Loading...
1/*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34#include <linux/kprobes.h>
35#include <linux/hash.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/stddef.h>
39#include <linux/export.h>
40#include <linux/moduleloader.h>
41#include <linux/kallsyms.h>
42#include <linux/freezer.h>
43#include <linux/seq_file.h>
44#include <linux/debugfs.h>
45#include <linux/sysctl.h>
46#include <linux/kdebug.h>
47#include <linux/memory.h>
48#include <linux/ftrace.h>
49#include <linux/cpu.h>
50#include <linux/jump_label.h>
51
52#include <asm-generic/sections.h>
53#include <asm/cacheflush.h>
54#include <asm/errno.h>
55#include <asm/uaccess.h>
56
57#define KPROBE_HASH_BITS 6
58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61/*
62 * Some oddball architectures like 64bit powerpc have function descriptors
63 * so this must be overridable.
64 */
65#ifndef kprobe_lookup_name
66#define kprobe_lookup_name(name, addr) \
67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68#endif
69
70static int kprobes_initialized;
71static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74/* NOTE: change this value only with kprobe_mutex held */
75static bool kprobes_all_disarmed;
76
77/* This protects kprobe_table and optimizing_list */
78static DEFINE_MUTEX(kprobe_mutex);
79static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80static struct {
81 raw_spinlock_t lock ____cacheline_aligned_in_smp;
82} kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85{
86 return &(kretprobe_table_locks[hash].lock);
87}
88
89/*
90 * Normally, functions that we'd want to prohibit kprobes in, are marked
91 * __kprobes. But, there are cases where such functions already belong to
92 * a different section (__sched for preempt_schedule)
93 *
94 * For such cases, we now have a blacklist
95 */
96static struct kprobe_blackpoint kprobe_blacklist[] = {
97 {"preempt_schedule",},
98 {"native_get_debugreg",},
99 {"irq_entries_start",},
100 {"common_interrupt",},
101 {"mcount",}, /* mcount can be called from everywhere */
102 {NULL} /* Terminator */
103};
104
105#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106/*
107 * kprobe->ainsn.insn points to the copy of the instruction to be
108 * single-stepped. x86_64, POWER4 and above have no-exec support and
109 * stepping on the instruction on a vmalloced/kmalloced/data page
110 * is a recipe for disaster
111 */
112struct kprobe_insn_page {
113 struct list_head list;
114 kprobe_opcode_t *insns; /* Page of instruction slots */
115 int nused;
116 int ngarbage;
117 char slot_used[];
118};
119
120#define KPROBE_INSN_PAGE_SIZE(slots) \
121 (offsetof(struct kprobe_insn_page, slot_used) + \
122 (sizeof(char) * (slots)))
123
124struct kprobe_insn_cache {
125 struct list_head pages; /* list of kprobe_insn_page */
126 size_t insn_size; /* size of instruction slot */
127 int nr_garbage;
128};
129
130static int slots_per_page(struct kprobe_insn_cache *c)
131{
132 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
133}
134
135enum kprobe_slot_state {
136 SLOT_CLEAN = 0,
137 SLOT_DIRTY = 1,
138 SLOT_USED = 2,
139};
140
141static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */
142static struct kprobe_insn_cache kprobe_insn_slots = {
143 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
144 .insn_size = MAX_INSN_SIZE,
145 .nr_garbage = 0,
146};
147static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
148
149/**
150 * __get_insn_slot() - Find a slot on an executable page for an instruction.
151 * We allocate an executable page if there's no room on existing ones.
152 */
153static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
154{
155 struct kprobe_insn_page *kip;
156
157 retry:
158 list_for_each_entry(kip, &c->pages, list) {
159 if (kip->nused < slots_per_page(c)) {
160 int i;
161 for (i = 0; i < slots_per_page(c); i++) {
162 if (kip->slot_used[i] == SLOT_CLEAN) {
163 kip->slot_used[i] = SLOT_USED;
164 kip->nused++;
165 return kip->insns + (i * c->insn_size);
166 }
167 }
168 /* kip->nused is broken. Fix it. */
169 kip->nused = slots_per_page(c);
170 WARN_ON(1);
171 }
172 }
173
174 /* If there are any garbage slots, collect it and try again. */
175 if (c->nr_garbage && collect_garbage_slots(c) == 0)
176 goto retry;
177
178 /* All out of space. Need to allocate a new page. */
179 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
180 if (!kip)
181 return NULL;
182
183 /*
184 * Use module_alloc so this page is within +/- 2GB of where the
185 * kernel image and loaded module images reside. This is required
186 * so x86_64 can correctly handle the %rip-relative fixups.
187 */
188 kip->insns = module_alloc(PAGE_SIZE);
189 if (!kip->insns) {
190 kfree(kip);
191 return NULL;
192 }
193 INIT_LIST_HEAD(&kip->list);
194 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
195 kip->slot_used[0] = SLOT_USED;
196 kip->nused = 1;
197 kip->ngarbage = 0;
198 list_add(&kip->list, &c->pages);
199 return kip->insns;
200}
201
202
203kprobe_opcode_t __kprobes *get_insn_slot(void)
204{
205 kprobe_opcode_t *ret = NULL;
206
207 mutex_lock(&kprobe_insn_mutex);
208 ret = __get_insn_slot(&kprobe_insn_slots);
209 mutex_unlock(&kprobe_insn_mutex);
210
211 return ret;
212}
213
214/* Return 1 if all garbages are collected, otherwise 0. */
215static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
216{
217 kip->slot_used[idx] = SLOT_CLEAN;
218 kip->nused--;
219 if (kip->nused == 0) {
220 /*
221 * Page is no longer in use. Free it unless
222 * it's the last one. We keep the last one
223 * so as not to have to set it up again the
224 * next time somebody inserts a probe.
225 */
226 if (!list_is_singular(&kip->list)) {
227 list_del(&kip->list);
228 module_free(NULL, kip->insns);
229 kfree(kip);
230 }
231 return 1;
232 }
233 return 0;
234}
235
236static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
237{
238 struct kprobe_insn_page *kip, *next;
239
240 /* Ensure no-one is interrupted on the garbages */
241 synchronize_sched();
242
243 list_for_each_entry_safe(kip, next, &c->pages, list) {
244 int i;
245 if (kip->ngarbage == 0)
246 continue;
247 kip->ngarbage = 0; /* we will collect all garbages */
248 for (i = 0; i < slots_per_page(c); i++) {
249 if (kip->slot_used[i] == SLOT_DIRTY &&
250 collect_one_slot(kip, i))
251 break;
252 }
253 }
254 c->nr_garbage = 0;
255 return 0;
256}
257
258static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
259 kprobe_opcode_t *slot, int dirty)
260{
261 struct kprobe_insn_page *kip;
262
263 list_for_each_entry(kip, &c->pages, list) {
264 long idx = ((long)slot - (long)kip->insns) /
265 (c->insn_size * sizeof(kprobe_opcode_t));
266 if (idx >= 0 && idx < slots_per_page(c)) {
267 WARN_ON(kip->slot_used[idx] != SLOT_USED);
268 if (dirty) {
269 kip->slot_used[idx] = SLOT_DIRTY;
270 kip->ngarbage++;
271 if (++c->nr_garbage > slots_per_page(c))
272 collect_garbage_slots(c);
273 } else
274 collect_one_slot(kip, idx);
275 return;
276 }
277 }
278 /* Could not free this slot. */
279 WARN_ON(1);
280}
281
282void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
283{
284 mutex_lock(&kprobe_insn_mutex);
285 __free_insn_slot(&kprobe_insn_slots, slot, dirty);
286 mutex_unlock(&kprobe_insn_mutex);
287}
288#ifdef CONFIG_OPTPROBES
289/* For optimized_kprobe buffer */
290static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
291static struct kprobe_insn_cache kprobe_optinsn_slots = {
292 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
293 /* .insn_size is initialized later */
294 .nr_garbage = 0,
295};
296/* Get a slot for optimized_kprobe buffer */
297kprobe_opcode_t __kprobes *get_optinsn_slot(void)
298{
299 kprobe_opcode_t *ret = NULL;
300
301 mutex_lock(&kprobe_optinsn_mutex);
302 ret = __get_insn_slot(&kprobe_optinsn_slots);
303 mutex_unlock(&kprobe_optinsn_mutex);
304
305 return ret;
306}
307
308void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
309{
310 mutex_lock(&kprobe_optinsn_mutex);
311 __free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
312 mutex_unlock(&kprobe_optinsn_mutex);
313}
314#endif
315#endif
316
317/* We have preemption disabled.. so it is safe to use __ versions */
318static inline void set_kprobe_instance(struct kprobe *kp)
319{
320 __this_cpu_write(kprobe_instance, kp);
321}
322
323static inline void reset_kprobe_instance(void)
324{
325 __this_cpu_write(kprobe_instance, NULL);
326}
327
328/*
329 * This routine is called either:
330 * - under the kprobe_mutex - during kprobe_[un]register()
331 * OR
332 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
333 */
334struct kprobe __kprobes *get_kprobe(void *addr)
335{
336 struct hlist_head *head;
337 struct hlist_node *node;
338 struct kprobe *p;
339
340 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
341 hlist_for_each_entry_rcu(p, node, head, hlist) {
342 if (p->addr == addr)
343 return p;
344 }
345
346 return NULL;
347}
348
349static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
350
351/* Return true if the kprobe is an aggregator */
352static inline int kprobe_aggrprobe(struct kprobe *p)
353{
354 return p->pre_handler == aggr_pre_handler;
355}
356
357/* Return true(!0) if the kprobe is unused */
358static inline int kprobe_unused(struct kprobe *p)
359{
360 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
361 list_empty(&p->list);
362}
363
364/*
365 * Keep all fields in the kprobe consistent
366 */
367static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
368{
369 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
370 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
371}
372
373#ifdef CONFIG_OPTPROBES
374/* NOTE: change this value only with kprobe_mutex held */
375static bool kprobes_allow_optimization;
376
377/*
378 * Call all pre_handler on the list, but ignores its return value.
379 * This must be called from arch-dep optimized caller.
380 */
381void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
382{
383 struct kprobe *kp;
384
385 list_for_each_entry_rcu(kp, &p->list, list) {
386 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
387 set_kprobe_instance(kp);
388 kp->pre_handler(kp, regs);
389 }
390 reset_kprobe_instance();
391 }
392}
393
394/* Free optimized instructions and optimized_kprobe */
395static __kprobes void free_aggr_kprobe(struct kprobe *p)
396{
397 struct optimized_kprobe *op;
398
399 op = container_of(p, struct optimized_kprobe, kp);
400 arch_remove_optimized_kprobe(op);
401 arch_remove_kprobe(p);
402 kfree(op);
403}
404
405/* Return true(!0) if the kprobe is ready for optimization. */
406static inline int kprobe_optready(struct kprobe *p)
407{
408 struct optimized_kprobe *op;
409
410 if (kprobe_aggrprobe(p)) {
411 op = container_of(p, struct optimized_kprobe, kp);
412 return arch_prepared_optinsn(&op->optinsn);
413 }
414
415 return 0;
416}
417
418/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
419static inline int kprobe_disarmed(struct kprobe *p)
420{
421 struct optimized_kprobe *op;
422
423 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
424 if (!kprobe_aggrprobe(p))
425 return kprobe_disabled(p);
426
427 op = container_of(p, struct optimized_kprobe, kp);
428
429 return kprobe_disabled(p) && list_empty(&op->list);
430}
431
432/* Return true(!0) if the probe is queued on (un)optimizing lists */
433static int __kprobes kprobe_queued(struct kprobe *p)
434{
435 struct optimized_kprobe *op;
436
437 if (kprobe_aggrprobe(p)) {
438 op = container_of(p, struct optimized_kprobe, kp);
439 if (!list_empty(&op->list))
440 return 1;
441 }
442 return 0;
443}
444
445/*
446 * Return an optimized kprobe whose optimizing code replaces
447 * instructions including addr (exclude breakpoint).
448 */
449static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
450{
451 int i;
452 struct kprobe *p = NULL;
453 struct optimized_kprobe *op;
454
455 /* Don't check i == 0, since that is a breakpoint case. */
456 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
457 p = get_kprobe((void *)(addr - i));
458
459 if (p && kprobe_optready(p)) {
460 op = container_of(p, struct optimized_kprobe, kp);
461 if (arch_within_optimized_kprobe(op, addr))
462 return p;
463 }
464
465 return NULL;
466}
467
468/* Optimization staging list, protected by kprobe_mutex */
469static LIST_HEAD(optimizing_list);
470static LIST_HEAD(unoptimizing_list);
471
472static void kprobe_optimizer(struct work_struct *work);
473static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
474static DECLARE_COMPLETION(optimizer_comp);
475#define OPTIMIZE_DELAY 5
476
477/*
478 * Optimize (replace a breakpoint with a jump) kprobes listed on
479 * optimizing_list.
480 */
481static __kprobes void do_optimize_kprobes(void)
482{
483 /* Optimization never be done when disarmed */
484 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
485 list_empty(&optimizing_list))
486 return;
487
488 /*
489 * The optimization/unoptimization refers online_cpus via
490 * stop_machine() and cpu-hotplug modifies online_cpus.
491 * And same time, text_mutex will be held in cpu-hotplug and here.
492 * This combination can cause a deadlock (cpu-hotplug try to lock
493 * text_mutex but stop_machine can not be done because online_cpus
494 * has been changed)
495 * To avoid this deadlock, we need to call get_online_cpus()
496 * for preventing cpu-hotplug outside of text_mutex locking.
497 */
498 get_online_cpus();
499 mutex_lock(&text_mutex);
500 arch_optimize_kprobes(&optimizing_list);
501 mutex_unlock(&text_mutex);
502 put_online_cpus();
503}
504
505/*
506 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
507 * if need) kprobes listed on unoptimizing_list.
508 */
509static __kprobes void do_unoptimize_kprobes(struct list_head *free_list)
510{
511 struct optimized_kprobe *op, *tmp;
512
513 /* Unoptimization must be done anytime */
514 if (list_empty(&unoptimizing_list))
515 return;
516
517 /* Ditto to do_optimize_kprobes */
518 get_online_cpus();
519 mutex_lock(&text_mutex);
520 arch_unoptimize_kprobes(&unoptimizing_list, free_list);
521 /* Loop free_list for disarming */
522 list_for_each_entry_safe(op, tmp, free_list, list) {
523 /* Disarm probes if marked disabled */
524 if (kprobe_disabled(&op->kp))
525 arch_disarm_kprobe(&op->kp);
526 if (kprobe_unused(&op->kp)) {
527 /*
528 * Remove unused probes from hash list. After waiting
529 * for synchronization, these probes are reclaimed.
530 * (reclaiming is done by do_free_cleaned_kprobes.)
531 */
532 hlist_del_rcu(&op->kp.hlist);
533 } else
534 list_del_init(&op->list);
535 }
536 mutex_unlock(&text_mutex);
537 put_online_cpus();
538}
539
540/* Reclaim all kprobes on the free_list */
541static __kprobes void do_free_cleaned_kprobes(struct list_head *free_list)
542{
543 struct optimized_kprobe *op, *tmp;
544
545 list_for_each_entry_safe(op, tmp, free_list, list) {
546 BUG_ON(!kprobe_unused(&op->kp));
547 list_del_init(&op->list);
548 free_aggr_kprobe(&op->kp);
549 }
550}
551
552/* Start optimizer after OPTIMIZE_DELAY passed */
553static __kprobes void kick_kprobe_optimizer(void)
554{
555 if (!delayed_work_pending(&optimizing_work))
556 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
557}
558
559/* Kprobe jump optimizer */
560static __kprobes void kprobe_optimizer(struct work_struct *work)
561{
562 LIST_HEAD(free_list);
563
564 /* Lock modules while optimizing kprobes */
565 mutex_lock(&module_mutex);
566 mutex_lock(&kprobe_mutex);
567
568 /*
569 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
570 * kprobes before waiting for quiesence period.
571 */
572 do_unoptimize_kprobes(&free_list);
573
574 /*
575 * Step 2: Wait for quiesence period to ensure all running interrupts
576 * are done. Because optprobe may modify multiple instructions
577 * there is a chance that Nth instruction is interrupted. In that
578 * case, running interrupt can return to 2nd-Nth byte of jump
579 * instruction. This wait is for avoiding it.
580 */
581 synchronize_sched();
582
583 /* Step 3: Optimize kprobes after quiesence period */
584 do_optimize_kprobes();
585
586 /* Step 4: Free cleaned kprobes after quiesence period */
587 do_free_cleaned_kprobes(&free_list);
588
589 mutex_unlock(&kprobe_mutex);
590 mutex_unlock(&module_mutex);
591
592 /* Step 5: Kick optimizer again if needed */
593 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
594 kick_kprobe_optimizer();
595 else
596 /* Wake up all waiters */
597 complete_all(&optimizer_comp);
598}
599
600/* Wait for completing optimization and unoptimization */
601static __kprobes void wait_for_kprobe_optimizer(void)
602{
603 if (delayed_work_pending(&optimizing_work))
604 wait_for_completion(&optimizer_comp);
605}
606
607/* Optimize kprobe if p is ready to be optimized */
608static __kprobes void optimize_kprobe(struct kprobe *p)
609{
610 struct optimized_kprobe *op;
611
612 /* Check if the kprobe is disabled or not ready for optimization. */
613 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
614 (kprobe_disabled(p) || kprobes_all_disarmed))
615 return;
616
617 /* Both of break_handler and post_handler are not supported. */
618 if (p->break_handler || p->post_handler)
619 return;
620
621 op = container_of(p, struct optimized_kprobe, kp);
622
623 /* Check there is no other kprobes at the optimized instructions */
624 if (arch_check_optimized_kprobe(op) < 0)
625 return;
626
627 /* Check if it is already optimized. */
628 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
629 return;
630 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
631
632 if (!list_empty(&op->list))
633 /* This is under unoptimizing. Just dequeue the probe */
634 list_del_init(&op->list);
635 else {
636 list_add(&op->list, &optimizing_list);
637 kick_kprobe_optimizer();
638 }
639}
640
641/* Short cut to direct unoptimizing */
642static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
643{
644 get_online_cpus();
645 arch_unoptimize_kprobe(op);
646 put_online_cpus();
647 if (kprobe_disabled(&op->kp))
648 arch_disarm_kprobe(&op->kp);
649}
650
651/* Unoptimize a kprobe if p is optimized */
652static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
653{
654 struct optimized_kprobe *op;
655
656 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
657 return; /* This is not an optprobe nor optimized */
658
659 op = container_of(p, struct optimized_kprobe, kp);
660 if (!kprobe_optimized(p)) {
661 /* Unoptimized or unoptimizing case */
662 if (force && !list_empty(&op->list)) {
663 /*
664 * Only if this is unoptimizing kprobe and forced,
665 * forcibly unoptimize it. (No need to unoptimize
666 * unoptimized kprobe again :)
667 */
668 list_del_init(&op->list);
669 force_unoptimize_kprobe(op);
670 }
671 return;
672 }
673
674 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
675 if (!list_empty(&op->list)) {
676 /* Dequeue from the optimization queue */
677 list_del_init(&op->list);
678 return;
679 }
680 /* Optimized kprobe case */
681 if (force)
682 /* Forcibly update the code: this is a special case */
683 force_unoptimize_kprobe(op);
684 else {
685 list_add(&op->list, &unoptimizing_list);
686 kick_kprobe_optimizer();
687 }
688}
689
690/* Cancel unoptimizing for reusing */
691static void reuse_unused_kprobe(struct kprobe *ap)
692{
693 struct optimized_kprobe *op;
694
695 BUG_ON(!kprobe_unused(ap));
696 /*
697 * Unused kprobe MUST be on the way of delayed unoptimizing (means
698 * there is still a relative jump) and disabled.
