Loading...
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/kernel.h>
17#include <linux/kmsg_dump.h>
18#include <linux/reboot.h>
19#include <linux/sched.h>
20#include <linux/sysrq.h>
21#include <linux/smp.h>
22#include <linux/utsname.h>
23#include <linux/vmalloc.h>
24#include <linux/module.h>
25#include <linux/mm.h>
26#include <linux/init.h>
27#include <linux/kallsyms.h>
28#include <linux/kgdb.h>
29#include <linux/kdb.h>
30#include <linux/notifier.h>
31#include <linux/interrupt.h>
32#include <linux/delay.h>
33#include <linux/nmi.h>
34#include <linux/time.h>
35#include <linux/ptrace.h>
36#include <linux/sysctl.h>
37#include <linux/cpu.h>
38#include <linux/kdebug.h>
39#include <linux/proc_fs.h>
40#include <linux/uaccess.h>
41#include <linux/slab.h>
42#include "kdb_private.h"
43
44#define GREP_LEN 256
45char kdb_grep_string[GREP_LEN];
46int kdb_grepping_flag;
47EXPORT_SYMBOL(kdb_grepping_flag);
48int kdb_grep_leading;
49int kdb_grep_trailing;
50
51/*
52 * Kernel debugger state flags
53 */
54int kdb_flags;
55atomic_t kdb_event;
56
57/*
58 * kdb_lock protects updates to kdb_initial_cpu. Used to
59 * single thread processors through the kernel debugger.
60 */
61int kdb_initial_cpu = -1; /* cpu number that owns kdb */
62int kdb_nextline = 1;
63int kdb_state; /* General KDB state */
64
65struct task_struct *kdb_current_task;
66EXPORT_SYMBOL(kdb_current_task);
67struct pt_regs *kdb_current_regs;
68
69const char *kdb_diemsg;
70static int kdb_go_count;
71#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
72static unsigned int kdb_continue_catastrophic =
73 CONFIG_KDB_CONTINUE_CATASTROPHIC;
74#else
75static unsigned int kdb_continue_catastrophic;
76#endif
77
78/* kdb_commands describes the available commands. */
79static kdbtab_t *kdb_commands;
80#define KDB_BASE_CMD_MAX 50
81static int kdb_max_commands = KDB_BASE_CMD_MAX;
82static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
83#define for_each_kdbcmd(cmd, num) \
84 for ((cmd) = kdb_base_commands, (num) = 0; \
85 num < kdb_max_commands; \
86 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
87
88typedef struct _kdbmsg {
89 int km_diag; /* kdb diagnostic */
90 char *km_msg; /* Corresponding message text */
91} kdbmsg_t;
92
93#define KDBMSG(msgnum, text) \
94 { KDB_##msgnum, text }
95
96static kdbmsg_t kdbmsgs[] = {
97 KDBMSG(NOTFOUND, "Command Not Found"),
98 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
99 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
100 "8 is only allowed on 64 bit systems"),
101 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
102 KDBMSG(NOTENV, "Cannot find environment variable"),
103 KDBMSG(NOENVVALUE, "Environment variable should have value"),
104 KDBMSG(NOTIMP, "Command not implemented"),
105 KDBMSG(ENVFULL, "Environment full"),
106 KDBMSG(ENVBUFFULL, "Environment buffer full"),
107 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
108#ifdef CONFIG_CPU_XSCALE
109 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
110#else
111 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
112#endif
113 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
114 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
115 KDBMSG(BADMODE, "Invalid IDMODE"),
116 KDBMSG(BADINT, "Illegal numeric value"),
117 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
118 KDBMSG(BADREG, "Invalid register name"),
119 KDBMSG(BADCPUNUM, "Invalid cpu number"),
120 KDBMSG(BADLENGTH, "Invalid length field"),
121 KDBMSG(NOBP, "No Breakpoint exists"),
122 KDBMSG(BADADDR, "Invalid address"),
123};
124#undef KDBMSG
125
126static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);
127
128
129/*
130 * Initial environment. This is all kept static and local to
131 * this file. We don't want to rely on the memory allocation
132 * mechanisms in the kernel, so we use a very limited allocate-only
133 * heap for new and altered environment variables. The entire
134 * environment is limited to a fixed number of entries (add more
135 * to __env[] if required) and a fixed amount of heap (add more to
136 * KDB_ENVBUFSIZE if required).
137 */
138
139static char *__env[] = {
140#if defined(CONFIG_SMP)
141 "PROMPT=[%d]kdb> ",
142 "MOREPROMPT=[%d]more> ",
143#else
144 "PROMPT=kdb> ",
145 "MOREPROMPT=more> ",
146#endif
147 "RADIX=16",
148 "MDCOUNT=8", /* lines of md output */
149 KDB_PLATFORM_ENV,
150 "DTABCOUNT=30",
151 "NOSECT=1",
152 (char *)0,
153 (char *)0,
154 (char *)0,
155 (char *)0,
156 (char *)0,
157 (char *)0,
158 (char *)0,
159 (char *)0,
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176};
177
178static const int __nenv = (sizeof(__env) / sizeof(char *));
179
180struct task_struct *kdb_curr_task(int cpu)
181{
182 struct task_struct *p = curr_task(cpu);
183#ifdef _TIF_MCA_INIT
184 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
185 p = krp->p;
186#endif
187 return p;
188}
189
190/*
191 * kdbgetenv - This function will return the character string value of
192 * an environment variable.
193 * Parameters:
194 * match A character string representing an environment variable.
195 * Returns:
196 * NULL No environment variable matches 'match'
197 * char* Pointer to string value of environment variable.
198 */
199char *kdbgetenv(const char *match)
200{
201 char **ep = __env;
202 int matchlen = strlen(match);
203 int i;
204
205 for (i = 0; i < __nenv; i++) {
206 char *e = *ep++;
207
208 if (!e)
209 continue;
210
211 if ((strncmp(match, e, matchlen) == 0)
212 && ((e[matchlen] == '\0')
213 || (e[matchlen] == '='))) {
214 char *cp = strchr(e, '=');
215 return cp ? ++cp : "";
216 }
217 }
218 return NULL;
219}
220
221/*
222 * kdballocenv - This function is used to allocate bytes for
223 * environment entries.
224 * Parameters:
225 * match A character string representing a numeric value
226 * Outputs:
227 * *value the unsigned long representation of the env variable 'match'
228 * Returns:
229 * Zero on success, a kdb diagnostic on failure.
230 * Remarks:
231 * We use a static environment buffer (envbuffer) to hold the values
232 * of dynamically generated environment variables (see kdb_set). Buffer
233 * space once allocated is never free'd, so over time, the amount of space
234 * (currently 512 bytes) will be exhausted if env variables are changed
235 * frequently.
236 */
237static char *kdballocenv(size_t bytes)
238{
239#define KDB_ENVBUFSIZE 512
240 static char envbuffer[KDB_ENVBUFSIZE];
241 static int envbufsize;
242 char *ep = NULL;
243
244 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
245 ep = &envbuffer[envbufsize];
246 envbufsize += bytes;
247 }
248 return ep;
249}
250
251/*
252 * kdbgetulenv - This function will return the value of an unsigned
253 * long-valued environment variable.
254 * Parameters:
255 * match A character string representing a numeric value
256 * Outputs:
257 * *value the unsigned long represntation of the env variable 'match'
258 * Returns:
259 * Zero on success, a kdb diagnostic on failure.
260 */
261static int kdbgetulenv(const char *match, unsigned long *value)
262{
263 char *ep;
264
265 ep = kdbgetenv(match);
266 if (!ep)
267 return KDB_NOTENV;
268 if (strlen(ep) == 0)
269 return KDB_NOENVVALUE;
270
271 *value = simple_strtoul(ep, NULL, 0);
272
273 return 0;
274}
275
276/*
277 * kdbgetintenv - This function will return the value of an
278 * integer-valued environment variable.
279 * Parameters:
280 * match A character string representing an integer-valued env variable
281 * Outputs:
282 * *value the integer representation of the environment variable 'match'
283 * Returns:
284 * Zero on success, a kdb diagnostic on failure.
285 */
286int kdbgetintenv(const char *match, int *value)
287{
288 unsigned long val;
289 int diag;
290
291 diag = kdbgetulenv(match, &val);
292 if (!diag)
293 *value = (int) val;
294 return diag;
295}
296
297/*
298 * kdbgetularg - This function will convert a numeric string into an
299 * unsigned long value.
300 * Parameters:
301 * arg A character string representing a numeric value
302 * Outputs:
303 * *value the unsigned long represntation of arg.
304 * Returns:
305 * Zero on success, a kdb diagnostic on failure.
306 */
307int kdbgetularg(const char *arg, unsigned long *value)
308{
309 char *endp;
310 unsigned long val;
311
312 val = simple_strtoul(arg, &endp, 0);
313
314 if (endp == arg) {
315 /*
316 * Also try base 16, for us folks too lazy to type the
317 * leading 0x...
318 */
319 val = simple_strtoul(arg, &endp, 16);
320 if (endp == arg)
321 return KDB_BADINT;
322 }
323
324 *value = val;
325
326 return 0;
327}
328
329int kdbgetu64arg(const char *arg, u64 *value)
330{
331 char *endp;
332 u64 val;
333
334 val = simple_strtoull(arg, &endp, 0);
335
336 if (endp == arg) {
337
338 val = simple_strtoull(arg, &endp, 16);
339 if (endp == arg)
340 return KDB_BADINT;
341 }
342
343 *value = val;
344
345 return 0;
346}
347
348/*
349 * kdb_set - This function implements the 'set' command. Alter an
350 * existing environment variable or create a new one.
