Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 *  Kernel Probes (KProbes)
   3 *  kernel/kprobes.c
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18 *
  19 * Copyright (C) IBM Corporation, 2002, 2004
  20 *
  21 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  22 *		Probes initial implementation (includes suggestions from
  23 *		Rusty Russell).
  24 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
  25 *		hlists and exceptions notifier as suggested by Andi Kleen.
  26 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  27 *		interface to access function arguments.
  28 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
  29 *		exceptions notifier to be first on the priority list.
  30 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  31 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  32 *		<prasanna@in.ibm.com> added function-return probes.
  33 */
  34#include <linux/kprobes.h>
  35#include <linux/hash.h>
  36#include <linux/init.h>
  37#include <linux/slab.h>
  38#include <linux/stddef.h>
  39#include <linux/export.h>
  40#include <linux/moduleloader.h>
  41#include <linux/kallsyms.h>
  42#include <linux/freezer.h>
  43#include <linux/seq_file.h>
  44#include <linux/debugfs.h>
  45#include <linux/sysctl.h>
  46#include <linux/kdebug.h>
  47#include <linux/memory.h>
  48#include <linux/ftrace.h>
  49#include <linux/cpu.h>
  50#include <linux/jump_label.h>
 
 
  51
  52#include <asm-generic/sections.h>
  53#include <asm/cacheflush.h>
  54#include <asm/errno.h>
  55#include <asm/uaccess.h>
  56
  57#define KPROBE_HASH_BITS 6
  58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
  59
  60
  61/*
  62 * Some oddball architectures like 64bit powerpc have function descriptors
  63 * so this must be overridable.
  64 */
  65#ifndef kprobe_lookup_name
  66#define kprobe_lookup_name(name, addr) \
  67	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
  68#endif
  69
  70static int kprobes_initialized;
 
 
 
 
 
  71static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
  72static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
  73
  74/* NOTE: change this value only with kprobe_mutex held */
  75static bool kprobes_all_disarmed;
  76
  77/* This protects kprobe_table and optimizing_list */
  78static DEFINE_MUTEX(kprobe_mutex);
  79static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
  80static struct {
  81	raw_spinlock_t lock ____cacheline_aligned_in_smp;
  82} kretprobe_table_locks[KPROBE_TABLE_SIZE];
  83
  84static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
 
  85{
  86	return &(kretprobe_table_locks[hash].lock);
  87}
  88
  89/*
  90 * Normally, functions that we'd want to prohibit kprobes in, are marked
  91 * __kprobes. But, there are cases where such functions already belong to
  92 * a different section (__sched for preempt_schedule)
  93 *
  94 * For such cases, we now have a blacklist
  95 */
  96static struct kprobe_blackpoint kprobe_blacklist[] = {
  97	{"preempt_schedule",},
  98	{"native_get_debugreg",},
  99	{"irq_entries_start",},
 100	{"common_interrupt",},
 101	{"mcount",},	/* mcount can be called from everywhere */
 102	{NULL}    /* Terminator */
 103};
 104
 105#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
 106/*
 107 * kprobe->ainsn.insn points to the copy of the instruction to be
 108 * single-stepped. x86_64, POWER4 and above have no-exec support and
 109 * stepping on the instruction on a vmalloced/kmalloced/data page
 110 * is a recipe for disaster
 111 */
 112struct kprobe_insn_page {
 113	struct list_head list;
 114	kprobe_opcode_t *insns;		/* Page of instruction slots */
 
 115	int nused;
 116	int ngarbage;
 117	char slot_used[];
 118};
 119
 120#define KPROBE_INSN_PAGE_SIZE(slots)			\
 121	(offsetof(struct kprobe_insn_page, slot_used) +	\
 122	 (sizeof(char) * (slots)))
 123
 124struct kprobe_insn_cache {
 125	struct list_head pages;	/* list of kprobe_insn_page */
 126	size_t insn_size;	/* size of instruction slot */
 127	int nr_garbage;
 128};
 129
 130static int slots_per_page(struct kprobe_insn_cache *c)
 131{
 132	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
 133}
 134
 135enum kprobe_slot_state {
 136	SLOT_CLEAN = 0,
 137	SLOT_DIRTY = 1,
 138	SLOT_USED = 2,
 139};
 140
 141static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_slots */
 142static struct kprobe_insn_cache kprobe_insn_slots = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 143	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
 144	.insn_size = MAX_INSN_SIZE,
 145	.nr_garbage = 0,
 146};
 147static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
 148
 149/**
 150 * __get_insn_slot() - Find a slot on an executable page for an instruction.
 151 * We allocate an executable page if there's no room on existing ones.
 152 */
 153static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
 154{
 155	struct kprobe_insn_page *kip;
 
 156
 
 
 157 retry:
 158	list_for_each_entry(kip, &c->pages, list) {
 
 159		if (kip->nused < slots_per_page(c)) {
 160			int i;
 161			for (i = 0; i < slots_per_page(c); i++) {
 162				if (kip->slot_used[i] == SLOT_CLEAN) {
 163					kip->slot_used[i] = SLOT_USED;
 164					kip->nused++;
 165					return kip->insns + (i * c->insn_size);
 
 
 166				}
 167			}
 168			/* kip->nused is broken. Fix it. */
 169			kip->nused = slots_per_page(c);
 170			WARN_ON(1);
 171		}
 172	}
 
 173
 174	/* If there are any garbage slots, collect it and try again. */
 175	if (c->nr_garbage && collect_garbage_slots(c) == 0)
 176		goto retry;
 177
 178	/* All out of space.  Need to allocate a new page. */
 179	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
 180	if (!kip)
 181		return NULL;
 182
 183	/*
 184	 * Use module_alloc so this page is within +/- 2GB of where the
 185	 * kernel image and loaded module images reside. This is required
 186	 * so x86_64 can correctly handle the %rip-relative fixups.
 187	 */
 188	kip->insns = module_alloc(PAGE_SIZE);
 189	if (!kip->insns) {
 190		kfree(kip);
 191		return NULL;
 192	}
 193	INIT_LIST_HEAD(&kip->list);
 194	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
 195	kip->slot_used[0] = SLOT_USED;
 196	kip->nused = 1;
 197	kip->ngarbage = 0;
 198	list_add(&kip->list, &c->pages);
 199	return kip->insns;
 200}
 201
 202
 203kprobe_opcode_t __kprobes *get_insn_slot(void)
 204{
 205	kprobe_opcode_t *ret = NULL;
 206
 207	mutex_lock(&kprobe_insn_mutex);
 208	ret = __get_insn_slot(&kprobe_insn_slots);
 209	mutex_unlock(&kprobe_insn_mutex);
 210
 211	return ret;
 212}
 213
 214/* Return 1 if all garbages are collected, otherwise 0. */
 215static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
 216{
 217	kip->slot_used[idx] = SLOT_CLEAN;
 218	kip->nused--;
 219	if (kip->nused == 0) {
 220		/*
 221		 * Page is no longer in use.  Free it unless
 222		 * it's the last one.  We keep the last one
 223		 * so as not to have to set it up again the
 224		 * next time somebody inserts a probe.
 225		 */
 226		if (!list_is_singular(&kip->list)) {
 227			list_del(&kip->list);
 228			module_free(NULL, kip->insns);
 
 
 
 
 
 
 
 
 229			kfree(kip);
 230		}
 231		return 1;
 232	}
 233	return 0;
 234}
 235
 236static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
 237{
 238	struct kprobe_insn_page *kip, *next;
 239
 240	/* Ensure no-one is interrupted on the garbages */
 241	synchronize_sched();
 242
 243	list_for_each_entry_safe(kip, next, &c->pages, list) {
 244		int i;
 245		if (kip->ngarbage == 0)
 246			continue;
 247		kip->ngarbage = 0;	/* we will collect all garbages */
 248		for (i = 0; i < slots_per_page(c); i++) {
 249			if (kip->slot_used[i] == SLOT_DIRTY &&
 250			    collect_one_slot(kip, i))
 251				break;
 252		}
 253	}
 254	c->nr_garbage = 0;
 255	return 0;
 256}
 257
 258static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
 259				       kprobe_opcode_t *slot, int dirty)
 260{
 261	struct kprobe_insn_page *kip;
 
 262
 263	list_for_each_entry(kip, &c->pages, list) {
 264		long idx = ((long)slot - (long)kip->insns) /
 265				(c->insn_size * sizeof(kprobe_opcode_t));
 266		if (idx >= 0 && idx < slots_per_page(c)) {
 267			WARN_ON(kip->slot_used[idx] != SLOT_USED);
 268			if (dirty) {
 269				kip->slot_used[idx] = SLOT_DIRTY;
 270				kip->ngarbage++;
 271				if (++c->nr_garbage > slots_per_page(c))
 272					collect_garbage_slots(c);
 273			} else
 274				collect_one_slot(kip, idx);
 275			return;
 276		}
 277	}
 278	/* Could not free this slot. */
 279	WARN_ON(1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 280}
 281
 282void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
 
 
 
 
 
 283{
 284	mutex_lock(&kprobe_insn_mutex);
 285	__free_insn_slot(&kprobe_insn_slots, slot, dirty);
 286	mutex_unlock(&kprobe_insn_mutex);
 
 
 
 
 
 
 
 
 
 
 
 287}
 288#ifdef CONFIG_OPTPROBES
 289/* For optimized_kprobe buffer */
 290static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
 291static struct kprobe_insn_cache kprobe_optinsn_slots = {
 292	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
 293	/* .insn_size is initialized later */
 294	.nr_garbage = 0,
 295};
 296/* Get a slot for optimized_kprobe buffer */
 297kprobe_opcode_t __kprobes *get_optinsn_slot(void)
 298{
 299	kprobe_opcode_t *ret = NULL;
 
 300
 301	mutex_lock(&kprobe_optinsn_mutex);
 302	ret = __get_insn_slot(&kprobe_optinsn_slots);
 303	mutex_unlock(&kprobe_optinsn_mutex);
 
 
 
 
 
 
 
 
 304
 305	return ret;
 306}
 307
 308void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
 
 
 
 
 
 
 309{
 310	mutex_lock(&kprobe_optinsn_mutex);
 311	__free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
 312	mutex_unlock(&kprobe_optinsn_mutex);
 313}
 
 
 
 
 
 
 
 
 
 
 
 314#endif
 315#endif
 316
 317/* We have preemption disabled.. so it is safe to use __ versions */
 318static inline void set_kprobe_instance(struct kprobe *kp)
 319{
 320	__this_cpu_write(kprobe_instance, kp);
 321}
 322
 323static inline void reset_kprobe_instance(void)
 324{
 325	__this_cpu_write(kprobe_instance, NULL);
 326}
 327
 328/*
 329 * This routine is called either:
 330 * 	- under the kprobe_mutex - during kprobe_[un]register()
 331 * 				OR
 332 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
 333 */
 334struct kprobe __kprobes *get_kprobe(void *addr)
 335{
 336	struct hlist_head *head;
 337	struct hlist_node *node;
 338	struct kprobe *p;
 339
 340	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
 341	hlist_for_each_entry_rcu(p, node, head, hlist) {
 
 342		if (p->addr == addr)
 343			return p;
 344	}
 345
 346	return NULL;
 347}
 
 348
 349static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
 350
 351/* Return true if the kprobe is an aggregator */
 352static inline int kprobe_aggrprobe(struct kprobe *p)
 353{
 354	return p->pre_handler == aggr_pre_handler;
 355}
 356
 357/* Return true(!0) if the kprobe is unused */
 358static inline int kprobe_unused(struct kprobe *p)
 359{
 360	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
 361	       list_empty(&p->list);
 362}
 363
 364/*
 365 * Keep all fields in the kprobe consistent
 366 */
 367static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
 368{
 369	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
 370	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
 371}
 372
 373#ifdef CONFIG_OPTPROBES
 374/* NOTE: change this value only with kprobe_mutex held */
 375static bool kprobes_allow_optimization;
 376
 377/*
 378 * Call all pre_handler on the list, but ignores its return value.
 379 * This must be called from arch-dep optimized caller.
 380 */
 381void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
 382{
 383	struct kprobe *kp;
 384
 385	list_for_each_entry_rcu(kp, &p->list, list) {
 386		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
 387			set_kprobe_instance(kp);
 388			kp->pre_handler(kp, regs);
 389		}
 390		reset_kprobe_instance();
 391	}
 392}
 
 393
 394/* Free optimized instructions and optimized_kprobe */
 395static __kprobes void free_aggr_kprobe(struct kprobe *p)
 396{
 397	struct optimized_kprobe *op;
 398
 399	op = container_of(p, struct optimized_kprobe, kp);
 400	arch_remove_optimized_kprobe(op);
 401	arch_remove_kprobe(p);
 402	kfree(op);
 403}
 404
 405/* Return true(!0) if the kprobe is ready for optimization. */
 406static inline int kprobe_optready(struct kprobe *p)
 407{
 408	struct optimized_kprobe *op;
 409
 410	if (kprobe_aggrprobe(p)) {
 411		op = container_of(p, struct optimized_kprobe, kp);
 412		return arch_prepared_optinsn(&op->optinsn);
 413	}
 414
 415	return 0;
 416}
 417
 418/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
 419static inline int kprobe_disarmed(struct kprobe *p)
 420{
 421	struct optimized_kprobe *op;
 422
 423	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
 424	if (!kprobe_aggrprobe(p))
 425		return kprobe_disabled(p);
 426
 427	op = container_of(p, struct optimized_kprobe, kp);
 428
 429	return kprobe_disabled(p) && list_empty(&op->list);
 430}
 431
 432/* Return true(!0) if the probe is queued on (un)optimizing lists */
 433static int __kprobes kprobe_queued(struct kprobe *p)
 434{
 435	struct optimized_kprobe *op;
 436
 437	if (kprobe_aggrprobe(p)) {
 438		op = container_of(p, struct optimized_kprobe, kp);
 439		if (!list_empty(&op->list))
 440			return 1;
 441	}
 442	return 0;
 443}
 444
 445/*
 446 * Return an optimized kprobe whose optimizing code replaces
 447 * instructions including addr (exclude breakpoint).
 448 */
 449static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
 450{
 451	int i;
 452	struct kprobe *p = NULL;
 453	struct optimized_kprobe *op;
 454
 455	/* Don't check i == 0, since that is a breakpoint case. */
 456	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
 457		p = get_kprobe((void *)(addr - i));
 458
 459	if (p && kprobe_optready(p)) {
 460		op = container_of(p, struct optimized_kprobe, kp);
 461		if (arch_within_optimized_kprobe(op, addr))
 462			return p;
 463	}
 464
 465	return NULL;
 466}
 467
 468/* Optimization staging list, protected by kprobe_mutex */
 469static LIST_HEAD(optimizing_list);
 470static LIST_HEAD(unoptimizing_list);
 
 471
 472static void kprobe_optimizer(struct work_struct *work);
 473static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
 474static DECLARE_COMPLETION(optimizer_comp);
 475#define OPTIMIZE_DELAY 5
 476
 477/*
 478 * Optimize (replace a breakpoint with a jump) kprobes listed on
 479 * optimizing_list.
 480 */
 481static __kprobes void do_optimize_kprobes(void)
 482{
 483	/* Optimization never be done when disarmed */
 484	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
 485	    list_empty(&optimizing_list))
 486		return;
 487
 488	/*
 489	 * The optimization/unoptimization refers online_cpus via
 490	 * stop_machine() and cpu-hotplug modifies online_cpus.
 491	 * And same time, text_mutex will be held in cpu-hotplug and here.
 492	 * This combination can cause a deadlock (cpu-hotplug try to lock
 493	 * text_mutex but stop_machine can not be done because online_cpus
 494	 * has been changed)
 495	 * To avoid this deadlock, we need to call get_online_cpus()
 496	 * for preventing cpu-hotplug outside of text_mutex locking.
 497	 */
 498	get_online_cpus();
 499	mutex_lock(&text_mutex);
 
 
 
 
 
 500	arch_optimize_kprobes(&optimizing_list);
 501	mutex_unlock(&text_mutex);
 502	put_online_cpus();
 503}
 504
 505/*
 506 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
 507 * if need) kprobes listed on unoptimizing_list.
 508 */
 509static __kprobes void do_unoptimize_kprobes(struct list_head *free_list)
 510{
 511	struct optimized_kprobe *op, *tmp;
 512
 
 
 
 
 513	/* Unoptimization must be done anytime */
 514	if (list_empty(&unoptimizing_list))
 515		return;
 516
 517	/* Ditto to do_optimize_kprobes */
 518	get_online_cpus();
 519	mutex_lock(&text_mutex);
 520	arch_unoptimize_kprobes(&unoptimizing_list, free_list);
 521	/* Loop free_list for disarming */
 522	list_for_each_entry_safe(op, tmp, free_list, list) {
 
 
 523		/* Disarm probes if marked disabled */
 524		if (kprobe_disabled(&op->kp))
 525			arch_disarm_kprobe(&op->kp);
 526		if (kprobe_unused(&op->kp)) {
 527			/*
 528			 * Remove unused probes from hash list. After waiting
 529			 * for synchronization, these probes are reclaimed.
 530			 * (reclaiming is done by do_free_cleaned_kprobes.)
 531			 */
 532			hlist_del_rcu(&op->kp.hlist);
 533		} else
 534			list_del_init(&op->list);
 535	}
 536	mutex_unlock(&text_mutex);
 537	put_online_cpus();
 538}
 539
 540/* Reclaim all kprobes on the free_list */
 541static __kprobes void do_free_cleaned_kprobes(struct list_head *free_list)
 542{
 543	struct optimized_kprobe *op, *tmp;
 544
 545	list_for_each_entry_safe(op, tmp, free_list, list) {
 546		BUG_ON(!kprobe_unused(&op->kp));
 547		list_del_init(&op->list);
 
 
 
 
 
 
 
 548		free_aggr_kprobe(&op->kp);
 549	}
 550}
 551
 552/* Start optimizer after OPTIMIZE_DELAY passed */
 553static __kprobes void kick_kprobe_optimizer(void)
 554{
 555	if (!delayed_work_pending(&optimizing_work))
 556		schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
 557}
 558
 559/* Kprobe jump optimizer */
 560static __kprobes void kprobe_optimizer(struct work_struct *work)
 561{
 562	LIST_HEAD(free_list);
 563
 564	/* Lock modules while optimizing kprobes */
 565	mutex_lock(&module_mutex);
 566	mutex_lock(&kprobe_mutex);
 
 
 567
 568	/*
 569	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
 570	 * kprobes before waiting for quiesence period.
 571	 */
 572	do_unoptimize_kprobes(&free_list);
 573
 574	/*
 575	 * Step 2: Wait for quiesence period to ensure all running interrupts
 576	 * are done. Because optprobe may modify multiple instructions
 577	 * there is a chance that Nth instruction is interrupted. In that
 578	 * case, running interrupt can return to 2nd-Nth byte of jump
 579	 * instruction. This wait is for avoiding it.
 
