Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 *	linux/kernel/resource.c
   3 *
   4 * Copyright (C) 1999	Linus Torvalds
   5 * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
   6 *
   7 * Arbitrary resource management.
   8 */
   9
 
 
  10#include <linux/export.h>
  11#include <linux/errno.h>
  12#include <linux/ioport.h>
  13#include <linux/init.h>
  14#include <linux/slab.h>
  15#include <linux/spinlock.h>
  16#include <linux/fs.h>
  17#include <linux/proc_fs.h>
 
  18#include <linux/sched.h>
  19#include <linux/seq_file.h>
  20#include <linux/device.h>
  21#include <linux/pfn.h>
 
 
 
 
  22#include <asm/io.h>
  23
  24
  25struct resource ioport_resource = {
  26	.name	= "PCI IO",
  27	.start	= 0,
  28	.end	= IO_SPACE_LIMIT,
  29	.flags	= IORESOURCE_IO,
  30};
  31EXPORT_SYMBOL(ioport_resource);
  32
  33struct resource iomem_resource = {
  34	.name	= "PCI mem",
  35	.start	= 0,
  36	.end	= -1,
  37	.flags	= IORESOURCE_MEM,
  38};
  39EXPORT_SYMBOL(iomem_resource);
  40
  41/* constraints to be met while allocating resources */
  42struct resource_constraint {
  43	resource_size_t min, max, align;
  44	resource_size_t (*alignf)(void *, const struct resource *,
  45			resource_size_t, resource_size_t);
  46	void *alignf_data;
  47};
  48
  49static DEFINE_RWLOCK(resource_lock);
  50
  51static void *r_next(struct seq_file *m, void *v, loff_t *pos)
 
 
 
 
 
 
 
 
  52{
  53	struct resource *p = v;
  54	(*pos)++;
  55	if (p->child)
  56		return p->child;
  57	while (!p->sibling && p->parent)
  58		p = p->parent;
  59	return p->sibling;
  60}
  61
 
 
 
 
 
 
 
  62#ifdef CONFIG_PROC_FS
  63
  64enum { MAX_IORES_LEVEL = 5 };
  65
  66static void *r_start(struct seq_file *m, loff_t *pos)
  67	__acquires(resource_lock)
  68{
  69	struct resource *p = m->private;
  70	loff_t l = 0;
  71	read_lock(&resource_lock);
  72	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
  73		;
  74	return p;
  75}
  76
  77static void r_stop(struct seq_file *m, void *v)
  78	__releases(resource_lock)
  79{
  80	read_unlock(&resource_lock);
  81}
  82
  83static int r_show(struct seq_file *m, void *v)
  84{
  85	struct resource *root = m->private;
  86	struct resource *r = v, *p;
 
  87	int width = root->end < 0x10000 ? 4 : 8;
  88	int depth;
  89
  90	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
  91		if (p->parent == root)
  92			break;
 
 
 
 
 
 
 
 
  93	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
  94			depth * 2, "",
  95			width, (unsigned long long) r->start,
  96			width, (unsigned long long) r->end,
  97			r->name ? r->name : "<BAD>");
  98	return 0;
  99}
 100
 101static const struct seq_operations resource_op = {
 102	.start	= r_start,
 103	.next	= r_next,
 104	.stop	= r_stop,
 105	.show	= r_show,
 106};
 107
 108static int ioports_open(struct inode *inode, struct file *file)
 109{
 110	int res = seq_open(file, &resource_op);
 111	if (!res) {
 112		struct seq_file *m = file->private_data;
 113		m->private = &ioport_resource;
 114	}
 115	return res;
 116}
 
 
 
 117
 118static int iomem_open(struct inode *inode, struct file *file)
 119{
 120	int res = seq_open(file, &resource_op);
 121	if (!res) {
 122		struct seq_file *m = file->private_data;
 123		m->private = &iomem_resource;
 
 
 
 
 
 
 124	}
 125	return res;
 126}
 127
 128static const struct file_operations proc_ioports_operations = {
 129	.open		= ioports_open,
 130	.read		= seq_read,
 131	.llseek		= seq_lseek,
 132	.release	= seq_release,
 133};
 134
 135static const struct file_operations proc_iomem_operations = {
 136	.open		= iomem_open,
 137	.read		= seq_read,
 138	.llseek		= seq_lseek,
 139	.release	= seq_release,
 140};
 141
 142static int __init ioresources_init(void)
 143{
 144	proc_create("ioports", 0, NULL, &proc_ioports_operations);
 145	proc_create("iomem", 0, NULL, &proc_iomem_operations);
 146	return 0;
 147}
 148__initcall(ioresources_init);
 149
 150#endif /* CONFIG_PROC_FS */
 
 151
 152/* Return the conflict entry if you can't request it */
 153static struct resource * __request_resource(struct resource *root, struct resource *new)
 154{
 155	resource_size_t start = new->start;
 156	resource_size_t end = new->end;
 157	struct resource *tmp, **p;
 158
 159	if (end < start)
 160		return root;
 161	if (start < root->start)
 162		return root;
 163	if (end > root->end)
 164		return root;
 165	p = &root->child;
 166	for (;;) {
 167		tmp = *p;
 168		if (!tmp || tmp->start > end) {
 169			new->sibling = tmp;
 170			*p = new;
 171			new->parent = root;
 172			return NULL;
 173		}
 174		p = &tmp->sibling;
 175		if (tmp->end < start)
 176			continue;
 177		return tmp;
 178	}
 179}
 180
 181static int __release_resource(struct resource *old)
 182{
 183	struct resource *tmp, **p;
 184
 185	p = &old->parent->child;
 186	for (;;) {
 187		tmp = *p;
 188		if (!tmp)
 189			break;
 190		if (tmp == old) {
 191			*p = tmp->sibling;
 
 
 
 
 
 
 
 
 
 
 192			old->parent = NULL;
 193			return 0;
 194		}
 195		p = &tmp->sibling;
 196	}
 197	return -EINVAL;
 198}
 199
 200static void __release_child_resources(struct resource *r)
 201{
 202	struct resource *tmp, *p;
 203	resource_size_t size;
 204
 205	p = r->child;
 206	r->child = NULL;
 207	while (p) {
 208		tmp = p;
 209		p = p->sibling;
 210
 211		tmp->parent = NULL;
 212		tmp->sibling = NULL;
 213		__release_child_resources(tmp);
 214
 215		printk(KERN_DEBUG "release child resource %pR\n", tmp);
 216		/* need to restore size, and keep flags */
 217		size = resource_size(tmp);
 218		tmp->start = 0;
 219		tmp->end = size - 1;
 220	}
 221}
 222
 223void release_child_resources(struct resource *r)
 224{
 225	write_lock(&resource_lock);
 226	__release_child_resources(r);
 227	write_unlock(&resource_lock);
 228}
 229
 230/**
 231 * request_resource_conflict - request and reserve an I/O or memory resource
 232 * @root: root resource descriptor
 233 * @new: resource descriptor desired by caller
 234 *
 235 * Returns 0 for success, conflict resource on error.
 236 */
 237struct resource *request_resource_conflict(struct resource *root, struct resource *new)
 238{
 239	struct resource *conflict;
 240
 241	write_lock(&resource_lock);
 242	conflict = __request_resource(root, new);
 243	write_unlock(&resource_lock);
 244	return conflict;
 245}
 246
 247/**
 248 * request_resource - request and reserve an I/O or memory resource
 249 * @root: root resource descriptor
 250 * @new: resource descriptor desired by caller
 251 *
 252 * Returns 0 for success, negative error code on error.
 253 */
 254int request_resource(struct resource *root, struct resource *new)
 255{
 256	struct resource *conflict;
 257
 258	conflict = request_resource_conflict(root, new);
 259	return conflict ? -EBUSY : 0;
 260}
 261
 262EXPORT_SYMBOL(request_resource);
 263
 264/**
 265 * release_resource - release a previously reserved resource
 266 * @old: resource pointer
 267 */
 268int release_resource(struct resource *old)
 269{
 270	int retval;
 271
 272	write_lock(&resource_lock);
 273	retval = __release_resource(old);
 274	write_unlock(&resource_lock);
 275	return retval;
 276}
 277
 278EXPORT_SYMBOL(release_resource);
 279
 280#if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
 281/*
 282 * Finds the lowest memory reosurce exists within [res->start.res->end)
 283 * the caller must specify res->start, res->end, res->flags and "name".
 284 * If found, returns 0, res is overwritten, if not found, returns -1.
 
 
 
 
 
 
 
 
 
 
 
 285 */
 286static int find_next_system_ram(struct resource *res, char *name)
 
 
 287{
 288	resource_size_t start, end;
 289	struct resource *p;
 290
 291	BUG_ON(!res);
 
 292
 293	start = res->start;
 294	end = res->end;
 295	BUG_ON(start >= end);
 296
 297	read_lock(&resource_lock);
 298	for (p = iomem_resource.child; p ; p = p->sibling) {
 299		/* system ram is just marked as IORESOURCE_MEM */
 300		if (p->flags != res->flags)
 301			continue;
 302		if (name && strcmp(p->name, name))
 303			continue;
 304		if (p->start > end) {
 305			p = NULL;
 306			break;
 307		}
 308		if ((p->end >= start) && (p->start < end))
 309			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 310	}
 
 311	read_unlock(&resource_lock);
 312	if (!p)
 313		return -1;
 314	/* copy data */
 315	if (res->start < p->start)
 316		res->start = p->start;
 317	if (res->end > p->end)
 318		res->end = p->end;
 319	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 320}
 321
 322/*
 323 * This function calls callback against all memory range of "System RAM"
 324 * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
 325 * Now, this function is only for "System RAM".
 326 */
 327int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
 328		void *arg, int (*func)(unsigned long, unsigned long, void *))
 329{
 
 
 330	struct resource res;
 331	unsigned long pfn, end_pfn;
 332	u64 orig_end;
 333	int ret = -1;
 334
 335	res.start = (u64) start_pfn << PAGE_SHIFT;
 336	res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
 337	res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 338	orig_end = res.end;
 339	while ((res.start < res.end) &&
 340		(find_next_system_ram(&res, "System RAM") >= 0)) {
 341		pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
 342		end_pfn = (res.end + 1) >> PAGE_SHIFT;
 343		if (end_pfn > pfn)
 344			ret = (*func)(pfn, end_pfn - pfn, arg);
 345		if (ret)
 346			break;
 347		res.start = res.end + 1;
 348		res.end = orig_end;
 349	}
 350	return ret;
 351}
 352
 353#endif
 354
 355static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
 356{
 357	return 1;
 358}
 