351 */
352int kdb_set(int argc, const char **argv)
353{
354 int i;
355 char *ep;
356 size_t varlen, vallen;
357
358 /*
359 * we can be invoked two ways:
360 * set var=value argv[1]="var", argv[2]="value"
361 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
362 * - if the latter, shift 'em down.
363 */
364 if (argc == 3) {
365 argv[2] = argv[3];
366 argc--;
367 }
368
369 if (argc != 2)
370 return KDB_ARGCOUNT;
371
372 /*
373 * Check for internal variables
374 */
375 if (strcmp(argv[1], "KDBDEBUG") == 0) {
376 unsigned int debugflags;
377 char *cp;
378
379 debugflags = simple_strtoul(argv[2], &cp, 0);
380 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
381 kdb_printf("kdb: illegal debug flags '%s'\n",
382 argv[2]);
383 return 0;
384 }
385 kdb_flags = (kdb_flags &
386 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
387 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
388
389 return 0;
390 }
391
392 /*
393 * Tokenizer squashed the '=' sign. argv[1] is variable
394 * name, argv[2] = value.
395 */
396 varlen = strlen(argv[1]);
397 vallen = strlen(argv[2]);
398 ep = kdballocenv(varlen + vallen + 2);
399 if (ep == (char *)0)
400 return KDB_ENVBUFFULL;
401
402 sprintf(ep, "%s=%s", argv[1], argv[2]);
403
404 ep[varlen+vallen+1] = '\0';
405
406 for (i = 0; i < __nenv; i++) {
407 if (__env[i]
408 && ((strncmp(__env[i], argv[1], varlen) == 0)
409 && ((__env[i][varlen] == '\0')
410 || (__env[i][varlen] == '=')))) {
411 __env[i] = ep;
412 return 0;
413 }
414 }
415
416 /*
417 * Wasn't existing variable. Fit into slot.
418 */
419 for (i = 0; i < __nenv-1; i++) {
420 if (__env[i] == (char *)0) {
421 __env[i] = ep;
422 return 0;
423 }
424 }
425
426 return KDB_ENVFULL;
427}
428
429static int kdb_check_regs(void)
430{
431 if (!kdb_current_regs) {
432 kdb_printf("No current kdb registers."
433 " You may need to select another task\n");
434 return KDB_BADREG;
435 }
436 return 0;
437}
438
439/*
440 * kdbgetaddrarg - This function is responsible for parsing an
441 * address-expression and returning the value of the expression,
442 * symbol name, and offset to the caller.
443 *
444 * The argument may consist of a numeric value (decimal or
445 * hexidecimal), a symbol name, a register name (preceded by the
446 * percent sign), an environment variable with a numeric value
447 * (preceded by a dollar sign) or a simple arithmetic expression
448 * consisting of a symbol name, +/-, and a numeric constant value
449 * (offset).
450 * Parameters:
451 * argc - count of arguments in argv
452 * argv - argument vector
453 * *nextarg - index to next unparsed argument in argv[]
454 * regs - Register state at time of KDB entry
455 * Outputs:
456 * *value - receives the value of the address-expression
457 * *offset - receives the offset specified, if any
458 * *name - receives the symbol name, if any
459 * *nextarg - index to next unparsed argument in argv[]
460 * Returns:
461 * zero is returned on success, a kdb diagnostic code is
462 * returned on error.
463 */
464int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
465 unsigned long *value, long *offset,
466 char **name)
467{
468 unsigned long addr;
469 unsigned long off = 0;
470 int positive;
471 int diag;
472 int found = 0;
473 char *symname;
474 char symbol = '\0';
475 char *cp;
476 kdb_symtab_t symtab;
477
478 /*
479 * Process arguments which follow the following syntax:
480 *
481 * symbol | numeric-address [+/- numeric-offset]
482 * %register
483 * $environment-variable
484 */
485
486 if (*nextarg > argc)
487 return KDB_ARGCOUNT;
488
489 symname = (char *)argv[*nextarg];
490
491 /*
492 * If there is no whitespace between the symbol
493 * or address and the '+' or '-' symbols, we
494 * remember the character and replace it with a
495 * null so the symbol/value can be properly parsed
496 */
497 cp = strpbrk(symname, "+-");
498 if (cp != NULL) {
499 symbol = *cp;
500 *cp++ = '\0';
501 }
502
503 if (symname[0] == '$') {
504 diag = kdbgetulenv(&symname[1], &addr);
505 if (diag)
506 return diag;
507 } else if (symname[0] == '%') {
508 diag = kdb_check_regs();
509 if (diag)
510 return diag;
511 /* Implement register values with % at a later time as it is
512 * arch optional.
513 */
514 return KDB_NOTIMP;
515 } else {
516 found = kdbgetsymval(symname, &symtab);
517 if (found) {
518 addr = symtab.sym_start;
519 } else {
520 diag = kdbgetularg(argv[*nextarg], &addr);
521 if (diag)
522 return diag;
523 }
524 }
525
526 if (!found)
527 found = kdbnearsym(addr, &symtab);
528
529 (*nextarg)++;
530
531 if (name)
532 *name = symname;
533 if (value)
534 *value = addr;
535 if (offset && name && *name)
536 *offset = addr - symtab.sym_start;
537
538 if ((*nextarg > argc)
539 && (symbol == '\0'))
540 return 0;
541
542 /*
543 * check for +/- and offset
544 */
545
546 if (symbol == '\0') {
547 if ((argv[*nextarg][0] != '+')
548 && (argv[*nextarg][0] != '-')) {
549 /*
550 * Not our argument. Return.
551 */
552 return 0;
553 } else {
554 positive = (argv[*nextarg][0] == '+');
555 (*nextarg)++;
556 }
557 } else
558 positive = (symbol == '+');
559
560 /*
561 * Now there must be an offset!
562 */
563 if ((*nextarg > argc)
564 && (symbol == '\0')) {
565 return KDB_INVADDRFMT;
566 }
567
568 if (!symbol) {
569 cp = (char *)argv[*nextarg];
570 (*nextarg)++;
571 }
572
573 diag = kdbgetularg(cp, &off);
574 if (diag)
575 return diag;
576
577 if (!positive)
578 off = -off;
579
580 if (offset)
581 *offset += off;
582
583 if (value)
584 *value += off;
585
586 return 0;
587}
588
589static void kdb_cmderror(int diag)
590{
591 int i;
592
593 if (diag >= 0) {
594 kdb_printf("no error detected (diagnostic is %d)\n", diag);
595 return;
596 }
597
598 for (i = 0; i < __nkdb_err; i++) {
599 if (kdbmsgs[i].km_diag == diag) {
600 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
601 return;
602 }
603 }
604
605 kdb_printf("Unknown diag %d\n", -diag);
606}
607
608/*
609 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
610 * command which defines one command as a set of other commands,
611 * terminated by endefcmd. kdb_defcmd processes the initial
612 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
613 * the following commands until 'endefcmd'.
614 * Inputs:
615 * argc argument count
616 * argv argument vector
617 * Returns:
618 * zero for success, a kdb diagnostic if error
619 */
620struct defcmd_set {
621 int count;
622 int usable;
623 char *name;
624 char *usage;
625 char *help;
626 char **command;
627};
628static struct defcmd_set *defcmd_set;
629static int defcmd_set_count;
630static int defcmd_in_progress;
631
632/* Forward references */
633static int kdb_exec_defcmd(int argc, const char **argv);
634
635static int kdb_defcmd2(const char *cmdstr, const char *argv0)
636{
637 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
638 char **save_command = s->command;
639 if (strcmp(argv0, "endefcmd") == 0) {
640 defcmd_in_progress = 0;
641 if (!s->count)
642 s->usable = 0;
643 if (s->usable)
644 kdb_register(s->name, kdb_exec_defcmd,
645 s->usage, s->help, 0);
646 return 0;
647 }
648 if (!s->usable)
649 return KDB_NOTIMP;
650 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
651 if (!s->command) {
652 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
653 cmdstr);
654 s->usable = 0;
655 return KDB_NOTIMP;
656 }
657 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
658 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
659 kfree(save_command);
660 return 0;
661}
662
663static int kdb_defcmd(int argc, const char **argv)
664{
665 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
666 if (defcmd_in_progress) {
667 kdb_printf("kdb: nested defcmd detected, assuming missing "
668 "endefcmd\n");
669 kdb_defcmd2("endefcmd", "endefcmd");
670 }
671 if (argc == 0) {
672 int i;
673 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
674 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
675 s->usage, s->help);
676 for (i = 0; i < s->count; ++i)
677 kdb_printf("%s", s->command[i]);
678 kdb_printf("endefcmd\n");
679 }
680 return 0;
681 }
682 if (argc != 3)
683 return KDB_ARGCOUNT;
684 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
685 GFP_KDB);
686 if (!defcmd_set) {
687 kdb_printf("Could not allocate new defcmd_set entry for %s\n",
688 argv[1]);
689 defcmd_set = save_defcmd_set;
690 return KDB_NOTIMP;
691 }
692 memcpy(defcmd_set, save_defcmd_set,
693 defcmd_set_count * sizeof(*defcmd_set));
694 kfree(save_defcmd_set);
695 s = defcmd_set + defcmd_set_count;
696 memset(s, 0, sizeof(*s));
697 s->usable = 1;
698 s->name = kdb_strdup(argv[1], GFP_KDB);
699 s->usage = kdb_strdup(argv[2], GFP_KDB);
700 s->help = kdb_strdup(argv[3], GFP_KDB);
701 if (s->usage[0] == '"') {
702 strcpy(s->usage, s->usage+1);
703 s->usage[strlen(s->usage)-1] = '\0';
704 }
705 if (s->help[0] == '"') {
706 strcpy(s->help, s->help+1);
707 s->help[strlen(s->help)-1] = '\0';
708 }
709 ++defcmd_set_count;
710 defcmd_in_progress = 1;
711 return 0;
712}
713
714/*
715 * kdb_exec_defcmd - Execute the set of commands associated with this
716 * defcmd name.
