Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
 
  15#include <linux/string.h>
  16#include <linux/kernel.h>
  17#include <linux/kmsg_dump.h>
  18#include <linux/reboot.h>
  19#include <linux/sched.h>
 
 
 
  20#include <linux/sysrq.h>
  21#include <linux/smp.h>
  22#include <linux/utsname.h>
  23#include <linux/vmalloc.h>
 
  24#include <linux/module.h>
 
  25#include <linux/mm.h>
  26#include <linux/init.h>
  27#include <linux/kallsyms.h>
  28#include <linux/kgdb.h>
  29#include <linux/kdb.h>
 
  30#include <linux/notifier.h>
  31#include <linux/interrupt.h>
  32#include <linux/delay.h>
  33#include <linux/nmi.h>
  34#include <linux/time.h>
  35#include <linux/ptrace.h>
  36#include <linux/sysctl.h>
  37#include <linux/cpu.h>
  38#include <linux/kdebug.h>
  39#include <linux/proc_fs.h>
  40#include <linux/uaccess.h>
  41#include <linux/slab.h>
  42#include "kdb_private.h"
  43
  44#define GREP_LEN 256
  45char kdb_grep_string[GREP_LEN];
 
 
 
 
 
  46int kdb_grepping_flag;
  47EXPORT_SYMBOL(kdb_grepping_flag);
  48int kdb_grep_leading;
  49int kdb_grep_trailing;
  50
  51/*
  52 * Kernel debugger state flags
  53 */
  54int kdb_flags;
  55atomic_t kdb_event;
  56
  57/*
  58 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  59 * single thread processors through the kernel debugger.
  60 */
  61int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  62int kdb_nextline = 1;
  63int kdb_state;			/* General KDB state */
  64
  65struct task_struct *kdb_current_task;
  66EXPORT_SYMBOL(kdb_current_task);
  67struct pt_regs *kdb_current_regs;
  68
  69const char *kdb_diemsg;
  70static int kdb_go_count;
  71#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  72static unsigned int kdb_continue_catastrophic =
  73	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  74#else
  75static unsigned int kdb_continue_catastrophic;
  76#endif
  77
  78/* kdb_commands describes the available commands. */
  79static kdbtab_t *kdb_commands;
  80#define KDB_BASE_CMD_MAX 50
  81static int kdb_max_commands = KDB_BASE_CMD_MAX;
  82static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  83#define for_each_kdbcmd(cmd, num)					\
  84	for ((cmd) = kdb_base_commands, (num) = 0;			\
  85	     num < kdb_max_commands;					\
  86	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  87
  88typedef struct _kdbmsg {
  89	int	km_diag;	/* kdb diagnostic */
  90	char	*km_msg;	/* Corresponding message text */
  91} kdbmsg_t;
  92
  93#define KDBMSG(msgnum, text) \
  94	{ KDB_##msgnum, text }
  95
  96static kdbmsg_t kdbmsgs[] = {
  97	KDBMSG(NOTFOUND, "Command Not Found"),
  98	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
  99	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 100	       "8 is only allowed on 64 bit systems"),
 101	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 102	KDBMSG(NOTENV, "Cannot find environment variable"),
 103	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 104	KDBMSG(NOTIMP, "Command not implemented"),
 105	KDBMSG(ENVFULL, "Environment full"),
 106	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 107	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 108#ifdef CONFIG_CPU_XSCALE
 109	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 110#else
 111	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 112#endif
 113	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 114	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 115	KDBMSG(BADMODE, "Invalid IDMODE"),
 116	KDBMSG(BADINT, "Illegal numeric value"),
 117	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 118	KDBMSG(BADREG, "Invalid register name"),
 119	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 120	KDBMSG(BADLENGTH, "Invalid length field"),
 121	KDBMSG(NOBP, "No Breakpoint exists"),
 122	KDBMSG(BADADDR, "Invalid address"),
 
 123};
 124#undef KDBMSG
 125
 126static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);
 127
 128
 129/*
 130 * Initial environment.   This is all kept static and local to
 131 * this file.   We don't want to rely on the memory allocation
 132 * mechanisms in the kernel, so we use a very limited allocate-only
 133 * heap for new and altered environment variables.  The entire
 134 * environment is limited to a fixed number of entries (add more
 135 * to __env[] if required) and a fixed amount of heap (add more to
 136 * KDB_ENVBUFSIZE if required).
 137 */
 138
 139static char *__env[] = {
 140#if defined(CONFIG_SMP)
 141 "PROMPT=[%d]kdb> ",
 142 "MOREPROMPT=[%d]more> ",
 143#else
 144 "PROMPT=kdb> ",
 145 "MOREPROMPT=more> ",
 146#endif
 147 "RADIX=16",
 148 "MDCOUNT=8",			/* lines of md output */
 149 KDB_PLATFORM_ENV,
 150 "DTABCOUNT=30",
 151 "NOSECT=1",
 152 (char *)0,
 153 (char *)0,
 154 (char *)0,
 155 (char *)0,
 156 (char *)0,
 157 (char *)0,
 158 (char *)0,
 159 (char *)0,
 160 (char *)0,
 161 (char *)0,
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175 (char *)0,
 176};
 177
 178static const int __nenv = (sizeof(__env) / sizeof(char *));
 179
 180struct task_struct *kdb_curr_task(int cpu)
 181{
 182	struct task_struct *p = curr_task(cpu);
 183#ifdef	_TIF_MCA_INIT
 184	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 185		p = krp->p;
 186#endif
 187	return p;
 188}
 189
 190/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191 * kdbgetenv - This function will return the character string value of
 192 *	an environment variable.
 193 * Parameters:
 194 *	match	A character string representing an environment variable.
 195 * Returns:
 196 *	NULL	No environment variable matches 'match'
 197 *	char*	Pointer to string value of environment variable.
 198 */
 199char *kdbgetenv(const char *match)
 200{
 201	char **ep = __env;
 202	int matchlen = strlen(match);
 203	int i;
 204
 205	for (i = 0; i < __nenv; i++) {
 206		char *e = *ep++;
 207
 208		if (!e)
 209			continue;
 210
 211		if ((strncmp(match, e, matchlen) == 0)
 212		 && ((e[matchlen] == '\0')
 213		   || (e[matchlen] == '='))) {
 214			char *cp = strchr(e, '=');
 215			return cp ? ++cp : "";
 216		}
 217	}
 218	return NULL;
 219}
 220
 221/*
 222 * kdballocenv - This function is used to allocate bytes for
 223 *	environment entries.
 224 * Parameters:
 225 *	match	A character string representing a numeric value
 226 * Outputs:
 227 *	*value  the unsigned long representation of the env variable 'match'
 228 * Returns:
 229 *	Zero on success, a kdb diagnostic on failure.
 230 * Remarks:
 231 *	We use a static environment buffer (envbuffer) to hold the values
 232 *	of dynamically generated environment variables (see kdb_set).  Buffer
 233 *	space once allocated is never free'd, so over time, the amount of space
 234 *	(currently 512 bytes) will be exhausted if env variables are changed
 235 *	frequently.
 236 */
 237static char *kdballocenv(size_t bytes)
 238{
 239#define	KDB_ENVBUFSIZE	512
 240	static char envbuffer[KDB_ENVBUFSIZE];
 241	static int envbufsize;
 242	char *ep = NULL;
 243
 244	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 245		ep = &envbuffer[envbufsize];
 246		envbufsize += bytes;
 247	}
 248	return ep;
 249}
 250
 251/*
 252 * kdbgetulenv - This function will return the value of an unsigned
 253 *	long-valued environment variable.
 254 * Parameters:
 255 *	match	A character string representing a numeric value
 256 * Outputs:
 257 *	*value  the unsigned long represntation of the env variable 'match'
 258 * Returns:
 259 *	Zero on success, a kdb diagnostic on failure.
 260 */
 261static int kdbgetulenv(const char *match, unsigned long *value)
 262{
 263	char *ep;
 264
 265	ep = kdbgetenv(match);
 266	if (!ep)
 267		return KDB_NOTENV;
 268	if (strlen(ep) == 0)
 269		return KDB_NOENVVALUE;
 270
 271	*value = simple_strtoul(ep, NULL, 0);
 272
 273	return 0;
 274}
 275
 276/*
 277 * kdbgetintenv - This function will return the value of an
 278 *	integer-valued environment variable.
 279 * Parameters:
 280 *	match	A character string representing an integer-valued env variable
 281 * Outputs:
 282 *	*value  the integer representation of the environment variable 'match'
 283 * Returns:
 284 *	Zero on success, a kdb diagnostic on failure.
 285 */
 286int kdbgetintenv(const char *match, int *value)
 287{
 288	unsigned long val;
 289	int diag;
 290
 291	diag = kdbgetulenv(match, &val);
 292	if (!diag)
 293		*value = (int) val;
 294	return diag;
 295}
 296
 297/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 298 * kdbgetularg - This function will convert a numeric string into an
 299 *	unsigned long value.
 300 * Parameters:
 301 *	arg	A character string representing a numeric value
 302 * Outputs:
 303 *	*value  the unsigned long represntation of arg.
 304 * Returns:
 305 *	Zero on success, a kdb diagnostic on failure.
 306 */
 307int kdbgetularg(const char *arg, unsigned long *value)
 308{
 309	char *endp;
 310	unsigned long val;
 311
 312	val = simple_strtoul(arg, &endp, 0);
 313
 314	if (endp == arg) {
 315		/*
 316		 * Also try base 16, for us folks too lazy to type the
 317		 * leading 0x...
 318		 */
 319		val = simple_strtoul(arg, &endp, 16);
 320		if (endp == arg)
 321			return KDB_BADINT;
 322	}
 323
 324	*value = val;
 325
 326	return 0;
 327}
 328
 329int kdbgetu64arg(const char *arg, u64 *value)
 330{
 331	char *endp;
 332	u64 val;
 333
 334	val = simple_strtoull(arg, &endp, 0);
 335
 336	if (endp == arg) {
 337
 338		val = simple_strtoull(arg, &endp, 16);
 339		if (endp == arg)
 340			return KDB_BADINT;
 341	}
 342
 343	*value = val;
 344
 345	return 0;
 346}
 347
 348/*
 349 * kdb_set - This function implements the 'set' command.  Alter an
 350 *	existing environment variable or create a new one.
 351 */
 352int kdb_set(int argc, const char **argv)
 353{
 354	int i;
 355	char *ep;
 356	size_t varlen, vallen;
 357
 358	/*
 359	 * we can be invoked two ways:
 360	 *   set var=value    argv[1]="var", argv[2]="value"
 361	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 362	 * - if the latter, shift 'em down.
 363	 */
 364	if (argc == 3) {
 365		argv[2] = argv[3];
 366		argc--;
 367	}
 368
 369	if (argc != 2)
 370		return KDB_ARGCOUNT;
 371
 372	/*
 
 
 
 
 
 
 
 373	 * Check for internal variables
 374	 */
 375	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 376		unsigned int debugflags;
 377		char *cp;
 378
 379		debugflags = simple_strtoul(argv[2], &cp, 0);
 380		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 381			kdb_printf("kdb: illegal debug flags '%s'\n",
 382				    argv[2]);
 383			return 0;
 384		}
 385		kdb_flags = (kdb_flags &
 386			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
 387			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 388
 389		return 0;
 390	}
 391
 392	/*
 393	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 394	 * name, argv[2] = value.
 395	 */
 396	varlen = strlen(argv[1]);
 397	vallen = strlen(argv[2]);
 398	ep = kdballocenv(varlen + vallen + 2);
 399	if (ep == (char *)0)
 400		return KDB_ENVBUFFULL;
 401
 402	sprintf(ep, "%s=%s", argv[1], argv[2]);
 403
 404	ep[varlen+vallen+1] = '\0';
 405
 406	for (i = 0; i < __nenv; i++) {
 407		if (__env[i]
 408		 && ((strncmp(__env[i], argv[1], varlen) == 0)
 409		   && ((__env[i][varlen] == '\0')
 410		    || (__env[i][varlen] == '=')))) {
 411			__env[i] = ep;
 412			return 0;
 413		}
 414	}
 415
 416	/*
 417	 * Wasn't existing variable.  Fit into slot.
 418	 */
 419	for (i = 0; i < __nenv-1; i++) {
 420		if (__env[i] == (char *)0) {
 421			__env[i] = ep;
 422			return 0;
 423		}
 424	}
 425
 426	return KDB_ENVFULL;
 427}
 428
 429static int kdb_check_regs(void)
 430{
 431	if (!kdb_current_regs) {
 432		kdb_printf("No current kdb registers."
 433			   "  You may need to select another task\n");
 434		return KDB_BADREG;
 435	}
 436	return 0;
 437}
 438
 439/*
 440 * kdbgetaddrarg - This function is responsible for parsing an
 441 *	address-expression and returning the value of the expression,
 442 *	symbol name, and offset to the caller.
 443 *
 444 *	The argument may consist of a numeric value (decimal or
 445 *	hexidecimal), a symbol name, a register name (preceded by the
 446 *	percent sign), an environment variable with a numeric value
 447 *	(preceded by a dollar sign) or a simple arithmetic expression
 448 *	consisting of a symbol name, +/-, and a numeric constant value
 449 *	(offset).
 450 * Parameters:
 451 *	argc	- count of arguments in argv
 452 *	argv	- argument vector
 453 *	*nextarg - index to next unparsed argument in argv[]
 454 *	regs	- Register state at time of KDB entry
 455 * Outputs:
 456 *	*value	- receives the value of the address-expression
 457 *	*offset - receives the offset specified, if any
 458 *	*name   - receives the symbol name, if any
 459 *	*nextarg - index to next unparsed argument in argv[]
 460 * Returns:
 461 *	zero is returned on success, a kdb diagnostic code is
 462 *      returned on error.
 463 */
 464int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 465		  unsigned long *value,  long *offset,
 466		  char **name)
 467{
 468	unsigned long addr;
 469	unsigned long off = 0;
 470	int positive;
 471	int diag;
 472	int found = 0;
 473	char *symname;
 474	char symbol = '\0';
 475	char *cp;
 476	kdb_symtab_t symtab;
 477
 478	/*
 
 
 
 
 
 
 
 
 
 479	 * Process arguments which follow the following syntax:
 480	 *
 481	 *  symbol | numeric-address [+/- numeric-offset]
 482	 *  %register
 483	 *  $environment-variable
 484	 */
 485
 486	if (*nextarg > argc)
 487		return KDB_ARGCOUNT;
 488
 489	symname = (char *)argv[*nextarg];
 490
 491	/*
 492	 * If there is no whitespace between the symbol
 493	 * or address and the '+' or '-' symbols, we
 494	 * remember the character and replace it with a
 495	 * null so the symbol/value can be properly parsed
 496	 */
 497	cp = strpbrk(symname, "+-");
 498	if (cp != NULL) {
 499		symbol = *cp;
 500		*cp++ = '\0';
 501	}
 502
 503	if (symname[0] == '$') {
 504		diag = kdbgetulenv(&symname[1], &addr);
 505		if (diag)
 506			return diag;
 507	} else if (symname[0] == '%') {
 508		diag = kdb_check_regs();
 509		if (diag)
 510			return diag;
 511		/* Implement register values with % at a later time as it is
 512		 * arch optional.
 513		 */
 514		return KDB_NOTIMP;
 515	} else {
 516		found = kdbgetsymval(symname, &symtab);
 517		if (found) {
 518			addr = symtab.sym_start;
 519		} else {
 520			diag = kdbgetularg(argv[*nextarg], &addr);
 521			if (diag)
 522				return diag;
 523		}
 524	}
 525
 526	if (!found)
 527		found = kdbnearsym(addr, &symtab);
 528
 529	(*nextarg)++;
 530
 531	if (name)
 532		*name = symname;
 533	if (value)
 534		*value = addr;
 535	if (offset && name && *name)
 536		*offset = addr - symtab.sym_start;
 537
 538	if ((*nextarg > argc)
 539	 && (symbol == '\0'))
 540		return 0;
 541
 542	/*
 543	 * check for +/- and offset
 544	 */
 545
 546	if (symbol == '\0') {
 547		if ((argv[*nextarg][0] != '+')
 548		 && (argv[*nextarg][0] != '-')) {
 549			/*
 550			 * Not our argument.  Return.
 551			 */
 552			return 0;
 553		} else {
 554			positive = (argv[*nextarg][0] == '+');
 555			(*nextarg)++;
 556		}
 557	} else
 558		positive = (symbol == '+');
 559
 560	/*
 561	 * Now there must be an offset!
 562	 */
 563	if ((*nextarg > argc)
 564	 && (symbol == '\0')) {
 565		return KDB_INVADDRFMT;
 566	}
 567
 568	if (!symbol) {
 569		cp = (char *)argv[*nextarg];
 570		(*nextarg)++;
 571	}
 572
 573	diag = kdbgetularg(cp, &off);
 574	if (diag)
 575		return diag;
 576
 577	if (!positive)
 578		off = -off;
 579
 580	if (offset)
 581		*offset += off;
 582
 583	if (value)
 584		*value += off;
 585
 586	return 0;
 587}
 588
 589static void kdb_cmderror(int diag)
 590{
 591	int i;
 592
 593	if (diag >= 0) {
 594		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 595		return;
 596	}
 597
 598	for (i = 0; i < __nkdb_err; i++) {
 599		if (kdbmsgs[i].km_diag == diag) {
 600			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 601			return;
 602		}
 603	}
 604
 605	kdb_printf("Unknown diag %d\n", -diag);
 606}
 607
 608/*
 609 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 610 *	command which defines one command as a set of other commands,
 611 *	terminated by endefcmd.  kdb_defcmd processes the initial
 612 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 613 *	the following commands until 'endefcmd'.
 614 * Inputs:
 615 *	argc	argument count
 616 *	argv	argument vector
 617 * Returns:
 618 *	zero for success, a kdb diagnostic if error
 619 */
 620struct defcmd_set {
 621	int count;
 622	int usable;
 623	char *name;
 624	char *usage;
 625	char *help;
 626	char **command;
 627};
 628static struct defcmd_set *defcmd_set;
 629static int defcmd_set_count;
 630static int defcmd_in_progress;
 631
 632/* Forward references */
 633static int kdb_exec_defcmd(int argc, const char **argv);
 634
 635static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 636{
 637	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 638	char **save_command = s->command;
 639	if (strcmp(argv0, "endefcmd") == 0) {
 640		defcmd_in_progress = 0;
 641		if (!s->count)
 642			s->usable = 0;
 643		if (s->usable)
 644			kdb_register(s->name, kdb_exec_defcmd,
 645				     s->usage, s->help, 0);
 
 
 
 
 
 646		return 0;
 647	}
 648	if (!s->usable)
 649		return KDB_NOTIMP;
 650	s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
 651	if (!s->command) {
 652		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 653			   cmdstr);
 654		s->usable = 0;
 655		return KDB_NOTIMP;
 656	}
 657	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 658	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 659	kfree(save_command);
 660	return 0;
 661}
 662
 663static int kdb_defcmd(int argc, const char **argv)
 664{
 665	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 666	if (defcmd_in_progress) {
 667		kdb_printf("kdb: nested defcmd detected, assuming missing "
 668			   "endefcmd\n");
 669		kdb_defcmd2("endefcmd", "endefcmd");
 670	}
 671	if (argc == 0) {
 672		int i;
 673		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 674			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 675				   s->usage, s->help);
 676			for (i = 0; i < s->count; ++i)
 677				kdb_printf("%s", s->command[i]);
 678			kdb_printf("endefcmd\n");
 679		}
 680		return 0;
 681	}
 682	if (argc != 3)
 683		return KDB_ARGCOUNT;
 684	defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
 685			     GFP_KDB);
 686	if (!defcmd_set) {
 687		kdb_printf("Could not allocate new defcmd_set entry for %s\n",
 688			   argv[1]);
 689		defcmd_set = save_defcmd_set;
 690		return KDB_NOTIMP;
 691	}
 
 
 
 
 692	memcpy(defcmd_set, save_defcmd_set,
 693	       defcmd_set_count * sizeof(*defcmd_set));
 694	kfree(save_defcmd_set);
 695	s = defcmd_set + defcmd_set_count;
 696	memset(s, 0, sizeof(*s));
 697	s->usable = 1;
 698	s->name = kdb_strdup(argv[1], GFP_KDB);
 
 
 699	s->usage = kdb_strdup(argv[2], GFP_KDB);
 
 
 700	s->help = kdb_strdup(argv[3], GFP_KDB);
 
 
 701	if (s->usage[0] == '"') {
 702		strcpy(s->usage, s->usage+1);
 703		s->usage[strlen(s->usage)-1] = '\0';
 704	}
 705	if (s->help[0] == '"') {
 706		strcpy(s->help, s->help+1);
 707		s->help[strlen(s->help)-1] = '\0';
 708	}
 709	++defcmd_set_count;
 710	defcmd_in_progress = 1;
 
 711	return 0;
 
 
 
 
 
 
 
 
 