 359/*
 360 * This generic page_is_ram() returns true if specified address is
 361 * registered as "System RAM" in iomem_resource list.
 362 */
 363int __weak page_is_ram(unsigned long pfn)
 364{
 365	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
 366}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 367
 368void __weak arch_remove_reservations(struct resource *avail)
 369{
 370}
 371
 372static resource_size_t simple_align_resource(void *data,
 373					     const struct resource *avail,
 374					     resource_size_t size,
 375					     resource_size_t align)
 376{
 377	return avail->start;
 378}
 379
 380static void resource_clip(struct resource *res, resource_size_t min,
 381			  resource_size_t max)
 382{
 383	if (res->start < min)
 384		res->start = min;
 385	if (res->end > max)
 386		res->end = max;
 387}
 388
 389static bool resource_contains(struct resource *res1, struct resource *res2)
 390{
 391	return res1->start <= res2->start && res1->end >= res2->end;
 392}
 393
 394/*
 395 * Find empty slot in the resource tree with the given range and
 396 * alignment constraints
 397 */
 398static int __find_resource(struct resource *root, struct resource *old,
 399			 struct resource *new,
 400			 resource_size_t  size,
 401			 struct resource_constraint *constraint)
 402{
 403	struct resource *this = root->child;
 404	struct resource tmp = *new, avail, alloc;
 405
 406	tmp.flags = new->flags;
 407	tmp.start = root->start;
 408	/*
 409	 * Skip past an allocated resource that starts at 0, since the assignment
 410	 * of this->start - 1 to tmp->end below would cause an underflow.
 411	 */
 412	if (this && this->start == root->start) {
 413		tmp.start = (this == old) ? old->start : this->end + 1;
 414		this = this->sibling;
 415	}
 416	for(;;) {
 417		if (this)
 418			tmp.end = (this == old) ?  this->end : this->start - 1;
 419		else
 420			tmp.end = root->end;
 421
 422		if (tmp.end < tmp.start)
 423			goto next;
 424
 425		resource_clip(&tmp, constraint->min, constraint->max);
 426		arch_remove_reservations(&tmp);
 427
 428		/* Check for overflow after ALIGN() */
 429		avail = *new;
 430		avail.start = ALIGN(tmp.start, constraint->align);
 431		avail.end = tmp.end;
 
 432		if (avail.start >= tmp.start) {
 
 433			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
 434					size, constraint->align);
 435			alloc.end = alloc.start + size - 1;
 436			if (resource_contains(&avail, &alloc)) {
 
 437				new->start = alloc.start;
 438				new->end = alloc.end;
 439				return 0;
 440			}
 441		}
 442
 443next:		if (!this || this->end == root->end)
 444			break;
 445
 446		if (this != old)
 447			tmp.start = this->end + 1;
 448		this = this->sibling;
 449	}
 450	return -EBUSY;
 451}
 452
 453/*
 454 * Find empty slot in the resource tree given range and alignment.
 455 */
 456static int find_resource(struct resource *root, struct resource *new,
 457			resource_size_t size,
 458			struct resource_constraint  *constraint)
 459{
 460	return  __find_resource(root, NULL, new, size, constraint);
 461}
 462
 463/**
 464 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
 465 *	The resource will be relocated if the new size cannot be reallocated in the
 466 *	current location.
 467 *
 468 * @root: root resource descriptor
 469 * @old:  resource descriptor desired by caller
 470 * @newsize: new size of the resource descriptor
 471 * @constraint: the size and alignment constraints to be met.
 472 */
 473int reallocate_resource(struct resource *root, struct resource *old,
 474			resource_size_t newsize,
 475			struct resource_constraint  *constraint)
 476{
 477	int err=0;
 478	struct resource new = *old;
 479	struct resource *conflict;
 480
 481	write_lock(&resource_lock);
 482
 483	if ((err = __find_resource(root, old, &new, newsize, constraint)))
 484		goto out;
 485
 486	if (resource_contains(&new, old)) {
 487		old->start = new.start;
 488		old->end = new.end;
 489		goto out;
 490	}
 491
 492	if (old->child) {
 493		err = -EBUSY;
 494		goto out;
 495	}
 496
 497	if (resource_contains(old, &new)) {
 498		old->start = new.start;
 499		old->end = new.end;
 500	} else {
 501		__release_resource(old);
 502		*old = new;
 503		conflict = __request_resource(root, old);
 504		BUG_ON(conflict);
 505	}
 506out:
 507	write_unlock(&resource_lock);
 508	return err;
 509}
 510
 511
 512/**
 513 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
 514 * 	The resource will be reallocated with a new size if it was already allocated
 515 * @root: root resource descriptor
 516 * @new: resource descriptor desired by caller
 517 * @size: requested resource region size
 518 * @min: minimum boundary to allocate
 519 * @max: maximum boundary to allocate
 520 * @align: alignment requested, in bytes
 521 * @alignf: alignment function, optional, called if not NULL
 522 * @alignf_data: arbitrary data to pass to the @alignf function
 523 */
 524int allocate_resource(struct resource *root, struct resource *new,
 525		      resource_size_t size, resource_size_t min,
 526		      resource_size_t max, resource_size_t align,
 527		      resource_size_t (*alignf)(void *,
 528						const struct resource *,
 529						resource_size_t,
 530						resource_size_t),
 531		      void *alignf_data)
 532{
 533	int err;
 534	struct resource_constraint constraint;
 535
 536	if (!alignf)
 537		alignf = simple_align_resource;
 538
 539	constraint.min = min;
 540	constraint.max = max;
 541	constraint.align = align;
 542	constraint.alignf = alignf;
 543	constraint.alignf_data = alignf_data;
 544
 545	if ( new->parent ) {
 546		/* resource is already allocated, try reallocating with
 547		   the new constraints */
 548		return reallocate_resource(root, new, size, &constraint);
 549	}
 550
 551	write_lock(&resource_lock);
 552	err = find_resource(root, new, size, &constraint);
 553	if (err >= 0 && __request_resource(root, new))
 554		err = -EBUSY;
 555	write_unlock(&resource_lock);
 556	return err;
 557}
 558
 559EXPORT_SYMBOL(allocate_resource);
 560
 561/**
 562 * lookup_resource - find an existing resource by a resource start address
 563 * @root: root resource descriptor
 564 * @start: resource start address
 565 *
 566 * Returns a pointer to the resource if found, NULL otherwise
 567 */
 568struct resource *lookup_resource(struct resource *root, resource_size_t start)
 569{
 570	struct resource *res;
 571
 572	read_lock(&resource_lock);
 573	for (res = root->child; res; res = res->sibling) {
 574		if (res->start == start)
 575			break;
 576	}
 577	read_unlock(&resource_lock);
 578
 579	return res;
 580}
 581
 582/*
 583 * Insert a resource into the resource tree. If successful, return NULL,
 584 * otherwise return the conflicting resource (compare to __request_resource())
 585 */
 586static struct resource * __insert_resource(struct resource *parent, struct resource *new)
 587{
 588	struct resource *first, *next;
 589
 590	for (;; parent = first) {
 591		first = __request_resource(parent, new);
 592		if (!first)
 593			return first;
 594
 595		if (first == parent)
 596			return first;
 597		if (WARN_ON(first == new))	/* duplicated insertion */
 598			return first;
 599
 600		if ((first->start > new->start) || (first->end < new->end))
 601			break;
 602		if ((first->start == new->start) && (first->end == new->end))
 603			break;
 604	}
 605
 606	for (next = first; ; next = next->sibling) {
 607		/* Partial overlap? Bad, and unfixable */
 608		if (next->start < new->start || next->end > new->end)
 609			return next;
 610		if (!next->sibling)
 611			break;
 612		if (next->sibling->start > new->end)
 613			break;
 614	}
 615
 616	new->parent = parent;
 617	new->sibling = next->sibling;
 618	new->child = first;
 619
 620	next->sibling = NULL;
 621	for (next = first; next; next = next->sibling)
 622		next->parent = new;
 623
 624	if (parent->child == first) {
 625		parent->child = new;
 626	} else {
 627		next = parent->child;
 628		while (next->sibling != first)
 629			next = next->sibling;
 630		next->sibling = new;
 631	}
 632	return NULL;
 633}
 634
 635/**
 636 * insert_resource_conflict - Inserts resource in the resource tree
 637 * @parent: parent of the new resource
 638 * @new: new resource to insert
 639 *
 640 * Returns 0 on success, conflict resource if the resource can't be inserted.
 641 *
 642 * This function is equivalent to request_resource_conflict when no conflict
 643 * happens. If a conflict happens, and the conflicting resources
 644 * entirely fit within the range of the new resource, then the new
 645 * resource is inserted and the conflicting resources become children of
 646 * the new resource.
 
 
 
 647 */
 648struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
 649{
 650	struct resource *conflict;
 651
 652	write_lock(&resource_lock);
 653	conflict = __insert_resource(parent, new);
 654	write_unlock(&resource_lock);
 655	return conflict;
 656}
 657
 658/**
 659 * insert_resource - Inserts a resource in the resource tree
 660 * @parent: parent of the new resource
 661 * @new: new resource to insert
 662 *
 663 * Returns 0 on success, -EBUSY if the resource can't be inserted.
 
 
 
 664 */
 665int insert_resource(struct resource *parent, struct resource *new)
 666{
 667	struct resource *conflict;
 668
 669	conflict = insert_resource_conflict(parent, new);
 670	return conflict ? -EBUSY : 0;
 671}
 
 672
 673/**
 674 * insert_resource_expand_to_fit - Insert a resource into the resource tree
 675 * @root: root resource descriptor
 676 * @new: new resource to insert
 677 *
 678 * Insert a resource into the resource tree, possibly expanding it in order
 679 * to make it encompass any conflicting resources.
 680 */
 681void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
 682{
 683	if (new->parent)
 684		return;
 685
 686	write_lock(&resource_lock);
 687	for (;;) {
 688		struct resource *conflict;
 689
 690		conflict = __insert_resource(root, new);
 691		if (!conflict)
 692			break;
 693		if (conflict == root)
 694			break;
 695
 696		/* Ok, expand resource to cover the conflict, then try again .. */
 697		if (conflict->start < new->start)
 698			new->start = conflict->start;
 699		if (conflict->end > new->end)
 700			new->end = conflict->end;
 701
 702		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
 703	}
 704	write_unlock(&resource_lock);
 705}
 706
 707/**
 708 * adjust_resource - modify a resource's start and size
 709 * @res: resource to modify
 710 * @start: new start value
 711 * @size: new size
 712 *
 713 * Given an existing resource, change its start and size to match the
 714 * arguments.  Returns 0 on success, -EBUSY if it can't fit.
 715 * Existing children of the resource are assumed to be immutable.
 
 
 
 
 
 
 
 716 */
 717int adjust_resource(struct resource *res, resource_size_t start, resource_size_t size)
 
 
 
 
 
 
 
 
 
 
 
 
 718{
 719	struct resource *tmp, *parent = res->parent;
 720	resource_size_t end = start + size - 1;
 721	int result = -EBUSY;
 722
 723	write_lock(&resource_lock);
 
 724
 725	if ((start < parent->start) || (end > parent->end))
 726		goto out;
 727
 728	for (tmp = res->child; tmp; tmp = tmp->sibling) {
 729		if ((tmp->start < start) || (tmp->end > end))
 730			goto out;
 731	}
 732
 733	if (res->sibling && (res->sibling->start <= end))
 734		goto out;
 735
 736	tmp = parent->child;
 737	if (tmp != res) {
 738		while (tmp->sibling != res)
 739			tmp = tmp->sibling;
 740		if (start <= tmp->end)
 741			goto out;
 742	}
 743
 
 
 
 
 
 744	res->start = start;
 745	res->end = end;
 746	result = 0;
 747
 748 out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 749	write_unlock(&resource_lock);
 750	return result;
 751}
 752EXPORT_SYMBOL(adjust_resource);
 753
 754static void __init __reserve_region_with_split(struct resource *root,
 755		resource_size_t start, resource_size_t end,
 756		const char *name)
 757{
 758	struct resource *parent = root;
 759	struct resource *conflict;
 760	struct resource *res = kzalloc(sizeof(*res), GFP_ATOMIC);
 
 
 761
 762	if (!res)
 763		return;
 764
 765	res->name = name;
 766	res->start = start;
 767	res->end = end;
 768	res->flags = IORESOURCE_BUSY;
 
