Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
  3 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
  4 *
  5 * This file contains the interrupt descriptor management code
  6 *
  7 * Detailed information is available in Documentation/DocBook/genericirq
  8 *
  9 */
 10#include <linux/irq.h>
 11#include <linux/slab.h>
 12#include <linux/export.h>
 13#include <linux/interrupt.h>
 14#include <linux/kernel_stat.h>
 15#include <linux/radix-tree.h>
 16#include <linux/bitmap.h>
 
 
 17
 18#include "internals.h"
 19
 20/*
 21 * lockdep: we want to handle all irq_desc locks as a single lock-class:
 22 */
 23static struct lock_class_key irq_desc_lock_class;
 24
 25#if defined(CONFIG_SMP)
 
 
 
 
 
 
 
 
 
 
 
 
 
 26static void __init init_irq_default_affinity(void)
 27{
 28	alloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT);
 29	cpumask_setall(irq_default_affinity);
 
 
 30}
 31#else
 32static void __init init_irq_default_affinity(void)
 33{
 34}
 35#endif
 36
 37#ifdef CONFIG_SMP
 38static int alloc_masks(struct irq_desc *desc, gfp_t gfp, int node)
 39{
 40	if (!zalloc_cpumask_var_node(&desc->irq_data.affinity, gfp, node))
 
 41		return -ENOMEM;
 42
 
 
 
 
 
 
 
 
 43#ifdef CONFIG_GENERIC_PENDING_IRQ
 44	if (!zalloc_cpumask_var_node(&desc->pending_mask, gfp, node)) {
 45		free_cpumask_var(desc->irq_data.affinity);
 
 
 
 46		return -ENOMEM;
 47	}
 48#endif
 49	return 0;
 50}
 51
 52static void desc_smp_init(struct irq_desc *desc, int node)
 
 53{
 54	desc->irq_data.node = node;
 55	cpumask_copy(desc->irq_data.affinity, irq_default_affinity);
 
 
 56#ifdef CONFIG_GENERIC_PENDING_IRQ
 57	cpumask_clear(desc->pending_mask);
 58#endif
 59}
 60
 61static inline int desc_node(struct irq_desc *desc)
 62{
 63	return desc->irq_data.node;
 64}
 65
 66#else
 67static inline int
 68alloc_masks(struct irq_desc *desc, gfp_t gfp, int node) { return 0; }
 69static inline void desc_smp_init(struct irq_desc *desc, int node) { }
 70static inline int desc_node(struct irq_desc *desc) { return 0; }
 71#endif
 72
 73static void desc_set_defaults(unsigned int irq, struct irq_desc *desc, int node,
 74		struct module *owner)
 75{
 76	int cpu;
 77
 
 
 
 
 78	desc->irq_data.irq = irq;
 79	desc->irq_data.chip = &no_irq_chip;
 80	desc->irq_data.chip_data = NULL;
 81	desc->irq_data.handler_data = NULL;
 82	desc->irq_data.msi_desc = NULL;
 83	irq_settings_clr_and_set(desc, ~0, _IRQ_DEFAULT_INIT_FLAGS);
 84	irqd_set(&desc->irq_data, IRQD_IRQ_DISABLED);
 
 85	desc->handle_irq = handle_bad_irq;
 86	desc->depth = 1;
 87	desc->irq_count = 0;
 88	desc->irqs_unhandled = 0;
 
 89	desc->name = NULL;
 90	desc->owner = owner;
 91	for_each_possible_cpu(cpu)
 92		*per_cpu_ptr(desc->kstat_irqs, cpu) = 0;
 93	desc_smp_init(desc, node);
 94}
 95
 96int nr_irqs = NR_IRQS;
 97EXPORT_SYMBOL_GPL(nr_irqs);
 98
 99static DEFINE_MUTEX(sparse_irq_lock);
100static DECLARE_BITMAP(allocated_irqs, IRQ_BITMAP_BITS);
101
102#ifdef CONFIG_SPARSE_IRQ
103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104static RADIX_TREE(irq_desc_tree, GFP_KERNEL);
105
106static void irq_insert_desc(unsigned int irq, struct irq_desc *desc)
107{
108	radix_tree_insert(&irq_desc_tree, irq, desc);
109}
110
111struct irq_desc *irq_to_desc(unsigned int irq)
112{
113	return radix_tree_lookup(&irq_desc_tree, irq);
114}
115EXPORT_SYMBOL(irq_to_desc);
 
 
116
117static void delete_irq_desc(unsigned int irq)
118{
119	radix_tree_delete(&irq_desc_tree, irq);
120}
121
122#ifdef CONFIG_SMP
123static void free_masks(struct irq_desc *desc)
124{
125#ifdef CONFIG_GENERIC_PENDING_IRQ
126	free_cpumask_var(desc->pending_mask);
127#endif
128	free_cpumask_var(desc->irq_data.affinity);
 
 
 
129}
130#else
131static inline void free_masks(struct irq_desc *desc) { }
132#endif
133
134static struct irq_desc *alloc_desc(int irq, int node, struct module *owner)
 
 
 
 
 
 
 
 
 
 
 
 
135{
136	struct irq_desc *desc;
137	gfp_t gfp = GFP_KERNEL;
138
139	desc = kzalloc_node(sizeof(*desc), gfp, node);
140	if (!desc)
141		return NULL;
142	/* allocate based on nr_cpu_ids */
143	desc->kstat_irqs = alloc_percpu(unsigned int);
144	if (!desc->kstat_irqs)
145		goto err_desc;
146
147	if (alloc_masks(desc, gfp, node))
148		goto err_kstat;
149
150	raw_spin_lock_init(&desc->lock);
151	lockdep_set_class(&desc->lock, &irq_desc_lock_class);
 
 
152
153	desc_set_defaults(irq, desc, node, owner);
 
 
154
155	return desc;
156
157err_kstat:
158	free_percpu(desc->kstat_irqs);
159err_desc:
160	kfree(desc);
161	return NULL;
162}
163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164static void free_desc(unsigned int irq)
165{
166	struct irq_desc *desc = irq_to_desc(irq);
167
 
168	unregister_irq_proc(irq, desc);
169
170	mutex_lock(&sparse_irq_lock);
 
 
 
 
 
 
 
 
 