699 */
700 op = container_of(ap, struct optimized_kprobe, kp);
701 if (unlikely(list_empty(&op->list)))
702 printk(KERN_WARNING "Warning: found a stray unused "
703 "aggrprobe@%p\n", ap->addr);
704 /* Enable the probe again */
705 ap->flags &= ~KPROBE_FLAG_DISABLED;
706 /* Optimize it again (remove from op->list) */
707 BUG_ON(!kprobe_optready(ap));
708 optimize_kprobe(ap);
709}
710
711/* Remove optimized instructions */
712static void __kprobes kill_optimized_kprobe(struct kprobe *p)
713{
714 struct optimized_kprobe *op;
715
716 op = container_of(p, struct optimized_kprobe, kp);
717 if (!list_empty(&op->list))
718 /* Dequeue from the (un)optimization queue */
719 list_del_init(&op->list);
720
721 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
722 /* Don't touch the code, because it is already freed. */
723 arch_remove_optimized_kprobe(op);
724}
725
726/* Try to prepare optimized instructions */
727static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
728{
729 struct optimized_kprobe *op;
730
731 op = container_of(p, struct optimized_kprobe, kp);
732 arch_prepare_optimized_kprobe(op);
733}
734
735/* Allocate new optimized_kprobe and try to prepare optimized instructions */
736static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
737{
738 struct optimized_kprobe *op;
739
740 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
741 if (!op)
742 return NULL;
743
744 INIT_LIST_HEAD(&op->list);
745 op->kp.addr = p->addr;
746 arch_prepare_optimized_kprobe(op);
747
748 return &op->kp;
749}
750
751static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
752
753/*
754 * Prepare an optimized_kprobe and optimize it
755 * NOTE: p must be a normal registered kprobe
756 */
757static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
758{
759 struct kprobe *ap;
760 struct optimized_kprobe *op;
761
762 ap = alloc_aggr_kprobe(p);
763 if (!ap)
764 return;
765
766 op = container_of(ap, struct optimized_kprobe, kp);
767 if (!arch_prepared_optinsn(&op->optinsn)) {
768 /* If failed to setup optimizing, fallback to kprobe */
769 arch_remove_optimized_kprobe(op);
770 kfree(op);
771 return;
772 }
773
774 init_aggr_kprobe(ap, p);
775 optimize_kprobe(ap);
776}
777
778#ifdef CONFIG_SYSCTL
779/* This should be called with kprobe_mutex locked */
780static void __kprobes optimize_all_kprobes(void)
781{
782 struct hlist_head *head;
783 struct hlist_node *node;
784 struct kprobe *p;
785 unsigned int i;
786
787 /* If optimization is already allowed, just return */
788 if (kprobes_allow_optimization)
789 return;
790
791 kprobes_allow_optimization = true;
792 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
793 head = &kprobe_table[i];
794 hlist_for_each_entry_rcu(p, node, head, hlist)
795 if (!kprobe_disabled(p))
796 optimize_kprobe(p);
797 }
798 printk(KERN_INFO "Kprobes globally optimized\n");
799}
800
801/* This should be called with kprobe_mutex locked */
802static void __kprobes unoptimize_all_kprobes(void)
803{
804 struct hlist_head *head;
805 struct hlist_node *node;
806 struct kprobe *p;
807 unsigned int i;
808
809 /* If optimization is already prohibited, just return */
810 if (!kprobes_allow_optimization)
811 return;
812
813 kprobes_allow_optimization = false;
814 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
815 head = &kprobe_table[i];
816 hlist_for_each_entry_rcu(p, node, head, hlist) {
817 if (!kprobe_disabled(p))
818 unoptimize_kprobe(p, false);
819 }
820 }
821 /* Wait for unoptimizing completion */
822 wait_for_kprobe_optimizer();
823 printk(KERN_INFO "Kprobes globally unoptimized\n");
824}
825
826int sysctl_kprobes_optimization;
827int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
828 void __user *buffer, size_t *length,
829 loff_t *ppos)
830{
831 int ret;
832
833 mutex_lock(&kprobe_mutex);
834 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
835 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
836
837 if (sysctl_kprobes_optimization)
838 optimize_all_kprobes();
839 else
840 unoptimize_all_kprobes();
841 mutex_unlock(&kprobe_mutex);
842
843 return ret;
844}
845#endif /* CONFIG_SYSCTL */
846
847/* Put a breakpoint for a probe. Must be called with text_mutex locked */
848static void __kprobes __arm_kprobe(struct kprobe *p)
849{
850 struct kprobe *_p;
851
852 /* Check collision with other optimized kprobes */
853 _p = get_optimized_kprobe((unsigned long)p->addr);
854 if (unlikely(_p))
855 /* Fallback to unoptimized kprobe */
856 unoptimize_kprobe(_p, true);
857
858 arch_arm_kprobe(p);
859 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
860}
861
862/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
863static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
864{
865 struct kprobe *_p;
866
867 unoptimize_kprobe(p, false); /* Try to unoptimize */
868
869 if (!kprobe_queued(p)) {
870 arch_disarm_kprobe(p);
871 /* If another kprobe was blocked, optimize it. */
872 _p = get_optimized_kprobe((unsigned long)p->addr);
873 if (unlikely(_p) && reopt)
874 optimize_kprobe(_p);
875 }
876 /* TODO: reoptimize others after unoptimized this probe */
877}
878
879#else /* !CONFIG_OPTPROBES */
880
881#define optimize_kprobe(p) do {} while (0)
882#define unoptimize_kprobe(p, f) do {} while (0)
883#define kill_optimized_kprobe(p) do {} while (0)
884#define prepare_optimized_kprobe(p) do {} while (0)
885#define try_to_optimize_kprobe(p) do {} while (0)
886#define __arm_kprobe(p) arch_arm_kprobe(p)
887#define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
888#define kprobe_disarmed(p) kprobe_disabled(p)
889#define wait_for_kprobe_optimizer() do {} while (0)
890
891/* There should be no unused kprobes can be reused without optimization */
892static void reuse_unused_kprobe(struct kprobe *ap)
893{
894 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
895 BUG_ON(kprobe_unused(ap));
896}
897
898static __kprobes void free_aggr_kprobe(struct kprobe *p)
899{
900 arch_remove_kprobe(p);
901 kfree(p);
902}
903
904static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
905{
906 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
907}
908#endif /* CONFIG_OPTPROBES */
909
910/* Arm a kprobe with text_mutex */
911static void __kprobes arm_kprobe(struct kprobe *kp)
912{
913 /*
914 * Here, since __arm_kprobe() doesn't use stop_machine(),
915 * this doesn't cause deadlock on text_mutex. So, we don't
916 * need get_online_cpus().
917 */
918 mutex_lock(&text_mutex);
919 __arm_kprobe(kp);
920 mutex_unlock(&text_mutex);
921}
922
923/* Disarm a kprobe with text_mutex */
924static void __kprobes disarm_kprobe(struct kprobe *kp)
925{
926 /* Ditto */
927 mutex_lock(&text_mutex);
928 __disarm_kprobe(kp, true);
929 mutex_unlock(&text_mutex);
930}
931
932/*
933 * Aggregate handlers for multiple kprobes support - these handlers
934 * take care of invoking the individual kprobe handlers on p->list
935 */
936static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
937{
938 struct kprobe *kp;
939
940 list_for_each_entry_rcu(kp, &p->list, list) {
941 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
942 set_kprobe_instance(kp);
943 if (kp->pre_handler(kp, regs))
944 return 1;
945 }
946 reset_kprobe_instance();
947 }
948 return 0;
949}
950
951static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
952 unsigned long flags)
953{
954 struct kprobe *kp;
955
956 list_for_each_entry_rcu(kp, &p->list, list) {
957 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
958 set_kprobe_instance(kp);
959 kp->post_handler(kp, regs, flags);
960 reset_kprobe_instance();
961 }
962 }
963}
964
965static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
966 int trapnr)
967{
968 struct kprobe *cur = __this_cpu_read(kprobe_instance);
969
970 /*
971 * if we faulted "during" the execution of a user specified
972 * probe handler, invoke just that probe's fault handler
973 */
974 if (cur && cur->fault_handler) {
975 if (cur->fault_handler(cur, regs, trapnr))
976 return 1;
977 }
978 return 0;
979}
980
981static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
982{
983 struct kprobe *cur = __this_cpu_read(kprobe_instance);
984 int ret = 0;
985
986 if (cur && cur->break_handler) {
987 if (cur->break_handler(cur, regs))
988 ret = 1;
989 }
990 reset_kprobe_instance();
991 return ret;
992}
993
994/* Walks the list and increments nmissed count for multiprobe case */
995void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
996{
997 struct kprobe *kp;
998 if (!kprobe_aggrprobe(p)) {
999 p->nmissed++;
1000 } else {
1001 list_for_each_entry_rcu(kp, &p->list, list)
1002 kp->nmissed++;
1003 }
1004 return;
1005}
1006
1007void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1008 struct hlist_head *head)
1009{
1010 struct kretprobe *rp = ri->rp;
1011
1012 /* remove rp inst off the rprobe_inst_table */
1013 hlist_del(&ri->hlist);
1014 INIT_HLIST_NODE(&ri->hlist);
1015 if (likely(rp)) {
1016 raw_spin_lock(&rp->lock);
1017 hlist_add_head(&ri->hlist, &rp->free_instances);
1018 raw_spin_unlock(&rp->lock);
1019 } else
1020 /* Unregistering */
1021 hlist_add_head(&ri->hlist, head);
1022}
1023
1024void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1025 struct hlist_head **head, unsigned long *flags)
1026__acquires(hlist_lock)
1027{
1028 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1029 raw_spinlock_t *hlist_lock;
1030
1031 *head = &kretprobe_inst_table[hash];
1032 hlist_lock = kretprobe_table_lock_ptr(hash);
1033 raw_spin_lock_irqsave(hlist_lock, *flags);
1034}
1035
1036static void __kprobes kretprobe_table_lock(unsigned long hash,
1037 unsigned long *flags)
1038__acquires(hlist_lock)
1039{
1040 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1041 raw_spin_lock_irqsave(hlist_lock, *flags);
1042}
1043
1044void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1045 unsigned long *flags)
1046__releases(hlist_lock)
1047{
1048 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1049 raw_spinlock_t *hlist_lock;
1050
1051 hlist_lock = kretprobe_table_lock_ptr(hash);
1052 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1053}
1054
1055static void __kprobes kretprobe_table_unlock(unsigned long hash,
1056 unsigned long *flags)
1057__releases(hlist_lock)
1058{
1059 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1060 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1061}
1062
1063/*
1064 * This function is called from finish_task_switch when task tk becomes dead,
1065 * so that we can recycle any function-return probe instances associated
1066 * with this task. These left over instances represent probed functions
1067 * that have been called but will never return.
1068 */
1069void __kprobes kprobe_flush_task(struct task_struct *tk)
1070{
1071 struct kretprobe_instance *ri;
1072 struct hlist_head *head, empty_rp;
1073 struct hlist_node *node, *tmp;
1074 unsigned long hash, flags = 0;
1075
1076 if (unlikely(!kprobes_initialized))
1077 /* Early boot. kretprobe_table_locks not yet initialized. */
1078 return;
1079
1080 INIT_HLIST_HEAD(&empty_rp);
1081 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1082 head = &kretprobe_inst_table[hash];
1083 kretprobe_table_lock(hash, &flags);
1084 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
1085 if (ri->task == tk)
1086 recycle_rp_inst(ri, &empty_rp);
1087 }
1088 kretprobe_table_unlock(hash, &flags);
1089 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
1090 hlist_del(&ri->hlist);
1091 kfree(ri);
1092 }
1093}
1094
1095static inline void free_rp_inst(struct kretprobe *rp)
1096{
1097 struct kretprobe_instance *ri;
1098 struct hlist_node *pos, *next;
1099
1100 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
1101 hlist_del(&ri->hlist);
1102 kfree(ri);
1103 }
1104}
1105
1106static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1107{
1108 unsigned long flags, hash;
1109 struct kretprobe_instance *ri;
1110 struct hlist_node *pos, *next;
1111 struct hlist_head *head;
1112
1113 /* No race here */
1114 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1115 kretprobe_table_lock(hash, &flags);
1116 head = &kretprobe_inst_table[hash];
1117 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
1118 if (ri->rp == rp)
1119 ri->rp = NULL;
1120 }
1121 kretprobe_table_unlock(hash, &flags);
1122 }
1123 free_rp_inst(rp);
1124}
1125
1126/*
1127* Add the new probe to ap->list. Fail if this is the
1128* second jprobe at the address - two jprobes can't coexist
1129*/
1130static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1131{
1132 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1133
1134 if (p->break_handler || p->post_handler)
1135 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1136
1137 if (p->break_handler) {
1138 if (ap->break_handler)
1139 return -EEXIST;
1140 list_add_tail_rcu(&p->list, &ap->list);
1141 ap->break_handler = aggr_break_handler;
1142 } else
1143 list_add_rcu(&p->list, &ap->list);
1144 if (p->post_handler && !ap->post_handler)
1145 ap->post_handler = aggr_post_handler;
1146
1147 if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
1148 ap->flags &= ~KPROBE_FLAG_DISABLED;
1149 if (!kprobes_all_disarmed)
1150 /* Arm the breakpoint again. */
1151 __arm_kprobe(ap);
1152 }
1153 return 0;
1154}
1155
1156/*
1157 * Fill in the required fields of the "manager kprobe". Replace the
1158 * earlier kprobe in the hlist with the manager kprobe
1159 */
1160static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1161{
1162 /* Copy p's insn slot to ap */
1163 copy_kprobe(p, ap);
1164 flush_insn_slot(ap);
1165 ap->addr = p->addr;
1166 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1167 ap->pre_handler = aggr_pre_handler;
1168 ap->fault_handler = aggr_fault_handler;
1169 /* We don't care the kprobe which has gone. */
1170 if (p->post_handler && !kprobe_gone(p))
1171 ap->post_handler = aggr_post_handler;
1172 if (p->break_handler && !kprobe_gone(p))
1173 ap->break_handler = aggr_break_handler;
1174
1175 INIT_LIST_HEAD(&ap->list);
1176 INIT_HLIST_NODE(&ap->hlist);
1177
1178 list_add_rcu(&p->list, &ap->list);
1179 hlist_replace_rcu(&p->hlist, &ap->hlist);
1180}
1181
1182/*
1183 * This is the second or subsequent kprobe at the address - handle
1184 * the intricacies
1185 */
1186static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1187 struct kprobe *p)
1188{
1189 int ret = 0;
1190 struct kprobe *ap = orig_p;
1191
1192 if (!kprobe_aggrprobe(orig_p)) {
1193 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1194 ap = alloc_aggr_kprobe(orig_p);
1195 if (!ap)
1196 return -ENOMEM;
1197 init_aggr_kprobe(ap, orig_p);
1198 } else if (kprobe_unused(ap))
1199 /* This probe is going to die. Rescue it */
1200 reuse_unused_kprobe(ap);
1201
1202 if (kprobe_gone(ap)) {
1203 /*
1204 * Attempting to insert new probe at the same location that
1205 * had a probe in the module vaddr area which already
1206 * freed. So, the instruction slot has already been
1207 * released. We need a new slot for the new probe.
1208 */
1209 ret = arch_prepare_kprobe(ap);
1210 if (ret)
1211 /*
1212 * Even if fail to allocate new slot, don't need to
1213 * free aggr_probe. It will be used next time, or
1214 * freed by unregister_kprobe.
1215 */
1216 return ret;
1217
1218 /* Prepare optimized instructions if possible. */
1219 prepare_optimized_kprobe(ap);
1220
1221 /*
1222 * Clear gone flag to prevent allocating new slot again, and
1223 * set disabled flag because it is not armed yet.
1224 */
1225 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1226 | KPROBE_FLAG_DISABLED;
1227 }
1228
1229 /* Copy ap's insn slot to p */
1230 copy_kprobe(ap, p);
1231 return add_new_kprobe(ap, p);
1232}
1233
1234static int __kprobes in_kprobes_functions(unsigned long addr)
1235{
1236 struct kprobe_blackpoint *kb;
1237
1238 if (addr >= (unsigned long)__kprobes_text_start &&
1239 addr < (unsigned long)__kprobes_text_end)
1240 return -EINVAL;
1241 /*
1242 * If there exists a kprobe_blacklist, verify and
1243 * fail any probe registration in the prohibited area
1244 */
1245 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1246 if (kb->start_addr) {
1247 if (addr >= kb->start_addr &&
1248 addr < (kb->start_addr + kb->range))
1249 return -EINVAL;
1250 }
1251 }
1252 return 0;
1253}
1254
1255/*
1256 * If we have a symbol_name argument, look it up and add the offset field
1257 * to it. This way, we can specify a relative address to a symbol.
1258 * This returns encoded errors if it fails to look up symbol or invalid
1259 * combination of parameters.
