, &sync->info);
 744	__sigqueue_free(sync);
 745	return info->si_signo;
 746}
 747
 748/*
 749 * Tell a process that it has a new active signal..
 750 *
 751 * NOTE! we rely on the previous spin_lock to
 752 * lock interrupts for us! We can only be called with
 753 * "siglock" held, and the local interrupt must
 754 * have been disabled when that got acquired!
 755 *
 756 * No need to set need_resched since signal event passing
 757 * goes through ->blocked
 758 */
 759void signal_wake_up_state(struct task_struct *t, unsigned int state)
 760{
 
 
 761	set_tsk_thread_flag(t, TIF_SIGPENDING);
 
 762	/*
 763	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 764	 * case. We don't check t->state here because there is a race with it
 765	 * executing another processor and just now entering stopped state.
 766	 * By using wake_up_state, we ensure the process will wake up and
 767	 * handle its death signal.
 768	 */
 769	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 
 
 
 770		kick_process(t);
 771}
 772
 773/*
 774 * Remove signals in mask from the pending set and queue.
 775 * Returns 1 if any signals were found.
 776 *
 777 * All callers must be holding the siglock.
 
 
 
 778 */
 779static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 780{
 781	struct sigqueue *q, *n;
 782	sigset_t m;
 783
 784	sigandsets(&m, mask, &s->signal);
 785	if (sigisemptyset(&m))
 786		return;
 787
 788	sigandnsets(&s->signal, &s->signal, mask);
 789	list_for_each_entry_safe(q, n, &s->list, list) {
 790		if (sigismember(mask, q->info.si_signo)) {
 791			list_del_init(&q->list);
 792			__sigqueue_free(q);
 793		}
 794	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 795}
 796
 797static inline int is_si_special(const struct kernel_siginfo *info)
 798{
 799	return info <= SEND_SIG_PRIV;
 800}
 801
 802static inline bool si_fromuser(const struct kernel_siginfo *info)
 803{
 804	return info == SEND_SIG_NOINFO ||
 805		(!is_si_special(info) && SI_FROMUSER(info));
 806}
 807
 808/*
 809 * called with RCU read lock from check_kill_permission()
 810 */
 811static bool kill_ok_by_cred(struct task_struct *t)
 812{
 813	const struct cred *cred = current_cred();
 814	const struct cred *tcred = __task_cred(t);
 815
 816	return uid_eq(cred->euid, tcred->suid) ||
 817	       uid_eq(cred->euid, tcred->uid) ||
 818	       uid_eq(cred->uid, tcred->suid) ||
 819	       uid_eq(cred->uid, tcred->uid) ||
 820	       ns_capable(tcred->user_ns, CAP_KILL);
 
 
 
 
 
 821}
 822
 823/*
 824 * Bad permissions for sending the signal
 825 * - the caller must hold the RCU read lock
 826 */
 827static int check_kill_permission(int sig, struct kernel_siginfo *info,
 828				 struct task_struct *t)
 829{
 830	struct pid *sid;
 831	int error;
 832
 833	if (!valid_signal(sig))
 834		return -EINVAL;
 835
 836	if (!si_fromuser(info))
 837		return 0;
 838
 839	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 840	if (error)
 841		return error;
 842
 843	if (!same_thread_group(current, t) &&
 844	    !kill_ok_by_cred(t)) {
 845		switch (sig) {
 846		case SIGCONT:
 847			sid = task_session(t);
 848			/*
 849			 * We don't return the error if sid == NULL. The
 850			 * task was unhashed, the caller must notice this.
 851			 */
 852			if (!sid || sid == task_session(current))
 853				break;
 854			fallthrough;
 855		default:
 856			return -EPERM;
 857		}
 858	}
 859
 860	return security_task_kill(t, info, sig, NULL);
 861}
 862
 863/**
 864 * ptrace_trap_notify - schedule trap to notify ptracer
 865 * @t: tracee wanting to notify tracer
 866 *
 867 * This function schedules sticky ptrace trap which is cleared on the next
 868 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 869 * ptracer.
 870 *
 871 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 872 * ptracer is listening for events, tracee is woken up so that it can
 873 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 874 * eventually taken without returning to userland after the existing traps
 875 * are finished by PTRACE_CONT.
 876 *
 877 * CONTEXT:
 878 * Must be called with @task->sighand->siglock held.
 879 */
 880static void ptrace_trap_notify(struct task_struct *t)
 881{
 882	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 883	assert_spin_locked(&t->sighand->siglock);
 884
 885	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 886	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 887}
 888
 889/*
 890 * Handle magic process-wide effects of stop/continue signals. Unlike
 891 * the signal actions, these happen immediately at signal-generation
 892 * time regardless of blocking, ignoring, or handling.  This does the
 893 * actual continuing for SIGCONT, but not the actual stopping for stop
 894 * signals. The process stop is done as a signal action for SIG_DFL.
 895 *
 896 * Returns true if the signal should be actually delivered, otherwise
 897 * it should be dropped.
 898 */
 899static bool prepare_signal(int sig, struct task_struct *p, bool force)
 900{
 901	struct signal_struct *signal = p->signal;
 902	struct task_struct *t;
 903	sigset_t flush;
 904
 905	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 906		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 907			return sig == SIGKILL;
 908		/*
 909		 * The process is in the middle of dying, nothing to do.
 910		 */
 911	} else if (sig_kernel_stop(sig)) {
 912		/*
 913		 * This is a stop signal.  Remove SIGCONT from all queues.
 914		 */
 915		siginitset(&flush, sigmask(SIGCONT));
 916		flush_sigqueue_mask(&flush, &signal->shared_pending);
 917		for_each_thread(p, t)
 918			flush_sigqueue_mask(&flush, &t->pending);
 
 919	} else if (sig == SIGCONT) {
 920		unsigned int why;
 921		/*
 922		 * Remove all stop signals from all queues, wake all threads.
 923		 */
 924		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 925		flush_sigqueue_mask(&flush, &signal->shared_pending);
 926		for_each_thread(p, t) {
 927			flush_sigqueue_mask(&flush, &t->pending);
 928			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 
 929			if (likely(!(t->ptrace & PT_SEIZED)))
 930				wake_up_state(t, __TASK_STOPPED);
 931			else
 932				ptrace_trap_notify(t);
 933		}
 934
 935		/*
 936		 * Notify the parent with CLD_CONTINUED if we were stopped.
 937		 *
 938		 * If we were in the middle of a group stop, we pretend it
 939		 * was already finished, and then continued. Since SIGCHLD
 940		 * doesn't queue we report only CLD_STOPPED, as if the next
 941		 * CLD_CONTINUED was dropped.
 942		 */
 943		why = 0;
 944		if (signal->flags & SIGNAL_STOP_STOPPED)
 945			why |= SIGNAL_CLD_CONTINUED;
 946		else if (signal->group_stop_count)
 947			why |= SIGNAL_CLD_STOPPED;
 948
 949		if (why) {
 950			/*
 951			 * The first thread which returns from do_signal_stop()
 952			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 953			 * notify its parent. See get_signal().
 954			 */
 955			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 956			signal->group_stop_count = 0;
 957			signal->group_exit_code = 0;
 958		}
 959	}
 960
 961	return !sig_ignored(p, sig, force);
 962}
 963
 964/*
 965 * Test if P wants to take SIG.  After we've checked all threads with this,
 966 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 967 * blocking SIG were ruled out because they are not running and already
 968 * have pending signals.  Such threads will dequeue from the shared queue
 969 * as soon as they're available, so putting the signal on the shared queue
 970 * will be equivalent to sending it to one such thread.
 971 */
 972static inline bool wants_signal(int sig, struct task_struct *p)
 973{
 974	if (sigismember(&p->blocked, sig))
 975		return false;
 976
 977	if (p->flags & PF_EXITING)
 978		return false;
 979
 980	if (sig == SIGKILL)
 981		return true;
 982
 983	if (task_is_stopped_or_traced(p))
 984		return false;
 985
 986	return task_curr(p) || !task_sigpending(p);
 987}
 988
 989static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 990{
 991	struct signal_struct *signal = p->signal;
 992	struct task_struct *t;
 993
 994	/*
 995	 * Now find a thread we can wake up to take the signal off the queue.
 996	 *
 997	 * If the main thread wants the signal, it gets first crack.
 998	 * Probably the least surprising to the average bear.
 999	 */
1000	if (wants_signal(sig, p))
1001		t = p;
1002	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1003		/*
1004		 * There is just one thread and it does not need to be woken.
1005		 * It will dequeue unblocked signals before it runs again.
1006		 */
1007		return;
1008	else {
1009		/*
1010		 * Otherwise try to find a suitable thread.
1011		 */
1012		t = signal->curr_target;
1013		while (!wants_signal(sig, t)) {
1014			t = next_thread(t);
1015			if (t == signal->curr_target)
1016				/*
1017				 * No thread needs to be woken.
1018				 * Any eligible threads will see
1019				 * the signal in the queue soon.
1020				 */
1021				return;
1022		}
1023		signal->curr_target = t;
1024	}
1025
1026	/*
1027	 * Found a killable thread.  If the signal will be fatal,
1028	 * then start taking the whole group down immediately.
1029	 */
1030	if (sig_fatal(p, sig) &&
1031	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1032	    !sigismember(&t->real_blocked, sig) &&
1033	    (sig == SIGKILL || !p->ptrace)) {
1034		/*
1035		 * This signal will be fatal to the whole group.
1036		 */
1037		if (!sig_kernel_coredump(sig)) {
1038			/*
1039			 * Start a group exit and wake everybody up.
1040			 * This way we don't have other threads
1041			 * running and doing things after a slower
1042			 * thread has the fatal signal pending.
1043			 */
1044			signal->flags = SIGNAL_GROUP_EXIT;
1045			signal->group_exit_code = sig;
1046			signal->group_stop_count = 0;
1047			t = p;
1048			do {
1049				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1050				sigaddset(&t->pending.signal, SIGKILL);
1051				signal_wake_up(t, 1);
1052			} while_each_thread(p, t);
1053			return;
1054		}
1055	}
1056
1057	/*
1058	 * The signal is already in the shared-pending queue.
1059	 * Tell the chosen thread to wake up and dequeue it.
1060	 */
1061	signal_wake_up(t, sig == SIGKILL);
1062	return;
1063}
1064
1065static inline bool legacy_queue(struct sigpending *signals, int sig)
1066{
1067	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1068}
1069
1070static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1071			enum pid_type type, bool force)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072{
1073	struct sigpending *pending;
1074	struct sigqueue *q;
1075	int override_rlimit;
1076	int ret = 0, result;
1077
1078	assert_spin_locked(&t->sighand->siglock);
1079
1080	result = TRACE_SIGNAL_IGNORED;
1081	if (!prepare_signal(sig, t, force))
 
1082		goto ret;
1083
1084	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1085	/*
1086	 * Short-circuit ignored signals and support queuing
1087	 * exactly one non-rt signal, so that we can get more
1088	 * detailed information about the cause of the signal.
1089	 */
1090	result = TRACE_SIGNAL_ALREADY_PENDING;
1091	if (legacy_queue(pending, sig))
1092		goto ret;
1093
1094	result = TRACE_SIGNAL_DELIVERED;
1095	/*
1096	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
 
1097	 */
1098	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1099		goto out_set;
1100
1101	/*
1102	 * Real-time signals must be queued if sent by sigqueue, or
1103	 * some other real-time mechanism.  It is implementation
1104	 * defined whether kill() does so.  We attempt to do so, on
1105	 * the principle of least surprise, but since kill is not
1106	 * allowed to fail with EAGAIN when low on memory we just
1107	 * make sure at least one signal gets delivered and don't
1108	 * pass on the info struct.
1109	 */
1110	if (sig < SIGRTMIN)
1111		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1112	else
1113		override_rlimit = 0;
1114
1115	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1116
1117	if (q) {
1118		list_add_tail(&q->list, &pending->list);
1119		switch ((unsigned long) info) {
1120		case (unsigned long) SEND_SIG_NOINFO:
1121			clear_siginfo(&q->info);
1122			q->info.si_signo = sig;
1123			q->info.si_errno = 0;
1124			q->info.si_code = SI_USER;
1125			q->info.si_pid = task_tgid_nr_ns(current,
1126							task_active_pid_ns(t));
1127			rcu_read_lock();
1128			q->info.si_uid =
1129				from_kuid_munged(task_cred_xxx(t, user_ns),
1130						 current_uid());
1131			rcu_read_unlock();
1132			break;
1133		case (unsigned long) SEND_SIG_PRIV:
1134			clear_siginfo(&q->info);
1135			q->info.si_signo = sig;
1136			q->info.si_errno = 0;
1137			q->info.si_code = SI_KERNEL;
1138			q->info.si_pid = 0;
1139			q->info.si_uid = 0;
1140			break;
1141		default:
1142			copy_siginfo(&q->info, info);
 
 
1143			break;
1144		}
1145	} else if (!is_si_special(info) &&
1146		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1147		/*
1148		 * Queue overflow, abort.  We may abort if the
1149		 * signal was rt and sent by user using something
1150		 * other than kill().
1151		 */
1152		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1153		ret = -EAGAIN;
1154		goto ret;
1155	} else {
1156		/*
1157		 * This is a silent loss of information.  We still
1158		 * send the signal, but the *info bits are lost.
1159		 */
1160		result = TRACE_SIGNAL_LOSE_INFO;
 
 
 
 
1161	}
1162
1163out_set:
1164	signalfd_notify(t, sig);
1165	sigaddset(&pending->signal, sig);
1166
1167	/* Let multiprocess signals appear after on-going forks */
1168	if (type > PIDTYPE_TGID) {
1169		struct multiprocess_signals *delayed;
1170		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1171			sigset_t *signal = &delayed->signal;
1172			/* Can't queue both a stop and a continue signal */
1173			if (sig == SIGCONT)
1174				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1175			else if (sig_kernel_stop(sig))
1176				sigdelset(signal, SIGCONT);
1177			sigaddset(signal, sig);
1178		}
1179	}
1180
1181	complete_signal(sig, t, type);
1182ret:
1183	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1184	return ret;
1185}
1186
1187static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1188{
1189	bool ret = false;
1190	switch (siginfo_layout(info->si_signo, info->si_code)) {
1191	case SIL_KILL:
1192	case SIL_CHLD:
1193	case SIL_RT:
1194		ret = true;
1195		break;
1196	case SIL_TIMER:
1197	case SIL_POLL:
1198	case SIL_FAULT:
1199	case SIL_FAULT_TRAPNO:
1200	case SIL_FAULT_MCEERR:
1201	case SIL_FAULT_BNDERR:
1202	case SIL_FAULT_PKUERR:
1203	case SIL_PERF_EVENT:
1204	case SIL_SYS:
1205		ret = false;
1206		break;
1207	}
1208	return ret;
1209}
1210
1211static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1212			enum pid_type type)
1213{
1214	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1215	bool force = false;
1216
1217	if (info == SEND_SIG_NOINFO) {
1218		/* Force if sent from an ancestor pid namespace */
1219		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1220	} else if (info == SEND_SIG_PRIV) {
1221		/* Don't ignore kernel generated signals */
1222		force = true;
1223	} else if (has_si_pid_and_uid(info)) {
1224		/* SIGKILL and SIGSTOP is special or has ids */
1225		struct user_namespace *t_user_ns;
1226
1227		rcu_read_lock();
1228		t_user_ns = task_cred_xxx(t, user_ns);
1229		if (current_user_ns() != t_user_ns) {
1230			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1231			info->si_uid = from_kuid_munged(t_user_ns, uid);
1232		}
1233		rcu_read_unlock();
1234
1235		/* A kernel generated signal? */
1236		force = (info->si_code == SI_KERNEL);
1237
1238		/* From an ancestor pid namespace? */
1239		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1240			info->si_pid = 0;
1241			force = true;
1242		}
1243	}
1244	return __send_signal(sig, info, t, type, force);
1245}
1246
1247static void print_fatal_signal(int signr)
1248{
1249	struct pt_regs *regs = signal_pt_regs();
1250	pr_info("potentially unexpected fatal signal %d.\n", signr);
1251
1252#if defined(__i386__) && !defined(__arch_um__)
1253	pr_info("code at %08lx: ", regs->ip);
1254	{
1255		int i;
1256		for (i = 0; i < 16; i++) {
1257			unsigned char insn;
1258
1259			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1260				break;
1261			pr_cont("%02x ", insn);
1262		}
1263	}
1264	pr_cont("\n");
1265#endif
 