171	delete_irq_desc(irq);
172	mutex_unlock(&sparse_irq_lock);
173
174	free_masks(desc);
175	free_percpu(desc->kstat_irqs);
176	kfree(desc);
 
 
 
 
177}
178
179static int alloc_descs(unsigned int start, unsigned int cnt, int node,
 
180		       struct module *owner)
181{
182	struct irq_desc *desc;
183	int i;
184
 
 
 
 
 
 
 
 
185	for (i = 0; i < cnt; i++) {
186		desc = alloc_desc(start + i, node, owner);
 
 
 
 
 
 
 
 
 
 
 
 
 
187		if (!desc)
188			goto err;
189		mutex_lock(&sparse_irq_lock);
190		irq_insert_desc(start + i, desc);
191		mutex_unlock(&sparse_irq_lock);
 
192	}
 
193	return start;
194
195err:
196	for (i--; i >= 0; i--)
197		free_desc(start + i);
198
199	mutex_lock(&sparse_irq_lock);
200	bitmap_clear(allocated_irqs, start, cnt);
201	mutex_unlock(&sparse_irq_lock);
202	return -ENOMEM;
203}
204
205static int irq_expand_nr_irqs(unsigned int nr)
206{
207	if (nr > IRQ_BITMAP_BITS)
208		return -ENOMEM;
209	nr_irqs = nr;
210	return 0;
211}
212
213int __init early_irq_init(void)
214{
215	int i, initcnt, node = first_online_node;
216	struct irq_desc *desc;
217
218	init_irq_default_affinity();
219
220	/* Let arch update nr_irqs and return the nr of preallocated irqs */
221	initcnt = arch_probe_nr_irqs();
222	printk(KERN_INFO "NR_IRQS:%d nr_irqs:%d %d\n", NR_IRQS, nr_irqs, initcnt);
 
223
224	if (WARN_ON(nr_irqs > IRQ_BITMAP_BITS))
225		nr_irqs = IRQ_BITMAP_BITS;
226
227	if (WARN_ON(initcnt > IRQ_BITMAP_BITS))
228		initcnt = IRQ_BITMAP_BITS;
229
230	if (initcnt > nr_irqs)
231		nr_irqs = initcnt;
232
233	for (i = 0; i < initcnt; i++) {
234		desc = alloc_desc(i, node, NULL);
235		set_bit(i, allocated_irqs);
236		irq_insert_desc(i, desc);
237	}
238	return arch_early_irq_init();
239}
240
241#else /* !CONFIG_SPARSE_IRQ */
242
243struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
244	[0 ... NR_IRQS-1] = {
245		.handle_irq	= handle_bad_irq,
246		.depth		= 1,
247		.lock		= __RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock),
248	}
249};
250
251int __init early_irq_init(void)
252{
253	int count, i, node = first_online_node;
254	struct irq_desc *desc;
255
256	init_irq_default_affinity();
257
258	printk(KERN_INFO "NR_IRQS:%d\n", NR_IRQS);
259
260	desc = irq_desc;
261	count = ARRAY_SIZE(irq_desc);
262
263	for (i = 0; i < count; i++) {
264		desc[i].kstat_irqs = alloc_percpu(unsigned int);
265		alloc_masks(&desc[i], GFP_KERNEL, node);
266		raw_spin_lock_init(&desc[i].lock);
267		lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
268		desc_set_defaults(i, &desc[i], node, NULL);
 
269	}
270	return arch_early_irq_init();
271}
272
273struct irq_desc *irq_to_desc(unsigned int irq)
274{
275	return (irq < NR_IRQS) ? irq_desc + irq : NULL;
276}
 
277
278static void free_desc(unsigned int irq)
279{
280	dynamic_irq_cleanup(irq);
 
 
 
 
 
281}
282
283static inline int alloc_descs(unsigned int start, unsigned int cnt, int node,
 
284			      struct module *owner)
285{
286	u32 i;
287
288	for (i = 0; i < cnt; i++) {
289		struct irq_desc *desc = irq_to_desc(start + i);
290
291		desc->owner = owner;
292	}
 
293	return start;
294}
295
296static int irq_expand_nr_irqs(unsigned int nr)
297{
298	return -ENOMEM;
299}
300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
301#endif /* !CONFIG_SPARSE_IRQ */
302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303/**
304 * generic_handle_irq - Invoke the handler for a particular irq
305 * @irq:	The irq number to handle
306 *
307 */
308int generic_handle_irq(unsigned int irq)
309{
310	struct irq_desc *desc = irq_to_desc(irq);
311
312	if (!desc)
313		return -EINVAL;
314	generic_handle_irq_desc(irq, desc);
315	return 0;
316}
317EXPORT_SYMBOL_GPL(generic_handle_irq);
318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
319/* Dynamic interrupt handling */
320
321/**
322 * irq_free_descs - free irq descriptors
323 * @from:	Start of descriptor range
324 * @cnt:	Number of consecutive irqs to free
325 */
326void irq_free_descs(unsigned int from, unsigned int cnt)
327{
328	int i;
329
330	if (from >= nr_irqs || (from + cnt) > nr_irqs)
331		return;
332
 
333	for (i = 0; i < cnt; i++)
334		free_desc(from + i);
335
336	mutex_lock(&sparse_irq_lock);
337	bitmap_clear(allocated_irqs, from, cnt);
338	mutex_unlock(&sparse_irq_lock);
339}
340EXPORT_SYMBOL_GPL(irq_free_descs);
341
342/**
343 * irq_alloc_descs - allocate and initialize a range of irq descriptors
344 * @irq:	Allocate for specific irq number if irq >= 0
345 * @from:	Start the search from this irq number
346 * @cnt:	Number of consecutive irqs to allocate.
347 * @node:	Preferred node on which the irq descriptor should be allocated
348 * @owner:	Owning module (can be NULL)
 
 
 
349 *
350 * Returns the first irq number or error code
351 */
352int __ref
353__irq_alloc_descs(int irq, unsigned int from, unsigned int cnt, int node,
354		  struct module *owner)
355{
356	int start, ret;
357
358	if (!cnt)
359		return -EINVAL;
360
361	if (irq >= 0) {
362		if (from > irq)
363			return -EINVAL;
364		from = irq;
 
 
 
 
 
 
 
