Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
   3 * policies)
   4 */
   5
   6#include "sched.h"
   7
   8#include <linux/slab.h>
 
 
 
 
 
   9
  10static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  11
  12struct rt_bandwidth def_rt_bandwidth;
  13
  14static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  15{
  16	struct rt_bandwidth *rt_b =
  17		container_of(timer, struct rt_bandwidth, rt_period_timer);
  18	ktime_t now;
  19	int overrun;
  20	int idle = 0;
 
  21
 
  22	for (;;) {
  23		now = hrtimer_cb_get_time(timer);
  24		overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  25
  26		if (!overrun)
  27			break;
  28
 
  29		idle = do_sched_rt_period_timer(rt_b, overrun);
 
  30	}
 
 
 
  31
  32	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  33}
  34
  35void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  36{
  37	rt_b->rt_period = ns_to_ktime(period);
  38	rt_b->rt_runtime = runtime;
  39
  40	raw_spin_lock_init(&rt_b->rt_runtime_lock);
  41
  42	hrtimer_init(&rt_b->rt_period_timer,
  43			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  44	rt_b->rt_period_timer.function = sched_rt_period_timer;
  45}
  46
  47static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  48{
  49	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  50		return;
  51
  52	if (hrtimer_active(&rt_b->rt_period_timer))
  53		return;
  54
  55	raw_spin_lock(&rt_b->rt_runtime_lock);
  56	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
 
 
 
 
 
 
 
 
 
 
 
 
 
  57	raw_spin_unlock(&rt_b->rt_runtime_lock);
  58}
  59
  60void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  61{
  62	struct rt_prio_array *array;
  63	int i;
  64
  65	array = &rt_rq->active;
  66	for (i = 0; i < MAX_RT_PRIO; i++) {
  67		INIT_LIST_HEAD(array->queue + i);
  68		__clear_bit(i, array->bitmap);
  69	}
  70	/* delimiter for bitsearch: */
  71	__set_bit(MAX_RT_PRIO, array->bitmap);
  72
  73#if defined CONFIG_SMP
  74	rt_rq->highest_prio.curr = MAX_RT_PRIO;
  75	rt_rq->highest_prio.next = MAX_RT_PRIO;
  76	rt_rq->rt_nr_migratory = 0;
  77	rt_rq->overloaded = 0;
  78	plist_head_init(&rt_rq->pushable_tasks);
  79#endif
 
 
  80
  81	rt_rq->rt_time = 0;
  82	rt_rq->rt_throttled = 0;
  83	rt_rq->rt_runtime = 0;
  84	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  85}
  86
  87#ifdef CONFIG_RT_GROUP_SCHED
  88static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  89{
  90	hrtimer_cancel(&rt_b->rt_period_timer);
  91}
  92
  93#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
  94
  95static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  96{
  97#ifdef CONFIG_SCHED_DEBUG
  98	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
  99#endif
 100	return container_of(rt_se, struct task_struct, rt);
 101}
 102
 103static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 104{
 105	return rt_rq->rq;
 106}
 107
 108static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 109{
 110	return rt_se->rt_rq;
 111}
 112
 
 
 
 
 
 
 
 113void free_rt_sched_group(struct task_group *tg)
 114{
 115	int i;
 116
 117	if (tg->rt_se)
 118		destroy_rt_bandwidth(&tg->rt_bandwidth);
 119
 120	for_each_possible_cpu(i) {
 121		if (tg->rt_rq)
 122			kfree(tg->rt_rq[i]);
 123		if (tg->rt_se)
 124			kfree(tg->rt_se[i]);
 125	}
 126
 127	kfree(tg->rt_rq);
 128	kfree(tg->rt_se);
 129}
 130
 131void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 132		struct sched_rt_entity *rt_se, int cpu,
 133		struct sched_rt_entity *parent)
 134{
 135	struct rq *rq = cpu_rq(cpu);
 136
 137	rt_rq->highest_prio.curr = MAX_RT_PRIO;
 138	rt_rq->rt_nr_boosted = 0;
 139	rt_rq->rq = rq;
 140	rt_rq->tg = tg;
 141
 142	tg->rt_rq[cpu] = rt_rq;
 143	tg->rt_se[cpu] = rt_se;
 144
 145	if (!rt_se)
 146		return;
 147
 148	if (!parent)
 149		rt_se->rt_rq = &rq->rt;
 150	else
 151		rt_se->rt_rq = parent->my_q;
 152
 153	rt_se->my_q = rt_rq;
 154	rt_se->parent = parent;
 155	INIT_LIST_HEAD(&rt_se->run_list);
 156}
 157
 158int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 159{
 160	struct rt_rq *rt_rq;
 161	struct sched_rt_entity *rt_se;
 162	int i;
 163
 164	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
 165	if (!tg->rt_rq)
 166		goto err;
 167	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
 168	if (!tg->rt_se)
 169		goto err;
 170
 171	init_rt_bandwidth(&tg->rt_bandwidth,
 172			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
 173
 174	for_each_possible_cpu(i) {
 175		rt_rq = kzalloc_node(sizeof(struct rt_rq),
 176				     GFP_KERNEL, cpu_to_node(i));
 177		if (!rt_rq)
 178			goto err;
 179
 180		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
 181				     GFP_KERNEL, cpu_to_node(i));
 182		if (!rt_se)
 183			goto err_free_rq;
 184
 185		init_rt_rq(rt_rq, cpu_rq(i));
 186		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
 187		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
 188	}
 189
 190	return 1;
 191
 192err_free_rq:
 193	kfree(rt_rq);
 194err:
 195	return 0;
 196}
 197
 198#else /* CONFIG_RT_GROUP_SCHED */
 199
 200#define rt_entity_is_task(rt_se) (1)
 201
 202static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 203{
 204	return container_of(rt_se, struct task_struct, rt);
 205}
 206
 207static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 208{
 209	return container_of(rt_rq, struct rq, rt);
 210}
 211
 212static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 213{
 214	struct task_struct *p = rt_task_of(rt_se);
 215	struct rq *rq = task_rq(p);
 
 
 
 
 
 
 216
 217	return &rq->rt;
 218}
 219
 220void free_rt_sched_group(struct task_group *tg) { }
 221
 222int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 223{
 224	return 1;
 225}
 226#endif /* CONFIG_RT_GROUP_SCHED */
 227
 228#ifdef CONFIG_SMP
 229
 
 
 
 
 
 
 
 
 230static inline int rt_overloaded(struct rq *rq)
 231{
 232	return atomic_read(&rq->rd->rto_count);
 233}
 234
 235static inline void rt_set_overload(struct rq *rq)
 236{
 237	if (!rq->online)
 238		return;
 239
 240	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
 241	/*
 242	 * Make sure the mask is visible before we set
 243	 * the overload count. That is checked to determine
 244	 * if we should look at the mask. It would be a shame
 245	 * if we looked at the mask, but the mask was not
 246	 * updated yet.
 
 
 247	 */
 248	wmb();
 249	atomic_inc(&rq->rd->rto_count);
 250}
 251
 252static inline void rt_clear_overload(struct rq *rq)
 253{
 254	if (!rq->online)
 255		return;
 256
 257	/* the order here really doesn't matter */
 258	atomic_dec(&rq->rd->rto_count);
 259	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
 260}
 261
 262static void update_rt_migration(struct rt_rq *rt_rq)
 263{
 264	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
 265		if (!rt_rq->overloaded) {
 266			rt_set_overload(rq_of_rt_rq(rt_rq));
 267			rt_rq->overloaded = 1;
 268		}
 269	} else if (rt_rq->overloaded) {
 270		rt_clear_overload(rq_of_rt_rq(rt_rq));
 271		rt_rq->overloaded = 0;
 272	}
 273}
 274
 275static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 276{
 277	struct task_struct *p;
 278
 279	if (!rt_entity_is_task(rt_se))
 280		return;
 281
 282	p = rt_task_of(rt_se);
 283	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 284
 285	rt_rq->rt_nr_total++;
 286	if (p->nr_cpus_allowed > 1)
 287		rt_rq->rt_nr_migratory++;
 288
 289	update_rt_migration(rt_rq);
 290}
 291
 292static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 293{
 294	struct task_struct *p;
 295
 296	if (!rt_entity_is_task(rt_se))
 297		return;
 298
 299	p = rt_task_of(rt_se);
 300	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 301
 302	rt_rq->rt_nr_total--;
 303	if (p->nr_cpus_allowed > 1)
 304		rt_rq->rt_nr_migratory--;
 305
 306	update_rt_migration(rt_rq);
 307}
 308
 309static inline int has_pushable_tasks(struct rq *rq)
 310{
 311	return !plist_head_empty(&rq->rt.pushable_tasks);
 312}
 313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 315{
 316	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 317	plist_node_init(&p->pushable_tasks, p->prio);
 318	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
 319
 320	/* Update the highest prio pushable task */
 321	if (p->prio < rq->rt.highest_prio.next)
 322		rq->rt.highest_prio.next = p->prio;
 323}
 324
 325static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 326{
 327	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 328
 329	/* Update the new highest prio pushable task */
 330	if (has_pushable_tasks(rq)) {
 331		p = plist_first_entry(&rq->rt.pushable_tasks,
 332				      struct task_struct, pushable_tasks);
 333		rq->rt.highest_prio.next = p->prio;
 334	} else
 335		rq->rt.highest_prio.next = MAX_RT_PRIO;
 
 336}
 337
 338#else
 339
 340static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 341{
 342}
 343
 344static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 345{
 346}
 347
 348static inline
 349void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 350{
 351}
 352
 353static inline
 354void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 355{
 356}
 357
 
 
 
 
 
 
 
 
 
 
 
 
 358#endif /* CONFIG_SMP */
 359
 
 
 
 360static inline int on_rt_rq(struct sched_rt_entity *rt_se)
 361{
 362	return !list_empty(&rt_se->run_list);
 363}
 364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 365#ifdef CONFIG_RT_GROUP_SCHED
 366
 367static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 368{
 369	if (!rt_rq->tg)
 370		return RUNTIME_INF;
 371
 372	return rt_rq->rt_runtime;
 373}
 374
 375static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 376{
 377	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
 378}
 379
 380typedef struct task_group *rt_rq_iter_t;
 381
 382static inline struct task_group *next_task_group(struct task_group *tg)
 383{
 384	do {
 385		tg = list_entry_rcu(tg->list.next,
 386			typeof(struct task_group), list);
 387	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
 388
 389	if (&tg->list == &task_groups)
 390		tg = NULL;
 391
 392	return tg;
 393}
 394
 395#define for_each_rt_rq(rt_rq, iter, rq)					\
 396	for (iter = container_of(&task_groups, typeof(*iter), list);	\
 397		(iter = next_task_group(iter)) &&			\
 398		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
 399
 400static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
 401{
 402	list_add_rcu(&rt_rq->leaf_rt_rq_list,
 403			&rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
 404}
 405
 406static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
 407{
 408	list_del_rcu(&rt_rq->leaf_rt_rq_list);
 409}
 410
 411#define for_each_leaf_rt_rq(rt_rq, rq) \
 412	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
 413
 414#define for_each_sched_rt_entity(rt_se) \
 415	for (; rt_se; rt_se = rt_se->parent)
 416
 417static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 418{
 419	return rt_se->my_q;
 420}
 421
 422static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
 423static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
 424
 425static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 426{
 427	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
 
 428	struct sched_rt_entity *rt_se;
 429
 430	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
 431
 432	rt_se = rt_rq->tg->rt_se[cpu];
 433
 434	if (rt_rq->rt_nr_running) {
 435		if (rt_se && !on_rt_rq(rt_se))
 436			enqueue_rt_entity(rt_se, false);
 
 
 
 437		if (rt_rq->highest_prio.curr < curr->prio)
 438			resched_task(curr);
 439	}
 440}
 441
 442static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 443{
 444	struct sched_rt_entity *rt_se;
 445	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
 446
 447	rt_se = rt_rq->tg->rt_se[cpu];
 448
 449	if (rt_se && on_rt_rq(rt_se))
 450		dequeue_rt_entity(rt_se);
 
 
 
 
 
 451}
 452
 453static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 454{
 455	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
 456}
 457
 458static int rt_se_boosted(struct sched_rt_entity *rt_se)
 459{
 460	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 461	struct task_struct *p;
 462
 463	if (rt_rq)
 464		return !!rt_rq->rt_nr_boosted;
 465
 466	p = rt_task_of(rt_se);
 467	return p->prio != p->normal_prio;
 468}
 469
 470#ifdef CONFIG_SMP
 471static inline const struct cpumask *sched_rt_period_mask(void)
 472{
 473	return cpu_rq(smp_processor_id())->rd->span;
 474}
 475#else
 476static inline const struct cpumask *sched_rt_period_mask(void)
 477{
 478	return cpu_online_mask;
 479}
 480#endif
 481
 482static inline
 483struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 484{
 485	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
 486}
 487
 488static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 489{
 490	return &rt_rq->tg->rt_bandwidth;
 491}
 492
 493#else /* !CONFIG_RT_GROUP_SCHED */
 494
 495static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 496{
 497	return rt_rq->rt_runtime;
 498}
 499
 500static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 501{
 502	return ktime_to_ns(def_rt_bandwidth.rt_period);
 503}
 504
 505typedef struct rt_rq *rt_rq_iter_t;
 506
 507#define for_each_rt_rq(rt_rq, iter, rq) \
 508	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
 509
 510static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
 511{
 512}
 513
 514static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
 515{
 516}
 517
 518#define for_each_leaf_rt_rq(rt_rq, rq) \
 519	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
 520
 521#define for_each_sched_rt_entity(rt_se) \
 522	for (; rt_se; rt_se = NULL)
 523
 524static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 525{
 526	return NULL;
 527}
 528
 529static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 530{
 531	if (rt_rq->rt_nr_running)
 532		resched_task(rq_of_rt_rq(rt_rq)->curr);
 
 
 
 
 
 533}
 534
 535static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 536{
 
 537}
 538
 539static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 540{
 541	return rt_rq->rt_throttled;
 542}
 543
 544static inline const struct cpumask *sched_rt_period_mask(void)
 545{
 546	return cpu_online_mask;
 547}
 548
 549static inline
 550struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 551{
 552	return &cpu_rq(cpu)->rt;
 553}
 554
 555static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 556{
 557	return &def_rt_bandwidth;
 558}
 559
 560#endif /* CONFIG_RT_GROUP_SCHED */
 561
 
 
 
 
 
 
 
 
 562#ifdef CONFIG_SMP
 563/*
 564 * We ran out of runtime, see if we can borrow some from our neighbours.
 565 */
 566static int do_balance_runtime(struct rt_rq *rt_rq)
 567{
 568	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 569	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
 570	int i, weight, more = 0;
 571	u64 rt_period;
 572
 573	weight = cpumask_weight(rd->span);
 574
 575	raw_spin_lock(&rt_b->rt_runtime_lock);
 576	rt_period = ktime_to_ns(rt_b->rt_period);
 577	for_each_cpu(i, rd->span) {
 578		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 579		s64 diff;
 580
 581		if (iter == rt_rq)
 582			continue;
 583
 584		raw_spin_lock(&iter->rt_runtime_lock);
 585		/*
 586		 * Either all rqs have inf runtime and there's nothing to steal
 587		 * or __disable_runtime() below sets a specific rq to inf to
 588		 * indicate its been disabled and disalow stealing.
 589		 */
 590		if (iter->rt_runtime == RUNTIME_INF)
 591			goto next;
 592
 593		/*
 594		 * From runqueues with spare time, take 1/n part of their
 595		 * spare time, but no more than our period.
 596		 */
 597		diff = iter->rt_runtime - iter->rt_time;
 598		if (diff > 0) {
 599			diff = div_u64((u64)diff, weight);
 600			if (rt_rq->rt_runtime + diff > rt_period)
 601				diff = rt_period - rt_rq->rt_runtime;
 602			iter->rt_runtime -= diff;
 603			rt_rq->rt_runtime += diff;
 604			more = 1;
 605			if (rt_rq->rt_runtime == rt_period) {
 606				raw_spin_unlock(&iter->rt_runtime_lock);
 607				break;
 608			}
 609		}
 610next:
 611		raw_spin_unlock(&iter->rt_runtime_lock);
 612	}
 613	raw_spin_unlock(&rt_b->rt_runtime_lock);
 614
 615	return more;
 616}
 617
 618/*
 619 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 620 */
 621static void __disable_runtime(struct rq *rq)
 622{
 623	struct root_domain *rd = rq->rd;
 624	rt_rq_iter_t iter;
 625	struct rt_rq *rt_rq;
 626
 627	if (unlikely(!scheduler_running))
 628		return;
 629
 630	for_each_rt_rq(rt_rq, iter, rq) {
 631		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 632		s64 want;
 633		int i;
 634
 635		raw_spin_lock(&rt_b->rt_runtime_lock);
 636		raw_spin_lock(&rt_rq->rt_runtime_lock);
 637		/*
 638		 * Either we're all inf and nobody needs to borrow, or we're
 639		 * already disabled and thus have nothing to do, or we have
 640		 * exactly the right amount of runtime to take out.
 641		 */
 642		if (rt_rq->rt_runtime == RUNTIME_INF ||
 643				rt_rq->rt_runtime == rt_b->rt_runtime)
 644			goto balanced;
 645		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 646
 647		/*
 648		 * Calculate the difference between what we started out with
 649		 * and what we current have, that's the amount of runtime
 650		 * we lend and now have to reclaim.
 651		 */
 652		want = rt_b->rt_runtime - rt_rq->rt_runtime;
 653
 654		/*
 655		 * Greedy reclaim, take back as much as we can.
 656		 */
 657		for_each_cpu(i, rd->span) {
 658			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 659			s64 diff;
 660
 661			/*
 662			 * Can't reclaim from ourselves or disabled runqueues.
 663			 */
 664			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
 665				continue;
 666
 667			raw_spin_lock(&iter->rt_runtime_lock);
 668			if (want > 0) {
 669				diff = min_t(s64, iter->rt_runtime, want);
 670				iter->rt_runtime -= diff;
 671				want -= diff;
 672			} else {
 673				iter->rt_runtime -= want;
 674				want -= want;
 675			}
 676			raw_spin_unlock(&iter->rt_runtime_lock);
 677
 678			if (!want)
 679				break;
 680		}
 681
 682		raw_spin_lock(&rt_rq->rt_runtime_lock);
 683		/*
 684		 * We cannot be left wanting - that would mean some runtime
 685		 * leaked out of the system.
 686		 */
 687		BUG_ON(want);
 688balanced:
 689		/*
 690		 * Disable all the borrow logic by pretending we have inf
 691		 * runtime - in which case borrowing doesn't make sense.
 692		 */
 693		rt_rq->rt_runtime = RUNTIME_INF;
 