 
 580	 */
 581	synchronize_sched();
 582
 583	/* Step 3: Optimize kprobes after quiesence period */
 584	do_optimize_kprobes();
 585
 586	/* Step 4: Free cleaned kprobes after quiesence period */
 587	do_free_cleaned_kprobes(&free_list);
 588
 589	mutex_unlock(&kprobe_mutex);
 590	mutex_unlock(&module_mutex);
 591
 592	/* Step 5: Kick optimizer again if needed */
 593	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
 594		kick_kprobe_optimizer();
 595	else
 596		/* Wake up all waiters */
 597		complete_all(&optimizer_comp);
 598}
 599
 600/* Wait for completing optimization and unoptimization */
 601static __kprobes void wait_for_kprobe_optimizer(void)
 602{
 603	if (delayed_work_pending(&optimizing_work))
 604		wait_for_completion(&optimizer_comp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 605}
 606
 607/* Optimize kprobe if p is ready to be optimized */
 608static __kprobes void optimize_kprobe(struct kprobe *p)
 609{
 610	struct optimized_kprobe *op;
 611
 612	/* Check if the kprobe is disabled or not ready for optimization. */
 613	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
 614	    (kprobe_disabled(p) || kprobes_all_disarmed))
 615		return;
 616
 617	/* Both of break_handler and post_handler are not supported. */
 618	if (p->break_handler || p->post_handler)
 619		return;
 620
 621	op = container_of(p, struct optimized_kprobe, kp);
 622
 623	/* Check there is no other kprobes at the optimized instructions */
 624	if (arch_check_optimized_kprobe(op) < 0)
 625		return;
 626
 627	/* Check if it is already optimized. */
 628	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
 
 
 
 
 629		return;
 
 630	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
 631
 632	if (!list_empty(&op->list))
 633		/* This is under unoptimizing. Just dequeue the probe */
 634		list_del_init(&op->list);
 635	else {
 636		list_add(&op->list, &optimizing_list);
 637		kick_kprobe_optimizer();
 638	}
 639}
 640
 641/* Short cut to direct unoptimizing */
 642static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
 643{
 644	get_online_cpus();
 645	arch_unoptimize_kprobe(op);
 646	put_online_cpus();
 647	if (kprobe_disabled(&op->kp))
 648		arch_disarm_kprobe(&op->kp);
 649}
 650
 651/* Unoptimize a kprobe if p is optimized */
 652static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
 653{
 654	struct optimized_kprobe *op;
 655
 656	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
 657		return; /* This is not an optprobe nor optimized */
 658
 659	op = container_of(p, struct optimized_kprobe, kp);
 660	if (!kprobe_optimized(p)) {
 661		/* Unoptimized or unoptimizing case */
 662		if (force && !list_empty(&op->list)) {
 663			/*
 664			 * Only if this is unoptimizing kprobe and forced,
 665			 * forcibly unoptimize it. (No need to unoptimize
 666			 * unoptimized kprobe again :)
 667			 */
 668			list_del_init(&op->list);
 669			force_unoptimize_kprobe(op);
 670		}
 671		return;
 672	}
 673
 674	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 675	if (!list_empty(&op->list)) {
 676		/* Dequeue from the optimization queue */
 677		list_del_init(&op->list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 678		return;
 679	}
 
 680	/* Optimized kprobe case */
 681	if (force)
 682		/* Forcibly update the code: this is a special case */
 683		force_unoptimize_kprobe(op);
 684	else {
 685		list_add(&op->list, &unoptimizing_list);
 686		kick_kprobe_optimizer();
 687	}
 688}
 689
 690/* Cancel unoptimizing for reusing */
 691static void reuse_unused_kprobe(struct kprobe *ap)
 692{
 693	struct optimized_kprobe *op;
 694
 695	BUG_ON(!kprobe_unused(ap));
 696	/*
 697	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
 698	 * there is still a relative jump) and disabled.
 699	 */
 700	op = container_of(ap, struct optimized_kprobe, kp);
 701	if (unlikely(list_empty(&op->list)))
 702		printk(KERN_WARNING "Warning: found a stray unused "
 703			"aggrprobe@%p\n", ap->addr);
 704	/* Enable the probe again */
 705	ap->flags &= ~KPROBE_FLAG_DISABLED;
 706	/* Optimize it again (remove from op->list) */
 707	BUG_ON(!kprobe_optready(ap));
 
 
 708	optimize_kprobe(ap);
 
 709}
 710
 711/* Remove optimized instructions */
 712static void __kprobes kill_optimized_kprobe(struct kprobe *p)
 713{
 714	struct optimized_kprobe *op;
 715
 716	op = container_of(p, struct optimized_kprobe, kp);
 717	if (!list_empty(&op->list))
 718		/* Dequeue from the (un)optimization queue */
 719		list_del_init(&op->list);
 720
 721	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 
 
 
 
 
 
 
 
 
 
 
 
 722	/* Don't touch the code, because it is already freed. */
 723	arch_remove_optimized_kprobe(op);
 724}
 725
 
 
 
 
 
 
 
 726/* Try to prepare optimized instructions */
 727static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
 728{
 729	struct optimized_kprobe *op;
 730
 731	op = container_of(p, struct optimized_kprobe, kp);
 732	arch_prepare_optimized_kprobe(op);
 733}
 734
 735/* Allocate new optimized_kprobe and try to prepare optimized instructions */
 736static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 737{
 738	struct optimized_kprobe *op;
 739
 740	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
 741	if (!op)
 742		return NULL;
 743
 744	INIT_LIST_HEAD(&op->list);
 745	op->kp.addr = p->addr;
 746	arch_prepare_optimized_kprobe(op);
 747
 748	return &op->kp;
 749}
 750
 751static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
 752
 753/*
 754 * Prepare an optimized_kprobe and optimize it
 755 * NOTE: p must be a normal registered kprobe
 756 */
 757static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
 758{
 759	struct kprobe *ap;
 760	struct optimized_kprobe *op;
 761
 
 
 
 
 
 
 
 
 
 762	ap = alloc_aggr_kprobe(p);
 763	if (!ap)
 764		return;
 765
 766	op = container_of(ap, struct optimized_kprobe, kp);
 767	if (!arch_prepared_optinsn(&op->optinsn)) {
 768		/* If failed to setup optimizing, fallback to kprobe */
 769		arch_remove_optimized_kprobe(op);
 770		kfree(op);
 771		return;
 772	}
 773
 774	init_aggr_kprobe(ap, p);
 775	optimize_kprobe(ap);
 
 
 
 
 
 776}
 777
 778#ifdef CONFIG_SYSCTL
 779/* This should be called with kprobe_mutex locked */
 780static void __kprobes optimize_all_kprobes(void)
 781{
 782	struct hlist_head *head;
 783	struct hlist_node *node;
 784	struct kprobe *p;
 785	unsigned int i;
 786
 
 787	/* If optimization is already allowed, just return */
 788	if (kprobes_allow_optimization)
 789		return;
 790
 
 791	kprobes_allow_optimization = true;
 792	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 793		head = &kprobe_table[i];
 794		hlist_for_each_entry_rcu(p, node, head, hlist)
 795			if (!kprobe_disabled(p))
 796				optimize_kprobe(p);
 797	}
 
 798	printk(KERN_INFO "Kprobes globally optimized\n");
 
 
 799}
 800
 801/* This should be called with kprobe_mutex locked */
 802static void __kprobes unoptimize_all_kprobes(void)
 803{
 804	struct hlist_head *head;
 805	struct hlist_node *node;
 806	struct kprobe *p;
 807	unsigned int i;
 808
 
 809	/* If optimization is already prohibited, just return */
 810	if (!kprobes_allow_optimization)
 
 811		return;
 
 812
 
 813	kprobes_allow_optimization = false;
 814	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 815		head = &kprobe_table[i];
 816		hlist_for_each_entry_rcu(p, node, head, hlist) {
 817			if (!kprobe_disabled(p))
 818				unoptimize_kprobe(p, false);
 819		}
 820	}
 
 
 
 821	/* Wait for unoptimizing completion */
 822	wait_for_kprobe_optimizer();
 823	printk(KERN_INFO "Kprobes globally unoptimized\n");
 824}
 825
 
 826int sysctl_kprobes_optimization;
 827int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
 828				      void __user *buffer, size_t *length,
 829				      loff_t *ppos)
 830{
 831	int ret;
 832
 833	mutex_lock(&kprobe_mutex);
 834	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
 835	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 836
 837	if (sysctl_kprobes_optimization)
 838		optimize_all_kprobes();
 839	else
 840		unoptimize_all_kprobes();
 841	mutex_unlock(&kprobe_mutex);
 842
 843	return ret;
 844}
 845#endif /* CONFIG_SYSCTL */
 846
 847/* Put a breakpoint for a probe. Must be called with text_mutex locked */
 848static void __kprobes __arm_kprobe(struct kprobe *p)
 849{
 850	struct kprobe *_p;
 851
 852	/* Check collision with other optimized kprobes */
 853	_p = get_optimized_kprobe((unsigned long)p->addr);
 854	if (unlikely(_p))
 855		/* Fallback to unoptimized kprobe */
 856		unoptimize_kprobe(_p, true);
 857
 858	arch_arm_kprobe(p);
 859	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
 860}
 861
 862/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
 863static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
 864{
 865	struct kprobe *_p;
 866
 867	unoptimize_kprobe(p, false);	/* Try to unoptimize */
 
 868
 869	if (!kprobe_queued(p)) {
 870		arch_disarm_kprobe(p);
 871		/* If another kprobe was blocked, optimize it. */
 872		_p = get_optimized_kprobe((unsigned long)p->addr);
 873		if (unlikely(_p) && reopt)
 874			optimize_kprobe(_p);
 875	}
 876	/* TODO: reoptimize others after unoptimized this probe */
 877}
 878
 879#else /* !CONFIG_OPTPROBES */
 880
 881#define optimize_kprobe(p)			do {} while (0)
 882#define unoptimize_kprobe(p, f)			do {} while (0)
 883#define kill_optimized_kprobe(p)		do {} while (0)
 884#define prepare_optimized_kprobe(p)		do {} while (0)
 885#define try_to_optimize_kprobe(p)		do {} while (0)
 886#define __arm_kprobe(p)				arch_arm_kprobe(p)
 887#define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
 888#define kprobe_disarmed(p)			kprobe_disabled(p)
 889#define wait_for_kprobe_optimizer()		do {} while (0)
 890
 891/* There should be no unused kprobes can be reused without optimization */
 892static void reuse_unused_kprobe(struct kprobe *ap)
 893{
 
 
 
 
 
 
 894	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
 895	BUG_ON(kprobe_unused(ap));
 896}
 897
 898static __kprobes void free_aggr_kprobe(struct kprobe *p)
 899{
 900	arch_remove_kprobe(p);
 901	kfree(p);
 902}
 903
 904static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 905{
 906	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
 907}
 908#endif /* CONFIG_OPTPROBES */
 909
 910/* Arm a kprobe with text_mutex */
 911static void __kprobes arm_kprobe(struct kprobe *kp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 913	/*
 914	 * Here, since __arm_kprobe() doesn't use stop_machine(),
 915	 * this doesn't cause deadlock on text_mutex. So, we don't
 916	 * need get_online_cpus().
 917	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918	mutex_lock(&text_mutex);
 919	__arm_kprobe(kp);
 920	mutex_unlock(&text_mutex);
 
 
 
 921}
 922
 923/* Disarm a kprobe with text_mutex */
 924static void __kprobes disarm_kprobe(struct kprobe *kp)
 925{
 926	/* Ditto */
 
 
 
 927	mutex_lock(&text_mutex);
 928	__disarm_kprobe(kp, true);
 929	mutex_unlock(&text_mutex);
 
 
 
 930}
 931
 932/*
 933 * Aggregate handlers for multiple kprobes support - these handlers
 934 * take care of invoking the individual kprobe handlers on p->list
 935 */
 936static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
 937{
 938	struct kprobe *kp;
 939
 940	list_for_each_entry_rcu(kp, &p->list, list) {
 941		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
 942			set_kprobe_instance(kp);
 943			if (kp->pre_handler(kp, regs))
 944				return 1;
 945		}
 946		reset_kprobe_instance();
 947	}
 948	return 0;
 949}
 
 950
 951static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
 952					unsigned long flags)
 953{
 954	struct kprobe *kp;
 955
 956	list_for_each_entry_rcu(kp, &p->list, list) {
 957		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
 958			set_kprobe_instance(kp);
 959			kp->post_handler(kp, regs, flags);
 960			reset_kprobe_instance();
 961		}
 962	}
 963}
 964
 965static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
 966					int trapnr)
 967{
 968	struct kprobe *cur = __this_cpu_read(kprobe_instance);
 969
 970	/*
 971	 * if we faulted "during" the execution of a user specified
 972	 * probe handler, invoke just that probe's fault handler
 973	 */
 974	if (cur && cur->fault_handler) {
 975		if (cur->fault_handler(cur, regs, trapnr))
 976			return 1;
 977	}
 978	return 0;
 979}
 980
 981static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
 982{
 983	struct kprobe *cur = __this_cpu_read(kprobe_instance);
 984	int ret = 0;
 985
 986	if (cur && cur->break_handler) {
 987		if (cur->break_handler(cur, regs))
 988			ret = 1;
 989	}
 990	reset_kprobe_instance();
 991	return ret;
 992}
 993
 994/* Walks the list and increments nmissed count for multiprobe case */
 995void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
 996{
 997	struct kprobe *kp;
 998	if (!kprobe_aggrprobe(p)) {
 999		p->nmissed++;
1000	} else {
1001		list_for_each_entry_rcu(kp, &p->list, list)
1002			kp->nmissed++;
1003	}
1004	return;
1005}
 
1006
1007void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1008				struct hlist_head *head)
1009{
1010	struct kretprobe *rp = ri->rp;
1011
1012	/* remove rp inst off the rprobe_inst_table */
1013	hlist_del(&ri->hlist);
1014	INIT_HLIST_NODE(&ri->hlist);
1015	if (likely(rp)) {
1016		raw_spin_lock(&rp->lock);
1017		hlist_add_head(&ri->hlist, &rp->free_instances);
1018		raw_spin_unlock(&rp->lock);
1019	} else
1020		/* Unregistering */
1021		hlist_add_head(&ri->hlist, head);
1022}
 
1023
1024void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1025			 struct hlist_head **head, unsigned long *flags)
1026__acquires(hlist_lock)
1027{
1028	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1029	raw_spinlock_t *hlist_lock;
1030
1031	*head = &kretprobe_inst_table[hash];
1032	hlist_lock = kretprobe_table_lock_ptr(hash);
1033	raw_spin_lock_irqsave(hlist_lock, *flags);
 
1034}
 
1035
1036static void __kprobes kretprobe_table_lock(unsigned long hash,
1037	unsigned long *flags)
1038__acquires(hlist_lock)
1039{
1040	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1041	raw_spin_lock_irqsave(hlist_lock, *flags);
1042}
1043
1044void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1045	unsigned long *flags)
1046__releases(hlist_lock)
1047{
1048	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1049	raw_spinlock_t *hlist_lock;
1050
1051	hlist_lock = kretprobe_table_lock_ptr(hash);
1052	raw_spin_unlock_irqrestore(hlist_lock, *flags);
 
 
1053}
1054
1055static void __kprobes kretprobe_table_unlock(unsigned long hash,
1056       unsigned long *flags)
1057__releases(hlist_lock)
1058{
1059	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1060	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1061}
1062
1063/*
1064 * This function is called from finish_task_switch when task tk becomes dead,
1065 * so that we can recycle any function-return probe instances associated
1066 * with this task. These left over instances represent probed functions
1067 * that have been called but will never return.
1068 */
1069void __kprobes kprobe_flush_task(struct task_struct *tk)
1070{
1071	struct kretprobe_instance *ri;
1072	struct hlist_head *head, empty_rp;
1073	struct hlist_node *node, *tmp;
1074	unsigned long hash, flags = 0;
1075
 
1076	if (unlikely(!kprobes_initialized))
1077		/* Early boot.  kretprobe_table_locks not yet initialized. */
1078		return;
1079
1080	INIT_HLIST_HEAD(&empty_rp);
1081	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1082	head = &kretprobe_inst_table[hash];
1083	kretprobe_table_lock(hash, &flags);
1084	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
1085		if (ri->task == tk)
1086			recycle_rp_inst(ri, &empty_rp);
1087	}
1088	kretprobe_table_unlock(hash, &flags);
1089	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
1090		hlist_del(&ri->hlist);
1091		kfree(ri);
1092	}
 
 
1093}
 
1094
1095static inline void free_rp_inst(struct kretprobe *rp)
1096{
1097	struct kretprobe_instance *ri;
1098	struct hlist_node *pos, *next;
 
 
 
 
 
 
1099
1100	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
1101		hlist_del(&ri->hlist);
1102		kfree(ri);
 
1103	}
1104}
1105
1106static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1107{
1108	unsigned long flags, hash;
1109	struct kretprobe_instance *ri;
1110	struct hlist_node *pos, *next;
1111	struct hlist_head *head;
1112
1113	/* No race here */
1114	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1115		kretprobe_table_lock(hash, &flags);
1116		head = &kretprobe_inst_table[hash];
1117		hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
1118			if (ri->rp == rp)
1119				ri->rp = NULL;
1120		}
1121		kretprobe_table_unlock(hash, &flags);
1122	}
1123	free_rp_inst(rp);
1124}
1125
1126/*
1127* Add the new probe to ap->list. Fail if this is the
1128* second jprobe at the address - two jprobes can't coexist
1129*/
1130static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1131{
1132	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1133
1134	if (p->break_handler || p->post_handler)
1135		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1136
1137	if (p->break_handler) {
1138		if (ap->break_handler)
1139			return -EEXIST;
1140		list_add_tail_rcu(&p->list, &ap->list);
1141		ap->break_handler = aggr_break_handler;
1142	} else
1143		list_add_rcu(&p->list, &ap->list);
1144	if (p->post_handler && !ap->post_handler)
1145		ap->post_handler = aggr_post_handler;
1146
1147	if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
1148		ap->flags &= ~KPROBE_FLAG_DISABLED;
1149		if (!kprobes_all_disarmed)
1150			/* Arm the breakpoint again. */
1151			__arm_kprobe(ap);
1152	}
1153	return 0;
1154}
1155
1156/*
1157 * Fill in the required fields of the "manager kprobe". Replace the
1158 * earlier kprobe in the hlist with the manager kprobe
1159 */
1160static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1161{
1162	/* Copy p's insn slot to ap */
1163	copy_kprobe(p, ap);
1164	flush_insn_slot(ap);
1165	ap->addr = p->addr;
1166	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1167	ap->pre_handler = aggr_pre_handler;
1168	ap->fault_handler = aggr_fault_handler;
1169	/* We don't care the kprobe which has gone. */
1170	if (p->post_handler && !kprobe_gone(p))
1171		ap->post_handler = aggr_post_handler;
1172	if (p->break_handler && !kprobe_gone(p))
1173		ap->break_handler = aggr_break_handler;
1174
1175	INIT_LIST_HEAD(&ap->list);
1176	INIT_HLIST_NODE(&ap->hlist);
1177
1178	list_add_rcu(&p->list, &ap->list);
1179	hlist_replace_rcu(&p->hlist, &ap->hlist);
1180}
1181
1182/*
1183 * This is the second or subsequent kprobe at the address - handle
1184 * the intricacies
1185 */
1186static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1187					  struct kprobe *p)
1188{
1189	int ret = 0;
1190	struct kprobe *ap = orig_p;
1191
 
 
 
 
 
 
1192	if (!kprobe_aggrprobe(orig_p)) {
1193		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1194		ap = alloc_aggr_kprobe(orig_p);
1195		if (!ap)
1196			return -ENOMEM;
 
 
1197		init_aggr_kprobe(ap, orig_p);
1198	} else if (kprobe_unused(ap))
1199		/* This probe is going to die. Rescue it */
1200		reuse_unused_kprobe(ap);
 
 
 
1201
1202	if (kprobe_gone(ap)) {
1203		/*
1204		 * Attempting to insert new probe at the same location that
1205		 * had a probe in the module vaddr area which already
1206		 * freed. So, the instruction slot has already been
1207		 * released. We need a new slot for the new probe.
1208		 */
1209		ret = arch_prepare_kprobe(ap);
1210		if (ret)
1211			/*
1212			 * Even if fail to allocate new slot, don't need to
1213			 * free aggr_probe. It will be used next time, or
1214			 * freed by unregister_kprobe.
1215			 */
1216			return ret;
1217
1218		/* Prepare optimized instructions if possible. */
1219		prepare_optimized_kprobe(ap);
1220
1221		/*
1222		 * Clear gone flag to prevent allocating new slot again, and
1223		 * set disabled flag because it is not armed yet.
1224		 */
1225		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1226			    | KPROBE_FLAG_DISABLED;
1227	}
1228
1229	/* Copy ap's insn slot to p */
1230	copy_kprobe(ap, p);
1231	return add_new_kprobe(ap, p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1232}
1233
1234static int __kprobes in_kprobes_functions(unsigned long addr)
1235{
1236	struct kprobe_blackpoint *kb;
 