365	}
366
367	mutex_lock(&sparse_irq_lock);
368
369	start = bitmap_find_next_zero_area(allocated_irqs, IRQ_BITMAP_BITS,
370					   from, cnt, 0);
371	ret = -EEXIST;
372	if (irq >=0 && start != irq)
373		goto err;
374
375	if (start + cnt > nr_irqs) {
376		ret = irq_expand_nr_irqs(start + cnt);
377		if (ret)
378			goto err;
379	}
380
381	bitmap_set(allocated_irqs, start, cnt);
382	mutex_unlock(&sparse_irq_lock);
383	return alloc_descs(start, cnt, node, owner);
384
385err:
386	mutex_unlock(&sparse_irq_lock);
387	return ret;
388}
389EXPORT_SYMBOL_GPL(__irq_alloc_descs);
390
391/**
392 * irq_reserve_irqs - mark irqs allocated
393 * @from:	mark from irq number
394 * @cnt:	number of irqs to mark
395 *
396 * Returns 0 on success or an appropriate error code
397 */
398int irq_reserve_irqs(unsigned int from, unsigned int cnt)
399{
400	unsigned int start;
401	int ret = 0;
402
403	if (!cnt || (from + cnt) > nr_irqs)
404		return -EINVAL;
405
406	mutex_lock(&sparse_irq_lock);
407	start = bitmap_find_next_zero_area(allocated_irqs, nr_irqs, from, cnt, 0);
408	if (start == from)
409		bitmap_set(allocated_irqs, start, cnt);
410	else
411		ret = -EEXIST;
412	mutex_unlock(&sparse_irq_lock);
413	return ret;
414}
415
416/**
417 * irq_get_next_irq - get next allocated irq number
418 * @offset:	where to start the search
419 *
420 * Returns next irq number after offset or nr_irqs if none is found.
421 */
422unsigned int irq_get_next_irq(unsigned int offset)
423{
424	return find_next_bit(allocated_irqs, nr_irqs, offset);
425}
426
427struct irq_desc *
428__irq_get_desc_lock(unsigned int irq, unsigned long *flags, bool bus,
429		    unsigned int check)
430{
431	struct irq_desc *desc = irq_to_desc(irq);
432
433	if (desc) {
434		if (check & _IRQ_DESC_CHECK) {
435			if ((check & _IRQ_DESC_PERCPU) &&
436			    !irq_settings_is_per_cpu_devid(desc))
437				return NULL;
438
439			if (!(check & _IRQ_DESC_PERCPU) &&
440			    irq_settings_is_per_cpu_devid(desc))
441				return NULL;
442		}
443
444		if (bus)
445			chip_bus_lock(desc);
446		raw_spin_lock_irqsave(&desc->lock, *flags);
447	}
448	return desc;
449}
450
451void __irq_put_desc_unlock(struct irq_desc *desc, unsigned long flags, bool bus)
 
452{
453	raw_spin_unlock_irqrestore(&desc->lock, flags);
454	if (bus)
455		chip_bus_sync_unlock(desc);
456}
457
458int irq_set_percpu_devid(unsigned int irq)
 
459{
460	struct irq_desc *desc = irq_to_desc(irq);
461
462	if (!desc)
463		return -EINVAL;
464
465	if (desc->percpu_enabled)
466		return -EINVAL;
467
468	desc->percpu_enabled = kzalloc(sizeof(*desc->percpu_enabled), GFP_KERNEL);
469
470	if (!desc->percpu_enabled)
471		return -ENOMEM;
472
 
 
 
 
 
473	irq_set_percpu_devid_flags(irq);
474	return 0;
475}
476
477/**
478 * dynamic_irq_cleanup - cleanup a dynamically allocated irq
479 * @irq:	irq number to initialize
480 */
481void dynamic_irq_cleanup(unsigned int irq)
 
482{
483	struct irq_desc *desc = irq_to_desc(irq);
484	unsigned long flags;
485
486	raw_spin_lock_irqsave(&desc->lock, flags);
487	desc_set_defaults(irq, desc, desc_node(desc), NULL);
488	raw_spin_unlock_irqrestore(&desc->lock, flags);
 
 
 
 
 
 
 
 
 
 
489}
490
 
 
 
 
 
 
 
 
 
491unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
492{
493	struct irq_desc *desc = irq_to_desc(irq);
494
495	return desc && desc->kstat_irqs ?
496			*per_cpu_ptr(desc->kstat_irqs, cpu) : 0;
497}
498
499unsigned int kstat_irqs(unsigned int irq)
 
 
 
 
 
500{
501	struct irq_desc *desc = irq_to_desc(irq);
 
502	int cpu;
503	int sum = 0;
504
505	if (!desc || !desc->kstat_irqs)
506		return 0;
 
 
 
 
 
507	for_each_possible_cpu(cpu)
508		sum += *per_cpu_ptr(desc->kstat_irqs, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
509	return sum;
510}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
  4 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
  5 *
  6 * This file contains the interrupt descriptor management code. Detailed
  7 * information is available in Documentation/core-api/genericirq.rst
 