 769
 770	conflict = __request_resource(parent, res);
 771	if (!conflict)
 772		return;
 773
 774	/* failed, split and try again */
 775	kfree(res);
 
 
 
 
 
 
 776
 777	/* conflict covered whole area */
 778	if (conflict->start <= start && conflict->end >= end)
 779		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 780
 781	if (conflict->start > start)
 782		__reserve_region_with_split(root, start, conflict->start-1, name);
 783	if (conflict->end < end)
 784		__reserve_region_with_split(root, conflict->end+1, end, name);
 785}
 786
 787void __init reserve_region_with_split(struct resource *root,
 788		resource_size_t start, resource_size_t end,
 789		const char *name)
 790{
 
 
 791	write_lock(&resource_lock);
 792	__reserve_region_with_split(root, start, end, name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 793	write_unlock(&resource_lock);
 794}
 795
 796/**
 797 * resource_alignment - calculate resource's alignment
 798 * @res: resource pointer
 799 *
 800 * Returns alignment on success, 0 (invalid alignment) on failure.
 801 */
 802resource_size_t resource_alignment(struct resource *res)
 803{
 804	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
 805	case IORESOURCE_SIZEALIGN:
 806		return resource_size(res);
 807	case IORESOURCE_STARTALIGN:
 808		return res->start;
 809	default:
 810		return 0;
 811	}
 812}
 813
 814/*
 815 * This is compatibility stuff for IO resources.
 816 *
 817 * Note how this, unlike the above, knows about
 818 * the IO flag meanings (busy etc).
 819 *
 820 * request_region creates a new busy region.
 821 *
 822 * check_region returns non-zero if the area is already busy.
 823 *
 824 * release_region releases a matching busy region.
 825 */
 826
 827static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
 828
 829/**
 830 * __request_region - create a new busy resource region
 831 * @parent: parent resource descriptor
 832 * @start: resource start address
 833 * @n: resource region size
 834 * @name: reserving caller's ID string
 835 * @flags: IO resource flags
 836 */
 837struct resource * __request_region(struct resource *parent,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 838				   resource_size_t start, resource_size_t n,
 839				   const char *name, int flags)
 840{
 841	DECLARE_WAITQUEUE(wait, current);
 842	struct resource *res = kzalloc(sizeof(*res), GFP_KERNEL);
 843
 844	if (!res)
 845		return NULL;
 846
 847	res->name = name;
 848	res->start = start;
 849	res->end = start + n - 1;
 850	res->flags = IORESOURCE_BUSY;
 851	res->flags |= flags;
 852
 853	write_lock(&resource_lock);
 854
 855	for (;;) {
 856		struct resource *conflict;
 857
 
 
 
 
 858		conflict = __request_resource(parent, res);
 859		if (!conflict)
 860			break;
 
 
 
 
 
 
 
 
 
 861		if (conflict != parent) {
 862			parent = conflict;
 863			if (!(conflict->flags & IORESOURCE_BUSY))
 864				continue;
 
 865		}
 866		if (conflict->flags & flags & IORESOURCE_MUXED) {
 867			add_wait_queue(&muxed_resource_wait, &wait);
 868			write_unlock(&resource_lock);
 869			set_current_state(TASK_UNINTERRUPTIBLE);
 870			schedule();
 871			remove_wait_queue(&muxed_resource_wait, &wait);
 872			write_lock(&resource_lock);
 873			continue;
 874		}
 875		/* Uhhuh, that didn't work out.. */
 876		kfree(res);
 877		res = NULL;
 878		break;
 879	}
 880	write_unlock(&resource_lock);
 881	return res;
 882}
 883EXPORT_SYMBOL(__request_region);
 884
 885/**
 886 * __check_region - check if a resource region is busy or free
 887 * @parent: parent resource descriptor
 888 * @start: resource start address
 889 * @n: resource region size
 890 *
 891 * Returns 0 if the region is free at the moment it is checked,
 892 * returns %-EBUSY if the region is busy.
 893 *
 894 * NOTE:
 895 * This function is deprecated because its use is racy.
 896 * Even if it returns 0, a subsequent call to request_region()
 897 * may fail because another driver etc. just allocated the region.
 898 * Do NOT use it.  It will be removed from the kernel.
 899 */
 900int __check_region(struct resource *parent, resource_size_t start,
 901			resource_size_t n)
 
 902{
 903	struct resource * res;
 
 904
 905	res = __request_region(parent, start, n, "check-region", 0);
 906	if (!res)
 907		return -EBUSY;
 908
 909	release_resource(res);
 910	kfree(res);
 911	return 0;
 
 
 
 
 
 
 
 
 
 
 912}
 913EXPORT_SYMBOL(__check_region);
 914
 915/**
 916 * __release_region - release a previously reserved resource region
 917 * @parent: parent resource descriptor
 918 * @start: resource start address
 919 * @n: resource region size
 920 *
 921 * The described resource region must match a currently busy region.
 922 */
 923void __release_region(struct resource *parent, resource_size_t start,
 924			resource_size_t n)
 925{
 926	struct resource **p;
 927	resource_size_t end;
 928
 929	p = &parent->child;
 930	end = start + n - 1;
 931
 932	write_lock(&resource_lock);
 933
 934	for (;;) {
 935		struct resource *res = *p;
 936
 937		if (!res)
 938			break;
 939		if (res->start <= start && res->end >= end) {
 940			if (!(res->flags & IORESOURCE_BUSY)) {
 941				p = &res->child;
 942				continue;
 943			}
 944			if (res->start != start || res->end != end)
 945				break;
 946			*p = res->sibling;
 947			write_unlock(&resource_lock);
 948			if (res->flags & IORESOURCE_MUXED)
 949				wake_up(&muxed_resource_wait);
 950			kfree(res);
 951			return;
 952		}
 953		p = &res->sibling;
 954	}
 955
 956	write_unlock(&resource_lock);
 957
 958	printk(KERN_WARNING "Trying to free nonexistent resource "
 959		"<%016llx-%016llx>\n", (unsigned long long)start,
 960		(unsigned long long)end);
 961}
 962EXPORT_SYMBOL(__release_region);
 963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 964/*
 965 * Managed region resource
 966 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 967struct region_devres {
 968	struct resource *parent;
 969	resource_size_t start;
 970	resource_size_t n;
 971};
 972
 973static void devm_region_release(struct device *dev, void *res)
 974{
 975	struct region_devres *this = res;
 976
 977	__release_region(this->parent, this->start, this->n);
 978}
 979
 980static int devm_region_match(struct device *dev, void *res, void *match_data)
 981{
 982	struct region_devres *this = res, *match = match_data;
 983
 984	return this->parent == match->parent &&
 985		this->start == match->start && this->n == match->n;
 986}
 987
 988struct resource * __devm_request_region(struct device *dev,
 989				struct resource *parent, resource_size_t start,
 990				resource_size_t n, const char *name)
 991{
 992	struct region_devres *dr = NULL;
 993	struct resource *res;
 994
 995	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
 996			  GFP_KERNEL);
 997	if (!dr)
 998		return NULL;
 999
1000	dr->parent = parent;
1001	dr->start = start;
1002	dr->n = n;
1003
1004	res = __request_region(parent, start, n, name, 0);
1005	if (res)
1006		devres_add(dev, dr);
1007	else
1008		devres_free(dr);
1009
1010	return res;
1011}
1012EXPORT_SYMBOL(__devm_request_region);
1013
1014void __devm_release_region(struct device *dev, struct resource *parent,
1015			   resource_size_t start, resource_size_t n)
1016{
1017	struct region_devres match_data = { parent, start, n };
1018
1019	__release_region(parent, start, n);
1020	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1021			       &match_data));
1022}
1023EXPORT_SYMBOL(__devm_release_region);
1024
1025/*
1026 * Called from init/main.c to reserve IO ports.
1027 */
1028#define MAXRESERVE 4
1029static int __init reserve_setup(char *str)
1030{
1031	static int reserved;
1032	static struct resource reserve[MAXRESERVE];
1033
1034	for (;;) {
1035		unsigned int io_start, io_num;
1036		int x = reserved;
 
1037
1038		if (get_option (&str, &io_start) != 2)
1039			break;
1040		if (get_option (&str, &io_num)   == 0)
1041			break;
1042		if (x < MAXRESERVE) {
1043			struct resource *res = reserve + x;
 
 
 
 
 
 
 
 
 
 
 
 
1044			res->name = "reserved";
1045			res->start = io_start;
1046			res->end = io_start + io_num - 1;
1047			res->flags = IORESOURCE_BUSY;
 
1048			res->child = NULL;
1049			if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0)
1050				reserved = x+1;
1051		}
1052	}
1053	return 1;
1054}
1055
1056__setup("reserve=", reserve_setup);
1057
1058/*
1059 * Check if the requested addr and size spans more than any slot in the
1060 * iomem resource tree.
1061 */
1062int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1063{
1064	struct resource *p = &iomem_resource;
1065	int err = 0;
1066	loff_t l;
1067
1068	read_lock(&resource_lock);
1069	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1070		/*
1071		 * We can probably skip the resources without
1072		 * IORESOURCE_IO attribute?
1073		 */
1074		if (p->start >= addr + size)
1075			continue;
1076		if (p->end < addr)
1077			continue;
1078		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1079		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1080			continue;
1081		/*
1082		 * if a resource is "BUSY", it's not a hardware resource
1083		 * but a driver mapping of such a resource; we don't want
1084		 * to warn for those; some drivers legitimately map only
1085		 * partial hardware resources. (example: vesafb)
1086		 */
1087		if (p->flags & IORESOURCE_BUSY)
1088			continue;
1089
1090		printk(KERN_WARNING "resource map sanity check conflict: "
1091		       "0x%llx 0x%llx 0x%llx 0x%llx %s\n",
1092		       (unsigned long long)addr,
1093		       (unsigned long long)(addr + size - 1),
1094		       (unsigned long long)p->start,
1095		       (unsigned long long)p->end,
1096		       p->name);
1097		err = -1;
1098		break;
1099	}
1100	read_unlock(&resource_lock);
1101
1102	return err;
1103}
1104
1105#ifdef CONFIG_STRICT_DEVMEM
1106static int strict_iomem_checks = 1;
1107#else
1108static int strict_iomem_checks;
1109#endif
1110
1111/*
1112 * check if an address is reserved in the iomem resource tree
1113 * returns 1 if reserved, 0 if not reserved.
1114 */
1115int iomem_is_exclusive(u64 addr)
1116{
1117	struct resource *p = &iomem_resource;
1118	int err = 0;
1119	loff_t l;
1120	int size = PAGE_SIZE;
1121
1122	if (!strict_iomem_checks)
1123		return 0;
1124
1125	addr = addr & PAGE_MASK;
1126
1127	read_lock(&resource_lock);
1128	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1129		/*
1130		 * We can probably skip the resources without
1131		 * IORESOURCE_IO attribute?
1132		 */
1133		if (p->start >= addr + size)
1134			break;
1135		if (p->end < addr)
1136			continue;
1137		if (p->flags & IORESOURCE_BUSY &&
1138		     p->flags & IORESOURCE_EXCLUSIVE) {
1139			err = 1;
 
 
 
 
 
 
 