 
 
1237
1238	if (addr >= (unsigned long)__kprobes_text_start &&
1239	    addr < (unsigned long)__kprobes_text_end)
1240		return -EINVAL;
 
 
 
1241	/*
1242	 * If there exists a kprobe_blacklist, verify and
1243	 * fail any probe registration in the prohibited area
1244	 */
1245	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1246		if (kb->start_addr) {
1247			if (addr >= kb->start_addr &&
1248			    addr < (kb->start_addr + kb->range))
1249				return -EINVAL;
1250		}
1251	}
1252	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1253}
1254
1255/*
1256 * If we have a symbol_name argument, look it up and add the offset field
1257 * to it. This way, we can specify a relative address to a symbol.
1258 * This returns encoded errors if it fails to look up symbol or invalid
1259 * combination of parameters.
1260 */
1261static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
 
1262{
1263	kprobe_opcode_t *addr = p->addr;
1264
1265	if ((p->symbol_name && p->addr) ||
1266	    (!p->symbol_name && !p->addr))
1267		goto invalid;
1268
1269	if (p->symbol_name) {
1270		kprobe_lookup_name(p->symbol_name, addr);
1271		if (!addr)
1272			return ERR_PTR(-ENOENT);
1273	}
1274
1275	addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1276	if (addr)
1277		return addr;
1278
1279invalid:
1280	return ERR_PTR(-EINVAL);
1281}
1282
 
 
 
 
 
1283/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1284static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1285{
1286	struct kprobe *ap, *list_p;
1287
 
 
1288	ap = get_kprobe(p->addr);
1289	if (unlikely(!ap))
1290		return NULL;
1291
1292	if (p != ap) {
1293		list_for_each_entry_rcu(list_p, &ap->list, list)
1294			if (list_p == p)
1295			/* kprobe p is a valid probe */
1296				goto valid;
1297		return NULL;
1298	}
1299valid:
1300	return ap;
1301}
1302
1303/* Return error if the kprobe is being re-registered */
1304static inline int check_kprobe_rereg(struct kprobe *p)
 
 
 
1305{
1306	int ret = 0;
1307
1308	mutex_lock(&kprobe_mutex);
1309	if (__get_valid_kprobe(p))
1310		ret = -EINVAL;
1311	mutex_unlock(&kprobe_mutex);
1312
1313	return ret;
1314}
1315
1316int __kprobes register_kprobe(struct kprobe *p)
1317{
1318	int ret = 0;
1319	struct kprobe *old_p;
1320	struct module *probed_mod;
1321	kprobe_opcode_t *addr;
1322
1323	addr = kprobe_addr(p);
1324	if (IS_ERR(addr))
1325		return PTR_ERR(addr);
1326	p->addr = addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1327
1328	ret = check_kprobe_rereg(p);
1329	if (ret)
1330		return ret;
1331
1332	jump_label_lock();
1333	preempt_disable();
 
 
1334	if (!kernel_text_address((unsigned long) p->addr) ||
1335	    in_kprobes_functions((unsigned long) p->addr) ||
1336	    ftrace_text_reserved(p->addr, p->addr) ||
1337	    jump_label_text_reserved(p->addr, p->addr)) {
 
1338		ret = -EINVAL;
1339		goto cannot_probe;
1340	}
1341
1342	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1343	p->flags &= KPROBE_FLAG_DISABLED;
1344
1345	/*
1346	 * Check if are we probing a module.
1347	 */
1348	probed_mod = __module_text_address((unsigned long) p->addr);
1349	if (probed_mod) {
1350		/* Return -ENOENT if fail. */
1351		ret = -ENOENT;
1352		/*
1353		 * We must hold a refcount of the probed module while updating
1354		 * its code to prohibit unexpected unloading.
1355		 */
1356		if (unlikely(!try_module_get(probed_mod)))
1357			goto cannot_probe;
 
 
1358
1359		/*
1360		 * If the module freed .init.text, we couldn't insert
1361		 * kprobes in there.
1362		 */
1363		if (within_module_init((unsigned long)p->addr, probed_mod) &&
1364		    probed_mod->state != MODULE_STATE_COMING) {
1365			module_put(probed_mod);
1366			goto cannot_probe;
 
1367		}
1368		/* ret will be updated by following code */
1369	}
 
1370	preempt_enable();
1371	jump_label_unlock();
1372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1373	p->nmissed = 0;
1374	INIT_LIST_HEAD(&p->list);
1375	mutex_lock(&kprobe_mutex);
1376
1377	jump_label_lock(); /* needed to call jump_label_text_reserved() */
 
 
1378
1379	get_online_cpus();	/* For avoiding text_mutex deadlock. */
1380	mutex_lock(&text_mutex);
1381
1382	old_p = get_kprobe(p->addr);
1383	if (old_p) {
1384		/* Since this may unoptimize old_p, locking text_mutex. */
1385		ret = register_aggr_kprobe(old_p, p);
1386		goto out;
1387	}
1388
1389	ret = arch_prepare_kprobe(p);
 
 
 
 
 
1390	if (ret)
1391		goto out;
1392
1393	INIT_HLIST_NODE(&p->hlist);
1394	hlist_add_head_rcu(&p->hlist,
1395		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1396
1397	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1398		__arm_kprobe(p);
 
 
 
 
 
 
1399
1400	/* Try to optimize kprobe */
1401	try_to_optimize_kprobe(p);
1402
1403out:
1404	mutex_unlock(&text_mutex);
1405	put_online_cpus();
1406	jump_label_unlock();
1407	mutex_unlock(&kprobe_mutex);
1408
1409	if (probed_mod)
1410		module_put(probed_mod);
1411
1412	return ret;
1413
1414cannot_probe:
1415	preempt_enable();
1416	jump_label_unlock();
1417	return ret;
1418}
1419EXPORT_SYMBOL_GPL(register_kprobe);
1420
1421/* Check if all probes on the aggrprobe are disabled */
1422static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1423{
1424	struct kprobe *kp;
1425
1426	list_for_each_entry_rcu(kp, &ap->list, list)
 
 
1427		if (!kprobe_disabled(kp))
1428			/*
1429			 * There is an active probe on the list.
1430			 * We can't disable this ap.
1431			 */
1432			return 0;
1433
1434	return 1;
1435}
1436
1437/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1438static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1439{
1440	struct kprobe *orig_p;
 
1441
1442	/* Get an original kprobe for return */
1443	orig_p = __get_valid_kprobe(p);
1444	if (unlikely(orig_p == NULL))
1445		return NULL;
1446
1447	if (!kprobe_disabled(p)) {
1448		/* Disable probe if it is a child probe */
1449		if (p != orig_p)
1450			p->flags |= KPROBE_FLAG_DISABLED;
1451
1452		/* Try to disarm and disable this/parent probe */
1453		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1454			disarm_kprobe(orig_p);
 
 
 
 
 
 
 
 
 
 
 
1455			orig_p->flags |= KPROBE_FLAG_DISABLED;
1456		}
1457	}
1458
1459	return orig_p;
1460}
1461
1462/*
1463 * Unregister a kprobe without a scheduler synchronization.
1464 */
1465static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1466{
1467	struct kprobe *ap, *list_p;
1468
1469	/* Disable kprobe. This will disarm it if needed. */
1470	ap = __disable_kprobe(p);
1471	if (ap == NULL)
1472		return -EINVAL;
1473
1474	if (ap == p)
1475		/*
1476		 * This probe is an independent(and non-optimized) kprobe
1477		 * (not an aggrprobe). Remove from the hash list.
1478		 */
1479		goto disarmed;
1480
1481	/* Following process expects this probe is an aggrprobe */
1482	WARN_ON(!kprobe_aggrprobe(ap));
1483
1484	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1485		/*
1486		 * !disarmed could be happen if the probe is under delayed
1487		 * unoptimizing.
1488		 */
1489		goto disarmed;
1490	else {
1491		/* If disabling probe has special handlers, update aggrprobe */
1492		if (p->break_handler && !kprobe_gone(p))
1493			ap->break_handler = NULL;
1494		if (p->post_handler && !kprobe_gone(p)) {
1495			list_for_each_entry_rcu(list_p, &ap->list, list) {
1496				if ((list_p != p) && (list_p->post_handler))
1497					goto noclean;
1498			}
1499			ap->post_handler = NULL;
1500		}
1501noclean:
1502		/*
1503		 * Remove from the aggrprobe: this path will do nothing in
1504		 * __unregister_kprobe_bottom().
1505		 */
1506		list_del_rcu(&p->list);
1507		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1508			/*
1509			 * Try to optimize this probe again, because post
1510			 * handler may have been changed.
1511			 */
1512			optimize_kprobe(ap);
1513	}
1514	return 0;
1515
1516disarmed:
1517	BUG_ON(!kprobe_disarmed(ap));
1518	hlist_del_rcu(&ap->hlist);
1519	return 0;
1520}
1521
1522static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1523{
1524	struct kprobe *ap;
1525
1526	if (list_empty(&p->list))
1527		/* This is an independent kprobe */
1528		arch_remove_kprobe(p);
1529	else if (list_is_singular(&p->list)) {
1530		/* This is the last child of an aggrprobe */
1531		ap = list_entry(p->list.next, struct kprobe, list);
1532		list_del(&p->list);
1533		free_aggr_kprobe(ap);
1534	}
1535	/* Otherwise, do nothing. */
1536}
1537
1538int __kprobes register_kprobes(struct kprobe **kps, int num)
1539{
1540	int i, ret = 0;
1541
1542	if (num <= 0)
1543		return -EINVAL;
1544	for (i = 0; i < num; i++) {
1545		ret = register_kprobe(kps[i]);
1546		if (ret < 0) {
1547			if (i > 0)
1548				unregister_kprobes(kps, i);
1549			break;
1550		}
1551	}
1552	return ret;
1553}
1554EXPORT_SYMBOL_GPL(register_kprobes);
1555
1556void __kprobes unregister_kprobe(struct kprobe *p)
1557{
1558	unregister_kprobes(&p, 1);
1559}
1560EXPORT_SYMBOL_GPL(unregister_kprobe);
1561
1562void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1563{
1564	int i;
1565
1566	if (num <= 0)
1567		return;
1568	mutex_lock(&kprobe_mutex);
1569	for (i = 0; i < num; i++)
1570		if (__unregister_kprobe_top(kps[i]) < 0)
1571			kps[i]->addr = NULL;
1572	mutex_unlock(&kprobe_mutex);
1573
1574	synchronize_sched();
1575	for (i = 0; i < num; i++)
1576		if (kps[i]->addr)
1577			__unregister_kprobe_bottom(kps[i]);
1578}
1579EXPORT_SYMBOL_GPL(unregister_kprobes);
1580
 
 
 
 
 
 
 
1581static struct notifier_block kprobe_exceptions_nb = {
1582	.notifier_call = kprobe_exceptions_notify,
1583	.priority = 0x7fffffff /* we need to be notified first */
1584};
1585
1586unsigned long __weak arch_deref_entry_point(void *entry)
1587{
1588	return (unsigned long)entry;
1589}
1590
1591int __kprobes register_jprobes(struct jprobe **jps, int num)
1592{
1593	struct jprobe *jp;
1594	int ret = 0, i;
1595
1596	if (num <= 0)
1597		return -EINVAL;
1598	for (i = 0; i < num; i++) {
1599		unsigned long addr, offset;
1600		jp = jps[i];
1601		addr = arch_deref_entry_point(jp->entry);
1602
1603		/* Verify probepoint is a function entry point */
1604		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1605		    offset == 0) {
1606			jp->kp.pre_handler = setjmp_pre_handler;
1607			jp->kp.break_handler = longjmp_break_handler;
1608			ret = register_kprobe(&jp->kp);
1609		} else
1610			ret = -EINVAL;
1611
1612		if (ret < 0) {
1613			if (i > 0)
1614				unregister_jprobes(jps, i);
1615			break;
 
 
 
 
 
 
1616		}
 
 
1617	}
1618	return ret;
1619}
1620EXPORT_SYMBOL_GPL(register_jprobes);
1621
1622int __kprobes register_jprobe(struct jprobe *jp)
1623{
1624	return register_jprobes(&jp, 1);
1625}
1626EXPORT_SYMBOL_GPL(register_jprobe);
1627
1628void __kprobes unregister_jprobe(struct jprobe *jp)
1629{
1630	unregister_jprobes(&jp, 1);
1631}
1632EXPORT_SYMBOL_GPL(unregister_jprobe);
1633
1634void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1635{
1636	int i;
1637
1638	if (num <= 0)
1639		return;
1640	mutex_lock(&kprobe_mutex);
1641	for (i = 0; i < num; i++)
1642		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1643			jps[i]->kp.addr = NULL;
1644	mutex_unlock(&kprobe_mutex);
1645
1646	synchronize_sched();
1647	for (i = 0; i < num; i++) {
1648		if (jps[i]->kp.addr)
1649			__unregister_kprobe_bottom(&jps[i]->kp);
1650	}
 
 
1651}
1652EXPORT_SYMBOL_GPL(unregister_jprobes);
1653
1654#ifdef CONFIG_KRETPROBES
1655/*
1656 * This kprobe pre_handler is registered with every kretprobe. When probe
1657 * hits it will set up the return probe.
1658 */
1659static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1660					   struct pt_regs *regs)
1661{
1662	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1663	unsigned long hash, flags = 0;
1664	struct kretprobe_instance *ri;
 
1665
1666	/*TODO: consider to only swap the RA after the last pre_handler fired */
1667	hash = hash_ptr(current, KPROBE_HASH_BITS);
1668	raw_spin_lock_irqsave(&rp->lock, flags);
1669	if (!hlist_empty(&rp->free_instances)) {
1670		ri = hlist_entry(rp->free_instances.first,
1671				struct kretprobe_instance, hlist);
1672		hlist_del(&ri->hlist);
1673		raw_spin_unlock_irqrestore(&rp->lock, flags);
1674
1675		ri->rp = rp;
1676		ri->task = current;
1677
1678		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1679			raw_spin_lock_irqsave(&rp->lock, flags);
1680			hlist_add_head(&ri->hlist, &rp->free_instances);
1681			raw_spin_unlock_irqrestore(&rp->lock, flags);
1682			return 0;
1683		}
1684
1685		arch_prepare_kretprobe(ri, regs);
1686
1687		/* XXX(hch): why is there no hlist_move_head? */
1688		INIT_HLIST_NODE(&ri->hlist);
1689		kretprobe_table_lock(hash, &flags);
1690		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1691		kretprobe_table_unlock(hash, &flags);
1692	} else {
1693		rp->nmissed++;
1694		raw_spin_unlock_irqrestore(&rp->lock, flags);
1695	}
 
 
 
 
 
1696	return 0;
1697}
 
1698
1699int __kprobes register_kretprobe(struct kretprobe *rp)
1700{
1701	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1702	struct kretprobe_instance *inst;
1703	int i;
1704	void *addr;
1705
 
 
 
 
 
 
 
 
1706	if (kretprobe_blacklist_size) {
1707		addr = kprobe_addr(&rp->kp);
1708		if (IS_ERR(addr))
1709			return PTR_ERR(addr);
1710
1711		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1712			if (kretprobe_blacklist[i].addr == addr)
1713				return -EINVAL;
1714		}
1715	}
1716
1717	rp->kp.pre_handler = pre_handler_kretprobe;
1718	rp->kp.post_handler = NULL;
1719	rp->kp.fault_handler = NULL;
1720	rp->kp.break_handler = NULL;
1721
1722	/* Pre-allocate memory for max kretprobe instances */
1723	if (rp->maxactive <= 0) {
1724#ifdef CONFIG_PREEMPT
1725		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1726#else
1727		rp->maxactive = num_possible_cpus();
1728#endif
1729	}
1730	raw_spin_lock_init(&rp->lock);
1731	INIT_HLIST_HEAD(&rp->free_instances);
 
 
 
 
1732	for (i = 0; i < rp->maxactive; i++) {
1733		inst = kmalloc(sizeof(struct kretprobe_instance) +
1734			       rp->data_size, GFP_KERNEL);
1735		if (inst == NULL) {
 
1736			free_rp_inst(rp);
1737			return -ENOMEM;
1738		}
1739		INIT_HLIST_NODE(&inst->hlist);
1740		hlist_add_head(&inst->hlist, &rp->free_instances);
1741	}
 
1742
1743	rp->nmissed = 0;
1744	/* Establish function entry probe point */
1745	ret = register_kprobe(&rp->kp);
1746	if (ret != 0)
1747		free_rp_inst(rp);
1748	return ret;
1749}
1750EXPORT_SYMBOL_GPL(register_kretprobe);
1751
1752int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1753{
1754	int ret = 0, i;
1755
1756	if (num <= 0)
1757		return -EINVAL;
1758	for (i = 0; i < num; i++) {
1759		ret = register_kretprobe(rps[i]);
1760		if (ret < 0) {
1761			if (i > 0)
1762				unregister_kretprobes(rps, i);
1763			break;
1764		}
1765	}
1766	return ret;
1767}
1768EXPORT_SYMBOL_GPL(register_kretprobes);
1769
1770void __kprobes unregister_kretprobe(struct kretprobe *rp)
1771{
1772	unregister_kretprobes(&rp, 1);
1773}
1774EXPORT_SYMBOL_GPL(unregister_kretprobe);
1775
1776void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1777{
1778	int i;
1779
1780	if (num <= 0)
1781		return;
1782	mutex_lock(&kprobe_mutex);
1783	for (i = 0; i < num; i++)
1784		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1785			rps[i]->kp.addr = NULL;
 
 
1786	mutex_unlock(&kprobe_mutex);
1787
1788	synchronize_sched();
1789	for (i = 0; i < num; i++) {
1790		if (rps[i]->kp.addr) {
1791			__unregister_kprobe_bottom(&rps[i]->kp);
1792			cleanup_rp_inst(rps[i]);
1793		}
1794	}
1795}
1796EXPORT_SYMBOL_GPL(unregister_kretprobes);
1797
1798#else /* CONFIG_KRETPROBES */
1799int __kprobes register_kretprobe(struct kretprobe *rp)
1800{
1801	return -ENOSYS;
1802}
1803EXPORT_SYMBOL_GPL(register_kretprobe);
1804
1805int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1806{
1807	return -ENOSYS;
1808}
1809EXPORT_SYMBOL_GPL(register_kretprobes);
1810
1811void __kprobes unregister_kretprobe(struct kretprobe *rp)
1812{
1813}
1814EXPORT_SYMBOL_GPL(unregister_kretprobe);
1815
1816void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1817{
1818}
1819EXPORT_SYMBOL_GPL(unregister_kretprobes);
1820
1821static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1822					   struct pt_regs *regs)
1823{
1824	return 0;
1825}
 
1826
1827#endif /* CONFIG_KRETPROBES */
1828
1829/* Set the kprobe gone and remove its instruction buffer. */
1830static void __kprobes kill_kprobe(struct kprobe *p)
1831{
1832	struct kprobe *kp;
1833
 
 
1834	p->flags |= KPROBE_FLAG_GONE;
1835	if (kprobe_aggrprobe(p)) {
1836		/*
1837		 * If this is an aggr_kprobe, we have to list all the
1838		 * chained probes and mark them GONE.
1839		 */
1840		list_for_each_entry_rcu(kp, &p->list, list)
1841			kp->flags |= KPROBE_FLAG_GONE;
1842		p->post_handler = NULL;
1843		p->break_handler = NULL;
1844		kill_optimized_kprobe(p);
1845	}
1846	/*
1847	 * Here, we can remove insn_slot safely, because no thread calls
1848	 * the original probed function (which will be freed soon) any more.
1849	 */
1850	arch_remove_kprobe(p);
 
 
 
 
 
 
 
 
1851}
1852
1853/* Disable one kprobe */
1854int __kprobes disable_kprobe(struct kprobe *kp)
1855{
1856	int ret = 0;
 
1857
1858	mutex_lock(&kprobe_mutex);
1859
1860	/* Disable this kprobe */
1861	if (__disable_kprobe(kp) == NULL)
1862		ret = -EINVAL;
 
1863
1864	mutex_unlock(&kprobe_mutex);
1865	return ret;
1866}
1867EXPORT_SYMBOL_GPL(disable_kprobe);
1868
1869/* Enable one kprobe */
1870int __kprobes enable_kprobe(struct kprobe *kp)
1871{
1872	int ret = 0;
1873	struct kprobe *p;
1874
1875	mutex_lock(&kprobe_mutex);
1876
1877	/* Check whether specified probe is valid. */
1878	p = __get_valid_kprobe(kp);
1879	if (unlikely(p == NULL)) {
1880		ret = -EINVAL;
1881		goto out;
1882	}
1883
1884	if (kprobe_gone(kp)) {
1885		/* This kprobe has gone, we couldn't enable it. */
1886		ret = -EINVAL;
1887		goto out;
1888	}
1889
1890	if (p != kp)
1891		kp->flags &= ~KPROBE_FLAG_DISABLED;
1892
1893	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
1894		p->flags &= ~KPROBE_FLAG_DISABLED;
1895		arm_kprobe(p);
 
 
1896	}
1897out:
1898	mutex_unlock(&kprobe_mutex);
1899	return ret;
1900}
1901EXPORT_SYMBOL_GPL(enable_kprobe);
1902
1903void __kprobes dump_kprobe(struct kprobe *kp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1904{
1905	printk(KERN_WARNING "Dumping kprobe:\n");
1906	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1907	       kp->symbol_name, kp->addr, kp->offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1908}
1909
1910/* Module notifier call back, checking kprobes on the module */
1911static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1912					     unsigned long val, void *data)
1913{
1914	struct module *mod = data;
1915	struct hlist_head *head;
1916	struct hlist_node *node;
1917	struct kprobe *p;
1918	unsigned int i;
1919	int checkcore = (val == MODULE_STATE_GOING);
1920
 
 
 
 
 
1921	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1922		return NOTIFY_DONE;
1923
1924	/*
1925	 * When MODULE_STATE_GOING was notified, both of module .text and
1926	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1927	 * notified, only .init.text section would be freed. We need to
1928	 * disable kprobes which have been inserted in the sections.
1929	 */
1930	mutex_lock(&kprobe_mutex);
1931	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1932		head = &kprobe_table[i];
1933		hlist_for_each_entry_rcu(p, node, head, hlist)
1934			if (within_module_init((unsigned long)p->addr, mod) ||
1935			    (checkcore &&
1936			     within_module_core((unsigned long)p->addr, mod))) {
1937				/*
1938				 * The vaddr this probe is installed will soon
1939				 * be vfreed buy not synced to disk. Hence,
1940				 * disarming the breakpoint isn't needed.
 