 
 712}
 713
 714/*
 715 * kdb_exec_defcmd - Execute the set of commands associated with this
 716 *	defcmd name.
 717 * Inputs:
 718 *	argc	argument count
 719 *	argv	argument vector
 720 * Returns:
 721 *	zero for success, a kdb diagnostic if error
 722 */
 723static int kdb_exec_defcmd(int argc, const char **argv)
 724{
 725	int i, ret;
 726	struct defcmd_set *s;
 727	if (argc != 0)
 728		return KDB_ARGCOUNT;
 729	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 730		if (strcmp(s->name, argv[0]) == 0)
 731			break;
 732	}
 733	if (i == defcmd_set_count) {
 734		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 735			   argv[0]);
 736		return KDB_NOTIMP;
 737	}
 738	for (i = 0; i < s->count; ++i) {
 739		/* Recursive use of kdb_parse, do not use argv after
 740		 * this point */
 741		argv = NULL;
 742		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 743		ret = kdb_parse(s->command[i]);
 744		if (ret)
 745			return ret;
 746	}
 747	return 0;
 748}
 749
 750/* Command history */
 751#define KDB_CMD_HISTORY_COUNT	32
 752#define CMD_BUFLEN		200	/* kdb_printf: max printline
 753					 * size == 256 */
 754static unsigned int cmd_head, cmd_tail;
 755static unsigned int cmdptr;
 756static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 757static char cmd_cur[CMD_BUFLEN];
 758
 759/*
 760 * The "str" argument may point to something like  | grep xyz
 761 */
 762static void parse_grep(const char *str)
 763{
 764	int	len;
 765	char	*cp = (char *)str, *cp2;
 766
 767	/* sanity check: we should have been called with the \ first */
 768	if (*cp != '|')
 769		return;
 770	cp++;
 771	while (isspace(*cp))
 772		cp++;
 773	if (strncmp(cp, "grep ", 5)) {
 774		kdb_printf("invalid 'pipe', see grephelp\n");
 775		return;
 776	}
 777	cp += 5;
 778	while (isspace(*cp))
 779		cp++;
 780	cp2 = strchr(cp, '\n');
 781	if (cp2)
 782		*cp2 = '\0'; /* remove the trailing newline */
 783	len = strlen(cp);
 784	if (len == 0) {
 785		kdb_printf("invalid 'pipe', see grephelp\n");
 786		return;
 787	}
 788	/* now cp points to a nonzero length search string */
 789	if (*cp == '"') {
 790		/* allow it be "x y z" by removing the "'s - there must
 791		   be two of them */
 792		cp++;
 793		cp2 = strchr(cp, '"');
 794		if (!cp2) {
 795			kdb_printf("invalid quoted string, see grephelp\n");
 796			return;
 797		}
 798		*cp2 = '\0'; /* end the string where the 2nd " was */
 799	}
 800	kdb_grep_leading = 0;
 801	if (*cp == '^') {
 802		kdb_grep_leading = 1;
 803		cp++;
 804	}
 805	len = strlen(cp);
 806	kdb_grep_trailing = 0;
 807	if (*(cp+len-1) == '$') {
 808		kdb_grep_trailing = 1;
 809		*(cp+len-1) = '\0';
 810	}
 811	len = strlen(cp);
 812	if (!len)
 813		return;
 814	if (len >= GREP_LEN) {
 815		kdb_printf("search string too long\n");
 816		return;
 817	}
 818	strcpy(kdb_grep_string, cp);
 819	kdb_grepping_flag++;
 820	return;
 821}
 822
 823/*
 824 * kdb_parse - Parse the command line, search the command table for a
 825 *	matching command and invoke the command function.  This
 826 *	function may be called recursively, if it is, the second call
 827 *	will overwrite argv and cbuf.  It is the caller's
 828 *	responsibility to save their argv if they recursively call
 829 *	kdb_parse().
 830 * Parameters:
 831 *      cmdstr	The input command line to be parsed.
 832 *	regs	The registers at the time kdb was entered.
 833 * Returns:
 834 *	Zero for success, a kdb diagnostic if failure.
 835 * Remarks:
 836 *	Limited to 20 tokens.
 837 *
 838 *	Real rudimentary tokenization. Basically only whitespace
 839 *	is considered a token delimeter (but special consideration
 840 *	is taken of the '=' sign as used by the 'set' command).
 841 *
 842 *	The algorithm used to tokenize the input string relies on
 843 *	there being at least one whitespace (or otherwise useless)
 844 *	character between tokens as the character immediately following
 845 *	the token is altered in-place to a null-byte to terminate the
 846 *	token string.
 847 */
 848
 849#define MAXARGC	20
 850
 851int kdb_parse(const char *cmdstr)
 852{
 853	static char *argv[MAXARGC];
 854	static int argc;
 855	static char cbuf[CMD_BUFLEN+2];
 856	char *cp;
 857	char *cpp, quoted;
 858	kdbtab_t *tp;
 859	int i, escaped, ignore_errors = 0, check_grep;
 860
 861	/*
 862	 * First tokenize the command string.
 863	 */
 864	cp = (char *)cmdstr;
 865	kdb_grepping_flag = check_grep = 0;
 866
 867	if (KDB_FLAG(CMD_INTERRUPT)) {
 868		/* Previous command was interrupted, newline must not
 869		 * repeat the command */
 870		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 871		KDB_STATE_SET(PAGER);
 872		argc = 0;	/* no repeat */
 873	}
 874
 875	if (*cp != '\n' && *cp != '\0') {
 876		argc = 0;
 877		cpp = cbuf;
 878		while (*cp) {
 879			/* skip whitespace */
 880			while (isspace(*cp))
 881				cp++;
 882			if ((*cp == '\0') || (*cp == '\n') ||
 883			    (*cp == '#' && !defcmd_in_progress))
 884				break;
 885			/* special case: check for | grep pattern */
 886			if (*cp == '|') {
 887				check_grep++;
 888				break;
 889			}
 890			if (cpp >= cbuf + CMD_BUFLEN) {
 891				kdb_printf("kdb_parse: command buffer "
 892					   "overflow, command ignored\n%s\n",
 893					   cmdstr);
 894				return KDB_NOTFOUND;
 895			}
 896			if (argc >= MAXARGC - 1) {
 897				kdb_printf("kdb_parse: too many arguments, "
 898					   "command ignored\n%s\n", cmdstr);
 899				return KDB_NOTFOUND;
 900			}
 901			argv[argc++] = cpp;
 902			escaped = 0;
 903			quoted = '\0';
 904			/* Copy to next unquoted and unescaped
 905			 * whitespace or '=' */
 906			while (*cp && *cp != '\n' &&
 907			       (escaped || quoted || !isspace(*cp))) {
 908				if (cpp >= cbuf + CMD_BUFLEN)
 909					break;
 910				if (escaped) {
 911					escaped = 0;
 912					*cpp++ = *cp++;
 913					continue;
 914				}
 915				if (*cp == '\\') {
 916					escaped = 1;
 917					++cp;
 918					continue;
 919				}
 920				if (*cp == quoted)
 921					quoted = '\0';
 922				else if (*cp == '\'' || *cp == '"')
 923					quoted = *cp;
 924				*cpp = *cp++;
 925				if (*cpp == '=' && !quoted)
 926					break;
 927				++cpp;
 928			}
 929			*cpp++ = '\0';	/* Squash a ws or '=' character */
 930		}
 931	}
 932	if (!argc)
 933		return 0;
 934	if (check_grep)
 935		parse_grep(cp);
 936	if (defcmd_in_progress) {
 937		int result = kdb_defcmd2(cmdstr, argv[0]);
 938		if (!defcmd_in_progress) {
 939			argc = 0;	/* avoid repeat on endefcmd */
 940			*(argv[0]) = '\0';
 941		}
 942		return result;
 943	}
 944	if (argv[0][0] == '-' && argv[0][1] &&
 945	    (argv[0][1] < '0' || argv[0][1] > '9')) {
 946		ignore_errors = 1;
 947		++argv[0];
 948	}
 949
 950	for_each_kdbcmd(tp, i) {
 951		if (tp->cmd_name) {
 952			/*
 953			 * If this command is allowed to be abbreviated,
 954			 * check to see if this is it.
 955			 */
 956
 957			if (tp->cmd_minlen
 958			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
 959				if (strncmp(argv[0],
 960					    tp->cmd_name,
 961					    tp->cmd_minlen) == 0) {
 962					break;
 963				}
 964			}
 965
 966			if (strcmp(argv[0], tp->cmd_name) == 0)
 967				break;
 968		}
 969	}
 970
 971	/*
 972	 * If we don't find a command by this name, see if the first
 973	 * few characters of this match any of the known commands.
 974	 * e.g., md1c20 should match md.
 975	 */
 976	if (i == kdb_max_commands) {
 977		for_each_kdbcmd(tp, i) {
 978			if (tp->cmd_name) {
 979				if (strncmp(argv[0],
 980					    tp->cmd_name,
 981					    strlen(tp->cmd_name)) == 0) {
 982					break;
 983				}
 984			}
 985		}
 986	}
 987
 988	if (i < kdb_max_commands) {
 989		int result;
 
 
 
 
 990		KDB_STATE_SET(CMD);
 991		result = (*tp->cmd_func)(argc-1, (const char **)argv);
 992		if (result && ignore_errors && result > KDB_CMD_GO)
 993			result = 0;
 994		KDB_STATE_CLEAR(CMD);
 995		switch (tp->cmd_repeat) {
 996		case KDB_REPEAT_NONE:
 997			argc = 0;
 998			if (argv[0])
 999				*(argv[0]) = '\0';
1000			break;
1001		case KDB_REPEAT_NO_ARGS:
1002			argc = 1;
1003			if (argv[1])
1004				*(argv[1]) = '\0';
1005			break;
1006		case KDB_REPEAT_WITH_ARGS:
1007			break;
1008		}
1009		return result;
1010	}
1011
1012	/*
1013	 * If the input with which we were presented does not
1014	 * map to an existing command, attempt to parse it as an
1015	 * address argument and display the result.   Useful for
1016	 * obtaining the address of a variable, or the nearest symbol
1017	 * to an address contained in a register.
1018	 */
1019	{
1020		unsigned long value;
1021		char *name = NULL;
1022		long offset;
1023		int nextarg = 0;
1024
1025		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1026				  &value, &offset, &name)) {
1027			return KDB_NOTFOUND;
1028		}
1029
1030		kdb_printf("%s = ", argv[0]);
1031		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1032		kdb_printf("\n");
1033		return 0;
1034	}
1035}
1036
1037
1038static int handle_ctrl_cmd(char *cmd)
1039{
1040#define CTRL_P	16
1041#define CTRL_N	14
1042
1043	/* initial situation */
1044	if (cmd_head == cmd_tail)
1045		return 0;
1046	switch (*cmd) {
1047	case CTRL_P:
1048		if (cmdptr != cmd_tail)
1049			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1050		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
 
1051		return 1;
1052	case CTRL_N:
1053		if (cmdptr != cmd_head)
1054			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1055		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1056		return 1;
1057	}
1058	return 0;
1059}
1060
1061/*
1062 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1063 *	the system immediately, or loop for ever on failure.
1064 */
1065static int kdb_reboot(int argc, const char **argv)
1066{
1067	emergency_restart();
1068	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1069	while (1)
1070		cpu_relax();
1071	/* NOTREACHED */
1072	return 0;
1073}
1074
1075static void kdb_dumpregs(struct pt_regs *regs)
1076{
1077	int old_lvl = console_loglevel;
1078	console_loglevel = 15;
1079	kdb_trap_printk++;
1080	show_regs(regs);
1081	kdb_trap_printk--;
1082	kdb_printf("\n");
1083	console_loglevel = old_lvl;
1084}
1085
1086void kdb_set_current_task(struct task_struct *p)
1087{
1088	kdb_current_task = p;
1089
1090	if (kdb_task_has_cpu(p)) {
1091		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1092		return;
1093	}
1094	kdb_current_regs = NULL;
1095}
1096
 
 
 
 
 
 
 
 
 
 
1097/*
1098 * kdb_local - The main code for kdb.  This routine is invoked on a
1099 *	specific processor, it is not global.  The main kdb() routine
1100 *	ensures that only one processor at a time is in this routine.
1101 *	This code is called with the real reason code on the first
1102 *	entry to a kdb session, thereafter it is called with reason
1103 *	SWITCH, even if the user goes back to the original cpu.
1104 * Inputs:
1105 *	reason		The reason KDB was invoked
1106 *	error		The hardware-defined error code
1107 *	regs		The exception frame at time of fault/breakpoint.
1108 *	db_result	Result code from the break or debug point.
1109 * Returns:
1110 *	0	KDB was invoked for an event which it wasn't responsible
1111 *	1	KDB handled the event for which it was invoked.
1112 *	KDB_CMD_GO	User typed 'go'.
1113 *	KDB_CMD_CPU	User switched to another cpu.
1114 *	KDB_CMD_SS	Single step.
1115 *	KDB_CMD_SSB	Single step until branch.
1116 */
1117static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1118		     kdb_dbtrap_t db_result)
1119{
1120	char *cmdbuf;
1121	int diag;
1122	struct task_struct *kdb_current =
1123		kdb_curr_task(raw_smp_processor_id());
1124
1125	KDB_DEBUG_STATE("kdb_local 1", reason);
1126	kdb_go_count = 0;
1127	if (reason == KDB_REASON_DEBUG) {
1128		/* special case below */
1129	} else {
1130		kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1131			   kdb_current, kdb_current ? kdb_current->pid : 0);
1132#if defined(CONFIG_SMP)
1133		kdb_printf("on processor %d ", raw_smp_processor_id());
1134#endif
1135	}
1136
1137	switch (reason) {
1138	case KDB_REASON_DEBUG:
1139	{
1140		/*
1141		 * If re-entering kdb after a single step
1142		 * command, don't print the message.
1143		 */
1144		switch (db_result) {
1145		case KDB_DB_BPT:
1146			kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1147				   kdb_current, kdb_current->pid);
1148#if defined(CONFIG_SMP)
1149			kdb_printf("on processor %d ", raw_smp_processor_id());
1150#endif
1151			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1152				   instruction_pointer(regs));
1153			break;
1154		case KDB_DB_SSB:
1155			/*
1156			 * In the midst of ssb command. Just return.
1157			 */
1158			KDB_DEBUG_STATE("kdb_local 3", reason);
1159			return KDB_CMD_SSB;	/* Continue with SSB command */
1160
1161			break;
1162		case KDB_DB_SS:
1163			break;
1164		case KDB_DB_SSBPT:
1165			KDB_DEBUG_STATE("kdb_local 4", reason);
1166			return 1;	/* kdba_db_trap did the work */
1167		default:
1168			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1169				   db_result);
1170			break;
1171		}
1172
1173	}
1174		break;
1175	case KDB_REASON_ENTER:
1176		if (KDB_STATE(KEYBOARD))
1177			kdb_printf("due to Keyboard Entry\n");
1178		else
1179			kdb_printf("due to KDB_ENTER()\n");
1180		break;
1181	case KDB_REASON_KEYBOARD:
1182		KDB_STATE_SET(KEYBOARD);
1183		kdb_printf("due to Keyboard Entry\n");
1184		break;
1185	case KDB_REASON_ENTER_SLAVE:
1186		/* drop through, slaves only get released via cpu switch */
1187	case KDB_REASON_SWITCH:
1188		kdb_printf("due to cpu switch\n");
1189		break;
1190	case KDB_REASON_OOPS:
1191		kdb_printf("Oops: %s\n", kdb_diemsg);
1192		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1193			   instruction_pointer(regs));
1194		kdb_dumpregs(regs);
1195		break;
 
 
 
1196	case KDB_REASON_NMI:
1197		kdb_printf("due to NonMaskable Interrupt @ "
1198			   kdb_machreg_fmt "\n",
1199			   instruction_pointer(regs));
1200		kdb_dumpregs(regs);
1201		break;
1202	case KDB_REASON_SSTEP:
1203	case KDB_REASON_BREAK:
1204		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1205			   reason == KDB_REASON_BREAK ?
1206			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1207		/*
1208		 * Determine if this breakpoint is one that we
1209		 * are interested in.
1210		 */
1211		if (db_result != KDB_DB_BPT) {
1212			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1213				   db_result);
1214			KDB_DEBUG_STATE("kdb_local 6", reason);
1215			return 0;	/* Not for us, dismiss it */
1216		}
1217		break;
1218	case KDB_REASON_RECURSE:
1219		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1220			   instruction_pointer(regs));
1221		break;
1222	default:
1223		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1224		KDB_DEBUG_STATE("kdb_local 8", reason);
1225		return 0;	/* Not for us, dismiss it */
1226	}
1227
1228	while (1) {
1229		/*
1230		 * Initialize pager context.
1231		 */
1232		kdb_nextline = 1;
1233		KDB_STATE_CLEAR(SUPPRESS);
 
 
 
1234
1235		cmdbuf = cmd_cur;
1236		*cmdbuf = '\0';
1237		*(cmd_hist[cmd_head]) = '\0';
1238
1239		if (KDB_FLAG(ONLY_DO_DUMP)) {
1240			/* kdb is off but a catastrophic error requires a dump.
1241			 * Take the dump and reboot.
1242			 * Turn on logging so the kdb output appears in the log
1243			 * buffer in the dump.
1244			 */
1245			const char *setargs[] = { "set", "LOGGING", "1" };
1246			kdb_set(2, setargs);
1247			kdb_reboot(0, NULL);
1248			/*NOTREACHED*/
1249		}
1250
1251do_full_getstr:
1252#if defined(CONFIG_SMP)
1253		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1254			 raw_smp_processor_id());
1255#else
1256		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1257#endif
1258		if (defcmd_in_progress)
1259			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1260
1261		/*
1262		 * Fetch command from keyboard
1263		 */
1264		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1265		if (*cmdbuf != '\n') {
1266			if (*cmdbuf < 32) {
1267				if (cmdptr == cmd_head) {
1268					strncpy(cmd_hist[cmd_head], cmd_cur,
1269						CMD_BUFLEN);
1270					*(cmd_hist[cmd_head] +
1271					  strlen(cmd_hist[cmd_head])-1) = '\0';
1272				}
1273				if (!handle_ctrl_cmd(cmdbuf))
1274					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1275				cmdbuf = cmd_cur;
1276				goto do_full_getstr;
1277			} else {
1278				strncpy(cmd_hist[cmd_head], cmd_cur,
1279					CMD_BUFLEN);
1280			}
1281
1282			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1283			if (cmd_head == cmd_tail)
1284				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1285		}
1286
1287		cmdptr = cmd_head;
1288		diag = kdb_parse(cmdbuf);
1289		if (diag == KDB_NOTFOUND) {
 
1290			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1291			diag = 0;
1292		}
1293		if (diag == KDB_CMD_GO
1294		 || diag == KDB_CMD_CPU
1295		 || diag == KDB_CMD_SS
1296		 || diag == KDB_CMD_SSB
1297		 || diag == KDB_CMD_KGDB)
1298			break;
1299
1300		if (diag)
1301			kdb_cmderror(diag);
1302	}
1303	KDB_DEBUG_STATE("kdb_local 9", diag);
1304	return diag;
1305}
1306
1307
1308/*
1309 * kdb_print_state - Print the state data for the current processor
1310 *	for debugging.
1311 * Inputs:
1312 *	text		Identifies the debug point
1313 *	value		Any integer value to be printed, e.g. reason code.
1314 */
1315void kdb_print_state(const char *text, int value)
1316{
1317	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1318		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1319		   kdb_state);
1320}
1321
1322/*
1323 * kdb_main_loop - After initial setup and assignment of the
1324 *	controlling cpu, all cpus are in this loop.  One cpu is in
1325 *	control and will issue the kdb prompt, the others will spin
1326 *	until 'go' or cpu switch.
1327 *
1328 *	To get a consistent view of the kernel stacks for all
1329 *	processes, this routine is invoked from the main kdb code via
1330 *	an architecture specific routine.  kdba_main_loop is
1331 *	responsible for making the kernel stacks consistent for all
1332 *	processes, there should be no difference between a blocked
1333 *	process and a running process as far as kdb is concerned.
1334 * Inputs:
1335 *	reason		The reason KDB was invoked
1336 *	error		The hardware-defined error code
1337 *	reason2		kdb's current reason code.
1338 *			Initially error but can change
1339 *			according to kdb state.
1340 *	db_result	Result code from break or debug point.
1341 *	regs		The exception frame at time of fault/breakpoint.
1342 *			should always be valid.
1343 * Returns:
1344 *	0	KDB was invoked for an event which it wasn't responsible
1345 *	1	KDB handled the event for which it was invoked.
1346 */
1347int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1348	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1349{
1350	int result = 1;
1351	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1352	while (1) {
1353		/*
1354		 * All processors except the one that is in control
1355		 * will spin here.
1356		 */
1357		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1358		while (KDB_STATE(HOLD_CPU)) {
1359			/* state KDB is turned off by kdb_cpu to see if the
1360			 * other cpus are still live, each cpu in this loop
1361			 * turns it back on.
1362			 */
1363			if (!KDB_STATE(KDB))
1364				KDB_STATE_SET(KDB);
1365		}
1366
1367		KDB_STATE_CLEAR(SUPPRESS);
1368		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1369		if (KDB_STATE(LEAVING))
1370			break;	/* Another cpu said 'go' */
1371		/* Still using kdb, this processor is in control */
1372		result = kdb_local(reason2, error, regs, db_result);
1373		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1374
1375		if (result == KDB_CMD_CPU)
1376			break;
1377
1378		if (result == KDB_CMD_SS) {
1379			KDB_STATE_SET(DOING_SS);
1380			break;
1381		}
1382
1383		if (result == KDB_CMD_SSB) {
1384			KDB_STATE_SET(DOING_SS);
1385			KDB_STATE_SET(DOING_SSB);
1386			break;
1387		}
1388
1389		if (result == KDB_CMD_KGDB) {
1390			if (!KDB_STATE(DOING_KGDB))
1391				kdb_printf("Entering please attach debugger "
1392					   "or use $D#44+ or $3#33\n");
1393			break;
1394		}
1395		if (result && result != 1 && result != KDB_CMD_GO)
1396			kdb_printf("\nUnexpected kdb_local return code %d\n",
1397				   result);
1398		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1399		break;
1400	}
1401	if (KDB_STATE(DOING_SS))
1402		KDB_STATE_CLEAR(SSBPT);
1403
1404	/* Clean up any keyboard devices before leaving */
1405	kdb_kbd_cleanup_state();
1406
1407	return result;
1408}
1409
1410/*
1411 * kdb_mdr - This function implements the guts of the 'mdr', memory
1412 * read command.
1413 *	mdr  <addr arg>,<byte count>
1414 * Inputs:
1415 *	addr	Start address
1416 *	count	Number of bytes
1417 * Returns:
1418 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1419 */
1420static int kdb_mdr(unsigned long addr, unsigned int count)
1421{
1422	unsigned char c;
1423	while (count--) {
1424		if (kdb_getarea(c, addr))
1425			return 0;
1426		kdb_printf("%02x", c);
1427		addr++;
1428	}
1429	kdb_printf("\n");
1430	return 0;
1431}
1432
1433/*
1434 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1435 *	'md8' 'mdr' and 'mds' commands.
1436 *
1437 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1438 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1439 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1440 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1441 *	mdr  <addr arg>,<byte count>
1442 */
1443static void kdb_md_line(const char *fmtstr, unsigned long addr,
1444			int symbolic, int nosect, int bytesperword,
1445			int num, int repeat, int phys)
1446{
1447	/* print just one line of data */
1448	kdb_symtab_t symtab;
1449	char cbuf[32];
1450	char *c = cbuf;
1451	int i;
 