1266	preempt_disable();
1267	show_regs(regs);
1268	preempt_enable();
1269}
1270
1271static int __init setup_print_fatal_signals(char *str)
1272{
1273	get_option (&str, &print_fatal_signals);
1274
1275	return 1;
1276}
1277
1278__setup("print-fatal-signals=", setup_print_fatal_signals);
1279
1280int
1281__group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1282{
1283	return send_signal(sig, info, p, PIDTYPE_TGID);
1284}
1285
1286int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1287			enum pid_type type)
 
 
 
 
 
 
1288{
1289	unsigned long flags;
1290	int ret = -ESRCH;
1291
1292	if (lock_task_sighand(p, &flags)) {
1293		ret = send_signal(sig, info, p, type);
1294		unlock_task_sighand(p, &flags);
1295	}
1296
1297	return ret;
1298}
1299
1300/*
1301 * Force a signal that the process can't ignore: if necessary
1302 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1303 *
1304 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1305 * since we do not want to have a signal handler that was blocked
1306 * be invoked when user space had explicitly blocked it.
1307 *
1308 * We don't want to have recursive SIGSEGV's etc, for example,
1309 * that is why we also clear SIGNAL_UNKILLABLE.
1310 */
1311static int
1312force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1313{
1314	unsigned long int flags;
1315	int ret, blocked, ignored;
1316	struct k_sigaction *action;
1317	int sig = info->si_signo;
1318
1319	spin_lock_irqsave(&t->sighand->siglock, flags);
1320	action = &t->sighand->action[sig-1];
1321	ignored = action->sa.sa_handler == SIG_IGN;
1322	blocked = sigismember(&t->blocked, sig);
1323	if (blocked || ignored) {
1324		action->sa.sa_handler = SIG_DFL;
1325		if (blocked) {
1326			sigdelset(&t->blocked, sig);
1327			recalc_sigpending_and_wake(t);
1328		}
1329	}
1330	/*
1331	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1332	 * debugging to leave init killable.
1333	 */
1334	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1335		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1336	ret = send_signal(sig, info, t, PIDTYPE_PID);
1337	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1338
1339	return ret;
1340}
1341
1342int force_sig_info(struct kernel_siginfo *info)
1343{
1344	return force_sig_info_to_task(info, current);
1345}
1346
1347/*
1348 * Nuke all other threads in the group.
1349 */
1350int zap_other_threads(struct task_struct *p)
1351{
1352	struct task_struct *t = p;
1353	int count = 0;
1354
1355	p->signal->group_stop_count = 0;
1356
1357	while_each_thread(p, t) {
1358		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1359		count++;
1360
1361		/* Don't bother with already dead threads */
1362		if (t->exit_state)
1363			continue;
1364		sigaddset(&t->pending.signal, SIGKILL);
1365		signal_wake_up(t, 1);
1366	}
1367
1368	return count;
1369}
1370
1371struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1372					   unsigned long *flags)
1373{
1374	struct sighand_struct *sighand;
1375
1376	rcu_read_lock();
1377	for (;;) {
 
 
1378		sighand = rcu_dereference(tsk->sighand);
1379		if (unlikely(sighand == NULL))
 
 
1380			break;
 
1381
1382		/*
1383		 * This sighand can be already freed and even reused, but
1384		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1385		 * initializes ->siglock: this slab can't go away, it has
1386		 * the same object type, ->siglock can't be reinitialized.
1387		 *
1388		 * We need to ensure that tsk->sighand is still the same
1389		 * after we take the lock, we can race with de_thread() or
1390		 * __exit_signal(). In the latter case the next iteration
1391		 * must see ->sighand == NULL.
1392		 */
1393		spin_lock_irqsave(&sighand->siglock, *flags);
1394		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1395			break;
1396		spin_unlock_irqrestore(&sighand->siglock, *flags);
 
 
 
1397	}
1398	rcu_read_unlock();
1399
1400	return sighand;
1401}
1402
1403/*
1404 * send signal info to all the members of a group
1405 */
1406int group_send_sig_info(int sig, struct kernel_siginfo *info,
1407			struct task_struct *p, enum pid_type type)
1408{
1409	int ret;
1410
1411	rcu_read_lock();
1412	ret = check_kill_permission(sig, info, p);
1413	rcu_read_unlock();
1414
1415	if (!ret && sig)
1416		ret = do_send_sig_info(sig, info, p, type);
1417
1418	return ret;
1419}
1420
1421/*
1422 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1423 * control characters do (^C, ^Z etc)
1424 * - the caller must hold at least a readlock on tasklist_lock
1425 */
1426int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1427{
1428	struct task_struct *p = NULL;
1429	int retval, success;
1430
1431	success = 0;
1432	retval = -ESRCH;
1433	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1434		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1435		success |= !err;
1436		retval = err;
1437	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1438	return success ? 0 : retval;
1439}
1440
1441int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1442{
1443	int error = -ESRCH;
1444	struct task_struct *p;
1445
1446	for (;;) {
1447		rcu_read_lock();
1448		p = pid_task(pid, PIDTYPE_PID);
1449		if (p)
1450			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1451		rcu_read_unlock();
1452		if (likely(!p || error != -ESRCH))
1453			return error;
 
 
 
 
 
 
 
1454
1455		/*
1456		 * The task was unhashed in between, try again.  If it
1457		 * is dead, pid_task() will return NULL, if we race with
1458		 * de_thread() it will find the new leader.
1459		 */
1460	}
1461}
1462
1463static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1464{
1465	int error;
1466	rcu_read_lock();
1467	error = kill_pid_info(sig, info, find_vpid(pid));
1468	rcu_read_unlock();
1469	return error;
1470}
1471
1472static inline bool kill_as_cred_perm(const struct cred *cred,
1473				     struct task_struct *target)
1474{
1475	const struct cred *pcred = __task_cred(target);
1476
1477	return uid_eq(cred->euid, pcred->suid) ||
1478	       uid_eq(cred->euid, pcred->uid) ||
1479	       uid_eq(cred->uid, pcred->suid) ||
1480	       uid_eq(cred->uid, pcred->uid);
1481}
1482
1483/*
1484 * The usb asyncio usage of siginfo is wrong.  The glibc support
1485 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1486 * AKA after the generic fields:
1487 *	kernel_pid_t	si_pid;
1488 *	kernel_uid32_t	si_uid;
1489 *	sigval_t	si_value;
1490 *
1491 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1492 * after the generic fields is:
1493 *	void __user 	*si_addr;
1494 *
1495 * This is a practical problem when there is a 64bit big endian kernel
1496 * and a 32bit userspace.  As the 32bit address will encoded in the low
1497 * 32bits of the pointer.  Those low 32bits will be stored at higher
1498 * address than appear in a 32 bit pointer.  So userspace will not
1499 * see the address it was expecting for it's completions.
1500 *
1501 * There is nothing in the encoding that can allow
1502 * copy_siginfo_to_user32 to detect this confusion of formats, so
1503 * handle this by requiring the caller of kill_pid_usb_asyncio to
1504 * notice when this situration takes place and to store the 32bit
1505 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1506 * parameter.
1507 */
1508int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1509			 struct pid *pid, const struct cred *cred)
1510{
1511	struct kernel_siginfo info;
1512	struct task_struct *p;
1513	unsigned long flags;
1514	int ret = -EINVAL;
1515
1516	if (!valid_signal(sig))
1517		return ret;
1518
1519	clear_siginfo(&info);
1520	info.si_signo = sig;
1521	info.si_errno = errno;
1522	info.si_code = SI_ASYNCIO;
1523	*((sigval_t *)&info.si_pid) = addr;
1524
1525	rcu_read_lock();
1526	p = pid_task(pid, PIDTYPE_PID);
1527	if (!p) {
1528		ret = -ESRCH;
1529		goto out_unlock;
1530	}
1531	if (!kill_as_cred_perm(cred, p)) {
1532		ret = -EPERM;
1533		goto out_unlock;
1534	}
1535	ret = security_task_kill(p, &info, sig, cred);
1536	if (ret)
1537		goto out_unlock;
1538
1539	if (sig) {
1540		if (lock_task_sighand(p, &flags)) {
1541			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1542			unlock_task_sighand(p, &flags);
1543		} else
1544			ret = -ESRCH;
1545	}
1546out_unlock:
1547	rcu_read_unlock();
1548	return ret;
1549}
1550EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1551
1552/*
1553 * kill_something_info() interprets pid in interesting ways just like kill(2).
1554 *
1555 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1556 * is probably wrong.  Should make it like BSD or SYSV.
1557 */
1558
1559static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1560{
1561	int ret;
1562
1563	if (pid > 0)
1564		return kill_proc_info(sig, info, pid);
1565
1566	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1567	if (pid == INT_MIN)
1568		return -ESRCH;
1569
1570	read_lock(&tasklist_lock);
1571	if (pid != -1) {
1572		ret = __kill_pgrp_info(sig, info,
1573				pid ? find_vpid(-pid) : task_pgrp(current));
1574	} else {
1575		int retval = 0, count = 0;
1576		struct task_struct * p;
1577
1578		for_each_process(p) {
1579			if (task_pid_vnr(p) > 1 &&
1580					!same_thread_group(p, current)) {
1581				int err = group_send_sig_info(sig, info, p,
1582							      PIDTYPE_MAX);
1583				++count;
1584				if (err != -EPERM)
1585					retval = err;
1586			}
1587		}
1588		ret = count ? retval : -ESRCH;
1589	}
1590	read_unlock(&tasklist_lock);
1591
1592	return ret;
1593}
1594
1595/*
1596 * These are for backward compatibility with the rest of the kernel source.
1597 */
1598
1599int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1600{
1601	/*
1602	 * Make sure legacy kernel users don't send in bad values
1603	 * (normal paths check this in check_kill_permission).
1604	 */
1605	if (!valid_signal(sig))
1606		return -EINVAL;
1607
1608	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1609}
1610EXPORT_SYMBOL(send_sig_info);
1611
1612#define __si_special(priv) \
1613	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1614
1615int
1616send_sig(int sig, struct task_struct *p, int priv)
1617{
1618	return send_sig_info(sig, __si_special(priv), p);
1619}
1620EXPORT_SYMBOL(send_sig);
1621
1622void force_sig(int sig)
 
1623{
1624	struct kernel_siginfo info;
1625
1626	clear_siginfo(&info);
1627	info.si_signo = sig;
1628	info.si_errno = 0;
1629	info.si_code = SI_KERNEL;
1630	info.si_pid = 0;
1631	info.si_uid = 0;
1632	force_sig_info(&info);
1633}
1634EXPORT_SYMBOL(force_sig);
1635
1636/*
1637 * When things go south during signal handling, we
1638 * will force a SIGSEGV. And if the signal that caused
1639 * the problem was already a SIGSEGV, we'll want to
1640 * make sure we don't even try to deliver the signal..
1641 */
1642void force_sigsegv(int sig)
 