 
 
 
 
 
1941				 */
1942				kill_kprobe(p);
1943			}
1944	}
 
 
1945	mutex_unlock(&kprobe_mutex);
1946	return NOTIFY_DONE;
1947}
1948
1949static struct notifier_block kprobe_module_nb = {
1950	.notifier_call = kprobes_module_callback,
1951	.priority = 0
1952};
1953
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1954static int __init init_kprobes(void)
1955{
1956	int i, err = 0;
1957	unsigned long offset = 0, size = 0;
1958	char *modname, namebuf[128];
1959	const char *symbol_name;
1960	void *addr;
1961	struct kprobe_blackpoint *kb;
1962
1963	/* FIXME allocate the probe table, currently defined statically */
1964	/* initialize all list heads */
1965	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1966		INIT_HLIST_HEAD(&kprobe_table[i]);
1967		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1968		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
1969	}
1970
1971	/*
1972	 * Lookup and populate the kprobe_blacklist.
1973	 *
1974	 * Unlike the kretprobe blacklist, we'll need to determine
1975	 * the range of addresses that belong to the said functions,
1976	 * since a kprobe need not necessarily be at the beginning
1977	 * of a function.
1978	 */
1979	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1980		kprobe_lookup_name(kb->name, addr);
1981		if (!addr)
1982			continue;
1983
1984		kb->start_addr = (unsigned long)addr;
1985		symbol_name = kallsyms_lookup(kb->start_addr,
1986				&size, &offset, &modname, namebuf);
1987		if (!symbol_name)
1988			kb->range = 0;
1989		else
1990			kb->range = size;
1991	}
1992
1993	if (kretprobe_blacklist_size) {
1994		/* lookup the function address from its name */
1995		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1996			kprobe_lookup_name(kretprobe_blacklist[i].name,
1997					   kretprobe_blacklist[i].addr);
1998			if (!kretprobe_blacklist[i].addr)
1999				printk("kretprobe: lookup failed: %s\n",
2000				       kretprobe_blacklist[i].name);
2001		}
2002	}
2003
2004#if defined(CONFIG_OPTPROBES)
2005#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2006	/* Init kprobe_optinsn_slots */
2007	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2008#endif
2009	/* By default, kprobes can be optimized */
2010	kprobes_allow_optimization = true;
2011#endif
2012
2013	/* By default, kprobes are armed */
2014	kprobes_all_disarmed = false;
2015
 
 
 
 
 
2016	err = arch_init_kprobes();
2017	if (!err)
2018		err = register_die_notifier(&kprobe_exceptions_nb);
2019	if (!err)
2020		err = register_module_notifier(&kprobe_module_nb);
2021
2022	kprobes_initialized = (err == 0);
2023
2024	if (!err)
2025		init_test_probes();
2026	return err;
2027}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2028
2029#ifdef CONFIG_DEBUG_FS
2030static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2031		const char *sym, int offset, char *modname, struct kprobe *pp)
2032{
2033	char *kprobe_type;
 
2034
2035	if (p->pre_handler == pre_handler_kretprobe)
2036		kprobe_type = "r";
2037	else if (p->pre_handler == setjmp_pre_handler)
2038		kprobe_type = "j";
2039	else
2040		kprobe_type = "k";
2041
 
 
 
2042	if (sym)
2043		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2044			p->addr, kprobe_type, sym, offset,
2045			(modname ? modname : " "));
2046	else
2047		seq_printf(pi, "%p  %s  %p ",
2048			p->addr, kprobe_type, p->addr);
2049
2050	if (!pp)
2051		pp = p;
2052	seq_printf(pi, "%s%s%s\n",
2053		(kprobe_gone(p) ? "[GONE]" : ""),
2054		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2055		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
 
2056}
2057
2058static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2059{
2060	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2061}
2062
2063static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2064{
2065	(*pos)++;
2066	if (*pos >= KPROBE_TABLE_SIZE)
2067		return NULL;
2068	return pos;
2069}
2070
2071static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2072{
2073	/* Nothing to do */
2074}
2075
2076static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2077{
2078	struct hlist_head *head;
2079	struct hlist_node *node;
2080	struct kprobe *p, *kp;
2081	const char *sym = NULL;
2082	unsigned int i = *(loff_t *) v;
2083	unsigned long offset = 0;
2084	char *modname, namebuf[128];
2085
2086	head = &kprobe_table[i];
2087	preempt_disable();
2088	hlist_for_each_entry_rcu(p, node, head, hlist) {
2089		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2090					&offset, &modname, namebuf);
2091		if (kprobe_aggrprobe(p)) {
2092			list_for_each_entry_rcu(kp, &p->list, list)
2093				report_probe(pi, kp, sym, offset, modname, p);
2094		} else
2095			report_probe(pi, p, sym, offset, modname, NULL);
2096	}
2097	preempt_enable();
2098	return 0;
2099}
2100
2101static const struct seq_operations kprobes_seq_ops = {
2102	.start = kprobe_seq_start,
2103	.next  = kprobe_seq_next,
2104	.stop  = kprobe_seq_stop,
2105	.show  = show_kprobe_addr
2106};
2107
2108static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
 
 
 
 
 
 
 
 
 
2109{
2110	return seq_open(filp, &kprobes_seq_ops);
2111}
2112
2113static const struct file_operations debugfs_kprobes_operations = {
2114	.open           = kprobes_open,
2115	.read           = seq_read,
2116	.llseek         = seq_lseek,
2117	.release        = seq_release,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2118};
 
2119
2120static void __kprobes arm_all_kprobes(void)
2121{
2122	struct hlist_head *head;
2123	struct hlist_node *node;
2124	struct kprobe *p;
2125	unsigned int i;
 
2126
2127	mutex_lock(&kprobe_mutex);
2128
2129	/* If kprobes are armed, just return */
2130	if (!kprobes_all_disarmed)
2131		goto already_enabled;
2132
 
 
 
 
 
 
2133	/* Arming kprobes doesn't optimize kprobe itself */
2134	mutex_lock(&text_mutex);
2135	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2136		head = &kprobe_table[i];
2137		hlist_for_each_entry_rcu(p, node, head, hlist)
2138			if (!kprobe_disabled(p))
2139				__arm_kprobe(p);
 
 
 
 
 
 
 
 
2140	}
2141	mutex_unlock(&text_mutex);
2142
2143	kprobes_all_disarmed = false;
2144	printk(KERN_INFO "Kprobes globally enabled\n");
 
 
 
2145
2146already_enabled:
2147	mutex_unlock(&kprobe_mutex);
2148	return;
2149}
2150
2151static void __kprobes disarm_all_kprobes(void)
2152{
2153	struct hlist_head *head;
2154	struct hlist_node *node;
2155	struct kprobe *p;
2156	unsigned int i;
 
2157
2158	mutex_lock(&kprobe_mutex);
2159
2160	/* If kprobes are already disarmed, just return */
2161	if (kprobes_all_disarmed) {
2162		mutex_unlock(&kprobe_mutex);
2163		return;
2164	}
2165
2166	kprobes_all_disarmed = true;
2167	printk(KERN_INFO "Kprobes globally disabled\n");
2168
2169	mutex_lock(&text_mutex);
2170	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2171		head = &kprobe_table[i];
2172		hlist_for_each_entry_rcu(p, node, head, hlist) {
2173			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2174				__disarm_kprobe(p, false);
 
 
 
 
 
 
 
2175		}
2176	}
2177	mutex_unlock(&text_mutex);
 
 
 
 
 
 
2178	mutex_unlock(&kprobe_mutex);
2179
2180	/* Wait for disarming all kprobes by optimizer */
2181	wait_for_kprobe_optimizer();
 
 
2182}
2183
2184/*
2185 * XXX: The debugfs bool file interface doesn't allow for callbacks
2186 * when the bool state is switched. We can reuse that facility when
2187 * available
2188 */
2189static ssize_t read_enabled_file_bool(struct file *file,
2190	       char __user *user_buf, size_t count, loff_t *ppos)
2191{
2192	char buf[3];
2193
2194	if (!kprobes_all_disarmed)
2195		buf[0] = '1';
2196	else
2197		buf[0] = '0';
2198	buf[1] = '\n';
2199	buf[2] = 0x00;
2200	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2201}
2202
2203static ssize_t write_enabled_file_bool(struct file *file,
2204	       const char __user *user_buf, size_t count, loff_t *ppos)
2205{
2206	char buf[32];
2207	size_t buf_size;
 
2208
2209	buf_size = min(count, (sizeof(buf)-1));
2210	if (copy_from_user(buf, user_buf, buf_size))
2211		return -EFAULT;
2212
 
2213	switch (buf[0]) {
2214	case 'y':
2215	case 'Y':
2216	case '1':
2217		arm_all_kprobes();
2218		break;
2219	case 'n':
2220	case 'N':
2221	case '0':
2222		disarm_all_kprobes();
2223		break;
 
 
2224	}
2225
 
 
 
2226	return count;
2227}
2228
2229static const struct file_operations fops_kp = {
2230	.read =         read_enabled_file_bool,
2231	.write =        write_enabled_file_bool,
2232	.llseek =	default_llseek,
2233};
2234
2235static int __kprobes debugfs_kprobe_init(void)
2236{
2237	struct dentry *dir, *file;
2238	unsigned int value = 1;
2239
2240	dir = debugfs_create_dir("kprobes", NULL);
2241	if (!dir)
2242		return -ENOMEM;
2243
2244	file = debugfs_create_file("list", 0444, dir, NULL,
2245				&debugfs_kprobes_operations);
2246	if (!file) {
2247		debugfs_remove(dir);
2248		return -ENOMEM;
2249	}
2250
2251	file = debugfs_create_file("enabled", 0600, dir,
2252					&value, &fops_kp);
2253	if (!file) {
2254		debugfs_remove(dir);
2255		return -ENOMEM;
2256	}
2257
2258	return 0;
2259}
2260
2261late_initcall(debugfs_kprobe_init);
2262#endif /* CONFIG_DEBUG_FS */
2263
2264module_init(init_kprobes);
2265
2266/* defined in arch/.../kernel/kprobes.c */
2267EXPORT_SYMBOL_GPL(jprobe_return);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Kernel Probes (KProbes)
   4 *  kernel/kprobes.c
   5 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 * Copyright (C) IBM Corporation, 2002, 2004
   7 *
   8 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
   9 *		Probes initial implementation (includes suggestions from
  10 *		Rusty Russell).
  11 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
  12 *		hlists and exceptions notifier as suggested by Andi Kleen.
  13 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  14 *		interface to access function arguments.
  15 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
  16 *		exceptions notifier to be first on the priority list.
  17 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  18 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  19 *		<prasanna@in.ibm.com> added function-return probes.
  20 */
  21#include <linux/kprobes.h>
  22#include <linux/hash.h>
  23#include <linux/init.h>
  24#include <linux/slab.h>
  25#include <linux/stddef.h>
  26#include <linux/export.h>
  27#include <linux/moduleloader.h>
  28#include <linux/kallsyms.h>
  29#include <linux/freezer.h>
  30#include <linux/seq_file.h>
  31#include <linux/debugfs.h>
  32#include <linux/sysctl.h>
  33#include <linux/kdebug.h>
  34#include <linux/memory.h>
  35#include <linux/ftrace.h>
  36#include <linux/cpu.h>
  37#include <linux/jump_label.h>
  38#include <linux/static_call.h>
  39#include <linux/perf_event.h>
  40
  41#include <asm/sections.h>
  42#include <asm/cacheflush.h>
  43#include <asm/errno.h>
  44#include <linux/uaccess.h>
  45
  46#define KPROBE_HASH_BITS 6
  47#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
  48
  49
 
 
 
 
 
 
 
 
 
  50static int kprobes_initialized;
  51/* kprobe_table can be accessed by
  52 * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
  53 * Or
  54 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
  55 */
  56static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
 
  57
  58/* NOTE: change this value only with kprobe_mutex held */
  59static bool kprobes_all_disarmed;
  60
  61/* This protects kprobe_table and optimizing_list */
  62static DEFINE_MUTEX(kprobe_mutex);
  63static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
 
 
 
  64
  65kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
  66					unsigned int __unused)
  67{
  68	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
  69}
  70
  71/* Blacklist -- list of struct kprobe_blacklist_entry */
  72static LIST_HEAD(kprobe_blacklist);
 
 
 
 
 
 
 
 
 
 
 
 
 
  73
  74#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
  75/*
  76 * kprobe->ainsn.insn points to the copy of the instruction to be
  77 * single-stepped. x86_64, POWER4 and above have no-exec support and
  78 * stepping on the instruction on a vmalloced/kmalloced/data page
  79 * is a recipe for disaster
  80 */
  81struct kprobe_insn_page {
  82	struct list_head list;
  83	kprobe_opcode_t *insns;		/* Page of instruction slots */
  84	struct kprobe_insn_cache *cache;
  85	int nused;
  86	int ngarbage;
  87	char slot_used[];
  88};
  89
  90#define KPROBE_INSN_PAGE_SIZE(slots)			\
  91	(offsetof(struct kprobe_insn_page, slot_used) +	\
  92	 (sizeof(char) * (slots)))
  93
 
 
 
 
 
 
  94static int slots_per_page(struct kprobe_insn_cache *c)
  95{
  96	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
  97}
  98
  99enum kprobe_slot_state {
 100	SLOT_CLEAN = 0,
 101	SLOT_DIRTY = 1,
 102	SLOT_USED = 2,
 103};
 104
 105void __weak *alloc_insn_page(void)
 106{
 107	return module_alloc(PAGE_SIZE);
 108}
 109
 110static void free_insn_page(void *page)
 111{
 112	module_memfree(page);
 113}
 114
 115struct kprobe_insn_cache kprobe_insn_slots = {
 116	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
 117	.alloc = alloc_insn_page,
 118	.free = free_insn_page,
 119	.sym = KPROBE_INSN_PAGE_SYM,
 120	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
 121	.insn_size = MAX_INSN_SIZE,
 122	.nr_garbage = 0,
 123};
 124static int collect_garbage_slots(struct kprobe_insn_cache *c);
 125
 126/**
 127 * __get_insn_slot() - Find a slot on an executable page for an instruction.
 128 * We allocate an executable page if there's no room on existing ones.
 129 */
 130kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
 131{
 132	struct kprobe_insn_page *kip;
 133	kprobe_opcode_t *slot = NULL;
 134
 135	/* Since the slot array is not protected by rcu, we need a mutex */
 136	mutex_lock(&c->mutex);
 137 retry:
 138	rcu_read_lock();
 139	list_for_each_entry_rcu(kip, &c->pages, list) {
 140		if (kip->nused < slots_per_page(c)) {
 141			int i;
 142			for (i = 0; i < slots_per_page(c); i++) {
 143				if (kip->slot_used[i] == SLOT_CLEAN) {
 144					kip->slot_used[i] = SLOT_USED;
 145					kip->nused++;
 146					slot = kip->insns + (i * c->insn_size);
 147					rcu_read_unlock();
 148					goto out;
 149				}
 150			}
 151			/* kip->nused is broken. Fix it. */
 152			kip->nused = slots_per_page(c);
 153			WARN_ON(1);
 154		}
 155	}
 156	rcu_read_unlock();
 157
 158	/* If there are any garbage slots, collect it and try again. */
 159	if (c->nr_garbage && collect_garbage_slots(c) == 0)
 160		goto retry;
 161
 162	/* All out of space.  Need to allocate a new page. */
 163	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
 164	if (!kip)
 165		goto out;
 166
 167	/*
 168	 * Use module_alloc so this page is within +/- 2GB of where the
 169	 * kernel image and loaded module images reside. This is required
 170	 * so x86_64 can correctly handle the %rip-relative fixups.
 171	 */
 172	kip->insns = c->alloc();
 173	if (!kip->insns) {
 174		kfree(kip);
 175		goto out;
 176	}
 177	INIT_LIST_HEAD(&kip->list);
 178	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
 179	kip->slot_used[0] = SLOT_USED;
 180	kip->nused = 1;
 181	kip->ngarbage = 0;
 182	kip->cache = c;
 183	list_add_rcu(&kip->list, &c->pages);
 184	slot = kip->insns;
 185
 186	/* Record the perf ksymbol register event after adding the page */
 187	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
 188			   PAGE_SIZE, false, c->sym);
 189out:
 190	mutex_unlock(&c->mutex);
 191	return slot;
 
 
 
 
 192}
 193
 194/* Return 1 if all garbages are collected, otherwise 0. */
 195static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
 196{
 197	kip->slot_used[idx] = SLOT_CLEAN;
 198	kip->nused--;
 199	if (kip->nused == 0) {
 200		/*
 201		 * Page is no longer in use.  Free it unless
 202		 * it's the last one.  We keep the last one
 203		 * so as not to have to set it up again the
 204		 * next time somebody inserts a probe.
 205		 */
 206		if (!list_is_singular(&kip->list)) {
 207			/*
 208			 * Record perf ksymbol unregister event before removing
 209			 * the page.
 210			 */
 211			perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
 212					   (unsigned long)kip->insns, PAGE_SIZE, true,
 213					   kip->cache->sym);
 214			list_del_rcu(&kip->list);
 215			synchronize_rcu();
 216			kip->cache->free(kip->insns);
 217			kfree(kip);
 218		}
 219		return 1;
 220	}
 221	return 0;
 222}
 223
 224static int collect_garbage_slots(struct kprobe_insn_cache *c)
 225{
 226	struct kprobe_insn_page *kip, *next;
 227
 228	/* Ensure no-one is interrupted on the garbages */
 229	synchronize_rcu();
 230
 231	list_for_each_entry_safe(kip, next, &c->pages, list) {
 232		int i;
 233		if (kip->ngarbage == 0)
 234			continue;
 235		kip->ngarbage = 0;	/* we will collect all garbages */
 236		for (i = 0; i < slots_per_page(c); i++) {
 237			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
 