1140			break;
1141		}
1142	}
1143	read_unlock(&resource_lock);
1144
1145	return err;
1146}
1147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1148static int __init strict_iomem(char *str)
1149{
1150	if (strstr(str, "relaxed"))
1151		strict_iomem_checks = 0;
1152	if (strstr(str, "strict"))
1153		strict_iomem_checks = 1;
1154	return 1;
1155}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1156
1157__setup("iomem=", strict_iomem);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	linux/kernel/resource.c
   4 *
   5 * Copyright (C) 1999	Linus Torvalds
   6 * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
   7 *
   8 * Arbitrary resource management.
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/export.h>
  14#include <linux/errno.h>
  15#include <linux/ioport.h>
  16#include <linux/init.h>
  17#include <linux/slab.h>
  18#include <linux/spinlock.h>
  19#include <linux/fs.h>
  20#include <linux/proc_fs.h>
  21#include <linux/pseudo_fs.h>
  22#include <linux/sched.h>
  23#include <linux/seq_file.h>
  24#include <linux/device.h>
  25#include <linux/pfn.h>
  26#include <linux/mm.h>
  27#include <linux/mount.h>
  28#include <linux/resource_ext.h>
  29#include <uapi/linux/magic.h>
  30#include <asm/io.h>
  31
  32
  33struct resource ioport_resource = {
  34	.name	= "PCI IO",
  35	.start	= 0,
  36	.end	= IO_SPACE_LIMIT,
  37	.flags	= IORESOURCE_IO,
  38};
  39EXPORT_SYMBOL(ioport_resource);
  40
  41struct resource iomem_resource = {
  42	.name	= "PCI mem",
  43	.start	= 0,
  44	.end	= -1,
  45	.flags	= IORESOURCE_MEM,
  46};
  47EXPORT_SYMBOL(iomem_resource);
  48
  49/* constraints to be met while allocating resources */
  50struct resource_constraint {
  51	resource_size_t min, max, align;
  52	resource_size_t (*alignf)(void *, const struct resource *,
  53			resource_size_t, resource_size_t);
  54	void *alignf_data;
  55};
  56
  57static DEFINE_RWLOCK(resource_lock);
  58
  59/*
  60 * For memory hotplug, there is no way to free resource entries allocated
  61 * by boot mem after the system is up. So for reusing the resource entry
  62 * we need to remember the resource.
  63 */
  64static struct resource *bootmem_resource_free;
  65static DEFINE_SPINLOCK(bootmem_resource_lock);
  66
  67static struct resource *next_resource(struct resource *p)
  68{
 
 
  69	if (p->child)
  70		return p->child;
  71	while (!p->sibling && p->parent)
  72		p = p->parent;
  73	return p->sibling;
  74}
  75
  76static void *r_next(struct seq_file *m, void *v, loff_t *pos)
  77{
  78	struct resource *p = v;
  79	(*pos)++;
  80	return (void *)next_resource(p);
  81}
  82
  83#ifdef CONFIG_PROC_FS
  84
  85enum { MAX_IORES_LEVEL = 5 };
  86
  87static void *r_start(struct seq_file *m, loff_t *pos)
  88	__acquires(resource_lock)
  89{
  90	struct resource *p = PDE_DATA(file_inode(m->file));
  91	loff_t l = 0;
  92	read_lock(&resource_lock);
  93	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
  94		;
  95	return p;
  96}
  97
  98static void r_stop(struct seq_file *m, void *v)
  99	__releases(resource_lock)
 100{
 101	read_unlock(&resource_lock);
 102}
 103
 104static int r_show(struct seq_file *m, void *v)
 105{
 106	struct resource *root = PDE_DATA(file_inode(m->file));
 107	struct resource *r = v, *p;
 108	unsigned long long start, end;
 109	int width = root->end < 0x10000 ? 4 : 8;
 110	int depth;
 111
 112	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
 113		if (p->parent == root)
 114			break;
 115
 116	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
 117		start = r->start;
 118		end = r->end;
 119	} else {
 120		start = end = 0;
 121	}
 122
 123	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
 124			depth * 2, "",
 125			width, start,
 126			width, end,
 127			r->name ? r->name : "<BAD>");
 128	return 0;
 129}
 130
 131static const struct seq_operations resource_op = {
 132	.start	= r_start,
 133	.next	= r_next,
 134	.stop	= r_stop,
 135	.show	= r_show,
 136};
 137
 138static int __init ioresources_init(void)
 139{
 140	proc_create_seq_data("ioports", 0, NULL, &resource_op,
 141			&ioport_resource);
 142	proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
 143	return 0;
 
 
 144}
 145__initcall(ioresources_init);
 146
 147#endif /* CONFIG_PROC_FS */
 148
 149static void free_resource(struct resource *res)
 150{
 151	if (!res)
 152		return;
 153
 154	if (!PageSlab(virt_to_head_page(res))) {
 155		spin_lock(&bootmem_resource_lock);
 156		res->sibling = bootmem_resource_free;
 157		bootmem_resource_free = res;
 158		spin_unlock(&bootmem_resource_lock);
 159	} else {
 160		kfree(res);
 161	}
 
 162}
 163
 164static struct resource *alloc_resource(gfp_t flags)
 165{
 166	struct resource *res = NULL;
 
 
 
 167
 168	spin_lock(&bootmem_resource_lock);
 169	if (bootmem_resource_free) {
 170		res = bootmem_resource_free;
 171		bootmem_resource_free = res->sibling;
 172	}
 173	spin_unlock(&bootmem_resource_lock);
 174
 175	if (res)
 176		memset(res, 0, sizeof(struct resource));
 177	else
 178		res = kzalloc(sizeof(struct resource), flags);
 
 
 
 179
 180	return res;
 181}
 182
 183/* Return the conflict entry if you can't request it */
 184static struct resource * __request_resource(struct resource *root, struct resource *new)
 185{
 186	resource_size_t start = new->start;
 187	resource_size_t end = new->end;
 188	struct resource *tmp, **p;
 189
 190	if (end < start)
 191		return root;
 192	if (start < root->start)
 193		return root;
 194	if (end > root->end)
 195		return root;
 196	p = &root->child;
 197	for (;;) {
 198		tmp = *p;
 199		if (!tmp || tmp->start > end) {
 200			new->sibling = tmp;
 201			*p = new;
 202			new->parent = root;
 203			return NULL;
 204		}
 205		p = &tmp->sibling;
 206		if (tmp->end < start)
 207			continue;
 208		return tmp;
 209	}
 210}
 211
 212static int __release_resource(struct resource *old, bool release_child)
 213{
 214	struct resource *tmp, **p, *chd;
 215
 216	p = &old->parent->child;
 217	for (;;) {
 218		tmp = *p;
 219		if (!tmp)
 220			break;
 221		if (tmp == old) {
 222			if (release_child || !(tmp->child)) {
 223				*p = tmp->sibling;
 224			} else {
 225				for (chd = tmp->child;; chd = chd->sibling) {
 226					chd->parent = tmp->parent;
 227					if (!(chd->sibling))
 228						break;
 229				}
 230				*p = tmp->child;
 231				chd->sibling = tmp->sibling;
 232			}
 233			old->parent = NULL;
 234			return 0;
 235		}
 236		p = &tmp->sibling;
 237	}
 238	return -EINVAL;
 239}
 240
 241static void __release_child_resources(struct resource *r)
 242{
 243	struct resource *tmp, *p;
 244	resource_size_t size;
 245
 246	p = r->child;
 247	r->child = NULL;
 248	while (p) {
 249		tmp = p;
 250		p = p->sibling;
 251
 252		tmp->parent = NULL;
 253		tmp->sibling = NULL;
 254		__release_child_resources(tmp);
 255
 256		printk(KERN_DEBUG "release child resource %pR\n", tmp);
 257		/* need to restore size, and keep flags */
 258		size = resource_size(tmp);
 259		tmp->start = 0;
 260		tmp->end = size - 1;
 261	}
 262}
 263
 264void release_child_resources(struct resource *r)
 265{
 266	write_lock(&resource_lock);
 267	__release_child_resources(r);
 268	write_unlock(&resource_lock);
 269}
 270
 271/**
 272 * request_resource_conflict - request and reserve an I/O or memory resource
 273 * @root: root resource descriptor
 274 * @new: resource descriptor desired by caller
 275 *
 276 * Returns 0 for success, conflict resource on error.
 277 */
 278struct resource *request_resource_conflict(struct resource *root, struct resource *new)
 279{
 280	struct resource *conflict;
 281
 282	write_lock(&resource_lock);
 283	conflict = __request_resource(root, new);
 284	write_unlock(&resource_lock);
 285	return conflict;
 286}
 287
 288/**
 289 * request_resource - request and reserve an I/O or memory resource
 290 * @root: root resource descriptor
 291 * @new: resource descriptor desired by caller
 292 *
 293 * Returns 0 for success, negative error code on error.
 294 */
 295int request_resource(struct resource *root, struct resource *new)
 296{
 297	struct resource *conflict;
 298
 299	conflict = request_resource_conflict(root, new);
 300	return conflict ? -EBUSY : 0;
 301}
 302
 303EXPORT_SYMBOL(request_resource);
 304
 305/**
 306 * release_resource - release a previously reserved resource
 307 * @old: resource pointer
 308 */
 309int release_resource(struct resource *old)
 310{
 311	int retval;
 312
 313	write_lock(&resource_lock);
 314	retval = __release_resource(old, true);
 315	write_unlock(&resource_lock);
 316	return retval;
 317}
 318
 319EXPORT_SYMBOL(release_resource);
 320
 321/**
 322 * find_next_iomem_res - Finds the lowest iomem resource that covers part of
 323 *			 [@start..@end].
 324 *
 325 * If a resource is found, returns 0 and @*res is overwritten with the part
 326 * of the resource that's within [@start..@end]; if none is found, returns
 327 * -ENODEV.  Returns -EINVAL for invalid parameters.
 328 *
 329 * @start:	start address of the resource searched for
 330 * @end:	end address of same resource
 331 * @flags:	flags which the resource must have
 332 * @desc:	descriptor the resource must have
 333 * @res:	return ptr, if resource found
 334 *
 335 * The caller must specify @start, @end, @flags, and @desc
 336 * (which may be IORES_DESC_NONE).
 337 */
 338static int find_next_iomem_res(resource_size_t start, resource_size_t end,
 339			       unsigned long flags, unsigned long desc,
 340			       struct resource *res)
 341{
 
 342	struct resource *p;
 343
 344	if (!res)
 345		return -EINVAL;
 346
 347	if (start >= end)
 348		return -EINVAL;
 
 349
 350	read_lock(&resource_lock);
 351
 352	for (p = iomem_resource.child; p; p = next_resource(p)) {
 353		/* If we passed the resource we are looking for, stop */
 
 
 