 694		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 695		raw_spin_unlock(&rt_b->rt_runtime_lock);
 696	}
 697}
 698
 699static void disable_runtime(struct rq *rq)
 700{
 701	unsigned long flags;
 702
 703	raw_spin_lock_irqsave(&rq->lock, flags);
 704	__disable_runtime(rq);
 705	raw_spin_unlock_irqrestore(&rq->lock, flags);
 706}
 707
 708static void __enable_runtime(struct rq *rq)
 709{
 710	rt_rq_iter_t iter;
 711	struct rt_rq *rt_rq;
 712
 713	if (unlikely(!scheduler_running))
 714		return;
 715
 716	/*
 717	 * Reset each runqueue's bandwidth settings
 718	 */
 719	for_each_rt_rq(rt_rq, iter, rq) {
 720		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 721
 722		raw_spin_lock(&rt_b->rt_runtime_lock);
 723		raw_spin_lock(&rt_rq->rt_runtime_lock);
 724		rt_rq->rt_runtime = rt_b->rt_runtime;
 725		rt_rq->rt_time = 0;
 726		rt_rq->rt_throttled = 0;
 727		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 728		raw_spin_unlock(&rt_b->rt_runtime_lock);
 729	}
 730}
 731
 732static void enable_runtime(struct rq *rq)
 733{
 734	unsigned long flags;
 735
 736	raw_spin_lock_irqsave(&rq->lock, flags);
 737	__enable_runtime(rq);
 738	raw_spin_unlock_irqrestore(&rq->lock, flags);
 739}
 740
 741int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu)
 742{
 743	int cpu = (int)(long)hcpu;
 744
 745	switch (action) {
 746	case CPU_DOWN_PREPARE:
 747	case CPU_DOWN_PREPARE_FROZEN:
 748		disable_runtime(cpu_rq(cpu));
 749		return NOTIFY_OK;
 750
 751	case CPU_DOWN_FAILED:
 752	case CPU_DOWN_FAILED_FROZEN:
 753	case CPU_ONLINE:
 754	case CPU_ONLINE_FROZEN:
 755		enable_runtime(cpu_rq(cpu));
 756		return NOTIFY_OK;
 757
 758	default:
 759		return NOTIFY_DONE;
 760	}
 761}
 762
 763static int balance_runtime(struct rt_rq *rt_rq)
 764{
 765	int more = 0;
 766
 767	if (!sched_feat(RT_RUNTIME_SHARE))
 768		return more;
 769
 770	if (rt_rq->rt_time > rt_rq->rt_runtime) {
 771		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 772		more = do_balance_runtime(rt_rq);
 773		raw_spin_lock(&rt_rq->rt_runtime_lock);
 774	}
 775
 776	return more;
 777}
 778#else /* !CONFIG_SMP */
 779static inline int balance_runtime(struct rt_rq *rt_rq)
 780{
 781	return 0;
 782}
 783#endif /* CONFIG_SMP */
 784
 785static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
 786{
 787	int i, idle = 1, throttled = 0;
 788	const struct cpumask *span;
 789
 790	span = sched_rt_period_mask();
 
 
 
 
 
 
 
 
 
 
 
 
 
 791	for_each_cpu(i, span) {
 792		int enqueue = 0;
 793		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
 794		struct rq *rq = rq_of_rt_rq(rt_rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 795
 796		raw_spin_lock(&rq->lock);
 797		if (rt_rq->rt_time) {
 798			u64 runtime;
 799
 800			raw_spin_lock(&rt_rq->rt_runtime_lock);
 801			if (rt_rq->rt_throttled)
 802				balance_runtime(rt_rq);
 803			runtime = rt_rq->rt_runtime;
 804			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
 805			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
 806				rt_rq->rt_throttled = 0;
 807				enqueue = 1;
 808
 809				/*
 810				 * Force a clock update if the CPU was idle,
 811				 * lest wakeup -> unthrottle time accumulate.
 
 
 
 812				 */
 813				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
 814					rq->skip_clock_update = -1;
 815			}
 816			if (rt_rq->rt_time || rt_rq->rt_nr_running)
 817				idle = 0;
 818			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 819		} else if (rt_rq->rt_nr_running) {
 820			idle = 0;
 821			if (!rt_rq_throttled(rt_rq))
 822				enqueue = 1;
 823		}
 824		if (rt_rq->rt_throttled)
 825			throttled = 1;
 826
 827		if (enqueue)
 828			sched_rt_rq_enqueue(rt_rq);
 829		raw_spin_unlock(&rq->lock);
 830	}
 831
 832	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
 833		return 1;
 834
 835	return idle;
 836}
 837
 838static inline int rt_se_prio(struct sched_rt_entity *rt_se)
 839{
 840#ifdef CONFIG_RT_GROUP_SCHED
 841	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 842
 843	if (rt_rq)
 844		return rt_rq->highest_prio.curr;
 845#endif
 846
 847	return rt_task_of(rt_se)->prio;
 848}
 849
 850static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
 851{
 852	u64 runtime = sched_rt_runtime(rt_rq);
 853
 854	if (rt_rq->rt_throttled)
 855		return rt_rq_throttled(rt_rq);
 856
 857	if (runtime >= sched_rt_period(rt_rq))
 858		return 0;
 859
 860	balance_runtime(rt_rq);
 861	runtime = sched_rt_runtime(rt_rq);
 862	if (runtime == RUNTIME_INF)
 863		return 0;
 864
 865	if (rt_rq->rt_time > runtime) {
 866		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 867
 868		/*
 869		 * Don't actually throttle groups that have no runtime assigned
 870		 * but accrue some time due to boosting.
 871		 */
 872		if (likely(rt_b->rt_runtime)) {
 873			static bool once = false;
 874
 875			rt_rq->rt_throttled = 1;
 876
 877			if (!once) {
 878				once = true;
 879				printk_sched("sched: RT throttling activated\n");
 880			}
 881		} else {
 882			/*
 883			 * In case we did anyway, make it go away,
 884			 * replenishment is a joke, since it will replenish us
 885			 * with exactly 0 ns.
 886			 */
 887			rt_rq->rt_time = 0;
 888		}
 889
 890		if (rt_rq_throttled(rt_rq)) {
 891			sched_rt_rq_dequeue(rt_rq);
 892			return 1;
 893		}
 894	}
 895
 896	return 0;
 897}
 898
 899/*
 900 * Update the current task's runtime statistics. Skip current tasks that
 901 * are not in our scheduling class.
 902 */
 903static void update_curr_rt(struct rq *rq)
 904{
 905	struct task_struct *curr = rq->curr;
 906	struct sched_rt_entity *rt_se = &curr->rt;
 907	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
 908	u64 delta_exec;
 
 909
 910	if (curr->sched_class != &rt_sched_class)
 911		return;
 912
 913	delta_exec = rq->clock_task - curr->se.exec_start;
 914	if (unlikely((s64)delta_exec < 0))
 915		delta_exec = 0;
 
 916
 917	schedstat_set(curr->se.statistics.exec_max,
 918		      max(curr->se.statistics.exec_max, delta_exec));
 919
 920	curr->se.sum_exec_runtime += delta_exec;
 921	account_group_exec_runtime(curr, delta_exec);
 922
 923	curr->se.exec_start = rq->clock_task;
 924	cpuacct_charge(curr, delta_exec);
 925
 926	sched_rt_avg_update(rq, delta_exec);
 927
 928	if (!rt_bandwidth_enabled())
 929		return;
 930
 931	for_each_sched_rt_entity(rt_se) {
 932		rt_rq = rt_rq_of_se(rt_se);
 933
 934		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
 935			raw_spin_lock(&rt_rq->rt_runtime_lock);
 936			rt_rq->rt_time += delta_exec;
 937			if (sched_rt_runtime_exceeded(rt_rq))
 938				resched_task(curr);
 939			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 940		}
 941	}
 942}
 943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 944#if defined CONFIG_SMP
 945
 946static void
 947inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
 948{
 949	struct rq *rq = rq_of_rt_rq(rt_rq);
 950
 
 
 
 
 
 
 
 951	if (rq->online && prio < prev_prio)
 952		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
 953}
 954
 955static void
 956dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
 957{
 958	struct rq *rq = rq_of_rt_rq(rt_rq);
 959
 
 
 
 
 
 
 
 960	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
 961		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
 962}
 963
 964#else /* CONFIG_SMP */
 965
 966static inline
 967void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
 968static inline
 969void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
 970
 971#endif /* CONFIG_SMP */
 972
 973#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 974static void
 975inc_rt_prio(struct rt_rq *rt_rq, int prio)
 976{
 977	int prev_prio = rt_rq->highest_prio.curr;
 978
 979	if (prio < prev_prio)
 980		rt_rq->highest_prio.curr = prio;
 981
 982	inc_rt_prio_smp(rt_rq, prio, prev_prio);
 983}
 984
 985static void
 986dec_rt_prio(struct rt_rq *rt_rq, int prio)
 987{
 988	int prev_prio = rt_rq->highest_prio.curr;
 989
 990	if (rt_rq->rt_nr_running) {
 991
 992		WARN_ON(prio < prev_prio);
 993
 994		/*
 995		 * This may have been our highest task, and therefore
 996		 * we may have some recomputation to do
 997		 */
 998		if (prio == prev_prio) {
 999			struct rt_prio_array *array = &rt_rq->active;
1000
1001			rt_rq->highest_prio.curr =
1002				sched_find_first_bit(array->bitmap);
1003		}
1004
1005	} else
1006		rt_rq->highest_prio.curr = MAX_RT_PRIO;
 
1007
1008	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1009}
1010
1011#else
1012
1013static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1014static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1015
1016#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1017
1018#ifdef CONFIG_RT_GROUP_SCHED
1019
1020static void
1021inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1022{
1023	if (rt_se_boosted(rt_se))
1024		rt_rq->rt_nr_boosted++;
1025
1026	if (rt_rq->tg)
1027		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1028}
1029
1030static void
1031dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1032{
1033	if (rt_se_boosted(rt_se))
1034		rt_rq->rt_nr_boosted--;
1035
1036	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1037}
1038
1039#else /* CONFIG_RT_GROUP_SCHED */
1040
1041static void
1042inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1043{
1044	start_rt_bandwidth(&def_rt_bandwidth);
1045}
1046
1047static inline
1048void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1049
1050#endif /* CONFIG_RT_GROUP_SCHED */
1051
1052static inline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1053void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1054{
1055	int prio = rt_se_prio(rt_se);
1056
1057	WARN_ON(!rt_prio(prio));
1058	rt_rq->rt_nr_running++;
 
1059
1060	inc_rt_prio(rt_rq, prio);
1061	inc_rt_migration(rt_se, rt_rq);
1062	inc_rt_group(rt_se, rt_rq);
1063}
1064
1065static inline
1066void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1067{
1068	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1069	WARN_ON(!rt_rq->rt_nr_running);
1070	rt_rq->rt_nr_running--;
 
1071
1072	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1073	dec_rt_migration(rt_se, rt_rq);
1074	dec_rt_group(rt_se, rt_rq);
1075}
1076
1077static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078{
1079	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1080	struct rt_prio_array *array = &rt_rq->active;
1081	struct rt_rq *group_rq = group_rt_rq(rt_se);
1082	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1083
1084	/*
1085	 * Don't enqueue the group if its throttled, or when empty.
1086	 * The latter is a consequence of the former when a child group
1087	 * get throttled and the current group doesn't have any other
1088	 * active members.
1089	 */
1090	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
 
 
1091		return;
 
1092
1093	if (!rt_rq->rt_nr_running)
1094		list_add_leaf_rt_rq(rt_rq);
 
 
 
 
1095
1096	if (head)
1097		list_add(&rt_se->run_list, queue);
1098	else
1099		list_add_tail(&rt_se->run_list, queue);
1100	__set_bit(rt_se_prio(rt_se), array->bitmap);
1101
1102	inc_rt_tasks(rt_se, rt_rq);
1103}
1104
1105static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1106{
1107	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1108	struct rt_prio_array *array = &rt_rq->active;
1109
1110	list_del_init(&rt_se->run_list);
1111	if (list_empty(array->queue + rt_se_prio(rt_se)))
1112		__clear_bit(rt_se_prio(rt_se), array->bitmap);
 
 
1113
1114	dec_rt_tasks(rt_se, rt_rq);
1115	if (!rt_rq->rt_nr_running)
1116		list_del_leaf_rt_rq(rt_rq);
1117}
1118
1119/*
1120 * Because the prio of an upper entry depends on the lower
1121 * entries, we must remove entries top - down.
1122 */
1123static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1124{
1125	struct sched_rt_entity *back = NULL;
1126
1127	for_each_sched_rt_entity(rt_se) {
1128		rt_se->back = back;
1129		back = rt_se;
1130	}
1131
 
 
1132	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1133		if (on_rt_rq(rt_se))
1134			__dequeue_rt_entity(rt_se);
1135	}
1136}
1137
1138static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1139{
1140	dequeue_rt_stack(rt_se);
 
 
1141	for_each_sched_rt_entity(rt_se)
1142		__enqueue_rt_entity(rt_se, head);
 
1143}
1144
1145static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1146{
1147	dequeue_rt_stack(rt_se);
 
 
1148
1149	for_each_sched_rt_entity(rt_se) {
1150		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1151
1152		if (rt_rq && rt_rq->rt_nr_running)
1153			__enqueue_rt_entity(rt_se, false);
1154	}
 
1155}
1156
1157/*
1158 * Adding/removing a task to/from a priority array:
1159 */
1160static void
1161enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1162{
1163	struct sched_rt_entity *rt_se = &p->rt;
1164
1165	if (flags & ENQUEUE_WAKEUP)
1166		rt_se->timeout = 0;
1167
1168	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1169
1170	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1171		enqueue_pushable_task(rq, p);
1172
1173	inc_nr_running(rq);
1174}
1175
1176static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1177{
1178	struct sched_rt_entity *rt_se = &p->rt;
1179
1180	update_curr_rt(rq);
1181	dequeue_rt_entity(rt_se);
1182
1183	dequeue_pushable_task(rq, p);
1184
1185	dec_nr_running(rq);
1186}
1187
1188/*
1189 * Put task to the head or the end of the run list without the overhead of
1190 * dequeue followed by enqueue.
1191 */
1192static void
1193requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1194{
1195	if (on_rt_rq(rt_se)) {
1196		struct rt_prio_array *array = &rt_rq->active;
1197		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1198
1199		if (head)
1200			list_move(&rt_se->run_list, queue);
1201		else
1202			list_move_tail(&rt_se->run_list, queue);
1203	}
1204}
1205
1206static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1207{
1208	struct sched_rt_entity *rt_se = &p->rt;
1209	struct rt_rq *rt_rq;
1210
1211	for_each_sched_rt_entity(rt_se) {
1212		rt_rq = rt_rq_of_se(rt_se);
1213		requeue_rt_entity(rt_rq, rt_se, head);
1214	}
1215}
1216
1217static void yield_task_rt(struct rq *rq)
1218{
1219	requeue_task_rt(rq, rq->curr, 0);
1220}
1221
1222#ifdef CONFIG_SMP
1223static int find_lowest_rq(struct task_struct *task);
1224
1225static int
1226select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1227{
1228	struct task_struct *curr;
1229	struct rq *rq;
1230	int cpu;
1231
1232	cpu = task_cpu(p);
1233
1234	if (p->nr_cpus_allowed == 1)
1235		goto out;
1236
1237	/* For anything but wake ups, just return the task_cpu */
1238	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1239		goto out;
1240
1241	rq = cpu_rq(cpu);
1242
1243	rcu_read_lock();
1244	curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1245
1246	/*
1247	 * If the current task on @p's runqueue is an RT task, then
1248	 * try to see if we can wake this RT task up on another
1249	 * runqueue. Otherwise simply start this RT task
1250	 * on its current runqueue.
1251	 *
1252	 * We want to avoid overloading runqueues. If the woken
1253	 * task is a higher priority, then it will stay on this CPU
1254	 * and the lower prio task should be moved to another CPU.
1255	 * Even though this will probably make the lower prio task
1256	 * lose its cache, we do not want to bounce a higher task
1257	 * around just because it gave up its CPU, perhaps for a
1258	 * lock?
1259	 *
1260	 * For equal prio tasks, we just let the scheduler sort it out.
1261	 *
1262	 * Otherwise, just let it ride on the affined RQ and the
1263	 * post-schedule router will push the preempted task away
1264	 *
1265	 * This test is optimistic, if we get it wrong the load-balancer
1266	 * will have to sort it out.
 