717 * Inputs:
718 * argc argument count
719 * argv argument vector
720 * Returns:
721 * zero for success, a kdb diagnostic if error
722 */
723static int kdb_exec_defcmd(int argc, const char **argv)
724{
725 int i, ret;
726 struct defcmd_set *s;
727 if (argc != 0)
728 return KDB_ARGCOUNT;
729 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
730 if (strcmp(s->name, argv[0]) == 0)
731 break;
732 }
733 if (i == defcmd_set_count) {
734 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
735 argv[0]);
736 return KDB_NOTIMP;
737 }
738 for (i = 0; i < s->count; ++i) {
739 /* Recursive use of kdb_parse, do not use argv after
740 * this point */
741 argv = NULL;
742 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
743 ret = kdb_parse(s->command[i]);
744 if (ret)
745 return ret;
746 }
747 return 0;
748}
749
750/* Command history */
751#define KDB_CMD_HISTORY_COUNT 32
752#define CMD_BUFLEN 200 /* kdb_printf: max printline
753 * size == 256 */
754static unsigned int cmd_head, cmd_tail;
755static unsigned int cmdptr;
756static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
757static char cmd_cur[CMD_BUFLEN];
758
759/*
760 * The "str" argument may point to something like | grep xyz
761 */
762static void parse_grep(const char *str)
763{
764 int len;
765 char *cp = (char *)str, *cp2;
766
767 /* sanity check: we should have been called with the \ first */
768 if (*cp != '|')
769 return;
770 cp++;
771 while (isspace(*cp))
772 cp++;
773 if (strncmp(cp, "grep ", 5)) {
774 kdb_printf("invalid 'pipe', see grephelp\n");
775 return;
776 }
777 cp += 5;
778 while (isspace(*cp))
779 cp++;
780 cp2 = strchr(cp, '\n');
781 if (cp2)
782 *cp2 = '\0'; /* remove the trailing newline */
783 len = strlen(cp);
784 if (len == 0) {
785 kdb_printf("invalid 'pipe', see grephelp\n");
786 return;
787 }
788 /* now cp points to a nonzero length search string */
789 if (*cp == '"') {
790 /* allow it be "x y z" by removing the "'s - there must
791 be two of them */
792 cp++;
793 cp2 = strchr(cp, '"');
794 if (!cp2) {
795 kdb_printf("invalid quoted string, see grephelp\n");
796 return;
797 }
798 *cp2 = '\0'; /* end the string where the 2nd " was */
799 }
800 kdb_grep_leading = 0;
801 if (*cp == '^') {
802 kdb_grep_leading = 1;
803 cp++;
804 }
805 len = strlen(cp);
806 kdb_grep_trailing = 0;
807 if (*(cp+len-1) == '$') {
808 kdb_grep_trailing = 1;
809 *(cp+len-1) = '\0';
810 }
811 len = strlen(cp);
812 if (!len)
813 return;
814 if (len >= GREP_LEN) {
815 kdb_printf("search string too long\n");
816 return;
817 }
818 strcpy(kdb_grep_string, cp);
819 kdb_grepping_flag++;
820 return;
821}
822
823/*
824 * kdb_parse - Parse the command line, search the command table for a
825 * matching command and invoke the command function. This
826 * function may be called recursively, if it is, the second call
827 * will overwrite argv and cbuf. It is the caller's
828 * responsibility to save their argv if they recursively call
829 * kdb_parse().
830 * Parameters:
831 * cmdstr The input command line to be parsed.
832 * regs The registers at the time kdb was entered.
833 * Returns:
834 * Zero for success, a kdb diagnostic if failure.
835 * Remarks:
836 * Limited to 20 tokens.
837 *
838 * Real rudimentary tokenization. Basically only whitespace
839 * is considered a token delimeter (but special consideration
840 * is taken of the '=' sign as used by the 'set' command).
841 *
842 * The algorithm used to tokenize the input string relies on
843 * there being at least one whitespace (or otherwise useless)
844 * character between tokens as the character immediately following
845 * the token is altered in-place to a null-byte to terminate the
846 * token string.
847 */
848
849#define MAXARGC 20
850
851int kdb_parse(const char *cmdstr)
852{
853 static char *argv[MAXARGC];
854 static int argc;
855 static char cbuf[CMD_BUFLEN+2];
856 char *cp;
857 char *cpp, quoted;
858 kdbtab_t *tp;
859 int i, escaped, ignore_errors = 0, check_grep;
860
861 /*
862 * First tokenize the command string.
863 */
864 cp = (char *)cmdstr;
865 kdb_grepping_flag = check_grep = 0;
866
867 if (KDB_FLAG(CMD_INTERRUPT)) {
868 /* Previous command was interrupted, newline must not
869 * repeat the command */
870 KDB_FLAG_CLEAR(CMD_INTERRUPT);
871 KDB_STATE_SET(PAGER);
872 argc = 0; /* no repeat */
873 }
874
875 if (*cp != '\n' && *cp != '\0') {
876 argc = 0;
877 cpp = cbuf;
878 while (*cp) {
879 /* skip whitespace */
880 while (isspace(*cp))
881 cp++;
882 if ((*cp == '\0') || (*cp == '\n') ||
883 (*cp == '#' && !defcmd_in_progress))
884 break;
885 /* special case: check for | grep pattern */
886 if (*cp == '|') {
887 check_grep++;
888 break;
889 }
890 if (cpp >= cbuf + CMD_BUFLEN) {
891 kdb_printf("kdb_parse: command buffer "
892 "overflow, command ignored\n%s\n",
893 cmdstr);
894 return KDB_NOTFOUND;
895 }
896 if (argc >= MAXARGC - 1) {
897 kdb_printf("kdb_parse: too many arguments, "
898 "command ignored\n%s\n", cmdstr);
899 return KDB_NOTFOUND;
900 }
901 argv[argc++] = cpp;
902 escaped = 0;
903 quoted = '\0';
904 /* Copy to next unquoted and unescaped
905 * whitespace or '=' */
906 while (*cp && *cp != '\n' &&
907 (escaped || quoted || !isspace(*cp))) {
908 if (cpp >= cbuf + CMD_BUFLEN)
909 break;
910 if (escaped) {
911 escaped = 0;
912 *cpp++ = *cp++;
913 continue;
914 }
915 if (*cp == '\\') {
916 escaped = 1;
917 ++cp;
918 continue;
919 }
920 if (*cp == quoted)
921 quoted = '\0';
922 else if (*cp == '\'' || *cp == '"')
923 quoted = *cp;
924 *cpp = *cp++;
925 if (*cpp == '=' && !quoted)
926 break;
927 ++cpp;
928 }
929 *cpp++ = '\0'; /* Squash a ws or '=' character */
930 }
931 }
932 if (!argc)
933 return 0;
934 if (check_grep)
935 parse_grep(cp);
936 if (defcmd_in_progress) {
937 int result = kdb_defcmd2(cmdstr, argv[0]);
938 if (!defcmd_in_progress) {
939 argc = 0; /* avoid repeat on endefcmd */
940 *(argv[0]) = '\0';
941 }
942 return result;
943 }
944 if (argv[0][0] == '-' && argv[0][1] &&
945 (argv[0][1] < '0' || argv[0][1] > '9')) {
946 ignore_errors = 1;
947 ++argv[0];
948 }
949
950 for_each_kdbcmd(tp, i) {
951 if (tp->cmd_name) {
952 /*
953 * If this command is allowed to be abbreviated,
954 * check to see if this is it.
955 */
956
957 if (tp->cmd_minlen
958 && (strlen(argv[0]) <= tp->cmd_minlen)) {
959 if (strncmp(argv[0],
960 tp->cmd_name,
961 tp->cmd_minlen) == 0) {
962 break;
963 }
964 }
965
966 if (strcmp(argv[0], tp->cmd_name) == 0)
967 break;
968 }
969 }
970
971 /*
972 * If we don't find a command by this name, see if the first
973 * few characters of this match any of the known commands.
974 * e.g., md1c20 should match md.
975 */
976 if (i == kdb_max_commands) {
977 for_each_kdbcmd(tp, i) {
978 if (tp->cmd_name) {
979 if (strncmp(argv[0],
980 tp->cmd_name,
981 strlen(tp->cmd_name)) == 0) {
982 break;
983 }
984 }
985 }
986 }
987
988 if (i < kdb_max_commands) {
989 int result;
990 KDB_STATE_SET(CMD);
991 result = (*tp->cmd_func)(argc-1, (const char **)argv);
992 if (result && ignore_errors && result > KDB_CMD_GO)
993 result = 0;
994 KDB_STATE_CLEAR(CMD);
995 switch (tp->cmd_repeat) {
996 case KDB_REPEAT_NONE:
997 argc = 0;
998 if (argv[0])
999 *(argv[0]) = '\0';
1000 break;
1001 case KDB_REPEAT_NO_ARGS:
1002 argc = 1;
1003 if (argv[1])
1004 *(argv[1]) = '\0';
1005 break;
1006 case KDB_REPEAT_WITH_ARGS:
1007 break;
1008 }
1009 return result;
1010 }
1011
1012 /*
1013 * If the input with which we were presented does not
1014 * map to an existing command, attempt to parse it as an
1015 * address argument and display the result. Useful for
1016 * obtaining the address of a variable, or the nearest symbol
1017 * to an address contained in a register.