 238				break;
 239		}
 240	}
 241	c->nr_garbage = 0;
 242	return 0;
 243}
 244
 245void __free_insn_slot(struct kprobe_insn_cache *c,
 246		      kprobe_opcode_t *slot, int dirty)
 247{
 248	struct kprobe_insn_page *kip;
 249	long idx;
 250
 251	mutex_lock(&c->mutex);
 252	rcu_read_lock();
 253	list_for_each_entry_rcu(kip, &c->pages, list) {
 254		idx = ((long)slot - (long)kip->insns) /
 255			(c->insn_size * sizeof(kprobe_opcode_t));
 256		if (idx >= 0 && idx < slots_per_page(c))
 257			goto out;
 
 
 
 
 
 
 
 258	}
 259	/* Could not find this slot. */
 260	WARN_ON(1);
 261	kip = NULL;
 262out:
 263	rcu_read_unlock();
 264	/* Mark and sweep: this may sleep */
 265	if (kip) {
 266		/* Check double free */
 267		WARN_ON(kip->slot_used[idx] != SLOT_USED);
 268		if (dirty) {
 269			kip->slot_used[idx] = SLOT_DIRTY;
 270			kip->ngarbage++;
 271			if (++c->nr_garbage > slots_per_page(c))
 272				collect_garbage_slots(c);
 273		} else {
 274			collect_one_slot(kip, idx);
 275		}
 276	}
 277	mutex_unlock(&c->mutex);
 278}
 279
 280/*
 281 * Check given address is on the page of kprobe instruction slots.
 282 * This will be used for checking whether the address on a stack
 283 * is on a text area or not.
 284 */
 285bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
 286{
 287	struct kprobe_insn_page *kip;
 288	bool ret = false;
 289
 290	rcu_read_lock();
 291	list_for_each_entry_rcu(kip, &c->pages, list) {
 292		if (addr >= (unsigned long)kip->insns &&
 293		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
 294			ret = true;
 295			break;
 296		}
 297	}
 298	rcu_read_unlock();
 299
 300	return ret;
 301}
 302
 303int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
 304			     unsigned long *value, char *type, char *sym)
 
 
 
 
 
 
 
 305{
 306	struct kprobe_insn_page *kip;
 307	int ret = -ERANGE;
 308
 309	rcu_read_lock();
 310	list_for_each_entry_rcu(kip, &c->pages, list) {
 311		if ((*symnum)--)
 312			continue;
 313		strlcpy(sym, c->sym, KSYM_NAME_LEN);
 314		*type = 't';
 315		*value = (unsigned long)kip->insns;
 316		ret = 0;
 317		break;
 318	}
 319	rcu_read_unlock();
 320
 321	return ret;
 322}
 323
 324#ifdef CONFIG_OPTPROBES
 325void __weak *alloc_optinsn_page(void)
 326{
 327	return alloc_insn_page();
 328}
 329
 330void __weak free_optinsn_page(void *page)
 331{
 332	free_insn_page(page);
 
 
 333}
 334
 335/* For optimized_kprobe buffer */
 336struct kprobe_insn_cache kprobe_optinsn_slots = {
 337	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
 338	.alloc = alloc_optinsn_page,
 339	.free = free_optinsn_page,
 340	.sym = KPROBE_OPTINSN_PAGE_SYM,
 341	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
 342	/* .insn_size is initialized later */
 343	.nr_garbage = 0,
 344};
 345#endif
 346#endif
 347
 348/* We have preemption disabled.. so it is safe to use __ versions */
 349static inline void set_kprobe_instance(struct kprobe *kp)
 350{
 351	__this_cpu_write(kprobe_instance, kp);
 352}
 353
 354static inline void reset_kprobe_instance(void)
 355{
 356	__this_cpu_write(kprobe_instance, NULL);
 357}
 358
 359/*
 360 * This routine is called either:
 361 * 	- under the kprobe_mutex - during kprobe_[un]register()
 362 * 				OR
 363 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
 364 */
 365struct kprobe *get_kprobe(void *addr)
 366{
 367	struct hlist_head *head;
 
 368	struct kprobe *p;
 369
 370	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
 371	hlist_for_each_entry_rcu(p, head, hlist,
 372				 lockdep_is_held(&kprobe_mutex)) {
 373		if (p->addr == addr)
 374			return p;
 375	}
 376
 377	return NULL;
 378}
 379NOKPROBE_SYMBOL(get_kprobe);
 380
 381static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
 382
 383/* Return true if the kprobe is an aggregator */
 384static inline int kprobe_aggrprobe(struct kprobe *p)
 385{
 386	return p->pre_handler == aggr_pre_handler;
 387}
 388
 389/* Return true(!0) if the kprobe is unused */
 390static inline int kprobe_unused(struct kprobe *p)
 391{
 392	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
 393	       list_empty(&p->list);
 394}
 395
 396/*
 397 * Keep all fields in the kprobe consistent
 398 */
 399static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
 400{
 401	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
 402	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
 403}
 404
 405#ifdef CONFIG_OPTPROBES
 406/* NOTE: change this value only with kprobe_mutex held */
 407static bool kprobes_allow_optimization;
 408
 409/*
 410 * Call all pre_handler on the list, but ignores its return value.
 411 * This must be called from arch-dep optimized caller.
 412 */
 413void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
 414{
 415	struct kprobe *kp;
 416
 417	list_for_each_entry_rcu(kp, &p->list, list) {
 418		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
 419			set_kprobe_instance(kp);
 420			kp->pre_handler(kp, regs);
 421		}
 422		reset_kprobe_instance();
 423	}
 424}
 425NOKPROBE_SYMBOL(opt_pre_handler);
 426
 427/* Free optimized instructions and optimized_kprobe */
 428static void free_aggr_kprobe(struct kprobe *p)
 429{
 430	struct optimized_kprobe *op;
 431
 432	op = container_of(p, struct optimized_kprobe, kp);
 433	arch_remove_optimized_kprobe(op);
 434	arch_remove_kprobe(p);
 435	kfree(op);
 436}
 437
 438/* Return true(!0) if the kprobe is ready for optimization. */
 439static inline int kprobe_optready(struct kprobe *p)
 440{
 441	struct optimized_kprobe *op;
 442
 443	if (kprobe_aggrprobe(p)) {
 444		op = container_of(p, struct optimized_kprobe, kp);
 445		return arch_prepared_optinsn(&op->optinsn);
 446	}
 447
 448	return 0;
 449}
 450
 451/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
 452static inline int kprobe_disarmed(struct kprobe *p)
 453{
 454	struct optimized_kprobe *op;
 455
 456	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
 457	if (!kprobe_aggrprobe(p))
 458		return kprobe_disabled(p);
 459
 460	op = container_of(p, struct optimized_kprobe, kp);
 461
 462	return kprobe_disabled(p) && list_empty(&op->list);
 463}
 464
 465/* Return true(!0) if the probe is queued on (un)optimizing lists */
 466static int kprobe_queued(struct kprobe *p)
 467{
 468	struct optimized_kprobe *op;
 469
 470	if (kprobe_aggrprobe(p)) {
 471		op = container_of(p, struct optimized_kprobe, kp);
 472		if (!list_empty(&op->list))
 473			return 1;
 474	}
 475	return 0;
 476}
 477
 478/*
 479 * Return an optimized kprobe whose optimizing code replaces
 480 * instructions including addr (exclude breakpoint).
 481 */
 482static struct kprobe *get_optimized_kprobe(unsigned long addr)
 483{
 484	int i;
 485	struct kprobe *p = NULL;
 486	struct optimized_kprobe *op;
 487
 488	/* Don't check i == 0, since that is a breakpoint case. */
 489	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
 490		p = get_kprobe((void *)(addr - i));
 491
 492	if (p && kprobe_optready(p)) {
 493		op = container_of(p, struct optimized_kprobe, kp);
 494		if (arch_within_optimized_kprobe(op, addr))
 495			return p;
 496	}
 497
 498	return NULL;
 499}
 500
 501/* Optimization staging list, protected by kprobe_mutex */
 502static LIST_HEAD(optimizing_list);
 503static LIST_HEAD(unoptimizing_list);
 504static LIST_HEAD(freeing_list);
 505
 506static void kprobe_optimizer(struct work_struct *work);
 507static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
 
 508#define OPTIMIZE_DELAY 5
 509
 510/*
 511 * Optimize (replace a breakpoint with a jump) kprobes listed on
 512 * optimizing_list.
 513 */
 514static void do_optimize_kprobes(void)
 515{
 516	lockdep_assert_held(&text_mutex);
 
 
 
 
 517	/*
 518	 * The optimization/unoptimization refers online_cpus via
 519	 * stop_machine() and cpu-hotplug modifies online_cpus.
 520	 * And same time, text_mutex will be held in cpu-hotplug and here.
 521	 * This combination can cause a deadlock (cpu-hotplug try to lock
 522	 * text_mutex but stop_machine can not be done because online_cpus
 523	 * has been changed)
 524	 * To avoid this deadlock, caller must have locked cpu hotplug
 525	 * for preventing cpu-hotplug outside of text_mutex locking.
 526	 */
 527	lockdep_assert_cpus_held();
 528
 529	/* Optimization never be done when disarmed */
 530	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
 531	    list_empty(&optimizing_list))
 532		return;
 533
 534	arch_optimize_kprobes(&optimizing_list);
 
 
 535}
 536
 537/*
 538 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
 539 * if need) kprobes listed on unoptimizing_list.
 540 */
 541static void do_unoptimize_kprobes(void)
 542{
 543	struct optimized_kprobe *op, *tmp;
 544
 545	lockdep_assert_held(&text_mutex);
 546	/* See comment in do_optimize_kprobes() */
 547	lockdep_assert_cpus_held();
 548
 549	/* Unoptimization must be done anytime */
 550	if (list_empty(&unoptimizing_list))
 551		return;
 552
 553	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
 
 
 
 554	/* Loop free_list for disarming */
 555	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 556		/* Switching from detour code to origin */
 557		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 558		/* Disarm probes if marked disabled */
 559		if (kprobe_disabled(&op->kp))
 560			arch_disarm_kprobe(&op->kp);
 561		if (kprobe_unused(&op->kp)) {
 562			/*
 563			 * Remove unused probes from hash list. After waiting
 564			 * for synchronization, these probes are reclaimed.
 565			 * (reclaiming is done by do_free_cleaned_kprobes.)
 566			 */
 567			hlist_del_rcu(&op->kp.hlist);
 568		} else
 569			list_del_init(&op->list);
 570	}
 
 
 571}
 572
 573/* Reclaim all kprobes on the free_list */
 574static void do_free_cleaned_kprobes(void)
 575{
 576	struct optimized_kprobe *op, *tmp;
 577
 578	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 
 579		list_del_init(&op->list);
 580		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
 581			/*
 582			 * This must not happen, but if there is a kprobe
 583			 * still in use, keep it on kprobes hash list.
 584			 */
 585			continue;
 586		}
 587		free_aggr_kprobe(&op->kp);
 588	}
 589}
 590
 591/* Start optimizer after OPTIMIZE_DELAY passed */
 592static void kick_kprobe_optimizer(void)
 593{
 594	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
 
 595}
 596
 597/* Kprobe jump optimizer */
 598static void kprobe_optimizer(struct work_struct *work)
 599{
 
 
 
 
 600	mutex_lock(&kprobe_mutex);
 601	cpus_read_lock();
 602	mutex_lock(&text_mutex);
 603
 604	/*
 605	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
 606	 * kprobes before waiting for quiesence period.
 607	 */
 608	do_unoptimize_kprobes();
 609
 610	/*
 611	 * Step 2: Wait for quiesence period to ensure all potentially
 612	 * preempted tasks to have normally scheduled. Because optprobe
 613	 * may modify multiple instructions, there is a chance that Nth
 614	 * instruction is preempted. In that case, such tasks can return
 615	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
 616	 * Note that on non-preemptive kernel, this is transparently converted
 617	 * to synchronoze_sched() to wait for all interrupts to have completed.
 618	 */
 619	synchronize_rcu_tasks();
 620
 621	/* Step 3: Optimize kprobes after quiesence period */
 622	do_optimize_kprobes();
 623
 624	/* Step 4: Free cleaned kprobes after quiesence period */
 625	do_free_cleaned_kprobes();
 626
 627	mutex_unlock(&text_mutex);
 628	cpus_read_unlock();
 629
 630	/* Step 5: Kick optimizer again if needed */
 631	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
 632		kick_kprobe_optimizer();
 633
 634	mutex_unlock(&kprobe_mutex);
 
 635}
 636
 637/* Wait for completing optimization and unoptimization */
 638void wait_for_kprobe_optimizer(void)
 639{
 640	mutex_lock(&kprobe_mutex);
 641
 642	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
 643		mutex_unlock(&kprobe_mutex);
 644
 645		/* this will also make optimizing_work execute immmediately */
 646		flush_delayed_work(&optimizing_work);
 647		/* @optimizing_work might not have been queued yet, relax */
 648		cpu_relax();
 649
 650		mutex_lock(&kprobe_mutex);
 651	}
 652
 653	mutex_unlock(&kprobe_mutex);
 654}
 655
 656static bool optprobe_queued_unopt(struct optimized_kprobe *op)
 657{
 658	struct optimized_kprobe *_op;
 659
 660	list_for_each_entry(_op, &unoptimizing_list, list) {
 661		if (op == _op)
 662			return true;
 663	}
 664
 665	return false;
 666}
 667
 668/* Optimize kprobe if p is ready to be optimized */
 669static void optimize_kprobe(struct kprobe *p)
 670{
 671	struct optimized_kprobe *op;
 672
 673	/* Check if the kprobe is disabled or not ready for optimization. */
 674	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
 675	    (kprobe_disabled(p) || kprobes_all_disarmed))
 676		return;
 677
 678	/* kprobes with post_handler can not be optimized */
 679	if (p->post_handler)
 680		return;
 681
 682	op = container_of(p, struct optimized_kprobe, kp);
 683
 684	/* Check there is no other kprobes at the optimized instructions */
 685	if (arch_check_optimized_kprobe(op) < 0)
 686		return;
 687
 688	/* Check if it is already optimized. */
 689	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
 690		if (optprobe_queued_unopt(op)) {
 691			/* This is under unoptimizing. Just dequeue the probe */
 692			list_del_init(&op->list);
 693		}
 694		return;
 695	}
 696	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
 697
 698	/* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
 699	if (WARN_ON_ONCE(!list_empty(&op->list)))
 700		return;
 701
 702	list_add(&op->list, &optimizing_list);
 703	kick_kprobe_optimizer();
 
 704}
 705
 706/* Short cut to direct unoptimizing */
 707static void force_unoptimize_kprobe(struct optimized_kprobe *op)
 708{
 709	lockdep_assert_cpus_held();
 710	arch_unoptimize_kprobe(op);
 711	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 
 
 712}
 713
 714/* Unoptimize a kprobe if p is optimized */
 715static void unoptimize_kprobe(struct kprobe *p, bool force)
 716{
 717	struct optimized_kprobe *op;
 718
 719	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
 720		return; /* This is not an optprobe nor optimized */
 721
 722	op = container_of(p, struct optimized_kprobe, kp);
 723	if (!kprobe_optimized(p))
 
 
 
 
 
 
 
 
 
 
 724		return;
 
 725
 
 726	if (!list_empty(&op->list)) {
 727		if (optprobe_queued_unopt(op)) {
 728			/* Queued in unoptimizing queue */
 729			if (force) {
 730				/*
 731				 * Forcibly unoptimize the kprobe here, and queue it
 732				 * in the freeing list for release afterwards.
 733				 */
 734				force_unoptimize_kprobe(op);
 735				list_move(&op->list, &freeing_list);
 736			}
 737		} else {
 738			/* Dequeue from the optimizing queue */
 739			list_del_init(&op->list);
 740			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 741		}
 742		return;
 743	}
 744
 745	/* Optimized kprobe case */
 746	if (force) {
 747		/* Forcibly update the code: this is a special case */
 748		force_unoptimize_kprobe(op);
 749	} else {
 750		list_add(&op->list, &unoptimizing_list);
 751		kick_kprobe_optimizer();
 752	}
 753}
 754
 755/* Cancel unoptimizing for reusing */
 756static int reuse_unused_kprobe(struct kprobe *ap)
 757{
 758	struct optimized_kprobe *op;
 759
 
 760	/*
 761	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
 762	 * there is still a relative jump) and disabled.
 763	 */
 764	op = container_of(ap, struct optimized_kprobe, kp);
 765	WARN_ON_ONCE(list_empty(&op->list));
 
 
 766	/* Enable the probe again */
 767	ap->flags &= ~KPROBE_FLAG_DISABLED;
 768	/* Optimize it again (remove from op->list) */
 769	if (!kprobe_optready(ap))
 770		return -EINVAL;
 771
 772	optimize_kprobe(ap);
 773	return 0;
 774}
 775
 776/* Remove optimized instructions */
 777static void kill_optimized_kprobe(struct kprobe *p)
 778{
 779	struct optimized_kprobe *op;
 780
 781	op = container_of(p, struct optimized_kprobe, kp);
 782	if (!list_empty(&op->list))
 783		/* Dequeue from the (un)optimization queue */
 784		list_del_init(&op->list);
 
 785	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 786
 787	if (kprobe_unused(p)) {
 788		/* Enqueue if it is unused */
 789		list_add(&op->list, &freeing_list);
 790		/*
 791		 * Remove unused probes from the hash list. After waiting
 792		 * for synchronization, this probe is reclaimed.
 793		 * (reclaiming is done by do_free_cleaned_kprobes().)
 794		 */
 795		hlist_del_rcu(&op->kp.hlist);
 796	}
 797
 798	/* Don't touch the code, because it is already freed. */
 799	arch_remove_optimized_kprobe(op);
 800}
 801
 802static inline
 803void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
 804{
 805	if (!kprobe_ftrace(p))
 806		arch_prepare_optimized_kprobe(op, p);
 807}
 808
 809/* Try to prepare optimized instructions */
 810static void prepare_optimized_kprobe(struct kprobe *p)
 811{
 812	struct optimized_kprobe *op;
 813
 814	op = container_of(p, struct optimized_kprobe, kp);
 815	__prepare_optimized_kprobe(op, p);
 816}
 817
 818/* Allocate new optimized_kprobe and try to prepare optimized instructions */
 819static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 820{
 821	struct optimized_kprobe *op;
 822
 823	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
 824	if (!op)
 825		return NULL;
 826
 827	INIT_LIST_HEAD(&op->list);
 828	op->kp.addr = p->addr;
 829	__prepare_optimized_kprobe(op, p);
 830
 831	return &op->kp;
 832}
 833
 834static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
 835
 836/*
 837 * Prepare an optimized_kprobe and optimize it
 838 * NOTE: p must be a normal registered kprobe
 839 */
 840static void try_to_optimize_kprobe(struct kprobe *p)
 841{
 842	struct kprobe *ap;
 843	struct optimized_kprobe *op;
 844
 845	/* Impossible to optimize ftrace-based kprobe */
 846	if (kprobe_ftrace(p))
 847		return;
 848
 849	/* For preparing optimization, jump_label_text_reserved() is called */
 850	cpus_read_lock();
 851	jump_label_lock();
 852	mutex_lock(&text_mutex);
 853
 854	ap = alloc_aggr_kprobe(p);
 855	if (!ap)
 856		goto out;
 857
 858	op = container_of(ap, struct optimized_kprobe, kp);
 859	if (!arch_prepared_optinsn(&op->optinsn)) {
 860		/* If failed to setup optimizing, fallback to kprobe */
 861		arch_remove_optimized_kprobe(op);
 862		kfree(op);
 863		goto out;
 864	}
 865
 866	init_aggr_kprobe(ap, p);
 867	optimize_kprobe(ap);	/* This just kicks optimizer thread */
 868
 869out:
 870	mutex_unlock(&text_mutex);
 871	jump_label_unlock();
 872	cpus_read_unlock();
 873}
 874
 875static void optimize_all_kprobes(void)
 