  8 *
  9 */
 10#include <linux/irq.h>
 11#include <linux/slab.h>
 12#include <linux/export.h>
 13#include <linux/interrupt.h>
 14#include <linux/kernel_stat.h>
 15#include <linux/radix-tree.h>
 16#include <linux/bitmap.h>
 17#include <linux/irqdomain.h>
 18#include <linux/sysfs.h>
 19
 20#include "internals.h"
 21
 22/*
 23 * lockdep: we want to handle all irq_desc locks as a single lock-class:
 24 */
 25static struct lock_class_key irq_desc_lock_class;
 26
 27#if defined(CONFIG_SMP)
 28static int __init irq_affinity_setup(char *str)
 29{
 30	alloc_bootmem_cpumask_var(&irq_default_affinity);
 31	cpulist_parse(str, irq_default_affinity);
 32	/*
 33	 * Set at least the boot cpu. We don't want to end up with
 34	 * bugreports caused by random commandline masks
 35	 */
 36	cpumask_set_cpu(smp_processor_id(), irq_default_affinity);
 37	return 1;
 38}
 39__setup("irqaffinity=", irq_affinity_setup);
 40
 41static void __init init_irq_default_affinity(void)
 42{
 43	if (!cpumask_available(irq_default_affinity))
 44		zalloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT);
 45	if (cpumask_empty(irq_default_affinity))
 46		cpumask_setall(irq_default_affinity);
 47}
 48#else
 49static void __init init_irq_default_affinity(void)
 50{
 51}
 52#endif
 53
 54#ifdef CONFIG_SMP
 55static int alloc_masks(struct irq_desc *desc, int node)
 56{
 57	if (!zalloc_cpumask_var_node(&desc->irq_common_data.affinity,
 58				     GFP_KERNEL, node))
 59		return -ENOMEM;
 60
 61#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
 62	if (!zalloc_cpumask_var_node(&desc->irq_common_data.effective_affinity,
 63				     GFP_KERNEL, node)) {
 64		free_cpumask_var(desc->irq_common_data.affinity);
 65		return -ENOMEM;
 66	}
 67#endif
 68
 69#ifdef CONFIG_GENERIC_PENDING_IRQ
 70	if (!zalloc_cpumask_var_node(&desc->pending_mask, GFP_KERNEL, node)) {
 71#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
 72		free_cpumask_var(desc->irq_common_data.effective_affinity);
 73#endif
 74		free_cpumask_var(desc->irq_common_data.affinity);
 75		return -ENOMEM;
 76	}
 77#endif
 78	return 0;
 79}
 80
 81static void desc_smp_init(struct irq_desc *desc, int node,
 82			  const struct cpumask *affinity)
 83{
 84	if (!affinity)
 85		affinity = irq_default_affinity;
 86	cpumask_copy(desc->irq_common_data.affinity, affinity);
 87
 88#ifdef CONFIG_GENERIC_PENDING_IRQ
 89	cpumask_clear(desc->pending_mask);
 90#endif
 91#ifdef CONFIG_NUMA
 92	desc->irq_common_data.node = node;
 93#endif
 
 
 94}
 95
 96#else
 97static inline int
 98alloc_masks(struct irq_desc *desc, int node) { return 0; }
 99static inline void
100desc_smp_init(struct irq_desc *desc, int node, const struct cpumask *affinity) { }
101#endif
102
103static void desc_set_defaults(unsigned int irq, struct irq_desc *desc, int node,
104			      const struct cpumask *affinity, struct module *owner)
105{
106	int cpu;
107
108	desc->irq_common_data.handler_data = NULL;
109	desc->irq_common_data.msi_desc = NULL;
110
111	desc->irq_data.common = &desc->irq_common_data;
112	desc->irq_data.irq = irq;
113	desc->irq_data.chip = &no_irq_chip;
114	desc->irq_data.chip_data = NULL;
 