1018 */
1019 {
1020 unsigned long value;
1021 char *name = NULL;
1022 long offset;
1023 int nextarg = 0;
1024
1025 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1026 &value, &offset, &name)) {
1027 return KDB_NOTFOUND;
1028 }
1029
1030 kdb_printf("%s = ", argv[0]);
1031 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1032 kdb_printf("\n");
1033 return 0;
1034 }
1035}
1036
1037
1038static int handle_ctrl_cmd(char *cmd)
1039{
1040#define CTRL_P 16
1041#define CTRL_N 14
1042
1043 /* initial situation */
1044 if (cmd_head == cmd_tail)
1045 return 0;
1046 switch (*cmd) {
1047 case CTRL_P:
1048 if (cmdptr != cmd_tail)
1049 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1050 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1051 return 1;
1052 case CTRL_N:
1053 if (cmdptr != cmd_head)
1054 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1055 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1056 return 1;
1057 }
1058 return 0;
1059}
1060
1061/*
1062 * kdb_reboot - This function implements the 'reboot' command. Reboot
1063 * the system immediately, or loop for ever on failure.
1064 */
1065static int kdb_reboot(int argc, const char **argv)
1066{
1067 emergency_restart();
1068 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1069 while (1)
1070 cpu_relax();
1071 /* NOTREACHED */
1072 return 0;
1073}
1074
1075static void kdb_dumpregs(struct pt_regs *regs)
1076{
1077 int old_lvl = console_loglevel;
1078 console_loglevel = 15;
1079 kdb_trap_printk++;
1080 show_regs(regs);
1081 kdb_trap_printk--;
1082 kdb_printf("\n");
1083 console_loglevel = old_lvl;
1084}
1085
1086void kdb_set_current_task(struct task_struct *p)
1087{
1088 kdb_current_task = p;
1089
1090 if (kdb_task_has_cpu(p)) {
1091 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1092 return;
1093 }
1094 kdb_current_regs = NULL;
1095}
1096
1097/*
1098 * kdb_local - The main code for kdb. This routine is invoked on a
1099 * specific processor, it is not global. The main kdb() routine
1100 * ensures that only one processor at a time is in this routine.
1101 * This code is called with the real reason code on the first
1102 * entry to a kdb session, thereafter it is called with reason
1103 * SWITCH, even if the user goes back to the original cpu.
1104 * Inputs:
1105 * reason The reason KDB was invoked
1106 * error The hardware-defined error code
1107 * regs The exception frame at time of fault/breakpoint.
1108 * db_result Result code from the break or debug point.
1109 * Returns:
1110 * 0 KDB was invoked for an event which it wasn't responsible
1111 * 1 KDB handled the event for which it was invoked.
1112 * KDB_CMD_GO User typed 'go'.
1113 * KDB_CMD_CPU User switched to another cpu.
1114 * KDB_CMD_SS Single step.
1115 * KDB_CMD_SSB Single step until branch.
1116 */
1117static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1118 kdb_dbtrap_t db_result)
1119{
1120 char *cmdbuf;
1121 int diag;
1122 struct task_struct *kdb_current =
1123 kdb_curr_task(raw_smp_processor_id());
1124
1125 KDB_DEBUG_STATE("kdb_local 1", reason);
1126 kdb_go_count = 0;
1127 if (reason == KDB_REASON_DEBUG) {
1128 /* special case below */
1129 } else {
1130 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1131 kdb_current, kdb_current ? kdb_current->pid : 0);
1132#if defined(CONFIG_SMP)
1133 kdb_printf("on processor %d ", raw_smp_processor_id());
1134#endif
1135 }
1136
1137 switch (reason) {
1138 case KDB_REASON_DEBUG:
1139 {
1140 /*
1141 * If re-entering kdb after a single step
1142 * command, don't print the message.
1143 */
1144 switch (db_result) {
1145 case KDB_DB_BPT:
1146 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1147 kdb_current, kdb_current->pid);
1148#if defined(CONFIG_SMP)
1149 kdb_printf("on processor %d ", raw_smp_processor_id());
1150#endif
1151 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1152 instruction_pointer(regs));
1153 break;
1154 case KDB_DB_SSB:
1155 /*
1156 * In the midst of ssb command. Just return.
1157 */
1158 KDB_DEBUG_STATE("kdb_local 3", reason);
1159 return KDB_CMD_SSB; /* Continue with SSB command */
1160
1161 break;
1162 case KDB_DB_SS:
1163 break;
1164 case KDB_DB_SSBPT:
1165 KDB_DEBUG_STATE("kdb_local 4", reason);
1166 return 1; /* kdba_db_trap did the work */
1167 default:
1168 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1169 db_result);
1170 break;
1171 }
1172
1173 }
1174 break;
1175 case KDB_REASON_ENTER:
1176 if (KDB_STATE(KEYBOARD))
1177 kdb_printf("due to Keyboard Entry\n");
1178 else
1179 kdb_printf("due to KDB_ENTER()\n");
1180 break;
1181 case KDB_REASON_KEYBOARD:
1182 KDB_STATE_SET(KEYBOARD);
1183 kdb_printf("due to Keyboard Entry\n");
1184 break;
1185 case KDB_REASON_ENTER_SLAVE:
1186 /* drop through, slaves only get released via cpu switch */
1187 case KDB_REASON_SWITCH:
1188 kdb_printf("due to cpu switch\n");
1189 break;
1190 case KDB_REASON_OOPS:
1191 kdb_printf("Oops: %s\n", kdb_diemsg);
1192 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1193 instruction_pointer(regs));
1194 kdb_dumpregs(regs);
1195 break;
1196 case KDB_REASON_NMI:
1197 kdb_printf("due to NonMaskable Interrupt @ "
1198 kdb_machreg_fmt "\n",
1199 instruction_pointer(regs));
1200 kdb_dumpregs(regs);
1201 break;
1202 case KDB_REASON_SSTEP:
1203 case KDB_REASON_BREAK:
1204 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1205 reason == KDB_REASON_BREAK ?
1206 "Breakpoint" : "SS trap", instruction_pointer(regs));
1207 /*
1208 * Determine if this breakpoint is one that we
1209 * are interested in.
1210 */
1211 if (db_result != KDB_DB_BPT) {
1212 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1213 db_result);
1214 KDB_DEBUG_STATE("kdb_local 6", reason);
1215 return 0; /* Not for us, dismiss it */
1216 }
1217 break;
1218 case KDB_REASON_RECURSE:
1219 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1220 instruction_pointer(regs));
1221 break;
1222 default:
1223 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1224 KDB_DEBUG_STATE("kdb_local 8", reason);
1225 return 0; /* Not for us, dismiss it */
1226 }
1227
1228 while (1) {
1229 /*
1230 * Initialize pager context.
1231 */
1232 kdb_nextline = 1;
1233 KDB_STATE_CLEAR(SUPPRESS);
1234
1235 cmdbuf = cmd_cur;
1236 *cmdbuf = '\0';
1237 *(cmd_hist[cmd_head]) = '\0';
1238
1239 if (KDB_FLAG(ONLY_DO_DUMP)) {
1240 /* kdb is off but a catastrophic error requires a dump.
1241 * Take the dump and reboot.
1242 * Turn on logging so the kdb output appears in the log
1243 * buffer in the dump.
1244 */
1245 const char *setargs[] = { "set", "LOGGING", "1" };
1246 kdb_set(2, setargs);
1247 kdb_reboot(0, NULL);
1248 /*NOTREACHED*/
1249 }
1250
1251do_full_getstr:
1252#if defined(CONFIG_SMP)
1253 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1254 raw_smp_processor_id());
1255#else
1256 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1257#endif
1258 if (defcmd_in_progress)
1259 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1260
1261 /*
1262 * Fetch command from keyboard
1263 */
1264 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1265 if (*cmdbuf != '\n') {
1266 if (*cmdbuf < 32) {
1267 if (cmdptr == cmd_head) {
1268 strncpy(cmd_hist[cmd_head], cmd_cur,
1269 CMD_BUFLEN);
1270 *(cmd_hist[cmd_head] +
1271 strlen(cmd_hist[cmd_head])-1) = '\0';
1272 }
1273 if (!handle_ctrl_cmd(cmdbuf))
1274 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1275 cmdbuf = cmd_cur;
1276 goto do_full_getstr;
1277 } else {
1278 strncpy(cmd_hist[cmd_head], cmd_cur,
1279 CMD_BUFLEN);
1280 }
1281
1282 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1283 if (cmd_head == cmd_tail)
1284 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1285 }
1286
1287 cmdptr = cmd_head;
1288 diag = kdb_parse(cmdbuf);
1289 if (diag == KDB_NOTFOUND) {
1290 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1291 diag = 0;
1292 }
1293 if (diag == KDB_CMD_GO
1294 || diag == KDB_CMD_CPU
1295 || diag == KDB_CMD_SS
1296 || diag == KDB_CMD_SSB
1297 || diag == KDB_CMD_KGDB)
1298 break;
1299
1300 if (diag)
1301 kdb_cmderror(diag);
1302 }
1303 KDB_DEBUG_STATE("kdb_local 9", diag);
1304 return diag;
1305}
1306
1307
1308/*
1309 * kdb_print_state - Print the state data for the current processor
1310 * for debugging.
1311 * Inputs:
1312 * text Identifies the debug point
1313 * value Any integer value to be printed, e.g. reason code.
1314 */
1315void kdb_print_state(const char *text, int value)
1316{
1317 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1318 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1319 kdb_state);
1320}
1321
1322/*
1323 * kdb_main_loop - After initial setup and assignment of the
1324 * controlling cpu, all cpus are in this loop. One cpu is in
1325 * control and will issue the kdb prompt, the others will spin
1326 * until 'go' or cpu switch.