 
 
 
1267	 */
1268	if (curr && unlikely(rt_task(curr)) &&
1269	    (curr->nr_cpus_allowed < 2 ||
1270	     curr->prio <= p->prio) &&
1271	    (p->nr_cpus_allowed > 1)) {
 
1272		int target = find_lowest_rq(p);
1273
1274		if (target != -1)
 
 
 
 
 
 
 
 
 
 
 
 
1275			cpu = target;
1276	}
 
 
1277	rcu_read_unlock();
1278
1279out:
1280	return cpu;
1281}
1282
1283static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1284{
1285	if (rq->curr->nr_cpus_allowed == 1)
1286		return;
1287
1288	if (p->nr_cpus_allowed != 1
1289	    && cpupri_find(&rq->rd->cpupri, p, NULL))
 
1290		return;
1291
1292	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
 
 
 
 
 
1293		return;
1294
1295	/*
1296	 * There appears to be other cpus that can accept
1297	 * current and none to run 'p', so lets reschedule
1298	 * to try and push current away:
1299	 */
1300	requeue_task_rt(rq, p, 1);
1301	resched_task(rq->curr);
1302}
1303
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1304#endif /* CONFIG_SMP */
1305
1306/*
1307 * Preempt the current task with a newly woken task if needed:
1308 */
1309static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1310{
1311	if (p->prio < rq->curr->prio) {
1312		resched_task(rq->curr);
1313		return;
1314	}
1315
1316#ifdef CONFIG_SMP
1317	/*
1318	 * If:
1319	 *
1320	 * - the newly woken task is of equal priority to the current task
1321	 * - the newly woken task is non-migratable while current is migratable
1322	 * - current will be preempted on the next reschedule
1323	 *
1324	 * we should check to see if current can readily move to a different
1325	 * cpu.  If so, we will reschedule to allow the push logic to try
1326	 * to move current somewhere else, making room for our non-migratable
1327	 * task.
1328	 */
1329	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1330		check_preempt_equal_prio(rq, p);
1331#endif
1332}
1333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1334static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1335						   struct rt_rq *rt_rq)
1336{
1337	struct rt_prio_array *array = &rt_rq->active;
1338	struct sched_rt_entity *next = NULL;
1339	struct list_head *queue;
1340	int idx;
1341
1342	idx = sched_find_first_bit(array->bitmap);
1343	BUG_ON(idx >= MAX_RT_PRIO);
1344
1345	queue = array->queue + idx;
1346	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1347
1348	return next;
1349}
1350
1351static struct task_struct *_pick_next_task_rt(struct rq *rq)
1352{
1353	struct sched_rt_entity *rt_se;
1354	struct task_struct *p;
1355	struct rt_rq *rt_rq;
1356
1357	rt_rq = &rq->rt;
1358
1359	if (!rt_rq->rt_nr_running)
1360		return NULL;
1361
1362	if (rt_rq_throttled(rt_rq))
1363		return NULL;
1364
1365	do {
1366		rt_se = pick_next_rt_entity(rq, rt_rq);
1367		BUG_ON(!rt_se);
1368		rt_rq = group_rt_rq(rt_se);
1369	} while (rt_rq);
1370
1371	p = rt_task_of(rt_se);
1372	p->se.exec_start = rq->clock_task;
 
 
 
 
 
 
 
 
 
1373
1374	return p;
1375}
1376
1377static struct task_struct *pick_next_task_rt(struct rq *rq)
1378{
1379	struct task_struct *p = _pick_next_task_rt(rq);
1380
1381	/* The running task is never eligible for pushing */
1382	if (p)
1383		dequeue_pushable_task(rq, p);
1384
1385#ifdef CONFIG_SMP
1386	/*
1387	 * We detect this state here so that we can avoid taking the RQ
1388	 * lock again later if there is no need to push
1389	 */
1390	rq->post_schedule = has_pushable_tasks(rq);
1391#endif
1392
1393	return p;
1394}
1395
1396static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1397{
1398	update_curr_rt(rq);
1399
 
 
1400	/*
1401	 * The previous task needs to be made eligible for pushing
1402	 * if it is still active
1403	 */
1404	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1405		enqueue_pushable_task(rq, p);
1406}
1407
1408#ifdef CONFIG_SMP
1409
1410/* Only try algorithms three times */
1411#define RT_MAX_TRIES 3
1412
1413static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1414{
1415	if (!task_running(rq, p) &&
1416	    (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
1417	    (p->nr_cpus_allowed > 1))
1418		return 1;
 
1419	return 0;
1420}
1421
1422/* Return the second highest RT task, NULL otherwise */
1423static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
 
 
 
1424{
1425	struct task_struct *next = NULL;
1426	struct sched_rt_entity *rt_se;
1427	struct rt_prio_array *array;
1428	struct rt_rq *rt_rq;
1429	int idx;
1430
1431	for_each_leaf_rt_rq(rt_rq, rq) {
1432		array = &rt_rq->active;
1433		idx = sched_find_first_bit(array->bitmap);
1434next_idx:
1435		if (idx >= MAX_RT_PRIO)
1436			continue;
1437		if (next && next->prio <= idx)
1438			continue;
1439		list_for_each_entry(rt_se, array->queue + idx, run_list) {
1440			struct task_struct *p;
1441
1442			if (!rt_entity_is_task(rt_se))
1443				continue;
1444
1445			p = rt_task_of(rt_se);
1446			if (pick_rt_task(rq, p, cpu)) {
1447				next = p;
1448				break;
1449			}
1450		}
1451		if (!next) {
1452			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1453			goto next_idx;
1454		}
1455	}
1456
1457	return next;
1458}
1459
1460static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1461
1462static int find_lowest_rq(struct task_struct *task)
1463{
1464	struct sched_domain *sd;
1465	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1466	int this_cpu = smp_processor_id();
1467	int cpu      = task_cpu(task);
 
1468
1469	/* Make sure the mask is initialized first */
1470	if (unlikely(!lowest_mask))
1471		return -1;
1472
1473	if (task->nr_cpus_allowed == 1)
1474		return -1; /* No other targets possible */
1475
1476	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1477		return -1; /* No targets found */
1478
1479	/*
1480	 * At this point we have built a mask of cpus representing the
1481	 * lowest priority tasks in the system.  Now we want to elect
1482	 * the best one based on our affinity and topology.
1483	 *
1484	 * We prioritize the last cpu that the task executed on since
1485	 * it is most likely cache-hot in that location.
1486	 */
1487	if (cpumask_test_cpu(cpu, lowest_mask))
1488		return cpu;
1489
1490	/*
1491	 * Otherwise, we consult the sched_domains span maps to figure
1492	 * out which cpu is logically closest to our hot cache data.
1493	 */
1494	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1495		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1496
1497	rcu_read_lock();
1498	for_each_domain(cpu, sd) {
1499		if (sd->flags & SD_WAKE_AFFINE) {
1500			int best_cpu;
1501
1502			/*
1503			 * "this_cpu" is cheaper to preempt than a
1504			 * remote processor.
1505			 */
1506			if (this_cpu != -1 &&
1507			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1508				rcu_read_unlock();
1509				return this_cpu;
1510			}
1511
1512			best_cpu = cpumask_first_and(lowest_mask,
1513						     sched_domain_span(sd));
1514			if (best_cpu < nr_cpu_ids) {
1515				rcu_read_unlock();
1516				return best_cpu;
1517			}
1518		}
1519	}
1520	rcu_read_unlock();
1521
1522	/*
1523	 * And finally, if there were no matches within the domains
1524	 * just give the caller *something* to work with from the compatible
1525	 * locations.
1526	 */
1527	if (this_cpu != -1)
1528		return this_cpu;
1529
1530	cpu = cpumask_any(lowest_mask);
1531	if (cpu < nr_cpu_ids)
1532		return cpu;
 
1533	return -1;
1534}
1535
1536/* Will lock the rq it finds */
1537static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1538{
1539	struct rq *lowest_rq = NULL;
1540	int tries;
1541	int cpu;
1542
1543	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1544		cpu = find_lowest_rq(task);
1545
1546		if ((cpu == -1) || (cpu == rq->cpu))
1547			break;
1548
1549		lowest_rq = cpu_rq(cpu);
1550
 
 
 
 
 
 
 
 
 
 
1551		/* if the prio of this runqueue changed, try again */
1552		if (double_lock_balance(rq, lowest_rq)) {
1553			/*
1554			 * We had to unlock the run queue. In
1555			 * the mean time, task could have
1556			 * migrated already or had its affinity changed.
1557			 * Also make sure that it wasn't scheduled on its rq.
1558			 */
1559			if (unlikely(task_rq(task) != rq ||
1560				     !cpumask_test_cpu(lowest_rq->cpu,
1561						       tsk_cpus_allowed(task)) ||
1562				     task_running(rq, task) ||
1563				     !task->on_rq)) {
 
1564
1565				double_unlock_balance(rq, lowest_rq);
1566				lowest_rq = NULL;
1567				break;
1568			}
1569		}
1570
1571		/* If this rq is still suitable use it. */
1572		if (lowest_rq->rt.highest_prio.curr > task->prio)
1573			break;
1574
1575		/* try again */
1576		double_unlock_balance(rq, lowest_rq);
1577		lowest_rq = NULL;
1578	}
1579
1580	return lowest_rq;
1581}
1582
1583static struct task_struct *pick_next_pushable_task(struct rq *rq)
1584{
1585	struct task_struct *p;
1586
1587	if (!has_pushable_tasks(rq))
1588		return NULL;
1589
1590	p = plist_first_entry(&rq->rt.pushable_tasks,
1591			      struct task_struct, pushable_tasks);
1592
1593	BUG_ON(rq->cpu != task_cpu(p));
1594	BUG_ON(task_current(rq, p));
1595	BUG_ON(p->nr_cpus_allowed <= 1);
1596
1597	BUG_ON(!p->on_rq);
1598	BUG_ON(!rt_task(p));
1599
1600	return p;
1601}
1602
1603/*
1604 * If the current CPU has more than one RT task, see if the non
1605 * running task can migrate over to a CPU that is running a task
1606 * of lesser priority.
1607 */
1608static int push_rt_task(struct rq *rq)
1609{
1610	struct task_struct *next_task;
1611	struct rq *lowest_rq;
1612	int ret = 0;
1613
1614	if (!rq->rt.overloaded)
1615		return 0;
1616
1617	next_task = pick_next_pushable_task(rq);
1618	if (!next_task)
1619		return 0;
1620
1621#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1622       if (unlikely(task_running(rq, next_task)))
1623               return 0;
1624#endif
1625
1626retry:
1627	if (unlikely(next_task == rq->curr)) {
1628		WARN_ON(1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1629		return 0;
1630	}
1631
 
 
 
1632	/*
1633	 * It's possible that the next_task slipped in of
1634	 * higher priority than current. If that's the case
1635	 * just reschedule current.
1636	 */
1637	if (unlikely(next_task->prio < rq->curr->prio)) {
1638		resched_task(rq->curr);
1639		return 0;
1640	}
1641
1642	/* We might release rq lock */
1643	get_task_struct(next_task);
1644
1645	/* find_lock_lowest_rq locks the rq if found */
1646	lowest_rq = find_lock_lowest_rq(next_task, rq);
1647	if (!lowest_rq) {
1648		struct task_struct *task;
1649		/*
1650		 * find_lock_lowest_rq releases rq->lock
1651		 * so it is possible that next_task has migrated.
1652		 *
1653		 * We need to make sure that the task is still on the same
1654		 * run-queue and is also still the next task eligible for
1655		 * pushing.
1656		 */
1657		task = pick_next_pushable_task(rq);
1658		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1659			/*
1660			 * The task hasn't migrated, and is still the next
1661			 * eligible task, but we failed to find a run-queue
1662			 * to push it to.  Do not retry in this case, since
1663			 * other cpus will pull from us when ready.
1664			 */
1665			goto out;
1666		}
1667
1668		if (!task)
1669			/* No more tasks, just exit */
1670			goto out;
1671
1672		/*
1673		 * Something has shifted, try again.
1674		 */
1675		put_task_struct(next_task);
1676		next_task = task;
1677		goto retry;
1678	}
1679
1680	deactivate_task(rq, next_task, 0);
1681	set_task_cpu(next_task, lowest_rq->cpu);
1682	activate_task(lowest_rq, next_task, 0);
 
1683	ret = 1;
1684
1685	resched_task(lowest_rq->curr);
1686
1687	double_unlock_balance(rq, lowest_rq);
1688
1689out:
1690	put_task_struct(next_task);
1691
1692	return ret;
1693}
1694
1695static void push_rt_tasks(struct rq *rq)
1696{
1697	/* push_rt_task will return true if it moved an RT */
1698	while (push_rt_task(rq))
1699		;
1700}
1701
1702static int pull_rt_task(struct rq *this_rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1703{
1704	int this_cpu = this_rq->cpu, ret = 0, cpu;
1705	struct task_struct *p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1706	struct rq *src_rq;
 
1707
1708	if (likely(!rt_overloaded(this_rq)))
1709		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1710
1711	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1712		if (this_cpu == cpu)
1713			continue;
1714
1715		src_rq = cpu_rq(cpu);
1716
1717		/*
1718		 * Don't bother taking the src_rq->lock if the next highest
1719		 * task is known to be lower-priority than our current task.
1720		 * This may look racy, but if this value is about to go
1721		 * logically higher, the src_rq will push this task away.
1722		 * And if its going logically lower, we do not care
1723		 */
1724		if (src_rq->rt.highest_prio.next >=
1725		    this_rq->rt.highest_prio.curr)
1726			continue;
1727
1728		/*
1729		 * We can potentially drop this_rq's lock in
1730		 * double_lock_balance, and another CPU could
1731		 * alter this_rq
1732		 */
 
1733		double_lock_balance(this_rq, src_rq);
1734
1735		/*
1736		 * Are there still pullable RT tasks?
 
1737		 */
1738		if (src_rq->rt.rt_nr_running <= 1)
1739			goto skip;
1740
1741		p = pick_next_highest_task_rt(src_rq, this_cpu);
1742
1743		/*
1744		 * Do we have an RT task that preempts
1745		 * the to-be-scheduled task?
1746		 */
1747		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1748			WARN_ON(p == src_rq->curr);
1749			WARN_ON(!p->on_rq);
1750
1751			/*
1752			 * There's a chance that p is higher in priority
1753			 * than what's currently running on its cpu.
1754			 * This is just that p is wakeing up and hasn't
1755			 * had a chance to schedule. We only pull
1756			 * p if it is lower in priority than the
1757			 * current task on the run queue
1758			 */
1759			if (p->prio < src_rq->curr->prio)
1760				goto skip;
1761
1762			ret = 1;
1763
1764			deactivate_task(src_rq, p, 0);
1765			set_task_cpu(p, this_cpu);
1766			activate_task(this_rq, p, 0);
 
 
 
1767			/*
1768			 * We continue with the search, just in
1769			 * case there's an even higher prio task
1770			 * in another runqueue. (low likelihood
1771			 * but possible)
1772			 */
1773		}
1774skip:
1775		double_unlock_balance(this_rq, src_rq);
1776	}
1777
1778	return ret;
1779}
1780
1781static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1782{
1783	/* Try to pull RT tasks here if we lower this rq's prio */
1784	if (rq->rt.highest_prio.curr > prev->prio)
1785		pull_rt_task(rq);
1786}
 
1787
1788static void post_schedule_rt(struct rq *rq)
1789{
1790	push_rt_tasks(rq);
1791}
1792
1793/*
1794 * If we are not running and we are not going to reschedule soon, we should
1795 * try to push tasks away now
1796 */
1797static void task_woken_rt(struct rq *rq, struct task_struct *p)
1798{
1799	if (!task_running(rq, p) &&
1800	    !test_tsk_need_resched(rq->curr) &&
1801	    has_pushable_tasks(rq) &&
1802	    p->nr_cpus_allowed > 1 &&
1803	    rt_task(rq->curr) &&
1804	    (rq->curr->nr_cpus_allowed < 2 ||
1805	     rq->curr->prio <= p->prio))
1806		push_rt_tasks(rq);
1807}
1808
1809static void set_cpus_allowed_rt(struct task_struct *p,
1810				const struct cpumask *new_mask)
1811{
1812	struct rq *rq;
1813	int weight;
1814
1815	BUG_ON(!rt_task(p));
1816
1817	if (!p->on_rq)
1818		return;
1819
1820	weight = cpumask_weight(new_mask);
1821
1822	/*
1823	 * Only update if the process changes its state from whether it
1824	 * can migrate or not.
1825	 */
1826	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1827		return;
1828
1829	rq = task_rq(p);
1830
1831	/*
1832	 * The process used to be able to migrate OR it can now migrate
1833	 */
1834	if (weight <= 1) {
1835		if (!task_current(rq, p))
1836			dequeue_pushable_task(rq, p);
1837		BUG_ON(!rq->rt.rt_nr_migratory);
1838		rq->rt.rt_nr_migratory--;
1839	} else {
1840		if (!task_current(rq, p))
1841			enqueue_pushable_task(rq, p);
1842		rq->rt.rt_nr_migratory++;
1843	}
1844
1845	update_rt_migration(&rq->rt);
1846}
1847
1848/* Assumes rq->lock is held */
1849static void rq_online_rt(struct rq *rq)
1850{
1851	if (rq->rt.overloaded)
1852		rt_set_overload(rq);
1853
1854	__enable_runtime(rq);
1855
1856	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1857}
1858
1859/* Assumes rq->lock is held */
1860static void rq_offline_rt(struct rq *rq)
1861{
1862	if (rq->rt.overloaded)
1863		rt_clear_overload(rq);
1864
1865	__disable_runtime(rq);
1866
1867	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1868}
1869
1870/*
1871 * When switch from the rt queue, we bring ourselves to a position
1872 * that we might want to pull RT tasks from other runqueues.
1873 */
1874static void switched_from_rt(struct rq *rq, struct task_struct *p)
1875{
1876	/*
1877	 * If there are other RT tasks then we will reschedule
1878	 * and the scheduling of the other RT tasks will handle
1879	 * the balancing. But if we are the last RT task
1880	 * we may need to handle the pulling of RT tasks
1881	 * now.
1882	 */
1883	if (p->on_rq && !rq->rt.rt_nr_running)
1884		pull_rt_task(rq);
 