1260 */
1261static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1262{
1263 kprobe_opcode_t *addr = p->addr;
1264
1265 if ((p->symbol_name && p->addr) ||
1266 (!p->symbol_name && !p->addr))
1267 goto invalid;
1268
1269 if (p->symbol_name) {
1270 kprobe_lookup_name(p->symbol_name, addr);
1271 if (!addr)
1272 return ERR_PTR(-ENOENT);
1273 }
1274
1275 addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1276 if (addr)
1277 return addr;
1278
1279invalid:
1280 return ERR_PTR(-EINVAL);
1281}
1282
1283/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1284static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1285{
1286 struct kprobe *ap, *list_p;
1287
1288 ap = get_kprobe(p->addr);
1289 if (unlikely(!ap))
1290 return NULL;
1291
1292 if (p != ap) {
1293 list_for_each_entry_rcu(list_p, &ap->list, list)
1294 if (list_p == p)
1295 /* kprobe p is a valid probe */
1296 goto valid;
1297 return NULL;
1298 }
1299valid:
1300 return ap;
1301}
1302
1303/* Return error if the kprobe is being re-registered */
1304static inline int check_kprobe_rereg(struct kprobe *p)
1305{
1306 int ret = 0;
1307
1308 mutex_lock(&kprobe_mutex);
1309 if (__get_valid_kprobe(p))
1310 ret = -EINVAL;
1311 mutex_unlock(&kprobe_mutex);
1312
1313 return ret;
1314}
1315
1316int __kprobes register_kprobe(struct kprobe *p)
1317{
1318 int ret = 0;
1319 struct kprobe *old_p;
1320 struct module *probed_mod;
1321 kprobe_opcode_t *addr;
1322
1323 addr = kprobe_addr(p);
1324 if (IS_ERR(addr))
1325 return PTR_ERR(addr);
1326 p->addr = addr;
1327
1328 ret = check_kprobe_rereg(p);
1329 if (ret)
1330 return ret;
1331
1332 jump_label_lock();
1333 preempt_disable();
1334 if (!kernel_text_address((unsigned long) p->addr) ||
1335 in_kprobes_functions((unsigned long) p->addr) ||
1336 ftrace_text_reserved(p->addr, p->addr) ||
1337 jump_label_text_reserved(p->addr, p->addr)) {
1338 ret = -EINVAL;
1339 goto cannot_probe;
1340 }
1341
1342 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1343 p->flags &= KPROBE_FLAG_DISABLED;
1344
1345 /*
1346 * Check if are we probing a module.
1347 */
1348 probed_mod = __module_text_address((unsigned long) p->addr);
1349 if (probed_mod) {
1350 /* Return -ENOENT if fail. */
1351 ret = -ENOENT;
1352 /*
1353 * We must hold a refcount of the probed module while updating
1354 * its code to prohibit unexpected unloading.
1355 */
1356 if (unlikely(!try_module_get(probed_mod)))
1357 goto cannot_probe;
1358
1359 /*
1360 * If the module freed .init.text, we couldn't insert
1361 * kprobes in there.
1362 */
1363 if (within_module_init((unsigned long)p->addr, probed_mod) &&
1364 probed_mod->state != MODULE_STATE_COMING) {
1365 module_put(probed_mod);
1366 goto cannot_probe;
1367 }
1368 /* ret will be updated by following code */
1369 }
1370 preempt_enable();
1371 jump_label_unlock();
1372
1373 p->nmissed = 0;
1374 INIT_LIST_HEAD(&p->list);
1375 mutex_lock(&kprobe_mutex);
1376
1377 jump_label_lock(); /* needed to call jump_label_text_reserved() */
1378
1379 get_online_cpus(); /* For avoiding text_mutex deadlock. */
1380 mutex_lock(&text_mutex);
1381
1382 old_p = get_kprobe(p->addr);
1383 if (old_p) {
1384 /* Since this may unoptimize old_p, locking text_mutex. */
1385 ret = register_aggr_kprobe(old_p, p);
1386 goto out;
1387 }
1388
1389 ret = arch_prepare_kprobe(p);
1390 if (ret)
1391 goto out;
1392
1393 INIT_HLIST_NODE(&p->hlist);
1394 hlist_add_head_rcu(&p->hlist,
1395 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1396
1397 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1398 __arm_kprobe(p);
1399
1400 /* Try to optimize kprobe */
1401 try_to_optimize_kprobe(p);
1402
1403out:
1404 mutex_unlock(&text_mutex);
1405 put_online_cpus();
1406 jump_label_unlock();
1407 mutex_unlock(&kprobe_mutex);
1408
1409 if (probed_mod)
1410 module_put(probed_mod);
1411
1412 return ret;
1413
1414cannot_probe:
1415 preempt_enable();
1416 jump_label_unlock();
1417 return ret;
1418}
1419EXPORT_SYMBOL_GPL(register_kprobe);
1420
1421/* Check if all probes on the aggrprobe are disabled */
1422static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1423{
1424 struct kprobe *kp;
1425
1426 list_for_each_entry_rcu(kp, &ap->list, list)
1427 if (!kprobe_disabled(kp))
1428 /*
1429 * There is an active probe on the list.
1430 * We can't disable this ap.
1431 */
1432 return 0;
1433
1434 return 1;
1435}
1436
1437/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1438static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1439{
1440 struct kprobe *orig_p;
1441
1442 /* Get an original kprobe for return */
1443 orig_p = __get_valid_kprobe(p);
1444 if (unlikely(orig_p == NULL))
1445 return NULL;
1446
1447 if (!kprobe_disabled(p)) {
1448 /* Disable probe if it is a child probe */
1449 if (p != orig_p)
1450 p->flags |= KPROBE_FLAG_DISABLED;
1451
1452 /* Try to disarm and disable this/parent probe */
1453 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1454 disarm_kprobe(orig_p);
1455 orig_p->flags |= KPROBE_FLAG_DISABLED;
1456 }
1457 }
1458
1459 return orig_p;
1460}
1461
1462/*
1463 * Unregister a kprobe without a scheduler synchronization.
1464 */
1465static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1466{
1467 struct kprobe *ap, *list_p;
1468
1469 /* Disable kprobe. This will disarm it if needed. */
1470 ap = __disable_kprobe(p);
1471 if (ap == NULL)
1472 return -EINVAL;
1473
1474 if (ap == p)
1475 /*
1476 * This probe is an independent(and non-optimized) kprobe
1477 * (not an aggrprobe). Remove from the hash list.
1478 */
1479 goto disarmed;
1480
1481 /* Following process expects this probe is an aggrprobe */
1482 WARN_ON(!kprobe_aggrprobe(ap));
1483
1484 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1485 /*
1486 * !disarmed could be happen if the probe is under delayed
1487 * unoptimizing.
1488 */
1489 goto disarmed;
1490 else {
1491 /* If disabling probe has special handlers, update aggrprobe */
1492 if (p->break_handler && !kprobe_gone(p))
1493 ap->break_handler = NULL;
1494 if (p->post_handler && !kprobe_gone(p)) {
1495 list_for_each_entry_rcu(list_p, &ap->list, list) {
1496 if ((list_p != p) && (list_p->post_handler))
1497 goto noclean;
1498 }
1499 ap->post_handler = NULL;
1500 }
1501noclean:
1502 /*
1503 * Remove from the aggrprobe: this path will do nothing in
1504 * __unregister_kprobe_bottom().
1505 */
1506 list_del_rcu(&p->list);
1507 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1508 /*
1509 * Try to optimize this probe again, because post
1510 * handler may have been changed.
1511 */
1512 optimize_kprobe(ap);
1513 }
1514 return 0;
1515
1516disarmed:
1517 BUG_ON(!kprobe_disarmed(ap));
1518 hlist_del_rcu(&ap->hlist);
1519 return 0;
1520}
1521
1522static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1523{
1524 struct kprobe *ap;
1525
1526 if (list_empty(&p->list))
1527 /* This is an independent kprobe */
1528 arch_remove_kprobe(p);
1529 else if (list_is_singular(&p->list)) {
1530 /* This is the last child of an aggrprobe */
1531 ap = list_entry(p->list.next, struct kprobe, list);
1532 list_del(&p->list);
1533 free_aggr_kprobe(ap);
1534 }
1535 /* Otherwise, do nothing. */
1536}
1537
1538int __kprobes register_kprobes(struct kprobe **kps, int num)
1539{
1540 int i, ret = 0;
1541
1542 if (num <= 0)
1543 return -EINVAL;
1544 for (i = 0; i < num; i++) {
1545 ret = register_kprobe(kps[i]);
1546 if (ret < 0) {
1547 if (i > 0)
1548 unregister_kprobes(kps, i);
1549 break;
1550 }
1551 }
1552 return ret;
1553}
1554EXPORT_SYMBOL_GPL(register_kprobes);
1555
1556void __kprobes unregister_kprobe(struct kprobe *p)
1557{
1558 unregister_kprobes(&p, 1);
1559}
1560EXPORT_SYMBOL_GPL(unregister_kprobe);
1561
1562void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1563{
1564 int i;
1565
1566 if (num <= 0)
1567 return;
1568 mutex_lock(&kprobe_mutex);
1569 for (i = 0; i < num; i++)
1570 if (__unregister_kprobe_top(kps[i]) < 0)
1571 kps[i]->addr = NULL;
1572 mutex_unlock(&kprobe_mutex);
1573
1574 synchronize_sched();
1575 for (i = 0; i < num; i++)
1576 if (kps[i]->addr)
1577 __unregister_kprobe_bottom(kps[i]);
1578}
1579EXPORT_SYMBOL_GPL(unregister_kprobes);
1580
1581static struct notifier_block kprobe_exceptions_nb = {
1582 .notifier_call = kprobe_exceptions_notify,
1583 .priority = 0x7fffffff /* we need to be notified first */
1584};
1585
1586unsigned long __weak arch_deref_entry_point(void *entry)
1587{
1588 return (unsigned long)entry;
1589}
1590
1591int __kprobes register_jprobes(struct jprobe **jps, int num)
1592{
1593 struct jprobe *jp;
1594 int ret = 0, i;
1595
1596 if (num <= 0)
1597 return -EINVAL;
1598 for (i = 0; i < num; i++) {
1599 unsigned long addr, offset;
1600 jp = jps[i];
1601 addr = arch_deref_entry_point(jp->entry);
1602
1603 /* Verify probepoint is a function entry point */
1604 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1605 offset == 0) {
1606 jp->kp.pre_handler = setjmp_pre_handler;
1607 jp->kp.break_handler = longjmp_break_handler;
1608 ret = register_kprobe(&jp->kp);
1609 } else
1610 ret = -EINVAL;
1611
1612 if (ret < 0) {
1613 if (i > 0)
1614 unregister_jprobes(jps, i);
1615 break;
1616 }
1617 }
1618 return ret;
1619}
1620EXPORT_SYMBOL_GPL(register_jprobes);
1621
1622int __kprobes register_jprobe(struct jprobe *jp)
1623{
1624 return register_jprobes(&jp, 1);
1625}
1626EXPORT_SYMBOL_GPL(register_jprobe);
1627
1628void __kprobes unregister_jprobe(struct jprobe *jp)
1629{
1630 unregister_jprobes(&jp, 1);
1631}
1632EXPORT_SYMBOL_GPL(unregister_jprobe);
1633
1634void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1635{
1636 int i;
1637
1638 if (num <= 0)
1639 return;
1640 mutex_lock(&kprobe_mutex);
1641 for (i = 0; i < num; i++)
1642 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1643 jps[i]->kp.addr = NULL;
1644 mutex_unlock(&kprobe_mutex);
1645
1646 synchronize_sched();
1647 for (i = 0; i < num; i++) {
1648 if (jps[i]->kp.addr)
1649 __unregister_kprobe_bottom(&jps[i]->kp);
1650 }
1651}
1652EXPORT_SYMBOL_GPL(unregister_jprobes);
1653
1654#ifdef CONFIG_KRETPROBES
1655/*
1656 * This kprobe pre_handler is registered with every kretprobe. When probe
1657 * hits it will set up the return probe.
1658 */
1659static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1660 struct pt_regs *regs)
1661{
1662 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1663 unsigned long hash, flags = 0;
1664 struct kretprobe_instance *ri;
1665
1666 /*TODO: consider to only swap the RA after the last pre_handler fired */
1667 hash = hash_ptr(current, KPROBE_HASH_BITS);
1668 raw_spin_lock_irqsave(&rp->lock, flags);
1669 if (!hlist_empty(&rp->free_instances)) {
1670 ri = hlist_entry(rp->free_instances.first,
1671 struct kretprobe_instance, hlist);
1672 hlist_del(&ri->hlist);
1673 raw_spin_unlock_irqrestore(&rp->lock, flags);
1674
1675 ri->rp = rp;
1676 ri->task = current;
1677
1678 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1679 raw_spin_lock_irqsave(&rp->lock, flags);
1680 hlist_add_head(&ri->hlist, &rp->free_instances);
1681 raw_spin_unlock_irqrestore(&rp->lock, flags);
1682 return 0;
1683 }
1684
1685 arch_prepare_kretprobe(ri, regs);
1686
1687 /* XXX(hch): why is there no hlist_move_head? */
1688 INIT_HLIST_NODE(&ri->hlist);
1689 kretprobe_table_lock(hash, &flags);
1690 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1691 kretprobe_table_unlock(hash, &flags);
1692 } else {
1693 rp->nmissed++;
1694 raw_spin_unlock_irqrestore(&rp->lock, flags);
1695 }
1696 return 0;
1697}
1698
1699int __kprobes register_kretprobe(struct kretprobe *rp)
1700{
1701 int ret = 0;
1702 struct kretprobe_instance *inst;
1703 int i;
1704 void *addr;
1705
1706 if (kretprobe_blacklist_size) {
1707 addr = kprobe_addr(&rp->kp);
1708 if (IS_ERR(addr))
1709 return PTR_ERR(addr);
1710
1711 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1712 if (kretprobe_blacklist[i].addr == addr)
1713 return -EINVAL;
1714 }
1715 }
1716
1717 rp->kp.pre_handler = pre_handler_kretprobe;
1718 rp->kp.post_handler = NULL;
1719 rp->kp.fault_handler = NULL;
1720 rp->kp.break_handler = NULL;
1721
1722 /* Pre-allocate memory for max kretprobe instances */
1723 if (rp->maxactive <= 0) {
1724#ifdef CONFIG_PREEMPT
1725 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1726#else
1727 rp->maxactive = num_possible_cpus();
1728#endif
1729 }
1730 raw_spin_lock_init(&rp->lock);
1731 INIT_HLIST_HEAD(&rp->free_instances);
1732 for (i = 0; i < rp->maxactive; i++) {
1733 inst = kmalloc(sizeof(struct kretprobe_instance) +
1734 rp->data_size, GFP_KERNEL);
1735 if (inst == NULL) {
1736 free_rp_inst(rp);
1737 return -ENOMEM;
1738 }
1739 INIT_HLIST_NODE(&inst->hlist);
1740 hlist_add_head(&inst->hlist, &rp->free_instances);
1741 }
1742
1743 rp->nmissed = 0;
1744 /* Establish function entry probe point */
1745 ret = register_kprobe(&rp->kp);
1746 if (ret != 0)
1747 free_rp_inst(rp);
1748 return ret;
1749}
1750EXPORT_SYMBOL_GPL(register_kretprobe);
1751
1752int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1753{
1754 int ret = 0, i;
1755
1756 if (num <= 0)
1757 return -EINVAL;
1758 for (i = 0; i < num; i++) {
1759 ret = register_kretprobe(rps[i]);
1760 if (ret < 0) {
1761 if (i > 0)
1762 unregister_kretprobes(rps, i);
1763 break;
1764 }
1765 }
1766 return ret;
1767}
1768EXPORT_SYMBOL_GPL(register_kretprobes);
1769
1770void __kprobes unregister_kretprobe(struct kretprobe *rp)
1771{
1772 unregister_kretprobes(&rp, 1);
1773}
1774EXPORT_SYMBOL_GPL(unregister_kretprobe);
1775
1776void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1777{
1778 int i;
1779
1780 if (num <= 0)
1781 return;
1782 mutex_lock(&kprobe_mutex);
1783 for (i = 0; i < num; i++)
1784 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1785 rps[i]->kp.addr = NULL;
1786 mutex_unlock(&kprobe_mutex);
1787
1788 synchronize_sched();
1789 for (i = 0; i < num; i++) {
1790 if (rps[i]->kp.addr) {
1791 __unregister_kprobe_bottom(&rps[i]->kp);
1792 cleanup_rp_inst(rps[i]);
1793 }
1794 }
1795}
1796EXPORT_SYMBOL_GPL(unregister_kretprobes);
1797
1798#else /* CONFIG_KRETPROBES */
1799int __kprobes register_kretprobe(struct kretprobe *rp)
1800{
1801 return -ENOSYS;
1802}
1803EXPORT_SYMBOL_GPL(register_kretprobe);
1804
1805int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1806{
1807 return -ENOSYS;
1808}
1809EXPORT_SYMBOL_GPL(register_kretprobes);
1810
1811void __kprobes unregister_kretprobe(struct kretprobe *rp)
1812{
1813}
1814EXPORT_SYMBOL_GPL(unregister_kretprobe);
1815
1816void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1817{
1818}
1819EXPORT_SYMBOL_GPL(unregister_kretprobes);
1820
1821static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1822 struct pt_regs *regs)
1823{
1824 return 0;
1825}
1826
1827#endif /* CONFIG_KRETPROBES */
1828
1829/* Set the kprobe gone and remove its instruction buffer. */
1830static void __kprobes kill_kprobe(struct kprobe *p)
1831{
1832 struct kprobe *kp;
1833
1834 p->flags |= KPROBE_FLAG_GONE;
1835 if (kprobe_aggrprobe(p)) {
1836 /*
1837 * If this is an aggr_kprobe, we have to list all the
1838 * chained probes and mark them GONE.
1839 */
1840 list_for_each_entry_rcu(kp, &p->list, list)
1841 kp->flags |= KPROBE_FLAG_GONE;
1842 p->post_handler = NULL;
1843 p->break_handler = NULL;
1844 kill_optimized_kprobe(p);
1845 }
1846 /*
1847 * Here, we can remove insn_slot safely, because no thread calls
1848 * the original probed function (which will be freed soon) any more.
1849 */
1850 arch_remove_kprobe(p);
1851}
1852
1853/* Disable one kprobe */
1854int __kprobes disable_kprobe(struct kprobe *kp)
1855{
1856 int ret = 0;
1857
1858 mutex_lock(&kprobe_mutex);
1859
1860 /* Disable this kprobe */
1861 if (__disable_kprobe(kp) == NULL)
1862 ret = -EINVAL;
1863
1864 mutex_unlock(&kprobe_mutex);
1865 return ret;
1866}
1867EXPORT_SYMBOL_GPL(disable_kprobe);
1868
1869/* Enable one kprobe */
1870int __kprobes enable_kprobe(struct kprobe *kp)
1871{
1872 int ret = 0;
1873 struct kprobe *p;
1874
1875 mutex_lock(&kprobe_mutex);
1876
1877 /* Check whether specified probe is valid. */
1878 p = __get_valid_kprobe(kp);
1879 if (unlikely(p == NULL)) {
1880 ret = -EINVAL;
1881 goto out;
1882 }
1883
1884 if (kprobe_gone(kp)) {
1885 /* This kprobe has gone, we couldn't enable it. */
1886 ret = -EINVAL;
1887 goto out;
1888 }
1889
1890 if (p != kp)
1891 kp->flags &= ~KPROBE_FLAG_DISABLED;
1892
1893 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
1894 p->flags &= ~KPROBE_FLAG_DISABLED;
1895 arm_kprobe(p);
1896 }
1897out:
1898 mutex_unlock(&kprobe_mutex);
1899 return ret;
1900}
1901EXPORT_SYMBOL_GPL(enable_kprobe);
1902
1903void __kprobes dump_kprobe(struct kprobe *kp)
1904{
1905 printk(KERN_WARNING "Dumping kprobe:\n");
1906 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1907 kp->symbol_name, kp->addr, kp->offset);
1908}
1909
1910/* Module notifier call back, checking kprobes on the module */
1911static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1912 unsigned long val, void *data)
1913{
1914 struct module *mod = data;
1915 struct hlist_head *head;
1916 struct hlist_node *node;
1917 struct kprobe *p;
1918 unsigned int i;
1919 int checkcore = (val == MODULE_STATE_GOING);
1920
1921 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1922 return NOTIFY_DONE;
1923
1924 /*
1925 * When MODULE_STATE_GOING was notified, both of module .text and
1926 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1927 * notified, only .init.text section would be freed. We need to
1928 * disable kprobes which have been inserted in the sections.