1327 *
1328 * To get a consistent view of the kernel stacks for all
1329 * processes, this routine is invoked from the main kdb code via
1330 * an architecture specific routine. kdba_main_loop is
1331 * responsible for making the kernel stacks consistent for all
1332 * processes, there should be no difference between a blocked
1333 * process and a running process as far as kdb is concerned.
1334 * Inputs:
1335 * reason The reason KDB was invoked
1336 * error The hardware-defined error code
1337 * reason2 kdb's current reason code.
1338 * Initially error but can change
1339 * according to kdb state.
1340 * db_result Result code from break or debug point.
1341 * regs The exception frame at time of fault/breakpoint.
1342 * should always be valid.
1343 * Returns:
1344 * 0 KDB was invoked for an event which it wasn't responsible
1345 * 1 KDB handled the event for which it was invoked.
1346 */
1347int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1348 kdb_dbtrap_t db_result, struct pt_regs *regs)
1349{
1350 int result = 1;
1351 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1352 while (1) {
1353 /*
1354 * All processors except the one that is in control
1355 * will spin here.
1356 */
1357 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1358 while (KDB_STATE(HOLD_CPU)) {
1359 /* state KDB is turned off by kdb_cpu to see if the
1360 * other cpus are still live, each cpu in this loop
1361 * turns it back on.
1362 */
1363 if (!KDB_STATE(KDB))
1364 KDB_STATE_SET(KDB);
1365 }
1366
1367 KDB_STATE_CLEAR(SUPPRESS);
1368 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1369 if (KDB_STATE(LEAVING))
1370 break; /* Another cpu said 'go' */
1371 /* Still using kdb, this processor is in control */
1372 result = kdb_local(reason2, error, regs, db_result);
1373 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1374
1375 if (result == KDB_CMD_CPU)
1376 break;
1377
1378 if (result == KDB_CMD_SS) {
1379 KDB_STATE_SET(DOING_SS);
1380 break;
1381 }
1382
1383 if (result == KDB_CMD_SSB) {
1384 KDB_STATE_SET(DOING_SS);
1385 KDB_STATE_SET(DOING_SSB);
1386 break;
1387 }
1388
1389 if (result == KDB_CMD_KGDB) {
1390 if (!KDB_STATE(DOING_KGDB))
1391 kdb_printf("Entering please attach debugger "
1392 "or use $D#44+ or $3#33\n");
1393 break;
1394 }
1395 if (result && result != 1 && result != KDB_CMD_GO)
1396 kdb_printf("\nUnexpected kdb_local return code %d\n",
1397 result);
1398 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1399 break;
1400 }
1401 if (KDB_STATE(DOING_SS))
1402 KDB_STATE_CLEAR(SSBPT);
1403
1404 /* Clean up any keyboard devices before leaving */
1405 kdb_kbd_cleanup_state();
1406
1407 return result;
1408}
1409
1410/*
1411 * kdb_mdr - This function implements the guts of the 'mdr', memory
1412 * read command.
1413 * mdr <addr arg>,<byte count>
1414 * Inputs:
1415 * addr Start address
1416 * count Number of bytes
1417 * Returns:
1418 * Always 0. Any errors are detected and printed by kdb_getarea.
1419 */
1420static int kdb_mdr(unsigned long addr, unsigned int count)
1421{
1422 unsigned char c;
1423 while (count--) {
1424 if (kdb_getarea(c, addr))
1425 return 0;
1426 kdb_printf("%02x", c);
1427 addr++;
1428 }
1429 kdb_printf("\n");
1430 return 0;
1431}
1432
1433/*
1434 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1435 * 'md8' 'mdr' and 'mds' commands.
1436 *
1437 * md|mds [<addr arg> [<line count> [<radix>]]]
1438 * mdWcN [<addr arg> [<line count> [<radix>]]]
1439 * where W = is the width (1, 2, 4 or 8) and N is the count.
1440 * for eg., md1c20 reads 20 bytes, 1 at a time.
1441 * mdr <addr arg>,<byte count>
1442 */
1443static void kdb_md_line(const char *fmtstr, unsigned long addr,
1444 int symbolic, int nosect, int bytesperword,
1445 int num, int repeat, int phys)
1446{
1447 /* print just one line of data */
1448 kdb_symtab_t symtab;
1449 char cbuf[32];
1450 char *c = cbuf;
1451 int i;
1452 unsigned long word;
1453
1454 memset(cbuf, '\0', sizeof(cbuf));
1455 if (phys)
1456 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1457 else
1458 kdb_printf(kdb_machreg_fmt0 " ", addr);
1459
1460 for (i = 0; i < num && repeat--; i++) {
1461 if (phys) {
1462 if (kdb_getphysword(&word, addr, bytesperword))
1463 break;
1464 } else if (kdb_getword(&word, addr, bytesperword))
1465 break;
1466 kdb_printf(fmtstr, word);
1467 if (symbolic)
1468 kdbnearsym(word, &symtab);
1469 else
1470 memset(&symtab, 0, sizeof(symtab));
1471 if (symtab.sym_name) {
1472 kdb_symbol_print(word, &symtab, 0);
1473 if (!nosect) {
1474 kdb_printf("\n");
1475 kdb_printf(" %s %s "
1476 kdb_machreg_fmt " "
1477 kdb_machreg_fmt " "
1478 kdb_machreg_fmt, symtab.mod_name,
1479 symtab.sec_name, symtab.sec_start,
1480 symtab.sym_start, symtab.sym_end);
1481 }
1482 addr += bytesperword;
1483 } else {
1484 union {
1485 u64 word;
1486 unsigned char c[8];
1487 } wc;
1488 unsigned char *cp;
1489#ifdef __BIG_ENDIAN
1490 cp = wc.c + 8 - bytesperword;
1491#else
1492 cp = wc.c;
1493#endif
1494 wc.word = word;
1495#define printable_char(c) \
1496 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1497 switch (bytesperword) {
1498 case 8:
1499 *c++ = printable_char(*cp++);
1500 *c++ = printable_char(*cp++);
1501 *c++ = printable_char(*cp++);
1502 *c++ = printable_char(*cp++);
1503 addr += 4;
1504 case 4:
1505 *c++ = printable_char(*cp++);
1506 *c++ = printable_char(*cp++);
1507 addr += 2;
1508 case 2:
1509 *c++ = printable_char(*cp++);
1510 addr++;
1511 case 1:
1512 *c++ = printable_char(*cp++);
1513 addr++;
1514 break;
1515 }
1516#undef printable_char
1517 }
1518 }
1519 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1520 " ", cbuf);
1521}
1522
1523static int kdb_md(int argc, const char **argv)
1524{
1525 static unsigned long last_addr;
1526 static int last_radix, last_bytesperword, last_repeat;
1527 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1528 int nosect = 0;
1529 char fmtchar, fmtstr[64];
1530 unsigned long addr;
1531 unsigned long word;
1532 long offset = 0;
1533 int symbolic = 0;
1534 int valid = 0;
1535 int phys = 0;
1536
1537 kdbgetintenv("MDCOUNT", &mdcount);
1538 kdbgetintenv("RADIX", &radix);
1539 kdbgetintenv("BYTESPERWORD", &bytesperword);
1540
1541 /* Assume 'md <addr>' and start with environment values */
1542 repeat = mdcount * 16 / bytesperword;
1543
1544 if (strcmp(argv[0], "mdr") == 0) {
1545 if (argc != 2)
1546 return KDB_ARGCOUNT;
1547 valid = 1;
1548 } else if (isdigit(argv[0][2])) {
1549 bytesperword = (int)(argv[0][2] - '0');
1550 if (bytesperword == 0) {
1551 bytesperword = last_bytesperword;
1552 if (bytesperword == 0)
1553 bytesperword = 4;
1554 }
1555 last_bytesperword = bytesperword;
1556 repeat = mdcount * 16 / bytesperword;
1557 if (!argv[0][3])
1558 valid = 1;
1559 else if (argv[0][3] == 'c' && argv[0][4]) {
1560 char *p;
1561 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1562 mdcount = ((repeat * bytesperword) + 15) / 16;
1563 valid = !*p;
1564 }
1565 last_repeat = repeat;
1566 } else if (strcmp(argv[0], "md") == 0)
1567 valid = 1;
1568 else if (strcmp(argv[0], "mds") == 0)
1569 valid = 1;
1570 else if (strcmp(argv[0], "mdp") == 0) {
1571 phys = valid = 1;
1572 }
1573 if (!valid)
1574 return KDB_NOTFOUND;
1575
1576 if (argc == 0) {
1577 if (last_addr == 0)
1578 return KDB_ARGCOUNT;
1579 addr = last_addr;
1580 radix = last_radix;
1581 bytesperword = last_bytesperword;
1582 repeat = last_repeat;
1583 mdcount = ((repeat * bytesperword) + 15) / 16;
1584 }
1585
1586 if (argc) {
1587 unsigned long val;
1588 int diag, nextarg = 1;
1589 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1590 &offset, NULL);
1591 if (diag)
1592 return diag;
1593 if (argc > nextarg+2)
1594 return KDB_ARGCOUNT;
1595
1596 if (argc >= nextarg) {
1597 diag = kdbgetularg(argv[nextarg], &val);
1598 if (!diag) {
1599 mdcount = (int) val;
1600 repeat = mdcount * 16 / bytesperword;
1601 }
1602 }
1603 if (argc >= nextarg+1) {
1604 diag = kdbgetularg(argv[nextarg+1], &val);
1605 if (!diag)
1606 radix = (int) val;
1607 }
1608 }
1609
1610 if (strcmp(argv[0], "mdr") == 0)
1611 return kdb_mdr(addr, mdcount);
1612
1613 switch (radix) {
1614 case 10:
1615 fmtchar = 'd';
1616 break;
1617 case 16:
1618 fmtchar = 'x';
1619 break;
1620 case 8:
1621 fmtchar = 'o';
1622 break;
1623 default:
1624 return KDB_BADRADIX;
1625 }
1626
1627 last_radix = radix;
1628
1629 if (bytesperword > KDB_WORD_SIZE)
1630 return KDB_BADWIDTH;
1631
1632 switch (bytesperword) {
1633 case 8:
1634 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1635 break;
1636 case 4:
1637 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1638 break;
1639 case 2:
1640 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1641 break;
1642 case 1:
1643 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1644 break;
1645 default:
1646 return KDB_BADWIDTH;
1647 }
1648
1649 last_repeat = repeat;
1650 last_bytesperword = bytesperword;
1651
1652 if (strcmp(argv[0], "mds") == 0) {
1653 symbolic = 1;
1654 /* Do not save these changes as last_*, they are temporary mds
1655 * overrides.