1643{
1644	struct task_struct *p = current;
1645
1646	if (sig == SIGSEGV) {
1647		unsigned long flags;
1648		spin_lock_irqsave(&p->sighand->siglock, flags);
1649		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1650		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1651	}
1652	force_sig(SIGSEGV);
1653}
1654
1655int force_sig_fault_to_task(int sig, int code, void __user *addr
1656	___ARCH_SI_TRAPNO(int trapno)
1657	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1658	, struct task_struct *t)
1659{
1660	struct kernel_siginfo info;
1661
1662	clear_siginfo(&info);
1663	info.si_signo = sig;
1664	info.si_errno = 0;
1665	info.si_code  = code;
1666	info.si_addr  = addr;
1667#ifdef __ARCH_SI_TRAPNO
1668	info.si_trapno = trapno;
1669#endif
1670#ifdef __ia64__
1671	info.si_imm = imm;
1672	info.si_flags = flags;
1673	info.si_isr = isr;
1674#endif
1675	return force_sig_info_to_task(&info, t);
1676}
1677
1678int force_sig_fault(int sig, int code, void __user *addr
1679	___ARCH_SI_TRAPNO(int trapno)
1680	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1681{
1682	return force_sig_fault_to_task(sig, code, addr
1683				       ___ARCH_SI_TRAPNO(trapno)
1684				       ___ARCH_SI_IA64(imm, flags, isr), current);
1685}
1686
1687int send_sig_fault(int sig, int code, void __user *addr
1688	___ARCH_SI_TRAPNO(int trapno)
1689	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1690	, struct task_struct *t)
1691{
1692	struct kernel_siginfo info;
1693
1694	clear_siginfo(&info);
1695	info.si_signo = sig;
1696	info.si_errno = 0;
1697	info.si_code  = code;
1698	info.si_addr  = addr;
1699#ifdef __ARCH_SI_TRAPNO
1700	info.si_trapno = trapno;
1701#endif
1702#ifdef __ia64__
1703	info.si_imm = imm;
1704	info.si_flags = flags;
1705	info.si_isr = isr;
1706#endif
1707	return send_sig_info(info.si_signo, &info, t);
1708}
1709
1710int force_sig_mceerr(int code, void __user *addr, short lsb)
1711{
1712	struct kernel_siginfo info;
1713
1714	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1715	clear_siginfo(&info);
1716	info.si_signo = SIGBUS;
1717	info.si_errno = 0;
1718	info.si_code = code;
1719	info.si_addr = addr;
1720	info.si_addr_lsb = lsb;
1721	return force_sig_info(&info);
1722}
1723
1724int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1725{
1726	struct kernel_siginfo info;
1727
1728	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1729	clear_siginfo(&info);
1730	info.si_signo = SIGBUS;
1731	info.si_errno = 0;
1732	info.si_code = code;
1733	info.si_addr = addr;
1734	info.si_addr_lsb = lsb;
1735	return send_sig_info(info.si_signo, &info, t);
1736}
1737EXPORT_SYMBOL(send_sig_mceerr);
1738
1739int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1740{
1741	struct kernel_siginfo info;
1742
1743	clear_siginfo(&info);
1744	info.si_signo = SIGSEGV;
1745	info.si_errno = 0;
1746	info.si_code  = SEGV_BNDERR;
1747	info.si_addr  = addr;
1748	info.si_lower = lower;
1749	info.si_upper = upper;
1750	return force_sig_info(&info);
1751}
1752
1753#ifdef SEGV_PKUERR
1754int force_sig_pkuerr(void __user *addr, u32 pkey)
1755{
1756	struct kernel_siginfo info;
1757
1758	clear_siginfo(&info);
1759	info.si_signo = SIGSEGV;
1760	info.si_errno = 0;
1761	info.si_code  = SEGV_PKUERR;
1762	info.si_addr  = addr;
1763	info.si_pkey  = pkey;
1764	return force_sig_info(&info);
1765}
1766#endif
1767
1768int force_sig_perf(void __user *addr, u32 type, u64 sig_data)
1769{
1770	struct kernel_siginfo info;
1771
1772	clear_siginfo(&info);
1773	info.si_signo     = SIGTRAP;
1774	info.si_errno     = 0;
1775	info.si_code      = TRAP_PERF;
1776	info.si_addr      = addr;
1777	info.si_perf_data = sig_data;
1778	info.si_perf_type = type;
1779
1780	return force_sig_info(&info);
1781}
1782
1783/* For the crazy architectures that include trap information in
1784 * the errno field, instead of an actual errno value.
1785 */
1786int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1787{
1788	struct kernel_siginfo info;
1789
1790	clear_siginfo(&info);
1791	info.si_signo = SIGTRAP;
1792	info.si_errno = errno;
1793	info.si_code  = TRAP_HWBKPT;
1794	info.si_addr  = addr;
1795	return force_sig_info(&info);
1796}
1797
1798int kill_pgrp(struct pid *pid, int sig, int priv)
1799{
1800	int ret;
1801
1802	read_lock(&tasklist_lock);
1803	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1804	read_unlock(&tasklist_lock);
1805
1806	return ret;
1807}
1808EXPORT_SYMBOL(kill_pgrp);
1809
1810int kill_pid(struct pid *pid, int sig, int priv)
1811{
1812	return kill_pid_info(sig, __si_special(priv), pid);
1813}
1814EXPORT_SYMBOL(kill_pid);
1815
1816/*
1817 * These functions support sending signals using preallocated sigqueue
1818 * structures.  This is needed "because realtime applications cannot
1819 * afford to lose notifications of asynchronous events, like timer
1820 * expirations or I/O completions".  In the case of POSIX Timers
1821 * we allocate the sigqueue structure from the timer_create.  If this
1822 * allocation fails we are able to report the failure to the application
1823 * with an EAGAIN error.
1824 */
1825struct sigqueue *sigqueue_alloc(void)
1826{
1827	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
 
 
 
 
 
1828}
1829
1830void sigqueue_free(struct sigqueue *q)
1831{
1832	unsigned long flags;
1833	spinlock_t *lock = &current->sighand->siglock;
1834
1835	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1836	/*
1837	 * We must hold ->siglock while testing q->list
1838	 * to serialize with collect_signal() or with
1839	 * __exit_signal()->flush_sigqueue().
1840	 */
1841	spin_lock_irqsave(lock, flags);
1842	q->flags &= ~SIGQUEUE_PREALLOC;
1843	/*
1844	 * If it is queued it will be freed when dequeued,
1845	 * like the "regular" sigqueue.
1846	 */
1847	if (!list_empty(&q->list))
1848		q = NULL;
1849	spin_unlock_irqrestore(lock, flags);
1850
1851	if (q)
1852		__sigqueue_free(q);
1853}
1854
1855int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1856{
1857	int sig = q->info.si_signo;
1858	struct sigpending *pending;
1859	struct task_struct *t;
1860	unsigned long flags;
1861	int ret, result;
1862
1863	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1864
1865	ret = -1;
1866	rcu_read_lock();
1867	t = pid_task(pid, type);
1868	if (!t || !likely(lock_task_sighand(t, &flags)))
1869		goto ret;
1870
1871	ret = 1; /* the signal is ignored */
1872	result = TRACE_SIGNAL_IGNORED;
1873	if (!prepare_signal(sig, t, false))
1874		goto out;
1875
1876	ret = 0;
1877	if (unlikely(!list_empty(&q->list))) {
1878		/*
1879		 * If an SI_TIMER entry is already queue just increment
1880		 * the overrun count.
1881		 */
1882		BUG_ON(q->info.si_code != SI_TIMER);
1883		q->info.si_overrun++;
1884		result = TRACE_SIGNAL_ALREADY_PENDING;
1885		goto out;
1886	}
1887	q->info.si_overrun = 0;
1888
1889	signalfd_notify(t, sig);
1890	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1891	list_add_tail(&q->list, &pending->list);
1892	sigaddset(&pending->signal, sig);
1893	complete_signal(sig, t, type);
1894	result = TRACE_SIGNAL_DELIVERED;
1895out:
1896	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1897	unlock_task_sighand(t, &flags);
1898ret:
1899	rcu_read_unlock();
1900	return ret;
1901}
1902
1903static void do_notify_pidfd(struct task_struct *task)
1904{
1905	struct pid *pid;
1906
1907	WARN_ON(task->exit_state == 0);
1908	pid = task_pid(task);
1909	wake_up_all(&pid->wait_pidfd);
1910}
1911
1912/*
1913 * Let a parent know about the death of a child.
1914 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1915 *
1916 * Returns true if our parent ignored us and so we've switched to
1917 * self-reaping.
1918 */
1919bool do_notify_parent(struct task_struct *tsk, int sig)
1920{
1921	struct kernel_siginfo info;
1922	unsigned long flags;
1923	struct sighand_struct *psig;
1924	bool autoreap = false;
1925	u64 utime, stime;
1926
1927	BUG_ON(sig == -1);
1928
1929 	/* do_notify_parent_cldstop should have been called instead.  */
1930 	BUG_ON(task_is_stopped_or_traced(tsk));
1931
1932	BUG_ON(!tsk->ptrace &&
1933	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1934
1935	/* Wake up all pidfd waiters */
1936	do_notify_pidfd(tsk);
1937
1938	if (sig != SIGCHLD) {
1939		/*
1940		 * This is only possible if parent == real_parent.
1941		 * Check if it has changed security domain.
1942		 */
1943		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
1944			sig = SIGCHLD;
1945	}
1946
1947	clear_siginfo(&info);
1948	info.si_signo = sig;
1949	info.si_errno = 0;
1950	/*
1951	 * We are under tasklist_lock here so our parent is tied to
1952	 * us and cannot change.
1953	 *
1954	 * task_active_pid_ns will always return the same pid namespace
1955	 * until a task passes through release_task.
1956	 *
1957	 * write_lock() currently calls preempt_disable() which is the
1958	 * same as rcu_read_lock(), but according to Oleg, this is not
1959	 * correct to rely on this
1960	 */
1961	rcu_read_lock();
1962	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1963	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1964				       task_uid(tsk));
1965	rcu_read_unlock();
1966
1967	task_cputime(tsk, &utime, &stime);
1968	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1969	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1970
1971	info.si_status = tsk->exit_code & 0x7f;
1972	if (tsk->exit_code & 0x80)
1973		info.si_code = CLD_DUMPED;
1974	else if (tsk->exit_code & 0x7f)
1975		info.si_code = CLD_KILLED;
1976	else {
1977		info.si_code = CLD_EXITED;
1978		info.si_status = tsk->exit_code >> 8;
1979	}
1980
1981	psig = tsk->parent->sighand;
1982	spin_lock_irqsave(&psig->siglock, flags);
1983	if (!tsk->ptrace && sig == SIGCHLD &&
1984	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1985	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1986		/*
1987		 * We are exiting and our parent doesn't care.  POSIX.1
1988		 * defines special semantics for setting SIGCHLD to SIG_IGN
1989		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1990		 * automatically and not left for our parent's wait4 call.
1991		 * Rather than having the parent do it as a magic kind of
1992		 * signal handler, we just set this to tell do_exit that we
1993		 * can be cleaned up without becoming a zombie.  Note that
1994		 * we still call __wake_up_parent in this case, because a
1995		 * blocked sys_wait4 might now return -ECHILD.
1996		 *
1997		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1998		 * is implementation-defined: we do (if you don't want
1999		 * it, just use SIG_IGN instead).
2000		 */
2001		autoreap = true;
2002		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2003			sig = 0;
2004	}
2005	/*
2006	 * Send with __send_signal as si_pid and si_uid are in the
2007	 * parent's namespaces.
2008	 */
2009	if (valid_signal(sig) && sig)
2010		__send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2011	__wake_up_parent(tsk, tsk->parent);
2012	spin_unlock_irqrestore(&psig->siglock, flags);
2013
2014	return autoreap;
2015}
2016
2017/**
2018 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2019 * @tsk: task reporting the state change
2020 * @for_ptracer: the notification is for ptracer
2021 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2022 *
2023 * Notify @tsk's parent that the stopped/continued state has changed.  If
2024 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2025 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2026 *
2027 * CONTEXT:
2028 * Must be called with tasklist_lock at least read locked.
2029 */
2030static void do_notify_parent_cldstop(struct task_struct *tsk,
2031				     bool for_ptracer, int why)
2032{
2033	struct kernel_siginfo info;
2034	unsigned long flags;
2035	struct task_struct *parent;
2036	struct sighand_struct *sighand;
2037	u64 utime, stime;
2038
2039	if (for_ptracer) {
2040		parent = tsk->parent;
2041	} else {
2042		tsk = tsk->group_leader;
2043		parent = tsk->real_parent;
2044	}
2045
2046	clear_siginfo(&info);
2047	info.si_signo = SIGCHLD;
2048	info.si_errno = 0;
2049	/*
2050	 * see comment in do_notify_parent() about the following 4 lines
2051	 */
2052	rcu_read_lock();
2053	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2054	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2055	rcu_read_unlock();
2056
2057	task_cputime(tsk, &utime, &stime);
2058	info.si_utime = nsec_to_clock_t(utime);
2059	info.si_stime = nsec_to_clock_t(stime);
2060
2061 	info.si_code = why;
2062 	switch (why) {
2063 	case CLD_CONTINUED:
2064 		info.si_status = SIGCONT;
2065 		break;
2066 	case CLD_STOPPED:
2067 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2068 		break;
2069 	case CLD_TRAPPED:
2070 		info.si_status = tsk->exit_code & 0x7f;
2071 		break;
2072 	default:
2073 		BUG();
2074 	}
2075
2076	sighand = parent->sighand;
2077	spin_lock_irqsave(&sighand->siglock, flags);
2078	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2079	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2080		__group_send_sig_info(SIGCHLD, &info, parent);
2081	/*
2082	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2083	 */
2084	__wake_up_parent(tsk, parent);
2085	spin_unlock_irqrestore(&sighand->siglock, flags);
2086}
2087
2088static inline bool may_ptrace_stop(void)
2089{
2090	if (!likely(current->ptrace))
2091		return false;
2092	/*
2093	 * Are we in the middle of do_coredump?
2094	 * If so and our tracer is also part of the coredump stopping
2095	 * is a deadlock situation, and pointless because our tracer
2096	 * is dead so don't allow us to stop.
2097	 * If SIGKILL was already sent before the caller unlocked
2098	 * ->siglock we must see ->core_state != NULL. Otherwise it
2099	 * is safe to enter schedule().
2100	 *
2101	 * This is almost outdated, a task with the pending SIGKILL can't
2102	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2103	 * after SIGKILL was already dequeued.
2104	 */
2105	if (unlikely(current->mm->core_state) &&
2106	    unlikely(current->mm == current->parent->mm))
2107		return false;
2108
2109	return true;
2110}
2111
2112/*
2113 * Return non-zero if there is a SIGKILL that should be waking us up.
2114 * Called with the siglock held.
2115 */
2116static bool sigkill_pending(struct task_struct *tsk)
2117{
2118	return sigismember(&tsk->pending.signal, SIGKILL) ||
2119	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2120}
2121
2122/*
2123 * This must be called with current->sighand->siglock held.
2124 *
2125 * This should be the path for all ptrace stops.
2126 * We always set current->last_siginfo while stopped here.
2127 * That makes it a way to test a stopped process for
2128 * being ptrace-stopped vs being job-control-stopped.
2129 *
2130 * If we actually decide not to stop at all because the tracer
2131 * is gone, we keep current->exit_code unless clear_code.
2132 */
2133static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2134	__releases(&current->sighand->siglock)
2135	__acquires(&current->sighand->siglock)
2136{
2137	bool gstop_done = false;
2138
2139	if (arch_ptrace_stop_needed(exit_code, info)) {
2140		/*
2141		 * The arch code has something special to do before a
2142		 * ptrace stop.  This is allowed to block, e.g. for faults
2143		 * on user stack pages.  We can't keep the siglock while
2144		 * calling arch_ptrace_stop, so we must release it now.
2145		 * To preserve proper semantics, we must do this before
2146		 * any signal bookkeeping like checking group_stop_count.
2147		 * Meanwhile, a SIGKILL could come in before we retake the
2148		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2149		 * So after regaining the lock, we must check for SIGKILL.
2150		 */
2151		spin_unlock_irq(&current->sighand->siglock);
2152		arch_ptrace_stop(exit_code, info);
2153		spin_lock_irq(&current->sighand->siglock);
2154		if (sigkill_pending(current))
2155			return;
2156	}
2157
2158	set_special_state(TASK_TRACED);
2159
2160	/*
2161	 * We're committing to trapping.  TRACED should be visible before
2162	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2163	 * Also, transition to TRACED and updates to ->jobctl should be
2164	 * atomic with respect to siglock and should be done after the arch
2165	 * hook as siglock is released and regrabbed across it.
2166	 *
2167	 *     TRACER				    TRACEE
2168	 *
2169	 *     ptrace_attach()
2170	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2171	 *     do_wait()
2172	 *       set_current_state()                smp_wmb();
2173	 *       ptrace_do_wait()
2174	 *         wait_task_stopped()
2175	 *           task_stopped_code()
2176	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2177	 */
2178	smp_wmb();
2179
2180	current->last_siginfo = info;
2181	current->exit_code = exit_code;
2182
2183	/*
2184	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2185	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2186	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2187	 * could be clear now.  We act as if SIGCONT is received after
2188	 * TASK_TRACED is entered - ignore it.
2189	 */
2190	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2191		gstop_done = task_participate_group_stop(current);
2192
2193	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2194	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2195	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2196		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2197
2198	/* entering a trap, clear TRAPPING */
2199	task_clear_jobctl_trapping(current);
2200
2201	spin_unlock_irq(&current->sighand->siglock);
2202	read_lock(&tasklist_lock);
2203	if (may_ptrace_stop()) {
2204		/*
2205		 * Notify parents of the stop.
2206		 *
2207		 * While ptraced, there are two parents - the ptracer and
2208		 * the real_parent of the group_leader.  The ptracer should
2209		 * know about every stop while the real parent is only
2210		 * interested in the completion of group stop.  The states
2211		 * for the two don't interact with each other.  Notify
2212		 * separately unless they're gonna be duplicates.
2213		 */
2214		do_notify_parent_cldstop(current, true, why);
2215		if (gstop_done && ptrace_reparented(current))
2216			do_notify_parent_cldstop(current, false, why);
2217
2218		/*
2219		 * Don't want to allow preemption here, because
2220		 * sys_ptrace() needs this task to be inactive.
2221		 *
2222		 * XXX: implement read_unlock_no_resched().
2223		 */
2224		preempt_disable();
2225		read_unlock(&tasklist_lock);
2226		cgroup_enter_frozen();
2227		preempt_enable_no_resched();
2228		freezable_schedule();
2229		cgroup_leave_frozen(true);
2230	} else {
2231		/*
2232		 * By the time we got the lock, our tracer went away.
2233		 * Don't drop the lock yet, another tracer may come.
2234		 *
2235		 * If @gstop_done, the ptracer went away between group stop
2236		 * completion and here.  During detach, it would have set
2237		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2238		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2239		 * the real parent of the group stop completion is enough.
2240		 */
2241		if (gstop_done)
2242			do_notify_parent_cldstop(current, false, why);
2243
2244		/* tasklist protects us from ptrace_freeze_traced() */
2245		__set_current_state(TASK_RUNNING);
2246		if (clear_code)
2247			current->exit_code = 0;
2248		read_unlock(&tasklist_lock);
2249	}
2250
2251	/*
 