1929 */
1930 mutex_lock(&kprobe_mutex);
1931 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1932 head = &kprobe_table[i];
1933 hlist_for_each_entry_rcu(p, node, head, hlist)
1934 if (within_module_init((unsigned long)p->addr, mod) ||
1935 (checkcore &&
1936 within_module_core((unsigned long)p->addr, mod))) {
1937 /*
1938 * The vaddr this probe is installed will soon
1939 * be vfreed buy not synced to disk. Hence,
1940 * disarming the breakpoint isn't needed.
1941 */
1942 kill_kprobe(p);
1943 }
1944 }
1945 mutex_unlock(&kprobe_mutex);
1946 return NOTIFY_DONE;
1947}
1948
1949static struct notifier_block kprobe_module_nb = {
1950 .notifier_call = kprobes_module_callback,
1951 .priority = 0
1952};
1953
1954static int __init init_kprobes(void)
1955{
1956 int i, err = 0;
1957 unsigned long offset = 0, size = 0;
1958 char *modname, namebuf[128];
1959 const char *symbol_name;
1960 void *addr;
1961 struct kprobe_blackpoint *kb;
1962
1963 /* FIXME allocate the probe table, currently defined statically */
1964 /* initialize all list heads */
1965 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1966 INIT_HLIST_HEAD(&kprobe_table[i]);
1967 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1968 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
1969 }
1970
1971 /*
1972 * Lookup and populate the kprobe_blacklist.
1973 *
1974 * Unlike the kretprobe blacklist, we'll need to determine
1975 * the range of addresses that belong to the said functions,
1976 * since a kprobe need not necessarily be at the beginning
1977 * of a function.
1978 */
1979 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1980 kprobe_lookup_name(kb->name, addr);
1981 if (!addr)
1982 continue;
1983
1984 kb->start_addr = (unsigned long)addr;
1985 symbol_name = kallsyms_lookup(kb->start_addr,
1986 &size, &offset, &modname, namebuf);
1987 if (!symbol_name)
1988 kb->range = 0;
1989 else
1990 kb->range = size;
1991 }
1992
1993 if (kretprobe_blacklist_size) {
1994 /* lookup the function address from its name */
1995 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1996 kprobe_lookup_name(kretprobe_blacklist[i].name,
1997 kretprobe_blacklist[i].addr);
1998 if (!kretprobe_blacklist[i].addr)
1999 printk("kretprobe: lookup failed: %s\n",
2000 kretprobe_blacklist[i].name);
2001 }
2002 }
2003
2004#if defined(CONFIG_OPTPROBES)
2005#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2006 /* Init kprobe_optinsn_slots */
2007 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2008#endif
2009 /* By default, kprobes can be optimized */
2010 kprobes_allow_optimization = true;
2011#endif
2012
2013 /* By default, kprobes are armed */
2014 kprobes_all_disarmed = false;
2015
2016 err = arch_init_kprobes();
2017 if (!err)
2018 err = register_die_notifier(&kprobe_exceptions_nb);
2019 if (!err)
2020 err = register_module_notifier(&kprobe_module_nb);
2021
2022 kprobes_initialized = (err == 0);
2023
2024 if (!err)
2025 init_test_probes();
2026 return err;
2027}
2028
2029#ifdef CONFIG_DEBUG_FS
2030static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2031 const char *sym, int offset, char *modname, struct kprobe *pp)
2032{
2033 char *kprobe_type;
2034
2035 if (p->pre_handler == pre_handler_kretprobe)
2036 kprobe_type = "r";
2037 else if (p->pre_handler == setjmp_pre_handler)
2038 kprobe_type = "j";
2039 else
2040 kprobe_type = "k";
2041
2042 if (sym)
2043 seq_printf(pi, "%p %s %s+0x%x %s ",
2044 p->addr, kprobe_type, sym, offset,
2045 (modname ? modname : " "));
2046 else
2047 seq_printf(pi, "%p %s %p ",
2048 p->addr, kprobe_type, p->addr);
2049
2050 if (!pp)
2051 pp = p;
2052 seq_printf(pi, "%s%s%s\n",
2053 (kprobe_gone(p) ? "[GONE]" : ""),
2054 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2055 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
2056}
2057
2058static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2059{
2060 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2061}
2062
2063static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2064{
2065 (*pos)++;
2066 if (*pos >= KPROBE_TABLE_SIZE)
2067 return NULL;
2068 return pos;
2069}
2070
2071static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2072{
2073 /* Nothing to do */
2074}
2075
2076static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2077{
2078 struct hlist_head *head;
2079 struct hlist_node *node;
2080 struct kprobe *p, *kp;
2081 const char *sym = NULL;
2082 unsigned int i = *(loff_t *) v;
2083 unsigned long offset = 0;
2084 char *modname, namebuf[128];
2085
2086 head = &kprobe_table[i];
2087 preempt_disable();
2088 hlist_for_each_entry_rcu(p, node, head, hlist) {
2089 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2090 &offset, &modname, namebuf);
2091 if (kprobe_aggrprobe(p)) {
2092 list_for_each_entry_rcu(kp, &p->list, list)
2093 report_probe(pi, kp, sym, offset, modname, p);
2094 } else
2095 report_probe(pi, p, sym, offset, modname, NULL);
2096 }
2097 preempt_enable();
2098 return 0;
2099}
2100
2101static const struct seq_operations kprobes_seq_ops = {
2102 .start = kprobe_seq_start,
2103 .next = kprobe_seq_next,
2104 .stop = kprobe_seq_stop,
2105 .show = show_kprobe_addr
2106};
2107
2108static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
2109{
2110 return seq_open(filp, &kprobes_seq_ops);
2111}
2112
2113static const struct file_operations debugfs_kprobes_operations = {
2114 .open = kprobes_open,
2115 .read = seq_read,
2116 .llseek = seq_lseek,
2117 .release = seq_release,
2118};
2119
2120static void __kprobes arm_all_kprobes(void)
2121{
2122 struct hlist_head *head;
2123 struct hlist_node *node;
2124 struct kprobe *p;
2125 unsigned int i;
2126
2127 mutex_lock(&kprobe_mutex);
2128
2129 /* If kprobes are armed, just return */
2130 if (!kprobes_all_disarmed)
2131 goto already_enabled;
2132
2133 /* Arming kprobes doesn't optimize kprobe itself */
2134 mutex_lock(&text_mutex);
2135 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2136 head = &kprobe_table[i];
2137 hlist_for_each_entry_rcu(p, node, head, hlist)
2138 if (!kprobe_disabled(p))
2139 __arm_kprobe(p);
2140 }
2141 mutex_unlock(&text_mutex);
2142
2143 kprobes_all_disarmed = false;
2144 printk(KERN_INFO "Kprobes globally enabled\n");
2145
2146already_enabled:
2147 mutex_unlock(&kprobe_mutex);
2148 return;
2149}
2150
2151static void __kprobes disarm_all_kprobes(void)
2152{
2153 struct hlist_head *head;
2154 struct hlist_node *node;
2155 struct kprobe *p;
2156 unsigned int i;
2157
2158 mutex_lock(&kprobe_mutex);
2159
2160 /* If kprobes are already disarmed, just return */
2161 if (kprobes_all_disarmed) {
2162 mutex_unlock(&kprobe_mutex);
2163 return;
2164 }
2165
2166 kprobes_all_disarmed = true;
2167 printk(KERN_INFO "Kprobes globally disabled\n");
2168
2169 mutex_lock(&text_mutex);
2170 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2171 head = &kprobe_table[i];
2172 hlist_for_each_entry_rcu(p, node, head, hlist) {
2173 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2174 __disarm_kprobe(p, false);
2175 }
2176 }
2177 mutex_unlock(&text_mutex);
2178 mutex_unlock(&kprobe_mutex);
2179
2180 /* Wait for disarming all kprobes by optimizer */
2181 wait_for_kprobe_optimizer();
2182}
2183
2184/*
2185 * XXX: The debugfs bool file interface doesn't allow for callbacks
2186 * when the bool state is switched. We can reuse that facility when
2187 * available
2188 */
2189static ssize_t read_enabled_file_bool(struct file *file,
2190 char __user *user_buf, size_t count, loff_t *ppos)
2191{
2192 char buf[3];
2193
2194 if (!kprobes_all_disarmed)
2195 buf[0] = '1';
2196 else
2197 buf[0] = '0';
2198 buf[1] = '\n';
2199 buf[2] = 0x00;
2200 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2201}
2202
2203static ssize_t write_enabled_file_bool(struct file *file,
2204 const char __user *user_buf, size_t count, loff_t *ppos)
2205{
2206 char buf[32];
2207 size_t buf_size;
2208
2209 buf_size = min(count, (sizeof(buf)-1));
2210 if (copy_from_user(buf, user_buf, buf_size))
2211 return -EFAULT;
2212
2213 switch (buf[0]) {
2214 case 'y':
2215 case 'Y':
2216 case '1':
2217 arm_all_kprobes();
2218 break;
2219 case 'n':
2220 case 'N':
2221 case '0':
2222 disarm_all_kprobes();
2223 break;
2224 }
2225
2226 return count;
2227}
2228
2229static const struct file_operations fops_kp = {
2230 .read = read_enabled_file_bool,
2231 .write = write_enabled_file_bool,
2232 .llseek = default_llseek,
2233};
2234
2235static int __kprobes debugfs_kprobe_init(void)
2236{
2237 struct dentry *dir, *file;
2238 unsigned int value = 1;
2239
2240 dir = debugfs_create_dir("kprobes", NULL);
2241 if (!dir)
2242 return -ENOMEM;
2243
2244 file = debugfs_create_file("list", 0444, dir, NULL,
2245 &debugfs_kprobes_operations);
2246 if (!file) {
2247 debugfs_remove(dir);
2248 return -ENOMEM;
2249 }
2250
2251 file = debugfs_create_file("enabled", 0600, dir,
2252 &value, &fops_kp);
2253 if (!file) {
2254 debugfs_remove(dir);
2255 return -ENOMEM;
2256 }
2257
2258 return 0;
2259}
2260
2261late_initcall(debugfs_kprobe_init);
2262#endif /* CONFIG_DEBUG_FS */
2263
2264module_init(init_kprobes);
2265
2266/* defined in arch/.../kernel/kprobes.c */
2267EXPORT_SYMBOL_GPL(jprobe_return);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Kernel Probes (KProbes)
4 * kernel/kprobes.c
5 *
6 * Copyright (C) IBM Corporation, 2002, 2004
7 *
8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9 * Probes initial implementation (includes suggestions from
10 * Rusty Russell).
11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12 * hlists and exceptions notifier as suggested by Andi Kleen.
13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14 * interface to access function arguments.
15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16 * exceptions notifier to be first on the priority list.
17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19 * <prasanna@in.ibm.com> added function-return probes.
20 */
21#include <linux/kprobes.h>
22#include <linux/hash.h>
23#include <linux/init.h>
24#include <linux/slab.h>
25#include <linux/stddef.h>
26#include <linux/export.h>
27#include <linux/moduleloader.h>
28#include <linux/kallsyms.h>
29#include <linux/freezer.h>
30#include <linux/seq_file.h>
31#include <linux/debugfs.h>
32#include <linux/sysctl.h>
33#include <linux/kdebug.h>
34#include <linux/memory.h>
35#include <linux/ftrace.h>
36#include <linux/cpu.h>
37#include <linux/jump_label.h>
38#include <linux/static_call.h>
39#include <linux/perf_event.h>
40
41#include <asm/sections.h>
42#include <asm/cacheflush.h>
43#include <asm/errno.h>
44#include <linux/uaccess.h>
45
46#define KPROBE_HASH_BITS 6
47#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
48
49
50static int kprobes_initialized;
51/* kprobe_table can be accessed by
52 * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
53 * Or
54 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
55 */
56static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
57
58/* NOTE: change this value only with kprobe_mutex held */
59static bool kprobes_all_disarmed;
60
61/* This protects kprobe_table and optimizing_list */
62static DEFINE_MUTEX(kprobe_mutex);
63static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
64
65kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
66 unsigned int __unused)
67{
68 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
69}
70
71/* Blacklist -- list of struct kprobe_blacklist_entry */
72static LIST_HEAD(kprobe_blacklist);
73
74#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
75/*
76 * kprobe->ainsn.insn points to the copy of the instruction to be
77 * single-stepped. x86_64, POWER4 and above have no-exec support and
78 * stepping on the instruction on a vmalloced/kmalloced/data page
79 * is a recipe for disaster
80 */
81struct kprobe_insn_page {
82 struct list_head list;
83 kprobe_opcode_t *insns; /* Page of instruction slots */
84 struct kprobe_insn_cache *cache;
85 int nused;
86 int ngarbage;
87 char slot_used[];
88};
89
90#define KPROBE_INSN_PAGE_SIZE(slots) \
91 (offsetof(struct kprobe_insn_page, slot_used) + \
92 (sizeof(char) * (slots)))
93
94static int slots_per_page(struct kprobe_insn_cache *c)
95{
96 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
97}
98
99enum kprobe_slot_state {
100 SLOT_CLEAN = 0,
101 SLOT_DIRTY = 1,
102 SLOT_USED = 2,
103};
104
105void __weak *alloc_insn_page(void)
106{
107 return module_alloc(PAGE_SIZE);
108}
109
110static void free_insn_page(void *page)
111{
112 module_memfree(page);
113}
114
115struct kprobe_insn_cache kprobe_insn_slots = {
116 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
117 .alloc = alloc_insn_page,
118 .free = free_insn_page,
119 .sym = KPROBE_INSN_PAGE_SYM,
120 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
121 .insn_size = MAX_INSN_SIZE,
122 .nr_garbage = 0,
123};
124static int collect_garbage_slots(struct kprobe_insn_cache *c);
125
126/**
127 * __get_insn_slot() - Find a slot on an executable page for an instruction.
128 * We allocate an executable page if there's no room on existing ones.
129 */
130kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
131{
132 struct kprobe_insn_page *kip;
133 kprobe_opcode_t *slot = NULL;
134
135 /* Since the slot array is not protected by rcu, we need a mutex */
136 mutex_lock(&c->mutex);
137 retry:
138 rcu_read_lock();
139 list_for_each_entry_rcu(kip, &c->pages, list) {
140 if (kip->nused < slots_per_page(c)) {
141 int i;
142 for (i = 0; i < slots_per_page(c); i++) {
143 if (kip->slot_used[i] == SLOT_CLEAN) {
144 kip->slot_used[i] = SLOT_USED;
145 kip->nused++;
146 slot = kip->insns + (i * c->insn_size);
147 rcu_read_unlock();
148 goto out;
149 }
150 }
151 /* kip->nused is broken. Fix it. */
152 kip->nused = slots_per_page(c);
153 WARN_ON(1);
154 }
155 }
156 rcu_read_unlock();
157
158 /* If there are any garbage slots, collect it and try again. */
159 if (c->nr_garbage && collect_garbage_slots(c) == 0)
160 goto retry;
161
162 /* All out of space. Need to allocate a new page. */
163 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
164 if (!kip)
165 goto out;
166
167 /*
168 * Use module_alloc so this page is within +/- 2GB of where the
169 * kernel image and loaded module images reside. This is required
170 * so x86_64 can correctly handle the %rip-relative fixups.
171 */
172 kip->insns = c->alloc();
173 if (!kip->insns) {
174 kfree(kip);
175 goto out;
176 }
177 INIT_LIST_HEAD(&kip->list);
178 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
179 kip->slot_used[0] = SLOT_USED;
180 kip->nused = 1;
181 kip->ngarbage = 0;
182 kip->cache = c;
183 list_add_rcu(&kip->list, &c->pages);
184 slot = kip->insns;
185
186 /* Record the perf ksymbol register event after adding the page */
187 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
188 PAGE_SIZE, false, c->sym);
189out:
190 mutex_unlock(&c->mutex);
191 return slot;
192}
193
194/* Return 1 if all garbages are collected, otherwise 0. */
195static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
196{
197 kip->slot_used[idx] = SLOT_CLEAN;
198 kip->nused--;
199 if (kip->nused == 0) {
200 /*
201 * Page is no longer in use. Free it unless
202 * it's the last one. We keep the last one
203 * so as not to have to set it up again the
204 * next time somebody inserts a probe.
205 */
206 if (!list_is_singular(&kip->list)) {
207 /*
208 * Record perf ksymbol unregister event before removing
209 * the page.
210 */
211 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
212 (unsigned long)kip->insns, PAGE_SIZE, true,
213 kip->cache->sym);
214 list_del_rcu(&kip->list);
215 synchronize_rcu();
216 kip->cache->free(kip->insns);
217 kfree(kip);
218 }
219 return 1;
220 }
221 return 0;
222}
223
224static int collect_garbage_slots(struct kprobe_insn_cache *c)
225{
226 struct kprobe_insn_page *kip, *next;
227
228 /* Ensure no-one is interrupted on the garbages */
229 synchronize_rcu();
230
231 list_for_each_entry_safe(kip, next, &c->pages, list) {
232 int i;
233 if (kip->ngarbage == 0)
234 continue;
235 kip->ngarbage = 0; /* we will collect all garbages */
236 for (i = 0; i < slots_per_page(c); i++) {
237 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
238 break;
239 }
240 }
241 c->nr_garbage = 0;
242 return 0;
243}
244
245void __free_insn_slot(struct kprobe_insn_cache *c,
246 kprobe_opcode_t *slot, int dirty)
247{
248 struct kprobe_insn_page *kip;
249 long idx;
250
251 mutex_lock(&c->mutex);
252 rcu_read_lock();
253 list_for_each_entry_rcu(kip, &c->pages, list) {
254 idx = ((long)slot - (long)kip->insns) /
255 (c->insn_size * sizeof(kprobe_opcode_t));
256 if (idx >= 0 && idx < slots_per_page(c))
257 goto out;
258 }
259 /* Could not find this slot. */
260 WARN_ON(1);
261 kip = NULL;
262out:
263 rcu_read_unlock();
264 /* Mark and sweep: this may sleep */
265 if (kip) {
266 /* Check double free */
267 WARN_ON(kip->slot_used[idx] != SLOT_USED);
268 if (dirty) {
269 kip->slot_used[idx] = SLOT_DIRTY;
270 kip->ngarbage++;
271 if (++c->nr_garbage > slots_per_page(c))
272 collect_garbage_slots(c);
273 } else {
274 collect_one_slot(kip, idx);
275 }
276 }
277 mutex_unlock(&c->mutex);
278}
279
280/*
281 * Check given address is on the page of kprobe instruction slots.