 
 876{
 877	struct hlist_head *head;
 
 878	struct kprobe *p;
 879	unsigned int i;
 880
 881	mutex_lock(&kprobe_mutex);
 882	/* If optimization is already allowed, just return */
 883	if (kprobes_allow_optimization)
 884		goto out;
 885
 886	cpus_read_lock();
 887	kprobes_allow_optimization = true;
 888	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 889		head = &kprobe_table[i];
 890		hlist_for_each_entry(p, head, hlist)
 891			if (!kprobe_disabled(p))
 892				optimize_kprobe(p);
 893	}
 894	cpus_read_unlock();
 895	printk(KERN_INFO "Kprobes globally optimized\n");
 896out:
 897	mutex_unlock(&kprobe_mutex);
 898}
 899
 900#ifdef CONFIG_SYSCTL
 901static void unoptimize_all_kprobes(void)
 902{
 903	struct hlist_head *head;
 
 904	struct kprobe *p;
 905	unsigned int i;
 906
 907	mutex_lock(&kprobe_mutex);
 908	/* If optimization is already prohibited, just return */
 909	if (!kprobes_allow_optimization) {
 910		mutex_unlock(&kprobe_mutex);
 911		return;
 912	}
 913
 914	cpus_read_lock();
 915	kprobes_allow_optimization = false;
 916	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 917		head = &kprobe_table[i];
 918		hlist_for_each_entry(p, head, hlist) {
 919			if (!kprobe_disabled(p))
 920				unoptimize_kprobe(p, false);
 921		}
 922	}
 923	cpus_read_unlock();
 924	mutex_unlock(&kprobe_mutex);
 925
 926	/* Wait for unoptimizing completion */
 927	wait_for_kprobe_optimizer();
 928	printk(KERN_INFO "Kprobes globally unoptimized\n");
 929}
 930
 931static DEFINE_MUTEX(kprobe_sysctl_mutex);
 932int sysctl_kprobes_optimization;
 933int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
 934				      void *buffer, size_t *length,
 935				      loff_t *ppos)
 936{
 937	int ret;
 938
 939	mutex_lock(&kprobe_sysctl_mutex);
 940	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
 941	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 942
 943	if (sysctl_kprobes_optimization)
 944		optimize_all_kprobes();
 945	else
 946		unoptimize_all_kprobes();
 947	mutex_unlock(&kprobe_sysctl_mutex);
 948
 949	return ret;
 950}
 951#endif /* CONFIG_SYSCTL */
 952
 953/* Put a breakpoint for a probe. Must be called with text_mutex locked */
 954static void __arm_kprobe(struct kprobe *p)
 955{
 956	struct kprobe *_p;
 957
 958	/* Check collision with other optimized kprobes */
 959	_p = get_optimized_kprobe((unsigned long)p->addr);
 960	if (unlikely(_p))
 961		/* Fallback to unoptimized kprobe */
 962		unoptimize_kprobe(_p, true);
 963
 964	arch_arm_kprobe(p);
 965	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
 966}
 967
 968/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
 969static void __disarm_kprobe(struct kprobe *p, bool reopt)
 970{
 971	struct kprobe *_p;
 972
 973	/* Try to unoptimize */
 974	unoptimize_kprobe(p, kprobes_all_disarmed);
 975
 976	if (!kprobe_queued(p)) {
 977		arch_disarm_kprobe(p);
 978		/* If another kprobe was blocked, optimize it. */
 979		_p = get_optimized_kprobe((unsigned long)p->addr);
 980		if (unlikely(_p) && reopt)
 981			optimize_kprobe(_p);
 982	}
 983	/* TODO: reoptimize others after unoptimized this probe */
 984}
 985
 986#else /* !CONFIG_OPTPROBES */
 987
 988#define optimize_kprobe(p)			do {} while (0)
 989#define unoptimize_kprobe(p, f)			do {} while (0)
 990#define kill_optimized_kprobe(p)		do {} while (0)
 991#define prepare_optimized_kprobe(p)		do {} while (0)
 992#define try_to_optimize_kprobe(p)		do {} while (0)
 993#define __arm_kprobe(p)				arch_arm_kprobe(p)
 994#define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
 995#define kprobe_disarmed(p)			kprobe_disabled(p)
 996#define wait_for_kprobe_optimizer()		do {} while (0)
 997
 998static int reuse_unused_kprobe(struct kprobe *ap)
 
 999{
1000	/*
1001	 * If the optimized kprobe is NOT supported, the aggr kprobe is
1002	 * released at the same time that the last aggregated kprobe is
1003	 * unregistered.
1004	 * Thus there should be no chance to reuse unused kprobe.
1005	 */
1006	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
1007	return -EINVAL;
1008}
1009
1010static void free_aggr_kprobe(struct kprobe *p)
1011{
1012	arch_remove_kprobe(p);
1013	kfree(p);
1014}
1015
1016static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1017{
1018	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1019}
1020#endif /* CONFIG_OPTPROBES */
1021
1022#ifdef CONFIG_KPROBES_ON_FTRACE
1023static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1024	.func = kprobe_ftrace_handler,
1025	.flags = FTRACE_OPS_FL_SAVE_REGS,
1026};
1027
1028static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1029	.func = kprobe_ftrace_handler,
1030	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1031};
1032
1033static int kprobe_ipmodify_enabled;
1034static int kprobe_ftrace_enabled;
1035
1036/* Must ensure p->addr is really on ftrace */
1037static int prepare_kprobe(struct kprobe *p)
1038{
1039	if (!kprobe_ftrace(p))
1040		return arch_prepare_kprobe(p);
1041
1042	return arch_prepare_kprobe_ftrace(p);
1043}
1044
1045/* Caller must lock kprobe_mutex */
1046static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1047			       int *cnt)
1048{
1049	int ret = 0;
1050
1051	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1052	if (ret) {
1053		pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1054			 p->addr, ret);
1055		return ret;
1056	}
1057
1058	if (*cnt == 0) {
1059		ret = register_ftrace_function(ops);
1060		if (ret) {
1061			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1062			goto err_ftrace;
1063		}
1064	}
1065
1066	(*cnt)++;
1067	return ret;
1068
1069err_ftrace:
1070	/*
1071	 * At this point, sinec ops is not registered, we should be sefe from
1072	 * registering empty filter.
 
1073	 */
1074	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1075	return ret;
1076}
1077
1078static int arm_kprobe_ftrace(struct kprobe *p)
1079{
1080	bool ipmodify = (p->post_handler != NULL);
1081
1082	return __arm_kprobe_ftrace(p,
1083		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1084		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1085}
1086
1087/* Caller must lock kprobe_mutex */
1088static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1089				  int *cnt)
1090{
1091	int ret = 0;
1092
1093	if (*cnt == 1) {
1094		ret = unregister_ftrace_function(ops);
1095		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1096			return ret;
1097	}
1098
1099	(*cnt)--;
1100
1101	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1102	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1103		  p->addr, ret);
1104	return ret;
1105}
1106
1107static int disarm_kprobe_ftrace(struct kprobe *p)
1108{
1109	bool ipmodify = (p->post_handler != NULL);
1110
1111	return __disarm_kprobe_ftrace(p,
1112		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1113		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1114}
1115#else	/* !CONFIG_KPROBES_ON_FTRACE */
1116static inline int prepare_kprobe(struct kprobe *p)
1117{
1118	return arch_prepare_kprobe(p);
1119}
1120
1121static inline int arm_kprobe_ftrace(struct kprobe *p)
1122{
1123	return -ENODEV;
1124}
1125
1126static inline int disarm_kprobe_ftrace(struct kprobe *p)
1127{
1128	return -ENODEV;
1129}
1130#endif
1131
1132/* Arm a kprobe with text_mutex */
1133static int arm_kprobe(struct kprobe *kp)
1134{
1135	if (unlikely(kprobe_ftrace(kp)))
1136		return arm_kprobe_ftrace(kp);
1137
1138	cpus_read_lock();
1139	mutex_lock(&text_mutex);
1140	__arm_kprobe(kp);
1141	mutex_unlock(&text_mutex);
1142	cpus_read_unlock();
1143
1144	return 0;
1145}
1146
1147/* Disarm a kprobe with text_mutex */
1148static int disarm_kprobe(struct kprobe *kp, bool reopt)
1149{
1150	if (unlikely(kprobe_ftrace(kp)))
1151		return disarm_kprobe_ftrace(kp);
1152
1153	cpus_read_lock();
1154	mutex_lock(&text_mutex);
1155	__disarm_kprobe(kp, reopt);
1156	mutex_unlock(&text_mutex);
1157	cpus_read_unlock();
1158
1159	return 0;
1160}
1161
1162/*
1163 * Aggregate handlers for multiple kprobes support - these handlers
1164 * take care of invoking the individual kprobe handlers on p->list
1165 */
1166static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1167{
1168	struct kprobe *kp;
1169
1170	list_for_each_entry_rcu(kp, &p->list, list) {
1171		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1172			set_kprobe_instance(kp);
1173			if (kp->pre_handler(kp, regs))
1174				return 1;
1175		}
1176		reset_kprobe_instance();
1177	}
1178	return 0;
1179}
1180NOKPROBE_SYMBOL(aggr_pre_handler);
1181
1182static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1183			      unsigned long flags)
1184{
1185	struct kprobe *kp;
1186
1187	list_for_each_entry_rcu(kp, &p->list, list) {
1188		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1189			set_kprobe_instance(kp);
1190			kp->post_handler(kp, regs, flags);
1191			reset_kprobe_instance();
1192		}
1193	}
1194}
1195NOKPROBE_SYMBOL(aggr_post_handler);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1196
1197/* Walks the list and increments nmissed count for multiprobe case */
1198void kprobes_inc_nmissed_count(struct kprobe *p)
1199{
1200	struct kprobe *kp;
1201	if (!kprobe_aggrprobe(p)) {
1202		p->nmissed++;
1203	} else {
1204		list_for_each_entry_rcu(kp, &p->list, list)
1205			kp->nmissed++;
1206	}
1207	return;
1208}
1209NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1210
1211static void free_rp_inst_rcu(struct rcu_head *head)
 
1212{
1213	struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1214
1215	if (refcount_dec_and_test(&ri->rph->ref))
1216		kfree(ri->rph);
1217	kfree(ri);
 
 
 
 
 
 
 
1218}
1219NOKPROBE_SYMBOL(free_rp_inst_rcu);
1220
1221static void recycle_rp_inst(struct kretprobe_instance *ri)
 
 
1222{
1223	struct kretprobe *rp = get_kretprobe(ri);
 
1224
1225	if (likely(rp)) {
1226		freelist_add(&ri->freelist, &rp->freelist);
1227	} else
1228		call_rcu(&ri->rcu, free_rp_inst_rcu);
1229}
1230NOKPROBE_SYMBOL(recycle_rp_inst);
1231
1232static struct kprobe kprobe_busy = {
1233	.addr = (void *) get_kprobe,
1234};
 
 
 
 
1235
1236void kprobe_busy_begin(void)
 
 
1237{
1238	struct kprobe_ctlblk *kcb;
 
1239
1240	preempt_disable();
1241	__this_cpu_write(current_kprobe, &kprobe_busy);
1242	kcb = get_kprobe_ctlblk();
1243	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1244}
1245
1246void kprobe_busy_end(void)
 
 
1247{
1248	__this_cpu_write(current_kprobe, NULL);
1249	preempt_enable();
1250}
1251
1252/*
1253 * This function is called from finish_task_switch when task tk becomes dead,
1254 * so that we can recycle any function-return probe instances associated
1255 * with this task. These left over instances represent probed functions
1256 * that have been called but will never return.
1257 */
1258void kprobe_flush_task(struct task_struct *tk)
1259{
1260	struct kretprobe_instance *ri;
1261	struct llist_node *node;
 
 
1262
1263	/* Early boot, not yet initialized. */
1264	if (unlikely(!kprobes_initialized))
 
1265		return;
1266
1267	kprobe_busy_begin();
1268
1269	node = __llist_del_all(&tk->kretprobe_instances);
1270	while (node) {
1271		ri = container_of(node, struct kretprobe_instance, llist);
1272		node = node->next;
1273
1274		recycle_rp_inst(ri);
 
 
 
 
1275	}
1276
1277	kprobe_busy_end();
1278}
1279NOKPROBE_SYMBOL(kprobe_flush_task);
1280
1281static inline void free_rp_inst(struct kretprobe *rp)
1282{
1283	struct kretprobe_instance *ri;
1284	struct freelist_node *node;
1285	int count = 0;
1286
1287	node = rp->freelist.head;
1288	while (node) {
1289		ri = container_of(node, struct kretprobe_instance, freelist);
1290		node = node->next;
1291
 
 
1292		kfree(ri);
1293		count++;
1294	}
 
 
 
 
 
 
 
 
1295
1296	if (refcount_sub_and_test(count, &rp->rph->ref)) {
1297		kfree(rp->rph);
1298		rp->rph = NULL;
 
 
 
 
 
 
1299	}
 
1300}
1301
1302/* Add the new probe to ap->list */
1303static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
 
 
 
1304{
1305	if (p->post_handler)
 
 
1306		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1307
1308	list_add_rcu(&p->list, &ap->list);
 
 
 
 
 
 
1309	if (p->post_handler && !ap->post_handler)
1310		ap->post_handler = aggr_post_handler;
1311
 
 
 
 
 
 
1312	return 0;
1313}
1314
1315/*
1316 * Fill in the required fields of the "manager kprobe". Replace the
1317 * earlier kprobe in the hlist with the manager kprobe
1318 */
1319static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1320{
1321	/* Copy p's insn slot to ap */
1322	copy_kprobe(p, ap);
1323	flush_insn_slot(ap);
1324	ap->addr = p->addr;
1325	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1326	ap->pre_handler = aggr_pre_handler;
 
1327	/* We don't care the kprobe which has gone. */
1328	if (p->post_handler && !kprobe_gone(p))
1329		ap->post_handler = aggr_post_handler;
 
 
1330
1331	INIT_LIST_HEAD(&ap->list);
1332	INIT_HLIST_NODE(&ap->hlist);
1333
1334	list_add_rcu(&p->list, &ap->list);
1335	hlist_replace_rcu(&p->hlist, &ap->hlist);
1336}
1337
1338/*
1339 * This is the second or subsequent kprobe at the address - handle
1340 * the intricacies
1341 */
1342static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
 
1343{
1344	int ret = 0;
1345	struct kprobe *ap = orig_p;
1346
1347	cpus_read_lock();
1348
1349	/* For preparing optimization, jump_label_text_reserved() is called */
1350	jump_label_lock();
1351	mutex_lock(&text_mutex);
1352
1353	if (!kprobe_aggrprobe(orig_p)) {
1354		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1355		ap = alloc_aggr_kprobe(orig_p);
1356		if (!ap) {
1357			ret = -ENOMEM;
1358			goto out;
1359		}
1360		init_aggr_kprobe(ap, orig_p);
1361	} else if (kprobe_unused(ap)) {
1362		/* This probe is going to die. Rescue it */
1363		ret = reuse_unused_kprobe(ap);
1364		if (ret)
1365			goto out;
1366	}
1367
1368	if (kprobe_gone(ap)) {
1369		/*
1370		 * Attempting to insert new probe at the same location that
1371		 * had a probe in the module vaddr area which already
1372		 * freed. So, the instruction slot has already been
1373		 * released. We need a new slot for the new probe.
1374		 */
1375		ret = arch_prepare_kprobe(ap);
1376		if (ret)
1377			/*
1378			 * Even if fail to allocate new slot, don't need to
1379			 * free aggr_probe. It will be used next time, or
1380			 * freed by unregister_kprobe.
1381			 */
1382			goto out;
1383
1384		/* Prepare optimized instructions if possible. */
1385		prepare_optimized_kprobe(ap);
1386
1387		/*
1388		 * Clear gone flag to prevent allocating new slot again, and
1389		 * set disabled flag because it is not armed yet.
1390		 */
1391		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1392			    | KPROBE_FLAG_DISABLED;
1393	}
1394
1395	/* Copy ap's insn slot to p */
1396	copy_kprobe(ap, p);
1397	ret = add_new_kprobe(ap, p);
1398
1399out:
1400	mutex_unlock(&text_mutex);
1401	jump_label_unlock();
1402	cpus_read_unlock();
1403
1404	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1405		ap->flags &= ~KPROBE_FLAG_DISABLED;
1406		if (!kprobes_all_disarmed) {
1407			/* Arm the breakpoint again. */
1408			ret = arm_kprobe(ap);
1409			if (ret) {
1410				ap->flags |= KPROBE_FLAG_DISABLED;
1411				list_del_rcu(&p->list);
1412				synchronize_rcu();
1413			}
1414		}
1415	}
1416	return ret;
1417}
1418
1419bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1420{
1421	/* The __kprobes marked functions and entry code must not be probed */
1422	return addr >= (unsigned long)__kprobes_text_start &&
1423	       addr < (unsigned long)__kprobes_text_end;
1424}
1425
1426static bool __within_kprobe_blacklist(unsigned long addr)
1427{
1428	struct kprobe_blacklist_entry *ent;
1429
1430	if (arch_within_kprobe_blacklist(addr))
1431		return true;
1432	/*
1433	 * If there exists a kprobe_blacklist, verify and
1434	 * fail any probe registration in the prohibited area
1435	 */
1436	list_for_each_entry(ent, &kprobe_blacklist, list) {
1437		if (addr >= ent->start_addr && addr < ent->end_addr)
1438			return true;
 
 
 
1439	}
1440	return false;
1441}
1442
1443bool within_kprobe_blacklist(unsigned long addr)
1444{
1445	char symname[KSYM_NAME_LEN], *p;
1446
1447	if (__within_kprobe_blacklist(addr))
1448		return true;
1449
1450	/* Check if the address is on a suffixed-symbol */
1451	if (!lookup_symbol_name(addr, symname)) {
1452		p = strchr(symname, '.');
1453		if (!p)
1454			return false;
1455		*p = '\0';
1456		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1457		if (addr)
1458			return __within_kprobe_blacklist(addr);
1459	}
1460	return false;
1461}
1462
1463/*
1464 * If we have a symbol_name argument, look it up and add the offset field
1465 * to it. This way, we can specify a relative address to a symbol.
1466 * This returns encoded errors if it fails to look up symbol or invalid
1467 * combination of parameters.
1468 */
1469static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1470			const char *symbol_name, unsigned int offset)
1471{
1472	if ((symbol_name && addr) || (!symbol_name && !addr))
 
 
 
1473		goto invalid;
1474
1475	if (symbol_name) {
1476		addr = kprobe_lookup_name(symbol_name, offset);
1477		if (!addr)
1478			return ERR_PTR(-ENOENT);
1479	}
1480
1481	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1482	if (addr)
1483		return addr;
1484
1485invalid:
1486	return ERR_PTR(-EINVAL);
1487}
1488
1489static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1490{
1491	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1492}
1493
1494/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1495static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1496{
1497	struct kprobe *ap, *list_p;
1498
1499	lockdep_assert_held(&kprobe_mutex);
1500
1501	ap = get_kprobe(p->addr);
1502	if (unlikely(!ap))
1503		return NULL;
1504
1505	if (p != ap) {
1506		list_for_each_entry(list_p, &ap->list, list)
1507			if (list_p == p)
1508			/* kprobe p is a valid probe */
1509				goto valid;
1510		return NULL;
1511	}
1512valid:
1513	return ap;
1514}
1515
1516/*
1517 * Warn and return error if the kprobe is being re-registered since
1518 * there must be a software bug.
1519 */
1520static inline int warn_kprobe_rereg(struct kprobe *p)
1521{
1522	int ret = 0;
1523
1524	mutex_lock(&kprobe_mutex);
1525	if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1526		ret = -EINVAL;
1527	mutex_unlock(&kprobe_mutex);
1528
1529	return ret;
1530}
1531
1532int __weak arch_check_ftrace_location(struct kprobe *p)
1533{
1534	unsigned long ftrace_addr;
 