1452	unsigned long word;
1453
1454	memset(cbuf, '\0', sizeof(cbuf));
1455	if (phys)
1456		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1457	else
1458		kdb_printf(kdb_machreg_fmt0 " ", addr);
1459
1460	for (i = 0; i < num && repeat--; i++) {
1461		if (phys) {
1462			if (kdb_getphysword(&word, addr, bytesperword))
1463				break;
1464		} else if (kdb_getword(&word, addr, bytesperword))
1465			break;
1466		kdb_printf(fmtstr, word);
1467		if (symbolic)
1468			kdbnearsym(word, &symtab);
1469		else
1470			memset(&symtab, 0, sizeof(symtab));
1471		if (symtab.sym_name) {
1472			kdb_symbol_print(word, &symtab, 0);
1473			if (!nosect) {
1474				kdb_printf("\n");
1475				kdb_printf("                       %s %s "
1476					   kdb_machreg_fmt " "
1477					   kdb_machreg_fmt " "
1478					   kdb_machreg_fmt, symtab.mod_name,
1479					   symtab.sec_name, symtab.sec_start,
1480					   symtab.sym_start, symtab.sym_end);
1481			}
1482			addr += bytesperword;
1483		} else {
1484			union {
1485				u64 word;
1486				unsigned char c[8];
1487			} wc;
1488			unsigned char *cp;
1489#ifdef	__BIG_ENDIAN
1490			cp = wc.c + 8 - bytesperword;
1491#else
1492			cp = wc.c;
1493#endif
1494			wc.word = word;
1495#define printable_char(c) \
1496	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1497			switch (bytesperword) {
1498			case 8:
1499				*c++ = printable_char(*cp++);
1500				*c++ = printable_char(*cp++);
1501				*c++ = printable_char(*cp++);
1502				*c++ = printable_char(*cp++);
1503				addr += 4;
1504			case 4:
1505				*c++ = printable_char(*cp++);
1506				*c++ = printable_char(*cp++);
1507				addr += 2;
1508			case 2:
1509				*c++ = printable_char(*cp++);
1510				addr++;
1511			case 1:
1512				*c++ = printable_char(*cp++);
1513				addr++;
1514				break;
1515			}
1516#undef printable_char
1517		}
1518	}
1519	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1520		   " ", cbuf);
1521}
1522
1523static int kdb_md(int argc, const char **argv)
1524{
1525	static unsigned long last_addr;
1526	static int last_radix, last_bytesperword, last_repeat;
1527	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1528	int nosect = 0;
1529	char fmtchar, fmtstr[64];
1530	unsigned long addr;
1531	unsigned long word;
1532	long offset = 0;
1533	int symbolic = 0;
1534	int valid = 0;
1535	int phys = 0;
 
1536
1537	kdbgetintenv("MDCOUNT", &mdcount);
1538	kdbgetintenv("RADIX", &radix);
1539	kdbgetintenv("BYTESPERWORD", &bytesperword);
1540
1541	/* Assume 'md <addr>' and start with environment values */
1542	repeat = mdcount * 16 / bytesperword;
1543
1544	if (strcmp(argv[0], "mdr") == 0) {
1545		if (argc != 2)
 
 
1546			return KDB_ARGCOUNT;
1547		valid = 1;
1548	} else if (isdigit(argv[0][2])) {
1549		bytesperword = (int)(argv[0][2] - '0');
1550		if (bytesperword == 0) {
1551			bytesperword = last_bytesperword;
1552			if (bytesperword == 0)
1553				bytesperword = 4;
1554		}
1555		last_bytesperword = bytesperword;
1556		repeat = mdcount * 16 / bytesperword;
1557		if (!argv[0][3])
1558			valid = 1;
1559		else if (argv[0][3] == 'c' && argv[0][4]) {
1560			char *p;
1561			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1562			mdcount = ((repeat * bytesperword) + 15) / 16;
1563			valid = !*p;
1564		}
1565		last_repeat = repeat;
1566	} else if (strcmp(argv[0], "md") == 0)
1567		valid = 1;
1568	else if (strcmp(argv[0], "mds") == 0)
1569		valid = 1;
1570	else if (strcmp(argv[0], "mdp") == 0) {
1571		phys = valid = 1;
1572	}
1573	if (!valid)
1574		return KDB_NOTFOUND;
1575
1576	if (argc == 0) {
1577		if (last_addr == 0)
1578			return KDB_ARGCOUNT;
1579		addr = last_addr;
1580		radix = last_radix;
1581		bytesperword = last_bytesperword;
1582		repeat = last_repeat;
1583		mdcount = ((repeat * bytesperword) + 15) / 16;
 
 
 
1584	}
1585
1586	if (argc) {
1587		unsigned long val;
1588		int diag, nextarg = 1;
1589		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1590				     &offset, NULL);
1591		if (diag)
1592			return diag;
1593		if (argc > nextarg+2)
1594			return KDB_ARGCOUNT;
1595
1596		if (argc >= nextarg) {
1597			diag = kdbgetularg(argv[nextarg], &val);
1598			if (!diag) {
1599				mdcount = (int) val;
1600				repeat = mdcount * 16 / bytesperword;
 
 
 
1601			}
1602		}
1603		if (argc >= nextarg+1) {
1604			diag = kdbgetularg(argv[nextarg+1], &val);
1605			if (!diag)
1606				radix = (int) val;
1607		}
1608	}
1609
1610	if (strcmp(argv[0], "mdr") == 0)
1611		return kdb_mdr(addr, mdcount);
 
 
 
 
 
 
 
1612
1613	switch (radix) {
1614	case 10:
1615		fmtchar = 'd';
1616		break;
1617	case 16:
1618		fmtchar = 'x';
1619		break;
1620	case 8:
1621		fmtchar = 'o';
1622		break;
1623	default:
1624		return KDB_BADRADIX;
1625	}
1626
1627	last_radix = radix;
1628
1629	if (bytesperword > KDB_WORD_SIZE)
1630		return KDB_BADWIDTH;
1631
1632	switch (bytesperword) {
1633	case 8:
1634		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1635		break;
1636	case 4:
1637		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1638		break;
1639	case 2:
1640		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1641		break;
1642	case 1:
1643		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1644		break;
1645	default:
1646		return KDB_BADWIDTH;
1647	}
1648
1649	last_repeat = repeat;
1650	last_bytesperword = bytesperword;
1651
1652	if (strcmp(argv[0], "mds") == 0) {
1653		symbolic = 1;
1654		/* Do not save these changes as last_*, they are temporary mds
1655		 * overrides.
1656		 */
1657		bytesperword = KDB_WORD_SIZE;
1658		repeat = mdcount;
1659		kdbgetintenv("NOSECT", &nosect);
1660	}
1661
1662	/* Round address down modulo BYTESPERWORD */
1663
1664	addr &= ~(bytesperword-1);
1665
1666	while (repeat > 0) {
1667		unsigned long a;
1668		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1669
1670		if (KDB_FLAG(CMD_INTERRUPT))
1671			return 0;
1672		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1673			if (phys) {
1674				if (kdb_getphysword(&word, a, bytesperword)
1675						|| word)
1676					break;
1677			} else if (kdb_getword(&word, a, bytesperword) || word)
1678				break;
1679		}
1680		n = min(num, repeat);
1681		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1682			    num, repeat, phys);
1683		addr += bytesperword * n;
1684		repeat -= n;
1685		z = (z + num - 1) / num;
1686		if (z > 2) {
1687			int s = num * (z-2);
1688			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1689				   " zero suppressed\n",
1690				addr, addr + bytesperword * s - 1);
1691			addr += bytesperword * s;
1692			repeat -= s;
1693		}
1694	}
1695	last_addr = addr;
1696
1697	return 0;
1698}
1699
1700/*
1701 * kdb_mm - This function implements the 'mm' command.
1702 *	mm address-expression new-value
1703 * Remarks:
1704 *	mm works on machine words, mmW works on bytes.
1705 */
1706static int kdb_mm(int argc, const char **argv)
1707{
1708	int diag;
1709	unsigned long addr;
1710	long offset = 0;
1711	unsigned long contents;
1712	int nextarg;
1713	int width;
1714
1715	if (argv[0][2] && !isdigit(argv[0][2]))
1716		return KDB_NOTFOUND;
1717
1718	if (argc < 2)
1719		return KDB_ARGCOUNT;
1720
1721	nextarg = 1;
1722	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1723	if (diag)
1724		return diag;
1725
1726	if (nextarg > argc)
1727		return KDB_ARGCOUNT;
1728	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1729	if (diag)
1730		return diag;
1731
1732	if (nextarg != argc + 1)
1733		return KDB_ARGCOUNT;
1734
1735	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1736	diag = kdb_putword(addr, contents, width);
1737	if (diag)
1738		return diag;
1739
1740	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1741
1742	return 0;
1743}
1744
1745/*
1746 * kdb_go - This function implements the 'go' command.
1747 *	go [address-expression]
1748 */
1749static int kdb_go(int argc, const char **argv)
1750{
1751	unsigned long addr;
1752	int diag;
1753	int nextarg;
1754	long offset;
1755
1756	if (raw_smp_processor_id() != kdb_initial_cpu) {
1757		kdb_printf("go must execute on the entry cpu, "
1758			   "please use \"cpu %d\" and then execute go\n",
1759			   kdb_initial_cpu);
1760		return KDB_BADCPUNUM;
1761	}
1762	if (argc == 1) {
1763		nextarg = 1;
1764		diag = kdbgetaddrarg(argc, argv, &nextarg,
1765				     &addr, &offset, NULL);
1766		if (diag)
1767			return diag;
1768	} else if (argc) {
1769		return KDB_ARGCOUNT;
1770	}
1771
1772	diag = KDB_CMD_GO;
1773	if (KDB_FLAG(CATASTROPHIC)) {
1774		kdb_printf("Catastrophic error detected\n");
1775		kdb_printf("kdb_continue_catastrophic=%d, ",
1776			kdb_continue_catastrophic);
1777		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1778			kdb_printf("type go a second time if you really want "
1779				   "to continue\n");
1780			return 0;
1781		}
1782		if (kdb_continue_catastrophic == 2) {
1783			kdb_printf("forcing reboot\n");
1784			kdb_reboot(0, NULL);
1785		}
1786		kdb_printf("attempting to continue\n");
1787	}
1788	return diag;
1789}
1790
1791/*
1792 * kdb_rd - This function implements the 'rd' command.
1793 */
1794static int kdb_rd(int argc, const char **argv)
1795{
1796	int len = kdb_check_regs();
1797#if DBG_MAX_REG_NUM > 0
1798	int i;
1799	char *rname;
1800	int rsize;
1801	u64 reg64;
1802	u32 reg32;
1803	u16 reg16;
1804	u8 reg8;
1805
1806	if (len)
1807		return len;
1808
1809	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1810		rsize = dbg_reg_def[i].size * 2;
1811		if (rsize > 16)
1812			rsize = 2;
1813		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1814			len = 0;
1815			kdb_printf("\n");
1816		}
1817		if (len)
1818			len += kdb_printf("  ");
1819		switch(dbg_reg_def[i].size * 8) {
1820		case 8:
1821			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1822			if (!rname)
1823				break;
1824			len += kdb_printf("%s: %02x", rname, reg8);
1825			break;
1826		case 16:
1827			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1828			if (!rname)
1829				break;
1830			len += kdb_printf("%s: %04x", rname, reg16);
1831			break;
1832		case 32:
1833			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1834			if (!rname)
1835				break;
1836			len += kdb_printf("%s: %08x", rname, reg32);
1837			break;
1838		case 64:
1839			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1840			if (!rname)
1841				break;
1842			len += kdb_printf("%s: %016llx", rname, reg64);
1843			break;
1844		default:
1845			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1846		}
1847	}
1848	kdb_printf("\n");
1849#else
1850	if (len)
1851		return len;
1852
1853	kdb_dumpregs(kdb_current_regs);
1854#endif
1855	return 0;
1856}
1857
1858/*
1859 * kdb_rm - This function implements the 'rm' (register modify)  command.
1860 *	rm register-name new-contents
1861 * Remarks:
1862 *	Allows register modification with the same restrictions as gdb
1863 */
1864static int kdb_rm(int argc, const char **argv)
1865{
1866#if DBG_MAX_REG_NUM > 0
1867	int diag;
1868	const char *rname;
1869	int i;
1870	u64 reg64;
1871	u32 reg32;
1872	u16 reg16;
1873	u8 reg8;
1874
1875	if (argc != 2)
1876		return KDB_ARGCOUNT;
1877	/*
1878	 * Allow presence or absence of leading '%' symbol.
1879	 */
1880	rname = argv[1];
1881	if (*rname == '%')
1882		rname++;
1883
1884	diag = kdbgetu64arg(argv[2], &reg64);
1885	if (diag)
1886		return diag;
1887
1888	diag = kdb_check_regs();
1889	if (diag)
1890		return diag;
1891
1892	diag = KDB_BADREG;
1893	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1894		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1895			diag = 0;
1896			break;
1897		}
1898	}
1899	if (!diag) {
1900		switch(dbg_reg_def[i].size * 8) {
1901		case 8:
1902			reg8 = reg64;
1903			dbg_set_reg(i, &reg8, kdb_current_regs);
1904			break;
1905		case 16:
1906			reg16 = reg64;
1907			dbg_set_reg(i, &reg16, kdb_current_regs);
1908			break;
1909		case 32:
1910			reg32 = reg64;
1911			dbg_set_reg(i, &reg32, kdb_current_regs);
1912			break;
1913		case 64:
1914			dbg_set_reg(i, &reg64, kdb_current_regs);
1915			break;
1916		}
1917	}
1918	return diag;
1919#else
1920	kdb_printf("ERROR: Register set currently not implemented\n");
1921    return 0;
1922#endif
1923}
1924
1925#if defined(CONFIG_MAGIC_SYSRQ)
1926/*
1927 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1928 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1929 *		sr <magic-sysrq-code>
1930 */
1931static int kdb_sr(int argc, const char **argv)
1932{
 
 
 
1933	if (argc != 1)
1934		return KDB_ARGCOUNT;
 
1935	kdb_trap_printk++;
1936	__handle_sysrq(*argv[1], false);
1937	kdb_trap_printk--;
1938
1939	return 0;
1940}
1941#endif	/* CONFIG_MAGIC_SYSRQ */
1942
1943/*
1944 * kdb_ef - This function implements the 'regs' (display exception
1945 *	frame) command.  This command takes an address and expects to
1946 *	find an exception frame at that address, formats and prints
1947 *	it.
1948 *		regs address-expression
1949 * Remarks:
1950 *	Not done yet.
1951 */
1952static int kdb_ef(int argc, const char **argv)
1953{
1954	int diag;
1955	unsigned long addr;
1956	long offset;
1957	int nextarg;
1958
1959	if (argc != 1)
1960		return KDB_ARGCOUNT;
1961
1962	nextarg = 1;
1963	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1964	if (diag)
1965		return diag;
1966	show_regs((struct pt_regs *)addr);
1967	return 0;
1968}
1969
1970#if defined(CONFIG_MODULES)
1971/*
1972 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
1973 *	currently loaded kernel modules.
1974 *	Mostly taken from userland lsmod.
1975 */
1976static int kdb_lsmod(int argc, const char **argv)
1977{
1978	struct module *mod;
1979
1980	if (argc != 0)
1981		return KDB_ARGCOUNT;
1982
1983	kdb_printf("Module                  Size  modstruct     Used by\n");
1984	list_for_each_entry(mod, kdb_modules, list) {
 
 
1985
1986		kdb_printf("%-20s%8u  0x%p ", mod->name,
1987			   mod->core_size, (void *)mod);
1988#ifdef CONFIG_MODULE_UNLOAD
1989		kdb_printf("%4ld ", module_refcount(mod));
1990#endif
1991		if (mod->state == MODULE_STATE_GOING)
1992			kdb_printf(" (Unloading)");
1993		else if (mod->state == MODULE_STATE_COMING)
1994			kdb_printf(" (Loading)");
1995		else
1996			kdb_printf(" (Live)");
1997		kdb_printf(" 0x%p", mod->module_core);
1998
1999#ifdef CONFIG_MODULE_UNLOAD
2000		{
2001			struct module_use *use;
2002			kdb_printf(" [ ");
2003			list_for_each_entry(use, &mod->source_list,
2004					    source_list)
2005				kdb_printf("%s ", use->target->name);
2006			kdb_printf("]\n");
2007		}
2008#endif
2009	}
2010
2011	return 0;
2012}
2013
2014#endif	/* CONFIG_MODULES */
2015
2016/*
2017 * kdb_env - This function implements the 'env' command.  Display the
2018 *	current environment variables.
2019 */
2020
2021static int kdb_env(int argc, const char **argv)
2022{
2023	int i;
2024
2025	for (i = 0; i < __nenv; i++) {
2026		if (__env[i])
2027			kdb_printf("%s\n", __env[i]);
2028	}
2029
2030	if (KDB_DEBUG(MASK))
2031		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
 
2032
2033	return 0;
2034}
2035
2036#ifdef CONFIG_PRINTK
2037/*
2038 * kdb_dmesg - This function implements the 'dmesg' command to display
2039 *	the contents of the syslog buffer.
2040 *		dmesg [lines] [adjust]
2041 */
2042static int kdb_dmesg(int argc, const char **argv)
2043{
2044	int diag;
2045	int logging;
2046	int lines = 0;
2047	int adjust = 0;
2048	int n = 0;
2049	int skip = 0;
2050	struct kmsg_dumper dumper = { .active = 1 };
2051	size_t len;
2052	char buf[201];
2053
2054	if (argc > 2)
2055		return KDB_ARGCOUNT;
2056	if (argc) {
2057		char *cp;
2058		lines = simple_strtol(argv[1], &cp, 0);
2059		if (*cp)
2060			lines = 0;
2061		if (argc > 1) {
2062			adjust = simple_strtoul(argv[2], &cp, 0);
2063			if (*cp || adjust < 0)
2064				adjust = 0;
2065		}
2066	}
2067
2068	/* disable LOGGING if set */
2069	diag = kdbgetintenv("LOGGING", &logging);
2070	if (!diag && logging) {
2071		const char *setargs[] = { "set", "LOGGING", "0" };
2072		kdb_set(2, setargs);
2073	}
2074
2075	kmsg_dump_rewind_nolock(&dumper);
2076	while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2077		n++;
2078
2079	if (lines < 0) {
2080		if (adjust >= n)
2081			kdb_printf("buffer only contains %d lines, nothing "
2082				   "printed\n", n);
2083		else if (adjust - lines >= n)
2084			kdb_printf("buffer only contains %d lines, last %d "
2085				   "lines printed\n", n, n - adjust);
2086		skip = adjust;
2087		lines = abs(lines);
2088	} else if (lines > 0) {
2089		skip = n - lines - adjust;
2090		lines = abs(lines);
2091		if (adjust >= n) {
2092			kdb_printf("buffer only contains %d lines, "
2093				   "nothing printed\n", n);
2094			skip = n;
2095		} else if (skip < 0) {
2096			lines += skip;
2097			skip = 0;
2098			kdb_printf("buffer only contains %d lines, first "
2099				   "%d lines printed\n", n, lines);
2100		}
2101	} else {
2102		lines = n;
2103	}
2104
2105	if (skip >= n || skip < 0)
2106		return 0;
2107
2108	kmsg_dump_rewind_nolock(&dumper);
2109	while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2110		if (skip) {
2111			skip--;
2112			continue;
2113		}
2114		if (!lines--)
2115			break;
 
 
2116
2117		kdb_printf("%.*s\n", (int)len - 1, buf);
2118	}
2119
2120	return 0;
2121}
2122#endif /* CONFIG_PRINTK */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2123/*
2124 * kdb_cpu - This function implements the 'cpu' command.
2125 *	cpu	[<cpunum>]
2126 * Returns:
2127 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2128 */
2129static void kdb_cpu_status(void)
2130{
2131	int i, start_cpu, first_print = 1;
2132	char state, prev_state = '?';
2133
2134	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2135	kdb_printf("Available cpus: ");
2136	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2137		if (!cpu_online(i)) {
2138			state = 'F';	/* cpu is offline */
 
 
2139		} else {
2140			state = ' ';	/* cpu is responding to kdb */
2141			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2142				state = 'I';	/* idle task */
2143		}
2144		if (state != prev_state) {
2145			if (prev_state != '?') {
2146				if (!first_print)
2147					kdb_printf(", ");
2148				first_print = 0;
2149				kdb_printf("%d", start_cpu);
2150				if (start_cpu < i-1)
2151					kdb_printf("-%d", i-1);
2152				if (prev_state != ' ')
2153					kdb_printf("(%c)", prev_state);
2154			}
2155			prev_state = state;
2156			start_cpu = i;
2157		}
2158	}
2159	/* print the trailing cpus, ignoring them if they are all offline */
2160	if (prev_state != 'F') {
2161		if (!first_print)
2162			kdb_printf(", ");
2163		kdb_printf("%d", start_cpu);
2164		if (start_cpu < i-1)
2165			kdb_printf("-%d", i-1);
2166		if (prev_state != ' ')
2167			kdb_printf("(%c)", prev_state);
2168	}
2169	kdb_printf("\n");
2170}
2171
2172static int kdb_cpu(int argc, const char **argv)
2173{
2174	unsigned long cpunum;
2175	int diag;
2176
2177	if (argc == 0) {
2178		kdb_cpu_status();
2179		return 0;
2180	}
2181
2182	if (argc != 1)
2183		return KDB_ARGCOUNT;
2184
2185	diag = kdbgetularg(argv[1], &cpunum);
2186	if (diag)
2187		return diag;
2188
2189	/*
2190	 * Validate cpunum
2191	 */
2192	if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2193		return KDB_BADCPUNUM;
2194
2195	dbg_switch_cpu = cpunum;
2196
2197	/*
2198	 * Switch to other cpu
2199	 */
2200	return KDB_CMD_CPU;
2201}
2202
2203/* The user may not realize that ps/bta with no parameters does not print idle
2204 * or sleeping system daemon processes, so tell them how many were suppressed.
2205 */
2206void kdb_ps_suppressed(void)
2207{
2208	int idle = 0, daemon = 0;
2209	unsigned long mask_I = kdb_task_state_string("I"),
2210		      mask_M = kdb_task_state_string("M");
2211	unsigned long cpu;
2212	const struct task_struct *p, *g;
2213	for_each_online_cpu(cpu) {
2214		p = kdb_curr_task(cpu);
2215		if (kdb_task_state(p, mask_I))
2216			++idle;
2217	}
2218	kdb_do_each_thread(g, p) {
2219		if (kdb_task_state(p, mask_M))
2220			++daemon;
2221	} kdb_while_each_thread(g, p);
2222	if (idle || daemon) {
2223		if (idle)
2224			kdb_printf("%d idle process%s (state I)%s\n",
2225				   idle, idle == 1 ? "" : "es",
2226				   daemon ? " and " : "");
2227		if (daemon)
2228			kdb_printf("%d sleeping system daemon (state M) "
2229				   "process%s", daemon,
2230				   daemon == 1 ? "" : "es");
2231		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2232	}
2233}
2234
2235/*
2236 * kdb_ps - This function implements the 'ps' command which shows a
2237 *	list of the active processes.
2238 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2239 */
2240void kdb_ps1(const struct task_struct *p)
2241{
2242	int cpu;
2243	unsigned long tmp;
2244
2245	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
 