 
115	irq_settings_clr_and_set(desc, ~0, _IRQ_DEFAULT_INIT_FLAGS);
116	irqd_set(&desc->irq_data, IRQD_IRQ_DISABLED);
117	irqd_set(&desc->irq_data, IRQD_IRQ_MASKED);
118	desc->handle_irq = handle_bad_irq;
119	desc->depth = 1;
120	desc->irq_count = 0;
121	desc->irqs_unhandled = 0;
122	desc->tot_count = 0;
123	desc->name = NULL;
124	desc->owner = owner;
125	for_each_possible_cpu(cpu)
126		*per_cpu_ptr(desc->kstat_irqs, cpu) = 0;
127	desc_smp_init(desc, node, affinity);
128}
129
130int nr_irqs = NR_IRQS;
131EXPORT_SYMBOL_GPL(nr_irqs);
132
133static DEFINE_MUTEX(sparse_irq_lock);
134static DECLARE_BITMAP(allocated_irqs, IRQ_BITMAP_BITS);
135
136#ifdef CONFIG_SPARSE_IRQ
137
138static void irq_kobj_release(struct kobject *kobj);
139
140#ifdef CONFIG_SYSFS
141static struct kobject *irq_kobj_base;
142
143#define IRQ_ATTR_RO(_name) \
144static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
145
146static ssize_t per_cpu_count_show(struct kobject *kobj,
147				  struct kobj_attribute *attr, char *buf)
148{
149	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
150	ssize_t ret = 0;
151	char *p = "";
152	int cpu;
153
154	for_each_possible_cpu(cpu) {
155		unsigned int c = irq_desc_kstat_cpu(desc, cpu);
156
157		ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%s%u", p, c);
158		p = ",";
159	}
160
161	ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n");
162	return ret;
163}
164IRQ_ATTR_RO(per_cpu_count);
165
166static ssize_t chip_name_show(struct kobject *kobj,
167			      struct kobj_attribute *attr, char *buf)
168{
169	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
170	ssize_t ret = 0;
171
172	raw_spin_lock_irq(&desc->lock);
173	if (desc->irq_data.chip && desc->irq_data.chip->name) {
174		ret = scnprintf(buf, PAGE_SIZE, "%s\n",
175				desc->irq_data.chip->name);
176	}
177	raw_spin_unlock_irq(&desc->lock);
178
179	return ret;
180}
181IRQ_ATTR_RO(chip_name);
182
183static ssize_t hwirq_show(struct kobject *kobj,
184			  struct kobj_attribute *attr, char *buf)
185{
186	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
187	ssize_t ret = 0;
188
189	raw_spin_lock_irq(&desc->lock);
190	if (desc->irq_data.domain)
191		ret = sprintf(buf, "%d\n", (int)desc->irq_data.hwirq);
192	raw_spin_unlock_irq(&desc->lock);
193
194	return ret;
195}
196IRQ_ATTR_RO(hwirq);
197
198static ssize_t type_show(struct kobject *kobj,
199			 struct kobj_attribute *attr, char *buf)
200{
201	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
202	ssize_t ret = 0;
203
204	raw_spin_lock_irq(&desc->lock);
205	ret = sprintf(buf, "%s\n",
206		      irqd_is_level_type(&desc->irq_data) ? "level" : "edge");
207	raw_spin_unlock_irq(&desc->lock);
208
209	return ret;
210
211}
212IRQ_ATTR_RO(type);
213
214static ssize_t wakeup_show(struct kobject *kobj,
215			   struct kobj_attribute *attr, char *buf)
216{
217	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
218	ssize_t ret = 0;
219
220	raw_spin_lock_irq(&desc->lock);
221	ret = sprintf(buf, "%s\n",
222		      irqd_is_wakeup_set(&desc->irq_data) ? "enabled" : "disabled");
223	raw_spin_unlock_irq(&desc->lock);
224
225	return ret;
226
227}
228IRQ_ATTR_RO(wakeup);
229
230static ssize_t name_show(struct kobject *kobj,
231			 struct kobj_attribute *attr, char *buf)
232{
233	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
234	ssize_t ret = 0;
235
236	raw_spin_lock_irq(&desc->lock);
237	if (desc->name)
238		ret = scnprintf(buf, PAGE_SIZE, "%s\n", desc->name);
239	raw_spin_unlock_irq(&desc->lock);
240
241	return ret;
242}
243IRQ_ATTR_RO(name);
244
245static ssize_t actions_show(struct kobject *kobj,
246			    struct kobj_attribute *attr, char *buf)
247{
248	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
249	struct irqaction *action;
250	ssize_t ret = 0;
251	char *p = "";
252
253	raw_spin_lock_irq(&desc->lock);
254	for (action = desc->action; action != NULL; action = action->next) {
255		ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%s%s",
256				 p, action->name);
257		p = ",";
258	}
259	raw_spin_unlock_irq(&desc->lock);
260
261	if (ret)
262		ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n");
263
264	return ret;
265}
266IRQ_ATTR_RO(actions);
267
268static struct attribute *irq_attrs[] = {
269	&per_cpu_count_attr.attr,
270	&chip_name_attr.attr,
271	&hwirq_attr.attr,
272	&type_attr.attr,
273	&wakeup_attr.attr,
274	&name_attr.attr,
275	&actions_attr.attr,
276	NULL
277};
278ATTRIBUTE_GROUPS(irq);
279
280static struct kobj_type irq_kobj_type = {
281	.release	= irq_kobj_release,
282	.sysfs_ops	= &kobj_sysfs_ops,
283	.default_groups = irq_groups,
284};
285
286static void irq_sysfs_add(int irq, struct irq_desc *desc)
287{
288	if (irq_kobj_base) {
289		/*
290		 * Continue even in case of failure as this is nothing
291		 * crucial.
292		 */
293		if (kobject_add(&desc->kobj, irq_kobj_base, "%d", irq))
294			pr_warn("Failed to add kobject for irq %d\n", irq);
295	}
296}
297
298static void irq_sysfs_del(struct irq_desc *desc)
299{
300	/*
301	 * If irq_sysfs_init() has not yet been invoked (early boot), then
302	 * irq_kobj_base is NULL and the descriptor was never added.
303	 * kobject_del() complains about a object with no parent, so make
304	 * it conditional.
305	 */
306	if (irq_kobj_base)
307		kobject_del(&desc->kobj);
308}
309
310static int __init irq_sysfs_init(void)
311{
312	struct irq_desc *desc;
313	int irq;
314
315	/* Prevent concurrent irq alloc/free */
316	irq_lock_sparse();
317
318	irq_kobj_base = kobject_create_and_add("irq", kernel_kobj);
319	if (!irq_kobj_base) {
320		irq_unlock_sparse();
321		return -ENOMEM;
322	}
323
324	/* Add the already allocated interrupts */
325	for_each_irq_desc(irq, desc)
326		irq_sysfs_add(irq, desc);
327	irq_unlock_sparse();
328
329	return 0;
330}
331postcore_initcall(irq_sysfs_init);
332
333#else /* !CONFIG_SYSFS */
334
335static struct kobj_type irq_kobj_type = {
336	.release	= irq_kobj_release,
337};
338
339static void irq_sysfs_add(int irq, struct irq_desc *desc) {}
340static void irq_sysfs_del(struct irq_desc *desc) {}
341
342#endif /* CONFIG_SYSFS */
343
344static RADIX_TREE(irq_desc_tree, GFP_KERNEL);
345
346static void irq_insert_desc(unsigned int irq, struct irq_desc *desc)
347{
348	radix_tree_insert(&irq_desc_tree, irq, desc);
349}
350
351struct irq_desc *irq_to_desc(unsigned int irq)
352{
353	return radix_tree_lookup(&irq_desc_tree, irq);
354}
355#ifdef CONFIG_KVM_BOOK3S_64_HV_MODULE
356EXPORT_SYMBOL_GPL(irq_to_desc);
357#endif
358
359static void delete_irq_desc(unsigned int irq)
360{
361	radix_tree_delete(&irq_desc_tree, irq);
362}
363
364#ifdef CONFIG_SMP
365static void free_masks(struct irq_desc *desc)
366{
367#ifdef CONFIG_GENERIC_PENDING_IRQ
368	free_cpumask_var(desc->pending_mask);
369#endif
370	free_cpumask_var(desc->irq_common_data.affinity);
371#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
372	free_cpumask_var(desc->irq_common_data.effective_affinity);
373#endif
374}
375#else
376static inline void free_masks(struct irq_desc *desc) { }
377#endif
378
379void irq_lock_sparse(void)
380{
381	mutex_lock(&sparse_irq_lock);
382}
383
384void irq_unlock_sparse(void)
385{
386	mutex_unlock(&sparse_irq_lock);
387}
388
389static struct irq_desc *alloc_desc(int irq, int node, unsigned int flags,
390				   const struct cpumask *affinity,
391				   struct module *owner)
392{
393	struct irq_desc *desc;
 