 
 
 
 
 
 
2252	 * We are back.  Now reacquire the siglock before touching
2253	 * last_siginfo, so that we are sure to have synchronized with
2254	 * any signal-sending on another CPU that wants to examine it.
2255	 */
2256	spin_lock_irq(&current->sighand->siglock);
2257	current->last_siginfo = NULL;
2258
2259	/* LISTENING can be set only during STOP traps, clear it */
2260	current->jobctl &= ~JOBCTL_LISTENING;
2261
2262	/*
2263	 * Queued signals ignored us while we were stopped for tracing.
2264	 * So check for any that we should take before resuming user mode.
2265	 * This sets TIF_SIGPENDING, but never clears it.
2266	 */
2267	recalc_sigpending_tsk(current);
2268}
2269
2270static void ptrace_do_notify(int signr, int exit_code, int why)
2271{
2272	kernel_siginfo_t info;
2273
2274	clear_siginfo(&info);
2275	info.si_signo = signr;
2276	info.si_code = exit_code;
2277	info.si_pid = task_pid_vnr(current);
2278	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2279
2280	/* Let the debugger run.  */
2281	ptrace_stop(exit_code, why, 1, &info);
2282}
2283
2284void ptrace_notify(int exit_code)
2285{
2286	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2287	if (unlikely(current->task_works))
2288		task_work_run();
2289
2290	spin_lock_irq(&current->sighand->siglock);
2291	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2292	spin_unlock_irq(&current->sighand->siglock);
2293}
2294
2295/**
2296 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2297 * @signr: signr causing group stop if initiating
2298 *
2299 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2300 * and participate in it.  If already set, participate in the existing
2301 * group stop.  If participated in a group stop (and thus slept), %true is
2302 * returned with siglock released.
2303 *
2304 * If ptraced, this function doesn't handle stop itself.  Instead,
2305 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2306 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2307 * places afterwards.
2308 *
2309 * CONTEXT:
2310 * Must be called with @current->sighand->siglock held, which is released
2311 * on %true return.
2312 *
2313 * RETURNS:
2314 * %false if group stop is already cancelled or ptrace trap is scheduled.
2315 * %true if participated in group stop.
2316 */
2317static bool do_signal_stop(int signr)
2318	__releases(&current->sighand->siglock)
2319{
2320	struct signal_struct *sig = current->signal;
2321
2322	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2323		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2324		struct task_struct *t;
2325
2326		/* signr will be recorded in task->jobctl for retries */
2327		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2328
2329		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2330		    unlikely(signal_group_exit(sig)))
2331			return false;
2332		/*
2333		 * There is no group stop already in progress.  We must
2334		 * initiate one now.
2335		 *
2336		 * While ptraced, a task may be resumed while group stop is
2337		 * still in effect and then receive a stop signal and
2338		 * initiate another group stop.  This deviates from the
2339		 * usual behavior as two consecutive stop signals can't
2340		 * cause two group stops when !ptraced.  That is why we
2341		 * also check !task_is_stopped(t) below.
2342		 *
2343		 * The condition can be distinguished by testing whether
2344		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2345		 * group_exit_code in such case.
2346		 *
2347		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2348		 * an intervening stop signal is required to cause two
2349		 * continued events regardless of ptrace.
2350		 */
2351		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2352			sig->group_exit_code = signr;
2353
2354		sig->group_stop_count = 0;
2355
2356		if (task_set_jobctl_pending(current, signr | gstop))
2357			sig->group_stop_count++;
2358
2359		t = current;
2360		while_each_thread(current, t) {
2361			/*
2362			 * Setting state to TASK_STOPPED for a group
2363			 * stop is always done with the siglock held,
2364			 * so this check has no races.
2365			 */
2366			if (!task_is_stopped(t) &&
2367			    task_set_jobctl_pending(t, signr | gstop)) {
2368				sig->group_stop_count++;
2369				if (likely(!(t->ptrace & PT_SEIZED)))
2370					signal_wake_up(t, 0);
2371				else
2372					ptrace_trap_notify(t);
2373			}
2374		}
2375	}
2376
2377	if (likely(!current->ptrace)) {
2378		int notify = 0;
2379
2380		/*
2381		 * If there are no other threads in the group, or if there
2382		 * is a group stop in progress and we are the last to stop,
2383		 * report to the parent.
2384		 */
2385		if (task_participate_group_stop(current))
2386			notify = CLD_STOPPED;
2387
2388		set_special_state(TASK_STOPPED);
2389		spin_unlock_irq(&current->sighand->siglock);
2390
2391		/*
2392		 * Notify the parent of the group stop completion.  Because
2393		 * we're not holding either the siglock or tasklist_lock
2394		 * here, ptracer may attach inbetween; however, this is for
2395		 * group stop and should always be delivered to the real
2396		 * parent of the group leader.  The new ptracer will get
2397		 * its notification when this task transitions into
2398		 * TASK_TRACED.
2399		 */
2400		if (notify) {
2401			read_lock(&tasklist_lock);
2402			do_notify_parent_cldstop(current, false, notify);
2403			read_unlock(&tasklist_lock);
2404		}
2405
2406		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2407		cgroup_enter_frozen();
2408		freezable_schedule();
2409		return true;
2410	} else {
2411		/*
2412		 * While ptraced, group stop is handled by STOP trap.
2413		 * Schedule it and let the caller deal with it.
2414		 */
2415		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2416		return false;
2417	}
2418}
2419
2420/**
2421 * do_jobctl_trap - take care of ptrace jobctl traps
2422 *
2423 * When PT_SEIZED, it's used for both group stop and explicit
2424 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2425 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2426 * the stop signal; otherwise, %SIGTRAP.
2427 *
2428 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2429 * number as exit_code and no siginfo.
2430 *
2431 * CONTEXT:
2432 * Must be called with @current->sighand->siglock held, which may be
2433 * released and re-acquired before returning with intervening sleep.
2434 */
2435static void do_jobctl_trap(void)
2436{
2437	struct signal_struct *signal = current->signal;
2438	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2439
2440	if (current->ptrace & PT_SEIZED) {
2441		if (!signal->group_stop_count &&
2442		    !(signal->flags & SIGNAL_STOP_STOPPED))
2443			signr = SIGTRAP;
2444		WARN_ON_ONCE(!signr);
2445		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2446				 CLD_STOPPED);
2447	} else {
2448		WARN_ON_ONCE(!signr);
2449		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2450		current->exit_code = 0;
2451	}
2452}
2453
2454/**
2455 * do_freezer_trap - handle the freezer jobctl trap
2456 *
2457 * Puts the task into frozen state, if only the task is not about to quit.
2458 * In this case it drops JOBCTL_TRAP_FREEZE.
2459 *
2460 * CONTEXT:
2461 * Must be called with @current->sighand->siglock held,
2462 * which is always released before returning.
2463 */
2464static void do_freezer_trap(void)
2465	__releases(&current->sighand->siglock)
2466{
2467	/*
2468	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2469	 * let's make another loop to give it a chance to be handled.
2470	 * In any case, we'll return back.
2471	 */
2472	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2473	     JOBCTL_TRAP_FREEZE) {
2474		spin_unlock_irq(&current->sighand->siglock);
2475		return;
2476	}
2477
2478	/*
2479	 * Now we're sure that there is no pending fatal signal and no
2480	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2481	 * immediately (if there is a non-fatal signal pending), and
2482	 * put the task into sleep.
2483	 */
2484	__set_current_state(TASK_INTERRUPTIBLE);
2485	clear_thread_flag(TIF_SIGPENDING);
2486	spin_unlock_irq(&current->sighand->siglock);
2487	cgroup_enter_frozen();
2488	freezable_schedule();
2489}
2490
2491static int ptrace_signal(int signr, kernel_siginfo_t *info)
2492{
 
2493	/*
2494	 * We do not check sig_kernel_stop(signr) but set this marker
2495	 * unconditionally because we do not know whether debugger will
2496	 * change signr. This flag has no meaning unless we are going
2497	 * to stop after return from ptrace_stop(). In this case it will
2498	 * be checked in do_signal_stop(), we should only stop if it was
2499	 * not cleared by SIGCONT while we were sleeping. See also the
2500	 * comment in dequeue_signal().
2501	 */
2502	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2503	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2504
2505	/* We're back.  Did the debugger cancel the sig?  */
2506	signr = current->exit_code;
2507	if (signr == 0)
2508		return signr;
2509
2510	current->exit_code = 0;
2511
2512	/*
2513	 * Update the siginfo structure if the signal has
2514	 * changed.  If the debugger wanted something
2515	 * specific in the siginfo structure then it should
2516	 * have updated *info via PTRACE_SETSIGINFO.
2517	 */
2518	if (signr != info->si_signo) {
2519		clear_siginfo(info);
2520		info->si_signo = signr;
2521		info->si_errno = 0;
2522		info->si_code = SI_USER;
2523		rcu_read_lock();
2524		info->si_pid = task_pid_vnr(current->parent);
2525		info->si_uid = from_kuid_munged(current_user_ns(),
2526						task_uid(current->parent));
2527		rcu_read_unlock();
2528	}
2529
2530	/* If the (new) signal is now blocked, requeue it.  */
2531	if (sigismember(&current->blocked, signr)) {
2532		send_signal(signr, info, current, PIDTYPE_PID);
2533		signr = 0;
2534	}
2535
2536	return signr;
2537}
2538
2539static void hide_si_addr_tag_bits(struct ksignal *ksig)
2540{
2541	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2542	case SIL_FAULT:
2543	case SIL_FAULT_TRAPNO:
2544	case SIL_FAULT_MCEERR:
2545	case SIL_FAULT_BNDERR:
2546	case SIL_FAULT_PKUERR:
2547	case SIL_PERF_EVENT:
2548		ksig->info.si_addr = arch_untagged_si_addr(
2549			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2550		break;
2551	case SIL_KILL:
2552	case SIL_TIMER:
2553	case SIL_POLL:
2554	case SIL_CHLD:
2555	case SIL_RT:
2556	case SIL_SYS:
2557		break;
2558	}
2559}
2560
2561bool get_signal(struct ksignal *ksig)
2562{
2563	struct sighand_struct *sighand = current->sighand;
2564	struct signal_struct *signal = current->signal;
2565	int signr;
2566
2567	if (unlikely(current->task_works))
2568		task_work_run();
2569
2570	/*
2571	 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so
2572	 * that the arch handlers don't all have to do it. If we get here
2573	 * without TIF_SIGPENDING, just exit after running signal work.
2574	 */
2575	if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) {
2576		if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2577			tracehook_notify_signal();
2578		if (!task_sigpending(current))
2579			return false;
2580	}
2581
2582	if (unlikely(uprobe_deny_signal()))
2583		return false;
2584
 
2585	/*
2586	 * Do this once, we can't return to user-mode if freezing() == T.
2587	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2588	 * thus do not need another check after return.
 
2589	 */
2590	try_to_freeze();
2591
2592relock:
2593	spin_lock_irq(&sighand->siglock);
2594
2595	/*
2596	 * Every stopped thread goes here after wakeup. Check to see if
2597	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2598	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2599	 */
2600	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2601		int why;
2602
2603		if (signal->flags & SIGNAL_CLD_CONTINUED)
2604			why = CLD_CONTINUED;
2605		else
2606			why = CLD_STOPPED;
2607
2608		signal->flags &= ~SIGNAL_CLD_MASK;
2609
2610		spin_unlock_irq(&sighand->siglock);
2611
2612		/*
2613		 * Notify the parent that we're continuing.  This event is
2614		 * always per-process and doesn't make whole lot of sense
2615		 * for ptracers, who shouldn't consume the state via
2616		 * wait(2) either, but, for backward compatibility, notify
2617		 * the ptracer of the group leader too unless it's gonna be
2618		 * a duplicate.
2619		 */
2620		read_lock(&tasklist_lock);
2621		do_notify_parent_cldstop(current, false, why);
2622
2623		if (ptrace_reparented(current->group_leader))
2624			do_notify_parent_cldstop(current->group_leader,
2625						true, why);
2626		read_unlock(&tasklist_lock);
2627
2628		goto relock;
2629	}
2630
2631	/* Has this task already been marked for death? */
2632	if (signal_group_exit(signal)) {
2633		ksig->info.si_signo = signr = SIGKILL;
2634		sigdelset(&current->pending.signal, SIGKILL);
2635		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2636				&sighand->action[SIGKILL - 1]);
2637		recalc_sigpending();
2638		goto fatal;
2639	}
2640
2641	for (;;) {
2642		struct k_sigaction *ka;
2643
2644		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2645		    do_signal_stop(0))
2646			goto relock;
2647
2648		if (unlikely(current->jobctl &
2649			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2650			if (current->jobctl & JOBCTL_TRAP_MASK) {
2651				do_jobctl_trap();
2652				spin_unlock_irq(&sighand->siglock);
2653			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2654				do_freezer_trap();
2655
2656			goto relock;
2657		}
2658
2659		/*
2660		 * If the task is leaving the frozen state, let's update
2661		 * cgroup counters and reset the frozen bit.
2662		 */
2663		if (unlikely(cgroup_task_frozen(current))) {
2664			spin_unlock_irq(&sighand->siglock);
2665			cgroup_leave_frozen(false);
2666			goto relock;
2667		}
2668
2669		/*
2670		 * Signals generated by the execution of an instruction
2671		 * need to be delivered before any other pending signals
2672		 * so that the instruction pointer in the signal stack
2673		 * frame points to the faulting instruction.
2674		 */
2675		signr = dequeue_synchronous_signal(&ksig->info);
2676		if (!signr)
2677			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2678
2679		if (!signr)
2680			break; /* will return 0 */
2681
2682		if (unlikely(current->ptrace) && signr != SIGKILL) {
2683			signr = ptrace_signal(signr, &ksig->info);
 