 
1885}
1886
1887void init_sched_rt_class(void)
1888{
1889	unsigned int i;
1890
1891	for_each_possible_cpu(i) {
1892		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1893					GFP_KERNEL, cpu_to_node(i));
1894	}
1895}
1896#endif /* CONFIG_SMP */
1897
1898/*
1899 * When switching a task to RT, we may overload the runqueue
1900 * with RT tasks. In this case we try to push them off to
1901 * other runqueues.
1902 */
1903static void switched_to_rt(struct rq *rq, struct task_struct *p)
1904{
1905	int check_resched = 1;
 
 
 
 
 
 
 
1906
1907	/*
1908	 * If we are already running, then there's nothing
1909	 * that needs to be done. But if we are not running
1910	 * we may need to preempt the current running task.
1911	 * If that current running task is also an RT task
1912	 * then see if we can move to another run queue.
1913	 */
1914	if (p->on_rq && rq->curr != p) {
1915#ifdef CONFIG_SMP
1916		if (rq->rt.overloaded && push_rt_task(rq) &&
1917		    /* Don't resched if we changed runqueues */
1918		    rq != task_rq(p))
1919			check_resched = 0;
1920#endif /* CONFIG_SMP */
1921		if (check_resched && p->prio < rq->curr->prio)
1922			resched_task(rq->curr);
1923	}
1924}
1925
1926/*
1927 * Priority of the task has changed. This may cause
1928 * us to initiate a push or pull.
1929 */
1930static void
1931prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1932{
1933	if (!p->on_rq)
1934		return;
1935
1936	if (rq->curr == p) {
1937#ifdef CONFIG_SMP
1938		/*
1939		 * If our priority decreases while running, we
1940		 * may need to pull tasks to this runqueue.
1941		 */
1942		if (oldprio < p->prio)
1943			pull_rt_task(rq);
 
1944		/*
1945		 * If there's a higher priority task waiting to run
1946		 * then reschedule. Note, the above pull_rt_task
1947		 * can release the rq lock and p could migrate.
1948		 * Only reschedule if p is still on the same runqueue.
1949		 */
1950		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1951			resched_task(p);
1952#else
1953		/* For UP simply resched on drop of prio */
1954		if (oldprio < p->prio)
1955			resched_task(p);
1956#endif /* CONFIG_SMP */
1957	} else {
1958		/*
1959		 * This task is not running, but if it is
1960		 * greater than the current running task
1961		 * then reschedule.
1962		 */
1963		if (p->prio < rq->curr->prio)
1964			resched_task(rq->curr);
1965	}
1966}
1967
 
1968static void watchdog(struct rq *rq, struct task_struct *p)
1969{
1970	unsigned long soft, hard;
1971
1972	/* max may change after cur was read, this will be fixed next tick */
1973	soft = task_rlimit(p, RLIMIT_RTTIME);
1974	hard = task_rlimit_max(p, RLIMIT_RTTIME);
1975
1976	if (soft != RLIM_INFINITY) {
1977		unsigned long next;
1978
1979		p->rt.timeout++;
 
 
 
 
1980		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1981		if (p->rt.timeout > next)
1982			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
 
 
1983	}
1984}
 
 
 
1985
 
 
 
 
 
 
 
 
1986static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1987{
1988	struct sched_rt_entity *rt_se = &p->rt;
1989
1990	update_curr_rt(rq);
 
1991
1992	watchdog(rq, p);
1993
1994	/*
1995	 * RR tasks need a special form of timeslice management.
1996	 * FIFO tasks have no timeslices.
1997	 */
1998	if (p->policy != SCHED_RR)
1999		return;
2000
2001	if (--p->rt.time_slice)
2002		return;
2003
2004	p->rt.time_slice = RR_TIMESLICE;
2005
2006	/*
2007	 * Requeue to the end of queue if we (and all of our ancestors) are the
2008	 * only element on the queue
2009	 */
2010	for_each_sched_rt_entity(rt_se) {
2011		if (rt_se->run_list.prev != rt_se->run_list.next) {
2012			requeue_task_rt(rq, p, 0);
2013			set_tsk_need_resched(p);
2014			return;
2015		}
2016	}
2017}
2018
2019static void set_curr_task_rt(struct rq *rq)
2020{
2021	struct task_struct *p = rq->curr;
2022
2023	p->se.exec_start = rq->clock_task;
2024
2025	/* The running task is never eligible for pushing */
2026	dequeue_pushable_task(rq, p);
2027}
2028
2029static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2030{
2031	/*
2032	 * Time slice is 0 for SCHED_FIFO tasks
2033	 */
2034	if (task->policy == SCHED_RR)
2035		return RR_TIMESLICE;
2036	else
2037		return 0;
2038}
2039
2040const struct sched_class rt_sched_class = {
2041	.next			= &fair_sched_class,
2042	.enqueue_task		= enqueue_task_rt,
2043	.dequeue_task		= dequeue_task_rt,
2044	.yield_task		= yield_task_rt,
2045
2046	.check_preempt_curr	= check_preempt_curr_rt,
2047
2048	.pick_next_task		= pick_next_task_rt,
2049	.put_prev_task		= put_prev_task_rt,
 
2050
2051#ifdef CONFIG_SMP
 
 
2052	.select_task_rq		= select_task_rq_rt,
2053
2054	.set_cpus_allowed       = set_cpus_allowed_rt,
2055	.rq_online              = rq_online_rt,
2056	.rq_offline             = rq_offline_rt,
2057	.pre_schedule		= pre_schedule_rt,
2058	.post_schedule		= post_schedule_rt,
2059	.task_woken		= task_woken_rt,
2060	.switched_from		= switched_from_rt,
 
2061#endif
2062
2063	.set_curr_task          = set_curr_task_rt,
2064	.task_tick		= task_tick_rt,
2065
2066	.get_rr_interval	= get_rr_interval_rt,
2067
2068	.prio_changed		= prio_changed_rt,
2069	.switched_to		= switched_to_rt,
 
 
 
 
 
 
2070};
2071
2072#ifdef CONFIG_SCHED_DEBUG
2073extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2074
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2075void print_rt_stats(struct seq_file *m, int cpu)
2076{
2077	rt_rq_iter_t iter;
2078	struct rt_rq *rt_rq;
2079
2080	rcu_read_lock();
2081	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2082		print_rt_rq(m, cpu, rt_rq);
2083	rcu_read_unlock();
2084}
2085#endif /* CONFIG_SCHED_DEBUG */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
   4 * policies)
   5 */
 
   6#include "sched.h"
   7
   8#include "pelt.h"
   9
  10int sched_rr_timeslice = RR_TIMESLICE;
  11int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
  12/* More than 4 hours if BW_SHIFT equals 20. */
  13static const u64 max_rt_runtime = MAX_BW;
  14
  15static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  16
  17struct rt_bandwidth def_rt_bandwidth;
  18
  19static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  20{
  21	struct rt_bandwidth *rt_b =
  22		container_of(timer, struct rt_bandwidth, rt_period_timer);
 
 
  23	int idle = 0;
  24	int overrun;
  25
  26	raw_spin_lock(&rt_b->rt_runtime_lock);
  27	for (;;) {
  28		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
 
 
  29		if (!overrun)
  30			break;
  31
  32		raw_spin_unlock(&rt_b->rt_runtime_lock);
  33		idle = do_sched_rt_period_timer(rt_b, overrun);
  34		raw_spin_lock(&rt_b->rt_runtime_lock);
  35	}
  36	if (idle)
  37		rt_b->rt_period_active = 0;
  38	raw_spin_unlock(&rt_b->rt_runtime_lock);
  39
  40	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  41}
  42
  43void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  44{
  45	rt_b->rt_period = ns_to_ktime(period);
  46	rt_b->rt_runtime = runtime;
  47
  48	raw_spin_lock_init(&rt_b->rt_runtime_lock);
  49
  50	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
  51		     HRTIMER_MODE_REL_HARD);
  52	rt_b->rt_period_timer.function = sched_rt_period_timer;
  53}
  54
  55static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  56{
  57	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  58		return;
  59
 
 
 
  60	raw_spin_lock(&rt_b->rt_runtime_lock);
  61	if (!rt_b->rt_period_active) {
  62		rt_b->rt_period_active = 1;
  63		/*
  64		 * SCHED_DEADLINE updates the bandwidth, as a run away
  65		 * RT task with a DL task could hog a CPU. But DL does
  66		 * not reset the period. If a deadline task was running
  67		 * without an RT task running, it can cause RT tasks to
  68		 * throttle when they start up. Kick the timer right away
  69		 * to update the period.
  70		 */
  71		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
  72		hrtimer_start_expires(&rt_b->rt_period_timer,
  73				      HRTIMER_MODE_ABS_PINNED_HARD);
  74	}
  75	raw_spin_unlock(&rt_b->rt_runtime_lock);
  76}
  77
  78void init_rt_rq(struct rt_rq *rt_rq)
  79{
  80	struct rt_prio_array *array;
  81	int i;
  82
  83	array = &rt_rq->active;
  84	for (i = 0; i < MAX_RT_PRIO; i++) {
  85		INIT_LIST_HEAD(array->queue + i);
  86		__clear_bit(i, array->bitmap);
  87	}
  88	/* delimiter for bitsearch: */
  89	__set_bit(MAX_RT_PRIO, array->bitmap);
  90
  91#if defined CONFIG_SMP
  92	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
  93	rt_rq->highest_prio.next = MAX_RT_PRIO-1;
  94	rt_rq->rt_nr_migratory = 0;
  95	rt_rq->overloaded = 0;
  96	plist_head_init(&rt_rq->pushable_tasks);
  97#endif /* CONFIG_SMP */
  98	/* We start is dequeued state, because no RT tasks are queued */
  99	rt_rq->rt_queued = 0;
 100
 101	rt_rq->rt_time = 0;
 102	rt_rq->rt_throttled = 0;
 103	rt_rq->rt_runtime = 0;
 104	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
 105}
 106
 107#ifdef CONFIG_RT_GROUP_SCHED
 108static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
 109{
 110	hrtimer_cancel(&rt_b->rt_period_timer);
 111}
 112
 113#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
 114
 115static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 116{
 117#ifdef CONFIG_SCHED_DEBUG
 118	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
 119#endif
 120	return container_of(rt_se, struct task_struct, rt);
 121}
 122
 123static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 124{
 125	return rt_rq->rq;
 126}
 127
 128static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 129{
 130	return rt_se->rt_rq;
 131}
 132
 133static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 134{
 135	struct rt_rq *rt_rq = rt_se->rt_rq;
 136
 137	return rt_rq->rq;
 138}
 139
 140void free_rt_sched_group(struct task_group *tg)
 141{
 142	int i;
 143
 144	if (tg->rt_se)
 145		destroy_rt_bandwidth(&tg->rt_bandwidth);
 146
 147	for_each_possible_cpu(i) {
 148		if (tg->rt_rq)
 149			kfree(tg->rt_rq[i]);
 150		if (tg->rt_se)
 151			kfree(tg->rt_se[i]);
 152	}
 153
 154	kfree(tg->rt_rq);
 155	kfree(tg->rt_se);
 156}
 157
 158void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 159		struct sched_rt_entity *rt_se, int cpu,
 160		struct sched_rt_entity *parent)
 161{
 162	struct rq *rq = cpu_rq(cpu);
 163
 164	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
 165	rt_rq->rt_nr_boosted = 0;
 166	rt_rq->rq = rq;
 167	rt_rq->tg = tg;
 168
 169	tg->rt_rq[cpu] = rt_rq;
 170	tg->rt_se[cpu] = rt_se;
 171
 172	if (!rt_se)
 173		return;
 174
 175	if (!parent)
 176		rt_se->rt_rq = &rq->rt;
 177	else
 178		rt_se->rt_rq = parent->my_q;
 179
 180	rt_se->my_q = rt_rq;
 181	rt_se->parent = parent;
 182	INIT_LIST_HEAD(&rt_se->run_list);
 183}
 184
 185int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 186{
 187	struct rt_rq *rt_rq;
 188	struct sched_rt_entity *rt_se;
 189	int i;
 190
 191	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
 192	if (!tg->rt_rq)
 193		goto err;
 194	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
 195	if (!tg->rt_se)
 196		goto err;
 197
 198	init_rt_bandwidth(&tg->rt_bandwidth,
 199			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
 200
 201	for_each_possible_cpu(i) {
 202		rt_rq = kzalloc_node(sizeof(struct rt_rq),
 203				     GFP_KERNEL, cpu_to_node(i));
 204		if (!rt_rq)
 205			goto err;
 206
 207		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
 208				     GFP_KERNEL, cpu_to_node(i));
 209		if (!rt_se)
 210			goto err_free_rq;
 211
 212		init_rt_rq(rt_rq);
 213		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
 214		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
 215	}
 216
 217	return 1;
 218
 219err_free_rq:
 220	kfree(rt_rq);
 221err:
 222	return 0;
 223}
 224
 225#else /* CONFIG_RT_GROUP_SCHED */
 226
 227#define rt_entity_is_task(rt_se) (1)
 228
 229static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 230{
 231	return container_of(rt_se, struct task_struct, rt);
 232}
 233
 234static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 235{
 236	return container_of(rt_rq, struct rq, rt);
 237}
 238
 239static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 240{
 241	struct task_struct *p = rt_task_of(rt_se);
 242
 243	return task_rq(p);
 244}
 245
 246static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 247{
 248	struct rq *rq = rq_of_rt_se(rt_se);
 249
 250	return &rq->rt;
 251}
 252
 253void free_rt_sched_group(struct task_group *tg) { }
 254
 255int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 256{
 257	return 1;
 258}
 259#endif /* CONFIG_RT_GROUP_SCHED */
 260
 261#ifdef CONFIG_SMP
 262
 263static void pull_rt_task(struct rq *this_rq);
 264
 265static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 266{
 267	/* Try to pull RT tasks here if we lower this rq's prio */
 268	return rq->online && rq->rt.highest_prio.curr > prev->prio;
 269}
 270
 271static inline int rt_overloaded(struct rq *rq)
 272{
 273	return atomic_read(&rq->rd->rto_count);
 274}
 275
 276static inline void rt_set_overload(struct rq *rq)
 277{
 278	if (!rq->online)
 279		return;
 280
 281	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
 282	/*
 283	 * Make sure the mask is visible before we set
 284	 * the overload count. That is checked to determine
 285	 * if we should look at the mask. It would be a shame
 286	 * if we looked at the mask, but the mask was not
 287	 * updated yet.
 288	 *
 289	 * Matched by the barrier in pull_rt_task().
 290	 */
 291	smp_wmb();
 292	atomic_inc(&rq->rd->rto_count);
 293}
 294
 295static inline void rt_clear_overload(struct rq *rq)
 296{
 297	if (!rq->online)
 298		return;
 299
 300	/* the order here really doesn't matter */
 301	atomic_dec(&rq->rd->rto_count);
 302	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
 303}
 304
 305static void update_rt_migration(struct rt_rq *rt_rq)
 306{
 307	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
 308		if (!rt_rq->overloaded) {
 309			rt_set_overload(rq_of_rt_rq(rt_rq));
 310			rt_rq->overloaded = 1;
 311		}
 312	} else if (rt_rq->overloaded) {
 313		rt_clear_overload(rq_of_rt_rq(rt_rq));
 314		rt_rq->overloaded = 0;
 315	}
 316}
 317
 318static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 319{
 320	struct task_struct *p;
 321
 322	if (!rt_entity_is_task(rt_se))
 323		return;
 324
 325	p = rt_task_of(rt_se);
 326	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 327
 328	rt_rq->rt_nr_total++;
 329	if (p->nr_cpus_allowed > 1)
 330		rt_rq->rt_nr_migratory++;
 331
 332	update_rt_migration(rt_rq);
 333}
 334
 335static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 336{
 337	struct task_struct *p;
 338
 339	if (!rt_entity_is_task(rt_se))
 340		return;
 341
 342	p = rt_task_of(rt_se);
 343	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 344
 345	rt_rq->rt_nr_total--;
 346	if (p->nr_cpus_allowed > 1)
 347		rt_rq->rt_nr_migratory--;
 348
 349	update_rt_migration(rt_rq);
 350}
 351
 352static inline int has_pushable_tasks(struct rq *rq)
 353{
 354	return !plist_head_empty(&rq->rt.pushable_tasks);
 355}
 356
 357static DEFINE_PER_CPU(struct callback_head, rt_push_head);
 358static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
 359
 360static void push_rt_tasks(struct rq *);
 361static void pull_rt_task(struct rq *);
 362
 363static inline void rt_queue_push_tasks(struct rq *rq)
 364{
 365	if (!has_pushable_tasks(rq))
 366		return;
 367
 368	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
 369}
 370
 371static inline void rt_queue_pull_task(struct rq *rq)
 372{
 373	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
 374}
 375
 376static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 377{
 378	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 379	plist_node_init(&p->pushable_tasks, p->prio);
 380	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
 381
 382	/* Update the highest prio pushable task */
 383	if (p->prio < rq->rt.highest_prio.next)
 384		rq->rt.highest_prio.next = p->prio;
 385}
 386
 387static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 388{
 389	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 390
 391	/* Update the new highest prio pushable task */
 392	if (has_pushable_tasks(rq)) {
 393		p = plist_first_entry(&rq->rt.pushable_tasks,
 394				      struct task_struct, pushable_tasks);
 395		rq->rt.highest_prio.next = p->prio;
 396	} else {
 397		rq->rt.highest_prio.next = MAX_RT_PRIO-1;
 398	}
 399}
 400
 401#else
 402
 403static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 404{
 405}
 406
 407static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 408{
 409}
 410
 411static inline
 412void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 413{
 414}
 415
 416static inline
 417void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 418{
 419}
 420
 421static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 422{
 423	return false;
 424}
 425
 426static inline void pull_rt_task(struct rq *this_rq)
 427{
 428}
 429
 430static inline void rt_queue_push_tasks(struct rq *rq)
 431{
 432}
 433#endif /* CONFIG_SMP */
 434
 435static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
 436static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
 437
 438static inline int on_rt_rq(struct sched_rt_entity *rt_se)
 439{
 440	return rt_se->on_rq;
 441}
 442
 443#ifdef CONFIG_UCLAMP_TASK
 444/*
 445 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
 446 * settings.
 447 *
 448 * This check is only important for heterogeneous systems where uclamp_min value
 449 * is higher than the capacity of a @cpu. For non-heterogeneous system this
 450 * function will always return true.
 451 *
 452 * The function will return true if the capacity of the @cpu is >= the
 453 * uclamp_min and false otherwise.
 454 *
 455 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
 456 * > uclamp_max.
 457 */
 458static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
 459{
 460	unsigned int min_cap;
 461	unsigned int max_cap;
 462	unsigned int cpu_cap;
 463
 464	/* Only heterogeneous systems can benefit from this check */
 465	if (!static_branch_unlikely(&sched_asym_cpucapacity))
 466		return true;
 467
 468	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
 469	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
 470
 471	cpu_cap = capacity_orig_of(cpu);
 472
 473	return cpu_cap >= min(min_cap, max_cap);
 474}
 475#else
 476static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
 477{
 478	return true;
 479}
 480#endif
 481
 482#ifdef CONFIG_RT_GROUP_SCHED
 483
 484static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 485{
 486	if (!rt_rq->tg)
 487		return RUNTIME_INF;
 488
 489	return rt_rq->rt_runtime;
 490}
 491
 492static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 493{
 494	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
 495}
 496
 497typedef struct task_group *rt_rq_iter_t;
 498
 499static inline struct task_group *next_task_group(struct task_group *tg)
 500{
 501	do {
 502		tg = list_entry_rcu(tg->list.next,
 503			typeof(struct task_group), list);
 504	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
 505
 506	if (&tg->list == &task_groups)
 507		tg = NULL;
 508
 509	return tg;
 510}
 511
 512#define for_each_rt_rq(rt_rq, iter, rq)					\
 513	for (iter = container_of(&task_groups, typeof(*iter), list);	\
 514		(iter = next_task_group(iter)) &&			\
 515		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
 516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 517#define for_each_sched_rt_entity(rt_se) \
 518	for (; rt_se; rt_se = rt_se->parent)
 519
 520static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 521{
 522	return rt_se->my_q;
 523}
 524
 525static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 526static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 527
 528static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 529{
 530	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
 531	struct rq *rq = rq_of_rt_rq(rt_rq);
 532	struct sched_rt_entity *rt_se;
 533
 534	int cpu = cpu_of(rq);
 535
 536	rt_se = rt_rq->tg->rt_se[cpu];
 537
 538	if (rt_rq->rt_nr_running) {
 539		if (!rt_se)
 540			enqueue_top_rt_rq(rt_rq);
 541		else if (!on_rt_rq(rt_se))
 542			enqueue_rt_entity(rt_se, 0);
 543
 544		if (rt_rq->highest_prio.curr < curr->prio)
 545			resched_curr(rq);
 546	}
 547}
 548
 549static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 550{
 551	struct sched_rt_entity *rt_se;
 552	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
 553
 554	rt_se = rt_rq->tg->rt_se[cpu];
 555
 556	if (!rt_se) {
 557		dequeue_top_rt_rq(rt_rq);
 558		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
 559		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
 560	}
 561	else if (on_rt_rq(rt_se))
 562		dequeue_rt_entity(rt_se, 0);
 563}
 564
 565static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 566{
 567	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
 568}
 569
 570static int rt_se_boosted(struct sched_rt_entity *rt_se)
 571{
 572	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 573	struct task_struct *p;
 574
 575	if (rt_rq)
 576		return !!rt_rq->rt_nr_boosted;
 577
 578	p = rt_task_of(rt_se);
 579	return p->prio != p->normal_prio;
 580}
 581
 582#ifdef CONFIG_SMP
 583static inline const struct cpumask *sched_rt_period_mask(void)
 584{
 585	return this_rq()->rd->span;
 586}
 587#else
 588static inline const struct cpumask *sched_rt_period_mask(void)
 589{
 590	return cpu_online_mask;
 591}
 592#endif
 593
 594static inline
 595struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 596{
 597	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
 598}
 599
 600static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 601{
 602	return &rt_rq->tg->rt_bandwidth;
 603}
 604
 605#else /* !CONFIG_RT_GROUP_SCHED */
 606
 607static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 608{
 609	return rt_rq->rt_runtime;
 610}
 611
 612static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 613{
 614	return ktime_to_ns(def_rt_bandwidth.rt_period);
 615}
 616
 617typedef struct rt_rq *rt_rq_iter_t;
 618
 619#define for_each_rt_rq(rt_rq, iter, rq) \
 620	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
 621
 