394
395	desc = kzalloc_node(sizeof(*desc), GFP_KERNEL, node);
396	if (!desc)
397		return NULL;
398	/* allocate based on nr_cpu_ids */
399	desc->kstat_irqs = alloc_percpu(unsigned int);
400	if (!desc->kstat_irqs)
401		goto err_desc;
402
403	if (alloc_masks(desc, node))
404		goto err_kstat;
405
406	raw_spin_lock_init(&desc->lock);
407	lockdep_set_class(&desc->lock, &irq_desc_lock_class);
408	mutex_init(&desc->request_mutex);
409	init_rcu_head(&desc->rcu);
410
411	desc_set_defaults(irq, desc, node, affinity, owner);
412	irqd_set(&desc->irq_data, flags);
413	kobject_init(&desc->kobj, &irq_kobj_type);
414
415	return desc;
416
417err_kstat:
418	free_percpu(desc->kstat_irqs);
419err_desc:
420	kfree(desc);
421	return NULL;
422}
423
424static void irq_kobj_release(struct kobject *kobj)
425{
426	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
427
428	free_masks(desc);
429	free_percpu(desc->kstat_irqs);
430	kfree(desc);
431}
432
433static void delayed_free_desc(struct rcu_head *rhp)
434{
435	struct irq_desc *desc = container_of(rhp, struct irq_desc, rcu);
436
437	kobject_put(&desc->kobj);
438}
439
440static void free_desc(unsigned int irq)
441{
442	struct irq_desc *desc = irq_to_desc(irq);
443
444	irq_remove_debugfs_entry(desc);
445	unregister_irq_proc(irq, desc);
446
447	/*
448	 * sparse_irq_lock protects also show_interrupts() and
449	 * kstat_irq_usr(). Once we deleted the descriptor from the
450	 * sparse tree we can free it. Access in proc will fail to
451	 * lookup the descriptor.
452	 *
453	 * The sysfs entry must be serialized against a concurrent
454	 * irq_sysfs_init() as well.
455	 */
456	irq_sysfs_del(desc);
457	delete_irq_desc(irq);
 
458
459	/*
460	 * We free the descriptor, masks and stat fields via RCU. That
461	 * allows demultiplex interrupts to do rcu based management of
462	 * the child interrupts.
463	 * This also allows us to use rcu in kstat_irqs_usr().
464	 */
465	call_rcu(&desc->rcu, delayed_free_desc);
466}
467
468static int alloc_descs(unsigned int start, unsigned int cnt, int node,
469		       const struct irq_affinity_desc *affinity,
470		       struct module *owner)
471{
472	struct irq_desc *desc;
473	int i;
474
475	/* Validate affinity mask(s) */
476	if (affinity) {
477		for (i = 0; i < cnt; i++) {
478			if (cpumask_empty(&affinity[i].mask))
479				return -EINVAL;
480		}
481	}
482
483	for (i = 0; i < cnt; i++) {
484		const struct cpumask *mask = NULL;
485		unsigned int flags = 0;
486
487		if (affinity) {
488			if (affinity->is_managed) {
489				flags = IRQD_AFFINITY_MANAGED |
490					IRQD_MANAGED_SHUTDOWN;
491			}
492			mask = &affinity->mask;
493			node = cpu_to_node(cpumask_first(mask));
494			affinity++;
495		}
496
497		desc = alloc_desc(start + i, node, flags, mask, owner);
498		if (!desc)
499			goto err;
 
500		irq_insert_desc(start + i, desc);
501		irq_sysfs_add(start + i, desc);
502		irq_add_debugfs_entry(start + i, desc);
503	}
504	bitmap_set(allocated_irqs, start, cnt);
505	return start;
506
507err:
508	for (i--; i >= 0; i--)
509		free_desc(start + i);
 
 
 
 
510	return -ENOMEM;
511}
512
513static int irq_expand_nr_irqs(unsigned int nr)
514{
515	if (nr > IRQ_BITMAP_BITS)
516		return -ENOMEM;
517	nr_irqs = nr;
518	return 0;
519}
520
521int __init early_irq_init(void)
522{
523	int i, initcnt, node = first_online_node;
524	struct irq_desc *desc;
525
526	init_irq_default_affinity();
527
528	/* Let arch update nr_irqs and return the nr of preallocated irqs */
529	initcnt = arch_probe_nr_irqs();
530	printk(KERN_INFO "NR_IRQS: %d, nr_irqs: %d, preallocated irqs: %d\n",
531	       NR_IRQS, nr_irqs, initcnt);
532
533	if (WARN_ON(nr_irqs > IRQ_BITMAP_BITS))
534		nr_irqs = IRQ_BITMAP_BITS;
535
536	if (WARN_ON(initcnt > IRQ_BITMAP_BITS))
537		initcnt = IRQ_BITMAP_BITS;
538
539	if (initcnt > nr_irqs)
540		nr_irqs = initcnt;
541
542	for (i = 0; i < initcnt; i++) {
543		desc = alloc_desc(i, node, 0, NULL, NULL);
544		set_bit(i, allocated_irqs);
545		irq_insert_desc(i, desc);
546	}
547	return arch_early_irq_init();
548}
549
550#else /* !CONFIG_SPARSE_IRQ */
551
552struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
553	[0 ... NR_IRQS-1] = {
554		.handle_irq	= handle_bad_irq,
555		.depth		= 1,
556		.lock		= __RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock),
557	}
558};
559
560int __init early_irq_init(void)
561{
562	int count, i, node = first_online_node;
563	struct irq_desc *desc;
564
565	init_irq_default_affinity();
566
567	printk(KERN_INFO "NR_IRQS: %d\n", NR_IRQS);
568
569	desc = irq_desc;
570	count = ARRAY_SIZE(irq_desc);
571
572	for (i = 0; i < count; i++) {
573		desc[i].kstat_irqs = alloc_percpu(unsigned int);
574		alloc_masks(&desc[i], node);
575		raw_spin_lock_init(&desc[i].lock);
576		lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
577		mutex_init(&desc[i].request_mutex);
578		desc_set_defaults(i, &desc[i], node, NULL, NULL);
579	}
580	return arch_early_irq_init();
581}
582
583struct irq_desc *irq_to_desc(unsigned int irq)
584{
585	return (irq < NR_IRQS) ? irq_desc + irq : NULL;
586}
587EXPORT_SYMBOL(irq_to_desc);
588
589static void free_desc(unsigned int irq)
590{
591	struct irq_desc *desc = irq_to_desc(irq);
592	unsigned long flags;
593
594	raw_spin_lock_irqsave(&desc->lock, flags);
595	desc_set_defaults(irq, desc, irq_desc_get_node(desc), NULL, NULL);
596	raw_spin_unlock_irqrestore(&desc->lock, flags);
597}
598
599static inline int alloc_descs(unsigned int start, unsigned int cnt, int node,
600			      const struct irq_affinity_desc *affinity,
601			      struct module *owner)
602{
603	u32 i;
604
605	for (i = 0; i < cnt; i++) {
606		struct irq_desc *desc = irq_to_desc(start + i);
607
608		desc->owner = owner;
609	}
610	bitmap_set(allocated_irqs, start, cnt);
611	return start;
612}
613
614static int irq_expand_nr_irqs(unsigned int nr)
615{
616	return -ENOMEM;
617}
618
619void irq_mark_irq(unsigned int irq)
620{
621	mutex_lock(&sparse_irq_lock);
622	bitmap_set(allocated_irqs, irq, 1);
623	mutex_unlock(&sparse_irq_lock);
624}
625
626#ifdef CONFIG_GENERIC_IRQ_LEGACY
627void irq_init_desc(unsigned int irq)
628{
629	free_desc(irq);
630}
631#endif
632
633#endif /* !CONFIG_SPARSE_IRQ */
634
635int handle_irq_desc(struct irq_desc *desc)
636{
637	struct irq_data *data;
638
639	if (!desc)
640		return -EINVAL;
641
642	data = irq_desc_get_irq_data(desc);
643	if (WARN_ON_ONCE(!in_irq() && handle_enforce_irqctx(data)))
644		return -EPERM;
645
646	generic_handle_irq_desc(desc);
647	return 0;
648}
649EXPORT_SYMBOL_GPL(handle_irq_desc);
650
651/**
652 * generic_handle_irq - Invoke the handler for a particular irq
653 * @irq:	The irq number to handle
654 *
655 */
656int generic_handle_irq(unsigned int irq)
657{
658	return handle_irq_desc(irq_to_desc(irq));
 