2684			if (!signr)
2685				continue;
2686		}
2687
2688		ka = &sighand->action[signr-1];
2689
2690		/* Trace actually delivered signals. */
2691		trace_signal_deliver(signr, &ksig->info, ka);
2692
2693		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2694			continue;
2695		if (ka->sa.sa_handler != SIG_DFL) {
2696			/* Run the handler.  */
2697			ksig->ka = *ka;
2698
2699			if (ka->sa.sa_flags & SA_ONESHOT)
2700				ka->sa.sa_handler = SIG_DFL;
2701
2702			break; /* will return non-zero "signr" value */
2703		}
2704
2705		/*
2706		 * Now we are doing the default action for this signal.
2707		 */
2708		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2709			continue;
2710
2711		/*
2712		 * Global init gets no signals it doesn't want.
2713		 * Container-init gets no signals it doesn't want from same
2714		 * container.
2715		 *
2716		 * Note that if global/container-init sees a sig_kernel_only()
2717		 * signal here, the signal must have been generated internally
2718		 * or must have come from an ancestor namespace. In either
2719		 * case, the signal cannot be dropped.
2720		 */
2721		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2722				!sig_kernel_only(signr))
2723			continue;
2724
2725		if (sig_kernel_stop(signr)) {
2726			/*
2727			 * The default action is to stop all threads in
2728			 * the thread group.  The job control signals
2729			 * do nothing in an orphaned pgrp, but SIGSTOP
2730			 * always works.  Note that siglock needs to be
2731			 * dropped during the call to is_orphaned_pgrp()
2732			 * because of lock ordering with tasklist_lock.
2733			 * This allows an intervening SIGCONT to be posted.
2734			 * We need to check for that and bail out if necessary.
2735			 */
2736			if (signr != SIGSTOP) {
2737				spin_unlock_irq(&sighand->siglock);
2738
2739				/* signals can be posted during this window */
2740
2741				if (is_current_pgrp_orphaned())
2742					goto relock;
2743
2744				spin_lock_irq(&sighand->siglock);
2745			}
2746
2747			if (likely(do_signal_stop(ksig->info.si_signo))) {
2748				/* It released the siglock.  */
2749				goto relock;
2750			}
2751
2752			/*
2753			 * We didn't actually stop, due to a race
2754			 * with SIGCONT or something like that.
2755			 */
2756			continue;
2757		}
2758
2759	fatal:
2760		spin_unlock_irq(&sighand->siglock);
2761		if (unlikely(cgroup_task_frozen(current)))
2762			cgroup_leave_frozen(true);
2763
2764		/*
2765		 * Anything else is fatal, maybe with a core dump.
2766		 */
2767		current->flags |= PF_SIGNALED;
2768
2769		if (sig_kernel_coredump(signr)) {
2770			if (print_fatal_signals)
2771				print_fatal_signal(ksig->info.si_signo);
2772			proc_coredump_connector(current);
2773			/*
2774			 * If it was able to dump core, this kills all
2775			 * other threads in the group and synchronizes with
2776			 * their demise.  If we lost the race with another
2777			 * thread getting here, it set group_exit_code
2778			 * first and our do_group_exit call below will use
2779			 * that value and ignore the one we pass it.
2780			 */
2781			do_coredump(&ksig->info);
2782		}
2783
2784		/*
2785		 * PF_IO_WORKER threads will catch and exit on fatal signals
2786		 * themselves. They have cleanup that must be performed, so
2787		 * we cannot call do_exit() on their behalf.
2788		 */
2789		if (current->flags & PF_IO_WORKER)
2790			goto out;
2791
2792		/*
2793		 * Death signals, no core dump.
2794		 */
2795		do_group_exit(ksig->info.si_signo);
2796		/* NOTREACHED */
2797	}
2798	spin_unlock_irq(&sighand->siglock);
2799out:
2800	ksig->sig = signr;
2801
2802	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2803		hide_si_addr_tag_bits(ksig);
2804
2805	return ksig->sig > 0;
2806}
2807
2808/**
2809 * signal_delivered - 
2810 * @ksig:		kernel signal struct
 
 
 
2811 * @stepping:		nonzero if debugger single-step or block-step in use
2812 *
2813 * This function should be called when a signal has successfully been
2814 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2815 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2816 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2817 */
2818static void signal_delivered(struct ksignal *ksig, int stepping)
 
2819{
2820	sigset_t blocked;
2821
2822	/* A signal was successfully delivered, and the
2823	   saved sigmask was stored on the signal frame,
2824	   and will be restored by sigreturn.  So we can
2825	   simply clear the restore sigmask flag.  */
2826	clear_restore_sigmask();
2827
2828	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2829	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2830		sigaddset(&blocked, ksig->sig);
2831	set_current_blocked(&blocked);
2832	if (current->sas_ss_flags & SS_AUTODISARM)
2833		sas_ss_reset(current);
2834	tracehook_signal_handler(stepping);
2835}
2836
2837void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2838{
2839	if (failed)
2840		force_sigsegv(ksig->sig);
2841	else
2842		signal_delivered(ksig, stepping);
2843}
2844
2845/*
2846 * It could be that complete_signal() picked us to notify about the
2847 * group-wide signal. Other threads should be notified now to take
2848 * the shared signals in @which since we will not.
2849 */
2850static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2851{
2852	sigset_t retarget;
2853	struct task_struct *t;
2854
2855	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2856	if (sigisemptyset(&retarget))
2857		return;
2858
2859	t = tsk;
2860	while_each_thread(tsk, t) {
2861		if (t->flags & PF_EXITING)
2862			continue;
2863
2864		if (!has_pending_signals(&retarget, &t->blocked))
2865			continue;
2866		/* Remove the signals this thread can handle. */
2867		sigandsets(&retarget, &retarget, &t->blocked);
2868
2869		if (!task_sigpending(t))
2870			signal_wake_up(t, 0);
2871
2872		if (sigisemptyset(&retarget))
2873			break;
2874	}
2875}
2876
2877void exit_signals(struct task_struct *tsk)
2878{
2879	int group_stop = 0;
2880	sigset_t unblocked;
2881
2882	/*
2883	 * @tsk is about to have PF_EXITING set - lock out users which
2884	 * expect stable threadgroup.
2885	 */
2886	cgroup_threadgroup_change_begin(tsk);
2887
2888	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2889		tsk->flags |= PF_EXITING;
2890		cgroup_threadgroup_change_end(tsk);
2891		return;
2892	}
2893
2894	spin_lock_irq(&tsk->sighand->siglock);
2895	/*
2896	 * From now this task is not visible for group-wide signals,
2897	 * see wants_signal(), do_signal_stop().
2898	 */
2899	tsk->flags |= PF_EXITING;
2900
2901	cgroup_threadgroup_change_end(tsk);
2902
2903	if (!task_sigpending(tsk))
2904		goto out;
2905
2906	unblocked = tsk->blocked;
2907	signotset(&unblocked);
2908	retarget_shared_pending(tsk, &unblocked);
2909
2910	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2911	    task_participate_group_stop(tsk))
2912		group_stop = CLD_STOPPED;
2913out:
2914	spin_unlock_irq(&tsk->sighand->siglock);
2915
2916	/*
2917	 * If group stop has completed, deliver the notification.  This
2918	 * should always go to the real parent of the group leader.
2919	 */
2920	if (unlikely(group_stop)) {
2921		read_lock(&tasklist_lock);
2922		do_notify_parent_cldstop(tsk, false, group_stop);
2923		read_unlock(&tasklist_lock);
2924	}
2925}
2926
 
 
 
 
 
 
 
 
 
 
 
2927/*
2928 * System call entry points.
2929 */
2930
2931/**
2932 *  sys_restart_syscall - restart a system call
2933 */
2934SYSCALL_DEFINE0(restart_syscall)
2935{
2936	struct restart_block *restart = &current->restart_block;
2937	return restart->fn(restart);
2938}
2939
2940long do_no_restart_syscall(struct restart_block *param)
2941{
2942	return -EINTR;
2943}
2944
2945static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2946{
2947	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
2948		sigset_t newblocked;
2949		/* A set of now blocked but previously unblocked signals. */
2950		sigandnsets(&newblocked, newset, &current->blocked);
2951		retarget_shared_pending(tsk, &newblocked);
2952	}
2953	tsk->blocked = *newset;
2954	recalc_sigpending();
2955}
2956
2957/**
2958 * set_current_blocked - change current->blocked mask
2959 * @newset: new mask
2960 *
2961 * It is wrong to change ->blocked directly, this helper should be used
2962 * to ensure the process can't miss a shared signal we are going to block.
2963 */
2964void set_current_blocked(sigset_t *newset)
2965{
 
2966	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2967	__set_current_blocked(newset);
 
 
2968}
2969
2970void __set_current_blocked(const sigset_t *newset)
2971{
2972	struct task_struct *tsk = current;
2973
2974	/*
2975	 * In case the signal mask hasn't changed, there is nothing we need
2976	 * to do. The current->blocked shouldn't be modified by other task.
2977	 */
2978	if (sigequalsets(&tsk->blocked, newset))
2979		return;
2980
2981	spin_lock_irq(&tsk->sighand->siglock);
2982	__set_task_blocked(tsk, newset);
2983	spin_unlock_irq(&tsk->sighand->siglock);
2984}
2985
2986/*
2987 * This is also useful for kernel threads that want to temporarily
2988 * (or permanently) block certain signals.
2989 *
2990 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2991 * interface happily blocks "unblockable" signals like SIGKILL
2992 * and friends.
2993 */
2994int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2995{
2996	struct task_struct *tsk = current;
2997	sigset_t newset;
2998
2999	/* Lockless, only current can change ->blocked, never from irq */
3000	if (oldset)
3001		*oldset = tsk->blocked;
3002
3003	switch (how) {
3004	case SIG_BLOCK:
3005		sigorsets(&newset, &tsk->blocked, set);
3006		break;
3007	case SIG_UNBLOCK:
3008		sigandnsets(&newset, &tsk->blocked, set);
3009		break;
3010	case SIG_SETMASK:
3011		newset = *set;
3012		break;
3013	default:
3014		return -EINVAL;
3015	}
3016
3017	__set_current_blocked(&newset);
3018	return 0;
3019}
3020EXPORT_SYMBOL(sigprocmask);
3021
3022/*
3023 * The api helps set app-provided sigmasks.
3024 *
3025 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3026 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3027 *
3028 * Note that it does set_restore_sigmask() in advance, so it must be always
3029 * paired with restore_saved_sigmask_unless() before return from syscall.
3030 */
3031int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3032{
3033	sigset_t kmask;
3034
3035	if (!umask)
3036		return 0;
3037	if (sigsetsize != sizeof(sigset_t))
3038		return -EINVAL;
3039	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3040		return -EFAULT;
3041
3042	set_restore_sigmask();
3043	current->saved_sigmask = current->blocked;
3044	set_current_blocked(&kmask);
3045
3046	return 0;
3047}
3048
3049#ifdef CONFIG_COMPAT
3050int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3051			    size_t sigsetsize)
3052{
3053	sigset_t kmask;
3054
3055	if (!umask)
3056		return 0;
3057	if (sigsetsize != sizeof(compat_sigset_t))
3058		return -EINVAL;
3059	if (get_compat_sigset(&kmask, umask))
3060		return -EFAULT;
3061
3062	set_restore_sigmask();
3063	current->saved_sigmask = current->blocked;
3064	set_current_blocked(&kmask);
3065
3066	return 0;
3067}
3068#endif
3069
3070/**
3071 *  sys_rt_sigprocmask - change the list of currently blocked signals
3072 *  @how: whether to add, remove, or set signals
3073 *  @nset: stores pending signals
3074 *  @oset: previous value of signal mask if non-null
3075 *  @sigsetsize: size of sigset_t type
3076 */
3077SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3078		sigset_t __user *, oset, size_t, sigsetsize)
3079{
3080	sigset_t old_set, new_set;
3081	int error;
3082
3083	/* XXX: Don't preclude handling different sized sigset_t's.  */
3084	if (sigsetsize != sizeof(sigset_t))
3085		return -EINVAL;
3086
3087	old_set = current->blocked;
3088
3089	if (nset) {
3090		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3091			return -EFAULT;
3092		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3093
3094		error = sigprocmask(how, &new_set, NULL);
3095		if (error)
3096			return error;
3097	}
3098
3099	if (oset) {
3100		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3101			return -EFAULT;
3102	}
3103
3104	return 0;
3105}
3106
3107#ifdef CONFIG_COMPAT
3108COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3109		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3110{
3111	sigset_t old_set = current->blocked;
 
3112
3113	/* XXX: Don't preclude handling different sized sigset_t's.  */
3114	if (sigsetsize != sizeof(sigset_t))
3115		return -EINVAL;
3116
3117	if (nset) {
3118		sigset_t new_set;
3119		int error;
3120		if (get_compat_sigset(&new_set, nset))
3121			return -EFAULT;
3122		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3123
3124		error = sigprocmask(how, &new_set, NULL);
3125		if (error)
3126			return error;
3127	}
3128	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3129}
3130#endif
3131
3132static void do_sigpending(sigset_t *set)
3133{
3134	spin_lock_irq(&current->sighand->siglock);
3135	sigorsets(set, &current->pending.signal,
3136		  &current->signal->shared_pending.signal);
3137	spin_unlock_irq(&current->sighand->siglock);
3138
3139	/* Outside the lock because only this thread touches it.  */
3140	sigandsets(set, &current->blocked, set);
 
 
 
 
 
 
 