 354		if (p->start > end) {
 355			p = NULL;
 356			break;
 357		}
 358
 359		/* Skip until we find a range that matches what we look for */
 360		if (p->end < start)
 361			continue;
 362
 363		if ((p->flags & flags) != flags)
 364			continue;
 365		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
 366			continue;
 367
 368		/* Found a match, break */
 369		break;
 370	}
 371
 372	if (p) {
 373		/* copy data */
 374		*res = (struct resource) {
 375			.start = max(start, p->start),
 376			.end = min(end, p->end),
 377			.flags = p->flags,
 378			.desc = p->desc,
 379			.parent = p->parent,
 380		};
 381	}
 382
 383	read_unlock(&resource_lock);
 384	return p ? 0 : -ENODEV;
 385}
 386
 387static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
 388				 unsigned long flags, unsigned long desc,
 389				 void *arg,
 390				 int (*func)(struct resource *, void *))
 391{
 392	struct resource res;
 393	int ret = -EINVAL;
 394
 395	while (start < end &&
 396	       !find_next_iomem_res(start, end, flags, desc, &res)) {
 397		ret = (*func)(&res, arg);
 398		if (ret)
 399			break;
 400
 401		start = res.end + 1;
 402	}
 403
 404	return ret;
 405}
 406
 407/**
 408 * walk_iomem_res_desc - Walks through iomem resources and calls func()
 409 *			 with matching resource ranges.
 410 * *
 411 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
 412 * @flags: I/O resource flags
 413 * @start: start addr
 414 * @end: end addr
 415 * @arg: function argument for the callback @func
 416 * @func: callback function that is called for each qualifying resource area
 417 *
 418 * All the memory ranges which overlap start,end and also match flags and
 419 * desc are valid candidates.
 420 *
 421 * NOTE: For a new descriptor search, define a new IORES_DESC in
 422 * <linux/ioport.h> and set it in 'desc' of a target resource entry.
 423 */
 424int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
 425		u64 end, void *arg, int (*func)(struct resource *, void *))
 426{
 427	return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
 428}
 429EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
 430
 431/*
 432 * This function calls the @func callback against all memory ranges of type
 433 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
 434 * Now, this function is only for System RAM, it deals with full ranges and
 435 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
 436 * ranges.
 437 */
 438int walk_system_ram_res(u64 start, u64 end, void *arg,
 439			int (*func)(struct resource *, void *))
 440{
 441	unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 442
 443	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
 444				     func);
 445}
 446
 447/*
 448 * This function calls the @func callback against all memory ranges, which
 449 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
 450 */
 451int walk_mem_res(u64 start, u64 end, void *arg,
 452		 int (*func)(struct resource *, void *))
 453{
 454	unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 455
 456	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
 457				     func);
 458}
 459
 460/*
 461 * This function calls the @func callback against all memory ranges of type
 462 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
 463 * It is to be used only for System RAM.
 464 */
 465int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
 466			  void *arg, int (*func)(unsigned long, unsigned long, void *))
 467{
 468	resource_size_t start, end;
 469	unsigned long flags;
 470	struct resource res;
 471	unsigned long pfn, end_pfn;
 472	int ret = -EINVAL;
 
 473
 474	start = (u64) start_pfn << PAGE_SHIFT;
 475	end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
 476	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 477	while (start < end &&
 478	       !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
 479		pfn = PFN_UP(res.start);
 480		end_pfn = PFN_DOWN(res.end + 1);
 
 481		if (end_pfn > pfn)
 482			ret = (*func)(pfn, end_pfn - pfn, arg);
 483		if (ret)
 484			break;
 485		start = res.end + 1;
 
 486	}
 487	return ret;
 488}
 489
 
 
 490static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
 491{
 492	return 1;
 493}
 494
 495/*
 496 * This generic page_is_ram() returns true if specified address is
 497 * registered as System RAM in iomem_resource list.
 498 */
 499int __weak page_is_ram(unsigned long pfn)
 500{
 501	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
 502}
 503EXPORT_SYMBOL_GPL(page_is_ram);
 504
 505static int __region_intersects(resource_size_t start, size_t size,
 506			unsigned long flags, unsigned long desc)
 507{
 508	struct resource res;
 509	int type = 0; int other = 0;
 510	struct resource *p;
 511
 512	res.start = start;
 513	res.end = start + size - 1;
 514
 515	for (p = iomem_resource.child; p ; p = p->sibling) {
 516		bool is_type = (((p->flags & flags) == flags) &&
 517				((desc == IORES_DESC_NONE) ||
 518				 (desc == p->desc)));
 519
 520		if (resource_overlaps(p, &res))
 521			is_type ? type++ : other++;
 522	}
 523
 524	if (type == 0)
 525		return REGION_DISJOINT;
 526
 527	if (other == 0)
 528		return REGION_INTERSECTS;
 529
 530	return REGION_MIXED;
 531}
 532
 533/**
 534 * region_intersects() - determine intersection of region with known resources
 535 * @start: region start address
 536 * @size: size of region
 537 * @flags: flags of resource (in iomem_resource)
 538 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
 539 *
 540 * Check if the specified region partially overlaps or fully eclipses a
 541 * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
 542 * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
 543 * return REGION_MIXED if the region overlaps @flags/@desc and another
 544 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
 545 * and no other defined resource. Note that REGION_INTERSECTS is also
 546 * returned in the case when the specified region overlaps RAM and undefined
 547 * memory holes.
 548 *
 549 * region_intersect() is used by memory remapping functions to ensure
 550 * the user is not remapping RAM and is a vast speed up over walking
 551 * through the resource table page by page.
 552 */
 553int region_intersects(resource_size_t start, size_t size, unsigned long flags,
 554		      unsigned long desc)
 555{
 556	int ret;
 557
 558	read_lock(&resource_lock);
 559	ret = __region_intersects(start, size, flags, desc);
 560	read_unlock(&resource_lock);
 561
 562	return ret;
 563}
 564EXPORT_SYMBOL_GPL(region_intersects);
 565
 566void __weak arch_remove_reservations(struct resource *avail)
 567{
 568}
 569
 570static resource_size_t simple_align_resource(void *data,
 571					     const struct resource *avail,
 572					     resource_size_t size,
 573					     resource_size_t align)
 574{
 575	return avail->start;
 576}
 577
 578static void resource_clip(struct resource *res, resource_size_t min,
 579			  resource_size_t max)
 580{
 581	if (res->start < min)
 582		res->start = min;
 583	if (res->end > max)
 584		res->end = max;
 585}
 586
 
 
 
 
 
 587/*
 588 * Find empty slot in the resource tree with the given range and
 589 * alignment constraints
 590 */
 591static int __find_resource(struct resource *root, struct resource *old,
 592			 struct resource *new,
 593			 resource_size_t  size,
 594			 struct resource_constraint *constraint)
 595{
 596	struct resource *this = root->child;
 597	struct resource tmp = *new, avail, alloc;
 598
 
 599	tmp.start = root->start;
 600	/*
 601	 * Skip past an allocated resource that starts at 0, since the assignment
 602	 * of this->start - 1 to tmp->end below would cause an underflow.
 603	 */
 604	if (this && this->start == root->start) {
 605		tmp.start = (this == old) ? old->start : this->end + 1;
 606		this = this->sibling;
 607	}
 608	for(;;) {
 609		if (this)
 610			tmp.end = (this == old) ?  this->end : this->start - 1;
 611		else
 612			tmp.end = root->end;
 613
 614		if (tmp.end < tmp.start)
 615			goto next;
 616
 617		resource_clip(&tmp, constraint->min, constraint->max);
 618		arch_remove_reservations(&tmp);
 619
 620		/* Check for overflow after ALIGN() */
 
 621		avail.start = ALIGN(tmp.start, constraint->align);
 622		avail.end = tmp.end;
 623		avail.flags = new->flags & ~IORESOURCE_UNSET;
 624		if (avail.start >= tmp.start) {
 625			alloc.flags = avail.flags;
 626			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
 627					size, constraint->align);
 628			alloc.end = alloc.start + size - 1;
 629			if (alloc.start <= alloc.end &&
 630			    resource_contains(&avail, &alloc)) {
 631				new->start = alloc.start;
 632				new->end = alloc.end;
 633				return 0;
 634			}
 635		}
 636
 637next:		if (!this || this->end == root->end)
 638			break;
 639
 640		if (this != old)
 641			tmp.start = this->end + 1;
 642		this = this->sibling;
 643	}
 644	return -EBUSY;
 645}
 646
 647/*
 648 * Find empty slot in the resource tree given range and alignment.
 649 */
 650static int find_resource(struct resource *root, struct resource *new,
 651			resource_size_t size,
 652			struct resource_constraint  *constraint)
 653{
 654	return  __find_resource(root, NULL, new, size, constraint);
 655}
 656
 657/**
 658 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
 659 *	The resource will be relocated if the new size cannot be reallocated in the
 660 *	current location.
 661 *
 662 * @root: root resource descriptor
 663 * @old:  resource descriptor desired by caller
 664 * @newsize: new size of the resource descriptor
 665 * @constraint: the size and alignment constraints to be met.
 666 */
 667static int reallocate_resource(struct resource *root, struct resource *old,
 668			       resource_size_t newsize,
 669			       struct resource_constraint *constraint)
 670{
 671	int err=0;
 672	struct resource new = *old;
 673	struct resource *conflict;
 674
 675	write_lock(&resource_lock);
 676
 677	if ((err = __find_resource(root, old, &new, newsize, constraint)))
 678		goto out;
 679
 680	if (resource_contains(&new, old)) {
 681		old->start = new.start;
 682		old->end = new.end;
 683		goto out;
 684	}
 685
 686	if (old->child) {
 687		err = -EBUSY;
 688		goto out;
 689	}
 690
 691	if (resource_contains(old, &new)) {
 692		old->start = new.start;
 693		old->end = new.end;
 694	} else {
 695		__release_resource(old, true);
 696		*old = new;
 697		conflict = __request_resource(root, old);
 698		BUG_ON(conflict);
 699	}
 700out:
 701	write_unlock(&resource_lock);
 702	return err;
 703}
 704
 705
 706/**
 707 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
 708 * 	The resource will be reallocated with a new size if it was already allocated
 709 * @root: root resource descriptor
 710 * @new: resource descriptor desired by caller
 711 * @size: requested resource region size
 712 * @min: minimum boundary to allocate
 713 * @max: maximum boundary to allocate
 714 * @align: alignment requested, in bytes
 715 * @alignf: alignment function, optional, called if not NULL
 716 * @alignf_data: arbitrary data to pass to the @alignf function
 717 */
 718int allocate_resource(struct resource *root, struct resource *new,
 719		      resource_size_t size, resource_size_t min,
 720		      resource_size_t max, resource_size_t align,
 721		      resource_size_t (*alignf)(void *,
 722						const struct resource *,
 723						resource_size_t,
 724						resource_size_t),
 725		      void *alignf_data)
 726{
 727	int err;
 728	struct resource_constraint constraint;
 729
 730	if (!alignf)
 731		alignf = simple_align_resource;
 732
 733	constraint.min = min;
 734	constraint.max = max;
 735	constraint.align = align;
 736	constraint.alignf = alignf;
 737	constraint.alignf_data = alignf_data;
 738
 739	if ( new->parent ) {
 740		/* resource is already allocated, try reallocating with
 741		   the new constraints */
 742		return reallocate_resource(root, new, size, &constraint);
 743	}
 744
 745	write_lock(&resource_lock);
 746	err = find_resource(root, new, size, &constraint);
 747	if (err >= 0 && __request_resource(root, new))
 748		err = -EBUSY;
 749	write_unlock(&resource_lock);
 750	return err;
 751}
 752
 753EXPORT_SYMBOL(allocate_resource);
 754
 755/**
 756 * lookup_resource - find an existing resource by a resource start address
 757 * @root: root resource descriptor
 758 * @start: resource start address
 759 *
 760 * Returns a pointer to the resource if found, NULL otherwise
 761 */
 762struct resource *lookup_resource(struct resource *root, resource_size_t start)
 763{
 764	struct resource *res;
 765
 766	read_lock(&resource_lock);
 767	for (res = root->child; res; res = res->sibling) {
 768		if (res->start == start)
 769			break;
 770	}
 771	read_unlock(&resource_lock);
 772
 773	return res;
 774}
 775
 776/*
 777 * Insert a resource into the resource tree. If successful, return NULL,
 778 * otherwise return the conflicting resource (compare to __request_resource())
 779 */
 780static struct resource * __insert_resource(struct resource *parent, struct resource *new)
 781{
 782	struct resource *first, *next;
 783
 784	for (;; parent = first) {
 785		first = __request_resource(parent, new);
 786		if (!first)
 787			return first;
 788
 789		if (first == parent)
 790			return first;
 791		if (WARN_ON(first == new))	/* duplicated insertion */
 792			return first;
 793
 794		if ((first->start > new->start) || (first->end < new->end))
 795			break;
 796		if ((first->start == new->start) && (first->end == new->end))
 797			break;
 798	}
 799
 800	for (next = first; ; next = next->sibling) {
 801		/* Partial overlap? Bad, and unfixable */
 802		if (next->start < new->start || next->end > new->end)
 803			return next;
 804		if (!next->sibling)
 805			break;
 806		if (next->sibling->start > new->end)
 807			break;
 808	}
 809
 810	new->parent = parent;
 811	new->sibling = next->sibling;
 812	new->child = first;
 813
 814	next->sibling = NULL;
 815	for (next = first; next; next = next->sibling)
 816		next->parent = new;
 817
 818	if (parent->child == first) {
 819		parent->child = new;
 820	} else {
 821		next = parent->child;
 822		while (next->sibling != first)
 823			next = next->sibling;
 824		next->sibling = new;
 825	}
 826	return NULL;
 827}
 828
 829/**
 830 * insert_resource_conflict - Inserts resource in the resource tree
 831 * @parent: parent of the new resource
 832 * @new: new resource to insert
 833 *
 834 * Returns 0 on success, conflict resource if the resource can't be inserted.
 835 *
 836 * This function is equivalent to request_resource_conflict when no conflict
 837 * happens. If a conflict happens, and the conflicting resources
 838 * entirely fit within the range of the new resource, then the new
 839 * resource is inserted and the conflicting resources become children of
 840 * the new resource.
 841 *
 842 * This function is intended for producers of resources, such as FW modules
 843 * and bus drivers.
 844 */
 845struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
 846{
 847	struct resource *conflict;
 848
 849	write_lock(&resource_lock);
 850	conflict = __insert_resource(parent, new);
 851	write_unlock(&resource_lock);
 852	return conflict;
 853}
 854
 855/**
 856 * insert_resource - Inserts a resource in the resource tree
 857 * @parent: parent of the new resource
 858 * @new: new resource to insert
 859 *
 860 * Returns 0 on success, -EBUSY if the resource can't be inserted.
 861 *
 862 * This function is intended for producers of resources, such as FW modules
 863 * and bus drivers.
 864 */
 865int insert_resource(struct resource *parent, struct resource *new)
 866{
 867	struct resource *conflict;
 868
 869	conflict = insert_resource_conflict(parent, new);
 870	return conflict ? -EBUSY : 0;
 871}
 872EXPORT_SYMBOL_GPL(insert_resource);
 873
 874/**
 875 * insert_resource_expand_to_fit - Insert a resource into the resource tree
 876 * @root: root resource descriptor
 877 * @new: new resource to insert
 878 *
 879 * Insert a resource into the resource tree, possibly expanding it in order
 880 * to make it encompass any conflicting resources.
 881 */
 882void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
 883{
 884	if (new->parent)
 885		return;
 886
 887	write_lock(&resource_lock);
 888	for (;;) {
 889		struct resource *conflict;
 890
 891		conflict = __insert_resource(root, new);
 892		if (!conflict)
 893			break;
 894		if (conflict == root)
 895			break;
 896
 897		/* Ok, expand resource to cover the conflict, then try again .. */
 898		if (conflict->start < new->start)
 899			new->start = conflict->start;
 900		if (conflict->end > new->end)
 901			new->end = conflict->end;
 902
 903		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
 904	}
 905	write_unlock(&resource_lock);
 906}
 907
 908/**
 909 * remove_resource - Remove a resource in the resource tree
 910 * @old: resource to remove
 