 
 
 
 
 
 
 
 
 
 
 622#define for_each_sched_rt_entity(rt_se) \
 623	for (; rt_se; rt_se = NULL)
 624
 625static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 626{
 627	return NULL;
 628}
 629
 630static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 631{
 632	struct rq *rq = rq_of_rt_rq(rt_rq);
 633
 634	if (!rt_rq->rt_nr_running)
 635		return;
 636
 637	enqueue_top_rt_rq(rt_rq);
 638	resched_curr(rq);
 639}
 640
 641static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 642{
 643	dequeue_top_rt_rq(rt_rq);
 644}
 645
 646static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 647{
 648	return rt_rq->rt_throttled;
 649}
 650
 651static inline const struct cpumask *sched_rt_period_mask(void)
 652{
 653	return cpu_online_mask;
 654}
 655
 656static inline
 657struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 658{
 659	return &cpu_rq(cpu)->rt;
 660}
 661
 662static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 663{
 664	return &def_rt_bandwidth;
 665}
 666
 667#endif /* CONFIG_RT_GROUP_SCHED */
 668
 669bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
 670{
 671	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 672
 673	return (hrtimer_active(&rt_b->rt_period_timer) ||
 674		rt_rq->rt_time < rt_b->rt_runtime);
 675}
 676
 677#ifdef CONFIG_SMP
 678/*
 679 * We ran out of runtime, see if we can borrow some from our neighbours.
 680 */
 681static void do_balance_runtime(struct rt_rq *rt_rq)
 682{
 683	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 684	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
 685	int i, weight;
 686	u64 rt_period;
 687
 688	weight = cpumask_weight(rd->span);
 689
 690	raw_spin_lock(&rt_b->rt_runtime_lock);
 691	rt_period = ktime_to_ns(rt_b->rt_period);
 692	for_each_cpu(i, rd->span) {
 693		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 694		s64 diff;
 695
 696		if (iter == rt_rq)
 697			continue;
 698
 699		raw_spin_lock(&iter->rt_runtime_lock);
 700		/*
 701		 * Either all rqs have inf runtime and there's nothing to steal
 702		 * or __disable_runtime() below sets a specific rq to inf to
 703		 * indicate its been disabled and disallow stealing.
 704		 */
 705		if (iter->rt_runtime == RUNTIME_INF)
 706			goto next;
 707
 708		/*
 709		 * From runqueues with spare time, take 1/n part of their
 710		 * spare time, but no more than our period.
 711		 */
 712		diff = iter->rt_runtime - iter->rt_time;
 713		if (diff > 0) {
 714			diff = div_u64((u64)diff, weight);
 715			if (rt_rq->rt_runtime + diff > rt_period)
 716				diff = rt_period - rt_rq->rt_runtime;
 717			iter->rt_runtime -= diff;
 718			rt_rq->rt_runtime += diff;
 
 719			if (rt_rq->rt_runtime == rt_period) {
 720				raw_spin_unlock(&iter->rt_runtime_lock);
 721				break;
 722			}
 723		}
 724next:
 725		raw_spin_unlock(&iter->rt_runtime_lock);
 726	}
 727	raw_spin_unlock(&rt_b->rt_runtime_lock);
 
 
 728}
 729
 730/*
 731 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 732 */
 733static void __disable_runtime(struct rq *rq)
 734{
 735	struct root_domain *rd = rq->rd;
 736	rt_rq_iter_t iter;
 737	struct rt_rq *rt_rq;
 738
 739	if (unlikely(!scheduler_running))
 740		return;
 741
 742	for_each_rt_rq(rt_rq, iter, rq) {
 743		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 744		s64 want;
 745		int i;
 746
 747		raw_spin_lock(&rt_b->rt_runtime_lock);
 748		raw_spin_lock(&rt_rq->rt_runtime_lock);
 749		/*
 750		 * Either we're all inf and nobody needs to borrow, or we're
 751		 * already disabled and thus have nothing to do, or we have
 752		 * exactly the right amount of runtime to take out.
 753		 */
 754		if (rt_rq->rt_runtime == RUNTIME_INF ||
 755				rt_rq->rt_runtime == rt_b->rt_runtime)
 756			goto balanced;
 757		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 758
 759		/*
 760		 * Calculate the difference between what we started out with
 761		 * and what we current have, that's the amount of runtime
 762		 * we lend and now have to reclaim.
 763		 */
 764		want = rt_b->rt_runtime - rt_rq->rt_runtime;
 765
 766		/*
 767		 * Greedy reclaim, take back as much as we can.
 768		 */
 769		for_each_cpu(i, rd->span) {
 770			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 771			s64 diff;
 772
 773			/*
 774			 * Can't reclaim from ourselves or disabled runqueues.
 775			 */
 776			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
 777				continue;
 778
 779			raw_spin_lock(&iter->rt_runtime_lock);
 780			if (want > 0) {
 781				diff = min_t(s64, iter->rt_runtime, want);
 782				iter->rt_runtime -= diff;
 783				want -= diff;
 784			} else {
 785				iter->rt_runtime -= want;
 786				want -= want;
 787			}
 788			raw_spin_unlock(&iter->rt_runtime_lock);
 789
 790			if (!want)
 791				break;
 792		}
 793
 794		raw_spin_lock(&rt_rq->rt_runtime_lock);
 795		/*
 796		 * We cannot be left wanting - that would mean some runtime
 797		 * leaked out of the system.
 798		 */
 799		BUG_ON(want);
 800balanced:
 801		/*
 802		 * Disable all the borrow logic by pretending we have inf
 803		 * runtime - in which case borrowing doesn't make sense.
 804		 */
 805		rt_rq->rt_runtime = RUNTIME_INF;
 806		rt_rq->rt_throttled = 0;
 807		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 808		raw_spin_unlock(&rt_b->rt_runtime_lock);
 
 
 
 
 
 
 809
 810		/* Make rt_rq available for pick_next_task() */
 811		sched_rt_rq_enqueue(rt_rq);
 812	}
 813}
 814
 815static void __enable_runtime(struct rq *rq)
 816{
 817	rt_rq_iter_t iter;
 818	struct rt_rq *rt_rq;
 819
 820	if (unlikely(!scheduler_running))
 821		return;
 822
 823	/*
 824	 * Reset each runqueue's bandwidth settings
 825	 */
 826	for_each_rt_rq(rt_rq, iter, rq) {
 827		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 828
 829		raw_spin_lock(&rt_b->rt_runtime_lock);
 830		raw_spin_lock(&rt_rq->rt_runtime_lock);
 831		rt_rq->rt_runtime = rt_b->rt_runtime;
 832		rt_rq->rt_time = 0;
 833		rt_rq->rt_throttled = 0;
 834		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 835		raw_spin_unlock(&rt_b->rt_runtime_lock);
 836	}
 837}
 838
 839static void balance_runtime(struct rt_rq *rt_rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 840{
 
 
 841	if (!sched_feat(RT_RUNTIME_SHARE))
 842		return;
 843
 844	if (rt_rq->rt_time > rt_rq->rt_runtime) {
 845		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 846		do_balance_runtime(rt_rq);
 847		raw_spin_lock(&rt_rq->rt_runtime_lock);
 848	}
 
 
 849}
 850#else /* !CONFIG_SMP */
 851static inline void balance_runtime(struct rt_rq *rt_rq) {}
 
 
 
 852#endif /* CONFIG_SMP */
 853
 854static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
 855{
 856	int i, idle = 1, throttled = 0;
 857	const struct cpumask *span;
 858
 859	span = sched_rt_period_mask();
 860#ifdef CONFIG_RT_GROUP_SCHED
 861	/*
 862	 * FIXME: isolated CPUs should really leave the root task group,
 863	 * whether they are isolcpus or were isolated via cpusets, lest
 864	 * the timer run on a CPU which does not service all runqueues,
 865	 * potentially leaving other CPUs indefinitely throttled.  If
 866	 * isolation is really required, the user will turn the throttle
 867	 * off to kill the perturbations it causes anyway.  Meanwhile,
 868	 * this maintains functionality for boot and/or troubleshooting.
 869	 */
 870	if (rt_b == &root_task_group.rt_bandwidth)
 871		span = cpu_online_mask;
 872#endif
 873	for_each_cpu(i, span) {
 874		int enqueue = 0;
 875		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
 876		struct rq *rq = rq_of_rt_rq(rt_rq);
 877		int skip;
 878
 879		/*
 880		 * When span == cpu_online_mask, taking each rq->lock
 881		 * can be time-consuming. Try to avoid it when possible.
 882		 */
 883		raw_spin_lock(&rt_rq->rt_runtime_lock);
 884		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
 885			rt_rq->rt_runtime = rt_b->rt_runtime;
 886		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
 887		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 888		if (skip)
 889			continue;
 890
 891		raw_spin_rq_lock(rq);
 892		update_rq_clock(rq);
 893
 
 894		if (rt_rq->rt_time) {
 895			u64 runtime;
 896
 897			raw_spin_lock(&rt_rq->rt_runtime_lock);
 898			if (rt_rq->rt_throttled)
 899				balance_runtime(rt_rq);
 900			runtime = rt_rq->rt_runtime;
 901			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
 902			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
 903				rt_rq->rt_throttled = 0;
 904				enqueue = 1;
 905
 906				/*
 907				 * When we're idle and a woken (rt) task is
 908				 * throttled check_preempt_curr() will set
 909				 * skip_update and the time between the wakeup
 910				 * and this unthrottle will get accounted as
 911				 * 'runtime'.
 912				 */
 913				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
 914					rq_clock_cancel_skipupdate(rq);
 915			}
 916			if (rt_rq->rt_time || rt_rq->rt_nr_running)
 917				idle = 0;
 918			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 919		} else if (rt_rq->rt_nr_running) {
 920			idle = 0;
 921			if (!rt_rq_throttled(rt_rq))
 922				enqueue = 1;
 923		}
 924		if (rt_rq->rt_throttled)
 925			throttled = 1;
 926
 927		if (enqueue)
 928			sched_rt_rq_enqueue(rt_rq);
 929		raw_spin_rq_unlock(rq);
 930	}
 931
 932	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
 933		return 1;
 934
 935	return idle;
 936}
 937
 938static inline int rt_se_prio(struct sched_rt_entity *rt_se)
 939{
 940#ifdef CONFIG_RT_GROUP_SCHED
 941	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 942
 943	if (rt_rq)
 944		return rt_rq->highest_prio.curr;
 945#endif
 946
 947	return rt_task_of(rt_se)->prio;
 948}
 949
 950static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
 951{
 952	u64 runtime = sched_rt_runtime(rt_rq);
 953
 954	if (rt_rq->rt_throttled)
 955		return rt_rq_throttled(rt_rq);
 956
 957	if (runtime >= sched_rt_period(rt_rq))
 958		return 0;
 959
 960	balance_runtime(rt_rq);
 961	runtime = sched_rt_runtime(rt_rq);
 962	if (runtime == RUNTIME_INF)
 963		return 0;
 964
 965	if (rt_rq->rt_time > runtime) {
 966		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 967
 968		/*
 969		 * Don't actually throttle groups that have no runtime assigned
 970		 * but accrue some time due to boosting.
 971		 */
 972		if (likely(rt_b->rt_runtime)) {
 
 
 973			rt_rq->rt_throttled = 1;
 974			printk_deferred_once("sched: RT throttling activated\n");
 
 
 
 
 975		} else {
 976			/*
 977			 * In case we did anyway, make it go away,
 978			 * replenishment is a joke, since it will replenish us
 979			 * with exactly 0 ns.
 980			 */
 981			rt_rq->rt_time = 0;
 982		}
 983
 984		if (rt_rq_throttled(rt_rq)) {
 985			sched_rt_rq_dequeue(rt_rq);
 986			return 1;
 987		}
 988	}
 989
 990	return 0;
 991}
 992
 993/*
 994 * Update the current task's runtime statistics. Skip current tasks that
 995 * are not in our scheduling class.
 996 */
 997static void update_curr_rt(struct rq *rq)
 998{
 999	struct task_struct *curr = rq->curr;
1000	struct sched_rt_entity *rt_se = &curr->rt;
 