2246		return;
2247
2248	cpu = kdb_process_cpu(p);
2249	kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
2250		   (void *)p, p->pid, p->parent->pid,
2251		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2252		   kdb_task_state_char(p),
2253		   (void *)(&p->thread),
2254		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2255		   p->comm);
2256	if (kdb_task_has_cpu(p)) {
2257		if (!KDB_TSK(cpu)) {
2258			kdb_printf("  Error: no saved data for this cpu\n");
2259		} else {
2260			if (KDB_TSK(cpu) != p)
2261				kdb_printf("  Error: does not match running "
2262				   "process table (0x%p)\n", KDB_TSK(cpu));
2263		}
2264	}
2265}
2266
2267static int kdb_ps(int argc, const char **argv)
2268{
2269	struct task_struct *g, *p;
2270	unsigned long mask, cpu;
2271
2272	if (argc == 0)
2273		kdb_ps_suppressed();
2274	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2275		(int)(2*sizeof(void *))+2, "Task Addr",
2276		(int)(2*sizeof(void *))+2, "Thread");
2277	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2278	/* Run the active tasks first */
2279	for_each_online_cpu(cpu) {
2280		if (KDB_FLAG(CMD_INTERRUPT))
2281			return 0;
2282		p = kdb_curr_task(cpu);
2283		if (kdb_task_state(p, mask))
2284			kdb_ps1(p);
2285	}
2286	kdb_printf("\n");
2287	/* Now the real tasks */
2288	kdb_do_each_thread(g, p) {
2289		if (KDB_FLAG(CMD_INTERRUPT))
2290			return 0;
2291		if (kdb_task_state(p, mask))
2292			kdb_ps1(p);
2293	} kdb_while_each_thread(g, p);
2294
2295	return 0;
2296}
2297
2298/*
2299 * kdb_pid - This function implements the 'pid' command which switches
2300 *	the currently active process.
2301 *		pid [<pid> | R]
2302 */
2303static int kdb_pid(int argc, const char **argv)
2304{
2305	struct task_struct *p;
2306	unsigned long val;
2307	int diag;
2308
2309	if (argc > 1)
2310		return KDB_ARGCOUNT;
2311
2312	if (argc) {
2313		if (strcmp(argv[1], "R") == 0) {
2314			p = KDB_TSK(kdb_initial_cpu);
2315		} else {
2316			diag = kdbgetularg(argv[1], &val);
2317			if (diag)
2318				return KDB_BADINT;
2319
2320			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2321			if (!p) {
2322				kdb_printf("No task with pid=%d\n", (pid_t)val);
2323				return 0;
2324			}
2325		}
2326		kdb_set_current_task(p);
2327	}
2328	kdb_printf("KDB current process is %s(pid=%d)\n",
2329		   kdb_current_task->comm,
2330		   kdb_current_task->pid);
2331
2332	return 0;
2333}
2334
2335/*
2336 * kdb_ll - This function implements the 'll' command which follows a
2337 *	linked list and executes an arbitrary command for each
2338 *	element.
2339 */
2340static int kdb_ll(int argc, const char **argv)
2341{
2342	int diag = 0;
2343	unsigned long addr;
2344	long offset = 0;
2345	unsigned long va;
2346	unsigned long linkoffset;
2347	int nextarg;
2348	const char *command;
2349
2350	if (argc != 3)
2351		return KDB_ARGCOUNT;
2352
2353	nextarg = 1;
2354	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2355	if (diag)
2356		return diag;
2357
2358	diag = kdbgetularg(argv[2], &linkoffset);
2359	if (diag)
2360		return diag;
2361
2362	/*
2363	 * Using the starting address as
2364	 * the first element in the list, and assuming that
2365	 * the list ends with a null pointer.
2366	 */
2367
2368	va = addr;
2369	command = kdb_strdup(argv[3], GFP_KDB);
2370	if (!command) {
2371		kdb_printf("%s: cannot duplicate command\n", __func__);
2372		return 0;
2373	}
2374	/* Recursive use of kdb_parse, do not use argv after this point */
2375	argv = NULL;
2376
2377	while (va) {
2378		char buf[80];
2379
2380		if (KDB_FLAG(CMD_INTERRUPT))
2381			goto out;
2382
2383		sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va);
2384		diag = kdb_parse(buf);
2385		if (diag)
2386			goto out;
2387
2388		addr = va + linkoffset;
2389		if (kdb_getword(&va, addr, sizeof(va)))
2390			goto out;
2391	}
2392
2393out:
2394	kfree(command);
2395	return diag;
2396}
2397
2398static int kdb_kgdb(int argc, const char **argv)
2399{
2400	return KDB_CMD_KGDB;
2401}
2402
2403/*
2404 * kdb_help - This function implements the 'help' and '?' commands.
2405 */
2406static int kdb_help(int argc, const char **argv)
2407{
2408	kdbtab_t *kt;
2409	int i;
2410
2411	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2412	kdb_printf("-----------------------------"
2413		   "-----------------------------\n");
2414	for_each_kdbcmd(kt, i) {
2415		if (kt->cmd_name)
2416			kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
2417				   kt->cmd_usage, kt->cmd_help);
2418		if (KDB_FLAG(CMD_INTERRUPT))
2419			return 0;
 
 
 
 
 
 
2420	}
2421	return 0;
2422}
2423
2424/*
2425 * kdb_kill - This function implements the 'kill' commands.
2426 */
2427static int kdb_kill(int argc, const char **argv)
2428{
2429	long sig, pid;
2430	char *endp;
2431	struct task_struct *p;
2432	struct siginfo info;
2433
2434	if (argc != 2)
2435		return KDB_ARGCOUNT;
2436
2437	sig = simple_strtol(argv[1], &endp, 0);
2438	if (*endp)
2439		return KDB_BADINT;
2440	if (sig >= 0) {
2441		kdb_printf("Invalid signal parameter.<-signal>\n");
2442		return 0;
2443	}
2444	sig = -sig;
2445
2446	pid = simple_strtol(argv[2], &endp, 0);
2447	if (*endp)
2448		return KDB_BADINT;
2449	if (pid <= 0) {
2450		kdb_printf("Process ID must be large than 0.\n");
2451		return 0;
2452	}
2453
2454	/* Find the process. */
2455	p = find_task_by_pid_ns(pid, &init_pid_ns);
2456	if (!p) {
2457		kdb_printf("The specified process isn't found.\n");
2458		return 0;
2459	}
2460	p = p->group_leader;
2461	info.si_signo = sig;
2462	info.si_errno = 0;
2463	info.si_code = SI_USER;
2464	info.si_pid = pid;  /* same capabilities as process being signalled */
2465	info.si_uid = 0;    /* kdb has root authority */
2466	kdb_send_sig_info(p, &info);
2467	return 0;
2468}
2469
2470struct kdb_tm {
2471	int tm_sec;	/* seconds */
2472	int tm_min;	/* minutes */
2473	int tm_hour;	/* hours */
2474	int tm_mday;	/* day of the month */
2475	int tm_mon;	/* month */
2476	int tm_year;	/* year */
2477};
2478
2479static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2480{
2481	/* This will work from 1970-2099, 2100 is not a leap year */
2482	static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2483				 31, 30, 31, 30, 31 };
2484	memset(tm, 0, sizeof(*tm));
2485	tm->tm_sec  = tv->tv_sec % (24 * 60 * 60);
2486	tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2487		(2 * 365 + 1); /* shift base from 1970 to 1968 */
2488	tm->tm_min =  tm->tm_sec / 60 % 60;
2489	tm->tm_hour = tm->tm_sec / 60 / 60;
2490	tm->tm_sec =  tm->tm_sec % 60;
2491	tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2492	tm->tm_mday %= (4*365+1);
2493	mon_day[1] = 29;
2494	while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2495		tm->tm_mday -= mon_day[tm->tm_mon];
2496		if (++tm->tm_mon == 12) {
2497			tm->tm_mon = 0;
2498			++tm->tm_year;
2499			mon_day[1] = 28;
2500		}
2501	}
2502	++tm->tm_mday;
2503}
2504
2505/*
2506 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2507 * I cannot call that code directly from kdb, it has an unconditional
2508 * cli()/sti() and calls routines that take locks which can stop the debugger.
2509 */
2510static void kdb_sysinfo(struct sysinfo *val)
2511{
2512	struct timespec uptime;
2513	do_posix_clock_monotonic_gettime(&uptime);
2514	memset(val, 0, sizeof(*val));
2515	val->uptime = uptime.tv_sec;
2516	val->loads[0] = avenrun[0];
2517	val->loads[1] = avenrun[1];
2518	val->loads[2] = avenrun[2];
2519	val->procs = nr_threads-1;
2520	si_meminfo(val);
2521
2522	return;
2523}
2524
2525/*
2526 * kdb_summary - This function implements the 'summary' command.
2527 */
2528static int kdb_summary(int argc, const char **argv)
2529{
2530	struct timespec now;
2531	struct kdb_tm tm;
2532	struct sysinfo val;
2533
2534	if (argc)
2535		return KDB_ARGCOUNT;
2536
2537	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2538	kdb_printf("release    %s\n", init_uts_ns.name.release);
2539	kdb_printf("version    %s\n", init_uts_ns.name.version);
2540	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2541	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2542	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2543	kdb_printf("ccversion  %s\n", __stringify(CCVERSION));
2544
2545	now = __current_kernel_time();
2546	kdb_gmtime(&now, &tm);
2547	kdb_printf("date       %04d-%02d-%02d %02d:%02d:%02d "
2548		   "tz_minuteswest %d\n",
2549		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2550		tm.tm_hour, tm.tm_min, tm.tm_sec,
2551		sys_tz.tz_minuteswest);
2552
 
 
2553	kdb_sysinfo(&val);
2554	kdb_printf("uptime     ");
2555	if (val.uptime > (24*60*60)) {
2556		int days = val.uptime / (24*60*60);
2557		val.uptime %= (24*60*60);
2558		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2559	}
2560	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2561
2562	/* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2563
2564#define LOAD_INT(x) ((x) >> FSHIFT)
2565#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2566	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2567		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2568		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2569		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2570#undef LOAD_INT
2571#undef LOAD_FRAC
2572	/* Display in kilobytes */
2573#define K(x) ((x) << (PAGE_SHIFT - 10))
2574	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2575		   "Buffers:        %8lu kB\n",
2576		   val.totalram, val.freeram, val.bufferram);
2577	return 0;
2578}
2579
2580/*
2581 * kdb_per_cpu - This function implements the 'per_cpu' command.
2582 */
2583static int kdb_per_cpu(int argc, const char **argv)
2584{
2585	char fmtstr[64];
2586	int cpu, diag, nextarg = 1;
2587	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2588
2589	if (argc < 1 || argc > 3)
2590		return KDB_ARGCOUNT;
2591
2592	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2593	if (diag)
2594		return diag;
2595
2596	if (argc >= 2) {
2597		diag = kdbgetularg(argv[2], &bytesperword);
2598		if (diag)
2599			return diag;
2600	}
2601	if (!bytesperword)
2602		bytesperword = KDB_WORD_SIZE;
2603	else if (bytesperword > KDB_WORD_SIZE)
2604		return KDB_BADWIDTH;
2605	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2606	if (argc >= 3) {
2607		diag = kdbgetularg(argv[3], &whichcpu);
2608		if (diag)
2609			return diag;
2610		if (!cpu_online(whichcpu)) {
2611			kdb_printf("cpu %ld is not online\n", whichcpu);
2612			return KDB_BADCPUNUM;
2613		}
2614	}
2615
2616	/* Most architectures use __per_cpu_offset[cpu], some use
2617	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2618	 */
2619#ifdef	__per_cpu_offset
2620#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2621#else
2622#ifdef	CONFIG_SMP
2623#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2624#else
2625#define KDB_PCU(cpu) 0
2626#endif
2627#endif
2628	for_each_online_cpu(cpu) {
2629		if (KDB_FLAG(CMD_INTERRUPT))
2630			return 0;
2631
2632		if (whichcpu != ~0UL && whichcpu != cpu)
2633			continue;
2634		addr = symaddr + KDB_PCU(cpu);
2635		diag = kdb_getword(&val, addr, bytesperword);
2636		if (diag) {
2637			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2638				   "read, diag=%d\n", cpu, addr, diag);
2639			continue;
2640		}
2641		kdb_printf("%5d ", cpu);
2642		kdb_md_line(fmtstr, addr,
2643			bytesperword == KDB_WORD_SIZE,
2644			1, bytesperword, 1, 1, 0);
2645	}
2646#undef KDB_PCU
2647	return 0;
2648}
2649
2650/*
2651 * display help for the use of cmd | grep pattern
2652 */
2653static int kdb_grep_help(int argc, const char **argv)
2654{
2655	kdb_printf("Usage of  cmd args | grep pattern:\n");
2656	kdb_printf("  Any command's output may be filtered through an ");
2657	kdb_printf("emulated 'pipe'.\n");
2658	kdb_printf("  'grep' is just a key word.\n");
2659	kdb_printf("  The pattern may include a very limited set of "
2660		   "metacharacters:\n");
2661	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2662	kdb_printf("  And if there are spaces in the pattern, you may "
2663		   "quote it:\n");
2664	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2665		   " or \"^pat tern$\"\n");
2666	return 0;
2667}
2668
2669/*
2670 * kdb_register_repeat - This function is used to register a kernel
2671 * 	debugger command.
2672 * Inputs:
2673 *	cmd	Command name
2674 *	func	Function to execute the command
2675 *	usage	A simple usage string showing arguments
2676 *	help	A simple help string describing command
2677 *	repeat	Does the command auto repeat on enter?
2678 * Returns:
2679 *	zero for success, one if a duplicate command.
2680 */
2681#define kdb_command_extend 50	/* arbitrary */
2682int kdb_register_repeat(char *cmd,
2683			kdb_func_t func,
2684			char *usage,
2685			char *help,
2686			short minlen,
2687			kdb_repeat_t repeat)
2688{
2689	int i;
2690	kdbtab_t *kp;
2691
2692	/*
2693	 *  Brute force method to determine duplicates
2694	 */
2695	for_each_kdbcmd(kp, i) {
2696		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2697			kdb_printf("Duplicate kdb command registered: "
2698				"%s, func %p help %s\n", cmd, func, help);
2699			return 1;
2700		}
2701	}
2702
2703	/*
2704	 * Insert command into first available location in table
2705	 */
2706	for_each_kdbcmd(kp, i) {
2707		if (kp->cmd_name == NULL)
2708			break;
2709	}
2710
2711	if (i >= kdb_max_commands) {
2712		kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2713			 kdb_command_extend) * sizeof(*new), GFP_KDB);
2714		if (!new) {
2715			kdb_printf("Could not allocate new kdb_command "
2716				   "table\n");
2717			return 1;
2718		}
2719		if (kdb_commands) {
2720			memcpy(new, kdb_commands,
2721			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2722			kfree(kdb_commands);
2723		}
2724		memset(new + kdb_max_commands, 0,
2725		       kdb_command_extend * sizeof(*new));
2726		kdb_commands = new;
2727		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2728		kdb_max_commands += kdb_command_extend;
2729	}
2730
2731	kp->cmd_name   = cmd;
2732	kp->cmd_func   = func;
2733	kp->cmd_usage  = usage;
2734	kp->cmd_help   = help;
2735	kp->cmd_flags  = 0;
2736	kp->cmd_minlen = minlen;
2737	kp->cmd_repeat = repeat;
 
 
 
2738
2739	return 0;
2740}
2741EXPORT_SYMBOL_GPL(kdb_register_repeat);
2742
 
 
 
 
 
 
 
 
 
 
 
 
 
2743
2744/*
2745 * kdb_register - Compatibility register function for commands that do
2746 *	not need to specify a repeat state.  Equivalent to
2747 *	kdb_register_repeat with KDB_REPEAT_NONE.
2748 * Inputs:
2749 *	cmd	Command name
2750 *	func	Function to execute the command
2751 *	usage	A simple usage string showing arguments
2752 *	help	A simple help string describing command
2753 * Returns:
2754 *	zero for success, one if a duplicate command.
2755 */
2756int kdb_register(char *cmd,
2757	     kdb_func_t func,
2758	     char *usage,
2759	     char *help,
2760	     short minlen)
2761{
2762	return kdb_register_repeat(cmd, func, usage, help, minlen,
2763				   KDB_REPEAT_NONE);
2764}
2765EXPORT_SYMBOL_GPL(kdb_register);
2766
2767/*
2768 * kdb_unregister - This function is used to unregister a kernel
2769 *	debugger command.  It is generally called when a module which
2770 *	implements kdb commands is unloaded.
2771 * Inputs:
2772 *	cmd	Command name
2773 * Returns:
2774 *	zero for success, one command not registered.
2775 */
2776int kdb_unregister(char *cmd)
2777{
2778	int i;
2779	kdbtab_t *kp;
2780
2781	/*
2782	 *  find the command.
2783	 */
2784	for_each_kdbcmd(kp, i) {
2785		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2786			kp->cmd_name = NULL;
 
 
2787			return 0;
2788		}
2789	}
2790
2791	/* Couldn't find it.  */
2792	return 1;
2793}
2794EXPORT_SYMBOL_GPL(kdb_unregister);
2795
2796/* Initialize the kdb command table. */
2797static void __init kdb_inittab(void)
2798{
2799	int i;
2800	kdbtab_t *kp;
2801
2802	for_each_kdbcmd(kp, i)
2803		kp->cmd_name = NULL;
2804
2805	kdb_register_repeat("md", kdb_md, "<vaddr>",
2806	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2807			    KDB_REPEAT_NO_ARGS);
2808	kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2809	  "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2810	kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2811	  "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2812	kdb_register_repeat("mds", kdb_md, "<vaddr>",
2813	  "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2814	kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2815	  "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2816	kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2817	  "Continue Execution", 1, KDB_REPEAT_NONE);
2818	kdb_register_repeat("rd", kdb_rd, "",
2819	  "Display Registers", 0, KDB_REPEAT_NONE);
2820	kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2821	  "Modify Registers", 0, KDB_REPEAT_NONE);
2822	kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2823	  "Display exception frame", 0, KDB_REPEAT_NONE);
2824	kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2825	  "Stack traceback", 1, KDB_REPEAT_NONE);
2826	kdb_register_repeat("btp", kdb_bt, "<pid>",
2827	  "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2828	kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]",
2829	  "Display stack all processes", 0, KDB_REPEAT_NONE);
2830	kdb_register_repeat("btc", kdb_bt, "",
2831	  "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2832	kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2833	  "Backtrace process given its struct task address", 0,
2834			    KDB_REPEAT_NONE);
2835	kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>",
2836	  "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
2837	kdb_register_repeat("env", kdb_env, "",
2838	  "Show environment variables", 0, KDB_REPEAT_NONE);
2839	kdb_register_repeat("set", kdb_set, "",
2840	  "Set environment variables", 0, KDB_REPEAT_NONE);
2841	kdb_register_repeat("help", kdb_help, "",
2842	  "Display Help Message", 1, KDB_REPEAT_NONE);
2843	kdb_register_repeat("?", kdb_help, "",
2844	  "Display Help Message", 0, KDB_REPEAT_NONE);
2845	kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2846	  "Switch to new cpu", 0, KDB_REPEAT_NONE);
2847	kdb_register_repeat("kgdb", kdb_kgdb, "",
2848	  "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2849	kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2850	  "Display active task list", 0, KDB_REPEAT_NONE);
2851	kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2852	  "Switch to another task", 0, KDB_REPEAT_NONE);
2853	kdb_register_repeat("reboot", kdb_reboot, "",
2854	  "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2855#if defined(CONFIG_MODULES)
2856	kdb_register_repeat("lsmod", kdb_lsmod, "",
2857	  "List loaded kernel modules", 0, KDB_REPEAT_NONE);
 
 
 
 
2858#endif
2859#if defined(CONFIG_MAGIC_SYSRQ)
2860	kdb_register_repeat("sr", kdb_sr, "<key>",
2861	  "Magic SysRq key", 0, KDB_REPEAT_NONE);
 
 
 
 
2862#endif
2863#if defined(CONFIG_PRINTK)
2864	kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2865	  "Display syslog buffer", 0, KDB_REPEAT_NONE);
 
 
 
 
2866#endif
2867	kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2868	  "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2869	kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2870	  "Send a signal to a process", 0, KDB_REPEAT_NONE);
2871	kdb_register_repeat("summary", kdb_summary, "",
2872	  "Summarize the system", 4, KDB_REPEAT_NONE);
2873	kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2874	  "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2875	kdb_register_repeat("grephelp", kdb_grep_help, "",
2876	  "Display help on | grep", 0, KDB_REPEAT_NONE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2877}
2878
2879/* Execute any commands defined in kdb_cmds.  */
2880static void __init kdb_cmd_init(void)
2881{
2882	int i, diag;
2883	for (i = 0; kdb_cmds[i]; ++i) {
2884		diag = kdb_parse(kdb_cmds[i]);
2885		if (diag)
2886			kdb_printf("kdb command %s failed, kdb diag %d\n",
2887				kdb_cmds[i], diag);
2888	}
2889	if (defcmd_in_progress) {
2890		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2891		kdb_parse("endefcmd");
2892	}
2893}
2894
2895/* Initialize kdb_printf, breakpoint tables and kdb state */
2896void __init kdb_init(int lvl)
2897{
2898	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2899	int i;
2900
2901	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2902		return;
2903	for (i = kdb_init_lvl; i < lvl; i++) {
2904		switch (i) {
2905		case KDB_NOT_INITIALIZED:
2906			kdb_inittab();		/* Initialize Command Table */
2907			kdb_initbptab();	/* Initialize Breakpoints */
2908			break;
2909		case KDB_INIT_EARLY:
2910			kdb_cmd_init();		/* Build kdb_cmds tables */
2911			break;
2912		}
2913	}
2914	kdb_init_lvl = lvl;
2915}
v5.14.15
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/types.h>
  16#include <linux/string.h>
  17#include <linux/kernel.h>
  18#include <linux/kmsg_dump.h>
  19#include <linux/reboot.h>
  20#include <linux/sched.h>
  21#include <linux/sched/loadavg.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/debug.h>
  24#include <linux/sysrq.h>
  25#include <linux/smp.h>
  26#include <linux/utsname.h>
  27#include <linux/vmalloc.h>
  28#include <linux/atomic.h>
  29#include <linux/module.h>
  30#include <linux/moduleparam.h>
  31#include <linux/mm.h>
  32#include <linux/init.h>
  33#include <linux/kallsyms.h>
  34#include <linux/kgdb.h>
  35#include <linux/kdb.h>
  36#include <linux/list.h>
  37#include <linux/notifier.h>
  38#include <linux/interrupt.h>
  39#include <linux/delay.h>
  40#include <linux/nmi.h>
  41#include <linux/time.h>
  42#include <linux/ptrace.h>
  43#include <linux/sysctl.h>
  44#include <linux/cpu.h>
  45#include <linux/kdebug.h>
  46#include <linux/proc_fs.h>
  47#include <linux/uaccess.h>
  48#include <linux/slab.h>
  49#include "kdb_private.h"
  50
  51#undef	MODULE_PARAM_PREFIX
  52#define	MODULE_PARAM_PREFIX "kdb."
  53
  54static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
  55module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
  56
  57char kdb_grep_string[KDB_GREP_STRLEN];
  58int kdb_grepping_flag;
  59EXPORT_SYMBOL(kdb_grepping_flag);
  60int kdb_grep_leading;
  61int kdb_grep_trailing;
  62
  63/*
  64 * Kernel debugger state flags
  65 */
  66unsigned int kdb_flags;
 