 
 
 
 
659}
660EXPORT_SYMBOL_GPL(generic_handle_irq);
661
662#ifdef CONFIG_IRQ_DOMAIN
663/**
664 * generic_handle_domain_irq - Invoke the handler for a HW irq belonging
665 *                             to a domain, usually for a non-root interrupt
666 *                             controller
667 * @domain:	The domain where to perform the lookup
668 * @hwirq:	The HW irq number to convert to a logical one
669 *
670 * Returns:	0 on success, or -EINVAL if conversion has failed
671 *
672 */
673int generic_handle_domain_irq(struct irq_domain *domain, unsigned int hwirq)
674{
675	return handle_irq_desc(irq_resolve_mapping(domain, hwirq));
676}
677EXPORT_SYMBOL_GPL(generic_handle_domain_irq);
678
679#ifdef CONFIG_HANDLE_DOMAIN_IRQ
680/**
681 * handle_domain_irq - Invoke the handler for a HW irq belonging to a domain,
682 *                     usually for a root interrupt controller
683 * @domain:	The domain where to perform the lookup
684 * @hwirq:	The HW irq number to convert to a logical one
685 * @regs:	Register file coming from the low-level handling code
686 *
687 * Returns:	0 on success, or -EINVAL if conversion has failed
688 */
689int handle_domain_irq(struct irq_domain *domain,
690		      unsigned int hwirq, struct pt_regs *regs)
691{
692	struct pt_regs *old_regs = set_irq_regs(regs);
693	struct irq_desc *desc;
694	int ret = 0;
695
696	irq_enter();
697
698	/* The irqdomain code provides boundary checks */
699	desc = irq_resolve_mapping(domain, hwirq);
700	if (likely(desc))
701		handle_irq_desc(desc);
702	else
703		ret = -EINVAL;
704
705	irq_exit();
706	set_irq_regs(old_regs);
707	return ret;
708}
709
710/**
711 * handle_domain_nmi - Invoke the handler for a HW irq belonging to a domain
712 * @domain:	The domain where to perform the lookup
713 * @hwirq:	The HW irq number to convert to a logical one
714 * @regs:	Register file coming from the low-level handling code
715 *
716 *		This function must be called from an NMI context.
717 *
718 * Returns:	0 on success, or -EINVAL if conversion has failed
719 */
720int handle_domain_nmi(struct irq_domain *domain, unsigned int hwirq,
721		      struct pt_regs *regs)
722{
723	struct pt_regs *old_regs = set_irq_regs(regs);
724	struct irq_desc *desc;
725	int ret = 0;
726
727	/*
728	 * NMI context needs to be setup earlier in order to deal with tracing.
729	 */
730	WARN_ON(!in_nmi());
731
732	desc = irq_resolve_mapping(domain, hwirq);
733
734	/*
735	 * ack_bad_irq is not NMI-safe, just report
736	 * an invalid interrupt.
737	 */
738	if (likely(desc))
739		handle_irq_desc(desc);
740	else
741		ret = -EINVAL;
742
743	set_irq_regs(old_regs);
744	return ret;
745}
746#endif
747#endif
748
749/* Dynamic interrupt handling */
750
751/**
752 * irq_free_descs - free irq descriptors
753 * @from:	Start of descriptor range
754 * @cnt:	Number of consecutive irqs to free
755 */
756void irq_free_descs(unsigned int from, unsigned int cnt)
757{
758	int i;
759
760	if (from >= nr_irqs || (from + cnt) > nr_irqs)
761		return;
762
763	mutex_lock(&sparse_irq_lock);
764	for (i = 0; i < cnt; i++)
765		free_desc(from + i);
766
 
767	bitmap_clear(allocated_irqs, from, cnt);
768	mutex_unlock(&sparse_irq_lock);
769}
770EXPORT_SYMBOL_GPL(irq_free_descs);
771
772/**
773 * __irq_alloc_descs - allocate and initialize a range of irq descriptors
774 * @irq:	Allocate for specific irq number if irq >= 0
775 * @from:	Start the search from this irq number
776 * @cnt:	Number of consecutive irqs to allocate.
777 * @node:	Preferred node on which the irq descriptor should be allocated
778 * @owner:	Owning module (can be NULL)
779 * @affinity:	Optional pointer to an affinity mask array of size @cnt which
780 *		hints where the irq descriptors should be allocated and which
781 *		default affinities to use
782 *
783 * Returns the first irq number or error code
784 */
785int __ref
786__irq_alloc_descs(int irq, unsigned int from, unsigned int cnt, int node,
787		  struct module *owner, const struct irq_affinity_desc *affinity)
788{
789	int start, ret;
790
791	if (!cnt)
792		return -EINVAL;
793
794	if (irq >= 0) {
795		if (from > irq)
796			return -EINVAL;
797		from = irq;
798	} else {
799		/*
800		 * For interrupts which are freely allocated the
801		 * architecture can force a lower bound to the @from
802		 * argument. x86 uses this to exclude the GSI space.
803		 */
804		from = arch_dynirq_lower_bound(from);
805	}
806
807	mutex_lock(&sparse_irq_lock);
808
809	start = bitmap_find_next_zero_area(allocated_irqs, IRQ_BITMAP_BITS,
810					   from, cnt, 0);
811	ret = -EEXIST;
812	if (irq >=0 && start != irq)
813		goto unlock;
814
815	if (start + cnt > nr_irqs) {
816		ret = irq_expand_nr_irqs(start + cnt);
817		if (ret)
818			goto unlock;
819	}
820	ret = alloc_descs(start, cnt, node, affinity, owner);
821unlock:
 