 
 
1535
1536	ftrace_addr = ftrace_location((unsigned long)p->addr);
1537	if (ftrace_addr) {
1538#ifdef CONFIG_KPROBES_ON_FTRACE
1539		/* Given address is not on the instruction boundary */
1540		if ((unsigned long)p->addr != ftrace_addr)
1541			return -EILSEQ;
1542		p->flags |= KPROBE_FLAG_FTRACE;
1543#else	/* !CONFIG_KPROBES_ON_FTRACE */
1544		return -EINVAL;
1545#endif
1546	}
1547	return 0;
1548}
1549
1550static int check_kprobe_address_safe(struct kprobe *p,
1551				     struct module **probed_mod)
1552{
1553	int ret;
1554
1555	ret = arch_check_ftrace_location(p);
1556	if (ret)
1557		return ret;
 
1558	jump_label_lock();
1559	preempt_disable();
1560
1561	/* Ensure it is not in reserved area nor out of text */
1562	if (!kernel_text_address((unsigned long) p->addr) ||
1563	    within_kprobe_blacklist((unsigned long) p->addr) ||
1564	    jump_label_text_reserved(p->addr, p->addr) ||
1565	    static_call_text_reserved(p->addr, p->addr) ||
1566	    find_bug((unsigned long)p->addr)) {
1567		ret = -EINVAL;
1568		goto out;
1569	}
1570
1571	/* Check if are we probing a module */
1572	*probed_mod = __module_text_address((unsigned long) p->addr);
1573	if (*probed_mod) {
 
 
 
 
 
 
 
1574		/*
1575		 * We must hold a refcount of the probed module while updating
1576		 * its code to prohibit unexpected unloading.
1577		 */
1578		if (unlikely(!try_module_get(*probed_mod))) {
1579			ret = -ENOENT;
1580			goto out;
1581		}
1582
1583		/*
1584		 * If the module freed .init.text, we couldn't insert
1585		 * kprobes in there.
1586		 */
1587		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1588		    (*probed_mod)->state != MODULE_STATE_COMING) {
1589			module_put(*probed_mod);
1590			*probed_mod = NULL;
1591			ret = -ENOENT;
1592		}
 
1593	}
1594out:
1595	preempt_enable();
1596	jump_label_unlock();
1597
1598	return ret;
1599}
1600
1601int register_kprobe(struct kprobe *p)
1602{
1603	int ret;
1604	struct kprobe *old_p;
1605	struct module *probed_mod;
1606	kprobe_opcode_t *addr;
1607
1608	/* Adjust probe address from symbol */
1609	addr = kprobe_addr(p);
1610	if (IS_ERR(addr))
1611		return PTR_ERR(addr);
1612	p->addr = addr;
1613
1614	ret = warn_kprobe_rereg(p);
1615	if (ret)
1616		return ret;
1617
1618	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1619	p->flags &= KPROBE_FLAG_DISABLED;
1620	p->nmissed = 0;
1621	INIT_LIST_HEAD(&p->list);
 
1622
1623	ret = check_kprobe_address_safe(p, &probed_mod);
1624	if (ret)
1625		return ret;
1626
1627	mutex_lock(&kprobe_mutex);
 
1628
1629	old_p = get_kprobe(p->addr);
1630	if (old_p) {
1631		/* Since this may unoptimize old_p, locking text_mutex. */
1632		ret = register_aggr_kprobe(old_p, p);
1633		goto out;
1634	}
1635
1636	cpus_read_lock();
1637	/* Prevent text modification */
1638	mutex_lock(&text_mutex);
1639	ret = prepare_kprobe(p);
1640	mutex_unlock(&text_mutex);
1641	cpus_read_unlock();
1642	if (ret)
1643		goto out;
1644
1645	INIT_HLIST_NODE(&p->hlist);
1646	hlist_add_head_rcu(&p->hlist,
1647		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1648
1649	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1650		ret = arm_kprobe(p);
1651		if (ret) {
1652			hlist_del_rcu(&p->hlist);
1653			synchronize_rcu();
1654			goto out;
1655		}
1656	}
1657
1658	/* Try to optimize kprobe */
1659	try_to_optimize_kprobe(p);
 
1660out:
 
 
 
1661	mutex_unlock(&kprobe_mutex);
1662
1663	if (probed_mod)
1664		module_put(probed_mod);
1665
1666	return ret;
 
 
 
 
 
1667}
1668EXPORT_SYMBOL_GPL(register_kprobe);
1669
1670/* Check if all probes on the aggrprobe are disabled */
1671static int aggr_kprobe_disabled(struct kprobe *ap)
1672{
1673	struct kprobe *kp;
1674
1675	lockdep_assert_held(&kprobe_mutex);
1676
1677	list_for_each_entry(kp, &ap->list, list)
1678		if (!kprobe_disabled(kp))
1679			/*
1680			 * There is an active probe on the list.
1681			 * We can't disable this ap.
1682			 */
1683			return 0;
1684
1685	return 1;
1686}
1687
1688/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1689static struct kprobe *__disable_kprobe(struct kprobe *p)
1690{
1691	struct kprobe *orig_p;
1692	int ret;
1693
1694	/* Get an original kprobe for return */
1695	orig_p = __get_valid_kprobe(p);
1696	if (unlikely(orig_p == NULL))
1697		return ERR_PTR(-EINVAL);
1698
1699	if (!kprobe_disabled(p)) {
1700		/* Disable probe if it is a child probe */
1701		if (p != orig_p)
1702			p->flags |= KPROBE_FLAG_DISABLED;
1703
1704		/* Try to disarm and disable this/parent probe */
1705		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1706			/*
1707			 * If kprobes_all_disarmed is set, orig_p
1708			 * should have already been disarmed, so
1709			 * skip unneed disarming process.
1710			 */
1711			if (!kprobes_all_disarmed) {
1712				ret = disarm_kprobe(orig_p, true);
1713				if (ret) {
1714					p->flags &= ~KPROBE_FLAG_DISABLED;
1715					return ERR_PTR(ret);
1716				}
1717			}
1718			orig_p->flags |= KPROBE_FLAG_DISABLED;
1719		}
1720	}
1721
1722	return orig_p;
1723}
1724
1725/*
1726 * Unregister a kprobe without a scheduler synchronization.
1727 */
1728static int __unregister_kprobe_top(struct kprobe *p)
1729{
1730	struct kprobe *ap, *list_p;
1731
1732	/* Disable kprobe. This will disarm it if needed. */
1733	ap = __disable_kprobe(p);
1734	if (IS_ERR(ap))
1735		return PTR_ERR(ap);
1736
1737	if (ap == p)
1738		/*
1739		 * This probe is an independent(and non-optimized) kprobe
1740		 * (not an aggrprobe). Remove from the hash list.
1741		 */
1742		goto disarmed;
1743
1744	/* Following process expects this probe is an aggrprobe */
1745	WARN_ON(!kprobe_aggrprobe(ap));
1746
1747	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1748		/*
1749		 * !disarmed could be happen if the probe is under delayed
1750		 * unoptimizing.
1751		 */
1752		goto disarmed;
1753	else {
1754		/* If disabling probe has special handlers, update aggrprobe */
 
 
1755		if (p->post_handler && !kprobe_gone(p)) {
1756			list_for_each_entry(list_p, &ap->list, list) {
1757				if ((list_p != p) && (list_p->post_handler))
1758					goto noclean;
1759			}
1760			ap->post_handler = NULL;
1761		}
1762noclean:
1763		/*
1764		 * Remove from the aggrprobe: this path will do nothing in
1765		 * __unregister_kprobe_bottom().
1766		 */
1767		list_del_rcu(&p->list);
1768		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1769			/*
1770			 * Try to optimize this probe again, because post
1771			 * handler may have been changed.
1772			 */
1773			optimize_kprobe(ap);
1774	}
1775	return 0;
1776
1777disarmed:
 
1778	hlist_del_rcu(&ap->hlist);
1779	return 0;
1780}
1781
1782static void __unregister_kprobe_bottom(struct kprobe *p)
1783{
1784	struct kprobe *ap;
1785
1786	if (list_empty(&p->list))
1787		/* This is an independent kprobe */
1788		arch_remove_kprobe(p);
1789	else if (list_is_singular(&p->list)) {
1790		/* This is the last child of an aggrprobe */
1791		ap = list_entry(p->list.next, struct kprobe, list);
1792		list_del(&p->list);
1793		free_aggr_kprobe(ap);
1794	}
1795	/* Otherwise, do nothing. */
1796}
1797
1798int register_kprobes(struct kprobe **kps, int num)
1799{
1800	int i, ret = 0;
1801
1802	if (num <= 0)
1803		return -EINVAL;
1804	for (i = 0; i < num; i++) {
1805		ret = register_kprobe(kps[i]);
1806		if (ret < 0) {
1807			if (i > 0)
1808				unregister_kprobes(kps, i);
1809			break;
1810		}
1811	}
1812	return ret;
1813}
1814EXPORT_SYMBOL_GPL(register_kprobes);
1815
1816void unregister_kprobe(struct kprobe *p)
1817{
1818	unregister_kprobes(&p, 1);
1819}
1820EXPORT_SYMBOL_GPL(unregister_kprobe);
1821
1822void unregister_kprobes(struct kprobe **kps, int num)
1823{
1824	int i;
1825
1826	if (num <= 0)
1827		return;
1828	mutex_lock(&kprobe_mutex);
1829	for (i = 0; i < num; i++)
1830		if (__unregister_kprobe_top(kps[i]) < 0)
1831			kps[i]->addr = NULL;
1832	mutex_unlock(&kprobe_mutex);
1833
1834	synchronize_rcu();
1835	for (i = 0; i < num; i++)
1836		if (kps[i]->addr)
1837			__unregister_kprobe_bottom(kps[i]);
1838}
1839EXPORT_SYMBOL_GPL(unregister_kprobes);
1840
1841int __weak kprobe_exceptions_notify(struct notifier_block *self,
1842					unsigned long val, void *data)
1843{
1844	return NOTIFY_DONE;
1845}
1846NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1847
1848static struct notifier_block kprobe_exceptions_nb = {
1849	.notifier_call = kprobe_exceptions_notify,
1850	.priority = 0x7fffffff /* we need to be notified first */
1851};
1852
1853unsigned long __weak arch_deref_entry_point(void *entry)
1854{
1855	return (unsigned long)entry;
1856}
1857
1858#ifdef CONFIG_KRETPROBES
 
 
 
1859
1860unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
1861					     void *trampoline_address,
1862					     void *frame_pointer)
1863{
1864	kprobe_opcode_t *correct_ret_addr = NULL;
1865	struct kretprobe_instance *ri = NULL;
1866	struct llist_node *first, *node;
1867	struct kretprobe *rp;
1868
1869	/* Find all nodes for this frame. */
1870	first = node = current->kretprobe_instances.first;
1871	while (node) {
1872		ri = container_of(node, struct kretprobe_instance, llist);
 
 
1873
1874		BUG_ON(ri->fp != frame_pointer);
1875
1876		if (ri->ret_addr != trampoline_address) {
1877			correct_ret_addr = ri->ret_addr;
1878			/*
1879			 * This is the real return address. Any other
1880			 * instances associated with this task are for
1881			 * other calls deeper on the call stack
1882			 */
1883			goto found;
1884		}
1885
1886		node = node->next;
1887	}
1888	pr_err("Oops! Kretprobe fails to find correct return address.\n");
1889	BUG_ON(1);
 
1890
1891found:
1892	/* Unlink all nodes for this frame. */
1893	current->kretprobe_instances.first = node->next;
1894	node->next = NULL;
 
1895
1896	/* Run them..  */
1897	while (first) {
1898		ri = container_of(first, struct kretprobe_instance, llist);
1899		first = first->next;
 
1900
1901		rp = get_kretprobe(ri);
1902		if (rp && rp->handler) {
1903			struct kprobe *prev = kprobe_running();
1904
1905			__this_cpu_write(current_kprobe, &rp->kp);
1906			ri->ret_addr = correct_ret_addr;
1907			rp->handler(ri, regs);
1908			__this_cpu_write(current_kprobe, prev);
1909		}
 
 
1910
1911		recycle_rp_inst(ri);
 
 
 
1912	}
1913
1914	return (unsigned long)correct_ret_addr;
1915}
1916NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
1917
 
1918/*
1919 * This kprobe pre_handler is registered with every kretprobe. When probe
1920 * hits it will set up the return probe.
1921 */
1922static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
 
1923{
1924	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
 
1925	struct kretprobe_instance *ri;
1926	struct freelist_node *fn;
1927
1928	fn = freelist_try_get(&rp->freelist);
1929	if (!fn) {
1930		rp->nmissed++;
1931		return 0;
1932	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1933
1934	ri = container_of(fn, struct kretprobe_instance, freelist);
1935
1936	if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1937		freelist_add(&ri->freelist, &rp->freelist);
1938		return 0;
 
 
 
 
 
1939	}
1940
1941	arch_prepare_kretprobe(ri, regs);
1942
1943	__llist_add(&ri->llist, &current->kretprobe_instances);
1944
1945	return 0;
1946}
1947NOKPROBE_SYMBOL(pre_handler_kretprobe);
1948
1949bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1950{
1951	return !offset;
1952}
1953
1954/**
1955 * kprobe_on_func_entry() -- check whether given address is function entry
1956 * @addr: Target address
1957 * @sym:  Target symbol name
1958 * @offset: The offset from the symbol or the address
1959 *
1960 * This checks whether the given @addr+@offset or @sym+@offset is on the
1961 * function entry address or not.
1962 * This returns 0 if it is the function entry, or -EINVAL if it is not.
1963 * And also it returns -ENOENT if it fails the symbol or address lookup.
1964 * Caller must pass @addr or @sym (either one must be NULL), or this
1965 * returns -EINVAL.
1966 */
1967int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1968{
1969	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1970
1971	if (IS_ERR(kp_addr))
1972		return PTR_ERR(kp_addr);
1973
1974	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
1975		return -ENOENT;
1976
1977	if (!arch_kprobe_on_func_entry(offset))
1978		return -EINVAL;
1979
1980	return 0;
1981}
1982
1983int register_kretprobe(struct kretprobe *rp)
1984{
1985	int ret;
1986	struct kretprobe_instance *inst;
1987	int i;
1988	void *addr;
1989
1990	ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
1991	if (ret)
1992		return ret;
1993
1994	/* If only rp->kp.addr is specified, check reregistering kprobes */
1995	if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
1996		return -EINVAL;
1997
1998	if (kretprobe_blacklist_size) {
1999		addr = kprobe_addr(&rp->kp);
2000		if (IS_ERR(addr))
2001			return PTR_ERR(addr);
2002
2003		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2004			if (kretprobe_blacklist[i].addr == addr)
2005				return -EINVAL;
2006		}
2007	}
2008
2009	rp->kp.pre_handler = pre_handler_kretprobe;
2010	rp->kp.post_handler = NULL;
 
 
2011
2012	/* Pre-allocate memory for max kretprobe instances */
2013	if (rp->maxactive <= 0) {
2014#ifdef CONFIG_PREEMPTION
2015		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2016#else
2017		rp->maxactive = num_possible_cpus();
2018#endif
2019	}
2020	rp->freelist.head = NULL;
2021	rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2022	if (!rp->rph)
2023		return -ENOMEM;
2024
2025	rp->rph->rp = rp;
2026	for (i = 0; i < rp->maxactive; i++) {
2027		inst = kzalloc(sizeof(struct kretprobe_instance) +
2028			       rp->data_size, GFP_KERNEL);
2029		if (inst == NULL) {
2030			refcount_set(&rp->rph->ref, i);
2031			free_rp_inst(rp);
2032			return -ENOMEM;
2033		}
2034		inst->rph = rp->rph;
2035		freelist_add(&inst->freelist, &rp->freelist);
2036	}
2037	refcount_set(&rp->rph->ref, i);
2038
2039	rp->nmissed = 0;
2040	/* Establish function entry probe point */
2041	ret = register_kprobe(&rp->kp);
2042	if (ret != 0)
2043		free_rp_inst(rp);
2044	return ret;
2045}
2046EXPORT_SYMBOL_GPL(register_kretprobe);
2047
2048int register_kretprobes(struct kretprobe **rps, int num)
2049{
2050	int ret = 0, i;
2051
2052	if (num <= 0)
2053		return -EINVAL;
2054	for (i = 0; i < num; i++) {
2055		ret = register_kretprobe(rps[i]);
2056		if (ret < 0) {
2057			if (i > 0)
2058				unregister_kretprobes(rps, i);
2059			break;
2060		}
2061	}
2062	return ret;
2063}
2064EXPORT_SYMBOL_GPL(register_kretprobes);
2065
2066void unregister_kretprobe(struct kretprobe *rp)
2067{
2068	unregister_kretprobes(&rp, 1);
2069}
2070EXPORT_SYMBOL_GPL(unregister_kretprobe);
2071
2072void unregister_kretprobes(struct kretprobe **rps, int num)
2073{
2074	int i;
2075
2076	if (num <= 0)
2077		return;
2078	mutex_lock(&kprobe_mutex);
2079	for (i = 0; i < num; i++) {
2080		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2081			rps[i]->kp.addr = NULL;
2082		rps[i]->rph->rp = NULL;
2083	}
2084	mutex_unlock(&kprobe_mutex);
2085
2086	synchronize_rcu();
2087	for (i = 0; i < num; i++) {
2088		if (rps[i]->kp.addr) {
2089			__unregister_kprobe_bottom(&rps[i]->kp);
2090			free_rp_inst(rps[i]);
2091		}
2092	}
2093}
2094EXPORT_SYMBOL_GPL(unregister_kretprobes);
2095
2096#else /* CONFIG_KRETPROBES */
2097int register_kretprobe(struct kretprobe *rp)
2098{
2099	return -ENOSYS;
2100}
2101EXPORT_SYMBOL_GPL(register_kretprobe);
2102
2103int register_kretprobes(struct kretprobe **rps, int num)
2104{
2105	return -ENOSYS;
2106}
2107EXPORT_SYMBOL_GPL(register_kretprobes);
2108
2109void unregister_kretprobe(struct kretprobe *rp)
2110{
2111}
2112EXPORT_SYMBOL_GPL(unregister_kretprobe);
2113
2114void unregister_kretprobes(struct kretprobe **rps, int num)
2115{
2116}
2117EXPORT_SYMBOL_GPL(unregister_kretprobes);
2118
2119static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
 
2120{
2121	return 0;
2122}
2123NOKPROBE_SYMBOL(pre_handler_kretprobe);
2124
2125#endif /* CONFIG_KRETPROBES */
2126
2127/* Set the kprobe gone and remove its instruction buffer. */
2128static void kill_kprobe(struct kprobe *p)
2129{
2130	struct kprobe *kp;
2131
2132	lockdep_assert_held(&kprobe_mutex);
2133
2134	p->flags |= KPROBE_FLAG_GONE;
2135	if (kprobe_aggrprobe(p)) {
2136		/*
2137		 * If this is an aggr_kprobe, we have to list all the
2138		 * chained probes and mark them GONE.
2139		 */
2140		list_for_each_entry(kp, &p->list, list)
2141			kp->flags |= KPROBE_FLAG_GONE;
2142		p->post_handler = NULL;
 