282 * This will be used for checking whether the address on a stack
283 * is on a text area or not.
284 */
285bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
286{
287 struct kprobe_insn_page *kip;
288 bool ret = false;
289
290 rcu_read_lock();
291 list_for_each_entry_rcu(kip, &c->pages, list) {
292 if (addr >= (unsigned long)kip->insns &&
293 addr < (unsigned long)kip->insns + PAGE_SIZE) {
294 ret = true;
295 break;
296 }
297 }
298 rcu_read_unlock();
299
300 return ret;
301}
302
303int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
304 unsigned long *value, char *type, char *sym)
305{
306 struct kprobe_insn_page *kip;
307 int ret = -ERANGE;
308
309 rcu_read_lock();
310 list_for_each_entry_rcu(kip, &c->pages, list) {
311 if ((*symnum)--)
312 continue;
313 strlcpy(sym, c->sym, KSYM_NAME_LEN);
314 *type = 't';
315 *value = (unsigned long)kip->insns;
316 ret = 0;
317 break;
318 }
319 rcu_read_unlock();
320
321 return ret;
322}
323
324#ifdef CONFIG_OPTPROBES
325void __weak *alloc_optinsn_page(void)
326{
327 return alloc_insn_page();
328}
329
330void __weak free_optinsn_page(void *page)
331{
332 free_insn_page(page);
333}
334
335/* For optimized_kprobe buffer */
336struct kprobe_insn_cache kprobe_optinsn_slots = {
337 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
338 .alloc = alloc_optinsn_page,
339 .free = free_optinsn_page,
340 .sym = KPROBE_OPTINSN_PAGE_SYM,
341 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
342 /* .insn_size is initialized later */
343 .nr_garbage = 0,
344};
345#endif
346#endif
347
348/* We have preemption disabled.. so it is safe to use __ versions */
349static inline void set_kprobe_instance(struct kprobe *kp)
350{
351 __this_cpu_write(kprobe_instance, kp);
352}
353
354static inline void reset_kprobe_instance(void)
355{
356 __this_cpu_write(kprobe_instance, NULL);
357}
358
359/*
360 * This routine is called either:
361 * - under the kprobe_mutex - during kprobe_[un]register()
362 * OR
363 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
364 */
365struct kprobe *get_kprobe(void *addr)
366{
367 struct hlist_head *head;
368 struct kprobe *p;
369
370 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
371 hlist_for_each_entry_rcu(p, head, hlist,
372 lockdep_is_held(&kprobe_mutex)) {
373 if (p->addr == addr)
374 return p;
375 }
376
377 return NULL;
378}
379NOKPROBE_SYMBOL(get_kprobe);
380
381static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
382
383/* Return true if the kprobe is an aggregator */
384static inline int kprobe_aggrprobe(struct kprobe *p)
385{
386 return p->pre_handler == aggr_pre_handler;
387}
388
389/* Return true(!0) if the kprobe is unused */
390static inline int kprobe_unused(struct kprobe *p)
391{
392 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
393 list_empty(&p->list);
394}
395
396/*
397 * Keep all fields in the kprobe consistent
398 */
399static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
400{
401 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
402 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
403}
404
405#ifdef CONFIG_OPTPROBES
406/* NOTE: change this value only with kprobe_mutex held */
407static bool kprobes_allow_optimization;
408
409/*
410 * Call all pre_handler on the list, but ignores its return value.
411 * This must be called from arch-dep optimized caller.
412 */
413void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
414{
415 struct kprobe *kp;
416
417 list_for_each_entry_rcu(kp, &p->list, list) {
418 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
419 set_kprobe_instance(kp);
420 kp->pre_handler(kp, regs);
421 }
422 reset_kprobe_instance();
423 }
424}
425NOKPROBE_SYMBOL(opt_pre_handler);
426
427/* Free optimized instructions and optimized_kprobe */
428static void free_aggr_kprobe(struct kprobe *p)
429{
430 struct optimized_kprobe *op;
431
432 op = container_of(p, struct optimized_kprobe, kp);
433 arch_remove_optimized_kprobe(op);
434 arch_remove_kprobe(p);
435 kfree(op);
436}
437
438/* Return true(!0) if the kprobe is ready for optimization. */
439static inline int kprobe_optready(struct kprobe *p)
440{
441 struct optimized_kprobe *op;
442
443 if (kprobe_aggrprobe(p)) {
444 op = container_of(p, struct optimized_kprobe, kp);
445 return arch_prepared_optinsn(&op->optinsn);
446 }
447
448 return 0;
449}
450
451/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
452static inline int kprobe_disarmed(struct kprobe *p)
453{
454 struct optimized_kprobe *op;
455
456 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
457 if (!kprobe_aggrprobe(p))
458 return kprobe_disabled(p);
459
460 op = container_of(p, struct optimized_kprobe, kp);
461
462 return kprobe_disabled(p) && list_empty(&op->list);
463}
464
465/* Return true(!0) if the probe is queued on (un)optimizing lists */
466static int kprobe_queued(struct kprobe *p)
467{
468 struct optimized_kprobe *op;
469
470 if (kprobe_aggrprobe(p)) {
471 op = container_of(p, struct optimized_kprobe, kp);
472 if (!list_empty(&op->list))
473 return 1;
474 }
475 return 0;
476}
477
478/*
479 * Return an optimized kprobe whose optimizing code replaces
480 * instructions including addr (exclude breakpoint).
481 */
482static struct kprobe *get_optimized_kprobe(unsigned long addr)
483{
484 int i;
485 struct kprobe *p = NULL;
486 struct optimized_kprobe *op;
487
488 /* Don't check i == 0, since that is a breakpoint case. */
489 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
490 p = get_kprobe((void *)(addr - i));
491
492 if (p && kprobe_optready(p)) {
493 op = container_of(p, struct optimized_kprobe, kp);
494 if (arch_within_optimized_kprobe(op, addr))
495 return p;
496 }
497
498 return NULL;
499}
500
501/* Optimization staging list, protected by kprobe_mutex */
502static LIST_HEAD(optimizing_list);
503static LIST_HEAD(unoptimizing_list);
504static LIST_HEAD(freeing_list);
505
506static void kprobe_optimizer(struct work_struct *work);
507static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
508#define OPTIMIZE_DELAY 5
509
510/*
511 * Optimize (replace a breakpoint with a jump) kprobes listed on
512 * optimizing_list.
513 */
514static void do_optimize_kprobes(void)
515{
516 lockdep_assert_held(&text_mutex);
517 /*
518 * The optimization/unoptimization refers online_cpus via
519 * stop_machine() and cpu-hotplug modifies online_cpus.
520 * And same time, text_mutex will be held in cpu-hotplug and here.
521 * This combination can cause a deadlock (cpu-hotplug try to lock
522 * text_mutex but stop_machine can not be done because online_cpus
523 * has been changed)
524 * To avoid this deadlock, caller must have locked cpu hotplug
525 * for preventing cpu-hotplug outside of text_mutex locking.
526 */
527 lockdep_assert_cpus_held();
528
529 /* Optimization never be done when disarmed */
530 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
531 list_empty(&optimizing_list))
532 return;
533
534 arch_optimize_kprobes(&optimizing_list);
535}
536
537/*
538 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
539 * if need) kprobes listed on unoptimizing_list.
540 */
541static void do_unoptimize_kprobes(void)
542{
543 struct optimized_kprobe *op, *tmp;
544
545 lockdep_assert_held(&text_mutex);
546 /* See comment in do_optimize_kprobes() */
547 lockdep_assert_cpus_held();
548
549 /* Unoptimization must be done anytime */
550 if (list_empty(&unoptimizing_list))
551 return;
552
553 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
554 /* Loop free_list for disarming */
555 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
556 /* Switching from detour code to origin */
557 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
558 /* Disarm probes if marked disabled */
559 if (kprobe_disabled(&op->kp))
560 arch_disarm_kprobe(&op->kp);
561 if (kprobe_unused(&op->kp)) {
562 /*
563 * Remove unused probes from hash list. After waiting
564 * for synchronization, these probes are reclaimed.
565 * (reclaiming is done by do_free_cleaned_kprobes.)
566 */
567 hlist_del_rcu(&op->kp.hlist);
568 } else
569 list_del_init(&op->list);
570 }
571}
572
573/* Reclaim all kprobes on the free_list */
574static void do_free_cleaned_kprobes(void)
575{
576 struct optimized_kprobe *op, *tmp;
577
578 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
579 list_del_init(&op->list);
580 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
581 /*
582 * This must not happen, but if there is a kprobe
583 * still in use, keep it on kprobes hash list.
584 */
585 continue;
586 }
587 free_aggr_kprobe(&op->kp);
588 }
589}
590
591/* Start optimizer after OPTIMIZE_DELAY passed */
592static void kick_kprobe_optimizer(void)
593{
594 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
595}
596
597/* Kprobe jump optimizer */
598static void kprobe_optimizer(struct work_struct *work)
599{
600 mutex_lock(&kprobe_mutex);
601 cpus_read_lock();
602 mutex_lock(&text_mutex);
603
604 /*
605 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
606 * kprobes before waiting for quiesence period.
607 */
608 do_unoptimize_kprobes();
609
610 /*
611 * Step 2: Wait for quiesence period to ensure all potentially
612 * preempted tasks to have normally scheduled. Because optprobe
613 * may modify multiple instructions, there is a chance that Nth
614 * instruction is preempted. In that case, such tasks can return
615 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
616 * Note that on non-preemptive kernel, this is transparently converted
617 * to synchronoze_sched() to wait for all interrupts to have completed.
618 */
619 synchronize_rcu_tasks();
620
621 /* Step 3: Optimize kprobes after quiesence period */
622 do_optimize_kprobes();
623
624 /* Step 4: Free cleaned kprobes after quiesence period */
625 do_free_cleaned_kprobes();
626
627 mutex_unlock(&text_mutex);
628 cpus_read_unlock();
629
630 /* Step 5: Kick optimizer again if needed */
631 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
632 kick_kprobe_optimizer();
633
634 mutex_unlock(&kprobe_mutex);
635}
636
637/* Wait for completing optimization and unoptimization */
638void wait_for_kprobe_optimizer(void)
639{
640 mutex_lock(&kprobe_mutex);
641
642 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
643 mutex_unlock(&kprobe_mutex);
644
645 /* this will also make optimizing_work execute immmediately */
646 flush_delayed_work(&optimizing_work);
647 /* @optimizing_work might not have been queued yet, relax */
648 cpu_relax();
649
650 mutex_lock(&kprobe_mutex);
651 }
652
653 mutex_unlock(&kprobe_mutex);
654}
655
656static bool optprobe_queued_unopt(struct optimized_kprobe *op)
657{
658 struct optimized_kprobe *_op;
659
660 list_for_each_entry(_op, &unoptimizing_list, list) {
661 if (op == _op)
662 return true;
663 }
664
665 return false;
666}
667
668/* Optimize kprobe if p is ready to be optimized */
669static void optimize_kprobe(struct kprobe *p)
670{
671 struct optimized_kprobe *op;
672
673 /* Check if the kprobe is disabled or not ready for optimization. */
674 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
675 (kprobe_disabled(p) || kprobes_all_disarmed))
676 return;
677
678 /* kprobes with post_handler can not be optimized */
679 if (p->post_handler)
680 return;
681
682 op = container_of(p, struct optimized_kprobe, kp);
683
684 /* Check there is no other kprobes at the optimized instructions */
685 if (arch_check_optimized_kprobe(op) < 0)
686 return;
687
688 /* Check if it is already optimized. */
689 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
690 if (optprobe_queued_unopt(op)) {
691 /* This is under unoptimizing. Just dequeue the probe */
692 list_del_init(&op->list);
693 }
694 return;
695 }
696 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
697
698 /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
699 if (WARN_ON_ONCE(!list_empty(&op->list)))
700 return;
701
702 list_add(&op->list, &optimizing_list);
703 kick_kprobe_optimizer();
704}
705
706/* Short cut to direct unoptimizing */
707static void force_unoptimize_kprobe(struct optimized_kprobe *op)
708{
709 lockdep_assert_cpus_held();
710 arch_unoptimize_kprobe(op);
711 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
712}
713
714/* Unoptimize a kprobe if p is optimized */
715static void unoptimize_kprobe(struct kprobe *p, bool force)
716{
717 struct optimized_kprobe *op;
718
719 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
720 return; /* This is not an optprobe nor optimized */
721
722 op = container_of(p, struct optimized_kprobe, kp);
723 if (!kprobe_optimized(p))
724 return;
725
726 if (!list_empty(&op->list)) {
727 if (optprobe_queued_unopt(op)) {
728 /* Queued in unoptimizing queue */
729 if (force) {
730 /*
731 * Forcibly unoptimize the kprobe here, and queue it
732 * in the freeing list for release afterwards.
733 */
734 force_unoptimize_kprobe(op);
735 list_move(&op->list, &freeing_list);
736 }
737 } else {
738 /* Dequeue from the optimizing queue */
739 list_del_init(&op->list);
740 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
741 }
742 return;
743 }
744
745 /* Optimized kprobe case */
746 if (force) {
747 /* Forcibly update the code: this is a special case */
748 force_unoptimize_kprobe(op);
749 } else {
750 list_add(&op->list, &unoptimizing_list);
751 kick_kprobe_optimizer();
752 }
753}
754
755/* Cancel unoptimizing for reusing */
756static int reuse_unused_kprobe(struct kprobe *ap)
757{
758 struct optimized_kprobe *op;
759
760 /*
761 * Unused kprobe MUST be on the way of delayed unoptimizing (means
762 * there is still a relative jump) and disabled.
763 */
764 op = container_of(ap, struct optimized_kprobe, kp);
765 WARN_ON_ONCE(list_empty(&op->list));
766 /* Enable the probe again */
767 ap->flags &= ~KPROBE_FLAG_DISABLED;
768 /* Optimize it again (remove from op->list) */
769 if (!kprobe_optready(ap))
770 return -EINVAL;
771
772 optimize_kprobe(ap);
773 return 0;
774}
775
776/* Remove optimized instructions */
777static void kill_optimized_kprobe(struct kprobe *p)
778{
779 struct optimized_kprobe *op;
780
781 op = container_of(p, struct optimized_kprobe, kp);
782 if (!list_empty(&op->list))
783 /* Dequeue from the (un)optimization queue */
784 list_del_init(&op->list);
785 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
786
787 if (kprobe_unused(p)) {
788 /* Enqueue if it is unused */
789 list_add(&op->list, &freeing_list);
790 /*
791 * Remove unused probes from the hash list. After waiting
792 * for synchronization, this probe is reclaimed.
793 * (reclaiming is done by do_free_cleaned_kprobes().)
794 */
795 hlist_del_rcu(&op->kp.hlist);
796 }
797
798 /* Don't touch the code, because it is already freed. */
799 arch_remove_optimized_kprobe(op);
800}
801
802static inline
803void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
804{
805 if (!kprobe_ftrace(p))
806 arch_prepare_optimized_kprobe(op, p);
807}
808
809/* Try to prepare optimized instructions */
810static void prepare_optimized_kprobe(struct kprobe *p)
811{
812 struct optimized_kprobe *op;
813
814 op = container_of(p, struct optimized_kprobe, kp);
815 __prepare_optimized_kprobe(op, p);
816}
817
818/* Allocate new optimized_kprobe and try to prepare optimized instructions */
819static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
820{
821 struct optimized_kprobe *op;
822
823 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
824 if (!op)
825 return NULL;
826
827 INIT_LIST_HEAD(&op->list);
828 op->kp.addr = p->addr;
829 __prepare_optimized_kprobe(op, p);
830
831 return &op->kp;
832}
833
834static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
835
836/*
837 * Prepare an optimized_kprobe and optimize it
838 * NOTE: p must be a normal registered kprobe
839 */
840static void try_to_optimize_kprobe(struct kprobe *p)
841{
842 struct kprobe *ap;
843 struct optimized_kprobe *op;
844
845 /* Impossible to optimize ftrace-based kprobe */
846 if (kprobe_ftrace(p))
847 return;
848
849 /* For preparing optimization, jump_label_text_reserved() is called */
850 cpus_read_lock();
851 jump_label_lock();
852 mutex_lock(&text_mutex);
853
854 ap = alloc_aggr_kprobe(p);
855 if (!ap)
856 goto out;
857
858 op = container_of(ap, struct optimized_kprobe, kp);
859 if (!arch_prepared_optinsn(&op->optinsn)) {
860 /* If failed to setup optimizing, fallback to kprobe */
861 arch_remove_optimized_kprobe(op);
862 kfree(op);
863 goto out;
864 }
865
866 init_aggr_kprobe(ap, p);
867 optimize_kprobe(ap); /* This just kicks optimizer thread */
868
869out:
870 mutex_unlock(&text_mutex);
871 jump_label_unlock();
872 cpus_read_unlock();
873}
874
875static void optimize_all_kprobes(void)
876{
877 struct hlist_head *head;
878 struct kprobe *p;
879 unsigned int i;
880
881 mutex_lock(&kprobe_mutex);
882 /* If optimization is already allowed, just return */
883 if (kprobes_allow_optimization)
884 goto out;
885
886 cpus_read_lock();
887 kprobes_allow_optimization = true;
888 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
889 head = &kprobe_table[i];
890 hlist_for_each_entry(p, head, hlist)
891 if (!kprobe_disabled(p))
892 optimize_kprobe(p);
893 }
894 cpus_read_unlock();
895 printk(KERN_INFO "Kprobes globally optimized\n");
896out:
897 mutex_unlock(&kprobe_mutex);
898}
899
900#ifdef CONFIG_SYSCTL
901static void unoptimize_all_kprobes(void)
902{
903 struct hlist_head *head;
904 struct kprobe *p;
905 unsigned int i;
906
907 mutex_lock(&kprobe_mutex);
908 /* If optimization is already prohibited, just return */
909 if (!kprobes_allow_optimization) {
910 mutex_unlock(&kprobe_mutex);
911 return;
912 }
913
914 cpus_read_lock();
915 kprobes_allow_optimization = false;
916 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
917 head = &kprobe_table[i];
918 hlist_for_each_entry(p, head, hlist) {
919 if (!kprobe_disabled(p))
920 unoptimize_kprobe(p, false);
921 }
922 }
923 cpus_read_unlock();
924 mutex_unlock(&kprobe_mutex);
925
926 /* Wait for unoptimizing completion */
927 wait_for_kprobe_optimizer();
928 printk(KERN_INFO "Kprobes globally unoptimized\n");
929}
930
931static DEFINE_MUTEX(kprobe_sysctl_mutex);
932int sysctl_kprobes_optimization;
933int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
934 void *buffer, size_t *length,
935 loff_t *ppos)
936{
937 int ret;
938
939 mutex_lock(&kprobe_sysctl_mutex);
940 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
941 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
942
943 if (sysctl_kprobes_optimization)
944 optimize_all_kprobes();
945 else
946 unoptimize_all_kprobes();
947 mutex_unlock(&kprobe_sysctl_mutex);
948
949 return ret;
950}
951#endif /* CONFIG_SYSCTL */
952
953/* Put a breakpoint for a probe. Must be called with text_mutex locked */
954static void __arm_kprobe(struct kprobe *p)
955{
956 struct kprobe *_p;
957
958 /* Check collision with other optimized kprobes */
959 _p = get_optimized_kprobe((unsigned long)p->addr);
960 if (unlikely(_p))
961 /* Fallback to unoptimized kprobe */
962 unoptimize_kprobe(_p, true);
963
964 arch_arm_kprobe(p);
965 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
966}
967
968/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
969static void __disarm_kprobe(struct kprobe *p, bool reopt)
970{
971 struct kprobe *_p;
972
973 /* Try to unoptimize */
974 unoptimize_kprobe(p, kprobes_all_disarmed);
975
976 if (!kprobe_queued(p)) {
977 arch_disarm_kprobe(p);
978 /* If another kprobe was blocked, optimize it. */
979 _p = get_optimized_kprobe((unsigned long)p->addr);
980 if (unlikely(_p) && reopt)
981 optimize_kprobe(_p);
982 }
983 /* TODO: reoptimize others after unoptimized this probe */
984}
985
986#else /* !CONFIG_OPTPROBES */
987
988#define optimize_kprobe(p) do {} while (0)
989#define unoptimize_kprobe(p, f) do {} while (0)
990#define kill_optimized_kprobe(p) do {} while (0)
991#define prepare_optimized_kprobe(p) do {} while (0)
992#define try_to_optimize_kprobe(p) do {} while (0)
993#define __arm_kprobe(p) arch_arm_kprobe(p)
994#define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
995#define kprobe_disarmed(p) kprobe_disabled(p)
996#define wait_for_kprobe_optimizer() do {} while (0)
997
998static int reuse_unused_kprobe(struct kprobe *ap)
999{
1000 /*
1001 * If the optimized kprobe is NOT supported, the aggr kprobe is
1002 * released at the same time that the last aggregated kprobe is
1003 * unregistered.