 
 911 *
 912 * Returns 0 on success, -EINVAL if the resource is not valid.
 913 *
 914 * This function removes a resource previously inserted by insert_resource()
 915 * or insert_resource_conflict(), and moves the children (if any) up to
 916 * where they were before.  insert_resource() and insert_resource_conflict()
 917 * insert a new resource, and move any conflicting resources down to the
 918 * children of the new resource.
 919 *
 920 * insert_resource(), insert_resource_conflict() and remove_resource() are
 921 * intended for producers of resources, such as FW modules and bus drivers.
 922 */
 923int remove_resource(struct resource *old)
 924{
 925	int retval;
 926
 927	write_lock(&resource_lock);
 928	retval = __release_resource(old, false);
 929	write_unlock(&resource_lock);
 930	return retval;
 931}
 932EXPORT_SYMBOL_GPL(remove_resource);
 933
 934static int __adjust_resource(struct resource *res, resource_size_t start,
 935				resource_size_t size)
 936{
 937	struct resource *tmp, *parent = res->parent;
 938	resource_size_t end = start + size - 1;
 939	int result = -EBUSY;
 940
 941	if (!parent)
 942		goto skip;
 943
 944	if ((start < parent->start) || (end > parent->end))
 945		goto out;
 946
 
 
 
 
 
 947	if (res->sibling && (res->sibling->start <= end))
 948		goto out;
 949
 950	tmp = parent->child;
 951	if (tmp != res) {
 952		while (tmp->sibling != res)
 953			tmp = tmp->sibling;
 954		if (start <= tmp->end)
 955			goto out;
 956	}
 957
 958skip:
 959	for (tmp = res->child; tmp; tmp = tmp->sibling)
 960		if ((tmp->start < start) || (tmp->end > end))
 961			goto out;
 962
 963	res->start = start;
 964	res->end = end;
 965	result = 0;
 966
 967 out:
 968	return result;
 969}
 970
 971/**
 972 * adjust_resource - modify a resource's start and size
 973 * @res: resource to modify
 974 * @start: new start value
 975 * @size: new size
 976 *
 977 * Given an existing resource, change its start and size to match the
 978 * arguments.  Returns 0 on success, -EBUSY if it can't fit.
 979 * Existing children of the resource are assumed to be immutable.
 980 */
 981int adjust_resource(struct resource *res, resource_size_t start,
 982		    resource_size_t size)
 983{
 984	int result;
 985
 986	write_lock(&resource_lock);
 987	result = __adjust_resource(res, start, size);
 988	write_unlock(&resource_lock);
 989	return result;
 990}
 991EXPORT_SYMBOL(adjust_resource);
 992
 993static void __init
 994__reserve_region_with_split(struct resource *root, resource_size_t start,
 995			    resource_size_t end, const char *name)
 996{
 997	struct resource *parent = root;
 998	struct resource *conflict;
 999	struct resource *res = alloc_resource(GFP_ATOMIC);
1000	struct resource *next_res = NULL;
1001	int type = resource_type(root);
1002
1003	if (!res)
1004		return;
1005
1006	res->name = name;
1007	res->start = start;
1008	res->end = end;
1009	res->flags = type | IORESOURCE_BUSY;
1010	res->desc = IORES_DESC_NONE;
1011
1012	while (1) {
 
 
1013
1014		conflict = __request_resource(parent, res);
1015		if (!conflict) {
1016			if (!next_res)
1017				break;
1018			res = next_res;
1019			next_res = NULL;
1020			continue;
1021		}
1022
1023		/* conflict covered whole area */
1024		if (conflict->start <= res->start &&
1025				conflict->end >= res->end) {
1026			free_resource(res);
1027			WARN_ON(next_res);
1028			break;
1029		}
1030
1031		/* failed, split and try again */
1032		if (conflict->start > res->start) {
1033			end = res->end;
1034			res->end = conflict->start - 1;
1035			if (conflict->end < end) {
1036				next_res = alloc_resource(GFP_ATOMIC);
1037				if (!next_res) {
1038					free_resource(res);
1039					break;
1040				}
1041				next_res->name = name;
1042				next_res->start = conflict->end + 1;
1043				next_res->end = end;
1044				next_res->flags = type | IORESOURCE_BUSY;
1045				next_res->desc = IORES_DESC_NONE;
1046			}
1047		} else {
1048			res->start = conflict->end + 1;
1049		}
1050	}
1051
 
 
 
 
1052}
1053
1054void __init
1055reserve_region_with_split(struct resource *root, resource_size_t start,
1056			  resource_size_t end, const char *name)
1057{
1058	int abort = 0;
1059
1060	write_lock(&resource_lock);
1061	if (root->start > start || root->end < end) {
1062		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1063		       (unsigned long long)start, (unsigned long long)end,
1064		       root);
1065		if (start > root->end || end < root->start)
1066			abort = 1;
1067		else {
1068			if (end > root->end)
1069				end = root->end;
1070			if (start < root->start)
1071				start = root->start;
1072			pr_err("fixing request to [0x%llx-0x%llx]\n",
1073			       (unsigned long long)start,
1074			       (unsigned long long)end);
1075		}
1076		dump_stack();
1077	}
1078	if (!abort)
1079		__reserve_region_with_split(root, start, end, name);
1080	write_unlock(&resource_lock);
1081}
1082
1083/**
1084 * resource_alignment - calculate resource's alignment
1085 * @res: resource pointer
1086 *
1087 * Returns alignment on success, 0 (invalid alignment) on failure.
1088 */
1089resource_size_t resource_alignment(struct resource *res)
1090{
1091	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1092	case IORESOURCE_SIZEALIGN:
1093		return resource_size(res);
1094	case IORESOURCE_STARTALIGN:
1095		return res->start;
1096	default:
1097		return 0;
1098	}
1099}
1100
1101/*
1102 * This is compatibility stuff for IO resources.
1103 *
1104 * Note how this, unlike the above, knows about
1105 * the IO flag meanings (busy etc).
1106 *
1107 * request_region creates a new busy region.
1108 *
 
 
1109 * release_region releases a matching busy region.
1110 */
1111
1112static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1113
1114static struct inode *iomem_inode;
1115
1116#ifdef CONFIG_IO_STRICT_DEVMEM
1117static void revoke_iomem(struct resource *res)
1118{
1119	/* pairs with smp_store_release() in iomem_init_inode() */
1120	struct inode *inode = smp_load_acquire(&iomem_inode);
1121
1122	/*
1123	 * Check that the initialization has completed. Losing the race
1124	 * is ok because it means drivers are claiming resources before
1125	 * the fs_initcall level of init and prevent iomem_get_mapping users
1126	 * from establishing mappings.
1127	 */
1128	if (!inode)
1129		return;
1130
1131	/*
1132	 * The expectation is that the driver has successfully marked
1133	 * the resource busy by this point, so devmem_is_allowed()
1134	 * should start returning false, however for performance this
1135	 * does not iterate the entire resource range.
1136	 */
1137	if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1138	    devmem_is_allowed(PHYS_PFN(res->end))) {
1139		/*
1140		 * *cringe* iomem=relaxed says "go ahead, what's the
1141		 * worst that can happen?"
1142		 */
1143		return;
1144	}
1145
1146	unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1147}
1148#else
1149static void revoke_iomem(struct resource *res) {}
1150#endif
1151
1152struct address_space *iomem_get_mapping(void)
1153{
1154	/*
1155	 * This function is only called from file open paths, hence guaranteed
1156	 * that fs_initcalls have completed and no need to check for NULL. But
1157	 * since revoke_iomem can be called before the initcall we still need
1158	 * the barrier to appease checkers.
1159	 */
1160	return smp_load_acquire(&iomem_inode)->i_mapping;
1161}
1162
1163static int __request_region_locked(struct resource *res, struct resource *parent,
1164				   resource_size_t start, resource_size_t n,
1165				   const char *name, int flags)
1166{
1167	DECLARE_WAITQUEUE(wait, current);
 