 
 
 
822	mutex_unlock(&sparse_irq_lock);
823	return ret;
824}
825EXPORT_SYMBOL_GPL(__irq_alloc_descs);
826
827/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
828 * irq_get_next_irq - get next allocated irq number
829 * @offset:	where to start the search
830 *
831 * Returns next irq number after offset or nr_irqs if none is found.
832 */
833unsigned int irq_get_next_irq(unsigned int offset)
834{
835	return find_next_bit(allocated_irqs, nr_irqs, offset);
836}
837
838struct irq_desc *
839__irq_get_desc_lock(unsigned int irq, unsigned long *flags, bool bus,
840		    unsigned int check)
841{
842	struct irq_desc *desc = irq_to_desc(irq);
843
844	if (desc) {
845		if (check & _IRQ_DESC_CHECK) {
846			if ((check & _IRQ_DESC_PERCPU) &&
847			    !irq_settings_is_per_cpu_devid(desc))
848				return NULL;
849
850			if (!(check & _IRQ_DESC_PERCPU) &&
851			    irq_settings_is_per_cpu_devid(desc))
852				return NULL;
853		}
854
855		if (bus)
856			chip_bus_lock(desc);
857		raw_spin_lock_irqsave(&desc->lock, *flags);
858	}
859	return desc;
860}
861
862void __irq_put_desc_unlock(struct irq_desc *desc, unsigned long flags, bool bus)
863	__releases(&desc->lock)
864{
865	raw_spin_unlock_irqrestore(&desc->lock, flags);
866	if (bus)
867		chip_bus_sync_unlock(desc);
868}
869
870int irq_set_percpu_devid_partition(unsigned int irq,
871				   const struct cpumask *affinity)
872{
873	struct irq_desc *desc = irq_to_desc(irq);
874
875	if (!desc)
876		return -EINVAL;
877
878	if (desc->percpu_enabled)
879		return -EINVAL;
880
881	desc->percpu_enabled = kzalloc(sizeof(*desc->percpu_enabled), GFP_KERNEL);
882
883	if (!desc->percpu_enabled)
884		return -ENOMEM;
885
886	if (affinity)
887		desc->percpu_affinity = affinity;
888	else
889		desc->percpu_affinity = cpu_possible_mask;
890
891	irq_set_percpu_devid_flags(irq);
892	return 0;
893}
894
895int irq_set_percpu_devid(unsigned int irq)
896{
897	return irq_set_percpu_devid_partition(irq, NULL);
898}
899
900int irq_get_percpu_devid_partition(unsigned int irq, struct cpumask *affinity)
901{
902	struct irq_desc *desc = irq_to_desc(irq);
 
903
904	if (!desc || !desc->percpu_enabled)
905		return -EINVAL;
906
907	if (affinity)
908		cpumask_copy(affinity, desc->percpu_affinity);
909
910	return 0;
911}
912EXPORT_SYMBOL_GPL(irq_get_percpu_devid_partition);
913
914void kstat_incr_irq_this_cpu(unsigned int irq)
915{
916	kstat_incr_irqs_this_cpu(irq_to_desc(irq));
917}
918
919/**
920 * kstat_irqs_cpu - Get the statistics for an interrupt on a cpu
921 * @irq:	The interrupt number
922 * @cpu:	The cpu number
923 *
924 * Returns the sum of interrupt counts on @cpu since boot for
925 * @irq. The caller must ensure that the interrupt is not removed
926 * concurrently.
927 */
928unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
929{
930	struct irq_desc *desc = irq_to_desc(irq);
931
932	return desc && desc->kstat_irqs ?
933			*per_cpu_ptr(desc->kstat_irqs, cpu) : 0;
934}
935
936static bool irq_is_nmi(struct irq_desc *desc)
937{
938	return desc->istate & IRQS_NMI;
939}
940
941static unsigned int kstat_irqs(unsigned int irq)
942{
943	struct irq_desc *desc = irq_to_desc(irq);
944	unsigned int sum = 0;
945	int cpu;
 
946
947	if (!desc || !desc->kstat_irqs)
948		return 0;
949	if (!irq_settings_is_per_cpu_devid(desc) &&
950	    !irq_settings_is_per_cpu(desc) &&
951	    !irq_is_nmi(desc))
952		return data_race(desc->tot_count);
953
954	for_each_possible_cpu(cpu)
955		sum += data_race(*per_cpu_ptr(desc->kstat_irqs, cpu));
956	return sum;
957}
958
959/**
960 * kstat_irqs_usr - Get the statistics for an interrupt from thread context
961 * @irq:	The interrupt number
962 *
963 * Returns the sum of interrupt counts on all cpus since boot for @irq.
964 *
965 * It uses rcu to protect the access since a concurrent removal of an
966 * interrupt descriptor is observing an rcu grace period before
967 * delayed_free_desc()/irq_kobj_release().
968 */
969unsigned int kstat_irqs_usr(unsigned int irq)
970{
971	unsigned int sum;
972
973	rcu_read_lock();
974	sum = kstat_irqs(irq);
975	rcu_read_unlock();
976	return sum;
977}
978
979#ifdef CONFIG_LOCKDEP
980void __irq_set_lockdep_class(unsigned int irq, struct lock_class_key *lock_class,
981			     struct lock_class_key *request_class)
982{
983	struct irq_desc *desc = irq_to_desc(irq);
984
985	if (desc) {
986		lockdep_set_class(&desc->lock, lock_class);
987		lockdep_set_class(&desc->request_mutex, request_class);
988	}
989}
990EXPORT_SYMBOL_GPL(__irq_set_lockdep_class);
991#endif