  67
  68/*
  69 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  70 * single thread processors through the kernel debugger.
  71 */
  72int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  73int kdb_nextline = 1;
  74int kdb_state;			/* General KDB state */
  75
  76struct task_struct *kdb_current_task;
 
  77struct pt_regs *kdb_current_regs;
  78
  79const char *kdb_diemsg;
  80static int kdb_go_count;
  81#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  82static unsigned int kdb_continue_catastrophic =
  83	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  84#else
  85static unsigned int kdb_continue_catastrophic;
  86#endif
  87
  88/* kdb_cmds_head describes the available commands. */
  89static LIST_HEAD(kdb_cmds_head);
 
 
 
 
 
 
 
  90
  91typedef struct _kdbmsg {
  92	int	km_diag;	/* kdb diagnostic */
  93	char	*km_msg;	/* Corresponding message text */
  94} kdbmsg_t;
  95
  96#define KDBMSG(msgnum, text) \
  97	{ KDB_##msgnum, text }
  98
  99static kdbmsg_t kdbmsgs[] = {
 100	KDBMSG(NOTFOUND, "Command Not Found"),
 101	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 102	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 103	       "8 is only allowed on 64 bit systems"),
 104	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 105	KDBMSG(NOTENV, "Cannot find environment variable"),
 106	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 107	KDBMSG(NOTIMP, "Command not implemented"),
 108	KDBMSG(ENVFULL, "Environment full"),
 109	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 110	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 111#ifdef CONFIG_CPU_XSCALE
 112	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 113#else
 114	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 115#endif
 116	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 117	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 118	KDBMSG(BADMODE, "Invalid IDMODE"),
 119	KDBMSG(BADINT, "Illegal numeric value"),
 120	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 121	KDBMSG(BADREG, "Invalid register name"),
 122	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 123	KDBMSG(BADLENGTH, "Invalid length field"),
 124	KDBMSG(NOBP, "No Breakpoint exists"),
 125	KDBMSG(BADADDR, "Invalid address"),
 126	KDBMSG(NOPERM, "Permission denied"),
 127};
 128#undef KDBMSG
 129
 130static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 131
 132
 133/*
 134 * Initial environment.   This is all kept static and local to
 135 * this file.   We don't want to rely on the memory allocation
 136 * mechanisms in the kernel, so we use a very limited allocate-only
 137 * heap for new and altered environment variables.  The entire
 138 * environment is limited to a fixed number of entries (add more
 139 * to __env[] if required) and a fixed amount of heap (add more to
 140 * KDB_ENVBUFSIZE if required).
 141 */
 142
 143static char *__env[31] = {
 144#if defined(CONFIG_SMP)
 145	"PROMPT=[%d]kdb> ",
 
 146#else
 147	"PROMPT=kdb> ",
 
 148#endif
 149	"MOREPROMPT=more> ",
 150	"RADIX=16",
 151	"MDCOUNT=8",		/* lines of md output */
 152	KDB_PLATFORM_ENV,
 153	"DTABCOUNT=30",
 154	"NOSECT=1",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155};
 156
 157static const int __nenv = ARRAY_SIZE(__env);
 158
 159struct task_struct *kdb_curr_task(int cpu)
 160{
 161	struct task_struct *p = curr_task(cpu);
 162#ifdef	_TIF_MCA_INIT
 163	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 164		p = krp->p;
 165#endif
 166	return p;
 167}
 168
 169/*
 170 * Check whether the flags of the current command and the permissions
 171 * of the kdb console has allow a command to be run.
 172 */
 173static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
 174				   bool no_args)
 175{
 176	/* permissions comes from userspace so needs massaging slightly */
 177	permissions &= KDB_ENABLE_MASK;
 178	permissions |= KDB_ENABLE_ALWAYS_SAFE;
 179
 180	/* some commands change group when launched with no arguments */
 181	if (no_args)
 182		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
 183
 184	flags |= KDB_ENABLE_ALL;
 185
 186	return permissions & flags;
 187}
 188
 189/*
 190 * kdbgetenv - This function will return the character string value of
 191 *	an environment variable.
 192 * Parameters:
 193 *	match	A character string representing an environment variable.
 194 * Returns:
 195 *	NULL	No environment variable matches 'match'
 196 *	char*	Pointer to string value of environment variable.
 197 */
 198char *kdbgetenv(const char *match)
 199{
 200	char **ep = __env;
 201	int matchlen = strlen(match);
 202	int i;
 203
 204	for (i = 0; i < __nenv; i++) {
 205		char *e = *ep++;
 206
 207		if (!e)
 208			continue;
 209
 210		if ((strncmp(match, e, matchlen) == 0)
 211		 && ((e[matchlen] == '\0')
 212		   || (e[matchlen] == '='))) {
 213			char *cp = strchr(e, '=');
 214			return cp ? ++cp : "";
 215		}
 216	}
 217	return NULL;
 218}
 219
 220/*
 221 * kdballocenv - This function is used to allocate bytes for
 222 *	environment entries.
 223 * Parameters:
 224 *	match	A character string representing a numeric value
 225 * Outputs:
 226 *	*value  the unsigned long representation of the env variable 'match'
 227 * Returns:
 228 *	Zero on success, a kdb diagnostic on failure.
 229 * Remarks:
 230 *	We use a static environment buffer (envbuffer) to hold the values
 231 *	of dynamically generated environment variables (see kdb_set).  Buffer
 232 *	space once allocated is never free'd, so over time, the amount of space
 233 *	(currently 512 bytes) will be exhausted if env variables are changed
 234 *	frequently.
 235 */
 236static char *kdballocenv(size_t bytes)
 237{
 238#define	KDB_ENVBUFSIZE	512
 239	static char envbuffer[KDB_ENVBUFSIZE];
 240	static int envbufsize;
 241	char *ep = NULL;
 242
 243	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 244		ep = &envbuffer[envbufsize];
 245		envbufsize += bytes;
 246	}
 247	return ep;
 248}
 249
 250/*
 251 * kdbgetulenv - This function will return the value of an unsigned
 252 *	long-valued environment variable.
 253 * Parameters:
 254 *	match	A character string representing a numeric value
 255 * Outputs:
 256 *	*value  the unsigned long representation of the env variable 'match'
 257 * Returns:
 258 *	Zero on success, a kdb diagnostic on failure.
 259 */
 260static int kdbgetulenv(const char *match, unsigned long *value)
 261{
 262	char *ep;
 263
 264	ep = kdbgetenv(match);
 265	if (!ep)
 266		return KDB_NOTENV;
 267	if (strlen(ep) == 0)
 268		return KDB_NOENVVALUE;
 269
 270	*value = simple_strtoul(ep, NULL, 0);
 271
 272	return 0;
 273}
 274
 275/*
 276 * kdbgetintenv - This function will return the value of an
 277 *	integer-valued environment variable.
 278 * Parameters:
 279 *	match	A character string representing an integer-valued env variable
 280 * Outputs:
 281 *	*value  the integer representation of the environment variable 'match'
 282 * Returns:
 283 *	Zero on success, a kdb diagnostic on failure.
 284 */
 285int kdbgetintenv(const char *match, int *value)
 286{
 287	unsigned long val;
 288	int diag;
 289
 290	diag = kdbgetulenv(match, &val);
 291	if (!diag)
 292		*value = (int) val;
 293	return diag;
 294}
 295
 296/*
 297 * kdb_setenv() - Alter an existing environment variable or create a new one.
 298 * @var: Name of the variable
 299 * @val: Value of the variable
 300 *
 301 * Return: Zero on success, a kdb diagnostic on failure.
 302 */
 303static int kdb_setenv(const char *var, const char *val)
 304{
 305	int i;
 306	char *ep;
 307	size_t varlen, vallen;
 308
 309	varlen = strlen(var);
 310	vallen = strlen(val);
 311	ep = kdballocenv(varlen + vallen + 2);
 312	if (ep == (char *)0)
 313		return KDB_ENVBUFFULL;
 314
 315	sprintf(ep, "%s=%s", var, val);
 316
 317	for (i = 0; i < __nenv; i++) {
 318		if (__env[i]
 319		 && ((strncmp(__env[i], var, varlen) == 0)
 320		   && ((__env[i][varlen] == '\0')
 321		    || (__env[i][varlen] == '=')))) {
 322			__env[i] = ep;
 323			return 0;
 324		}
 325	}
 326
 327	/*
 328	 * Wasn't existing variable.  Fit into slot.
 329	 */
 330	for (i = 0; i < __nenv-1; i++) {
 331		if (__env[i] == (char *)0) {
 332			__env[i] = ep;
 333			return 0;
 334		}
 335	}
 336
 337	return KDB_ENVFULL;
 338}
 339
 340/*
 341 * kdb_printenv() - Display the current environment variables.
 342 */
 343static void kdb_printenv(void)
 344{
 345	int i;
 346
 347	for (i = 0; i < __nenv; i++) {
 348		if (__env[i])
 349			kdb_printf("%s\n", __env[i]);
 350	}
 351}
 352
 353/*
 354 * kdbgetularg - This function will convert a numeric string into an
 355 *	unsigned long value.
 356 * Parameters:
 357 *	arg	A character string representing a numeric value
 358 * Outputs:
 359 *	*value  the unsigned long representation of arg.
 360 * Returns:
 361 *	Zero on success, a kdb diagnostic on failure.
 362 */
 363int kdbgetularg(const char *arg, unsigned long *value)
 364{
 365	char *endp;
 366	unsigned long val;
 367
 368	val = simple_strtoul(arg, &endp, 0);
 369
 370	if (endp == arg) {
 371		/*
 372		 * Also try base 16, for us folks too lazy to type the
 373		 * leading 0x...
 374		 */
 375		val = simple_strtoul(arg, &endp, 16);
 376		if (endp == arg)
 377			return KDB_BADINT;
 378	}
 379
 380	*value = val;
 381
 382	return 0;
 383}
 384
 385int kdbgetu64arg(const char *arg, u64 *value)
 386{
 387	char *endp;
 388	u64 val;
 389
 390	val = simple_strtoull(arg, &endp, 0);
 391
 392	if (endp == arg) {
 393
 394		val = simple_strtoull(arg, &endp, 16);
 395		if (endp == arg)
 396			return KDB_BADINT;
 397	}
 398
 399	*value = val;
 400
 401	return 0;
 402}
 403
 404/*
 405 * kdb_set - This function implements the 'set' command.  Alter an
 406 *	existing environment variable or create a new one.
 407 */
 408int kdb_set(int argc, const char **argv)
 409{
 
 
 
 
 410	/*
 411	 * we can be invoked two ways:
 412	 *   set var=value    argv[1]="var", argv[2]="value"
 413	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 414	 * - if the latter, shift 'em down.
 415	 */
 416	if (argc == 3) {
 417		argv[2] = argv[3];
 418		argc--;
 419	}
 420
 421	if (argc != 2)
 422		return KDB_ARGCOUNT;
 423
 424	/*
 425	 * Censor sensitive variables
 426	 */
 427	if (strcmp(argv[1], "PROMPT") == 0 &&
 428	    !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
 429		return KDB_NOPERM;
 430
 431	/*
 432	 * Check for internal variables
 433	 */
 434	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 435		unsigned int debugflags;
 436		char *cp;
 437
 438		debugflags = simple_strtoul(argv[2], &cp, 0);
 439		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 440			kdb_printf("kdb: illegal debug flags '%s'\n",
 441				    argv[2]);
 442			return 0;
 443		}
 444		kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
 
 445			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 446
 447		return 0;
 448	}
 449
 450	/*
 451	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 452	 * name, argv[2] = value.
 453	 */
 454	return kdb_setenv(argv[1], argv[2]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 455}
 456
 457static int kdb_check_regs(void)
 458{
 459	if (!kdb_current_regs) {
 460		kdb_printf("No current kdb registers."
 461			   "  You may need to select another task\n");
 462		return KDB_BADREG;
 463	}
 464	return 0;
 465}
 466
 467/*
 468 * kdbgetaddrarg - This function is responsible for parsing an
 469 *	address-expression and returning the value of the expression,
 470 *	symbol name, and offset to the caller.
 471 *
 472 *	The argument may consist of a numeric value (decimal or
 473 *	hexadecimal), a symbol name, a register name (preceded by the
 474 *	percent sign), an environment variable with a numeric value
 475 *	(preceded by a dollar sign) or a simple arithmetic expression
 476 *	consisting of a symbol name, +/-, and a numeric constant value
 477 *	(offset).
 478 * Parameters:
 479 *	argc	- count of arguments in argv
 480 *	argv	- argument vector
 481 *	*nextarg - index to next unparsed argument in argv[]
 482 *	regs	- Register state at time of KDB entry
 483 * Outputs:
 484 *	*value	- receives the value of the address-expression
 485 *	*offset - receives the offset specified, if any
 486 *	*name   - receives the symbol name, if any
 487 *	*nextarg - index to next unparsed argument in argv[]
 488 * Returns:
 489 *	zero is returned on success, a kdb diagnostic code is
 490 *      returned on error.
 491 */
 492int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 493		  unsigned long *value,  long *offset,
 494		  char **name)
 495{
 496	unsigned long addr;
 497	unsigned long off = 0;
 498	int positive;
 499	int diag;
 500	int found = 0;
 501	char *symname;
 502	char symbol = '\0';
 503	char *cp;
 504	kdb_symtab_t symtab;
 505
 506	/*
 507	 * If the enable flags prohibit both arbitrary memory access
 508	 * and flow control then there are no reasonable grounds to
 509	 * provide symbol lookup.
 510	 */
 511	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
 512			     kdb_cmd_enabled, false))
 513		return KDB_NOPERM;
 514
 515	/*
 516	 * Process arguments which follow the following syntax:
 517	 *
 518	 *  symbol | numeric-address [+/- numeric-offset]
 519	 *  %register
 520	 *  $environment-variable
 521	 */
 522
 523	if (*nextarg > argc)
 524		return KDB_ARGCOUNT;
 525
 526	symname = (char *)argv[*nextarg];
 527
 528	/*
 529	 * If there is no whitespace between the symbol
 530	 * or address and the '+' or '-' symbols, we
 531	 * remember the character and replace it with a
 532	 * null so the symbol/value can be properly parsed
 533	 */
 534	cp = strpbrk(symname, "+-");
 535	if (cp != NULL) {
 536		symbol = *cp;
 537		*cp++ = '\0';
 538	}
 539
 540	if (symname[0] == '$') {
 541		diag = kdbgetulenv(&symname[1], &addr);
 542		if (diag)
 543			return diag;
 544	} else if (symname[0] == '%') {
 545		diag = kdb_check_regs();
 546		if (diag)
 547			return diag;
 548		/* Implement register values with % at a later time as it is
 549		 * arch optional.
 550		 */
 551		return KDB_NOTIMP;
 552	} else {
 553		found = kdbgetsymval(symname, &symtab);
 554		if (found) {
 555			addr = symtab.sym_start;
 556		} else {
 557			diag = kdbgetularg(argv[*nextarg], &addr);
 558			if (diag)
 559				return diag;
 560		}
 561	}
 562
 563	if (!found)
 564		found = kdbnearsym(addr, &symtab);
 565
 566	(*nextarg)++;
 567
 568	if (name)
 569		*name = symname;
 570	if (value)
 571		*value = addr;
 572	if (offset && name && *name)
 573		*offset = addr - symtab.sym_start;
 574
 575	if ((*nextarg > argc)
 576	 && (symbol == '\0'))
 577		return 0;
 578
 579	/*
 580	 * check for +/- and offset
 581	 */
 582
 583	if (symbol == '\0') {
 584		if ((argv[*nextarg][0] != '+')
 585		 && (argv[*nextarg][0] != '-')) {
 586			/*
 587			 * Not our argument.  Return.
 588			 */
 589			return 0;
 590		} else {
 591			positive = (argv[*nextarg][0] == '+');
 592			(*nextarg)++;
 593		}
 594	} else
 595		positive = (symbol == '+');
 596
 597	/*
 598	 * Now there must be an offset!
 599	 */
 600	if ((*nextarg > argc)
 601	 && (symbol == '\0')) {
 602		return KDB_INVADDRFMT;
 603	}
 604
 605	if (!symbol) {
 606		cp = (char *)argv[*nextarg];
 607		(*nextarg)++;
 608	}
 609
 610	diag = kdbgetularg(cp, &off);
 611	if (diag)
 612		return diag;
 613
 614	if (!positive)
 615		off = -off;
 616
 617	if (offset)
 618		*offset += off;
 619
 620	if (value)
 621		*value += off;
 622
 623	return 0;
 624}
 625
 626static void kdb_cmderror(int diag)
 627{
 628	int i;
 629
 630	if (diag >= 0) {
 631		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 632		return;
 633	}
 634
 635	for (i = 0; i < __nkdb_err; i++) {
 636		if (kdbmsgs[i].km_diag == diag) {
 637			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 638			return;
 639		}
 640	}
 641
 642	kdb_printf("Unknown diag %d\n", -diag);
 643}
 644
 645/*
 646 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 647 *	command which defines one command as a set of other commands,
 648 *	terminated by endefcmd.  kdb_defcmd processes the initial
 649 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 650 *	the following commands until 'endefcmd'.
 651 * Inputs:
 652 *	argc	argument count
 653 *	argv	argument vector
 654 * Returns:
 655 *	zero for success, a kdb diagnostic if error
 656 */
 657struct defcmd_set {
 658	int count;
 659	bool usable;
 660	char *name;
 661	char *usage;
 662	char *help;
 663	char **command;
 664};
 665static struct defcmd_set *defcmd_set;
 666static int defcmd_set_count;
 667static bool defcmd_in_progress;
 668
 669/* Forward references */
 670static int kdb_exec_defcmd(int argc, const char **argv);
 671
 672static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 673{
 674	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 675	char **save_command = s->command;
 676	if (strcmp(argv0, "endefcmd") == 0) {
 677		defcmd_in_progress = false;
 678		if (!s->count)
 679			s->usable = false;
 680		if (s->usable)
 681			/* macros are always safe because when executed each
 682			 * internal command re-enters kdb_parse() and is
 683			 * safety checked individually.
 684			 */
 685			kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
 686					   s->help, 0,
 687					   KDB_ENABLE_ALWAYS_SAFE);
 688		return 0;
 689	}
 690	if (!s->usable)
 691		return KDB_NOTIMP;
 692	s->command = kcalloc(s->count + 1, sizeof(*(s->command)), GFP_KDB);
 693	if (!s->command) {
 694		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 695			   cmdstr);
 696		s->usable = false;
 697		return KDB_NOTIMP;
 698	}
 699	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 700	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 701	kfree(save_command);
 702	return 0;
 703}
 704
 705static int kdb_defcmd(int argc, const char **argv)
 706{
 707	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 708	if (defcmd_in_progress) {
 709		kdb_printf("kdb: nested defcmd detected, assuming missing "
 710			   "endefcmd\n");
 711		kdb_defcmd2("endefcmd", "endefcmd");
 712	}
 713	if (argc == 0) {
 714		int i;
 715		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 716			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 717				   s->usage, s->help);
 718			for (i = 0; i < s->count; ++i)
 719				kdb_printf("%s", s->command[i]);
 720			kdb_printf("endefcmd\n");
 721		}
 722		return 0;
 723	}
 724	if (argc != 3)
 725		return KDB_ARGCOUNT;
 726	if (in_dbg_master()) {
 727		kdb_printf("Command only available during kdb_init()\n");
 
 
 
 
 728		return KDB_NOTIMP;
 729	}
 730	defcmd_set = kmalloc_array(defcmd_set_count + 1, sizeof(*defcmd_set),
 731				   GFP_KDB);
 732	if (!defcmd_set)
 733		goto fail_defcmd;
 734	memcpy(defcmd_set, save_defcmd_set,
 735	       defcmd_set_count * sizeof(*defcmd_set));
 