 
 
 
1168
1169	res->name = name;
1170	res->start = start;
1171	res->end = start + n - 1;
 
 
 
 
1172
1173	for (;;) {
1174		struct resource *conflict;
1175
1176		res->flags = resource_type(parent) | resource_ext_type(parent);
1177		res->flags |= IORESOURCE_BUSY | flags;
1178		res->desc = parent->desc;
1179
1180		conflict = __request_resource(parent, res);
1181		if (!conflict)
1182			break;
1183		/*
1184		 * mm/hmm.c reserves physical addresses which then
1185		 * become unavailable to other users.  Conflicts are
1186		 * not expected.  Warn to aid debugging if encountered.
1187		 */
1188		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1189			pr_warn("Unaddressable device %s %pR conflicts with %pR",
1190				conflict->name, conflict, res);
1191		}
1192		if (conflict != parent) {
1193			if (!(conflict->flags & IORESOURCE_BUSY)) {
1194				parent = conflict;
1195				continue;
1196			}
1197		}
1198		if (conflict->flags & flags & IORESOURCE_MUXED) {
1199			add_wait_queue(&muxed_resource_wait, &wait);
1200			write_unlock(&resource_lock);
1201			set_current_state(TASK_UNINTERRUPTIBLE);
1202			schedule();
1203			remove_wait_queue(&muxed_resource_wait, &wait);
1204			write_lock(&resource_lock);
1205			continue;
1206		}
1207		/* Uhhuh, that didn't work out.. */
1208		return -EBUSY;
 
 
1209	}
1210
1211	return 0;
1212}
 
1213
1214/**
1215 * __request_region - create a new busy resource region
1216 * @parent: parent resource descriptor
1217 * @start: resource start address
1218 * @n: resource region size
1219 * @name: reserving caller's ID string
1220 * @flags: IO resource flags
 
 
 
 
 
 
 
1221 */
1222struct resource *__request_region(struct resource *parent,
1223				  resource_size_t start, resource_size_t n,
1224				  const char *name, int flags)
1225{
1226	struct resource *res = alloc_resource(GFP_KERNEL);
1227	int ret;
1228
 
1229	if (!res)
1230		return NULL;
1231
1232	write_lock(&resource_lock);
1233	ret = __request_region_locked(res, parent, start, n, name, flags);
1234	write_unlock(&resource_lock);
1235
1236	if (ret) {
1237		free_resource(res);
1238		return NULL;
1239	}
1240
1241	if (parent == &iomem_resource)
1242		revoke_iomem(res);
1243
1244	return res;
1245}
1246EXPORT_SYMBOL(__request_region);
1247
1248/**
1249 * __release_region - release a previously reserved resource region
1250 * @parent: parent resource descriptor
1251 * @start: resource start address
1252 * @n: resource region size
1253 *
1254 * The described resource region must match a currently busy region.
1255 */
1256void __release_region(struct resource *parent, resource_size_t start,
1257		      resource_size_t n)
1258{
1259	struct resource **p;
1260	resource_size_t end;
1261
1262	p = &parent->child;
1263	end = start + n - 1;
1264
1265	write_lock(&resource_lock);
1266
1267	for (;;) {
1268		struct resource *res = *p;
1269
1270		if (!res)
1271			break;
1272		if (res->start <= start && res->end >= end) {
1273			if (!(res->flags & IORESOURCE_BUSY)) {
1274				p = &res->child;
1275				continue;
1276			}
1277			if (res->start != start || res->end != end)
1278				break;
1279			*p = res->sibling;
1280			write_unlock(&resource_lock);
1281			if (res->flags & IORESOURCE_MUXED)
1282				wake_up(&muxed_resource_wait);
1283			free_resource(res);
1284			return;
1285		}
1286		p = &res->sibling;
1287	}
1288
1289	write_unlock(&resource_lock);
1290
1291	printk(KERN_WARNING "Trying to free nonexistent resource "
1292		"<%016llx-%016llx>\n", (unsigned long long)start,
1293		(unsigned long long)end);
1294}
1295EXPORT_SYMBOL(__release_region);
1296
1297#ifdef CONFIG_MEMORY_HOTREMOVE
1298/**
1299 * release_mem_region_adjustable - release a previously reserved memory region
1300 * @start: resource start address
1301 * @size: resource region size
1302 *
1303 * This interface is intended for memory hot-delete.  The requested region
1304 * is released from a currently busy memory resource.  The requested region
1305 * must either match exactly or fit into a single busy resource entry.  In
1306 * the latter case, the remaining resource is adjusted accordingly.
1307 * Existing children of the busy memory resource must be immutable in the
1308 * request.
1309 *
1310 * Note:
1311 * - Additional release conditions, such as overlapping region, can be
1312 *   supported after they are confirmed as valid cases.
1313 * - When a busy memory resource gets split into two entries, the code
1314 *   assumes that all children remain in the lower address entry for
1315 *   simplicity.  Enhance this logic when necessary.
1316 */
1317void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1318{
1319	struct resource *parent = &iomem_resource;
1320	struct resource *new_res = NULL;
1321	bool alloc_nofail = false;
1322	struct resource **p;
1323	struct resource *res;
1324	resource_size_t end;
1325
1326	end = start + size - 1;
1327	if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1328		return;
1329
1330	/*
1331	 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1332	 * just before releasing the region. This is highly unlikely to
1333	 * fail - let's play save and make it never fail as the caller cannot
1334	 * perform any error handling (e.g., trying to re-add memory will fail
1335	 * similarly).
1336	 */
1337retry:
1338	new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1339
1340	p = &parent->child;
1341	write_lock(&resource_lock);
1342
1343	while ((res = *p)) {
1344		if (res->start >= end)
1345			break;
1346
1347		/* look for the next resource if it does not fit into */
1348		if (res->start > start || res->end < end) {
1349			p = &res->sibling;
1350			continue;
1351		}
1352
1353		/*
1354		 * All memory regions added from memory-hotplug path have the
1355		 * flag IORESOURCE_SYSTEM_RAM. If the resource does not have
1356		 * this flag, we know that we are dealing with a resource coming
1357		 * from HMM/devm. HMM/devm use another mechanism to add/release
1358		 * a resource. This goes via devm_request_mem_region and
1359		 * devm_release_mem_region.
1360		 * HMM/devm take care to release their resources when they want,
1361		 * so if we are dealing with them, let us just back off here.
1362		 */
1363		if (!(res->flags & IORESOURCE_SYSRAM)) {
1364			break;
1365		}
1366
1367		if (!(res->flags & IORESOURCE_MEM))
1368			break;
1369
1370		if (!(res->flags & IORESOURCE_BUSY)) {
1371			p = &res->child;
1372			continue;
1373		}
1374
1375		/* found the target resource; let's adjust accordingly */
1376		if (res->start == start && res->end == end) {
1377			/* free the whole entry */
1378			*p = res->sibling;
1379			free_resource(res);
1380		} else if (res->start == start && res->end != end) {
1381			/* adjust the start */
1382			WARN_ON_ONCE(__adjust_resource(res, end + 1,
1383						       res->end - end));
1384		} else if (res->start != start && res->end == end) {
1385			/* adjust the end */
1386			WARN_ON_ONCE(__adjust_resource(res, res->start,
1387						       start - res->start));
1388		} else {
1389			/* split into two entries - we need a new resource */
1390			if (!new_res) {
1391				new_res = alloc_resource(GFP_ATOMIC);
1392				if (!new_res) {
1393					alloc_nofail = true;
1394					write_unlock(&resource_lock);
1395					goto retry;
1396				}
1397			}
1398			new_res->name = res->name;
1399			new_res->start = end + 1;
1400			new_res->end = res->end;
1401			new_res->flags = res->flags;
1402			new_res->desc = res->desc;
1403			new_res->parent = res->parent;
1404			new_res->sibling = res->sibling;
1405			new_res->child = NULL;
1406
1407			if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1408							   start - res->start)))
1409				break;
1410			res->sibling = new_res;
1411			new_res = NULL;
1412		}
1413
1414		break;
1415	}
1416
1417	write_unlock(&resource_lock);
1418	free_resource(new_res);
1419}
1420#endif	/* CONFIG_MEMORY_HOTREMOVE */
1421
1422#ifdef CONFIG_MEMORY_HOTPLUG
1423static bool system_ram_resources_mergeable(struct resource *r1,
1424					   struct resource *r2)
1425{
1426	/* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1427	return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1428	       r1->name == r2->name && r1->desc == r2->desc &&
1429	       !r1->child && !r2->child;
1430}
1431
1432/**
1433 * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1434 *	merge it with adjacent, mergeable resources
1435 * @res: resource descriptor
1436 *
1437 * This interface is intended for memory hotplug, whereby lots of contiguous
1438 * system ram resources are added (e.g., via add_memory*()) by a driver, and
1439 * the actual resource boundaries are not of interest (e.g., it might be
1440 * relevant for DIMMs). Only resources that are marked mergeable, that have the
1441 * same parent, and that don't have any children are considered. All mergeable
1442 * resources must be immutable during the request.
1443 *
1444 * Note:
1445 * - The caller has to make sure that no pointers to resources that are
1446 *   marked mergeable are used anymore after this call - the resource might
1447 *   be freed and the pointer might be stale!
1448 * - release_mem_region_adjustable() will split on demand on memory hotunplug
1449 */
1450void merge_system_ram_resource(struct resource *res)
1451{
1452	const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1453	struct resource *cur;
1454
1455	if (WARN_ON_ONCE((res->flags & flags) != flags))
1456		return;
1457
1458	write_lock(&resource_lock);
1459	res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1460
1461	/* Try to merge with next item in the list. */
1462	cur = res->sibling;
1463	if (cur && system_ram_resources_mergeable(res, cur)) {
1464		res->end = cur->end;
1465		res->sibling = cur->sibling;
1466		free_resource(cur);
1467	}
1468
1469	/* Try to merge with previous item in the list. */
1470	cur = res->parent->child;
1471	while (cur && cur->sibling != res)
1472		cur = cur->sibling;
1473	if (cur && system_ram_resources_mergeable(cur, res)) {
1474		cur->end = res->end;
1475		cur->sibling = res->sibling;
1476		free_resource(res);
1477	}
1478	write_unlock(&resource_lock);
1479}
1480#endif	/* CONFIG_MEMORY_HOTPLUG */
1481
1482/*
1483 * Managed region resource
1484 */
1485static void devm_resource_release(struct device *dev, void *ptr)
1486{
1487	struct resource **r = ptr;
1488
1489	release_resource(*r);
1490}
1491
1492/**
1493 * devm_request_resource() - request and reserve an I/O or memory resource
1494 * @dev: device for which to request the resource
1495 * @root: root of the resource tree from which to request the resource
1496 * @new: descriptor of the resource to request
1497 *
1498 * This is a device-managed version of request_resource(). There is usually
1499 * no need to release resources requested by this function explicitly since
1500 * that will be taken care of when the device is unbound from its driver.
1501 * If for some reason the resource needs to be released explicitly, because
1502 * of ordering issues for example, drivers must call devm_release_resource()
1503 * rather than the regular release_resource().
1504 *
1505 * When a conflict is detected between any existing resources and the newly
1506 * requested resource, an error message will be printed.
1507 *
1508 * Returns 0 on success or a negative error code on failure.
1509 */
1510int devm_request_resource(struct device *dev, struct resource *root,
1511			  struct resource *new)
1512{
1513	struct resource *conflict, **ptr;
1514
1515	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1516	if (!ptr)
1517		return -ENOMEM;
1518
1519	*ptr = new;
1520
1521	conflict = request_resource_conflict(root, new);
1522	if (conflict) {
1523		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1524			new, conflict->name, conflict);
1525		devres_free(ptr);
1526		return -EBUSY;
1527	}
1528
1529	devres_add(dev, ptr);
1530	return 0;
1531}
1532EXPORT_SYMBOL(devm_request_resource);
1533
1534static int devm_resource_match(struct device *dev, void *res, void *data)
1535{
1536	struct resource **ptr = res;
1537
1538	return *ptr == data;
1539}
1540
1541/**
1542 * devm_release_resource() - release a previously requested resource
1543 * @dev: device for which to release the resource
1544 * @new: descriptor of the resource to release
1545 *
1546 * Releases a resource previously requested using devm_request_resource().
1547 */
1548void devm_release_resource(struct device *dev, struct resource *new)
1549{
1550	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1551			       new));
1552}
1553EXPORT_SYMBOL(devm_release_resource);
1554
1555struct region_devres {
1556	struct resource *parent;
1557	resource_size_t start;
1558	resource_size_t n;
1559};
1560
1561static void devm_region_release(struct device *dev, void *res)
1562{
1563	struct region_devres *this = res;
1564
1565	__release_region(this->parent, this->start, this->n);
1566}
1567
1568static int devm_region_match(struct device *dev, void *res, void *match_data)
1569{
1570	struct region_devres *this = res, *match = match_data;
1571
1572	return this->parent == match->parent &&
1573		this->start == match->start && this->n == match->n;
1574}
1575
1576struct resource *
1577__devm_request_region(struct device *dev, struct resource *parent,
1578		      resource_size_t start, resource_size_t n, const char *name)
1579{
1580	struct region_devres *dr = NULL;
1581	struct resource *res;
1582
1583	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1584			  GFP_KERNEL);
1585	if (!dr)
1586		return NULL;
1587
1588	dr->parent = parent;
1589	dr->start = start;
1590	dr->n = n;
1591
1592	res = __request_region(parent, start, n, name, 0);
1593	if (res)
1594		devres_add(dev, dr);
1595	else
1596		devres_free(dr);
1597
1598	return res;
1599}
1600EXPORT_SYMBOL(__devm_request_region);
1601
1602void __devm_release_region(struct device *dev, struct resource *parent,
1603			   resource_size_t start, resource_size_t n)
1604{
1605	struct region_devres match_data = { parent, start, n };
1606
1607	__release_region(parent, start, n);
1608	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1609			       &match_data));
1610}
1611EXPORT_SYMBOL(__devm_release_region);
1612
1613/*
1614 * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1615 */
1616#define MAXRESERVE 4
1617static int __init reserve_setup(char *str)
1618{
1619	static int reserved;
1620	static struct resource reserve[MAXRESERVE];
1621
1622	for (;;) {
1623		unsigned int io_start, io_num;
1624		int x = reserved;
1625		struct resource *parent;
1626
1627		if (get_option(&str, &io_start) != 2)
1628			break;
1629		if (get_option(&str, &io_num) == 0)
1630			break;
1631		if (x < MAXRESERVE) {
1632			struct resource *res = reserve + x;
1633
1634			/*
1635			 * If the region starts below 0x10000, we assume it's
1636			 * I/O port space; otherwise assume it's memory.
1637			 */
1638			if (io_start < 0x10000) {
1639				res->flags = IORESOURCE_IO;
1640				parent = &ioport_resource;
1641			} else {
1642				res->flags = IORESOURCE_MEM;
1643				parent = &iomem_resource;
1644			}
1645			res->name = "reserved";
1646			res->start = io_start;
1647			res->end = io_start + io_num - 1;
1648			res->flags |= IORESOURCE_BUSY;
1649			res->desc = IORES_DESC_NONE;
1650			res->child = NULL;
1651			if (request_resource(parent, res) == 0)
1652				reserved = x+1;
1653		}
1654	}
1655	return 1;
1656}
 