1001	u64 delta_exec;
1002	u64 now;
1003
1004	if (curr->sched_class != &rt_sched_class)
1005		return;
1006
1007	now = rq_clock_task(rq);
1008	delta_exec = now - curr->se.exec_start;
1009	if (unlikely((s64)delta_exec <= 0))
1010		return;
1011
1012	schedstat_set(curr->se.statistics.exec_max,
1013		      max(curr->se.statistics.exec_max, delta_exec));
1014
1015	curr->se.sum_exec_runtime += delta_exec;
1016	account_group_exec_runtime(curr, delta_exec);
1017
1018	curr->se.exec_start = now;
1019	cgroup_account_cputime(curr, delta_exec);
 
 
1020
1021	if (!rt_bandwidth_enabled())
1022		return;
1023
1024	for_each_sched_rt_entity(rt_se) {
1025		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1026
1027		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1028			raw_spin_lock(&rt_rq->rt_runtime_lock);
1029			rt_rq->rt_time += delta_exec;
1030			if (sched_rt_runtime_exceeded(rt_rq))
1031				resched_curr(rq);
1032			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1033		}
1034	}
1035}
1036
1037static void
1038dequeue_top_rt_rq(struct rt_rq *rt_rq)
1039{
1040	struct rq *rq = rq_of_rt_rq(rt_rq);
1041
1042	BUG_ON(&rq->rt != rt_rq);
1043
1044	if (!rt_rq->rt_queued)
1045		return;
1046
1047	BUG_ON(!rq->nr_running);
1048
1049	sub_nr_running(rq, rt_rq->rt_nr_running);
1050	rt_rq->rt_queued = 0;
1051
1052}
1053
1054static void
1055enqueue_top_rt_rq(struct rt_rq *rt_rq)
1056{
1057	struct rq *rq = rq_of_rt_rq(rt_rq);
1058
1059	BUG_ON(&rq->rt != rt_rq);
1060
1061	if (rt_rq->rt_queued)
1062		return;
1063
1064	if (rt_rq_throttled(rt_rq))
1065		return;
1066
1067	if (rt_rq->rt_nr_running) {
1068		add_nr_running(rq, rt_rq->rt_nr_running);
1069		rt_rq->rt_queued = 1;
1070	}
1071
1072	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1073	cpufreq_update_util(rq, 0);
1074}
1075
1076#if defined CONFIG_SMP
1077
1078static void
1079inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1080{
1081	struct rq *rq = rq_of_rt_rq(rt_rq);
1082
1083#ifdef CONFIG_RT_GROUP_SCHED
1084	/*
1085	 * Change rq's cpupri only if rt_rq is the top queue.
1086	 */
1087	if (&rq->rt != rt_rq)
1088		return;
1089#endif
1090	if (rq->online && prio < prev_prio)
1091		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1092}
1093
1094static void
1095dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1096{
1097	struct rq *rq = rq_of_rt_rq(rt_rq);
1098
1099#ifdef CONFIG_RT_GROUP_SCHED
1100	/*
1101	 * Change rq's cpupri only if rt_rq is the top queue.
1102	 */
1103	if (&rq->rt != rt_rq)
1104		return;
1105#endif
1106	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1107		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1108}
1109
1110#else /* CONFIG_SMP */
1111
1112static inline
1113void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1114static inline
1115void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1116
1117#endif /* CONFIG_SMP */
1118
1119#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1120static void
1121inc_rt_prio(struct rt_rq *rt_rq, int prio)
1122{
1123	int prev_prio = rt_rq->highest_prio.curr;
1124
1125	if (prio < prev_prio)
1126		rt_rq->highest_prio.curr = prio;
1127
1128	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1129}
1130
1131static void
1132dec_rt_prio(struct rt_rq *rt_rq, int prio)
1133{
1134	int prev_prio = rt_rq->highest_prio.curr;
1135
1136	if (rt_rq->rt_nr_running) {
1137
1138		WARN_ON(prio < prev_prio);
1139
1140		/*
1141		 * This may have been our highest task, and therefore
1142		 * we may have some recomputation to do
1143		 */
1144		if (prio == prev_prio) {
1145			struct rt_prio_array *array = &rt_rq->active;
1146
1147			rt_rq->highest_prio.curr =
1148				sched_find_first_bit(array->bitmap);
1149		}
1150
1151	} else {
1152		rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1153	}
1154
1155	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1156}
1157
1158#else
1159
1160static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1161static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1162
1163#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1164
1165#ifdef CONFIG_RT_GROUP_SCHED
1166
1167static void
1168inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1169{
1170	if (rt_se_boosted(rt_se))
1171		rt_rq->rt_nr_boosted++;
1172
1173	if (rt_rq->tg)
1174		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1175}
1176
1177static void
1178dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1179{
1180	if (rt_se_boosted(rt_se))
1181		rt_rq->rt_nr_boosted--;
1182
1183	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1184}
1185
1186#else /* CONFIG_RT_GROUP_SCHED */
1187
1188static void
1189inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1190{
1191	start_rt_bandwidth(&def_rt_bandwidth);
1192}
1193
1194static inline
1195void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1196
1197#endif /* CONFIG_RT_GROUP_SCHED */
1198
1199static inline
1200unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1201{
1202	struct rt_rq *group_rq = group_rt_rq(rt_se);
1203
1204	if (group_rq)
1205		return group_rq->rt_nr_running;
1206	else
1207		return 1;
1208}
1209
1210static inline
1211unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1212{
1213	struct rt_rq *group_rq = group_rt_rq(rt_se);
1214	struct task_struct *tsk;
1215
1216	if (group_rq)
1217		return group_rq->rr_nr_running;
1218
1219	tsk = rt_task_of(rt_se);
1220
1221	return (tsk->policy == SCHED_RR) ? 1 : 0;
1222}
1223
1224static inline
1225void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1226{
1227	int prio = rt_se_prio(rt_se);
1228
1229	WARN_ON(!rt_prio(prio));
1230	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1231	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1232
1233	inc_rt_prio(rt_rq, prio);
1234	inc_rt_migration(rt_se, rt_rq);
1235	inc_rt_group(rt_se, rt_rq);
1236}
1237
1238static inline
1239void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1240{
1241	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1242	WARN_ON(!rt_rq->rt_nr_running);
1243	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1244	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1245
1246	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1247	dec_rt_migration(rt_se, rt_rq);
1248	dec_rt_group(rt_se, rt_rq);
1249}
1250
1251/*
1252 * Change rt_se->run_list location unless SAVE && !MOVE
1253 *
1254 * assumes ENQUEUE/DEQUEUE flags match
1255 */
1256static inline bool move_entity(unsigned int flags)
1257{
1258	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1259		return false;
1260
1261	return true;
1262}
1263
1264static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1265{
1266	list_del_init(&rt_se->run_list);
1267
1268	if (list_empty(array->queue + rt_se_prio(rt_se)))
1269		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1270
1271	rt_se->on_list = 0;
1272}
1273
1274static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1275{
1276	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1277	struct rt_prio_array *array = &rt_rq->active;
1278	struct rt_rq *group_rq = group_rt_rq(rt_se);
1279	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1280
1281	/*
1282	 * Don't enqueue the group if its throttled, or when empty.
1283	 * The latter is a consequence of the former when a child group
1284	 * get throttled and the current group doesn't have any other
1285	 * active members.
1286	 */
1287	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1288		if (rt_se->on_list)
1289			__delist_rt_entity(rt_se, array);
1290		return;
1291	}
1292
1293	if (move_entity(flags)) {
1294		WARN_ON_ONCE(rt_se->on_list);
1295		if (flags & ENQUEUE_HEAD)
1296			list_add(&rt_se->run_list, queue);
1297		else
1298			list_add_tail(&rt_se->run_list, queue);
1299
1300		__set_bit(rt_se_prio(rt_se), array->bitmap);
1301		rt_se->on_list = 1;
1302	}
1303	rt_se->on_rq = 1;
 
1304
1305	inc_rt_tasks(rt_se, rt_rq);
1306}
1307
1308static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1309{
1310	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1311	struct rt_prio_array *array = &rt_rq->active;
1312
1313	if (move_entity(flags)) {
1314		WARN_ON_ONCE(!rt_se->on_list);
1315		__delist_rt_entity(rt_se, array);
1316	}
1317	rt_se->on_rq = 0;
1318
1319	dec_rt_tasks(rt_se, rt_rq);
 
 
1320}
1321
1322/*
1323 * Because the prio of an upper entry depends on the lower
1324 * entries, we must remove entries top - down.
1325 */
1326static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1327{
1328	struct sched_rt_entity *back = NULL;
1329
1330	for_each_sched_rt_entity(rt_se) {
1331		rt_se->back = back;
1332		back = rt_se;
1333	}
1334
1335	dequeue_top_rt_rq(rt_rq_of_se(back));
1336
1337	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1338		if (on_rt_rq(rt_se))
1339			__dequeue_rt_entity(rt_se, flags);
1340	}
1341}
1342
1343static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1344{
1345	struct rq *rq = rq_of_rt_se(rt_se);
1346
1347	dequeue_rt_stack(rt_se, flags);
1348	for_each_sched_rt_entity(rt_se)
1349		__enqueue_rt_entity(rt_se, flags);
1350	enqueue_top_rt_rq(&rq->rt);
1351}
1352
1353static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1354{
1355	struct rq *rq = rq_of_rt_se(rt_se);
1356
1357	dequeue_rt_stack(rt_se, flags);
1358
1359	for_each_sched_rt_entity(rt_se) {
1360		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1361
1362		if (rt_rq && rt_rq->rt_nr_running)
1363			__enqueue_rt_entity(rt_se, flags);
1364	}
1365	enqueue_top_rt_rq(&rq->rt);
1366}
1367
1368/*
1369 * Adding/removing a task to/from a priority array:
1370 */
1371static void
1372enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1373{
1374	struct sched_rt_entity *rt_se = &p->rt;
1375
1376	if (flags & ENQUEUE_WAKEUP)
1377		rt_se->timeout = 0;
1378
1379	enqueue_rt_entity(rt_se, flags);
1380
1381	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1382		enqueue_pushable_task(rq, p);
 
 
1383}
1384
1385static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1386{
1387	struct sched_rt_entity *rt_se = &p->rt;
1388
1389	update_curr_rt(rq);
1390	dequeue_rt_entity(rt_se, flags);
1391
1392	dequeue_pushable_task(rq, p);
 
 
1393}
1394
1395/*
1396 * Put task to the head or the end of the run list without the overhead of
1397 * dequeue followed by enqueue.
1398 */
1399static void
1400requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1401{
1402	if (on_rt_rq(rt_se)) {
1403		struct rt_prio_array *array = &rt_rq->active;
1404		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1405
1406		if (head)
1407			list_move(&rt_se->run_list, queue);
1408		else
1409			list_move_tail(&rt_se->run_list, queue);
1410	}
1411}
1412
1413static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1414{
1415	struct sched_rt_entity *rt_se = &p->rt;
1416	struct rt_rq *rt_rq;
1417
1418	for_each_sched_rt_entity(rt_se) {
1419		rt_rq = rt_rq_of_se(rt_se);
1420		requeue_rt_entity(rt_rq, rt_se, head);
1421	}
1422}
1423
1424static void yield_task_rt(struct rq *rq)
1425{
1426	requeue_task_rt(rq, rq->curr, 0);
1427}
1428
1429#ifdef CONFIG_SMP
1430static int find_lowest_rq(struct task_struct *task);
1431
1432static int
1433select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1434{
1435	struct task_struct *curr;
1436	struct rq *rq;
1437	bool test;
 
 
 
 
 
1438
1439	/* For anything but wake ups, just return the task_cpu */
1440	if (!(flags & (WF_TTWU | WF_FORK)))
1441		goto out;
1442
1443	rq = cpu_rq(cpu);
1444
1445	rcu_read_lock();
1446	curr = READ_ONCE(rq->curr); /* unlocked access */
1447
1448	/*
1449	 * If the current task on @p's runqueue is an RT task, then
1450	 * try to see if we can wake this RT task up on another
1451	 * runqueue. Otherwise simply start this RT task
1452	 * on its current runqueue.
1453	 *
1454	 * We want to avoid overloading runqueues. If the woken
1455	 * task is a higher priority, then it will stay on this CPU
1456	 * and the lower prio task should be moved to another CPU.
1457	 * Even though this will probably make the lower prio task
1458	 * lose its cache, we do not want to bounce a higher task
1459	 * around just because it gave up its CPU, perhaps for a
1460	 * lock?
1461	 *
1462	 * For equal prio tasks, we just let the scheduler sort it out.
1463	 *
1464	 * Otherwise, just let it ride on the affined RQ and the
1465	 * post-schedule router will push the preempted task away
1466	 *
1467	 * This test is optimistic, if we get it wrong the load-balancer
1468	 * will have to sort it out.
1469	 *
1470	 * We take into account the capacity of the CPU to ensure it fits the
1471	 * requirement of the task - which is only important on heterogeneous
1472	 * systems like big.LITTLE.
1473	 */
1474	test = curr &&
1475	       unlikely(rt_task(curr)) &&
1476	       (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1477
1478	if (test || !rt_task_fits_capacity(p, cpu)) {
1479		int target = find_lowest_rq(p);
1480
1481		/*
1482		 * Bail out if we were forcing a migration to find a better
1483		 * fitting CPU but our search failed.
1484		 */
1485		if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1486			goto out_unlock;
1487
1488		/*
1489		 * Don't bother moving it if the destination CPU is
1490		 * not running a lower priority task.
1491		 */
1492		if (target != -1 &&
1493		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1494			cpu = target;
1495	}
1496
1497out_unlock:
1498	rcu_read_unlock();
1499
1500out:
1501	return cpu;
1502}
1503
1504static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1505{
1506	/*
1507	 * Current can't be migrated, useless to reschedule,
1508	 * let's hope p can move out.
1509	 */
1510	if (rq->curr->nr_cpus_allowed == 1 ||
1511	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1512		return;
1513
1514	/*
1515	 * p is migratable, so let's not schedule it and
1516	 * see if it is pushed or pulled somewhere else.
1517	 */
1518	if (p->nr_cpus_allowed != 1 &&
1519	    cpupri_find(&rq->rd->cpupri, p, NULL))
1520		return;
1521
1522	/*
1523	 * There appear to be other CPUs that can accept
1524	 * the current task but none can run 'p', so lets reschedule
1525	 * to try and push the current task away:
1526	 */
1527	requeue_task_rt(rq, p, 1);
1528	resched_curr(rq);
1529}
1530
1531static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1532{
1533	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1534		/*
1535		 * This is OK, because current is on_cpu, which avoids it being
1536		 * picked for load-balance and preemption/IRQs are still
1537		 * disabled avoiding further scheduler activity on it and we've
1538		 * not yet started the picking loop.
1539		 */
1540		rq_unpin_lock(rq, rf);
1541		pull_rt_task(rq);
1542		rq_repin_lock(rq, rf);
1543	}
1544
1545	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1546}
1547#endif /* CONFIG_SMP */
1548
1549/*
1550 * Preempt the current task with a newly woken task if needed:
1551 */
1552static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1553{
1554	if (p->prio < rq->curr->prio) {
1555		resched_curr(rq);
1556		return;
1557	}
1558
1559#ifdef CONFIG_SMP
1560	/*
1561	 * If:
1562	 *
1563	 * - the newly woken task is of equal priority to the current task
1564	 * - the newly woken task is non-migratable while current is migratable
1565	 * - current will be preempted on the next reschedule
1566	 *
1567	 * we should check to see if current can readily move to a different
1568	 * cpu.  If so, we will reschedule to allow the push logic to try
1569	 * to move current somewhere else, making room for our non-migratable
1570	 * task.
1571	 */
1572	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1573		check_preempt_equal_prio(rq, p);
1574#endif
1575}
1576
1577static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1578{
1579	p->se.exec_start = rq_clock_task(rq);
1580
1581	/* The running task is never eligible for pushing */
1582	dequeue_pushable_task(rq, p);
1583
1584	if (!first)
1585		return;
1586
1587	/*
1588	 * If prev task was rt, put_prev_task() has already updated the
1589	 * utilization. We only care of the case where we start to schedule a
1590	 * rt task
1591	 */
1592	if (rq->curr->sched_class != &rt_sched_class)
1593		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1594
1595	rt_queue_push_tasks(rq);
1596}
1597
1598static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1599						   struct rt_rq *rt_rq)
1600{
1601	struct rt_prio_array *array = &rt_rq->active;
1602	struct sched_rt_entity *next = NULL;
1603	struct list_head *queue;
1604	int idx;
1605
1606	idx = sched_find_first_bit(array->bitmap);
1607	BUG_ON(idx >= MAX_RT_PRIO);
1608
1609	queue = array->queue + idx;
1610	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1611
1612	return next;
1613}
1614
1615static struct task_struct *_pick_next_task_rt(struct rq *rq)
1616{
1617	struct sched_rt_entity *rt_se;
1618	struct rt_rq *rt_rq  = &rq->rt;
 
 
 
 
 
 
 
 
 
1619
1620	do {
1621		rt_se = pick_next_rt_entity(rq, rt_rq);
1622		BUG_ON(!rt_se);
1623		rt_rq = group_rt_rq(rt_se);
1624	} while (rt_rq);
1625
1626	return rt_task_of(rt_se);
1627}
1628
1629static struct task_struct *pick_task_rt(struct rq *rq)
1630{
1631	struct task_struct *p;
1632
1633	if (!sched_rt_runnable(rq))
1634		return NULL;
1635
1636	p = _pick_next_task_rt(rq);
1637
1638	return p;
1639}
1640
1641static struct task_struct *pick_next_task_rt(struct rq *rq)
1642{
1643	struct task_struct *p = pick_task_rt(rq);
1644
 
1645	if (p)
1646		set_next_task_rt(rq, p, true);
 
 
 
 
 
 
 