 736	s = defcmd_set + defcmd_set_count;
 737	memset(s, 0, sizeof(*s));
 738	s->usable = true;
 739	s->name = kdb_strdup(argv[1], GFP_KDB);
 740	if (!s->name)
 741		goto fail_name;
 742	s->usage = kdb_strdup(argv[2], GFP_KDB);
 743	if (!s->usage)
 744		goto fail_usage;
 745	s->help = kdb_strdup(argv[3], GFP_KDB);
 746	if (!s->help)
 747		goto fail_help;
 748	if (s->usage[0] == '"') {
 749		strcpy(s->usage, argv[2]+1);
 750		s->usage[strlen(s->usage)-1] = '\0';
 751	}
 752	if (s->help[0] == '"') {
 753		strcpy(s->help, argv[3]+1);
 754		s->help[strlen(s->help)-1] = '\0';
 755	}
 756	++defcmd_set_count;
 757	defcmd_in_progress = true;
 758	kfree(save_defcmd_set);
 759	return 0;
 760fail_help:
 761	kfree(s->usage);
 762fail_usage:
 763	kfree(s->name);
 764fail_name:
 765	kfree(defcmd_set);
 766fail_defcmd:
 767	kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
 768	defcmd_set = save_defcmd_set;
 769	return KDB_NOTIMP;
 770}
 771
 772/*
 773 * kdb_exec_defcmd - Execute the set of commands associated with this
 774 *	defcmd name.
 775 * Inputs:
 776 *	argc	argument count
 777 *	argv	argument vector
 778 * Returns:
 779 *	zero for success, a kdb diagnostic if error
 780 */
 781static int kdb_exec_defcmd(int argc, const char **argv)
 782{
 783	int i, ret;
 784	struct defcmd_set *s;
 785	if (argc != 0)
 786		return KDB_ARGCOUNT;
 787	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 788		if (strcmp(s->name, argv[0]) == 0)
 789			break;
 790	}
 791	if (i == defcmd_set_count) {
 792		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 793			   argv[0]);
 794		return KDB_NOTIMP;
 795	}
 796	for (i = 0; i < s->count; ++i) {
 797		/* Recursive use of kdb_parse, do not use argv after
 798		 * this point */
 799		argv = NULL;
 800		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 801		ret = kdb_parse(s->command[i]);
 802		if (ret)
 803			return ret;
 804	}
 805	return 0;
 806}
 807
 808/* Command history */
 809#define KDB_CMD_HISTORY_COUNT	32
 810#define CMD_BUFLEN		200	/* kdb_printf: max printline
 811					 * size == 256 */
 812static unsigned int cmd_head, cmd_tail;
 813static unsigned int cmdptr;
 814static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 815static char cmd_cur[CMD_BUFLEN];
 816
 817/*
 818 * The "str" argument may point to something like  | grep xyz
 819 */
 820static void parse_grep(const char *str)
 821{
 822	int	len;
 823	char	*cp = (char *)str, *cp2;
 824
 825	/* sanity check: we should have been called with the \ first */
 826	if (*cp != '|')
 827		return;
 828	cp++;
 829	while (isspace(*cp))
 830		cp++;
 831	if (!str_has_prefix(cp, "grep ")) {
 832		kdb_printf("invalid 'pipe', see grephelp\n");
 833		return;
 834	}
 835	cp += 5;
 836	while (isspace(*cp))
 837		cp++;
 838	cp2 = strchr(cp, '\n');
 839	if (cp2)
 840		*cp2 = '\0'; /* remove the trailing newline */
 841	len = strlen(cp);
 842	if (len == 0) {
 843		kdb_printf("invalid 'pipe', see grephelp\n");
 844		return;
 845	}
 846	/* now cp points to a nonzero length search string */
 847	if (*cp == '"') {
 848		/* allow it be "x y z" by removing the "'s - there must
 849		   be two of them */
 850		cp++;
 851		cp2 = strchr(cp, '"');
 852		if (!cp2) {
 853			kdb_printf("invalid quoted string, see grephelp\n");
 854			return;
 855		}
 856		*cp2 = '\0'; /* end the string where the 2nd " was */
 857	}
 858	kdb_grep_leading = 0;
 859	if (*cp == '^') {
 860		kdb_grep_leading = 1;
 861		cp++;
 862	}
 863	len = strlen(cp);
 864	kdb_grep_trailing = 0;
 865	if (*(cp+len-1) == '$') {
 866		kdb_grep_trailing = 1;
 867		*(cp+len-1) = '\0';
 868	}
 869	len = strlen(cp);
 870	if (!len)
 871		return;
 872	if (len >= KDB_GREP_STRLEN) {
 873		kdb_printf("search string too long\n");
 874		return;
 875	}
 876	strcpy(kdb_grep_string, cp);
 877	kdb_grepping_flag++;
 878	return;
 879}
 880
 881/*
 882 * kdb_parse - Parse the command line, search the command table for a
 883 *	matching command and invoke the command function.  This
 884 *	function may be called recursively, if it is, the second call
 885 *	will overwrite argv and cbuf.  It is the caller's
 886 *	responsibility to save their argv if they recursively call
 887 *	kdb_parse().
 888 * Parameters:
 889 *      cmdstr	The input command line to be parsed.
 890 *	regs	The registers at the time kdb was entered.
 891 * Returns:
 892 *	Zero for success, a kdb diagnostic if failure.
 893 * Remarks:
 894 *	Limited to 20 tokens.
 895 *
 896 *	Real rudimentary tokenization. Basically only whitespace
 897 *	is considered a token delimiter (but special consideration
 898 *	is taken of the '=' sign as used by the 'set' command).
 899 *
 900 *	The algorithm used to tokenize the input string relies on
 901 *	there being at least one whitespace (or otherwise useless)
 902 *	character between tokens as the character immediately following
 903 *	the token is altered in-place to a null-byte to terminate the
 904 *	token string.
 905 */
 906
 907#define MAXARGC	20
 908
 909int kdb_parse(const char *cmdstr)
 910{
 911	static char *argv[MAXARGC];
 912	static int argc;
 913	static char cbuf[CMD_BUFLEN+2];
 914	char *cp;
 915	char *cpp, quoted;
 916	kdbtab_t *tp;
 917	int escaped, ignore_errors = 0, check_grep = 0;
 918
 919	/*
 920	 * First tokenize the command string.
 921	 */
 922	cp = (char *)cmdstr;
 
 923
 924	if (KDB_FLAG(CMD_INTERRUPT)) {
 925		/* Previous command was interrupted, newline must not
 926		 * repeat the command */
 927		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 928		KDB_STATE_SET(PAGER);
 929		argc = 0;	/* no repeat */
 930	}
 931
 932	if (*cp != '\n' && *cp != '\0') {
 933		argc = 0;
 934		cpp = cbuf;
 935		while (*cp) {
 936			/* skip whitespace */
 937			while (isspace(*cp))
 938				cp++;
 939			if ((*cp == '\0') || (*cp == '\n') ||
 940			    (*cp == '#' && !defcmd_in_progress))
 941				break;
 942			/* special case: check for | grep pattern */
 943			if (*cp == '|') {
 944				check_grep++;
 945				break;
 946			}
 947			if (cpp >= cbuf + CMD_BUFLEN) {
 948				kdb_printf("kdb_parse: command buffer "
 949					   "overflow, command ignored\n%s\n",
 950					   cmdstr);
 951				return KDB_NOTFOUND;
 952			}
 953			if (argc >= MAXARGC - 1) {
 954				kdb_printf("kdb_parse: too many arguments, "
 955					   "command ignored\n%s\n", cmdstr);
 956				return KDB_NOTFOUND;
 957			}
 958			argv[argc++] = cpp;
 959			escaped = 0;
 960			quoted = '\0';
 961			/* Copy to next unquoted and unescaped
 962			 * whitespace or '=' */
 963			while (*cp && *cp != '\n' &&
 964			       (escaped || quoted || !isspace(*cp))) {
 965				if (cpp >= cbuf + CMD_BUFLEN)
 966					break;
 967				if (escaped) {
 968					escaped = 0;
 969					*cpp++ = *cp++;
 970					continue;
 971				}
 972				if (*cp == '\\') {
 973					escaped = 1;
 974					++cp;
 975					continue;
 976				}
 977				if (*cp == quoted)
 978					quoted = '\0';
 979				else if (*cp == '\'' || *cp == '"')
 980					quoted = *cp;
 981				*cpp = *cp++;
 982				if (*cpp == '=' && !quoted)
 983					break;
 984				++cpp;
 985			}
 986			*cpp++ = '\0';	/* Squash a ws or '=' character */
 987		}
 988	}
 989	if (!argc)
 990		return 0;
 991	if (check_grep)
 992		parse_grep(cp);
 993	if (defcmd_in_progress) {
 994		int result = kdb_defcmd2(cmdstr, argv[0]);
 995		if (!defcmd_in_progress) {
 996			argc = 0;	/* avoid repeat on endefcmd */
 997			*(argv[0]) = '\0';
 998		}
 999		return result;
1000	}
1001	if (argv[0][0] == '-' && argv[0][1] &&
1002	    (argv[0][1] < '0' || argv[0][1] > '9')) {
1003		ignore_errors = 1;
1004		++argv[0];
1005	}
1006
1007	list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1008		/*
1009		 * If this command is allowed to be abbreviated,
1010		 * check to see if this is it.
1011		 */
1012		if (tp->cmd_minlen && (strlen(argv[0]) <= tp->cmd_minlen) &&
1013		    (strncmp(argv[0], tp->cmd_name, tp->cmd_minlen) == 0))
1014			break;
 
 
 
 
 
 
 
1015
1016		if (strcmp(argv[0], tp->cmd_name) == 0)
1017			break;
 
1018	}
1019
1020	/*
1021	 * If we don't find a command by this name, see if the first
1022	 * few characters of this match any of the known commands.
1023	 * e.g., md1c20 should match md.
1024	 */
1025	if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1026		list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1027			if (strncmp(argv[0], tp->cmd_name,
1028				    strlen(tp->cmd_name)) == 0)
1029				break;
 
 
 
 
1030		}
1031	}
1032
1033	if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1034		int result;
1035
1036		if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1037			return KDB_NOPERM;
1038
1039		KDB_STATE_SET(CMD);
1040		result = (*tp->cmd_func)(argc-1, (const char **)argv);
1041		if (result && ignore_errors && result > KDB_CMD_GO)
1042			result = 0;
1043		KDB_STATE_CLEAR(CMD);
1044
1045		if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1046			return result;
1047
1048		argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1049		if (argv[argc])
1050			*(argv[argc]) = '\0';
 
 
 
 
 
 
 
1051		return result;
1052	}
1053
1054	/*
1055	 * If the input with which we were presented does not
1056	 * map to an existing command, attempt to parse it as an
1057	 * address argument and display the result.   Useful for
1058	 * obtaining the address of a variable, or the nearest symbol
1059	 * to an address contained in a register.
1060	 */
1061	{
1062		unsigned long value;
1063		char *name = NULL;
1064		long offset;
1065		int nextarg = 0;
1066
1067		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1068				  &value, &offset, &name)) {
1069			return KDB_NOTFOUND;
1070		}
1071
1072		kdb_printf("%s = ", argv[0]);
1073		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1074		kdb_printf("\n");
1075		return 0;
1076	}
1077}
1078
1079
1080static int handle_ctrl_cmd(char *cmd)
1081{
1082#define CTRL_P	16
1083#define CTRL_N	14
1084
1085	/* initial situation */
1086	if (cmd_head == cmd_tail)
1087		return 0;
1088	switch (*cmd) {
1089	case CTRL_P:
1090		if (cmdptr != cmd_tail)
1091			cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1092				 KDB_CMD_HISTORY_COUNT;
1093		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1094		return 1;
1095	case CTRL_N:
1096		if (cmdptr != cmd_head)
1097			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1098		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1099		return 1;
1100	}
1101	return 0;
1102}
1103
1104/*
1105 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1106 *	the system immediately, or loop for ever on failure.
1107 */
1108static int kdb_reboot(int argc, const char **argv)
1109{
1110	emergency_restart();
1111	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1112	while (1)
1113		cpu_relax();
1114	/* NOTREACHED */
1115	return 0;
1116}
1117
1118static void kdb_dumpregs(struct pt_regs *regs)
1119{
1120	int old_lvl = console_loglevel;
1121	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1122	kdb_trap_printk++;
1123	show_regs(regs);
1124	kdb_trap_printk--;
1125	kdb_printf("\n");
1126	console_loglevel = old_lvl;
1127}
1128
1129static void kdb_set_current_task(struct task_struct *p)
1130{
1131	kdb_current_task = p;
1132
1133	if (kdb_task_has_cpu(p)) {
1134		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1135		return;
1136	}
1137	kdb_current_regs = NULL;
1138}
1139
1140static void drop_newline(char *buf)
1141{
1142	size_t len = strlen(buf);
1143
1144	if (len == 0)
1145		return;
1146	if (*(buf + len - 1) == '\n')
1147		*(buf + len - 1) = '\0';
1148}
1149
1150/*
1151 * kdb_local - The main code for kdb.  This routine is invoked on a
1152 *	specific processor, it is not global.  The main kdb() routine
1153 *	ensures that only one processor at a time is in this routine.
1154 *	This code is called with the real reason code on the first
1155 *	entry to a kdb session, thereafter it is called with reason
1156 *	SWITCH, even if the user goes back to the original cpu.
1157 * Inputs:
1158 *	reason		The reason KDB was invoked
1159 *	error		The hardware-defined error code
1160 *	regs		The exception frame at time of fault/breakpoint.
1161 *	db_result	Result code from the break or debug point.
1162 * Returns:
1163 *	0	KDB was invoked for an event which it wasn't responsible
1164 *	1	KDB handled the event for which it was invoked.
1165 *	KDB_CMD_GO	User typed 'go'.
1166 *	KDB_CMD_CPU	User switched to another cpu.
1167 *	KDB_CMD_SS	Single step.
 
1168 */
1169static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1170		     kdb_dbtrap_t db_result)
1171{
1172	char *cmdbuf;
1173	int diag;
1174	struct task_struct *kdb_current =
1175		kdb_curr_task(raw_smp_processor_id());
1176
1177	KDB_DEBUG_STATE("kdb_local 1", reason);
1178	kdb_go_count = 0;
1179	if (reason == KDB_REASON_DEBUG) {
1180		/* special case below */
1181	} else {
1182		kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1183			   kdb_current, kdb_current ? kdb_current->pid : 0);
1184#if defined(CONFIG_SMP)
1185		kdb_printf("on processor %d ", raw_smp_processor_id());
1186#endif
1187	}
1188
1189	switch (reason) {
1190	case KDB_REASON_DEBUG:
1191	{
1192		/*
1193		 * If re-entering kdb after a single step
1194		 * command, don't print the message.
1195		 */
1196		switch (db_result) {
1197		case KDB_DB_BPT:
1198			kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1199				   kdb_current, kdb_current->pid);
1200#if defined(CONFIG_SMP)
1201			kdb_printf("on processor %d ", raw_smp_processor_id());
1202#endif
1203			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1204				   instruction_pointer(regs));
1205			break;
 
 
 
 
 
 
 
 
1206		case KDB_DB_SS:
1207			break;
1208		case KDB_DB_SSBPT:
1209			KDB_DEBUG_STATE("kdb_local 4", reason);
1210			return 1;	/* kdba_db_trap did the work */
1211		default:
1212			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1213				   db_result);
1214			break;
1215		}
1216
1217	}
1218		break;
1219	case KDB_REASON_ENTER:
1220		if (KDB_STATE(KEYBOARD))
1221			kdb_printf("due to Keyboard Entry\n");
1222		else
1223			kdb_printf("due to KDB_ENTER()\n");
1224		break;
1225	case KDB_REASON_KEYBOARD:
1226		KDB_STATE_SET(KEYBOARD);
1227		kdb_printf("due to Keyboard Entry\n");
1228		break;
1229	case KDB_REASON_ENTER_SLAVE:
1230		/* drop through, slaves only get released via cpu switch */
1231	case KDB_REASON_SWITCH:
1232		kdb_printf("due to cpu switch\n");
1233		break;
1234	case KDB_REASON_OOPS:
1235		kdb_printf("Oops: %s\n", kdb_diemsg);
1236		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1237			   instruction_pointer(regs));
1238		kdb_dumpregs(regs);
1239		break;
1240	case KDB_REASON_SYSTEM_NMI:
1241		kdb_printf("due to System NonMaskable Interrupt\n");
1242		break;
1243	case KDB_REASON_NMI:
1244		kdb_printf("due to NonMaskable Interrupt @ "
1245			   kdb_machreg_fmt "\n",
1246			   instruction_pointer(regs));
 
1247		break;
1248	case KDB_REASON_SSTEP:
1249	case KDB_REASON_BREAK:
1250		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1251			   reason == KDB_REASON_BREAK ?
1252			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1253		/*
1254		 * Determine if this breakpoint is one that we
1255		 * are interested in.
1256		 */
1257		if (db_result != KDB_DB_BPT) {
1258			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1259				   db_result);
1260			KDB_DEBUG_STATE("kdb_local 6", reason);
1261			return 0;	/* Not for us, dismiss it */
1262		}
1263		break;
1264	case KDB_REASON_RECURSE:
1265		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1266			   instruction_pointer(regs));
1267		break;
1268	default:
1269		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1270		KDB_DEBUG_STATE("kdb_local 8", reason);
1271		return 0;	/* Not for us, dismiss it */
1272	}
1273
1274	while (1) {
1275		/*
1276		 * Initialize pager context.
1277		 */
1278		kdb_nextline = 1;
1279		KDB_STATE_CLEAR(SUPPRESS);
1280		kdb_grepping_flag = 0;
1281		/* ensure the old search does not leak into '/' commands */
1282		kdb_grep_string[0] = '\0';
1283
1284		cmdbuf = cmd_cur;
1285		*cmdbuf = '\0';
1286		*(cmd_hist[cmd_head]) = '\0';
1287
 
 
 
 
 
 
 
 
 
 
 
 
1288do_full_getstr:
1289		/* PROMPT can only be set if we have MEM_READ permission. */
1290		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1291			 raw_smp_processor_id());
 
 
 
1292		if (defcmd_in_progress)
1293			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1294
1295		/*
1296		 * Fetch command from keyboard
1297		 */
1298		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1299		if (*cmdbuf != '\n') {
1300			if (*cmdbuf < 32) {
1301				if (cmdptr == cmd_head) {
1302					strscpy(cmd_hist[cmd_head], cmd_cur,
1303						CMD_BUFLEN);
1304					*(cmd_hist[cmd_head] +
1305					  strlen(cmd_hist[cmd_head])-1) = '\0';
1306				}
1307				if (!handle_ctrl_cmd(cmdbuf))
1308					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1309				cmdbuf = cmd_cur;
1310				goto do_full_getstr;
1311			} else {
1312				strscpy(cmd_hist[cmd_head], cmd_cur,
1313					CMD_BUFLEN);
1314			}
1315
1316			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1317			if (cmd_head == cmd_tail)
1318				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1319		}
1320
1321		cmdptr = cmd_head;
1322		diag = kdb_parse(cmdbuf);
1323		if (diag == KDB_NOTFOUND) {
1324			drop_newline(cmdbuf);
1325			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1326			diag = 0;
1327		}
1328		if (diag == KDB_CMD_GO
1329		 || diag == KDB_CMD_CPU
1330		 || diag == KDB_CMD_SS
 
1331		 || diag == KDB_CMD_KGDB)
1332			break;
1333
1334		if (diag)
1335			kdb_cmderror(diag);
1336	}
1337	KDB_DEBUG_STATE("kdb_local 9", diag);
1338	return diag;
1339}
1340
1341
1342/*
1343 * kdb_print_state - Print the state data for the current processor
1344 *	for debugging.
1345 * Inputs:
1346 *	text		Identifies the debug point
1347 *	value		Any integer value to be printed, e.g. reason code.
1348 */
1349void kdb_print_state(const char *text, int value)
1350{
1351	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1352		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1353		   kdb_state);
1354}
1355
1356/*
1357 * kdb_main_loop - After initial setup and assignment of the
1358 *	controlling cpu, all cpus are in this loop.  One cpu is in
1359 *	control and will issue the kdb prompt, the others will spin
1360 *	until 'go' or cpu switch.
1361 *
1362 *	To get a consistent view of the kernel stacks for all
1363 *	processes, this routine is invoked from the main kdb code via
1364 *	an architecture specific routine.  kdba_main_loop is
1365 *	responsible for making the kernel stacks consistent for all
1366 *	processes, there should be no difference between a blocked
1367 *	process and a running process as far as kdb is concerned.
1368 * Inputs:
1369 *	reason		The reason KDB was invoked
1370 *	error		The hardware-defined error code
1371 *	reason2		kdb's current reason code.
1372 *			Initially error but can change
1373 *			according to kdb state.
1374 *	db_result	Result code from break or debug point.
1375 *	regs		The exception frame at time of fault/breakpoint.
1376 *			should always be valid.
1377 * Returns:
1378 *	0	KDB was invoked for an event which it wasn't responsible
1379 *	1	KDB handled the event for which it was invoked.
1380 */
1381int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1382	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1383{
1384	int result = 1;
1385	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1386	while (1) {
1387		/*
1388		 * All processors except the one that is in control
1389		 * will spin here.
1390		 */
1391		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1392		while (KDB_STATE(HOLD_CPU)) {
1393			/* state KDB is turned off by kdb_cpu to see if the
1394			 * other cpus are still live, each cpu in this loop
1395			 * turns it back on.
1396			 */
1397			if (!KDB_STATE(KDB))
1398				KDB_STATE_SET(KDB);
1399		}
1400
1401		KDB_STATE_CLEAR(SUPPRESS);
1402		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1403		if (KDB_STATE(LEAVING))
1404			break;	/* Another cpu said 'go' */
1405		/* Still using kdb, this processor is in control */
1406		result = kdb_local(reason2, error, regs, db_result);
1407		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1408
1409		if (result == KDB_CMD_CPU)
1410			break;
1411
1412		if (result == KDB_CMD_SS) {
1413			KDB_STATE_SET(DOING_SS);
1414			break;
1415		}
1416
 
 
 
 
 
 
1417		if (result == KDB_CMD_KGDB) {
1418			if (!KDB_STATE(DOING_KGDB))
1419				kdb_printf("Entering please attach debugger "
1420					   "or use $D#44+ or $3#33\n");
1421			break;
1422		}
1423		if (result && result != 1 && result != KDB_CMD_GO)
1424			kdb_printf("\nUnexpected kdb_local return code %d\n",
1425				   result);
1426		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1427		break;
1428	}
1429	if (KDB_STATE(DOING_SS))
1430		KDB_STATE_CLEAR(SSBPT);
1431
1432	/* Clean up any keyboard devices before leaving */
1433	kdb_kbd_cleanup_state();
1434
1435	return result;
1436}
1437
1438/*
1439 * kdb_mdr - This function implements the guts of the 'mdr', memory
1440 * read command.
1441 *	mdr  <addr arg>,<byte count>
1442 * Inputs:
1443 *	addr	Start address
1444 *	count	Number of bytes
1445 * Returns:
1446 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1447 */
1448static int kdb_mdr(unsigned long addr, unsigned int count)
1449{
1450	unsigned char c;
1451	while (count--) {
1452		if (kdb_getarea(c, addr))
1453			return 0;
1454		kdb_printf("%02x", c);
1455		addr++;
1456	}
1457	kdb_printf("\n");
1458	return 0;
1459}
1460
1461/*
1462 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1463 *	'md8' 'mdr' and 'mds' commands.
1464 *
1465 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1466 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1467 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1468 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1469 *	mdr  <addr arg>,<byte count>
1470 */
1471static void kdb_md_line(const char *fmtstr, unsigned long addr,
1472			int symbolic, int nosect, int bytesperword,
1473			int num, int repeat, int phys)
1474{
1475	/* print just one line of data */
1476	kdb_symtab_t symtab;
1477	char cbuf[32];
1478	char *c = cbuf;
1479	int i;
1480	int j;
1481	unsigned long word;
1482
1483	memset(cbuf, '\0', sizeof(cbuf));
1484	if (phys)
1485		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1486	else
1487		kdb_printf(kdb_machreg_fmt0 " ", addr);
1488
1489	for (i = 0; i < num && repeat--; i++) {
1490		if (phys) {
1491			if (kdb_getphysword(&word, addr, bytesperword))
1492				break;
1493		} else if (kdb_getword(&word, addr, bytesperword))
1494			break;
1495		kdb_printf(fmtstr, word);
1496		if (symbolic)
1497			kdbnearsym(word, &symtab);
1498		else
1499			memset(&symtab, 0, sizeof(symtab));
1500		if (symtab.sym_name) {
1501			kdb_symbol_print(word, &symtab, 0);
1502			if (!nosect) {
1503				kdb_printf("\n");
1504				kdb_printf("                       %s %s "
1505					   kdb_machreg_fmt " "
1506					   kdb_machreg_fmt " "
1507					   kdb_machreg_fmt, symtab.mod_name,
1508					   symtab.sec_name, symtab.sec_start,
1509					   symtab.sym_start, symtab.sym_end);
1510			}
1511			addr += bytesperword;
1512		} else {
1513			union {
1514				u64 word;
1515				unsigned char c[8];
1516			} wc;
1517			unsigned char *cp;
1518#ifdef	__BIG_ENDIAN
1519			cp = wc.c + 8 - bytesperword;
1520#else
1521			cp = wc.c;
1522#endif
1523			wc.word = word;
1524#define printable_char(c) \
1525	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1526			for (j = 0; j < bytesperword; j++)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1527				*c++ = printable_char(*cp++);
1528			addr += bytesperword;
 