3141}
3142
3143/**
3144 *  sys_rt_sigpending - examine a pending signal that has been raised
3145 *			while blocked
3146 *  @uset: stores pending signals
3147 *  @sigsetsize: size of sigset_t type or larger
3148 */
3149SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3150{
3151	sigset_t set;
3152
3153	if (sigsetsize > sizeof(*uset))
3154		return -EINVAL;
3155
3156	do_sigpending(&set);
3157
3158	if (copy_to_user(uset, &set, sigsetsize))
3159		return -EFAULT;
3160
3161	return 0;
3162}
3163
3164#ifdef CONFIG_COMPAT
3165COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3166		compat_size_t, sigsetsize)
3167{
3168	sigset_t set;
3169
3170	if (sigsetsize > sizeof(*uset))
3171		return -EINVAL;
3172
3173	do_sigpending(&set);
3174
3175	return put_compat_sigset(uset, &set, sigsetsize);
3176}
3177#endif
3178
3179static const struct {
3180	unsigned char limit, layout;
3181} sig_sicodes[] = {
3182	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3183	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3184	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3185	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3186	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3187#if defined(SIGEMT)
3188	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3189#endif
3190	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3191	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3192	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3193};
3194
3195static bool known_siginfo_layout(unsigned sig, int si_code)
3196{
3197	if (si_code == SI_KERNEL)
3198		return true;
3199	else if ((si_code > SI_USER)) {
3200		if (sig_specific_sicodes(sig)) {
3201			if (si_code <= sig_sicodes[sig].limit)
3202				return true;
3203		}
3204		else if (si_code <= NSIGPOLL)
3205			return true;
3206	}
3207	else if (si_code >= SI_DETHREAD)
3208		return true;
3209	else if (si_code == SI_ASYNCNL)
3210		return true;
3211	return false;
3212}
3213
3214enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3215{
3216	enum siginfo_layout layout = SIL_KILL;
3217	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3218		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3219		    (si_code <= sig_sicodes[sig].limit)) {
3220			layout = sig_sicodes[sig].layout;
3221			/* Handle the exceptions */
3222			if ((sig == SIGBUS) &&
3223			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3224				layout = SIL_FAULT_MCEERR;
3225			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3226				layout = SIL_FAULT_BNDERR;
3227#ifdef SEGV_PKUERR
3228			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3229				layout = SIL_FAULT_PKUERR;
3230#endif
3231			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3232				layout = SIL_PERF_EVENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3233#ifdef __ARCH_SI_TRAPNO
3234			else if (layout == SIL_FAULT)
3235				layout = SIL_FAULT_TRAPNO;
3236#endif
3237		}
3238		else if (si_code <= NSIGPOLL)
3239			layout = SIL_POLL;
3240	} else {
3241		if (si_code == SI_TIMER)
3242			layout = SIL_TIMER;
3243		else if (si_code == SI_SIGIO)
3244			layout = SIL_POLL;
3245		else if (si_code < 0)
3246			layout = SIL_RT;
3247	}
3248	return layout;
3249}
3250
3251static inline char __user *si_expansion(const siginfo_t __user *info)
3252{
3253	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3254}
3255
3256int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3257{
3258	char __user *expansion = si_expansion(to);
3259	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3260		return -EFAULT;
3261	if (clear_user(expansion, SI_EXPANSION_SIZE))
3262		return -EFAULT;
3263	return 0;
3264}
3265
3266static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3267				       const siginfo_t __user *from)
3268{
3269	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3270		char __user *expansion = si_expansion(from);
3271		char buf[SI_EXPANSION_SIZE];
3272		int i;
3273		/*
3274		 * An unknown si_code might need more than
3275		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3276		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3277		 * will return this data to userspace exactly.
3278		 */
3279		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3280			return -EFAULT;
3281		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3282			if (buf[i] != 0)
3283				return -E2BIG;
3284		}
3285	}
3286	return 0;
3287}
3288
3289static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3290				    const siginfo_t __user *from)
3291{
3292	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3293		return -EFAULT;
3294	to->si_signo = signo;
3295	return post_copy_siginfo_from_user(to, from);
3296}
3297
3298int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3299{
3300	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3301		return -EFAULT;
3302	return post_copy_siginfo_from_user(to, from);
3303}
3304
3305#ifdef CONFIG_COMPAT
3306/**
3307 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3308 * @to: compat siginfo destination
3309 * @from: kernel siginfo source
3310 *
3311 * Note: This function does not work properly for the SIGCHLD on x32, but
3312 * fortunately it doesn't have to.  The only valid callers for this function are
3313 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3314 * The latter does not care because SIGCHLD will never cause a coredump.
3315 */
3316void copy_siginfo_to_external32(struct compat_siginfo *to,
3317		const struct kernel_siginfo *from)
3318{
3319	memset(to, 0, sizeof(*to));
3320
3321	to->si_signo = from->si_signo;
3322	to->si_errno = from->si_errno;
3323	to->si_code  = from->si_code;
3324	switch(siginfo_layout(from->si_signo, from->si_code)) {
3325	case SIL_KILL:
3326		to->si_pid = from->si_pid;
3327		to->si_uid = from->si_uid;
3328		break;
3329	case SIL_TIMER:
3330		to->si_tid     = from->si_tid;
3331		to->si_overrun = from->si_overrun;
3332		to->si_int     = from->si_int;
 
 
3333		break;
3334	case SIL_POLL:
3335		to->si_band = from->si_band;
3336		to->si_fd   = from->si_fd;
 
 
3337		break;
3338	case SIL_FAULT:
3339		to->si_addr = ptr_to_compat(from->si_addr);
 
 
 
3340		break;
3341	case SIL_FAULT_TRAPNO:
3342		to->si_addr = ptr_to_compat(from->si_addr);
3343		to->si_trapno = from->si_trapno;
3344		break;
3345	case SIL_FAULT_MCEERR:
3346		to->si_addr = ptr_to_compat(from->si_addr);
3347		to->si_addr_lsb = from->si_addr_lsb;
3348		break;
3349	case SIL_FAULT_BNDERR:
3350		to->si_addr = ptr_to_compat(from->si_addr);
3351		to->si_lower = ptr_to_compat(from->si_lower);
3352		to->si_upper = ptr_to_compat(from->si_upper);
3353		break;
3354	case SIL_FAULT_PKUERR:
3355		to->si_addr = ptr_to_compat(from->si_addr);
3356		to->si_pkey = from->si_pkey;
3357		break;
3358	case SIL_PERF_EVENT:
3359		to->si_addr = ptr_to_compat(from->si_addr);
3360		to->si_perf_data = from->si_perf_data;
3361		to->si_perf_type = from->si_perf_type;
3362		break;
3363	case SIL_CHLD:
3364		to->si_pid = from->si_pid;
3365		to->si_uid = from->si_uid;
3366		to->si_status = from->si_status;
3367		to->si_utime = from->si_utime;
3368		to->si_stime = from->si_stime;
3369		break;
3370	case SIL_RT:
3371		to->si_pid = from->si_pid;
3372		to->si_uid = from->si_uid;
3373		to->si_int = from->si_int;
3374		break;
3375	case SIL_SYS:
3376		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3377		to->si_syscall   = from->si_syscall;
3378		to->si_arch      = from->si_arch;
3379		break;
3380	}
 
3381}
3382
3383int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3384			   const struct kernel_siginfo *from)
3385{
3386	struct compat_siginfo new;
3387
3388	copy_siginfo_to_external32(&new, from);
3389	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3390		return -EFAULT;
3391	return 0;
3392}
3393
3394static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3395					 const struct compat_siginfo *from)
3396{
3397	clear_siginfo(to);
3398	to->si_signo = from->si_signo;
3399	to->si_errno = from->si_errno;
3400	to->si_code  = from->si_code;
3401	switch(siginfo_layout(from->si_signo, from->si_code)) {
3402	case SIL_KILL:
3403		to->si_pid = from->si_pid;
3404		to->si_uid = from->si_uid;
3405		break;
3406	case SIL_TIMER:
3407		to->si_tid     = from->si_tid;
3408		to->si_overrun = from->si_overrun;
3409		to->si_int     = from->si_int;
3410		break;
3411	case SIL_POLL:
3412		to->si_band = from->si_band;
3413		to->si_fd   = from->si_fd;
3414		break;
3415	case SIL_FAULT:
3416		to->si_addr = compat_ptr(from->si_addr);
3417		break;
3418	case SIL_FAULT_TRAPNO:
3419		to->si_addr = compat_ptr(from->si_addr);
3420		to->si_trapno = from->si_trapno;
3421		break;
3422	case SIL_FAULT_MCEERR:
3423		to->si_addr = compat_ptr(from->si_addr);
3424		to->si_addr_lsb = from->si_addr_lsb;
3425		break;
3426	case SIL_FAULT_BNDERR:
3427		to->si_addr = compat_ptr(from->si_addr);
3428		to->si_lower = compat_ptr(from->si_lower);
3429		to->si_upper = compat_ptr(from->si_upper);
3430		break;
3431	case SIL_FAULT_PKUERR:
3432		to->si_addr = compat_ptr(from->si_addr);
3433		to->si_pkey = from->si_pkey;
3434		break;
3435	case SIL_PERF_EVENT:
3436		to->si_addr = compat_ptr(from->si_addr);
3437		to->si_perf_data = from->si_perf_data;
3438		to->si_perf_type = from->si_perf_type;
3439		break;
3440	case SIL_CHLD:
3441		to->si_pid    = from->si_pid;
3442		to->si_uid    = from->si_uid;
3443		to->si_status = from->si_status;
3444#ifdef CONFIG_X86_X32_ABI
3445		if (in_x32_syscall()) {
3446			to->si_utime = from->_sifields._sigchld_x32._utime;
3447			to->si_stime = from->_sifields._sigchld_x32._stime;
3448		} else
3449#endif
3450		{
3451			to->si_utime = from->si_utime;
3452			to->si_stime = from->si_stime;
3453		}
3454		break;
3455	case SIL_RT:
3456		to->si_pid = from->si_pid;
3457		to->si_uid = from->si_uid;
3458		to->si_int = from->si_int;
3459		break;
3460	case SIL_SYS:
3461		to->si_call_addr = compat_ptr(from->si_call_addr);
3462		to->si_syscall   = from->si_syscall;
3463		to->si_arch      = from->si_arch;
3464		break;
3465	}
3466	return 0;
3467}
3468
3469static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3470				      const struct compat_siginfo __user *ufrom)
3471{
3472	struct compat_siginfo from;
3473
3474	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3475		return -EFAULT;
3476
3477	from.si_signo = signo;
3478	return post_copy_siginfo_from_user32(to, &from);
3479}
3480
3481int copy_siginfo_from_user32(struct kernel_siginfo *to,
3482			     const struct compat_siginfo __user *ufrom)
3483{
3484	struct compat_siginfo from;
3485
3486	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3487		return -EFAULT;
3488
3489	return post_copy_siginfo_from_user32(to, &from);
3490}
3491#endif /* CONFIG_COMPAT */
3492
3493/**
3494 *  do_sigtimedwait - wait for queued signals specified in @which
3495 *  @which: queued signals to wait for
3496 *  @info: if non-null, the signal's siginfo is returned here
3497 *  @ts: upper bound on process time suspension
3498 */
3499static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3500		    const struct timespec64 *ts)
3501{
3502	ktime_t *to = NULL, timeout = KTIME_MAX;
3503	struct task_struct *tsk = current;
 
3504	sigset_t mask = *which;
3505	int sig, ret = 0;
3506
3507	if (ts) {
3508		if (!timespec64_valid(ts))
3509			return -EINVAL;
3510		timeout = timespec64_to_ktime(*ts);
3511		to = &timeout;
 
 
 
 
 
3512	}
3513
3514	/*
3515	 * Invert the set of allowed signals to get those we want to block.
3516	 */
3517	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3518	signotset(&mask);
3519
3520	spin_lock_irq(&tsk->sighand->siglock);
3521	sig = dequeue_signal(tsk, &mask, info);
3522	if (!sig && timeout) {
3523		/*
3524		 * None ready, temporarily unblock those we're interested
3525		 * while we are sleeping in so that we'll be awakened when
3526		 * they arrive. Unblocking is always fine, we can avoid
3527		 * set_current_blocked().
3528		 */
3529		tsk->real_blocked = tsk->blocked;
3530		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3531		recalc_sigpending();
3532		spin_unlock_irq(&tsk->sighand->siglock);
3533
3534		__set_current_state(TASK_INTERRUPTIBLE);
3535		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3536							 HRTIMER_MODE_REL);
3537		spin_lock_irq(&tsk->sighand->siglock);
3538		__set_task_blocked(tsk, &tsk->real_blocked);
3539		sigemptyset(&tsk->real_blocked);
3540		sig = dequeue_signal(tsk, &mask, info);
3541	}
3542	spin_unlock_irq(&tsk->sighand->siglock);
3543
3544	if (sig)
3545		return sig;
3546	return ret ? -EINTR : -EAGAIN;
3547}
3548
3549/**
3550 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3551 *			in @uthese
3552 *  @uthese: queued signals to wait for
3553 *  @uinfo: if non-null, the signal's siginfo is returned here
3554 *  @uts: upper bound on process time suspension
3555 *  @sigsetsize: size of sigset_t type
3556 */
3557SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3558		siginfo_t __user *, uinfo,
3559		const struct __kernel_timespec __user *, uts,
3560		size_t, sigsetsize)
3561{
3562	sigset_t these;
3563	struct timespec64 ts;
3564	kernel_siginfo_t info;
3565	int ret;
3566
3567	/* XXX: Don't preclude handling different sized sigset_t's.  */
3568	if (sigsetsize != sizeof(sigset_t))
3569		return -EINVAL;
3570
3571	if (copy_from_user(&these, uthese, sizeof(these)))
3572		return -EFAULT;
3573
3574	if (uts) {
3575		if (get_timespec64(&ts, uts))
3576			return -EFAULT;
3577	}
3578
3579	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3580
3581	if (ret > 0 && uinfo) {
3582		if (copy_siginfo_to_user(uinfo, &info))
3583			ret = -EFAULT;
3584	}
3585
3586	return ret;
3587}
3588
3589#ifdef CONFIG_COMPAT_32BIT_TIME
3590SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3591		siginfo_t __user *, uinfo,
3592		const struct old_timespec32 __user *, uts,
3593		size_t, sigsetsize)
3594{
3595	sigset_t these;
3596	struct timespec64 ts;
3597	kernel_siginfo_t info;
3598	int ret;
3599
3600	if (sigsetsize != sizeof(sigset_t))
3601		return -EINVAL;
3602
3603	if (copy_from_user(&these, uthese, sizeof(these)))
3604		return -EFAULT;
3605
3606	if (uts) {
3607		if (get_old_timespec32(&ts, uts))
3608			return -EFAULT;
3609	}
3610
3611	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3612
3613	if (ret > 0 && uinfo) {
3614		if (copy_siginfo_to_user(uinfo, &info))
3615			ret = -EFAULT;
3616	}
3617
3618	return ret;
3619}
3620#endif
3621
3622#ifdef CONFIG_COMPAT
3623COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3624		struct compat_siginfo __user *, uinfo,
3625		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3626{
3627	sigset_t s;
3628	struct timespec64 t;
3629	kernel_siginfo_t info;
3630	long ret;
3631
3632	if (sigsetsize != sizeof(sigset_t))
3633		return -EINVAL;
3634
3635	if (get_compat_sigset(&s, uthese))
3636		return -EFAULT;
3637
3638	if (uts) {
3639		if (get_timespec64(&t, uts))
3640			return -EFAULT;
3641	}
3642
3643	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3644
3645	if (ret > 0 && uinfo) {
3646		if (copy_siginfo_to_user32(uinfo, &info))
3647			ret = -EFAULT;
3648	}
3649
3650	return ret;
3651}
3652
3653#ifdef CONFIG_COMPAT_32BIT_TIME
3654COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3655		struct compat_siginfo __user *, uinfo,
3656		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3657{
3658	sigset_t s;
3659	struct timespec64 t;
3660	kernel_siginfo_t info;
3661	long ret;
3662
3663	if (sigsetsize != sizeof(sigset_t))
3664		return -EINVAL;
3665
3666	if (get_compat_sigset(&s, uthese))
3667		return -EFAULT;
3668
3669	if (uts) {
3670		if (get_old_timespec32(&t, uts))
3671			return -EFAULT;
3672	}
3673
3674	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3675
3676	if (ret > 0 && uinfo) {
3677		if (copy_siginfo_to_user32(uinfo, &info))
3678			ret = -EFAULT;
3679	}
3680
3681	return ret;
3682}
3683#endif
3684#endif
3685
3686static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3687{
3688	clear_siginfo(info);
3689	info->si_signo = sig;
3690	info->si_errno = 0;
3691	info->si_code = SI_USER;
3692	info->si_pid = task_tgid_vnr(current);
3693	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3694}
3695
3696/**
3697 *  sys_kill - send a signal to a process
3698 *  @pid: the PID of the process
3699 *  @sig: signal to be sent
3700 */
3701SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3702{
3703	struct kernel_siginfo info;
3704
3705	prepare_kill_siginfo(sig, &info);
 