1004 * Thus there should be no chance to reuse unused kprobe.
1005 */
1006 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
1007 return -EINVAL;
1008}
1009
1010static void free_aggr_kprobe(struct kprobe *p)
1011{
1012 arch_remove_kprobe(p);
1013 kfree(p);
1014}
1015
1016static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1017{
1018 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1019}
1020#endif /* CONFIG_OPTPROBES */
1021
1022#ifdef CONFIG_KPROBES_ON_FTRACE
1023static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1024 .func = kprobe_ftrace_handler,
1025 .flags = FTRACE_OPS_FL_SAVE_REGS,
1026};
1027
1028static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1029 .func = kprobe_ftrace_handler,
1030 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1031};
1032
1033static int kprobe_ipmodify_enabled;
1034static int kprobe_ftrace_enabled;
1035
1036/* Must ensure p->addr is really on ftrace */
1037static int prepare_kprobe(struct kprobe *p)
1038{
1039 if (!kprobe_ftrace(p))
1040 return arch_prepare_kprobe(p);
1041
1042 return arch_prepare_kprobe_ftrace(p);
1043}
1044
1045/* Caller must lock kprobe_mutex */
1046static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1047 int *cnt)
1048{
1049 int ret = 0;
1050
1051 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1052 if (ret) {
1053 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1054 p->addr, ret);
1055 return ret;
1056 }
1057
1058 if (*cnt == 0) {
1059 ret = register_ftrace_function(ops);
1060 if (ret) {
1061 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1062 goto err_ftrace;
1063 }
1064 }
1065
1066 (*cnt)++;
1067 return ret;
1068
1069err_ftrace:
1070 /*
1071 * At this point, sinec ops is not registered, we should be sefe from
1072 * registering empty filter.
1073 */
1074 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1075 return ret;
1076}
1077
1078static int arm_kprobe_ftrace(struct kprobe *p)
1079{
1080 bool ipmodify = (p->post_handler != NULL);
1081
1082 return __arm_kprobe_ftrace(p,
1083 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1084 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1085}
1086
1087/* Caller must lock kprobe_mutex */
1088static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1089 int *cnt)
1090{
1091 int ret = 0;
1092
1093 if (*cnt == 1) {
1094 ret = unregister_ftrace_function(ops);
1095 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1096 return ret;
1097 }
1098
1099 (*cnt)--;
1100
1101 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1102 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1103 p->addr, ret);
1104 return ret;
1105}
1106
1107static int disarm_kprobe_ftrace(struct kprobe *p)
1108{
1109 bool ipmodify = (p->post_handler != NULL);
1110
1111 return __disarm_kprobe_ftrace(p,
1112 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1113 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1114}
1115#else /* !CONFIG_KPROBES_ON_FTRACE */
1116static inline int prepare_kprobe(struct kprobe *p)
1117{
1118 return arch_prepare_kprobe(p);
1119}
1120
1121static inline int arm_kprobe_ftrace(struct kprobe *p)
1122{
1123 return -ENODEV;
1124}
1125
1126static inline int disarm_kprobe_ftrace(struct kprobe *p)
1127{
1128 return -ENODEV;
1129}
1130#endif
1131
1132/* Arm a kprobe with text_mutex */
1133static int arm_kprobe(struct kprobe *kp)
1134{
1135 if (unlikely(kprobe_ftrace(kp)))
1136 return arm_kprobe_ftrace(kp);
1137
1138 cpus_read_lock();
1139 mutex_lock(&text_mutex);
1140 __arm_kprobe(kp);
1141 mutex_unlock(&text_mutex);
1142 cpus_read_unlock();
1143
1144 return 0;
1145}
1146
1147/* Disarm a kprobe with text_mutex */
1148static int disarm_kprobe(struct kprobe *kp, bool reopt)
1149{
1150 if (unlikely(kprobe_ftrace(kp)))
1151 return disarm_kprobe_ftrace(kp);
1152
1153 cpus_read_lock();
1154 mutex_lock(&text_mutex);
1155 __disarm_kprobe(kp, reopt);
1156 mutex_unlock(&text_mutex);
1157 cpus_read_unlock();
1158
1159 return 0;
1160}
1161
1162/*
1163 * Aggregate handlers for multiple kprobes support - these handlers
1164 * take care of invoking the individual kprobe handlers on p->list
1165 */
1166static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1167{
1168 struct kprobe *kp;
1169
1170 list_for_each_entry_rcu(kp, &p->list, list) {
1171 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1172 set_kprobe_instance(kp);
1173 if (kp->pre_handler(kp, regs))
1174 return 1;
1175 }
1176 reset_kprobe_instance();
1177 }
1178 return 0;
1179}
1180NOKPROBE_SYMBOL(aggr_pre_handler);
1181
1182static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1183 unsigned long flags)
1184{
1185 struct kprobe *kp;
1186
1187 list_for_each_entry_rcu(kp, &p->list, list) {
1188 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1189 set_kprobe_instance(kp);
1190 kp->post_handler(kp, regs, flags);
1191 reset_kprobe_instance();
1192 }
1193 }
1194}
1195NOKPROBE_SYMBOL(aggr_post_handler);
1196
1197/* Walks the list and increments nmissed count for multiprobe case */
1198void kprobes_inc_nmissed_count(struct kprobe *p)
1199{
1200 struct kprobe *kp;
1201 if (!kprobe_aggrprobe(p)) {
1202 p->nmissed++;
1203 } else {
1204 list_for_each_entry_rcu(kp, &p->list, list)
1205 kp->nmissed++;
1206 }
1207 return;
1208}
1209NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1210
1211static void free_rp_inst_rcu(struct rcu_head *head)
1212{
1213 struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1214
1215 if (refcount_dec_and_test(&ri->rph->ref))
1216 kfree(ri->rph);
1217 kfree(ri);
1218}
1219NOKPROBE_SYMBOL(free_rp_inst_rcu);
1220
1221static void recycle_rp_inst(struct kretprobe_instance *ri)
1222{
1223 struct kretprobe *rp = get_kretprobe(ri);
1224
1225 if (likely(rp)) {
1226 freelist_add(&ri->freelist, &rp->freelist);
1227 } else
1228 call_rcu(&ri->rcu, free_rp_inst_rcu);
1229}
1230NOKPROBE_SYMBOL(recycle_rp_inst);
1231
1232static struct kprobe kprobe_busy = {
1233 .addr = (void *) get_kprobe,
1234};
1235
1236void kprobe_busy_begin(void)
1237{
1238 struct kprobe_ctlblk *kcb;
1239
1240 preempt_disable();
1241 __this_cpu_write(current_kprobe, &kprobe_busy);
1242 kcb = get_kprobe_ctlblk();
1243 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1244}
1245
1246void kprobe_busy_end(void)
1247{
1248 __this_cpu_write(current_kprobe, NULL);
1249 preempt_enable();
1250}
1251
1252/*
1253 * This function is called from finish_task_switch when task tk becomes dead,
1254 * so that we can recycle any function-return probe instances associated
1255 * with this task. These left over instances represent probed functions
1256 * that have been called but will never return.
1257 */
1258void kprobe_flush_task(struct task_struct *tk)
1259{
1260 struct kretprobe_instance *ri;
1261 struct llist_node *node;
1262
1263 /* Early boot, not yet initialized. */
1264 if (unlikely(!kprobes_initialized))
1265 return;
1266
1267 kprobe_busy_begin();
1268
1269 node = __llist_del_all(&tk->kretprobe_instances);
1270 while (node) {
1271 ri = container_of(node, struct kretprobe_instance, llist);
1272 node = node->next;
1273
1274 recycle_rp_inst(ri);
1275 }
1276
1277 kprobe_busy_end();
1278}
1279NOKPROBE_SYMBOL(kprobe_flush_task);
1280
1281static inline void free_rp_inst(struct kretprobe *rp)
1282{
1283 struct kretprobe_instance *ri;
1284 struct freelist_node *node;
1285 int count = 0;
1286
1287 node = rp->freelist.head;
1288 while (node) {
1289 ri = container_of(node, struct kretprobe_instance, freelist);
1290 node = node->next;
1291
1292 kfree(ri);
1293 count++;
1294 }
1295
1296 if (refcount_sub_and_test(count, &rp->rph->ref)) {
1297 kfree(rp->rph);
1298 rp->rph = NULL;
1299 }
1300}
1301
1302/* Add the new probe to ap->list */
1303static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1304{
1305 if (p->post_handler)
1306 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1307
1308 list_add_rcu(&p->list, &ap->list);
1309 if (p->post_handler && !ap->post_handler)
1310 ap->post_handler = aggr_post_handler;
1311
1312 return 0;
1313}
1314
1315/*
1316 * Fill in the required fields of the "manager kprobe". Replace the
1317 * earlier kprobe in the hlist with the manager kprobe
1318 */
1319static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1320{
1321 /* Copy p's insn slot to ap */
1322 copy_kprobe(p, ap);
1323 flush_insn_slot(ap);
1324 ap->addr = p->addr;
1325 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1326 ap->pre_handler = aggr_pre_handler;
1327 /* We don't care the kprobe which has gone. */
1328 if (p->post_handler && !kprobe_gone(p))
1329 ap->post_handler = aggr_post_handler;
1330
1331 INIT_LIST_HEAD(&ap->list);
1332 INIT_HLIST_NODE(&ap->hlist);
1333
1334 list_add_rcu(&p->list, &ap->list);
1335 hlist_replace_rcu(&p->hlist, &ap->hlist);
1336}
1337
1338/*
1339 * This is the second or subsequent kprobe at the address - handle
1340 * the intricacies
1341 */
1342static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1343{
1344 int ret = 0;
1345 struct kprobe *ap = orig_p;
1346
1347 cpus_read_lock();
1348
1349 /* For preparing optimization, jump_label_text_reserved() is called */
1350 jump_label_lock();
1351 mutex_lock(&text_mutex);
1352
1353 if (!kprobe_aggrprobe(orig_p)) {
1354 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1355 ap = alloc_aggr_kprobe(orig_p);
1356 if (!ap) {
1357 ret = -ENOMEM;
1358 goto out;
1359 }
1360 init_aggr_kprobe(ap, orig_p);
1361 } else if (kprobe_unused(ap)) {
1362 /* This probe is going to die. Rescue it */
1363 ret = reuse_unused_kprobe(ap);
1364 if (ret)
1365 goto out;
1366 }
1367
1368 if (kprobe_gone(ap)) {
1369 /*
1370 * Attempting to insert new probe at the same location that
1371 * had a probe in the module vaddr area which already
1372 * freed. So, the instruction slot has already been
1373 * released. We need a new slot for the new probe.
1374 */
1375 ret = arch_prepare_kprobe(ap);
1376 if (ret)
1377 /*
1378 * Even if fail to allocate new slot, don't need to
1379 * free aggr_probe. It will be used next time, or
1380 * freed by unregister_kprobe.
1381 */
1382 goto out;
1383
1384 /* Prepare optimized instructions if possible. */
1385 prepare_optimized_kprobe(ap);
1386
1387 /*
1388 * Clear gone flag to prevent allocating new slot again, and
1389 * set disabled flag because it is not armed yet.
1390 */
1391 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1392 | KPROBE_FLAG_DISABLED;
1393 }
1394
1395 /* Copy ap's insn slot to p */
1396 copy_kprobe(ap, p);
1397 ret = add_new_kprobe(ap, p);
1398
1399out:
1400 mutex_unlock(&text_mutex);
1401 jump_label_unlock();
1402 cpus_read_unlock();
1403
1404 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1405 ap->flags &= ~KPROBE_FLAG_DISABLED;
1406 if (!kprobes_all_disarmed) {
1407 /* Arm the breakpoint again. */
1408 ret = arm_kprobe(ap);
1409 if (ret) {
1410 ap->flags |= KPROBE_FLAG_DISABLED;
1411 list_del_rcu(&p->list);
1412 synchronize_rcu();
1413 }
1414 }
1415 }
1416 return ret;
1417}
1418
1419bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1420{
1421 /* The __kprobes marked functions and entry code must not be probed */
1422 return addr >= (unsigned long)__kprobes_text_start &&
1423 addr < (unsigned long)__kprobes_text_end;
1424}
1425
1426static bool __within_kprobe_blacklist(unsigned long addr)
1427{
1428 struct kprobe_blacklist_entry *ent;
1429
1430 if (arch_within_kprobe_blacklist(addr))
1431 return true;
1432 /*
1433 * If there exists a kprobe_blacklist, verify and
1434 * fail any probe registration in the prohibited area
1435 */
1436 list_for_each_entry(ent, &kprobe_blacklist, list) {
1437 if (addr >= ent->start_addr && addr < ent->end_addr)
1438 return true;
1439 }
1440 return false;
1441}
1442
1443bool within_kprobe_blacklist(unsigned long addr)
1444{
1445 char symname[KSYM_NAME_LEN], *p;
1446
1447 if (__within_kprobe_blacklist(addr))
1448 return true;
1449
1450 /* Check if the address is on a suffixed-symbol */
1451 if (!lookup_symbol_name(addr, symname)) {
1452 p = strchr(symname, '.');
1453 if (!p)
1454 return false;
1455 *p = '\0';
1456 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1457 if (addr)
1458 return __within_kprobe_blacklist(addr);
1459 }
1460 return false;
1461}
1462
1463/*
1464 * If we have a symbol_name argument, look it up and add the offset field
1465 * to it. This way, we can specify a relative address to a symbol.
1466 * This returns encoded errors if it fails to look up symbol or invalid
1467 * combination of parameters.
1468 */
1469static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1470 const char *symbol_name, unsigned int offset)
1471{
1472 if ((symbol_name && addr) || (!symbol_name && !addr))
1473 goto invalid;
1474
1475 if (symbol_name) {
1476 addr = kprobe_lookup_name(symbol_name, offset);
1477 if (!addr)
1478 return ERR_PTR(-ENOENT);
1479 }
1480
1481 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1482 if (addr)
1483 return addr;
1484
1485invalid:
1486 return ERR_PTR(-EINVAL);
1487}
1488
1489static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1490{
1491 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1492}
1493
1494/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1495static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1496{
1497 struct kprobe *ap, *list_p;
1498
1499 lockdep_assert_held(&kprobe_mutex);
1500
1501 ap = get_kprobe(p->addr);
1502 if (unlikely(!ap))
1503 return NULL;
1504
1505 if (p != ap) {
1506 list_for_each_entry(list_p, &ap->list, list)
1507 if (list_p == p)
1508 /* kprobe p is a valid probe */
1509 goto valid;
1510 return NULL;
1511 }
1512valid:
1513 return ap;
1514}
1515
1516/*
1517 * Warn and return error if the kprobe is being re-registered since
1518 * there must be a software bug.
1519 */
1520static inline int warn_kprobe_rereg(struct kprobe *p)
1521{
1522 int ret = 0;
1523
1524 mutex_lock(&kprobe_mutex);
1525 if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1526 ret = -EINVAL;
1527 mutex_unlock(&kprobe_mutex);
1528
1529 return ret;
1530}
1531
1532int __weak arch_check_ftrace_location(struct kprobe *p)
1533{
1534 unsigned long ftrace_addr;
1535
1536 ftrace_addr = ftrace_location((unsigned long)p->addr);
1537 if (ftrace_addr) {
1538#ifdef CONFIG_KPROBES_ON_FTRACE
1539 /* Given address is not on the instruction boundary */
1540 if ((unsigned long)p->addr != ftrace_addr)
1541 return -EILSEQ;
1542 p->flags |= KPROBE_FLAG_FTRACE;
1543#else /* !CONFIG_KPROBES_ON_FTRACE */
1544 return -EINVAL;
1545#endif
1546 }
1547 return 0;
1548}
1549
1550static int check_kprobe_address_safe(struct kprobe *p,
1551 struct module **probed_mod)
1552{
1553 int ret;
1554
1555 ret = arch_check_ftrace_location(p);
1556 if (ret)
1557 return ret;
1558 jump_label_lock();
1559 preempt_disable();
1560
1561 /* Ensure it is not in reserved area nor out of text */
1562 if (!kernel_text_address((unsigned long) p->addr) ||
1563 within_kprobe_blacklist((unsigned long) p->addr) ||
1564 jump_label_text_reserved(p->addr, p->addr) ||
1565 static_call_text_reserved(p->addr, p->addr) ||
1566 find_bug((unsigned long)p->addr)) {
1567 ret = -EINVAL;
1568 goto out;
1569 }
1570
1571 /* Check if are we probing a module */
1572 *probed_mod = __module_text_address((unsigned long) p->addr);
1573 if (*probed_mod) {
1574 /*
1575 * We must hold a refcount of the probed module while updating
1576 * its code to prohibit unexpected unloading.