 
1529#undef printable_char
1530		}
1531	}
1532	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1533		   " ", cbuf);
1534}
1535
1536static int kdb_md(int argc, const char **argv)
1537{
1538	static unsigned long last_addr;
1539	static int last_radix, last_bytesperword, last_repeat;
1540	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1541	int nosect = 0;
1542	char fmtchar, fmtstr[64];
1543	unsigned long addr;
1544	unsigned long word;
1545	long offset = 0;
1546	int symbolic = 0;
1547	int valid = 0;
1548	int phys = 0;
1549	int raw = 0;
1550
1551	kdbgetintenv("MDCOUNT", &mdcount);
1552	kdbgetintenv("RADIX", &radix);
1553	kdbgetintenv("BYTESPERWORD", &bytesperword);
1554
1555	/* Assume 'md <addr>' and start with environment values */
1556	repeat = mdcount * 16 / bytesperword;
1557
1558	if (strcmp(argv[0], "mdr") == 0) {
1559		if (argc == 2 || (argc == 0 && last_addr != 0))
1560			valid = raw = 1;
1561		else
1562			return KDB_ARGCOUNT;
 
1563	} else if (isdigit(argv[0][2])) {
1564		bytesperword = (int)(argv[0][2] - '0');
1565		if (bytesperword == 0) {
1566			bytesperword = last_bytesperword;
1567			if (bytesperword == 0)
1568				bytesperword = 4;
1569		}
1570		last_bytesperword = bytesperword;
1571		repeat = mdcount * 16 / bytesperword;
1572		if (!argv[0][3])
1573			valid = 1;
1574		else if (argv[0][3] == 'c' && argv[0][4]) {
1575			char *p;
1576			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1577			mdcount = ((repeat * bytesperword) + 15) / 16;
1578			valid = !*p;
1579		}
1580		last_repeat = repeat;
1581	} else if (strcmp(argv[0], "md") == 0)
1582		valid = 1;
1583	else if (strcmp(argv[0], "mds") == 0)
1584		valid = 1;
1585	else if (strcmp(argv[0], "mdp") == 0) {
1586		phys = valid = 1;
1587	}
1588	if (!valid)
1589		return KDB_NOTFOUND;
1590
1591	if (argc == 0) {
1592		if (last_addr == 0)
1593			return KDB_ARGCOUNT;
1594		addr = last_addr;
1595		radix = last_radix;
1596		bytesperword = last_bytesperword;
1597		repeat = last_repeat;
1598		if (raw)
1599			mdcount = repeat;
1600		else
1601			mdcount = ((repeat * bytesperword) + 15) / 16;
1602	}
1603
1604	if (argc) {
1605		unsigned long val;
1606		int diag, nextarg = 1;
1607		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1608				     &offset, NULL);
1609		if (diag)
1610			return diag;
1611		if (argc > nextarg+2)
1612			return KDB_ARGCOUNT;
1613
1614		if (argc >= nextarg) {
1615			diag = kdbgetularg(argv[nextarg], &val);
1616			if (!diag) {
1617				mdcount = (int) val;
1618				if (raw)
1619					repeat = mdcount;
1620				else
1621					repeat = mdcount * 16 / bytesperword;
1622			}
1623		}
1624		if (argc >= nextarg+1) {
1625			diag = kdbgetularg(argv[nextarg+1], &val);
1626			if (!diag)
1627				radix = (int) val;
1628		}
1629	}
1630
1631	if (strcmp(argv[0], "mdr") == 0) {
1632		int ret;
1633		last_addr = addr;
1634		ret = kdb_mdr(addr, mdcount);
1635		last_addr += mdcount;
1636		last_repeat = mdcount;
1637		last_bytesperword = bytesperword; // to make REPEAT happy
1638		return ret;
1639	}
1640
1641	switch (radix) {
1642	case 10:
1643		fmtchar = 'd';
1644		break;
1645	case 16:
1646		fmtchar = 'x';
1647		break;
1648	case 8:
1649		fmtchar = 'o';
1650		break;
1651	default:
1652		return KDB_BADRADIX;
1653	}
1654
1655	last_radix = radix;
1656
1657	if (bytesperword > KDB_WORD_SIZE)
1658		return KDB_BADWIDTH;
1659
1660	switch (bytesperword) {
1661	case 8:
1662		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1663		break;
1664	case 4:
1665		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1666		break;
1667	case 2:
1668		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1669		break;
1670	case 1:
1671		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1672		break;
1673	default:
1674		return KDB_BADWIDTH;
1675	}
1676
1677	last_repeat = repeat;
1678	last_bytesperword = bytesperword;
1679
1680	if (strcmp(argv[0], "mds") == 0) {
1681		symbolic = 1;
1682		/* Do not save these changes as last_*, they are temporary mds
1683		 * overrides.
1684		 */
1685		bytesperword = KDB_WORD_SIZE;
1686		repeat = mdcount;
1687		kdbgetintenv("NOSECT", &nosect);
1688	}
1689
1690	/* Round address down modulo BYTESPERWORD */
1691
1692	addr &= ~(bytesperword-1);
1693
1694	while (repeat > 0) {
1695		unsigned long a;
1696		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1697
1698		if (KDB_FLAG(CMD_INTERRUPT))
1699			return 0;
1700		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1701			if (phys) {
1702				if (kdb_getphysword(&word, a, bytesperword)
1703						|| word)
1704					break;
1705			} else if (kdb_getword(&word, a, bytesperword) || word)
1706				break;
1707		}
1708		n = min(num, repeat);
1709		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1710			    num, repeat, phys);
1711		addr += bytesperword * n;
1712		repeat -= n;
1713		z = (z + num - 1) / num;
1714		if (z > 2) {
1715			int s = num * (z-2);
1716			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1717				   " zero suppressed\n",
1718				addr, addr + bytesperword * s - 1);
1719			addr += bytesperword * s;
1720			repeat -= s;
1721		}
1722	}
1723	last_addr = addr;
1724
1725	return 0;
1726}
1727
1728/*
1729 * kdb_mm - This function implements the 'mm' command.
1730 *	mm address-expression new-value
1731 * Remarks:
1732 *	mm works on machine words, mmW works on bytes.
1733 */
1734static int kdb_mm(int argc, const char **argv)
1735{
1736	int diag;
1737	unsigned long addr;
1738	long offset = 0;
1739	unsigned long contents;
1740	int nextarg;
1741	int width;
1742
1743	if (argv[0][2] && !isdigit(argv[0][2]))
1744		return KDB_NOTFOUND;
1745
1746	if (argc < 2)
1747		return KDB_ARGCOUNT;
1748
1749	nextarg = 1;
1750	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1751	if (diag)
1752		return diag;
1753
1754	if (nextarg > argc)
1755		return KDB_ARGCOUNT;
1756	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1757	if (diag)
1758		return diag;
1759
1760	if (nextarg != argc + 1)
1761		return KDB_ARGCOUNT;
1762
1763	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1764	diag = kdb_putword(addr, contents, width);
1765	if (diag)
1766		return diag;
1767
1768	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1769
1770	return 0;
1771}
1772
1773/*
1774 * kdb_go - This function implements the 'go' command.
1775 *	go [address-expression]
1776 */
1777static int kdb_go(int argc, const char **argv)
1778{
1779	unsigned long addr;
1780	int diag;
1781	int nextarg;
1782	long offset;
1783
1784	if (raw_smp_processor_id() != kdb_initial_cpu) {
1785		kdb_printf("go must execute on the entry cpu, "
1786			   "please use \"cpu %d\" and then execute go\n",
1787			   kdb_initial_cpu);
1788		return KDB_BADCPUNUM;
1789	}
1790	if (argc == 1) {
1791		nextarg = 1;
1792		diag = kdbgetaddrarg(argc, argv, &nextarg,
1793				     &addr, &offset, NULL);
1794		if (diag)
1795			return diag;
1796	} else if (argc) {
1797		return KDB_ARGCOUNT;
1798	}
1799
1800	diag = KDB_CMD_GO;
1801	if (KDB_FLAG(CATASTROPHIC)) {
1802		kdb_printf("Catastrophic error detected\n");
1803		kdb_printf("kdb_continue_catastrophic=%d, ",
1804			kdb_continue_catastrophic);
1805		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1806			kdb_printf("type go a second time if you really want "
1807				   "to continue\n");
1808			return 0;
1809		}
1810		if (kdb_continue_catastrophic == 2) {
1811			kdb_printf("forcing reboot\n");
1812			kdb_reboot(0, NULL);
1813		}
1814		kdb_printf("attempting to continue\n");
1815	}
1816	return diag;
1817}
1818
1819/*
1820 * kdb_rd - This function implements the 'rd' command.
1821 */
1822static int kdb_rd(int argc, const char **argv)
1823{
1824	int len = kdb_check_regs();
1825#if DBG_MAX_REG_NUM > 0
1826	int i;
1827	char *rname;
1828	int rsize;
1829	u64 reg64;
1830	u32 reg32;
1831	u16 reg16;
1832	u8 reg8;
1833
1834	if (len)
1835		return len;
1836
1837	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1838		rsize = dbg_reg_def[i].size * 2;
1839		if (rsize > 16)
1840			rsize = 2;
1841		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1842			len = 0;
1843			kdb_printf("\n");
1844		}
1845		if (len)
1846			len += kdb_printf("  ");
1847		switch(dbg_reg_def[i].size * 8) {
1848		case 8:
1849			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1850			if (!rname)
1851				break;
1852			len += kdb_printf("%s: %02x", rname, reg8);
1853			break;
1854		case 16:
1855			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1856			if (!rname)
1857				break;
1858			len += kdb_printf("%s: %04x", rname, reg16);
1859			break;
1860		case 32:
1861			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1862			if (!rname)
1863				break;
1864			len += kdb_printf("%s: %08x", rname, reg32);
1865			break;
1866		case 64:
1867			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1868			if (!rname)
1869				break;
1870			len += kdb_printf("%s: %016llx", rname, reg64);
1871			break;
1872		default:
1873			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1874		}
1875	}
1876	kdb_printf("\n");
1877#else
1878	if (len)
1879		return len;
1880
1881	kdb_dumpregs(kdb_current_regs);
1882#endif
1883	return 0;
1884}
1885
1886/*
1887 * kdb_rm - This function implements the 'rm' (register modify)  command.
1888 *	rm register-name new-contents
1889 * Remarks:
1890 *	Allows register modification with the same restrictions as gdb
1891 */
1892static int kdb_rm(int argc, const char **argv)
1893{
1894#if DBG_MAX_REG_NUM > 0
1895	int diag;
1896	const char *rname;
1897	int i;
1898	u64 reg64;
1899	u32 reg32;
1900	u16 reg16;
1901	u8 reg8;
1902
1903	if (argc != 2)
1904		return KDB_ARGCOUNT;
1905	/*
1906	 * Allow presence or absence of leading '%' symbol.
1907	 */
1908	rname = argv[1];
1909	if (*rname == '%')
1910		rname++;
1911
1912	diag = kdbgetu64arg(argv[2], &reg64);
1913	if (diag)
1914		return diag;
1915
1916	diag = kdb_check_regs();
1917	if (diag)
1918		return diag;
1919
1920	diag = KDB_BADREG;
1921	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1922		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1923			diag = 0;
1924			break;
1925		}
1926	}
1927	if (!diag) {
1928		switch(dbg_reg_def[i].size * 8) {
1929		case 8:
1930			reg8 = reg64;
1931			dbg_set_reg(i, &reg8, kdb_current_regs);
1932			break;
1933		case 16:
1934			reg16 = reg64;
1935			dbg_set_reg(i, &reg16, kdb_current_regs);
1936			break;
1937		case 32:
1938			reg32 = reg64;
1939			dbg_set_reg(i, &reg32, kdb_current_regs);
1940			break;
1941		case 64:
1942			dbg_set_reg(i, &reg64, kdb_current_regs);
1943			break;
1944		}
1945	}
1946	return diag;
1947#else
1948	kdb_printf("ERROR: Register set currently not implemented\n");
1949    return 0;
1950#endif
1951}
1952
1953#if defined(CONFIG_MAGIC_SYSRQ)
1954/*
1955 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1956 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1957 *		sr <magic-sysrq-code>
1958 */
1959static int kdb_sr(int argc, const char **argv)
1960{
1961	bool check_mask =
1962	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1963
1964	if (argc != 1)
1965		return KDB_ARGCOUNT;
1966
1967	kdb_trap_printk++;
1968	__handle_sysrq(*argv[1], check_mask);
1969	kdb_trap_printk--;
1970
1971	return 0;
1972}
1973#endif	/* CONFIG_MAGIC_SYSRQ */
1974
1975/*
1976 * kdb_ef - This function implements the 'regs' (display exception
1977 *	frame) command.  This command takes an address and expects to
1978 *	find an exception frame at that address, formats and prints
1979 *	it.
1980 *		regs address-expression
1981 * Remarks:
1982 *	Not done yet.
1983 */
1984static int kdb_ef(int argc, const char **argv)
1985{
1986	int diag;
1987	unsigned long addr;
1988	long offset;
1989	int nextarg;
1990
1991	if (argc != 1)
1992		return KDB_ARGCOUNT;
1993
1994	nextarg = 1;
1995	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1996	if (diag)
1997		return diag;
1998	show_regs((struct pt_regs *)addr);
1999	return 0;
2000}
2001
2002#if defined(CONFIG_MODULES)
2003/*
2004 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
2005 *	currently loaded kernel modules.
2006 *	Mostly taken from userland lsmod.
2007 */
2008static int kdb_lsmod(int argc, const char **argv)
2009{
2010	struct module *mod;
2011
2012	if (argc != 0)
2013		return KDB_ARGCOUNT;
2014
2015	kdb_printf("Module                  Size  modstruct     Used by\n");
2016	list_for_each_entry(mod, kdb_modules, list) {
2017		if (mod->state == MODULE_STATE_UNFORMED)
2018			continue;
2019
2020		kdb_printf("%-20s%8u  0x%px ", mod->name,
2021			   mod->core_layout.size, (void *)mod);
2022#ifdef CONFIG_MODULE_UNLOAD
2023		kdb_printf("%4d ", module_refcount(mod));
2024#endif
2025		if (mod->state == MODULE_STATE_GOING)
2026			kdb_printf(" (Unloading)");
2027		else if (mod->state == MODULE_STATE_COMING)
2028			kdb_printf(" (Loading)");
2029		else
2030			kdb_printf(" (Live)");
2031		kdb_printf(" 0x%px", mod->core_layout.base);
2032
2033#ifdef CONFIG_MODULE_UNLOAD
2034		{
2035			struct module_use *use;
2036			kdb_printf(" [ ");
2037			list_for_each_entry(use, &mod->source_list,
2038					    source_list)
2039				kdb_printf("%s ", use->target->name);
2040			kdb_printf("]\n");
2041		}
2042#endif
2043	}
2044
2045	return 0;
2046}
2047
2048#endif	/* CONFIG_MODULES */
2049
2050/*
2051 * kdb_env - This function implements the 'env' command.  Display the
2052 *	current environment variables.
2053 */
2054
2055static int kdb_env(int argc, const char **argv)
2056{
2057	kdb_printenv();
 
 
 
 
 
2058
2059	if (KDB_DEBUG(MASK))
2060		kdb_printf("KDBDEBUG=0x%x\n",
2061			(kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2062
2063	return 0;
2064}
2065
2066#ifdef CONFIG_PRINTK
2067/*
2068 * kdb_dmesg - This function implements the 'dmesg' command to display
2069 *	the contents of the syslog buffer.
2070 *		dmesg [lines] [adjust]
2071 */
2072static int kdb_dmesg(int argc, const char **argv)
2073{
2074	int diag;
2075	int logging;
2076	int lines = 0;
2077	int adjust = 0;
2078	int n = 0;
2079	int skip = 0;
2080	struct kmsg_dump_iter iter;
2081	size_t len;
2082	char buf[201];
2083
2084	if (argc > 2)
2085		return KDB_ARGCOUNT;
2086	if (argc) {
2087		char *cp;
2088		lines = simple_strtol(argv[1], &cp, 0);
2089		if (*cp)
2090			lines = 0;
2091		if (argc > 1) {
2092			adjust = simple_strtoul(argv[2], &cp, 0);
2093			if (*cp || adjust < 0)
2094				adjust = 0;
2095		}
2096	}
2097
2098	/* disable LOGGING if set */
2099	diag = kdbgetintenv("LOGGING", &logging);
2100	if (!diag && logging) {
2101		const char *setargs[] = { "set", "LOGGING", "0" };
2102		kdb_set(2, setargs);
2103	}
2104
2105	kmsg_dump_rewind(&iter);
2106	while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL))
2107		n++;
2108
2109	if (lines < 0) {
2110		if (adjust >= n)
2111			kdb_printf("buffer only contains %d lines, nothing "
2112				   "printed\n", n);
2113		else if (adjust - lines >= n)
2114			kdb_printf("buffer only contains %d lines, last %d "
2115				   "lines printed\n", n, n - adjust);
2116		skip = adjust;
2117		lines = abs(lines);
2118	} else if (lines > 0) {
2119		skip = n - lines - adjust;
2120		lines = abs(lines);
2121		if (adjust >= n) {
2122			kdb_printf("buffer only contains %d lines, "
2123				   "nothing printed\n", n);
2124			skip = n;
2125		} else if (skip < 0) {
2126			lines += skip;
2127			skip = 0;
2128			kdb_printf("buffer only contains %d lines, first "
2129				   "%d lines printed\n", n, lines);
2130		}
2131	} else {
2132		lines = n;
2133	}
2134
2135	if (skip >= n || skip < 0)
2136		return 0;
2137
2138	kmsg_dump_rewind(&iter);
2139	while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) {
2140		if (skip) {
2141			skip--;
2142			continue;
2143		}
2144		if (!lines--)
2145			break;
2146		if (KDB_FLAG(CMD_INTERRUPT))
2147			return 0;
2148
2149		kdb_printf("%.*s\n", (int)len - 1, buf);
2150	}
2151
2152	return 0;
2153}
2154#endif /* CONFIG_PRINTK */
2155
2156/* Make sure we balance enable/disable calls, must disable first. */
2157static atomic_t kdb_nmi_disabled;
2158
2159static int kdb_disable_nmi(int argc, const char *argv[])
2160{
2161	if (atomic_read(&kdb_nmi_disabled))
2162		return 0;
2163	atomic_set(&kdb_nmi_disabled, 1);
2164	arch_kgdb_ops.enable_nmi(0);
2165	return 0;
2166}
2167
2168static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2169{
2170	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2171		return -EINVAL;
2172	arch_kgdb_ops.enable_nmi(1);
2173	return 0;
2174}
2175
2176static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2177	.set = kdb_param_enable_nmi,
2178};
2179module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2180
2181/*
2182 * kdb_cpu - This function implements the 'cpu' command.
2183 *	cpu	[<cpunum>]
2184 * Returns:
2185 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2186 */
2187static void kdb_cpu_status(void)
2188{
2189	int i, start_cpu, first_print = 1;
2190	char state, prev_state = '?';
2191
2192	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2193	kdb_printf("Available cpus: ");
2194	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2195		if (!cpu_online(i)) {
2196			state = 'F';	/* cpu is offline */
2197		} else if (!kgdb_info[i].enter_kgdb) {
2198			state = 'D';	/* cpu is online but unresponsive */
2199		} else {
2200			state = ' ';	/* cpu is responding to kdb */
2201			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2202				state = 'I';	/* idle task */
2203		}
2204		if (state != prev_state) {
2205			if (prev_state != '?') {
2206				if (!first_print)
2207					kdb_printf(", ");
2208				first_print = 0;
2209				kdb_printf("%d", start_cpu);
2210				if (start_cpu < i-1)
2211					kdb_printf("-%d", i-1);
2212				if (prev_state != ' ')
2213					kdb_printf("(%c)", prev_state);
2214			}
2215			prev_state = state;
2216			start_cpu = i;
2217		}
2218	}
2219	/* print the trailing cpus, ignoring them if they are all offline */
2220	if (prev_state != 'F') {
2221		if (!first_print)
2222			kdb_printf(", ");
2223		kdb_printf("%d", start_cpu);
2224		if (start_cpu < i-1)
2225			kdb_printf("-%d", i-1);
2226		if (prev_state != ' ')
2227			kdb_printf("(%c)", prev_state);
2228	}
2229	kdb_printf("\n");
2230}
2231
2232static int kdb_cpu(int argc, const char **argv)
2233{
2234	unsigned long cpunum;
2235	int diag;
2236
2237	if (argc == 0) {
2238		kdb_cpu_status();
2239		return 0;
2240	}
2241
2242	if (argc != 1)
2243		return KDB_ARGCOUNT;
2244
2245	diag = kdbgetularg(argv[1], &cpunum);
2246	if (diag)
2247		return diag;
2248
2249	/*
2250	 * Validate cpunum
2251	 */
2252	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2253		return KDB_BADCPUNUM;
2254
2255	dbg_switch_cpu = cpunum;
2256
2257	/*
2258	 * Switch to other cpu
2259	 */
2260	return KDB_CMD_CPU;
2261}
2262
2263/* The user may not realize that ps/bta with no parameters does not print idle
2264 * or sleeping system daemon processes, so tell them how many were suppressed.
2265 */
2266void kdb_ps_suppressed(void)
2267{
2268	int idle = 0, daemon = 0;
2269	unsigned long mask_I = kdb_task_state_string("I"),
2270		      mask_M = kdb_task_state_string("M");
2271	unsigned long cpu;
2272	const struct task_struct *p, *g;
2273	for_each_online_cpu(cpu) {
2274		p = kdb_curr_task(cpu);
2275		if (kdb_task_state(p, mask_I))
2276			++idle;
2277	}
2278	for_each_process_thread(g, p) {
2279		if (kdb_task_state(p, mask_M))
2280			++daemon;
2281	}
2282	if (idle || daemon) {
2283		if (idle)
2284			kdb_printf("%d idle process%s (state I)%s\n",
2285				   idle, idle == 1 ? "" : "es",
2286				   daemon ? " and " : "");
2287		if (daemon)
2288			kdb_printf("%d sleeping system daemon (state M) "
2289				   "process%s", daemon,
2290				   daemon == 1 ? "" : "es");
2291		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2292	}
2293}
2294
2295/*
2296 * kdb_ps - This function implements the 'ps' command which shows a
2297 *	list of the active processes.
2298 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2299 */
2300void kdb_ps1(const struct task_struct *p)
2301{
2302	int cpu;
2303	unsigned long tmp;
2304
2305	if (!p ||
2306	    copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2307		return;
2308
2309	cpu = kdb_process_cpu(p);
2310	kdb_printf("0x%px %8d %8d  %d %4d   %c  0x%px %c%s\n",
2311		   (void *)p, p->pid, p->parent->pid,
2312		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2313		   kdb_task_state_char(p),
2314		   (void *)(&p->thread),
2315		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2316		   p->comm);
2317	if (kdb_task_has_cpu(p)) {
2318		if (!KDB_TSK(cpu)) {
2319			kdb_printf("  Error: no saved data for this cpu\n");
2320		} else {
2321			if (KDB_TSK(cpu) != p)
2322				kdb_printf("  Error: does not match running "
2323				   "process table (0x%px)\n", KDB_TSK(cpu));
2324		}
2325	}
2326}
2327
2328static int kdb_ps(int argc, const char **argv)
2329{
2330	struct task_struct *g, *p;
2331	unsigned long mask, cpu;
2332
2333	if (argc == 0)
2334		kdb_ps_suppressed();
2335	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2336		(int)(2*sizeof(void *))+2, "Task Addr",
2337		(int)(2*sizeof(void *))+2, "Thread");
2338	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2339	/* Run the active tasks first */
2340	for_each_online_cpu(cpu) {
2341		if (KDB_FLAG(CMD_INTERRUPT))
2342			return 0;
2343		p = kdb_curr_task(cpu);
2344		if (kdb_task_state(p, mask))
2345			kdb_ps1(p);
2346	}
2347	kdb_printf("\n");
2348	/* Now the real tasks */
2349	for_each_process_thread(g, p) {
2350		if (KDB_FLAG(CMD_INTERRUPT))
2351			return 0;
2352		if (kdb_task_state(p, mask))
2353			kdb_ps1(p);
2354	}
2355
2356	return 0;
2357}
2358
2359/*
2360 * kdb_pid - This function implements the 'pid' command which switches
2361 *	the currently active process.
2362 *		pid [<pid> | R]
2363 */
2364static int kdb_pid(int argc, const char **argv)
2365{
2366	struct task_struct *p;
2367	unsigned long val;
2368	int diag;
2369
2370	if (argc > 1)
2371		return KDB_ARGCOUNT;
2372
2373	if (argc) {
2374		if (strcmp(argv[1], "R") == 0) {
2375			p = KDB_TSK(kdb_initial_cpu);
2376		} else {
2377			diag = kdbgetularg(argv[1], &val);
2378			if (diag)
2379				return KDB_BADINT;
2380
2381			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2382			if (!p) {
2383				kdb_printf("No task with pid=%d\n", (pid_t)val);
2384				return 0;
2385			}
2386		}
2387		kdb_set_current_task(p);
2388	}
2389	kdb_printf("KDB current process is %s(pid=%d)\n",
2390		   kdb_current_task->comm,
2391		   kdb_current_task->pid);
2392
2393	return 0;
2394}
2395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2396static int kdb_kgdb(int argc, const char **argv)
2397{
2398	return KDB_CMD_KGDB;
2399}
2400
2401/*
2402 * kdb_help - This function implements the 'help' and '?' commands.
2403 */
2404static int kdb_help(int argc, const char **argv)
2405{
2406	kdbtab_t *kt;
 