 
 
 
3706
3707	return kill_something_info(sig, &info, pid);
3708}
3709
3710/*
3711 * Verify that the signaler and signalee either are in the same pid namespace
3712 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3713 * namespace.
3714 */
3715static bool access_pidfd_pidns(struct pid *pid)
3716{
3717	struct pid_namespace *active = task_active_pid_ns(current);
3718	struct pid_namespace *p = ns_of_pid(pid);
3719
3720	for (;;) {
3721		if (!p)
3722			return false;
3723		if (p == active)
3724			break;
3725		p = p->parent;
3726	}
3727
3728	return true;
3729}
3730
3731static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3732		siginfo_t __user *info)
3733{
3734#ifdef CONFIG_COMPAT
3735	/*
3736	 * Avoid hooking up compat syscalls and instead handle necessary
3737	 * conversions here. Note, this is a stop-gap measure and should not be
3738	 * considered a generic solution.
3739	 */
3740	if (in_compat_syscall())
3741		return copy_siginfo_from_user32(
3742			kinfo, (struct compat_siginfo __user *)info);
3743#endif
3744	return copy_siginfo_from_user(kinfo, info);
3745}
3746
3747static struct pid *pidfd_to_pid(const struct file *file)
3748{
3749	struct pid *pid;
3750
3751	pid = pidfd_pid(file);
3752	if (!IS_ERR(pid))
3753		return pid;
3754
3755	return tgid_pidfd_to_pid(file);
3756}
3757
3758/**
3759 * sys_pidfd_send_signal - Signal a process through a pidfd
3760 * @pidfd:  file descriptor of the process
3761 * @sig:    signal to send
3762 * @info:   signal info
3763 * @flags:  future flags
3764 *
3765 * The syscall currently only signals via PIDTYPE_PID which covers
3766 * kill(<positive-pid>, <signal>. It does not signal threads or process
3767 * groups.
3768 * In order to extend the syscall to threads and process groups the @flags
3769 * argument should be used. In essence, the @flags argument will determine
3770 * what is signaled and not the file descriptor itself. Put in other words,
3771 * grouping is a property of the flags argument not a property of the file
3772 * descriptor.
3773 *
3774 * Return: 0 on success, negative errno on failure
3775 */
3776SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3777		siginfo_t __user *, info, unsigned int, flags)
3778{
3779	int ret;
3780	struct fd f;
3781	struct pid *pid;
3782	kernel_siginfo_t kinfo;
3783
3784	/* Enforce flags be set to 0 until we add an extension. */
3785	if (flags)
3786		return -EINVAL;
3787
3788	f = fdget(pidfd);
3789	if (!f.file)
3790		return -EBADF;
3791
3792	/* Is this a pidfd? */
3793	pid = pidfd_to_pid(f.file);
3794	if (IS_ERR(pid)) {
3795		ret = PTR_ERR(pid);
3796		goto err;
3797	}
3798
3799	ret = -EINVAL;
3800	if (!access_pidfd_pidns(pid))
3801		goto err;
3802
3803	if (info) {
3804		ret = copy_siginfo_from_user_any(&kinfo, info);
3805		if (unlikely(ret))
3806			goto err;
3807
3808		ret = -EINVAL;
3809		if (unlikely(sig != kinfo.si_signo))
3810			goto err;
3811
3812		/* Only allow sending arbitrary signals to yourself. */
3813		ret = -EPERM;
3814		if ((task_pid(current) != pid) &&
3815		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3816			goto err;
3817	} else {
3818		prepare_kill_siginfo(sig, &kinfo);
3819	}
3820
3821	ret = kill_pid_info(sig, &kinfo, pid);
3822
3823err:
3824	fdput(f);
3825	return ret;
3826}
3827
3828static int
3829do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3830{
3831	struct task_struct *p;
3832	int error = -ESRCH;
3833
3834	rcu_read_lock();
3835	p = find_task_by_vpid(pid);
3836	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3837		error = check_kill_permission(sig, info, p);
3838		/*
3839		 * The null signal is a permissions and process existence
3840		 * probe.  No signal is actually delivered.
3841		 */
3842		if (!error && sig) {
3843			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3844			/*
3845			 * If lock_task_sighand() failed we pretend the task
3846			 * dies after receiving the signal. The window is tiny,
3847			 * and the signal is private anyway.
3848			 */
3849			if (unlikely(error == -ESRCH))
3850				error = 0;
3851		}
3852	}
3853	rcu_read_unlock();
3854
3855	return error;
3856}
3857
3858static int do_tkill(pid_t tgid, pid_t pid, int sig)
3859{
3860	struct kernel_siginfo info;
3861
3862	clear_siginfo(&info);
3863	info.si_signo = sig;
3864	info.si_errno = 0;
3865	info.si_code = SI_TKILL;
3866	info.si_pid = task_tgid_vnr(current);
3867	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3868
3869	return do_send_specific(tgid, pid, sig, &info);
3870}
3871
3872/**
3873 *  sys_tgkill - send signal to one specific thread
3874 *  @tgid: the thread group ID of the thread
3875 *  @pid: the PID of the thread
3876 *  @sig: signal to be sent
3877 *
3878 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3879 *  exists but it's not belonging to the target process anymore. This
3880 *  method solves the problem of threads exiting and PIDs getting reused.
3881 */
3882SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3883{
3884	/* This is only valid for single tasks */
3885	if (pid <= 0 || tgid <= 0)
3886		return -EINVAL;
3887
3888	return do_tkill(tgid, pid, sig);
3889}
3890
3891/**
3892 *  sys_tkill - send signal to one specific task
3893 *  @pid: the PID of the task
3894 *  @sig: signal to be sent
3895 *
3896 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3897 */
3898SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3899{
3900	/* This is only valid for single tasks */
3901	if (pid <= 0)
3902		return -EINVAL;
3903
3904	return do_tkill(0, pid, sig);
3905}
3906
3907static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3908{
3909	/* Not even root can pretend to send signals from the kernel.
3910	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3911	 */
3912	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3913	    (task_pid_vnr(current) != pid))
3914		return -EPERM;
3915
3916	/* POSIX.1b doesn't mention process groups.  */
3917	return kill_proc_info(sig, info, pid);
3918}
3919
3920/**
3921 *  sys_rt_sigqueueinfo - send signal information to a signal
3922 *  @pid: the PID of the thread
3923 *  @sig: signal to be sent
3924 *  @uinfo: signal info to be sent
3925 */
3926SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3927		siginfo_t __user *, uinfo)
3928{
3929	kernel_siginfo_t info;
3930	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3931	if (unlikely(ret))
3932		return ret;
3933	return do_rt_sigqueueinfo(pid, sig, &info);
3934}
 
 
 
 
 
 
 
 
3935
3936#ifdef CONFIG_COMPAT
3937COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3938			compat_pid_t, pid,
3939			int, sig,
3940			struct compat_siginfo __user *, uinfo)
3941{
3942	kernel_siginfo_t info;
3943	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3944	if (unlikely(ret))
3945		return ret;
3946	return do_rt_sigqueueinfo(pid, sig, &info);
3947}
3948#endif
3949
3950static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3951{
3952	/* This is only valid for single tasks */
3953	if (pid <= 0 || tgid <= 0)
3954		return -EINVAL;
3955
3956	/* Not even root can pretend to send signals from the kernel.
3957	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3958	 */
3959	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3960	    (task_pid_vnr(current) != pid))
 
3961		return -EPERM;
 
 
3962
3963	return do_send_specific(tgid, pid, sig, info);
3964}
3965
3966SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3967		siginfo_t __user *, uinfo)
3968{
3969	kernel_siginfo_t info;
3970	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3971	if (unlikely(ret))
3972		return ret;
3973	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3974}
3975
3976#ifdef CONFIG_COMPAT
3977COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3978			compat_pid_t, tgid,
3979			compat_pid_t, pid,
3980			int, sig,
3981			struct compat_siginfo __user *, uinfo)
3982{
3983	kernel_siginfo_t info;
3984	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3985	if (unlikely(ret))
3986		return ret;
3987	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3988}
3989#endif
3990
3991/*
3992 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3993 */
3994void kernel_sigaction(int sig, __sighandler_t action)
3995{
3996	spin_lock_irq(&current->sighand->siglock);
3997	current->sighand->action[sig - 1].sa.sa_handler = action;
3998	if (action == SIG_IGN) {
3999		sigset_t mask;
4000
4001		sigemptyset(&mask);
4002		sigaddset(&mask, sig);
4003
4004		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4005		flush_sigqueue_mask(&mask, &current->pending);
4006		recalc_sigpending();
4007	}
4008	spin_unlock_irq(&current->sighand->siglock);
4009}
4010EXPORT_SYMBOL(kernel_sigaction);
4011
4012void __weak sigaction_compat_abi(struct k_sigaction *act,
4013		struct k_sigaction *oact)
4014{
4015}
4016
4017int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4018{
4019	struct task_struct *p = current, *t;
4020	struct k_sigaction *k;
4021	sigset_t mask;
4022
4023	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4024		return -EINVAL;
4025
4026	k = &p->sighand->action[sig-1];
4027
4028	spin_lock_irq(&p->sighand->siglock);
4029	if (oact)
4030		*oact = *k;
4031
4032	/*
4033	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4034	 * e.g. by having an architecture use the bit in their uapi.
4035	 */
4036	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4037
4038	/*
4039	 * Clear unknown flag bits in order to allow userspace to detect missing
4040	 * support for flag bits and to allow the kernel to use non-uapi bits
4041	 * internally.
4042	 */
4043	if (act)
4044		act->sa.sa_flags &= UAPI_SA_FLAGS;
4045	if (oact)
4046		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4047
4048	sigaction_compat_abi(act, oact);
4049
4050	if (act) {
4051		sigdelsetmask(&act->sa.sa_mask,
4052			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4053		*k = *act;
4054		/*
4055		 * POSIX 3.3.1.3:
4056		 *  "Setting a signal action to SIG_IGN for a signal that is
4057		 *   pending shall cause the pending signal to be discarded,
4058		 *   whether or not it is blocked."
4059		 *
4060		 *  "Setting a signal action to SIG_DFL for a signal that is
4061		 *   pending and whose default action is to ignore the signal
4062		 *   (for example, SIGCHLD), shall cause the pending signal to
4063		 *   be discarded, whether or not it is blocked"
4064		 */
4065		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4066			sigemptyset(&mask);
4067			sigaddset(&mask, sig);
4068			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4069			for_each_thread(p, t)
4070				flush_sigqueue_mask(&mask, &t->pending);
 
 
4071		}
4072	}
4073
4074	spin_unlock_irq(&p->sighand->siglock);
4075	return 0;
4076}
4077
4078static int
4079do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4080		size_t min_ss_size)
4081{
4082	struct task_struct *t = current;
 
4083
4084	if (oss) {
4085		memset(oss, 0, sizeof(stack_t));
4086		oss->ss_sp = (void __user *) t->sas_ss_sp;
4087		oss->ss_size = t->sas_ss_size;
4088		oss->ss_flags = sas_ss_flags(sp) |
4089			(current->sas_ss_flags & SS_FLAG_BITS);
4090	}
 
4091
4092	if (ss) {
4093		void __user *ss_sp = ss->ss_sp;
4094		size_t ss_size = ss->ss_size;
4095		unsigned ss_flags = ss->ss_flags;
4096		int ss_mode;
 
 
 
4097
4098		if (unlikely(on_sig_stack(sp)))
4099			return -EPERM;
 
4100
4101		ss_mode = ss_flags & ~SS_FLAG_BITS;
4102		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4103				ss_mode != 0))
4104			return -EINVAL;
 
 
 
 
 
 
4105
4106		if (ss_mode == SS_DISABLE) {
4107			ss_size = 0;
4108			ss_sp = NULL;
4109		} else {
4110			if (unlikely(ss_size < min_ss_size))
4111				return -ENOMEM;
 
4112		}
4113
4114		t->sas_ss_sp = (unsigned long) ss_sp;
4115		t->sas_ss_size = ss_size;
4116		t->sas_ss_flags = ss_flags;
4117	}
4118	return 0;
4119}
4120
4121SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4122{
4123	stack_t new, old;
4124	int err;
4125	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4126		return -EFAULT;
4127	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4128			      current_user_stack_pointer(),
4129			      MINSIGSTKSZ);
4130	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4131		err = -EFAULT;
4132	return err;
4133}
4134
4135int restore_altstack(const stack_t __user *uss)
4136{
4137	stack_t new;
4138	if (copy_from_user(&new, uss, sizeof(stack_t)))
4139		return -EFAULT;
4140	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4141			     MINSIGSTKSZ);
4142	/* squash all but EFAULT for now */
4143	return 0;
4144}
4145
4146int __save_altstack(stack_t __user *uss, unsigned long sp)
4147{
4148	struct task_struct *t = current;
4149	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4150		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4151		__put_user(t->sas_ss_size, &uss->ss_size);
4152	return err;
4153}
4154
4155#ifdef CONFIG_COMPAT
4156static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4157				 compat_stack_t __user *uoss_ptr)
4158{
4159	stack_t uss, uoss;
4160	int ret;
4161
4162	if (uss_ptr) {
4163		compat_stack_t uss32;
4164		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4165			return -EFAULT;
4166		uss.ss_sp = compat_ptr(uss32.ss_sp);
4167		uss.ss_flags = uss32.ss_flags;
4168		uss.ss_size = uss32.ss_size;
4169	}
4170	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4171			     compat_user_stack_pointer(),
4172			     COMPAT_MINSIGSTKSZ);
4173	if (ret >= 0 && uoss_ptr)  {
4174		compat_stack_t old;
4175		memset(&old, 0, sizeof(old));
4176		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4177		old.ss_flags = uoss.ss_flags;
4178		old.ss_size = uoss.ss_size;
4179		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4180			ret = -EFAULT;
4181	}
4182	return ret;
4183}
4184
4185COMPAT_SYSCALL_DEFINE2(sigaltstack,
4186			const compat_stack_t __user *, uss_ptr,
4187			compat_stack_t __user *, uoss_ptr)
4188{
4189	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4190}
4191
4192int compat_restore_altstack(const compat_stack_t __user *uss)
4193{
4194	int err = do_compat_sigaltstack(uss, NULL);
4195	/* squash all but -EFAULT for now */
4196	return err == -EFAULT ? err : 0;
4197}
4198
4199int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4200{
4201	int err;
4202	struct task_struct *t = current;
4203	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4204			 &uss->ss_sp) |
4205		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4206		__put_user(t->sas_ss_size, &uss->ss_size);
4207	return err;
4208}
4209#endif
4210
4211#ifdef __ARCH_WANT_SYS_SIGPENDING
4212
4213/**
4214 *  sys_sigpending - examine pending signals
4215 *  @uset: where mask of pending signal is returned
4216 */
4217SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4218{
4219	sigset_t set;
4220
4221	if (sizeof(old_sigset_t) > sizeof(*uset))
4222		return -EINVAL;
4223
4224	do_sigpending(&set);
4225
4226	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4227		return -EFAULT;
4228
4229	return 0;
4230}
4231
4232#ifdef CONFIG_COMPAT
4233COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4234{
4235	sigset_t set;
4236
4237	do_sigpending(&set);
4238
4239	return put_user(set.sig[0], set32);
4240}
4241#endif
4242
4243#endif
4244
4245#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4246/**
4247 *  sys_sigprocmask - examine and change blocked signals
4248 *  @how: whether to add, remove, or set signals
4249 *  @nset: signals to add or remove (if non-null)
4250 *  @oset: previous value of signal mask if non-null
4251 *
4252 * Some platforms have their own version with special arguments;
4253 * others support only sys_rt_sigprocmask.
4254 */
4255
4256SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4257		old_sigset_t __user *, oset)
4258{
4259	old_sigset_t old_set, new_set;
4260	sigset_t new_blocked;
4261
4262	old_set = current->blocked.sig[0];
4263
4264	if (nset) {
4265		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4266			return -EFAULT;
 