2143		kill_optimized_kprobe(p);
2144	}
2145	/*
2146	 * Here, we can remove insn_slot safely, because no thread calls
2147	 * the original probed function (which will be freed soon) any more.
2148	 */
2149	arch_remove_kprobe(p);
2150
2151	/*
2152	 * The module is going away. We should disarm the kprobe which
2153	 * is using ftrace, because ftrace framework is still available at
2154	 * MODULE_STATE_GOING notification.
2155	 */
2156	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2157		disarm_kprobe_ftrace(p);
2158}
2159
2160/* Disable one kprobe */
2161int disable_kprobe(struct kprobe *kp)
2162{
2163	int ret = 0;
2164	struct kprobe *p;
2165
2166	mutex_lock(&kprobe_mutex);
2167
2168	/* Disable this kprobe */
2169	p = __disable_kprobe(kp);
2170	if (IS_ERR(p))
2171		ret = PTR_ERR(p);
2172
2173	mutex_unlock(&kprobe_mutex);
2174	return ret;
2175}
2176EXPORT_SYMBOL_GPL(disable_kprobe);
2177
2178/* Enable one kprobe */
2179int enable_kprobe(struct kprobe *kp)
2180{
2181	int ret = 0;
2182	struct kprobe *p;
2183
2184	mutex_lock(&kprobe_mutex);
2185
2186	/* Check whether specified probe is valid. */
2187	p = __get_valid_kprobe(kp);
2188	if (unlikely(p == NULL)) {
2189		ret = -EINVAL;
2190		goto out;
2191	}
2192
2193	if (kprobe_gone(kp)) {
2194		/* This kprobe has gone, we couldn't enable it. */
2195		ret = -EINVAL;
2196		goto out;
2197	}
2198
2199	if (p != kp)
2200		kp->flags &= ~KPROBE_FLAG_DISABLED;
2201
2202	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2203		p->flags &= ~KPROBE_FLAG_DISABLED;
2204		ret = arm_kprobe(p);
2205		if (ret)
2206			p->flags |= KPROBE_FLAG_DISABLED;
2207	}
2208out:
2209	mutex_unlock(&kprobe_mutex);
2210	return ret;
2211}
2212EXPORT_SYMBOL_GPL(enable_kprobe);
2213
2214/* Caller must NOT call this in usual path. This is only for critical case */
2215void dump_kprobe(struct kprobe *kp)
2216{
2217	pr_err("Dumping kprobe:\n");
2218	pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2219	       kp->symbol_name, kp->offset, kp->addr);
2220}
2221NOKPROBE_SYMBOL(dump_kprobe);
2222
2223int kprobe_add_ksym_blacklist(unsigned long entry)
2224{
2225	struct kprobe_blacklist_entry *ent;
2226	unsigned long offset = 0, size = 0;
2227
2228	if (!kernel_text_address(entry) ||
2229	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2230		return -EINVAL;
2231
2232	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2233	if (!ent)
2234		return -ENOMEM;
2235	ent->start_addr = entry;
2236	ent->end_addr = entry + size;
2237	INIT_LIST_HEAD(&ent->list);
2238	list_add_tail(&ent->list, &kprobe_blacklist);
2239
2240	return (int)size;
2241}
2242
2243/* Add all symbols in given area into kprobe blacklist */
2244int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2245{
2246	unsigned long entry;
2247	int ret = 0;
2248
2249	for (entry = start; entry < end; entry += ret) {
2250		ret = kprobe_add_ksym_blacklist(entry);
2251		if (ret < 0)
2252			return ret;
2253		if (ret == 0)	/* In case of alias symbol */
2254			ret = 1;
2255	}
2256	return 0;
2257}
2258
2259/* Remove all symbols in given area from kprobe blacklist */
2260static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2261{
2262	struct kprobe_blacklist_entry *ent, *n;
2263
2264	list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2265		if (ent->start_addr < start || ent->start_addr >= end)
2266			continue;
2267		list_del(&ent->list);
2268		kfree(ent);
2269	}
2270}
2271
2272static void kprobe_remove_ksym_blacklist(unsigned long entry)
2273{
2274	kprobe_remove_area_blacklist(entry, entry + 1);
2275}
2276
2277int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2278				   char *type, char *sym)
2279{
2280	return -ERANGE;
2281}
2282
2283int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2284		       char *sym)
2285{
2286#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2287	if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2288		return 0;
2289#ifdef CONFIG_OPTPROBES
2290	if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2291		return 0;
2292#endif
2293#endif
2294	if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2295		return 0;
2296	return -ERANGE;
2297}
2298
2299int __init __weak arch_populate_kprobe_blacklist(void)
2300{
2301	return 0;
2302}
2303
2304/*
2305 * Lookup and populate the kprobe_blacklist.
2306 *
2307 * Unlike the kretprobe blacklist, we'll need to determine
2308 * the range of addresses that belong to the said functions,
2309 * since a kprobe need not necessarily be at the beginning
2310 * of a function.
2311 */
2312static int __init populate_kprobe_blacklist(unsigned long *start,
2313					     unsigned long *end)
2314{
2315	unsigned long entry;
2316	unsigned long *iter;
2317	int ret;
2318
2319	for (iter = start; iter < end; iter++) {
2320		entry = arch_deref_entry_point((void *)*iter);
2321		ret = kprobe_add_ksym_blacklist(entry);
2322		if (ret == -EINVAL)
2323			continue;
2324		if (ret < 0)
2325			return ret;
2326	}
2327
2328	/* Symbols in __kprobes_text are blacklisted */
2329	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2330					(unsigned long)__kprobes_text_end);
2331	if (ret)
2332		return ret;
2333
2334	/* Symbols in noinstr section are blacklisted */
2335	ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2336					(unsigned long)__noinstr_text_end);
2337
2338	return ret ? : arch_populate_kprobe_blacklist();
2339}
2340
2341static void add_module_kprobe_blacklist(struct module *mod)
2342{
2343	unsigned long start, end;
2344	int i;
2345
2346	if (mod->kprobe_blacklist) {
2347		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2348			kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2349	}
2350
2351	start = (unsigned long)mod->kprobes_text_start;
2352	if (start) {
2353		end = start + mod->kprobes_text_size;
2354		kprobe_add_area_blacklist(start, end);
2355	}
2356
2357	start = (unsigned long)mod->noinstr_text_start;
2358	if (start) {
2359		end = start + mod->noinstr_text_size;
2360		kprobe_add_area_blacklist(start, end);
2361	}
2362}
2363
2364static void remove_module_kprobe_blacklist(struct module *mod)
2365{
2366	unsigned long start, end;
2367	int i;
2368
2369	if (mod->kprobe_blacklist) {
2370		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2371			kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2372	}
2373
2374	start = (unsigned long)mod->kprobes_text_start;
2375	if (start) {
2376		end = start + mod->kprobes_text_size;
2377		kprobe_remove_area_blacklist(start, end);
2378	}
2379
2380	start = (unsigned long)mod->noinstr_text_start;
2381	if (start) {
2382		end = start + mod->noinstr_text_size;
2383		kprobe_remove_area_blacklist(start, end);
2384	}
2385}
2386
2387/* Module notifier call back, checking kprobes on the module */
2388static int kprobes_module_callback(struct notifier_block *nb,
2389				   unsigned long val, void *data)
2390{
2391	struct module *mod = data;
2392	struct hlist_head *head;
 
2393	struct kprobe *p;
2394	unsigned int i;
2395	int checkcore = (val == MODULE_STATE_GOING);
2396
2397	if (val == MODULE_STATE_COMING) {
2398		mutex_lock(&kprobe_mutex);
2399		add_module_kprobe_blacklist(mod);
2400		mutex_unlock(&kprobe_mutex);
2401	}
2402	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2403		return NOTIFY_DONE;
2404
2405	/*
2406	 * When MODULE_STATE_GOING was notified, both of module .text and
2407	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2408	 * notified, only .init.text section would be freed. We need to
2409	 * disable kprobes which have been inserted in the sections.
2410	 */
2411	mutex_lock(&kprobe_mutex);
2412	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2413		head = &kprobe_table[i];
2414		hlist_for_each_entry(p, head, hlist)
2415			if (within_module_init((unsigned long)p->addr, mod) ||
2416			    (checkcore &&
2417			     within_module_core((unsigned long)p->addr, mod))) {
2418				/*
2419				 * The vaddr this probe is installed will soon
2420				 * be vfreed buy not synced to disk. Hence,
2421				 * disarming the breakpoint isn't needed.
2422				 *
2423				 * Note, this will also move any optimized probes
2424				 * that are pending to be removed from their
2425				 * corresponding lists to the freeing_list and
2426				 * will not be touched by the delayed
2427				 * kprobe_optimizer work handler.
2428				 */
2429				kill_kprobe(p);
2430			}
2431	}
2432	if (val == MODULE_STATE_GOING)
2433		remove_module_kprobe_blacklist(mod);
2434	mutex_unlock(&kprobe_mutex);
2435	return NOTIFY_DONE;
2436}
2437
2438static struct notifier_block kprobe_module_nb = {
2439	.notifier_call = kprobes_module_callback,
2440	.priority = 0
2441};
2442
2443/* Markers of _kprobe_blacklist section */
2444extern unsigned long __start_kprobe_blacklist[];
2445extern unsigned long __stop_kprobe_blacklist[];
2446
2447void kprobe_free_init_mem(void)
2448{
2449	void *start = (void *)(&__init_begin);
2450	void *end = (void *)(&__init_end);
2451	struct hlist_head *head;
2452	struct kprobe *p;
2453	int i;
2454
2455	mutex_lock(&kprobe_mutex);
2456
2457	/* Kill all kprobes on initmem */
2458	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2459		head = &kprobe_table[i];
2460		hlist_for_each_entry(p, head, hlist) {
2461			if (start <= (void *)p->addr && (void *)p->addr < end)
2462				kill_kprobe(p);
2463		}
2464	}
2465
2466	mutex_unlock(&kprobe_mutex);
2467}
2468
2469static int __init init_kprobes(void)
2470{
2471	int i, err = 0;
 
 
 
 
 
2472
2473	/* FIXME allocate the probe table, currently defined statically */
2474	/* initialize all list heads */
2475	for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2476		INIT_HLIST_HEAD(&kprobe_table[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2477
2478	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2479					__stop_kprobe_blacklist);
2480	if (err) {
2481		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2482		pr_err("Please take care of using kprobes.\n");
 
 
2483	}
2484
2485	if (kretprobe_blacklist_size) {
2486		/* lookup the function address from its name */
2487		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2488			kretprobe_blacklist[i].addr =
2489				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2490			if (!kretprobe_blacklist[i].addr)
2491				printk("kretprobe: lookup failed: %s\n",
2492				       kretprobe_blacklist[i].name);
2493		}
2494	}
2495
 
 
 
 
 
 
 
 
 
2496	/* By default, kprobes are armed */
2497	kprobes_all_disarmed = false;
2498
2499#if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2500	/* Init kprobe_optinsn_slots for allocation */
2501	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2502#endif
2503
2504	err = arch_init_kprobes();
2505	if (!err)
2506		err = register_die_notifier(&kprobe_exceptions_nb);
2507	if (!err)
2508		err = register_module_notifier(&kprobe_module_nb);
2509
2510	kprobes_initialized = (err == 0);
2511
2512	if (!err)
2513		init_test_probes();
2514	return err;
2515}
2516early_initcall(init_kprobes);
2517
2518#if defined(CONFIG_OPTPROBES)
2519static int __init init_optprobes(void)
2520{
2521	/*
2522	 * Enable kprobe optimization - this kicks the optimizer which
2523	 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2524	 * not spawned in early initcall. So delay the optimization.
2525	 */
2526	optimize_all_kprobes();
2527
2528	return 0;
2529}
2530subsys_initcall(init_optprobes);
2531#endif
2532
2533#ifdef CONFIG_DEBUG_FS
2534static void report_probe(struct seq_file *pi, struct kprobe *p,
2535		const char *sym, int offset, char *modname, struct kprobe *pp)
2536{
2537	char *kprobe_type;
2538	void *addr = p->addr;
2539
2540	if (p->pre_handler == pre_handler_kretprobe)
2541		kprobe_type = "r";
 
 
2542	else
2543		kprobe_type = "k";
2544
2545	if (!kallsyms_show_value(pi->file->f_cred))
2546		addr = NULL;
2547
2548	if (sym)
2549		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2550			addr, kprobe_type, sym, offset,
2551			(modname ? modname : " "));
2552	else	/* try to use %pS */
2553		seq_printf(pi, "%px  %s  %pS ",
2554			addr, kprobe_type, p->addr);
2555
2556	if (!pp)
2557		pp = p;
2558	seq_printf(pi, "%s%s%s%s\n",
2559		(kprobe_gone(p) ? "[GONE]" : ""),
2560		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2561		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2562		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2563}
2564
2565static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2566{
2567	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2568}
2569
2570static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2571{
2572	(*pos)++;
2573	if (*pos >= KPROBE_TABLE_SIZE)
2574		return NULL;
2575	return pos;
2576}
2577
2578static void kprobe_seq_stop(struct seq_file *f, void *v)
2579{
2580	/* Nothing to do */
2581}
2582
2583static int show_kprobe_addr(struct seq_file *pi, void *v)
2584{
2585	struct hlist_head *head;
 
2586	struct kprobe *p, *kp;
2587	const char *sym = NULL;
2588	unsigned int i = *(loff_t *) v;
2589	unsigned long offset = 0;
2590	char *modname, namebuf[KSYM_NAME_LEN];
2591
2592	head = &kprobe_table[i];
2593	preempt_disable();
2594	hlist_for_each_entry_rcu(p, head, hlist) {
2595		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2596					&offset, &modname, namebuf);
2597		if (kprobe_aggrprobe(p)) {
2598			list_for_each_entry_rcu(kp, &p->list, list)
2599				report_probe(pi, kp, sym, offset, modname, p);
2600		} else
2601			report_probe(pi, p, sym, offset, modname, NULL);
2602	}
2603	preempt_enable();
2604	return 0;
2605}
2606
2607static const struct seq_operations kprobes_sops = {
2608	.start = kprobe_seq_start,
2609	.next  = kprobe_seq_next,
2610	.stop  = kprobe_seq_stop,
2611	.show  = show_kprobe_addr
2612};
2613
2614DEFINE_SEQ_ATTRIBUTE(kprobes);
2615
2616/* kprobes/blacklist -- shows which functions can not be probed */
2617static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2618{
2619	mutex_lock(&kprobe_mutex);
2620	return seq_list_start(&kprobe_blacklist, *pos);
2621}
2622
2623static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2624{
2625	return seq_list_next(v, &kprobe_blacklist, pos);
2626}
2627
2628static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2629{
2630	struct kprobe_blacklist_entry *ent =
2631		list_entry(v, struct kprobe_blacklist_entry, list);
2632
2633	/*
2634	 * If /proc/kallsyms is not showing kernel address, we won't
2635	 * show them here either.
2636	 */
2637	if (!kallsyms_show_value(m->file->f_cred))
2638		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2639			   (void *)ent->start_addr);
2640	else
2641		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2642			   (void *)ent->end_addr, (void *)ent->start_addr);
2643	return 0;
2644}
2645
2646static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2647{
2648	mutex_unlock(&kprobe_mutex);
2649}
2650
2651static const struct seq_operations kprobe_blacklist_sops = {
2652	.start = kprobe_blacklist_seq_start,
2653	.next  = kprobe_blacklist_seq_next,
2654	.stop  = kprobe_blacklist_seq_stop,
2655	.show  = kprobe_blacklist_seq_show,
2656};
2657DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2658
2659static int arm_all_kprobes(void)
2660{
2661	struct hlist_head *head;
 
2662	struct kprobe *p;
2663	unsigned int i, total = 0, errors = 0;
2664	int err, ret = 0;
2665
2666	mutex_lock(&kprobe_mutex);
2667
2668	/* If kprobes are armed, just return */
2669	if (!kprobes_all_disarmed)
2670		goto already_enabled;
2671
2672	/*
2673	 * optimize_kprobe() called by arm_kprobe() checks
2674	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2675	 * arm_kprobe.
2676	 */
2677	kprobes_all_disarmed = false;
2678	/* Arming kprobes doesn't optimize kprobe itself */
 
2679	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2680		head = &kprobe_table[i];
2681		/* Arm all kprobes on a best-effort basis */
2682		hlist_for_each_entry(p, head, hlist) {
2683			if (!kprobe_disabled(p)) {
2684				err = arm_kprobe(p);
2685				if (err)  {
2686					errors++;
2687					ret = err;
2688				}
2689				total++;
2690			}
2691		}
2692	}
 
2693
2694	if (errors)
2695		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2696			errors, total);
2697	else
2698		pr_info("Kprobes globally enabled\n");
2699
2700already_enabled:
2701	mutex_unlock(&kprobe_mutex);
2702	return ret;
2703}
2704
2705static int disarm_all_kprobes(void)
2706{
2707	struct hlist_head *head;
 
2708	struct kprobe *p;
2709	unsigned int i, total = 0, errors = 0;
2710	int err, ret = 0;
2711
2712	mutex_lock(&kprobe_mutex);
2713
2714	/* If kprobes are already disarmed, just return */
2715	if (kprobes_all_disarmed) {
2716		mutex_unlock(&kprobe_mutex);
2717		return 0;
2718	}
2719
2720	kprobes_all_disarmed = true;
 
2721
 
2722	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2723		head = &kprobe_table[i];
2724		/* Disarm all kprobes on a best-effort basis */
2725		hlist_for_each_entry(p, head, hlist) {
2726			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2727				err = disarm_kprobe(p, false);
2728				if (err) {
2729					errors++;
2730					ret = err;
2731				}
2732				total++;
2733			}
2734		}
2735	}
2736
2737	if (errors)
2738		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2739			errors, total);
2740	else
2741		pr_info("Kprobes globally disabled\n");
2742
2743	mutex_unlock(&kprobe_mutex);
2744
2745	/* Wait for disarming all kprobes by optimizer */
2746	wait_for_kprobe_optimizer();
2747
2748	return ret;
2749}
2750
2751/*
2752 * XXX: The debugfs bool file interface doesn't allow for callbacks
2753 * when the bool state is switched. We can reuse that facility when
2754 * available
2755 */
2756static ssize_t read_enabled_file_bool(struct file *file,
2757	       char __user *user_buf, size_t count, loff_t *ppos)
2758{
2759	char buf[3];
2760
2761	if (!kprobes_all_disarmed)
2762		buf[0] = '1';
2763	else
2764		buf[0] = '0';
2765	buf[1] = '\n';
2766	buf[2] = 0x00;
2767	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2768}
2769
2770static ssize_t write_enabled_file_bool(struct file *file,
2771	       const char __user *user_buf, size_t count, loff_t *ppos)
2772{
2773	char buf[32];
2774	size_t buf_size;
2775	int ret = 0;
2776
2777	buf_size = min(count, (sizeof(buf)-1));
2778	if (copy_from_user(buf, user_buf, buf_size))
2779		return -EFAULT;
2780
2781	buf[buf_size] = '\0';
2782	switch (buf[0]) {
2783	case 'y':
2784	case 'Y':
2785	case '1':
2786		ret = arm_all_kprobes();
2787		break;
2788	case 'n':
2789	case 'N':
2790	case '0':
2791		ret = disarm_all_kprobes();
2792		break;
2793	default:
2794		return -EINVAL;
2795	}
2796
2797	if (ret)
2798		return ret;
2799
2800	return count;
2801}
2802
2803static const struct file_operations fops_kp = {
2804	.read =         read_enabled_file_bool,
2805	.write =        write_enabled_file_bool,
2806	.llseek =	default_llseek,
2807};
2808
2809static int __init debugfs_kprobe_init(void)
2810{
2811	struct dentry *dir;
2812	unsigned int value = 1;
2813
2814	dir = debugfs_create_dir("kprobes", NULL);
 
 
2815
2816	debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
 
 
 
 
 
2817
2818	debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2819
2820	debugfs_create_file("blacklist", 0400, dir, NULL,
2821			    &kprobe_blacklist_fops);
 
 
2822
2823	return 0;
2824}
2825
2826late_initcall(debugfs_kprobe_init);
2827#endif /* CONFIG_DEBUG_FS */