1577 */
1578 if (unlikely(!try_module_get(*probed_mod))) {
1579 ret = -ENOENT;
1580 goto out;
1581 }
1582
1583 /*
1584 * If the module freed .init.text, we couldn't insert
1585 * kprobes in there.
1586 */
1587 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1588 (*probed_mod)->state != MODULE_STATE_COMING) {
1589 module_put(*probed_mod);
1590 *probed_mod = NULL;
1591 ret = -ENOENT;
1592 }
1593 }
1594out:
1595 preempt_enable();
1596 jump_label_unlock();
1597
1598 return ret;
1599}
1600
1601int register_kprobe(struct kprobe *p)
1602{
1603 int ret;
1604 struct kprobe *old_p;
1605 struct module *probed_mod;
1606 kprobe_opcode_t *addr;
1607
1608 /* Adjust probe address from symbol */
1609 addr = kprobe_addr(p);
1610 if (IS_ERR(addr))
1611 return PTR_ERR(addr);
1612 p->addr = addr;
1613
1614 ret = warn_kprobe_rereg(p);
1615 if (ret)
1616 return ret;
1617
1618 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1619 p->flags &= KPROBE_FLAG_DISABLED;
1620 p->nmissed = 0;
1621 INIT_LIST_HEAD(&p->list);
1622
1623 ret = check_kprobe_address_safe(p, &probed_mod);
1624 if (ret)
1625 return ret;
1626
1627 mutex_lock(&kprobe_mutex);
1628
1629 old_p = get_kprobe(p->addr);
1630 if (old_p) {
1631 /* Since this may unoptimize old_p, locking text_mutex. */
1632 ret = register_aggr_kprobe(old_p, p);
1633 goto out;
1634 }
1635
1636 cpus_read_lock();
1637 /* Prevent text modification */
1638 mutex_lock(&text_mutex);
1639 ret = prepare_kprobe(p);
1640 mutex_unlock(&text_mutex);
1641 cpus_read_unlock();
1642 if (ret)
1643 goto out;
1644
1645 INIT_HLIST_NODE(&p->hlist);
1646 hlist_add_head_rcu(&p->hlist,
1647 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1648
1649 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1650 ret = arm_kprobe(p);
1651 if (ret) {
1652 hlist_del_rcu(&p->hlist);
1653 synchronize_rcu();
1654 goto out;
1655 }
1656 }
1657
1658 /* Try to optimize kprobe */
1659 try_to_optimize_kprobe(p);
1660out:
1661 mutex_unlock(&kprobe_mutex);
1662
1663 if (probed_mod)
1664 module_put(probed_mod);
1665
1666 return ret;
1667}
1668EXPORT_SYMBOL_GPL(register_kprobe);
1669
1670/* Check if all probes on the aggrprobe are disabled */
1671static int aggr_kprobe_disabled(struct kprobe *ap)
1672{
1673 struct kprobe *kp;
1674
1675 lockdep_assert_held(&kprobe_mutex);
1676
1677 list_for_each_entry(kp, &ap->list, list)
1678 if (!kprobe_disabled(kp))
1679 /*
1680 * There is an active probe on the list.
1681 * We can't disable this ap.
1682 */
1683 return 0;
1684
1685 return 1;
1686}
1687
1688/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1689static struct kprobe *__disable_kprobe(struct kprobe *p)
1690{
1691 struct kprobe *orig_p;
1692 int ret;
1693
1694 /* Get an original kprobe for return */
1695 orig_p = __get_valid_kprobe(p);
1696 if (unlikely(orig_p == NULL))
1697 return ERR_PTR(-EINVAL);
1698
1699 if (!kprobe_disabled(p)) {
1700 /* Disable probe if it is a child probe */
1701 if (p != orig_p)
1702 p->flags |= KPROBE_FLAG_DISABLED;
1703
1704 /* Try to disarm and disable this/parent probe */
1705 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1706 /*
1707 * If kprobes_all_disarmed is set, orig_p
1708 * should have already been disarmed, so
1709 * skip unneed disarming process.
1710 */
1711 if (!kprobes_all_disarmed) {
1712 ret = disarm_kprobe(orig_p, true);
1713 if (ret) {
1714 p->flags &= ~KPROBE_FLAG_DISABLED;
1715 return ERR_PTR(ret);
1716 }
1717 }
1718 orig_p->flags |= KPROBE_FLAG_DISABLED;
1719 }
1720 }
1721
1722 return orig_p;
1723}
1724
1725/*
1726 * Unregister a kprobe without a scheduler synchronization.
1727 */
1728static int __unregister_kprobe_top(struct kprobe *p)
1729{
1730 struct kprobe *ap, *list_p;
1731
1732 /* Disable kprobe. This will disarm it if needed. */
1733 ap = __disable_kprobe(p);
1734 if (IS_ERR(ap))
1735 return PTR_ERR(ap);
1736
1737 if (ap == p)
1738 /*
1739 * This probe is an independent(and non-optimized) kprobe
1740 * (not an aggrprobe). Remove from the hash list.
1741 */
1742 goto disarmed;
1743
1744 /* Following process expects this probe is an aggrprobe */
1745 WARN_ON(!kprobe_aggrprobe(ap));
1746
1747 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1748 /*
1749 * !disarmed could be happen if the probe is under delayed
1750 * unoptimizing.
1751 */
1752 goto disarmed;
1753 else {
1754 /* If disabling probe has special handlers, update aggrprobe */
1755 if (p->post_handler && !kprobe_gone(p)) {
1756 list_for_each_entry(list_p, &ap->list, list) {
1757 if ((list_p != p) && (list_p->post_handler))
1758 goto noclean;
1759 }
1760 ap->post_handler = NULL;
1761 }
1762noclean:
1763 /*
1764 * Remove from the aggrprobe: this path will do nothing in
1765 * __unregister_kprobe_bottom().
1766 */
1767 list_del_rcu(&p->list);
1768 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1769 /*
1770 * Try to optimize this probe again, because post
1771 * handler may have been changed.
1772 */
1773 optimize_kprobe(ap);
1774 }
1775 return 0;
1776
1777disarmed:
1778 hlist_del_rcu(&ap->hlist);
1779 return 0;
1780}
1781
1782static void __unregister_kprobe_bottom(struct kprobe *p)
1783{
1784 struct kprobe *ap;
1785
1786 if (list_empty(&p->list))
1787 /* This is an independent kprobe */
1788 arch_remove_kprobe(p);
1789 else if (list_is_singular(&p->list)) {
1790 /* This is the last child of an aggrprobe */
1791 ap = list_entry(p->list.next, struct kprobe, list);
1792 list_del(&p->list);
1793 free_aggr_kprobe(ap);
1794 }
1795 /* Otherwise, do nothing. */
1796}
1797
1798int register_kprobes(struct kprobe **kps, int num)
1799{
1800 int i, ret = 0;
1801
1802 if (num <= 0)
1803 return -EINVAL;
1804 for (i = 0; i < num; i++) {
1805 ret = register_kprobe(kps[i]);
1806 if (ret < 0) {
1807 if (i > 0)
1808 unregister_kprobes(kps, i);
1809 break;
1810 }
1811 }
1812 return ret;
1813}
1814EXPORT_SYMBOL_GPL(register_kprobes);
1815
1816void unregister_kprobe(struct kprobe *p)
1817{
1818 unregister_kprobes(&p, 1);
1819}
1820EXPORT_SYMBOL_GPL(unregister_kprobe);
1821
1822void unregister_kprobes(struct kprobe **kps, int num)
1823{
1824 int i;
1825
1826 if (num <= 0)
1827 return;
1828 mutex_lock(&kprobe_mutex);
1829 for (i = 0; i < num; i++)
1830 if (__unregister_kprobe_top(kps[i]) < 0)
1831 kps[i]->addr = NULL;
1832 mutex_unlock(&kprobe_mutex);
1833
1834 synchronize_rcu();
1835 for (i = 0; i < num; i++)
1836 if (kps[i]->addr)
1837 __unregister_kprobe_bottom(kps[i]);
1838}
1839EXPORT_SYMBOL_GPL(unregister_kprobes);
1840
1841int __weak kprobe_exceptions_notify(struct notifier_block *self,
1842 unsigned long val, void *data)
1843{
1844 return NOTIFY_DONE;
1845}
1846NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1847
1848static struct notifier_block kprobe_exceptions_nb = {
1849 .notifier_call = kprobe_exceptions_notify,
1850 .priority = 0x7fffffff /* we need to be notified first */
1851};
1852
1853unsigned long __weak arch_deref_entry_point(void *entry)
1854{
1855 return (unsigned long)entry;
1856}
1857
1858#ifdef CONFIG_KRETPROBES
1859
1860unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
1861 void *trampoline_address,
1862 void *frame_pointer)
1863{
1864 kprobe_opcode_t *correct_ret_addr = NULL;
1865 struct kretprobe_instance *ri = NULL;
1866 struct llist_node *first, *node;
1867 struct kretprobe *rp;
1868
1869 /* Find all nodes for this frame. */
1870 first = node = current->kretprobe_instances.first;
1871 while (node) {
1872 ri = container_of(node, struct kretprobe_instance, llist);
1873
1874 BUG_ON(ri->fp != frame_pointer);
1875
1876 if (ri->ret_addr != trampoline_address) {
1877 correct_ret_addr = ri->ret_addr;
1878 /*
1879 * This is the real return address. Any other
1880 * instances associated with this task are for
1881 * other calls deeper on the call stack
1882 */
1883 goto found;
1884 }
1885
1886 node = node->next;
1887 }
1888 pr_err("Oops! Kretprobe fails to find correct return address.\n");
1889 BUG_ON(1);
1890
1891found:
1892 /* Unlink all nodes for this frame. */
1893 current->kretprobe_instances.first = node->next;
1894 node->next = NULL;
1895
1896 /* Run them.. */
1897 while (first) {
1898 ri = container_of(first, struct kretprobe_instance, llist);
1899 first = first->next;
1900
1901 rp = get_kretprobe(ri);
1902 if (rp && rp->handler) {
1903 struct kprobe *prev = kprobe_running();
1904
1905 __this_cpu_write(current_kprobe, &rp->kp);
1906 ri->ret_addr = correct_ret_addr;
1907 rp->handler(ri, regs);
1908 __this_cpu_write(current_kprobe, prev);
1909 }
1910
1911 recycle_rp_inst(ri);
1912 }
1913
1914 return (unsigned long)correct_ret_addr;
1915}
1916NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
1917
1918/*
1919 * This kprobe pre_handler is registered with every kretprobe. When probe
1920 * hits it will set up the return probe.
1921 */
1922static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1923{
1924 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1925 struct kretprobe_instance *ri;
1926 struct freelist_node *fn;
1927
1928 fn = freelist_try_get(&rp->freelist);
1929 if (!fn) {
1930 rp->nmissed++;
1931 return 0;
1932 }
1933
1934 ri = container_of(fn, struct kretprobe_instance, freelist);
1935
1936 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1937 freelist_add(&ri->freelist, &rp->freelist);
1938 return 0;
1939 }
1940
1941 arch_prepare_kretprobe(ri, regs);
1942
1943 __llist_add(&ri->llist, ¤t->kretprobe_instances);
1944
1945 return 0;
1946}
1947NOKPROBE_SYMBOL(pre_handler_kretprobe);
1948
1949bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1950{
1951 return !offset;
1952}
1953
1954/**
1955 * kprobe_on_func_entry() -- check whether given address is function entry
1956 * @addr: Target address
1957 * @sym: Target symbol name
1958 * @offset: The offset from the symbol or the address
1959 *
1960 * This checks whether the given @addr+@offset or @sym+@offset is on the
1961 * function entry address or not.
1962 * This returns 0 if it is the function entry, or -EINVAL if it is not.
1963 * And also it returns -ENOENT if it fails the symbol or address lookup.
1964 * Caller must pass @addr or @sym (either one must be NULL), or this
1965 * returns -EINVAL.
1966 */
1967int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1968{
1969 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1970
1971 if (IS_ERR(kp_addr))
1972 return PTR_ERR(kp_addr);
1973
1974 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
1975 return -ENOENT;
1976
1977 if (!arch_kprobe_on_func_entry(offset))
1978 return -EINVAL;
1979
1980 return 0;
1981}
1982
1983int register_kretprobe(struct kretprobe *rp)
1984{
1985 int ret;
1986 struct kretprobe_instance *inst;
1987 int i;
1988 void *addr;
1989
1990 ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
1991 if (ret)
1992 return ret;
1993
1994 /* If only rp->kp.addr is specified, check reregistering kprobes */
1995 if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
1996 return -EINVAL;
1997
1998 if (kretprobe_blacklist_size) {
1999 addr = kprobe_addr(&rp->kp);
2000 if (IS_ERR(addr))
2001 return PTR_ERR(addr);
2002
2003 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2004 if (kretprobe_blacklist[i].addr == addr)
2005 return -EINVAL;
2006 }
2007 }
2008
2009 rp->kp.pre_handler = pre_handler_kretprobe;
2010 rp->kp.post_handler = NULL;
2011
2012 /* Pre-allocate memory for max kretprobe instances */
2013 if (rp->maxactive <= 0) {
2014#ifdef CONFIG_PREEMPTION
2015 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2016#else
2017 rp->maxactive = num_possible_cpus();
2018#endif
2019 }
2020 rp->freelist.head = NULL;
2021 rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2022 if (!rp->rph)
2023 return -ENOMEM;
2024
2025 rp->rph->rp = rp;
2026 for (i = 0; i < rp->maxactive; i++) {
2027 inst = kzalloc(sizeof(struct kretprobe_instance) +
2028 rp->data_size, GFP_KERNEL);
2029 if (inst == NULL) {
2030 refcount_set(&rp->rph->ref, i);
2031 free_rp_inst(rp);
2032 return -ENOMEM;
2033 }
2034 inst->rph = rp->rph;
2035 freelist_add(&inst->freelist, &rp->freelist);
2036 }
2037 refcount_set(&rp->rph->ref, i);
2038
2039 rp->nmissed = 0;
2040 /* Establish function entry probe point */
2041 ret = register_kprobe(&rp->kp);
2042 if (ret != 0)
2043 free_rp_inst(rp);
2044 return ret;
2045}
2046EXPORT_SYMBOL_GPL(register_kretprobe);
2047
2048int register_kretprobes(struct kretprobe **rps, int num)
2049{
2050 int ret = 0, i;
2051
2052 if (num <= 0)
2053 return -EINVAL;
2054 for (i = 0; i < num; i++) {
2055 ret = register_kretprobe(rps[i]);
2056 if (ret < 0) {
2057 if (i > 0)
2058 unregister_kretprobes(rps, i);
2059 break;
2060 }
2061 }
2062 return ret;
2063}
2064EXPORT_SYMBOL_GPL(register_kretprobes);
2065
2066void unregister_kretprobe(struct kretprobe *rp)
2067{
2068 unregister_kretprobes(&rp, 1);
2069}
2070EXPORT_SYMBOL_GPL(unregister_kretprobe);
2071
2072void unregister_kretprobes(struct kretprobe **rps, int num)
2073{
2074 int i;
2075
2076 if (num <= 0)
2077 return;
2078 mutex_lock(&kprobe_mutex);
2079 for (i = 0; i < num; i++) {
2080 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2081 rps[i]->kp.addr = NULL;
2082 rps[i]->rph->rp = NULL;
2083 }
2084 mutex_unlock(&kprobe_mutex);
2085
2086 synchronize_rcu();
2087 for (i = 0; i < num; i++) {
2088 if (rps[i]->kp.addr) {
2089 __unregister_kprobe_bottom(&rps[i]->kp);
2090 free_rp_inst(rps[i]);
2091 }
2092 }
2093}
2094EXPORT_SYMBOL_GPL(unregister_kretprobes);
2095
2096#else /* CONFIG_KRETPROBES */
2097int register_kretprobe(struct kretprobe *rp)
2098{
2099 return -ENOSYS;
2100}
2101EXPORT_SYMBOL_GPL(register_kretprobe);
2102
2103int register_kretprobes(struct kretprobe **rps, int num)
2104{
2105 return -ENOSYS;
2106}
2107EXPORT_SYMBOL_GPL(register_kretprobes);
2108
2109void unregister_kretprobe(struct kretprobe *rp)
2110{
2111}
2112EXPORT_SYMBOL_GPL(unregister_kretprobe);
2113
2114void unregister_kretprobes(struct kretprobe **rps, int num)
2115{
2116}
2117EXPORT_SYMBOL_GPL(unregister_kretprobes);
2118
2119static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2120{
2121 return 0;
2122}
2123NOKPROBE_SYMBOL(pre_handler_kretprobe);
2124
2125#endif /* CONFIG_KRETPROBES */
2126
2127/* Set the kprobe gone and remove its instruction buffer. */
2128static void kill_kprobe(struct kprobe *p)
2129{
2130 struct kprobe *kp;
2131
2132 lockdep_assert_held(&kprobe_mutex);
2133
2134 p->flags |= KPROBE_FLAG_GONE;
2135 if (kprobe_aggrprobe(p)) {
2136 /*
2137 * If this is an aggr_kprobe, we have to list all the
2138 * chained probes and mark them GONE.
2139 */
2140 list_for_each_entry(kp, &p->list, list)
2141 kp->flags |= KPROBE_FLAG_GONE;
2142 p->post_handler = NULL;
2143 kill_optimized_kprobe(p);
2144 }
2145 /*
2146 * Here, we can remove insn_slot safely, because no thread calls
2147 * the original probed function (which will be freed soon) any more.
2148 */
2149 arch_remove_kprobe(p);
2150
2151 /*
2152 * The module is going away. We should disarm the kprobe which
2153 * is using ftrace, because ftrace framework is still available at
2154 * MODULE_STATE_GOING notification.