4267
4268		new_blocked = current->blocked;
4269
4270		switch (how) {
4271		case SIG_BLOCK:
4272			sigaddsetmask(&new_blocked, new_set);
4273			break;
4274		case SIG_UNBLOCK:
4275			sigdelsetmask(&new_blocked, new_set);
4276			break;
4277		case SIG_SETMASK:
4278			new_blocked.sig[0] = new_set;
4279			break;
4280		default:
4281			return -EINVAL;
4282		}
4283
4284		set_current_blocked(&new_blocked);
4285	}
4286
4287	if (oset) {
4288		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4289			return -EFAULT;
4290	}
4291
4292	return 0;
4293}
4294#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4295
4296#ifndef CONFIG_ODD_RT_SIGACTION
4297/**
4298 *  sys_rt_sigaction - alter an action taken by a process
4299 *  @sig: signal to be sent
4300 *  @act: new sigaction
4301 *  @oact: used to save the previous sigaction
4302 *  @sigsetsize: size of sigset_t type
4303 */
4304SYSCALL_DEFINE4(rt_sigaction, int, sig,
4305		const struct sigaction __user *, act,
4306		struct sigaction __user *, oact,
4307		size_t, sigsetsize)
4308{
4309	struct k_sigaction new_sa, old_sa;
4310	int ret;
4311
4312	/* XXX: Don't preclude handling different sized sigset_t's.  */
4313	if (sigsetsize != sizeof(sigset_t))
4314		return -EINVAL;
4315
4316	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4317		return -EFAULT;
4318
4319	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4320	if (ret)
4321		return ret;
4322
4323	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4324		return -EFAULT;
4325
4326	return 0;
4327}
4328#ifdef CONFIG_COMPAT
4329COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4330		const struct compat_sigaction __user *, act,
4331		struct compat_sigaction __user *, oact,
4332		compat_size_t, sigsetsize)
4333{
4334	struct k_sigaction new_ka, old_ka;
4335#ifdef __ARCH_HAS_SA_RESTORER
4336	compat_uptr_t restorer;
4337#endif
4338	int ret;
4339
4340	/* XXX: Don't preclude handling different sized sigset_t's.  */
4341	if (sigsetsize != sizeof(compat_sigset_t))
4342		return -EINVAL;
4343
4344	if (act) {
4345		compat_uptr_t handler;
4346		ret = get_user(handler, &act->sa_handler);
4347		new_ka.sa.sa_handler = compat_ptr(handler);
4348#ifdef __ARCH_HAS_SA_RESTORER
4349		ret |= get_user(restorer, &act->sa_restorer);
4350		new_ka.sa.sa_restorer = compat_ptr(restorer);
4351#endif
4352		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4353		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4354		if (ret)
4355			return -EFAULT;
4356	}
4357
4358	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4359	if (!ret && oact) {
4360		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4361			       &oact->sa_handler);
4362		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4363					 sizeof(oact->sa_mask));
4364		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4365#ifdef __ARCH_HAS_SA_RESTORER
4366		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4367				&oact->sa_restorer);
4368#endif
4369	}
4370	return ret;
4371}
4372#endif
4373#endif /* !CONFIG_ODD_RT_SIGACTION */
4374
4375#ifdef CONFIG_OLD_SIGACTION
4376SYSCALL_DEFINE3(sigaction, int, sig,
4377		const struct old_sigaction __user *, act,
4378	        struct old_sigaction __user *, oact)
4379{
4380	struct k_sigaction new_ka, old_ka;
4381	int ret;
4382
4383	if (act) {
4384		old_sigset_t mask;
4385		if (!access_ok(act, sizeof(*act)) ||
4386		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4387		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4388		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4389		    __get_user(mask, &act->sa_mask))
4390			return -EFAULT;
4391#ifdef __ARCH_HAS_KA_RESTORER
4392		new_ka.ka_restorer = NULL;
4393#endif
4394		siginitset(&new_ka.sa.sa_mask, mask);
4395	}
4396
4397	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4398
4399	if (!ret && oact) {
4400		if (!access_ok(oact, sizeof(*oact)) ||
4401		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4402		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4403		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4404		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4405			return -EFAULT;
4406	}
4407
4408	return ret;
4409}
4410#endif
4411#ifdef CONFIG_COMPAT_OLD_SIGACTION
4412COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4413		const struct compat_old_sigaction __user *, act,
4414	        struct compat_old_sigaction __user *, oact)
4415{
4416	struct k_sigaction new_ka, old_ka;
4417	int ret;
4418	compat_old_sigset_t mask;
4419	compat_uptr_t handler, restorer;
4420
4421	if (act) {
4422		if (!access_ok(act, sizeof(*act)) ||
4423		    __get_user(handler, &act->sa_handler) ||
4424		    __get_user(restorer, &act->sa_restorer) ||
4425		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4426		    __get_user(mask, &act->sa_mask))
4427			return -EFAULT;
4428
4429#ifdef __ARCH_HAS_KA_RESTORER
4430		new_ka.ka_restorer = NULL;
4431#endif
4432		new_ka.sa.sa_handler = compat_ptr(handler);
4433		new_ka.sa.sa_restorer = compat_ptr(restorer);
4434		siginitset(&new_ka.sa.sa_mask, mask);
4435	}
4436
4437	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4438
4439	if (!ret && oact) {
4440		if (!access_ok(oact, sizeof(*oact)) ||
4441		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4442			       &oact->sa_handler) ||
4443		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4444			       &oact->sa_restorer) ||
4445		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4446		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4447			return -EFAULT;
4448	}
 
4449	return ret;
4450}
4451#endif
4452
4453#ifdef CONFIG_SGETMASK_SYSCALL
4454
4455/*
4456 * For backwards compatibility.  Functionality superseded by sigprocmask.
4457 */
4458SYSCALL_DEFINE0(sgetmask)
4459{
4460	/* SMP safe */
4461	return current->blocked.sig[0];
4462}
4463
4464SYSCALL_DEFINE1(ssetmask, int, newmask)
4465{
4466	int old = current->blocked.sig[0];
4467	sigset_t newset;
4468
4469	siginitset(&newset, newmask);
4470	set_current_blocked(&newset);
4471
4472	return old;
4473}
4474#endif /* CONFIG_SGETMASK_SYSCALL */
4475
4476#ifdef __ARCH_WANT_SYS_SIGNAL
4477/*
4478 * For backwards compatibility.  Functionality superseded by sigaction.
4479 */
4480SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4481{
4482	struct k_sigaction new_sa, old_sa;
4483	int ret;
4484
4485	new_sa.sa.sa_handler = handler;
4486	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4487	sigemptyset(&new_sa.sa.sa_mask);
4488
4489	ret = do_sigaction(sig, &new_sa, &old_sa);
4490
4491	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4492}
4493#endif /* __ARCH_WANT_SYS_SIGNAL */
4494
4495#ifdef __ARCH_WANT_SYS_PAUSE
4496
4497SYSCALL_DEFINE0(pause)
4498{
4499	while (!signal_pending(current)) {
4500		__set_current_state(TASK_INTERRUPTIBLE);
4501		schedule();
4502	}
4503	return -ERESTARTNOHAND;
4504}
4505
4506#endif
4507
4508static int sigsuspend(sigset_t *set)
4509{
4510	current->saved_sigmask = current->blocked;
4511	set_current_blocked(set);
4512
4513	while (!signal_pending(current)) {
4514		__set_current_state(TASK_INTERRUPTIBLE);
4515		schedule();
4516	}
4517	set_restore_sigmask();
4518	return -ERESTARTNOHAND;
4519}
4520
 
4521/**
4522 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4523 *	@unewset value until a signal is received
4524 *  @unewset: new signal mask value
4525 *  @sigsetsize: size of sigset_t type
4526 */
4527SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4528{
4529	sigset_t newset;
4530
4531	/* XXX: Don't preclude handling different sized sigset_t's.  */
4532	if (sigsetsize != sizeof(sigset_t))
4533		return -EINVAL;
4534
4535	if (copy_from_user(&newset, unewset, sizeof(newset)))
4536		return -EFAULT;
4537	return sigsuspend(&newset);
4538}
4539 
4540#ifdef CONFIG_COMPAT
4541COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4542{
4543	sigset_t newset;
4544
4545	/* XXX: Don't preclude handling different sized sigset_t's.  */
4546	if (sigsetsize != sizeof(sigset_t))
4547		return -EINVAL;
4548
4549	if (get_compat_sigset(&newset, unewset))
4550		return -EFAULT;
4551	return sigsuspend(&newset);
4552}
4553#endif
4554
4555#ifdef CONFIG_OLD_SIGSUSPEND
4556SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4557{
4558	sigset_t blocked;
4559	siginitset(&blocked, mask);
4560	return sigsuspend(&blocked);
4561}
4562#endif
4563#ifdef CONFIG_OLD_SIGSUSPEND3
4564SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4565{
4566	sigset_t blocked;
4567	siginitset(&blocked, mask);
4568	return sigsuspend(&blocked);
4569}
4570#endif
4571
4572__weak const char *arch_vma_name(struct vm_area_struct *vma)
4573{
4574	return NULL;
4575}
4576
4577static inline void siginfo_buildtime_checks(void)
4578{
4579	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4580
4581	/* Verify the offsets in the two siginfos match */
4582#define CHECK_OFFSET(field) \
4583	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4584
4585	/* kill */
4586	CHECK_OFFSET(si_pid);
4587	CHECK_OFFSET(si_uid);
4588
4589	/* timer */
4590	CHECK_OFFSET(si_tid);
4591	CHECK_OFFSET(si_overrun);
4592	CHECK_OFFSET(si_value);
4593
4594	/* rt */
4595	CHECK_OFFSET(si_pid);
4596	CHECK_OFFSET(si_uid);
4597	CHECK_OFFSET(si_value);
4598
4599	/* sigchld */
4600	CHECK_OFFSET(si_pid);
4601	CHECK_OFFSET(si_uid);
4602	CHECK_OFFSET(si_status);
4603	CHECK_OFFSET(si_utime);
4604	CHECK_OFFSET(si_stime);
4605
4606	/* sigfault */
4607	CHECK_OFFSET(si_addr);
4608	CHECK_OFFSET(si_trapno);
4609	CHECK_OFFSET(si_addr_lsb);
4610	CHECK_OFFSET(si_lower);
4611	CHECK_OFFSET(si_upper);
4612	CHECK_OFFSET(si_pkey);
4613	CHECK_OFFSET(si_perf_data);
4614	CHECK_OFFSET(si_perf_type);
4615
4616	/* sigpoll */
4617	CHECK_OFFSET(si_band);
4618	CHECK_OFFSET(si_fd);
4619
4620	/* sigsys */
4621	CHECK_OFFSET(si_call_addr);
4622	CHECK_OFFSET(si_syscall);
4623	CHECK_OFFSET(si_arch);
4624#undef CHECK_OFFSET
4625
4626	/* usb asyncio */
4627	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4628		     offsetof(struct siginfo, si_addr));
4629	if (sizeof(int) == sizeof(void __user *)) {
4630		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4631			     sizeof(void __user *));
4632	} else {
4633		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4634			      sizeof_field(struct siginfo, si_uid)) !=
4635			     sizeof(void __user *));
4636		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4637			     offsetof(struct siginfo, si_uid));
4638	}
4639#ifdef CONFIG_COMPAT
4640	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4641		     offsetof(struct compat_siginfo, si_addr));
4642	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4643		     sizeof(compat_uptr_t));
4644	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4645		     sizeof_field(struct siginfo, si_pid));
4646#endif
4647}
4648
4649void __init signals_init(void)
4650{
4651	siginfo_buildtime_checks();
4652
4653	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4654}
4655
4656#ifdef CONFIG_KGDB_KDB
4657#include <linux/kdb.h>
4658/*
4659 * kdb_send_sig - Allows kdb to send signals without exposing
4660 * signal internals.  This function checks if the required locks are
4661 * available before calling the main signal code, to avoid kdb
4662 * deadlocks.
4663 */
4664void kdb_send_sig(struct task_struct *t, int sig)
 
4665{
4666	static struct task_struct *kdb_prev_t;
4667	int new_t, ret;
4668	if (!spin_trylock(&t->sighand->siglock)) {
4669		kdb_printf("Can't do kill command now.\n"
4670			   "The sigmask lock is held somewhere else in "
4671			   "kernel, try again later\n");
4672		return;
4673	}
 
4674	new_t = kdb_prev_t != t;
4675	kdb_prev_t = t;
4676	if (!task_is_running(t) && new_t) {
4677		spin_unlock(&t->sighand->siglock);
4678		kdb_printf("Process is not RUNNING, sending a signal from "
4679			   "kdb risks deadlock\n"
4680			   "on the run queue locks. "
4681			   "The signal has _not_ been sent.\n"
4682			   "Reissue the kill command if you want to risk "
4683			   "the deadlock.\n");
4684		return;
4685	}
4686	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4687	spin_unlock(&t->sighand->siglock);
4688	if (ret)
4689		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4690			   sig, t->pid);
4691	else
4692		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4693}
4694#endif	/* CONFIG_KGDB_KDB */