1656 */
1657 bytesperword = KDB_WORD_SIZE;
1658 repeat = mdcount;
1659 kdbgetintenv("NOSECT", &nosect);
1660 }
1661
1662 /* Round address down modulo BYTESPERWORD */
1663
1664 addr &= ~(bytesperword-1);
1665
1666 while (repeat > 0) {
1667 unsigned long a;
1668 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1669
1670 if (KDB_FLAG(CMD_INTERRUPT))
1671 return 0;
1672 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1673 if (phys) {
1674 if (kdb_getphysword(&word, a, bytesperword)
1675 || word)
1676 break;
1677 } else if (kdb_getword(&word, a, bytesperword) || word)
1678 break;
1679 }
1680 n = min(num, repeat);
1681 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1682 num, repeat, phys);
1683 addr += bytesperword * n;
1684 repeat -= n;
1685 z = (z + num - 1) / num;
1686 if (z > 2) {
1687 int s = num * (z-2);
1688 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1689 " zero suppressed\n",
1690 addr, addr + bytesperword * s - 1);
1691 addr += bytesperword * s;
1692 repeat -= s;
1693 }
1694 }
1695 last_addr = addr;
1696
1697 return 0;
1698}
1699
1700/*
1701 * kdb_mm - This function implements the 'mm' command.
1702 * mm address-expression new-value
1703 * Remarks:
1704 * mm works on machine words, mmW works on bytes.
1705 */
1706static int kdb_mm(int argc, const char **argv)
1707{
1708 int diag;
1709 unsigned long addr;
1710 long offset = 0;
1711 unsigned long contents;
1712 int nextarg;
1713 int width;
1714
1715 if (argv[0][2] && !isdigit(argv[0][2]))
1716 return KDB_NOTFOUND;
1717
1718 if (argc < 2)
1719 return KDB_ARGCOUNT;
1720
1721 nextarg = 1;
1722 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1723 if (diag)
1724 return diag;
1725
1726 if (nextarg > argc)
1727 return KDB_ARGCOUNT;
1728 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1729 if (diag)
1730 return diag;
1731
1732 if (nextarg != argc + 1)
1733 return KDB_ARGCOUNT;
1734
1735 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1736 diag = kdb_putword(addr, contents, width);
1737 if (diag)
1738 return diag;
1739
1740 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1741
1742 return 0;
1743}
1744
1745/*
1746 * kdb_go - This function implements the 'go' command.
1747 * go [address-expression]
1748 */
1749static int kdb_go(int argc, const char **argv)
1750{
1751 unsigned long addr;
1752 int diag;
1753 int nextarg;
1754 long offset;
1755
1756 if (raw_smp_processor_id() != kdb_initial_cpu) {
1757 kdb_printf("go must execute on the entry cpu, "
1758 "please use \"cpu %d\" and then execute go\n",
1759 kdb_initial_cpu);
1760 return KDB_BADCPUNUM;
1761 }
1762 if (argc == 1) {
1763 nextarg = 1;
1764 diag = kdbgetaddrarg(argc, argv, &nextarg,
1765 &addr, &offset, NULL);
1766 if (diag)
1767 return diag;
1768 } else if (argc) {
1769 return KDB_ARGCOUNT;
1770 }
1771
1772 diag = KDB_CMD_GO;
1773 if (KDB_FLAG(CATASTROPHIC)) {
1774 kdb_printf("Catastrophic error detected\n");
1775 kdb_printf("kdb_continue_catastrophic=%d, ",
1776 kdb_continue_catastrophic);
1777 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1778 kdb_printf("type go a second time if you really want "
1779 "to continue\n");
1780 return 0;
1781 }
1782 if (kdb_continue_catastrophic == 2) {
1783 kdb_printf("forcing reboot\n");
1784 kdb_reboot(0, NULL);
1785 }
1786 kdb_printf("attempting to continue\n");
1787 }
1788 return diag;
1789}
1790
1791/*
1792 * kdb_rd - This function implements the 'rd' command.
1793 */
1794static int kdb_rd(int argc, const char **argv)
1795{
1796 int len = kdb_check_regs();
1797#if DBG_MAX_REG_NUM > 0
1798 int i;
1799 char *rname;
1800 int rsize;
1801 u64 reg64;
1802 u32 reg32;
1803 u16 reg16;
1804 u8 reg8;
1805
1806 if (len)
1807 return len;
1808
1809 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1810 rsize = dbg_reg_def[i].size * 2;
1811 if (rsize > 16)
1812 rsize = 2;
1813 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1814 len = 0;
1815 kdb_printf("\n");
1816 }
1817 if (len)
1818 len += kdb_printf(" ");
1819 switch(dbg_reg_def[i].size * 8) {
1820 case 8:
1821 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1822 if (!rname)
1823 break;
1824 len += kdb_printf("%s: %02x", rname, reg8);
1825 break;
1826 case 16:
1827 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1828 if (!rname)
1829 break;
1830 len += kdb_printf("%s: %04x", rname, reg16);
1831 break;
1832 case 32:
1833 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1834 if (!rname)
1835 break;
1836 len += kdb_printf("%s: %08x", rname, reg32);
1837 break;
1838 case 64:
1839 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1840 if (!rname)
1841 break;
1842 len += kdb_printf("%s: %016llx", rname, reg64);
1843 break;
1844 default:
1845 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1846 }
1847 }
1848 kdb_printf("\n");
1849#else
1850 if (len)
1851 return len;
1852
1853 kdb_dumpregs(kdb_current_regs);
1854#endif
1855 return 0;
1856}
1857
1858/*
1859 * kdb_rm - This function implements the 'rm' (register modify) command.
1860 * rm register-name new-contents
1861 * Remarks:
1862 * Allows register modification with the same restrictions as gdb
1863 */
1864static int kdb_rm(int argc, const char **argv)
1865{
1866#if DBG_MAX_REG_NUM > 0
1867 int diag;
1868 const char *rname;
1869 int i;
1870 u64 reg64;
1871 u32 reg32;
1872 u16 reg16;
1873 u8 reg8;
1874
1875 if (argc != 2)
1876 return KDB_ARGCOUNT;
1877 /*
1878 * Allow presence or absence of leading '%' symbol.
1879 */
1880 rname = argv[1];
1881 if (*rname == '%')
1882 rname++;
1883
1884 diag = kdbgetu64arg(argv[2], ®64);
1885 if (diag)
1886 return diag;
1887
1888 diag = kdb_check_regs();
1889 if (diag)
1890 return diag;
1891
1892 diag = KDB_BADREG;
1893 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1894 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1895 diag = 0;
1896 break;
1897 }
1898 }
1899 if (!diag) {
1900 switch(dbg_reg_def[i].size * 8) {
1901 case 8:
1902 reg8 = reg64;
1903 dbg_set_reg(i, ®8, kdb_current_regs);
1904 break;
1905 case 16:
1906 reg16 = reg64;
1907 dbg_set_reg(i, ®16, kdb_current_regs);
1908 break;
1909 case 32:
1910 reg32 = reg64;
1911 dbg_set_reg(i, ®32, kdb_current_regs);
1912 break;
1913 case 64:
1914 dbg_set_reg(i, ®64, kdb_current_regs);
1915 break;
1916 }
1917 }
1918 return diag;
1919#else
1920 kdb_printf("ERROR: Register set currently not implemented\n");
1921 return 0;
1922#endif
1923}
1924
1925#if defined(CONFIG_MAGIC_SYSRQ)
1926/*
1927 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1928 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1929 * sr <magic-sysrq-code>
1930 */
1931static int kdb_sr(int argc, const char **argv)
1932{
1933 if (argc != 1)
1934 return KDB_ARGCOUNT;
1935 kdb_trap_printk++;
1936 __handle_sysrq(*argv[1], false);
1937 kdb_trap_printk--;
1938
1939 return 0;
1940}
1941#endif /* CONFIG_MAGIC_SYSRQ */
1942
1943/*
1944 * kdb_ef - This function implements the 'regs' (display exception
1945 * frame) command. This command takes an address and expects to
1946 * find an exception frame at that address, formats and prints
1947 * it.
1948 * regs address-expression
1949 * Remarks:
1950 * Not done yet.
1951 */
1952static int kdb_ef(int argc, const char **argv)
1953{
1954 int diag;
1955 unsigned long addr;
1956 long offset;
1957 int nextarg;
1958
1959 if (argc != 1)
1960 return KDB_ARGCOUNT;
1961
1962 nextarg = 1;
1963 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1964 if (diag)
1965 return diag;
1966 show_regs((struct pt_regs *)addr);
1967 return 0;
1968}
1969
1970#if defined(CONFIG_MODULES)
1971/*
1972 * kdb_lsmod - This function implements the 'lsmod' command. Lists
1973 * currently loaded kernel modules.