2407
2408	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2409	kdb_printf("-----------------------------"
2410		   "-----------------------------\n");
2411	list_for_each_entry(kt, &kdb_cmds_head, list_node) {
2412		char *space = "";
 
 
2413		if (KDB_FLAG(CMD_INTERRUPT))
2414			return 0;
2415		if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2416			continue;
2417		if (strlen(kt->cmd_usage) > 20)
2418			space = "\n                                    ";
2419		kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2420			   kt->cmd_usage, space, kt->cmd_help);
2421	}
2422	return 0;
2423}
2424
2425/*
2426 * kdb_kill - This function implements the 'kill' commands.
2427 */
2428static int kdb_kill(int argc, const char **argv)
2429{
2430	long sig, pid;
2431	char *endp;
2432	struct task_struct *p;
 
2433
2434	if (argc != 2)
2435		return KDB_ARGCOUNT;
2436
2437	sig = simple_strtol(argv[1], &endp, 0);
2438	if (*endp)
2439		return KDB_BADINT;
2440	if ((sig >= 0) || !valid_signal(-sig)) {
2441		kdb_printf("Invalid signal parameter.<-signal>\n");
2442		return 0;
2443	}
2444	sig = -sig;
2445
2446	pid = simple_strtol(argv[2], &endp, 0);
2447	if (*endp)
2448		return KDB_BADINT;
2449	if (pid <= 0) {
2450		kdb_printf("Process ID must be large than 0.\n");
2451		return 0;
2452	}
2453
2454	/* Find the process. */
2455	p = find_task_by_pid_ns(pid, &init_pid_ns);
2456	if (!p) {
2457		kdb_printf("The specified process isn't found.\n");
2458		return 0;
2459	}
2460	p = p->group_leader;
2461	kdb_send_sig(p, sig);
 
 
 
 
 
2462	return 0;
2463}
2464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2465/*
2466 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2467 * I cannot call that code directly from kdb, it has an unconditional
2468 * cli()/sti() and calls routines that take locks which can stop the debugger.
2469 */
2470static void kdb_sysinfo(struct sysinfo *val)
2471{
2472	u64 uptime = ktime_get_mono_fast_ns();
2473
2474	memset(val, 0, sizeof(*val));
2475	val->uptime = div_u64(uptime, NSEC_PER_SEC);
2476	val->loads[0] = avenrun[0];
2477	val->loads[1] = avenrun[1];
2478	val->loads[2] = avenrun[2];
2479	val->procs = nr_threads-1;
2480	si_meminfo(val);
2481
2482	return;
2483}
2484
2485/*
2486 * kdb_summary - This function implements the 'summary' command.
2487 */
2488static int kdb_summary(int argc, const char **argv)
2489{
2490	time64_t now;
 
2491	struct sysinfo val;
2492
2493	if (argc)
2494		return KDB_ARGCOUNT;
2495
2496	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2497	kdb_printf("release    %s\n", init_uts_ns.name.release);
2498	kdb_printf("version    %s\n", init_uts_ns.name.version);
2499	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2500	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2501	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
 
 
 
 
 
 
 
 
 
2502
2503	now = __ktime_get_real_seconds();
2504	kdb_printf("date       %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest);
2505	kdb_sysinfo(&val);
2506	kdb_printf("uptime     ");
2507	if (val.uptime > (24*60*60)) {
2508		int days = val.uptime / (24*60*60);
2509		val.uptime %= (24*60*60);
2510		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2511	}
2512	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2513
 
 
 
 
2514	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2515		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2516		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2517		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2518
 
2519	/* Display in kilobytes */
2520#define K(x) ((x) << (PAGE_SHIFT - 10))
2521	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2522		   "Buffers:        %8lu kB\n",
2523		   K(val.totalram), K(val.freeram), K(val.bufferram));
2524	return 0;
2525}
2526
2527/*
2528 * kdb_per_cpu - This function implements the 'per_cpu' command.
2529 */
2530static int kdb_per_cpu(int argc, const char **argv)
2531{
2532	char fmtstr[64];
2533	int cpu, diag, nextarg = 1;
2534	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2535
2536	if (argc < 1 || argc > 3)
2537		return KDB_ARGCOUNT;
2538
2539	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2540	if (diag)
2541		return diag;
2542
2543	if (argc >= 2) {
2544		diag = kdbgetularg(argv[2], &bytesperword);
2545		if (diag)
2546			return diag;
2547	}
2548	if (!bytesperword)
2549		bytesperword = KDB_WORD_SIZE;
2550	else if (bytesperword > KDB_WORD_SIZE)
2551		return KDB_BADWIDTH;
2552	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2553	if (argc >= 3) {
2554		diag = kdbgetularg(argv[3], &whichcpu);
2555		if (diag)
2556			return diag;
2557		if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2558			kdb_printf("cpu %ld is not online\n", whichcpu);
2559			return KDB_BADCPUNUM;
2560		}
2561	}
2562
2563	/* Most architectures use __per_cpu_offset[cpu], some use
2564	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2565	 */
2566#ifdef	__per_cpu_offset
2567#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2568#else
2569#ifdef	CONFIG_SMP
2570#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2571#else
2572#define KDB_PCU(cpu) 0
2573#endif
2574#endif
2575	for_each_online_cpu(cpu) {
2576		if (KDB_FLAG(CMD_INTERRUPT))
2577			return 0;
2578
2579		if (whichcpu != ~0UL && whichcpu != cpu)
2580			continue;
2581		addr = symaddr + KDB_PCU(cpu);
2582		diag = kdb_getword(&val, addr, bytesperword);
2583		if (diag) {
2584			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2585				   "read, diag=%d\n", cpu, addr, diag);
2586			continue;
2587		}
2588		kdb_printf("%5d ", cpu);
2589		kdb_md_line(fmtstr, addr,
2590			bytesperword == KDB_WORD_SIZE,
2591			1, bytesperword, 1, 1, 0);
2592	}
2593#undef KDB_PCU
2594	return 0;
2595}
2596
2597/*
2598 * display help for the use of cmd | grep pattern
2599 */
2600static int kdb_grep_help(int argc, const char **argv)
2601{
2602	kdb_printf("Usage of  cmd args | grep pattern:\n");
2603	kdb_printf("  Any command's output may be filtered through an ");
2604	kdb_printf("emulated 'pipe'.\n");
2605	kdb_printf("  'grep' is just a key word.\n");
2606	kdb_printf("  The pattern may include a very limited set of "
2607		   "metacharacters:\n");
2608	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2609	kdb_printf("  And if there are spaces in the pattern, you may "
2610		   "quote it:\n");
2611	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2612		   " or \"^pat tern$\"\n");
2613	return 0;
2614}
2615
2616/*
2617 * kdb_register_flags - This function is used to register a kernel
2618 * 	debugger command.
2619 * Inputs:
2620 *	cmd	Command name
2621 *	func	Function to execute the command
2622 *	usage	A simple usage string showing arguments
2623 *	help	A simple help string describing command
2624 *	repeat	Does the command auto repeat on enter?
2625 * Returns:
2626 *	zero for success, one if a duplicate command.
2627 */
2628int kdb_register_flags(char *cmd,
2629		       kdb_func_t func,
2630		       char *usage,
2631		       char *help,
2632		       short minlen,
2633		       kdb_cmdflags_t flags)
 
2634{
 
2635	kdbtab_t *kp;
2636
2637	list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2638		if (strcmp(kp->cmd_name, cmd) == 0) {
 
 
 
2639			kdb_printf("Duplicate kdb command registered: "
2640				"%s, func %px help %s\n", cmd, func, help);
2641			return 1;
2642		}
2643	}
2644
2645	kp = kmalloc(sizeof(*kp), GFP_KDB);
2646	if (!kp) {
2647		kdb_printf("Could not allocate new kdb_command table\n");
2648		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2649	}
2650
2651	kp->cmd_name   = cmd;
2652	kp->cmd_func   = func;
2653	kp->cmd_usage  = usage;
2654	kp->cmd_help   = help;
 
2655	kp->cmd_minlen = minlen;
2656	kp->cmd_flags  = flags;
2657	kp->is_dynamic = true;
2658
2659	list_add_tail(&kp->list_node, &kdb_cmds_head);
2660
2661	return 0;
2662}
2663EXPORT_SYMBOL_GPL(kdb_register_flags);
2664
2665/*
2666 * kdb_register_table() - This function is used to register a kdb command
2667 *                        table.
2668 * @kp: pointer to kdb command table
2669 * @len: length of kdb command table
2670 */
2671void kdb_register_table(kdbtab_t *kp, size_t len)
2672{
2673	while (len--) {
2674		list_add_tail(&kp->list_node, &kdb_cmds_head);
2675		kp++;
2676	}
2677}
2678
2679/*
2680 * kdb_register - Compatibility register function for commands that do
2681 *	not need to specify a repeat state.  Equivalent to
2682 *	kdb_register_flags with flags set to 0.
2683 * Inputs:
2684 *	cmd	Command name
2685 *	func	Function to execute the command
2686 *	usage	A simple usage string showing arguments
2687 *	help	A simple help string describing command
2688 * Returns:
2689 *	zero for success, one if a duplicate command.
2690 */
2691int kdb_register(char *cmd,
2692	     kdb_func_t func,
2693	     char *usage,
2694	     char *help,
2695	     short minlen)
2696{
2697	return kdb_register_flags(cmd, func, usage, help, minlen, 0);
 
2698}
2699EXPORT_SYMBOL_GPL(kdb_register);
2700
2701/*
2702 * kdb_unregister - This function is used to unregister a kernel
2703 *	debugger command.  It is generally called when a module which
2704 *	implements kdb commands is unloaded.
2705 * Inputs:
2706 *	cmd	Command name
2707 * Returns:
2708 *	zero for success, one command not registered.
2709 */
2710int kdb_unregister(char *cmd)
2711{
 
2712	kdbtab_t *kp;
2713
2714	/*
2715	 *  find the command.
2716	 */
2717	list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2718		if (strcmp(kp->cmd_name, cmd) == 0) {
2719			list_del(&kp->list_node);
2720			if (kp->is_dynamic)
2721				kfree(kp);
2722			return 0;
2723		}
2724	}
2725
2726	/* Couldn't find it.  */
2727	return 1;
2728}
2729EXPORT_SYMBOL_GPL(kdb_unregister);
2730
2731static kdbtab_t maintab[] = {
2732	{	.cmd_name = "md",
2733		.cmd_func = kdb_md,
2734		.cmd_usage = "<vaddr>",
2735		.cmd_help = "Display Memory Contents, also mdWcN, e.g. md8c1",
2736		.cmd_minlen = 1,
2737		.cmd_flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2738	},
2739	{	.cmd_name = "mdr",
2740		.cmd_func = kdb_md,
2741		.cmd_usage = "<vaddr> <bytes>",
2742		.cmd_help = "Display Raw Memory",
2743		.cmd_flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2744	},
2745	{	.cmd_name = "mdp",
2746		.cmd_func = kdb_md,
2747		.cmd_usage = "<paddr> <bytes>",
2748		.cmd_help = "Display Physical Memory",
2749		.cmd_flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2750	},
2751	{	.cmd_name = "mds",
2752		.cmd_func = kdb_md,
2753		.cmd_usage = "<vaddr>",
2754		.cmd_help = "Display Memory Symbolically",
2755		.cmd_flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2756	},
2757	{	.cmd_name = "mm",
2758		.cmd_func = kdb_mm,
2759		.cmd_usage = "<vaddr> <contents>",
2760		.cmd_help = "Modify Memory Contents",
2761		.cmd_flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS,
2762	},
2763	{	.cmd_name = "go",
2764		.cmd_func = kdb_go,
2765		.cmd_usage = "[<vaddr>]",
2766		.cmd_help = "Continue Execution",
2767		.cmd_minlen = 1,
2768		.cmd_flags = KDB_ENABLE_REG_WRITE |
2769			     KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2770	},
2771	{	.cmd_name = "rd",
2772		.cmd_func = kdb_rd,
2773		.cmd_usage = "",
2774		.cmd_help = "Display Registers",
2775		.cmd_flags = KDB_ENABLE_REG_READ,
2776	},
2777	{	.cmd_name = "rm",
2778		.cmd_func = kdb_rm,
2779		.cmd_usage = "<reg> <contents>",
2780		.cmd_help = "Modify Registers",
2781		.cmd_flags = KDB_ENABLE_REG_WRITE,
2782	},
2783	{	.cmd_name = "ef",
2784		.cmd_func = kdb_ef,
2785		.cmd_usage = "<vaddr>",
2786		.cmd_help = "Display exception frame",
2787		.cmd_flags = KDB_ENABLE_MEM_READ,
2788	},
2789	{	.cmd_name = "bt",
2790		.cmd_func = kdb_bt,
2791		.cmd_usage = "[<vaddr>]",
2792		.cmd_help = "Stack traceback",
2793		.cmd_minlen = 1,
2794		.cmd_flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2795	},
2796	{	.cmd_name = "btp",
2797		.cmd_func = kdb_bt,
2798		.cmd_usage = "<pid>",
2799		.cmd_help = "Display stack for process <pid>",
2800		.cmd_flags = KDB_ENABLE_INSPECT,
2801	},
2802	{	.cmd_name = "bta",
2803		.cmd_func = kdb_bt,
2804		.cmd_usage = "[D|R|S|T|C|Z|E|U|I|M|A]",
2805		.cmd_help = "Backtrace all processes matching state flag",
2806		.cmd_flags = KDB_ENABLE_INSPECT,
2807	},
2808	{	.cmd_name = "btc",
2809		.cmd_func = kdb_bt,
2810		.cmd_usage = "",
2811		.cmd_help = "Backtrace current process on each cpu",
2812		.cmd_flags = KDB_ENABLE_INSPECT,
2813	},
2814	{	.cmd_name = "btt",
2815		.cmd_func = kdb_bt,
2816		.cmd_usage = "<vaddr>",
2817		.cmd_help = "Backtrace process given its struct task address",
2818		.cmd_flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2819	},
2820	{	.cmd_name = "env",
2821		.cmd_func = kdb_env,
2822		.cmd_usage = "",
2823		.cmd_help = "Show environment variables",
2824		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2825	},
2826	{	.cmd_name = "set",
2827		.cmd_func = kdb_set,
2828		.cmd_usage = "",
2829		.cmd_help = "Set environment variables",
2830		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2831	},
2832	{	.cmd_name = "help",
2833		.cmd_func = kdb_help,
2834		.cmd_usage = "",
2835		.cmd_help = "Display Help Message",
2836		.cmd_minlen = 1,
2837		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2838	},
2839	{	.cmd_name = "?",
2840		.cmd_func = kdb_help,
2841		.cmd_usage = "",
2842		.cmd_help = "Display Help Message",
2843		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2844	},
2845	{	.cmd_name = "cpu",
2846		.cmd_func = kdb_cpu,
2847		.cmd_usage = "<cpunum>",
2848		.cmd_help = "Switch to new cpu",
2849		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2850	},
2851	{	.cmd_name = "kgdb",
2852		.cmd_func = kdb_kgdb,
2853		.cmd_usage = "",
2854		.cmd_help = "Enter kgdb mode",
2855		.cmd_flags = 0,
2856	},
2857	{	.cmd_name = "ps",
2858		.cmd_func = kdb_ps,
2859		.cmd_usage = "[<flags>|A]",
2860		.cmd_help = "Display active task list",
2861		.cmd_flags = KDB_ENABLE_INSPECT,
2862	},
2863	{	.cmd_name = "pid",
2864		.cmd_func = kdb_pid,
2865		.cmd_usage = "<pidnum>",
2866		.cmd_help = "Switch to another task",
2867		.cmd_flags = KDB_ENABLE_INSPECT,
2868	},
2869	{	.cmd_name = "reboot",
2870		.cmd_func = kdb_reboot,
2871		.cmd_usage = "",
2872		.cmd_help = "Reboot the machine immediately",
2873		.cmd_flags = KDB_ENABLE_REBOOT,
2874	},
2875#if defined(CONFIG_MODULES)
2876	{	.cmd_name = "lsmod",
2877		.cmd_func = kdb_lsmod,
2878		.cmd_usage = "",
2879		.cmd_help = "List loaded kernel modules",
2880		.cmd_flags = KDB_ENABLE_INSPECT,
2881	},
2882#endif
2883#if defined(CONFIG_MAGIC_SYSRQ)
2884	{	.cmd_name = "sr",
2885		.cmd_func = kdb_sr,
2886		.cmd_usage = "<key>",
2887		.cmd_help = "Magic SysRq key",
2888		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2889	},
2890#endif
2891#if defined(CONFIG_PRINTK)
2892	{	.cmd_name = "dmesg",
2893		.cmd_func = kdb_dmesg,
2894		.cmd_usage = "[lines]",
2895		.cmd_help = "Display syslog buffer",
2896		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2897	},
2898#endif
2899	{	.cmd_name = "defcmd",
2900		.cmd_func = kdb_defcmd,
2901		.cmd_usage = "name \"usage\" \"help\"",
2902		.cmd_help = "Define a set of commands, down to endefcmd",
2903		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2904	},
2905	{	.cmd_name = "kill",
2906		.cmd_func = kdb_kill,
2907		.cmd_usage = "<-signal> <pid>",
2908		.cmd_help = "Send a signal to a process",
2909		.cmd_flags = KDB_ENABLE_SIGNAL,
2910	},
2911	{	.cmd_name = "summary",
2912		.cmd_func = kdb_summary,
2913		.cmd_usage = "",
2914		.cmd_help = "Summarize the system",
2915		.cmd_minlen = 4,
2916		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2917	},
2918	{	.cmd_name = "per_cpu",
2919		.cmd_func = kdb_per_cpu,
2920		.cmd_usage = "<sym> [<bytes>] [<cpu>]",
2921		.cmd_help = "Display per_cpu variables",
2922		.cmd_minlen = 3,
2923		.cmd_flags = KDB_ENABLE_MEM_READ,
2924	},
2925	{	.cmd_name = "grephelp",
2926		.cmd_func = kdb_grep_help,
2927		.cmd_usage = "",
2928		.cmd_help = "Display help on | grep",
2929		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2930	},
2931};
2932
2933static kdbtab_t nmicmd = {
2934	.cmd_name = "disable_nmi",
2935	.cmd_func = kdb_disable_nmi,
2936	.cmd_usage = "",
2937	.cmd_help = "Disable NMI entry to KDB",
2938	.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2939};
2940
2941/* Initialize the kdb command table. */
2942static void __init kdb_inittab(void)
2943{
2944	kdb_register_table(maintab, ARRAY_SIZE(maintab));
2945	if (arch_kgdb_ops.enable_nmi)
2946		kdb_register_table(&nmicmd, 1);
2947}
2948
2949/* Execute any commands defined in kdb_cmds.  */
2950static void __init kdb_cmd_init(void)
2951{
2952	int i, diag;
2953	for (i = 0; kdb_cmds[i]; ++i) {
2954		diag = kdb_parse(kdb_cmds[i]);
2955		if (diag)
2956			kdb_printf("kdb command %s failed, kdb diag %d\n",
2957				kdb_cmds[i], diag);
2958	}
2959	if (defcmd_in_progress) {
2960		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2961		kdb_parse("endefcmd");
2962	}
2963}
2964
2965/* Initialize kdb_printf, breakpoint tables and kdb state */
2966void __init kdb_init(int lvl)
2967{
2968	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2969	int i;
2970
2971	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2972		return;
2973	for (i = kdb_init_lvl; i < lvl; i++) {
2974		switch (i) {
2975		case KDB_NOT_INITIALIZED:
2976			kdb_inittab();		/* Initialize Command Table */
2977			kdb_initbptab();	/* Initialize Breakpoints */
2978			break;
2979		case KDB_INIT_EARLY:
2980			kdb_cmd_init();		/* Build kdb_cmds tables */
2981			break;
2982		}
2983	}
2984	kdb_init_lvl = lvl;
2985}