2155 */
2156 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2157 disarm_kprobe_ftrace(p);
2158}
2159
2160/* Disable one kprobe */
2161int disable_kprobe(struct kprobe *kp)
2162{
2163 int ret = 0;
2164 struct kprobe *p;
2165
2166 mutex_lock(&kprobe_mutex);
2167
2168 /* Disable this kprobe */
2169 p = __disable_kprobe(kp);
2170 if (IS_ERR(p))
2171 ret = PTR_ERR(p);
2172
2173 mutex_unlock(&kprobe_mutex);
2174 return ret;
2175}
2176EXPORT_SYMBOL_GPL(disable_kprobe);
2177
2178/* Enable one kprobe */
2179int enable_kprobe(struct kprobe *kp)
2180{
2181 int ret = 0;
2182 struct kprobe *p;
2183
2184 mutex_lock(&kprobe_mutex);
2185
2186 /* Check whether specified probe is valid. */
2187 p = __get_valid_kprobe(kp);
2188 if (unlikely(p == NULL)) {
2189 ret = -EINVAL;
2190 goto out;
2191 }
2192
2193 if (kprobe_gone(kp)) {
2194 /* This kprobe has gone, we couldn't enable it. */
2195 ret = -EINVAL;
2196 goto out;
2197 }
2198
2199 if (p != kp)
2200 kp->flags &= ~KPROBE_FLAG_DISABLED;
2201
2202 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2203 p->flags &= ~KPROBE_FLAG_DISABLED;
2204 ret = arm_kprobe(p);
2205 if (ret)
2206 p->flags |= KPROBE_FLAG_DISABLED;
2207 }
2208out:
2209 mutex_unlock(&kprobe_mutex);
2210 return ret;
2211}
2212EXPORT_SYMBOL_GPL(enable_kprobe);
2213
2214/* Caller must NOT call this in usual path. This is only for critical case */
2215void dump_kprobe(struct kprobe *kp)
2216{
2217 pr_err("Dumping kprobe:\n");
2218 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2219 kp->symbol_name, kp->offset, kp->addr);
2220}
2221NOKPROBE_SYMBOL(dump_kprobe);
2222
2223int kprobe_add_ksym_blacklist(unsigned long entry)
2224{
2225 struct kprobe_blacklist_entry *ent;
2226 unsigned long offset = 0, size = 0;
2227
2228 if (!kernel_text_address(entry) ||
2229 !kallsyms_lookup_size_offset(entry, &size, &offset))
2230 return -EINVAL;
2231
2232 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2233 if (!ent)
2234 return -ENOMEM;
2235 ent->start_addr = entry;
2236 ent->end_addr = entry + size;
2237 INIT_LIST_HEAD(&ent->list);
2238 list_add_tail(&ent->list, &kprobe_blacklist);
2239
2240 return (int)size;
2241}
2242
2243/* Add all symbols in given area into kprobe blacklist */
2244int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2245{
2246 unsigned long entry;
2247 int ret = 0;
2248
2249 for (entry = start; entry < end; entry += ret) {
2250 ret = kprobe_add_ksym_blacklist(entry);
2251 if (ret < 0)
2252 return ret;
2253 if (ret == 0) /* In case of alias symbol */
2254 ret = 1;
2255 }
2256 return 0;
2257}
2258
2259/* Remove all symbols in given area from kprobe blacklist */
2260static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2261{
2262 struct kprobe_blacklist_entry *ent, *n;
2263
2264 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2265 if (ent->start_addr < start || ent->start_addr >= end)
2266 continue;
2267 list_del(&ent->list);
2268 kfree(ent);
2269 }
2270}
2271
2272static void kprobe_remove_ksym_blacklist(unsigned long entry)
2273{
2274 kprobe_remove_area_blacklist(entry, entry + 1);
2275}
2276
2277int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2278 char *type, char *sym)
2279{
2280 return -ERANGE;
2281}
2282
2283int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2284 char *sym)
2285{
2286#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2287 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2288 return 0;
2289#ifdef CONFIG_OPTPROBES
2290 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2291 return 0;
2292#endif
2293#endif
2294 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2295 return 0;
2296 return -ERANGE;
2297}
2298
2299int __init __weak arch_populate_kprobe_blacklist(void)
2300{
2301 return 0;
2302}
2303
2304/*
2305 * Lookup and populate the kprobe_blacklist.
2306 *
2307 * Unlike the kretprobe blacklist, we'll need to determine
2308 * the range of addresses that belong to the said functions,
2309 * since a kprobe need not necessarily be at the beginning
2310 * of a function.
2311 */
2312static int __init populate_kprobe_blacklist(unsigned long *start,
2313 unsigned long *end)
2314{
2315 unsigned long entry;
2316 unsigned long *iter;
2317 int ret;
2318
2319 for (iter = start; iter < end; iter++) {
2320 entry = arch_deref_entry_point((void *)*iter);
2321 ret = kprobe_add_ksym_blacklist(entry);
2322 if (ret == -EINVAL)
2323 continue;
2324 if (ret < 0)
2325 return ret;
2326 }
2327
2328 /* Symbols in __kprobes_text are blacklisted */
2329 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2330 (unsigned long)__kprobes_text_end);
2331 if (ret)
2332 return ret;
2333
2334 /* Symbols in noinstr section are blacklisted */
2335 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2336 (unsigned long)__noinstr_text_end);
2337
2338 return ret ? : arch_populate_kprobe_blacklist();
2339}
2340
2341static void add_module_kprobe_blacklist(struct module *mod)
2342{
2343 unsigned long start, end;
2344 int i;
2345
2346 if (mod->kprobe_blacklist) {
2347 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2348 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2349 }
2350
2351 start = (unsigned long)mod->kprobes_text_start;
2352 if (start) {
2353 end = start + mod->kprobes_text_size;
2354 kprobe_add_area_blacklist(start, end);
2355 }
2356
2357 start = (unsigned long)mod->noinstr_text_start;
2358 if (start) {
2359 end = start + mod->noinstr_text_size;
2360 kprobe_add_area_blacklist(start, end);
2361 }
2362}
2363
2364static void remove_module_kprobe_blacklist(struct module *mod)
2365{
2366 unsigned long start, end;
2367 int i;
2368
2369 if (mod->kprobe_blacklist) {
2370 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2371 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2372 }
2373
2374 start = (unsigned long)mod->kprobes_text_start;
2375 if (start) {
2376 end = start + mod->kprobes_text_size;
2377 kprobe_remove_area_blacklist(start, end);
2378 }
2379
2380 start = (unsigned long)mod->noinstr_text_start;
2381 if (start) {
2382 end = start + mod->noinstr_text_size;
2383 kprobe_remove_area_blacklist(start, end);
2384 }
2385}
2386
2387/* Module notifier call back, checking kprobes on the module */
2388static int kprobes_module_callback(struct notifier_block *nb,
2389 unsigned long val, void *data)
2390{
2391 struct module *mod = data;
2392 struct hlist_head *head;
2393 struct kprobe *p;
2394 unsigned int i;
2395 int checkcore = (val == MODULE_STATE_GOING);
2396
2397 if (val == MODULE_STATE_COMING) {
2398 mutex_lock(&kprobe_mutex);
2399 add_module_kprobe_blacklist(mod);
2400 mutex_unlock(&kprobe_mutex);
2401 }
2402 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2403 return NOTIFY_DONE;
2404
2405 /*
2406 * When MODULE_STATE_GOING was notified, both of module .text and
2407 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2408 * notified, only .init.text section would be freed. We need to
2409 * disable kprobes which have been inserted in the sections.
2410 */
2411 mutex_lock(&kprobe_mutex);
2412 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2413 head = &kprobe_table[i];
2414 hlist_for_each_entry(p, head, hlist)
2415 if (within_module_init((unsigned long)p->addr, mod) ||
2416 (checkcore &&
2417 within_module_core((unsigned long)p->addr, mod))) {
2418 /*
2419 * The vaddr this probe is installed will soon
2420 * be vfreed buy not synced to disk. Hence,
2421 * disarming the breakpoint isn't needed.
2422 *
2423 * Note, this will also move any optimized probes
2424 * that are pending to be removed from their
2425 * corresponding lists to the freeing_list and
2426 * will not be touched by the delayed
2427 * kprobe_optimizer work handler.
2428 */
2429 kill_kprobe(p);
2430 }
2431 }
2432 if (val == MODULE_STATE_GOING)
2433 remove_module_kprobe_blacklist(mod);
2434 mutex_unlock(&kprobe_mutex);
2435 return NOTIFY_DONE;
2436}
2437
2438static struct notifier_block kprobe_module_nb = {
2439 .notifier_call = kprobes_module_callback,
2440 .priority = 0
2441};
2442
2443/* Markers of _kprobe_blacklist section */
2444extern unsigned long __start_kprobe_blacklist[];
2445extern unsigned long __stop_kprobe_blacklist[];
2446
2447void kprobe_free_init_mem(void)
2448{
2449 void *start = (void *)(&__init_begin);
2450 void *end = (void *)(&__init_end);
2451 struct hlist_head *head;
2452 struct kprobe *p;
2453 int i;
2454
2455 mutex_lock(&kprobe_mutex);
2456
2457 /* Kill all kprobes on initmem */
2458 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2459 head = &kprobe_table[i];
2460 hlist_for_each_entry(p, head, hlist) {
2461 if (start <= (void *)p->addr && (void *)p->addr < end)
2462 kill_kprobe(p);
2463 }
2464 }
2465
2466 mutex_unlock(&kprobe_mutex);
2467}
2468
2469static int __init init_kprobes(void)
2470{
2471 int i, err = 0;
2472
2473 /* FIXME allocate the probe table, currently defined statically */
2474 /* initialize all list heads */
2475 for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2476 INIT_HLIST_HEAD(&kprobe_table[i]);
2477
2478 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2479 __stop_kprobe_blacklist);
2480 if (err) {
2481 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2482 pr_err("Please take care of using kprobes.\n");
2483 }
2484
2485 if (kretprobe_blacklist_size) {
2486 /* lookup the function address from its name */
2487 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2488 kretprobe_blacklist[i].addr =
2489 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2490 if (!kretprobe_blacklist[i].addr)
2491 printk("kretprobe: lookup failed: %s\n",
2492 kretprobe_blacklist[i].name);
2493 }
2494 }
2495
2496 /* By default, kprobes are armed */
2497 kprobes_all_disarmed = false;
2498
2499#if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2500 /* Init kprobe_optinsn_slots for allocation */
2501 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2502#endif
2503
2504 err = arch_init_kprobes();
2505 if (!err)
2506 err = register_die_notifier(&kprobe_exceptions_nb);
2507 if (!err)
2508 err = register_module_notifier(&kprobe_module_nb);
2509
2510 kprobes_initialized = (err == 0);
2511
2512 if (!err)
2513 init_test_probes();
2514 return err;
2515}
2516early_initcall(init_kprobes);
2517
2518#if defined(CONFIG_OPTPROBES)
2519static int __init init_optprobes(void)
2520{
2521 /*
2522 * Enable kprobe optimization - this kicks the optimizer which
2523 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2524 * not spawned in early initcall. So delay the optimization.
2525 */
2526 optimize_all_kprobes();
2527
2528 return 0;
2529}
2530subsys_initcall(init_optprobes);
2531#endif
2532
2533#ifdef CONFIG_DEBUG_FS
2534static void report_probe(struct seq_file *pi, struct kprobe *p,
2535 const char *sym, int offset, char *modname, struct kprobe *pp)
2536{
2537 char *kprobe_type;
2538 void *addr = p->addr;
2539
2540 if (p->pre_handler == pre_handler_kretprobe)
2541 kprobe_type = "r";
2542 else
2543 kprobe_type = "k";
2544
2545 if (!kallsyms_show_value(pi->file->f_cred))
2546 addr = NULL;
2547
2548 if (sym)
2549 seq_printf(pi, "%px %s %s+0x%x %s ",
2550 addr, kprobe_type, sym, offset,
2551 (modname ? modname : " "));
2552 else /* try to use %pS */
2553 seq_printf(pi, "%px %s %pS ",
2554 addr, kprobe_type, p->addr);
2555
2556 if (!pp)
2557 pp = p;
2558 seq_printf(pi, "%s%s%s%s\n",
2559 (kprobe_gone(p) ? "[GONE]" : ""),
2560 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2561 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2562 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2563}
2564
2565static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2566{
2567 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2568}
2569
2570static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2571{
2572 (*pos)++;
2573 if (*pos >= KPROBE_TABLE_SIZE)
2574 return NULL;
2575 return pos;
2576}
2577
2578static void kprobe_seq_stop(struct seq_file *f, void *v)
2579{
2580 /* Nothing to do */
2581}
2582
2583static int show_kprobe_addr(struct seq_file *pi, void *v)
2584{
2585 struct hlist_head *head;
2586 struct kprobe *p, *kp;
2587 const char *sym = NULL;
2588 unsigned int i = *(loff_t *) v;
2589 unsigned long offset = 0;
2590 char *modname, namebuf[KSYM_NAME_LEN];
2591
2592 head = &kprobe_table[i];
2593 preempt_disable();
2594 hlist_for_each_entry_rcu(p, head, hlist) {
2595 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2596 &offset, &modname, namebuf);
2597 if (kprobe_aggrprobe(p)) {
2598 list_for_each_entry_rcu(kp, &p->list, list)
2599 report_probe(pi, kp, sym, offset, modname, p);
2600 } else
2601 report_probe(pi, p, sym, offset, modname, NULL);
2602 }
2603 preempt_enable();
2604 return 0;
2605}
2606
2607static const struct seq_operations kprobes_sops = {
2608 .start = kprobe_seq_start,
2609 .next = kprobe_seq_next,
2610 .stop = kprobe_seq_stop,
2611 .show = show_kprobe_addr
2612};
2613
2614DEFINE_SEQ_ATTRIBUTE(kprobes);
2615
2616/* kprobes/blacklist -- shows which functions can not be probed */
2617static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2618{
2619 mutex_lock(&kprobe_mutex);
2620 return seq_list_start(&kprobe_blacklist, *pos);
2621}
2622
2623static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2624{
2625 return seq_list_next(v, &kprobe_blacklist, pos);
2626}
2627
2628static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2629{
2630 struct kprobe_blacklist_entry *ent =
2631 list_entry(v, struct kprobe_blacklist_entry, list);
2632
2633 /*
2634 * If /proc/kallsyms is not showing kernel address, we won't
2635 * show them here either.
2636 */
2637 if (!kallsyms_show_value(m->file->f_cred))
2638 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2639 (void *)ent->start_addr);
2640 else
2641 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2642 (void *)ent->end_addr, (void *)ent->start_addr);
2643 return 0;
2644}
2645
2646static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2647{
2648 mutex_unlock(&kprobe_mutex);
2649}
2650
2651static const struct seq_operations kprobe_blacklist_sops = {
2652 .start = kprobe_blacklist_seq_start,
2653 .next = kprobe_blacklist_seq_next,
2654 .stop = kprobe_blacklist_seq_stop,
2655 .show = kprobe_blacklist_seq_show,
2656};
2657DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2658
2659static int arm_all_kprobes(void)
2660{
2661 struct hlist_head *head;
2662 struct kprobe *p;
2663 unsigned int i, total = 0, errors = 0;
2664 int err, ret = 0;
2665
2666 mutex_lock(&kprobe_mutex);
2667
2668 /* If kprobes are armed, just return */
2669 if (!kprobes_all_disarmed)
2670 goto already_enabled;
2671
2672 /*
2673 * optimize_kprobe() called by arm_kprobe() checks
2674 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2675 * arm_kprobe.
2676 */
2677 kprobes_all_disarmed = false;
2678 /* Arming kprobes doesn't optimize kprobe itself */
2679 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2680 head = &kprobe_table[i];
2681 /* Arm all kprobes on a best-effort basis */
2682 hlist_for_each_entry(p, head, hlist) {
2683 if (!kprobe_disabled(p)) {
2684 err = arm_kprobe(p);
2685 if (err) {
2686 errors++;
2687 ret = err;
2688 }
2689 total++;
2690 }
2691 }
2692 }
2693
2694 if (errors)
2695 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2696 errors, total);
2697 else
2698 pr_info("Kprobes globally enabled\n");
2699
2700already_enabled:
2701 mutex_unlock(&kprobe_mutex);
2702 return ret;
2703}
2704
2705static int disarm_all_kprobes(void)
2706{
2707 struct hlist_head *head;
2708 struct kprobe *p;
2709 unsigned int i, total = 0, errors = 0;
2710 int err, ret = 0;
2711
2712 mutex_lock(&kprobe_mutex);
2713
2714 /* If kprobes are already disarmed, just return */
2715 if (kprobes_all_disarmed) {
2716 mutex_unlock(&kprobe_mutex);
2717 return 0;
2718 }
2719
2720 kprobes_all_disarmed = true;
2721
2722 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2723 head = &kprobe_table[i];
2724 /* Disarm all kprobes on a best-effort basis */
2725 hlist_for_each_entry(p, head, hlist) {
2726 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2727 err = disarm_kprobe(p, false);
2728 if (err) {
2729 errors++;
2730 ret = err;
2731 }
2732 total++;
2733 }
2734 }
2735 }
2736
2737 if (errors)
2738 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2739 errors, total);
2740 else
2741 pr_info("Kprobes globally disabled\n");
2742
2743 mutex_unlock(&kprobe_mutex);
2744
2745 /* Wait for disarming all kprobes by optimizer */
2746 wait_for_kprobe_optimizer();
2747
2748 return ret;
2749}
2750
2751/*
2752 * XXX: The debugfs bool file interface doesn't allow for callbacks
2753 * when the bool state is switched. We can reuse that facility when
2754 * available
2755 */
2756static ssize_t read_enabled_file_bool(struct file *file,
2757 char __user *user_buf, size_t count, loff_t *ppos)
2758{
2759 char buf[3];
2760
2761 if (!kprobes_all_disarmed)
2762 buf[0] = '1';
2763 else
2764 buf[0] = '0';
2765 buf[1] = '\n';
2766 buf[2] = 0x00;
2767 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2768}
2769
2770static ssize_t write_enabled_file_bool(struct file *file,
2771 const char __user *user_buf, size_t count, loff_t *ppos)
2772{
2773 char buf[32];
2774 size_t buf_size;
2775 int ret = 0;
2776
2777 buf_size = min(count, (sizeof(buf)-1));
2778 if (copy_from_user(buf, user_buf, buf_size))
2779 return -EFAULT;
2780
2781 buf[buf_size] = '\0';
2782 switch (buf[0]) {
2783 case 'y':
2784 case 'Y':
2785 case '1':
2786 ret = arm_all_kprobes();
2787 break;
2788 case 'n':
2789 case 'N':
2790 case '0':
2791 ret = disarm_all_kprobes();
2792 break;
2793 default:
2794 return -EINVAL;
2795 }
2796
2797 if (ret)
2798 return ret;
2799
2800 return count;
2801}
2802
2803static const struct file_operations fops_kp = {
2804 .read = read_enabled_file_bool,
2805 .write = write_enabled_file_bool,
2806 .llseek = default_llseek,
2807};
2808
2809static int __init debugfs_kprobe_init(void)
2810{
2811 struct dentry *dir;
2812 unsigned int value = 1;
2813
2814 dir = debugfs_create_dir("kprobes", NULL);
2815
2816 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2817
2818 debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2819
2820 debugfs_create_file("blacklist", 0400, dir, NULL,
2821 &kprobe_blacklist_fops);
2822
2823 return 0;
2824}
2825
2826late_initcall(debugfs_kprobe_init);
2827#endif /* CONFIG_DEBUG_FS */