1657__setup("reserve=", reserve_setup);
1658
1659/*
1660 * Check if the requested addr and size spans more than any slot in the
1661 * iomem resource tree.
1662 */
1663int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1664{
1665	struct resource *p = &iomem_resource;
1666	int err = 0;
1667	loff_t l;
1668
1669	read_lock(&resource_lock);
1670	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1671		/*
1672		 * We can probably skip the resources without
1673		 * IORESOURCE_IO attribute?
1674		 */
1675		if (p->start >= addr + size)
1676			continue;
1677		if (p->end < addr)
1678			continue;
1679		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1680		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1681			continue;
1682		/*
1683		 * if a resource is "BUSY", it's not a hardware resource
1684		 * but a driver mapping of such a resource; we don't want
1685		 * to warn for those; some drivers legitimately map only
1686		 * partial hardware resources. (example: vesafb)
1687		 */
1688		if (p->flags & IORESOURCE_BUSY)
1689			continue;
1690
1691		printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
 
1692		       (unsigned long long)addr,
1693		       (unsigned long long)(addr + size - 1),
1694		       p->name, p);
 
 
1695		err = -1;
1696		break;
1697	}
1698	read_unlock(&resource_lock);
1699
1700	return err;
1701}
1702
1703#ifdef CONFIG_STRICT_DEVMEM
1704static int strict_iomem_checks = 1;
1705#else
1706static int strict_iomem_checks;
1707#endif
1708
1709/*
1710 * check if an address is reserved in the iomem resource tree
1711 * returns true if reserved, false if not reserved.
1712 */
1713bool iomem_is_exclusive(u64 addr)
1714{
1715	struct resource *p = &iomem_resource;
1716	bool err = false;
1717	loff_t l;
1718	int size = PAGE_SIZE;
1719
1720	if (!strict_iomem_checks)
1721		return false;
1722
1723	addr = addr & PAGE_MASK;
1724
1725	read_lock(&resource_lock);
1726	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1727		/*
1728		 * We can probably skip the resources without
1729		 * IORESOURCE_IO attribute?
1730		 */
1731		if (p->start >= addr + size)
1732			break;
1733		if (p->end < addr)
1734			continue;
1735		/*
1736		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1737		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1738		 * resource is busy.
1739		 */
1740		if ((p->flags & IORESOURCE_BUSY) == 0)
1741			continue;
1742		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1743				|| p->flags & IORESOURCE_EXCLUSIVE) {
1744			err = true;
1745			break;
1746		}
1747	}
1748	read_unlock(&resource_lock);
1749
1750	return err;
1751}
1752
1753struct resource_entry *resource_list_create_entry(struct resource *res,
1754						  size_t extra_size)
1755{
1756	struct resource_entry *entry;
1757
1758	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1759	if (entry) {
1760		INIT_LIST_HEAD(&entry->node);
1761		entry->res = res ? res : &entry->__res;
1762	}
1763
1764	return entry;
1765}
1766EXPORT_SYMBOL(resource_list_create_entry);
1767
1768void resource_list_free(struct list_head *head)
1769{
1770	struct resource_entry *entry, *tmp;
1771
1772	list_for_each_entry_safe(entry, tmp, head, node)
1773		resource_list_destroy_entry(entry);
1774}
1775EXPORT_SYMBOL(resource_list_free);
1776
1777#ifdef CONFIG_DEVICE_PRIVATE
1778static struct resource *__request_free_mem_region(struct device *dev,
1779		struct resource *base, unsigned long size, const char *name)
1780{
1781	resource_size_t end, addr;
1782	struct resource *res;
1783	struct region_devres *dr = NULL;
1784
1785	size = ALIGN(size, 1UL << PA_SECTION_SHIFT);
1786	end = min_t(unsigned long, base->end, (1UL << MAX_PHYSMEM_BITS) - 1);
1787	addr = end - size + 1UL;
1788
1789	res = alloc_resource(GFP_KERNEL);
1790	if (!res)
1791		return ERR_PTR(-ENOMEM);
1792
1793	if (dev) {
1794		dr = devres_alloc(devm_region_release,
1795				sizeof(struct region_devres), GFP_KERNEL);
1796		if (!dr) {
1797			free_resource(res);
1798			return ERR_PTR(-ENOMEM);
1799		}
1800	}
1801
1802	write_lock(&resource_lock);
1803	for (; addr > size && addr >= base->start; addr -= size) {
1804		if (__region_intersects(addr, size, 0, IORES_DESC_NONE) !=
1805				REGION_DISJOINT)
1806			continue;
1807
1808		if (__request_region_locked(res, &iomem_resource, addr, size,
1809						name, 0))
1810			break;
1811
1812		if (dev) {
1813			dr->parent = &iomem_resource;
1814			dr->start = addr;
1815			dr->n = size;
1816			devres_add(dev, dr);
1817		}
1818
1819		res->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1820		write_unlock(&resource_lock);
1821
1822		/*
1823		 * A driver is claiming this region so revoke any mappings.
1824		 */
1825		revoke_iomem(res);
1826		return res;
1827	}
1828	write_unlock(&resource_lock);
1829
1830	free_resource(res);
1831	if (dr)
1832		devres_free(dr);
1833
1834	return ERR_PTR(-ERANGE);
1835}
1836
1837/**
1838 * devm_request_free_mem_region - find free region for device private memory
1839 *
1840 * @dev: device struct to bind the resource to
1841 * @size: size in bytes of the device memory to add
1842 * @base: resource tree to look in
1843 *
1844 * This function tries to find an empty range of physical address big enough to
1845 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
1846 * memory, which in turn allocates struct pages.
1847 */
1848struct resource *devm_request_free_mem_region(struct device *dev,
1849		struct resource *base, unsigned long size)
1850{
1851	return __request_free_mem_region(dev, base, size, dev_name(dev));
1852}
1853EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
1854
1855struct resource *request_free_mem_region(struct resource *base,
1856		unsigned long size, const char *name)
1857{
1858	return __request_free_mem_region(NULL, base, size, name);
1859}
1860EXPORT_SYMBOL_GPL(request_free_mem_region);
1861
1862#endif /* CONFIG_DEVICE_PRIVATE */
1863
1864static int __init strict_iomem(char *str)
1865{
1866	if (strstr(str, "relaxed"))
1867		strict_iomem_checks = 0;
1868	if (strstr(str, "strict"))
1869		strict_iomem_checks = 1;
1870	return 1;
1871}
1872
1873static int iomem_fs_init_fs_context(struct fs_context *fc)
1874{
1875	return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
1876}
1877
1878static struct file_system_type iomem_fs_type = {
1879	.name		= "iomem",
1880	.owner		= THIS_MODULE,
1881	.init_fs_context = iomem_fs_init_fs_context,
1882	.kill_sb	= kill_anon_super,
1883};
1884
1885static int __init iomem_init_inode(void)
1886{
1887	static struct vfsmount *iomem_vfs_mount;
1888	static int iomem_fs_cnt;
1889	struct inode *inode;
1890	int rc;
1891
1892	rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
1893	if (rc < 0) {
1894		pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
1895		return rc;
1896	}
1897
1898	inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
1899	if (IS_ERR(inode)) {
1900		rc = PTR_ERR(inode);
1901		pr_err("Cannot allocate inode for iomem: %d\n", rc);
1902		simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
1903		return rc;
1904	}
1905
1906	/*
1907	 * Publish iomem revocation inode initialized.
1908	 * Pairs with smp_load_acquire() in revoke_iomem().
1909	 */
1910	smp_store_release(&iomem_inode, inode);
1911
1912	return 0;
1913}
1914
1915fs_initcall(iomem_init_inode);
1916
1917__setup("iomem=", strict_iomem);