1974 * Mostly taken from userland lsmod.
1975 */
1976static int kdb_lsmod(int argc, const char **argv)
1977{
1978 struct module *mod;
1979
1980 if (argc != 0)
1981 return KDB_ARGCOUNT;
1982
1983 kdb_printf("Module Size modstruct Used by\n");
1984 list_for_each_entry(mod, kdb_modules, list) {
1985
1986 kdb_printf("%-20s%8u 0x%p ", mod->name,
1987 mod->core_size, (void *)mod);
1988#ifdef CONFIG_MODULE_UNLOAD
1989 kdb_printf("%4ld ", module_refcount(mod));
1990#endif
1991 if (mod->state == MODULE_STATE_GOING)
1992 kdb_printf(" (Unloading)");
1993 else if (mod->state == MODULE_STATE_COMING)
1994 kdb_printf(" (Loading)");
1995 else
1996 kdb_printf(" (Live)");
1997 kdb_printf(" 0x%p", mod->module_core);
1998
1999#ifdef CONFIG_MODULE_UNLOAD
2000 {
2001 struct module_use *use;
2002 kdb_printf(" [ ");
2003 list_for_each_entry(use, &mod->source_list,
2004 source_list)
2005 kdb_printf("%s ", use->target->name);
2006 kdb_printf("]\n");
2007 }
2008#endif
2009 }
2010
2011 return 0;
2012}
2013
2014#endif /* CONFIG_MODULES */
2015
2016/*
2017 * kdb_env - This function implements the 'env' command. Display the
2018 * current environment variables.
2019 */
2020
2021static int kdb_env(int argc, const char **argv)
2022{
2023 int i;
2024
2025 for (i = 0; i < __nenv; i++) {
2026 if (__env[i])
2027 kdb_printf("%s\n", __env[i]);
2028 }
2029
2030 if (KDB_DEBUG(MASK))
2031 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2032
2033 return 0;
2034}
2035
2036#ifdef CONFIG_PRINTK
2037/*
2038 * kdb_dmesg - This function implements the 'dmesg' command to display
2039 * the contents of the syslog buffer.
2040 * dmesg [lines] [adjust]
2041 */
2042static int kdb_dmesg(int argc, const char **argv)
2043{
2044 int diag;
2045 int logging;
2046 int lines = 0;
2047 int adjust = 0;
2048 int n = 0;
2049 int skip = 0;
2050 struct kmsg_dumper dumper = { .active = 1 };
2051 size_t len;
2052 char buf[201];
2053
2054 if (argc > 2)
2055 return KDB_ARGCOUNT;
2056 if (argc) {
2057 char *cp;
2058 lines = simple_strtol(argv[1], &cp, 0);
2059 if (*cp)
2060 lines = 0;
2061 if (argc > 1) {
2062 adjust = simple_strtoul(argv[2], &cp, 0);
2063 if (*cp || adjust < 0)
2064 adjust = 0;
2065 }
2066 }
2067
2068 /* disable LOGGING if set */
2069 diag = kdbgetintenv("LOGGING", &logging);
2070 if (!diag && logging) {
2071 const char *setargs[] = { "set", "LOGGING", "0" };
2072 kdb_set(2, setargs);
2073 }
2074
2075 kmsg_dump_rewind_nolock(&dumper);
2076 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2077 n++;
2078
2079 if (lines < 0) {
2080 if (adjust >= n)
2081 kdb_printf("buffer only contains %d lines, nothing "
2082 "printed\n", n);
2083 else if (adjust - lines >= n)
2084 kdb_printf("buffer only contains %d lines, last %d "
2085 "lines printed\n", n, n - adjust);
2086 skip = adjust;
2087 lines = abs(lines);
2088 } else if (lines > 0) {
2089 skip = n - lines - adjust;
2090 lines = abs(lines);
2091 if (adjust >= n) {
2092 kdb_printf("buffer only contains %d lines, "
2093 "nothing printed\n", n);
2094 skip = n;
2095 } else if (skip < 0) {
2096 lines += skip;
2097 skip = 0;
2098 kdb_printf("buffer only contains %d lines, first "
2099 "%d lines printed\n", n, lines);
2100 }
2101 } else {
2102 lines = n;
2103 }
2104
2105 if (skip >= n || skip < 0)
2106 return 0;
2107
2108 kmsg_dump_rewind_nolock(&dumper);
2109 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2110 if (skip) {
2111 skip--;
2112 continue;
2113 }
2114 if (!lines--)
2115 break;
2116
2117 kdb_printf("%.*s\n", (int)len - 1, buf);
2118 }
2119
2120 return 0;
2121}
2122#endif /* CONFIG_PRINTK */
2123/*
2124 * kdb_cpu - This function implements the 'cpu' command.
2125 * cpu [<cpunum>]
2126 * Returns:
2127 * KDB_CMD_CPU for success, a kdb diagnostic if error
2128 */
2129static void kdb_cpu_status(void)
2130{
2131 int i, start_cpu, first_print = 1;
2132 char state, prev_state = '?';
2133
2134 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2135 kdb_printf("Available cpus: ");
2136 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2137 if (!cpu_online(i)) {
2138 state = 'F'; /* cpu is offline */
2139 } else {
2140 state = ' '; /* cpu is responding to kdb */
2141 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2142 state = 'I'; /* idle task */
2143 }
2144 if (state != prev_state) {
2145 if (prev_state != '?') {
2146 if (!first_print)
2147 kdb_printf(", ");
2148 first_print = 0;
2149 kdb_printf("%d", start_cpu);
2150 if (start_cpu < i-1)
2151 kdb_printf("-%d", i-1);
2152 if (prev_state != ' ')
2153 kdb_printf("(%c)", prev_state);
2154 }
2155 prev_state = state;
2156 start_cpu = i;
2157 }
2158 }
2159 /* print the trailing cpus, ignoring them if they are all offline */
2160 if (prev_state != 'F') {
2161 if (!first_print)
2162 kdb_printf(", ");
2163 kdb_printf("%d", start_cpu);
2164 if (start_cpu < i-1)
2165 kdb_printf("-%d", i-1);
2166 if (prev_state != ' ')
2167 kdb_printf("(%c)", prev_state);
2168 }
2169 kdb_printf("\n");
2170}
2171
2172static int kdb_cpu(int argc, const char **argv)
2173{
2174 unsigned long cpunum;
2175 int diag;
2176
2177 if (argc == 0) {
2178 kdb_cpu_status();
2179 return 0;
2180 }
2181
2182 if (argc != 1)
2183 return KDB_ARGCOUNT;
2184
2185 diag = kdbgetularg(argv[1], &cpunum);
2186 if (diag)
2187 return diag;
2188
2189 /*
2190 * Validate cpunum
2191 */
2192 if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2193 return KDB_BADCPUNUM;
2194
2195 dbg_switch_cpu = cpunum;
2196
2197 /*
2198 * Switch to other cpu
2199 */
2200 return KDB_CMD_CPU;
2201}
2202
2203/* The user may not realize that ps/bta with no parameters does not print idle
2204 * or sleeping system daemon processes, so tell them how many were suppressed.
2205 */
2206void kdb_ps_suppressed(void)
2207{
2208 int idle = 0, daemon = 0;
2209 unsigned long mask_I = kdb_task_state_string("I"),
2210 mask_M = kdb_task_state_string("M");
2211 unsigned long cpu;
2212 const struct task_struct *p, *g;
2213 for_each_online_cpu(cpu) {
2214 p = kdb_curr_task(cpu);
2215 if (kdb_task_state(p, mask_I))
2216 ++idle;
2217 }
2218 kdb_do_each_thread(g, p) {
2219 if (kdb_task_state(p, mask_M))
2220 ++daemon;
2221 } kdb_while_each_thread(g, p);
2222 if (idle || daemon) {
2223 if (idle)
2224 kdb_printf("%d idle process%s (state I)%s\n",
2225 idle, idle == 1 ? "" : "es",
2226 daemon ? " and " : "");
2227 if (daemon)
2228 kdb_printf("%d sleeping system daemon (state M) "
2229 "process%s", daemon,
2230 daemon == 1 ? "" : "es");
2231 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2232 }
2233}
2234
2235/*
2236 * kdb_ps - This function implements the 'ps' command which shows a
2237 * list of the active processes.
2238 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2239 */
2240void kdb_ps1(const struct task_struct *p)
2241{
2242 int cpu;
2243 unsigned long tmp;
2244
2245 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2246 return;
2247
2248 cpu = kdb_process_cpu(p);
2249 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2250 (void *)p, p->pid, p->parent->pid,
2251 kdb_task_has_cpu(p), kdb_process_cpu(p),
2252 kdb_task_state_char(p),
2253 (void *)(&p->thread),
2254 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2255 p->comm);
2256 if (kdb_task_has_cpu(p)) {
2257 if (!KDB_TSK(cpu)) {
2258 kdb_printf(" Error: no saved data for this cpu\n");
2259 } else {
2260 if (KDB_TSK(cpu) != p)
2261 kdb_printf(" Error: does not match running "
2262 "process table (0x%p)\n", KDB_TSK(cpu));
2263 }
2264 }
2265}
2266
2267static int kdb_ps(int argc, const char **argv)
2268{
2269 struct task_struct *g, *p;
2270 unsigned long mask, cpu;
2271
2272 if (argc == 0)
2273 kdb_ps_suppressed();
2274 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2275 (int)(2*sizeof(void *))+2, "Task Addr",
2276 (int)(2*sizeof(void *))+2, "Thread");
2277 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2278 /* Run the active tasks first */
2279 for_each_online_cpu(cpu) {
2280 if (KDB_FLAG(CMD_INTERRUPT))
2281 return 0;
2282 p = kdb_curr_task(cpu);
2283 if (kdb_task_state(p, mask))
2284 kdb_ps1(p);
2285 }
2286 kdb_printf("\n");
2287 /* Now the real tasks */
2288 kdb_do_each_thread(g, p) {
2289 if (KDB_FLAG(CMD_INTERRUPT))
2290 return 0;
2291 if (kdb_task_state(p, mask))
2292 kdb_ps1(p);
2293 } kdb_while_each_thread(g, p);
2294
2295 return 0;
2296}
2297
2298/*
2299 * kdb_pid - This function implements the 'pid' command which switches
2300 * the currently active process.