 
1647
1648	return p;
1649}
1650
1651static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1652{
1653	update_curr_rt(rq);
1654
1655	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1656
1657	/*
1658	 * The previous task needs to be made eligible for pushing
1659	 * if it is still active
1660	 */
1661	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1662		enqueue_pushable_task(rq, p);
1663}
1664
1665#ifdef CONFIG_SMP
1666
1667/* Only try algorithms three times */
1668#define RT_MAX_TRIES 3
1669
1670static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1671{
1672	if (!task_running(rq, p) &&
1673	    cpumask_test_cpu(cpu, &p->cpus_mask))
 
1674		return 1;
1675
1676	return 0;
1677}
1678
1679/*
1680 * Return the highest pushable rq's task, which is suitable to be executed
1681 * on the CPU, NULL otherwise
1682 */
1683static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1684{
1685	struct plist_head *head = &rq->rt.pushable_tasks;
1686	struct task_struct *p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1687
1688	if (!has_pushable_tasks(rq))
1689		return NULL;
1690
1691	plist_for_each_entry(p, head, pushable_tasks) {
1692		if (pick_rt_task(rq, p, cpu))
1693			return p;
 
 
 
 
 
 
 
1694	}
1695
1696	return NULL;
1697}
1698
1699static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1700
1701static int find_lowest_rq(struct task_struct *task)
1702{
1703	struct sched_domain *sd;
1704	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1705	int this_cpu = smp_processor_id();
1706	int cpu      = task_cpu(task);
1707	int ret;
1708
1709	/* Make sure the mask is initialized first */
1710	if (unlikely(!lowest_mask))
1711		return -1;
1712
1713	if (task->nr_cpus_allowed == 1)
1714		return -1; /* No other targets possible */
1715
1716	/*
1717	 * If we're on asym system ensure we consider the different capacities
1718	 * of the CPUs when searching for the lowest_mask.
1719	 */
1720	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1721
1722		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1723					  task, lowest_mask,
1724					  rt_task_fits_capacity);
1725	} else {
1726
1727		ret = cpupri_find(&task_rq(task)->rd->cpupri,
1728				  task, lowest_mask);
1729	}
1730
1731	if (!ret)
1732		return -1; /* No targets found */
1733
1734	/*
1735	 * At this point we have built a mask of CPUs representing the
1736	 * lowest priority tasks in the system.  Now we want to elect
1737	 * the best one based on our affinity and topology.
1738	 *
1739	 * We prioritize the last CPU that the task executed on since
1740	 * it is most likely cache-hot in that location.
1741	 */
1742	if (cpumask_test_cpu(cpu, lowest_mask))
1743		return cpu;
1744
1745	/*
1746	 * Otherwise, we consult the sched_domains span maps to figure
1747	 * out which CPU is logically closest to our hot cache data.
1748	 */
1749	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1750		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1751
1752	rcu_read_lock();
1753	for_each_domain(cpu, sd) {
1754		if (sd->flags & SD_WAKE_AFFINE) {
1755			int best_cpu;
1756
1757			/*
1758			 * "this_cpu" is cheaper to preempt than a
1759			 * remote processor.
1760			 */
1761			if (this_cpu != -1 &&
1762			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1763				rcu_read_unlock();
1764				return this_cpu;
1765			}
1766
1767			best_cpu = cpumask_any_and_distribute(lowest_mask,
1768							      sched_domain_span(sd));
1769			if (best_cpu < nr_cpu_ids) {
1770				rcu_read_unlock();
1771				return best_cpu;
1772			}
1773		}
1774	}
1775	rcu_read_unlock();
1776
1777	/*
1778	 * And finally, if there were no matches within the domains
1779	 * just give the caller *something* to work with from the compatible
1780	 * locations.
1781	 */
1782	if (this_cpu != -1)
1783		return this_cpu;
1784
1785	cpu = cpumask_any_distribute(lowest_mask);
1786	if (cpu < nr_cpu_ids)
1787		return cpu;
1788
1789	return -1;
1790}
1791
1792/* Will lock the rq it finds */
1793static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1794{
1795	struct rq *lowest_rq = NULL;
1796	int tries;
1797	int cpu;
1798
1799	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1800		cpu = find_lowest_rq(task);
1801
1802		if ((cpu == -1) || (cpu == rq->cpu))
1803			break;
1804
1805		lowest_rq = cpu_rq(cpu);
1806
1807		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1808			/*
1809			 * Target rq has tasks of equal or higher priority,
1810			 * retrying does not release any lock and is unlikely
1811			 * to yield a different result.
1812			 */
1813			lowest_rq = NULL;
1814			break;
1815		}
1816
1817		/* if the prio of this runqueue changed, try again */
1818		if (double_lock_balance(rq, lowest_rq)) {
1819			/*
1820			 * We had to unlock the run queue. In
1821			 * the mean time, task could have
1822			 * migrated already or had its affinity changed.
1823			 * Also make sure that it wasn't scheduled on its rq.
1824			 */
1825			if (unlikely(task_rq(task) != rq ||
1826				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
 
1827				     task_running(rq, task) ||
1828				     !rt_task(task) ||
1829				     !task_on_rq_queued(task))) {
1830
1831				double_unlock_balance(rq, lowest_rq);
1832				lowest_rq = NULL;
1833				break;
1834			}
1835		}
1836
1837		/* If this rq is still suitable use it. */
1838		if (lowest_rq->rt.highest_prio.curr > task->prio)
1839			break;
1840
1841		/* try again */
1842		double_unlock_balance(rq, lowest_rq);
1843		lowest_rq = NULL;
1844	}
1845
1846	return lowest_rq;
1847}
1848
1849static struct task_struct *pick_next_pushable_task(struct rq *rq)
1850{
1851	struct task_struct *p;
1852
1853	if (!has_pushable_tasks(rq))
1854		return NULL;
1855
1856	p = plist_first_entry(&rq->rt.pushable_tasks,
1857			      struct task_struct, pushable_tasks);
1858
1859	BUG_ON(rq->cpu != task_cpu(p));
1860	BUG_ON(task_current(rq, p));
1861	BUG_ON(p->nr_cpus_allowed <= 1);
1862
1863	BUG_ON(!task_on_rq_queued(p));
1864	BUG_ON(!rt_task(p));
1865
1866	return p;
1867}
1868
1869/*
1870 * If the current CPU has more than one RT task, see if the non
1871 * running task can migrate over to a CPU that is running a task
1872 * of lesser priority.
1873 */
1874static int push_rt_task(struct rq *rq, bool pull)
1875{
1876	struct task_struct *next_task;
1877	struct rq *lowest_rq;
1878	int ret = 0;
1879
1880	if (!rq->rt.overloaded)
1881		return 0;
1882
1883	next_task = pick_next_pushable_task(rq);
1884	if (!next_task)
1885		return 0;
1886
 
 
 
 
 
1887retry:
1888	if (is_migration_disabled(next_task)) {
1889		struct task_struct *push_task = NULL;
1890		int cpu;
1891
1892		if (!pull || rq->push_busy)
1893			return 0;
1894
1895		cpu = find_lowest_rq(rq->curr);
1896		if (cpu == -1 || cpu == rq->cpu)
1897			return 0;
1898
1899		/*
1900		 * Given we found a CPU with lower priority than @next_task,
1901		 * therefore it should be running. However we cannot migrate it
1902		 * to this other CPU, instead attempt to push the current
1903		 * running task on this CPU away.
1904		 */
1905		push_task = get_push_task(rq);
1906		if (push_task) {
1907			raw_spin_rq_unlock(rq);
1908			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
1909					    push_task, &rq->push_work);
1910			raw_spin_rq_lock(rq);
1911		}
1912
1913		return 0;
1914	}
1915
1916	if (WARN_ON(next_task == rq->curr))
1917		return 0;
1918
1919	/*
1920	 * It's possible that the next_task slipped in of
1921	 * higher priority than current. If that's the case
1922	 * just reschedule current.
1923	 */
1924	if (unlikely(next_task->prio < rq->curr->prio)) {
1925		resched_curr(rq);
1926		return 0;
1927	}
1928
1929	/* We might release rq lock */
1930	get_task_struct(next_task);
1931
1932	/* find_lock_lowest_rq locks the rq if found */
1933	lowest_rq = find_lock_lowest_rq(next_task, rq);
1934	if (!lowest_rq) {
1935		struct task_struct *task;
1936		/*
1937		 * find_lock_lowest_rq releases rq->lock
1938		 * so it is possible that next_task has migrated.
1939		 *
1940		 * We need to make sure that the task is still on the same
1941		 * run-queue and is also still the next task eligible for
1942		 * pushing.
1943		 */
1944		task = pick_next_pushable_task(rq);
1945		if (task == next_task) {
1946			/*
1947			 * The task hasn't migrated, and is still the next
1948			 * eligible task, but we failed to find a run-queue
1949			 * to push it to.  Do not retry in this case, since
1950			 * other CPUs will pull from us when ready.
1951			 */
1952			goto out;
1953		}
1954
1955		if (!task)
1956			/* No more tasks, just exit */
1957			goto out;
1958
1959		/*
1960		 * Something has shifted, try again.
1961		 */
1962		put_task_struct(next_task);
1963		next_task = task;
1964		goto retry;
1965	}
1966
1967	deactivate_task(rq, next_task, 0);
1968	set_task_cpu(next_task, lowest_rq->cpu);
1969	activate_task(lowest_rq, next_task, 0);
1970	resched_curr(lowest_rq);
1971	ret = 1;
1972
 
 
1973	double_unlock_balance(rq, lowest_rq);
 
1974out:
1975	put_task_struct(next_task);
1976
1977	return ret;
1978}
1979
1980static void push_rt_tasks(struct rq *rq)
1981{
1982	/* push_rt_task will return true if it moved an RT */
1983	while (push_rt_task(rq, false))
1984		;
1985}
1986
1987#ifdef HAVE_RT_PUSH_IPI
1988
1989/*
1990 * When a high priority task schedules out from a CPU and a lower priority
1991 * task is scheduled in, a check is made to see if there's any RT tasks
1992 * on other CPUs that are waiting to run because a higher priority RT task
1993 * is currently running on its CPU. In this case, the CPU with multiple RT
1994 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1995 * up that may be able to run one of its non-running queued RT tasks.
1996 *
1997 * All CPUs with overloaded RT tasks need to be notified as there is currently
1998 * no way to know which of these CPUs have the highest priority task waiting
1999 * to run. Instead of trying to take a spinlock on each of these CPUs,
2000 * which has shown to cause large latency when done on machines with many
2001 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2002 * RT tasks waiting to run.
2003 *
2004 * Just sending an IPI to each of the CPUs is also an issue, as on large
2005 * count CPU machines, this can cause an IPI storm on a CPU, especially
2006 * if its the only CPU with multiple RT tasks queued, and a large number
2007 * of CPUs scheduling a lower priority task at the same time.
2008 *
2009 * Each root domain has its own irq work function that can iterate over
2010 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2011 * task must be checked if there's one or many CPUs that are lowering
2012 * their priority, there's a single irq work iterator that will try to
2013 * push off RT tasks that are waiting to run.
2014 *
2015 * When a CPU schedules a lower priority task, it will kick off the
2016 * irq work iterator that will jump to each CPU with overloaded RT tasks.
2017 * As it only takes the first CPU that schedules a lower priority task
2018 * to start the process, the rto_start variable is incremented and if
2019 * the atomic result is one, then that CPU will try to take the rto_lock.
2020 * This prevents high contention on the lock as the process handles all
2021 * CPUs scheduling lower priority tasks.
2022 *
2023 * All CPUs that are scheduling a lower priority task will increment the
2024 * rt_loop_next variable. This will make sure that the irq work iterator
2025 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2026 * priority task, even if the iterator is in the middle of a scan. Incrementing
2027 * the rt_loop_next will cause the iterator to perform another scan.
2028 *
2029 */
2030static int rto_next_cpu(struct root_domain *rd)
2031{
2032	int next;
2033	int cpu;
2034
2035	/*
2036	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2037	 * rt_next_cpu() will simply return the first CPU found in
2038	 * the rto_mask.
2039	 *
2040	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2041	 * will return the next CPU found in the rto_mask.
2042	 *
2043	 * If there are no more CPUs left in the rto_mask, then a check is made
2044	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2045	 * the rto_lock held, but any CPU may increment the rto_loop_next
2046	 * without any locking.
2047	 */
2048	for (;;) {
2049
2050		/* When rto_cpu is -1 this acts like cpumask_first() */
2051		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2052
2053		rd->rto_cpu = cpu;
2054
2055		if (cpu < nr_cpu_ids)
2056			return cpu;
2057
2058		rd->rto_cpu = -1;
2059
2060		/*
2061		 * ACQUIRE ensures we see the @rto_mask changes
2062		 * made prior to the @next value observed.
2063		 *
2064		 * Matches WMB in rt_set_overload().
2065		 */
2066		next = atomic_read_acquire(&rd->rto_loop_next);
2067
2068		if (rd->rto_loop == next)
2069			break;
2070
2071		rd->rto_loop = next;
2072	}
2073
2074	return -1;
2075}
2076
2077static inline bool rto_start_trylock(atomic_t *v)
2078{
2079	return !atomic_cmpxchg_acquire(v, 0, 1);
2080}
2081
2082static inline void rto_start_unlock(atomic_t *v)
2083{
2084	atomic_set_release(v, 0);
2085}
2086
2087static void tell_cpu_to_push(struct rq *rq)
2088{
2089	int cpu = -1;
2090
2091	/* Keep the loop going if the IPI is currently active */
2092	atomic_inc(&rq->rd->rto_loop_next);
2093
2094	/* Only one CPU can initiate a loop at a time */
2095	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2096		return;
2097
2098	raw_spin_lock(&rq->rd->rto_lock);
2099
2100	/*
2101	 * The rto_cpu is updated under the lock, if it has a valid CPU
2102	 * then the IPI is still running and will continue due to the
2103	 * update to loop_next, and nothing needs to be done here.
2104	 * Otherwise it is finishing up and an ipi needs to be sent.
2105	 */
2106	if (rq->rd->rto_cpu < 0)
2107		cpu = rto_next_cpu(rq->rd);
2108
2109	raw_spin_unlock(&rq->rd->rto_lock);
2110
2111	rto_start_unlock(&rq->rd->rto_loop_start);
2112
2113	if (cpu >= 0) {
2114		/* Make sure the rd does not get freed while pushing */
2115		sched_get_rd(rq->rd);
2116		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2117	}
2118}
2119
2120/* Called from hardirq context */
2121void rto_push_irq_work_func(struct irq_work *work)
2122{
2123	struct root_domain *rd =
2124		container_of(work, struct root_domain, rto_push_work);
2125	struct rq *rq;
2126	int cpu;
2127
2128	rq = this_rq();
2129
2130	/*
2131	 * We do not need to grab the lock to check for has_pushable_tasks.
2132	 * When it gets updated, a check is made if a push is possible.
2133	 */
2134	if (has_pushable_tasks(rq)) {
2135		raw_spin_rq_lock(rq);
2136		while (push_rt_task(rq, true))
2137			;
2138		raw_spin_rq_unlock(rq);
2139	}
2140
2141	raw_spin_lock(&rd->rto_lock);
2142
2143	/* Pass the IPI to the next rt overloaded queue */
2144	cpu = rto_next_cpu(rd);
2145
2146	raw_spin_unlock(&rd->rto_lock);
2147
2148	if (cpu < 0) {
2149		sched_put_rd(rd);
2150		return;
2151	}
2152
2153	/* Try the next RT overloaded CPU */
2154	irq_work_queue_on(&rd->rto_push_work, cpu);
2155}
2156#endif /* HAVE_RT_PUSH_IPI */
2157
2158static void pull_rt_task(struct rq *this_rq)
2159{
2160	int this_cpu = this_rq->cpu, cpu;
2161	bool resched = false;
2162	struct task_struct *p, *push_task;
2163	struct rq *src_rq;
2164	int rt_overload_count = rt_overloaded(this_rq);
2165
2166	if (likely(!rt_overload_count))
2167		return;
2168
2169	/*
2170	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2171	 * see overloaded we must also see the rto_mask bit.
2172	 */
2173	smp_rmb();
2174
2175	/* If we are the only overloaded CPU do nothing */
2176	if (rt_overload_count == 1 &&
2177	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2178		return;
2179
2180#ifdef HAVE_RT_PUSH_IPI
2181	if (sched_feat(RT_PUSH_IPI)) {
2182		tell_cpu_to_push(this_rq);
2183		return;
2184	}
2185#endif
2186
2187	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2188		if (this_cpu == cpu)
2189			continue;
2190
2191		src_rq = cpu_rq(cpu);
2192
2193		/*
2194		 * Don't bother taking the src_rq->lock if the next highest
2195		 * task is known to be lower-priority than our current task.
2196		 * This may look racy, but if this value is about to go
2197		 * logically higher, the src_rq will push this task away.
2198		 * And if its going logically lower, we do not care
2199		 */
2200		if (src_rq->rt.highest_prio.next >=
2201		    this_rq->rt.highest_prio.curr)
2202			continue;
2203
2204		/*
2205		 * We can potentially drop this_rq's lock in
2206		 * double_lock_balance, and another CPU could
2207		 * alter this_rq
2208		 */
2209		push_task = NULL;
2210		double_lock_balance(this_rq, src_rq);
2211
2212		/*
2213		 * We can pull only a task, which is pushable
2214		 * on its rq, and no others.
2215		 */
2216		p = pick_highest_pushable_task(src_rq, this_cpu);
 
 
 
2217
2218		/*
2219		 * Do we have an RT task that preempts
2220		 * the to-be-scheduled task?
2221		 */
2222		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2223			WARN_ON(p == src_rq->curr);
2224			WARN_ON(!task_on_rq_queued(p));
2225
2226			/*
2227			 * There's a chance that p is higher in priority
2228			 * than what's currently running on its CPU.
2229			 * This is just that p is waking up and hasn't
2230			 * had a chance to schedule. We only pull
2231			 * p if it is lower in priority than the
2232			 * current task on the run queue
2233			 */
2234			if (p->prio < src_rq->curr->prio)
2235				goto skip;
2236
2237			if (is_migration_disabled(p)) {
2238				push_task = get_push_task(src_rq);
2239			} else {
2240				deactivate_task(src_rq, p, 0);
2241				set_task_cpu(p, this_cpu);
2242				activate_task(this_rq, p, 0);
2243				resched = true;
2244			}
2245			/*
2246			 * We continue with the search, just in
2247			 * case there's an even higher prio task
2248			 * in another runqueue. (low likelihood
2249			 * but possible)
2250			 */
2251		}
2252skip:
2253		double_unlock_balance(this_rq, src_rq);
 
 
 
 
2254
2255		if (push_task) {
2256			raw_spin_rq_unlock(this_rq);
2257			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2258					    push_task, &src_rq->push_work);
2259			raw_spin_rq_lock(this_rq);
2260		}
2261	}
2262
2263	if (resched)
2264		resched_curr(this_rq);
 
2265}
2266
2267/*
2268 * If we are not running and we are not going to reschedule soon, we should
2269 * try to push tasks away now
2270 */
2271static void task_woken_rt(struct rq *rq, struct task_struct *p)
2272{
2273	bool need_to_push = !task_running(rq, p) &&
2274			    !test_tsk_need_resched(rq->curr) &&
2275			    p->nr_cpus_allowed > 1 &&
2276			    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2277			    (rq->curr->nr_cpus_allowed < 2 ||
2278			     rq->curr->prio <= p->prio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2279
2280	if (need_to_push)
2281		push_rt_tasks(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2282}
2283
2284/* Assumes rq->lock is held */
2285static void rq_online_rt(struct rq *rq)
2286{
2287	if (rq->rt.overloaded)
2288		rt_set_overload(rq);
2289
2290	__enable_runtime(rq);
2291
2292	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2293}
2294
2295/* Assumes rq->lock is held */
2296static void rq_offline_rt(struct rq *rq)
2297{
2298	if (rq->rt.overloaded)
2299		rt_clear_overload(rq);
2300
2301	__disable_runtime(rq);
2302
2303	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2304}
2305
2306/*
2307 * When switch from the rt queue, we bring ourselves to a position
2308 * that we might want to pull RT tasks from other runqueues.
2309 */
2310static void switched_from_rt(struct rq *rq, struct task_struct *p)
2311{
2312	/*
2313	 * If there are other RT tasks then we will reschedule
2314	 * and the scheduling of the other RT tasks will handle
2315	 * the balancing. But if we are the last RT task
2316	 * we may need to handle the pulling of RT tasks
2317	 * now.
2318	 */
2319	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2320		return;
2321
2322	rt_queue_pull_task(rq);
2323}
2324
2325void __init init_sched_rt_class(void)
2326{
2327	unsigned int i;
2328
2329	for_each_possible_cpu(i) {
2330		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2331					GFP_KERNEL, cpu_to_node(i));
2332	}
2333}
2334#endif /* CONFIG_SMP */
2335
2336/*
2337 * When switching a task to RT, we may overload the runqueue
2338 * with RT tasks. In this case we try to push them off to
2339 * other runqueues.
2340 */
2341static void switched_to_rt(struct rq *rq, struct task_struct *p)
2342{
2343	/*
2344	 * If we are running, update the avg_rt tracking, as the running time
2345	 * will now on be accounted into the latter.
2346	 */
2347	if (task_current(rq, p)) {
2348		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2349		return;
2350	}
2351
2352	/*
2353	 * If we are not running we may need to preempt the current
2354	 * running task. If that current running task is also an RT task
 
 
2355	 * then see if we can move to another run queue.
2356	 */
2357	if (task_on_rq_queued(p)) {
2358#ifdef CONFIG_SMP
2359		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2360			rt_queue_push_tasks(rq);
 
 
2361#endif /* CONFIG_SMP */
2362		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2363			resched_curr(rq);
2364	}
2365}
2366
2367/*
2368 * Priority of the task has changed. This may cause
2369 * us to initiate a push or pull.
2370 */
2371static void
2372prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2373{
2374	if (!task_on_rq_queued(p))
2375		return;
2376
2377	if (task_current(rq, p)) {
2378#ifdef CONFIG_SMP
2379		/*
2380		 * If our priority decreases while running, we
2381		 * may need to pull tasks to this runqueue.
2382		 */
2383		if (oldprio < p->prio)
2384			rt_queue_pull_task(rq);
2385
2386		/*
2387		 * If there's a higher priority task waiting to run
2388		 * then reschedule.
 
 
2389		 */
2390		if (p->prio > rq->rt.highest_prio.curr)
2391			resched_curr(rq);
2392#else
2393		/* For UP simply resched on drop of prio */
2394		if (oldprio < p->prio)
2395			resched_curr(rq);
2396#endif /* CONFIG_SMP */
2397	} else {
2398		/*
2399		 * This task is not running, but if it is
2400		 * greater than the current running task
2401		 * then reschedule.
2402		 */
2403		if (p->prio < rq->curr->prio)
2404			resched_curr(rq);
2405	}
2406}
2407
2408#ifdef CONFIG_POSIX_TIMERS
2409static void watchdog(struct rq *rq, struct task_struct *p)
2410{
2411	unsigned long soft, hard;
2412
2413	/* max may change after cur was read, this will be fixed next tick */
2414	soft = task_rlimit(p, RLIMIT_RTTIME);
2415	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2416
2417	if (soft != RLIM_INFINITY) {
2418		unsigned long next;
2419
2420		if (p->rt.watchdog_stamp != jiffies) {
2421			p->rt.timeout++;
2422			p->rt.watchdog_stamp = jiffies;
2423		}
2424
2425		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2426		if (p->rt.timeout > next) {
2427			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2428						    p->se.sum_exec_runtime);
2429		}
2430	}
2431}
2432#else
2433static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2434#endif
2435
2436/*
2437 * scheduler tick hitting a task of our scheduling class.
2438 *
2439 * NOTE: This function can be called remotely by the tick offload that
2440 * goes along full dynticks. Therefore no local assumption can be made
2441 * and everything must be accessed through the @rq and @curr passed in
2442 * parameters.
2443 */
2444static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2445{
2446	struct sched_rt_entity *rt_se = &p->rt;
2447
2448	update_curr_rt(rq);
2449	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2450
2451	watchdog(rq, p);
2452
2453	/*
2454	 * RR tasks need a special form of timeslice management.
2455	 * FIFO tasks have no timeslices.
2456	 */
2457	if (p->policy != SCHED_RR)
2458		return;
2459
2460	if (--p->rt.time_slice)
2461		return;
2462
2463	p->rt.time_slice = sched_rr_timeslice;
2464
2465	/*
2466	 * Requeue to the end of queue if we (and all of our ancestors) are not
2467	 * the only element on the queue
2468	 */
2469	for_each_sched_rt_entity(rt_se) {
2470		if (rt_se->run_list.prev != rt_se->run_list.next) {
2471			requeue_task_rt(rq, p, 0);
2472			resched_curr(rq);
2473			return;
2474		}
2475	}
2476}
2477
 
 
 
 
 
 
 
 
 
 
2478static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2479{
2480	/*
2481	 * Time slice is 0 for SCHED_FIFO tasks
2482	 */
2483	if (task->policy == SCHED_RR)
2484		return sched_rr_timeslice;
2485	else
2486		return 0;
2487}
2488
2489DEFINE_SCHED_CLASS(rt) = {
2490
2491	.enqueue_task		= enqueue_task_rt,
2492	.dequeue_task		= dequeue_task_rt,
2493	.yield_task		= yield_task_rt,
2494
2495	.check_preempt_curr	= check_preempt_curr_rt,
2496
2497	.pick_next_task		= pick_next_task_rt,
2498	.put_prev_task		= put_prev_task_rt,
2499	.set_next_task          = set_next_task_rt,
2500
2501#ifdef CONFIG_SMP
2502	.balance		= balance_rt,
2503	.pick_task		= pick_task_rt,
2504	.select_task_rq		= select_task_rq_rt,
2505	.set_cpus_allowed       = set_cpus_allowed_common,
 
2506	.rq_online              = rq_online_rt,
2507	.rq_offline             = rq_offline_rt,
 
 
2508	.task_woken		= task_woken_rt,
2509	.switched_from		= switched_from_rt,
2510	.find_lock_rq		= find_lock_lowest_rq,
2511#endif
2512
 
2513	.task_tick		= task_tick_rt,
2514
2515	.get_rr_interval	= get_rr_interval_rt,
2516
2517	.prio_changed		= prio_changed_rt,
2518	.switched_to		= switched_to_rt,
2519
2520	.update_curr		= update_curr_rt,
2521
2522#ifdef CONFIG_UCLAMP_TASK
2523	.uclamp_enabled		= 1,
2524#endif
2525};
2526
2527#ifdef CONFIG_RT_GROUP_SCHED
2528/*
2529 * Ensure that the real time constraints are schedulable.
2530 */
2531static DEFINE_MUTEX(rt_constraints_mutex);
2532
2533static inline int tg_has_rt_tasks(struct task_group *tg)
2534{
2535	struct task_struct *task;
2536	struct css_task_iter it;
2537	int ret = 0;
2538
2539	/*
2540	 * Autogroups do not have RT tasks; see autogroup_create().
2541	 */
2542	if (task_group_is_autogroup(tg))
2543		return 0;
2544
2545	css_task_iter_start(&tg->css, 0, &it);
2546	while (!ret && (task = css_task_iter_next(&it)))
2547		ret |= rt_task(task);
2548	css_task_iter_end(&it);
2549
2550	return ret;
2551}
2552
2553struct rt_schedulable_data {
2554	struct task_group *tg;
2555	u64 rt_period;
2556	u64 rt_runtime;
2557};
2558
2559static int tg_rt_schedulable(struct task_group *tg, void *data)
2560{
2561	struct rt_schedulable_data *d = data;
2562	struct task_group *child;
2563	unsigned long total, sum = 0;
2564	u64 period, runtime;
2565
2566	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2567	runtime = tg->rt_bandwidth.rt_runtime;
2568
2569	if (tg == d->tg) {
2570		period = d->rt_period;
2571		runtime = d->rt_runtime;
2572	}
2573
2574	/*
2575	 * Cannot have more runtime than the period.
2576	 */
2577	if (runtime > period && runtime != RUNTIME_INF)
2578		return -EINVAL;
2579
2580	/*
2581	 * Ensure we don't starve existing RT tasks if runtime turns zero.
2582	 */
2583	if (rt_bandwidth_enabled() && !runtime &&
2584	    tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2585		return -EBUSY;
2586
2587	total = to_ratio(period, runtime);
2588
2589	/*
2590	 * Nobody can have more than the global setting allows.
2591	 */
2592	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2593		return -EINVAL;
2594
2595	/*
2596	 * The sum of our children's runtime should not exceed our own.
2597	 */
2598	list_for_each_entry_rcu(child, &tg->children, siblings) {
2599		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2600		runtime = child->rt_bandwidth.rt_runtime;
2601
2602		if (child == d->tg) {
2603			period = d->rt_period;
2604			runtime = d->rt_runtime;
2605		}
2606
2607		sum += to_ratio(period, runtime);
2608	}
2609
2610	if (sum > total)
2611		return -EINVAL;
2612
2613	return 0;
2614}
2615
2616static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2617{
2618	int ret;
2619
2620	struct rt_schedulable_data data = {
2621		.tg = tg,
2622		.rt_period = period,
2623		.rt_runtime = runtime,
2624	};
2625
2626	rcu_read_lock();
2627	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2628	rcu_read_unlock();
2629
2630	return ret;
2631}
2632
2633static int tg_set_rt_bandwidth(struct task_group *tg,
2634		u64 rt_period, u64 rt_runtime)
2635{
2636	int i, err = 0;
2637
2638	/*
2639	 * Disallowing the root group RT runtime is BAD, it would disallow the
2640	 * kernel creating (and or operating) RT threads.
2641	 */
2642	if (tg == &root_task_group && rt_runtime == 0)
2643		return -EINVAL;
2644
2645	/* No period doesn't make any sense. */
2646	if (rt_period == 0)
2647		return -EINVAL;
2648
2649	/*
2650	 * Bound quota to defend quota against overflow during bandwidth shift.
2651	 */
2652	if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2653		return -EINVAL;
2654
2655	mutex_lock(&rt_constraints_mutex);
2656	err = __rt_schedulable(tg, rt_period, rt_runtime);
2657	if (err)
2658		goto unlock;
2659
2660	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2661	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2662	tg->rt_bandwidth.rt_runtime = rt_runtime;
2663
2664	for_each_possible_cpu(i) {
2665		struct rt_rq *rt_rq = tg->rt_rq[i];
2666
2667		raw_spin_lock(&rt_rq->rt_runtime_lock);
2668		rt_rq->rt_runtime = rt_runtime;
2669		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2670	}
2671	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2672unlock:
2673	mutex_unlock(&rt_constraints_mutex);
2674
2675	return err;
2676}
2677
2678int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2679{
2680	u64 rt_runtime, rt_period;
2681
2682	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2683	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2684	if (rt_runtime_us < 0)
2685		rt_runtime = RUNTIME_INF;
2686	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2687		return -EINVAL;
2688
2689	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2690}
2691
2692long sched_group_rt_runtime(struct task_group *tg)
2693{
2694	u64 rt_runtime_us;
2695
2696	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2697		return -1;
2698
2699	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2700	do_div(rt_runtime_us, NSEC_PER_USEC);
2701	return rt_runtime_us;
2702}
2703
2704int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2705{
2706	u64 rt_runtime, rt_period;
2707
2708	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2709		return -EINVAL;
2710
2711	rt_period = rt_period_us * NSEC_PER_USEC;
2712	rt_runtime = tg->rt_bandwidth.rt_runtime;
2713
2714	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2715}
2716
2717long sched_group_rt_period(struct task_group *tg)
2718{
2719	u64 rt_period_us;
2720
2721	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2722	do_div(rt_period_us, NSEC_PER_USEC);
2723	return rt_period_us;
2724}
2725
2726static int sched_rt_global_constraints(void)
2727{
2728	int ret = 0;
2729
2730	mutex_lock(&rt_constraints_mutex);
2731	ret = __rt_schedulable(NULL, 0, 0);
2732	mutex_unlock(&rt_constraints_mutex);
2733
2734	return ret;
2735}
2736
2737int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2738{
2739	/* Don't accept realtime tasks when there is no way for them to run */
2740	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2741		return 0;
2742
2743	return 1;
2744}
2745
2746#else /* !CONFIG_RT_GROUP_SCHED */
2747static int sched_rt_global_constraints(void)
2748{
2749	unsigned long flags;
2750	int i;
2751
2752	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2753	for_each_possible_cpu(i) {
2754		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2755
2756		raw_spin_lock(&rt_rq->rt_runtime_lock);
2757		rt_rq->rt_runtime = global_rt_runtime();
2758		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2759	}
2760	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2761
2762	return 0;
2763}
2764#endif /* CONFIG_RT_GROUP_SCHED */
2765
2766static int sched_rt_global_validate(void)
2767{
2768	if (sysctl_sched_rt_period <= 0)
2769		return -EINVAL;
2770
2771	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2772		((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2773		 ((u64)sysctl_sched_rt_runtime *
2774			NSEC_PER_USEC > max_rt_runtime)))
2775		return -EINVAL;
2776
2777	return 0;
2778}
2779
2780static void sched_rt_do_global(void)
2781{
2782	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2783	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2784}
2785
2786int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2787		size_t *lenp, loff_t *ppos)
2788{
2789	int old_period, old_runtime;
2790	static DEFINE_MUTEX(mutex);
2791	int ret;
2792
2793	mutex_lock(&mutex);
2794	old_period = sysctl_sched_rt_period;
2795	old_runtime = sysctl_sched_rt_runtime;
2796
2797	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2798
2799	if (!ret && write) {
2800		ret = sched_rt_global_validate();
2801		if (ret)
2802			goto undo;
2803
2804		ret = sched_dl_global_validate();
2805		if (ret)
2806			goto undo;
2807
2808		ret = sched_rt_global_constraints();
2809		if (ret)
2810			goto undo;
2811
2812		sched_rt_do_global();
2813		sched_dl_do_global();
2814	}
2815	if (0) {
2816undo:
2817		sysctl_sched_rt_period = old_period;
2818		sysctl_sched_rt_runtime = old_runtime;
2819	}
2820	mutex_unlock(&mutex);
2821
2822	return ret;
2823}
2824
2825int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
2826		size_t *lenp, loff_t *ppos)
2827{
2828	int ret;
2829	static DEFINE_MUTEX(mutex);
2830
2831	mutex_lock(&mutex);
2832	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2833	/*
2834	 * Make sure that internally we keep jiffies.
2835	 * Also, writing zero resets the timeslice to default:
2836	 */
2837	if (!ret && write) {
2838		sched_rr_timeslice =
2839			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2840			msecs_to_jiffies(sysctl_sched_rr_timeslice);
2841	}
2842	mutex_unlock(&mutex);
2843
2844	return ret;
2845}
2846
2847#ifdef CONFIG_SCHED_DEBUG
2848void print_rt_stats(struct seq_file *m, int cpu)
2849{
2850	rt_rq_iter_t iter;
2851	struct rt_rq *rt_rq;
2852
2853	rcu_read_lock();
2854	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2855		print_rt_rq(m, cpu, rt_rq);
2856	rcu_read_unlock();
2857}
2858#endif /* CONFIG_SCHED_DEBUG */