2301 * pid [<pid> | R]
2302 */
2303static int kdb_pid(int argc, const char **argv)
2304{
2305 struct task_struct *p;
2306 unsigned long val;
2307 int diag;
2308
2309 if (argc > 1)
2310 return KDB_ARGCOUNT;
2311
2312 if (argc) {
2313 if (strcmp(argv[1], "R") == 0) {
2314 p = KDB_TSK(kdb_initial_cpu);
2315 } else {
2316 diag = kdbgetularg(argv[1], &val);
2317 if (diag)
2318 return KDB_BADINT;
2319
2320 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2321 if (!p) {
2322 kdb_printf("No task with pid=%d\n", (pid_t)val);
2323 return 0;
2324 }
2325 }
2326 kdb_set_current_task(p);
2327 }
2328 kdb_printf("KDB current process is %s(pid=%d)\n",
2329 kdb_current_task->comm,
2330 kdb_current_task->pid);
2331
2332 return 0;
2333}
2334
2335/*
2336 * kdb_ll - This function implements the 'll' command which follows a
2337 * linked list and executes an arbitrary command for each
2338 * element.
2339 */
2340static int kdb_ll(int argc, const char **argv)
2341{
2342 int diag = 0;
2343 unsigned long addr;
2344 long offset = 0;
2345 unsigned long va;
2346 unsigned long linkoffset;
2347 int nextarg;
2348 const char *command;
2349
2350 if (argc != 3)
2351 return KDB_ARGCOUNT;
2352
2353 nextarg = 1;
2354 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2355 if (diag)
2356 return diag;
2357
2358 diag = kdbgetularg(argv[2], &linkoffset);
2359 if (diag)
2360 return diag;
2361
2362 /*
2363 * Using the starting address as
2364 * the first element in the list, and assuming that
2365 * the list ends with a null pointer.
2366 */
2367
2368 va = addr;
2369 command = kdb_strdup(argv[3], GFP_KDB);
2370 if (!command) {
2371 kdb_printf("%s: cannot duplicate command\n", __func__);
2372 return 0;
2373 }
2374 /* Recursive use of kdb_parse, do not use argv after this point */
2375 argv = NULL;
2376
2377 while (va) {
2378 char buf[80];
2379
2380 if (KDB_FLAG(CMD_INTERRUPT))
2381 goto out;
2382
2383 sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va);
2384 diag = kdb_parse(buf);
2385 if (diag)
2386 goto out;
2387
2388 addr = va + linkoffset;
2389 if (kdb_getword(&va, addr, sizeof(va)))
2390 goto out;
2391 }
2392
2393out:
2394 kfree(command);
2395 return diag;
2396}
2397
2398static int kdb_kgdb(int argc, const char **argv)
2399{
2400 return KDB_CMD_KGDB;
2401}
2402
2403/*
2404 * kdb_help - This function implements the 'help' and '?' commands.
2405 */
2406static int kdb_help(int argc, const char **argv)
2407{
2408 kdbtab_t *kt;
2409 int i;
2410
2411 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2412 kdb_printf("-----------------------------"
2413 "-----------------------------\n");
2414 for_each_kdbcmd(kt, i) {
2415 if (kt->cmd_name)
2416 kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
2417 kt->cmd_usage, kt->cmd_help);
2418 if (KDB_FLAG(CMD_INTERRUPT))
2419 return 0;
2420 }
2421 return 0;
2422}
2423
2424/*
2425 * kdb_kill - This function implements the 'kill' commands.
2426 */
2427static int kdb_kill(int argc, const char **argv)
2428{
2429 long sig, pid;
2430 char *endp;
2431 struct task_struct *p;
2432 struct siginfo info;
2433
2434 if (argc != 2)
2435 return KDB_ARGCOUNT;
2436
2437 sig = simple_strtol(argv[1], &endp, 0);
2438 if (*endp)
2439 return KDB_BADINT;
2440 if (sig >= 0) {
2441 kdb_printf("Invalid signal parameter.<-signal>\n");
2442 return 0;
2443 }
2444 sig = -sig;
2445
2446 pid = simple_strtol(argv[2], &endp, 0);
2447 if (*endp)
2448 return KDB_BADINT;
2449 if (pid <= 0) {
2450 kdb_printf("Process ID must be large than 0.\n");
2451 return 0;
2452 }
2453
2454 /* Find the process. */
2455 p = find_task_by_pid_ns(pid, &init_pid_ns);
2456 if (!p) {
2457 kdb_printf("The specified process isn't found.\n");
2458 return 0;
2459 }
2460 p = p->group_leader;
2461 info.si_signo = sig;
2462 info.si_errno = 0;
2463 info.si_code = SI_USER;
2464 info.si_pid = pid; /* same capabilities as process being signalled */
2465 info.si_uid = 0; /* kdb has root authority */
2466 kdb_send_sig_info(p, &info);
2467 return 0;
2468}
2469
2470struct kdb_tm {
2471 int tm_sec; /* seconds */
2472 int tm_min; /* minutes */
2473 int tm_hour; /* hours */
2474 int tm_mday; /* day of the month */
2475 int tm_mon; /* month */
2476 int tm_year; /* year */
2477};
2478
2479static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2480{
2481 /* This will work from 1970-2099, 2100 is not a leap year */
2482 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2483 31, 30, 31, 30, 31 };
2484 memset(tm, 0, sizeof(*tm));
2485 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2486 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2487 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2488 tm->tm_min = tm->tm_sec / 60 % 60;
2489 tm->tm_hour = tm->tm_sec / 60 / 60;
2490 tm->tm_sec = tm->tm_sec % 60;
2491 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2492 tm->tm_mday %= (4*365+1);
2493 mon_day[1] = 29;
2494 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2495 tm->tm_mday -= mon_day[tm->tm_mon];
2496 if (++tm->tm_mon == 12) {
2497 tm->tm_mon = 0;
2498 ++tm->tm_year;
2499 mon_day[1] = 28;
2500 }
2501 }
2502 ++tm->tm_mday;
2503}
2504
2505/*
2506 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2507 * I cannot call that code directly from kdb, it has an unconditional
2508 * cli()/sti() and calls routines that take locks which can stop the debugger.
2509 */
2510static void kdb_sysinfo(struct sysinfo *val)
2511{
2512 struct timespec uptime;
2513 do_posix_clock_monotonic_gettime(&uptime);
2514 memset(val, 0, sizeof(*val));
2515 val->uptime = uptime.tv_sec;
2516 val->loads[0] = avenrun[0];
2517 val->loads[1] = avenrun[1];
2518 val->loads[2] = avenrun[2];
2519 val->procs = nr_threads-1;
2520 si_meminfo(val);
2521
2522 return;
2523}
2524
2525/*
2526 * kdb_summary - This function implements the 'summary' command.
2527 */
2528static int kdb_summary(int argc, const char **argv)
2529{
2530 struct timespec now;
2531 struct kdb_tm tm;
2532 struct sysinfo val;
2533
2534 if (argc)
2535 return KDB_ARGCOUNT;
2536
2537 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2538 kdb_printf("release %s\n", init_uts_ns.name.release);
2539 kdb_printf("version %s\n", init_uts_ns.name.version);
2540 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2541 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2542 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2543 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2544
2545 now = __current_kernel_time();
2546 kdb_gmtime(&now, &tm);
2547 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2548 "tz_minuteswest %d\n",
2549 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2550 tm.tm_hour, tm.tm_min, tm.tm_sec,
2551 sys_tz.tz_minuteswest);
2552
2553 kdb_sysinfo(&val);
2554 kdb_printf("uptime ");
2555 if (val.uptime > (24*60*60)) {
2556 int days = val.uptime / (24*60*60);
2557 val.uptime %= (24*60*60);
2558 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2559 }
2560 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2561
2562 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2563
2564#define LOAD_INT(x) ((x) >> FSHIFT)
2565#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2566 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2567 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2568 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2569 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2570#undef LOAD_INT
2571#undef LOAD_FRAC
2572 /* Display in kilobytes */
2573#define K(x) ((x) << (PAGE_SHIFT - 10))
2574 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2575 "Buffers: %8lu kB\n",
2576 val.totalram, val.freeram, val.bufferram);
2577 return 0;
2578}
2579
2580/*
2581 * kdb_per_cpu - This function implements the 'per_cpu' command.
2582 */
2583static int kdb_per_cpu(int argc, const char **argv)
2584{
2585 char fmtstr[64];
2586 int cpu, diag, nextarg = 1;
2587 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2588
2589 if (argc < 1 || argc > 3)
2590 return KDB_ARGCOUNT;
2591
2592 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2593 if (diag)
2594 return diag;
2595
2596 if (argc >= 2) {
2597 diag = kdbgetularg(argv[2], &bytesperword);
2598 if (diag)
2599 return diag;
2600 }
2601 if (!bytesperword)
2602 bytesperword = KDB_WORD_SIZE;
2603 else if (bytesperword > KDB_WORD_SIZE)
2604 return KDB_BADWIDTH;
2605 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2606 if (argc >= 3) {
2607 diag = kdbgetularg(argv[3], &whichcpu);
2608 if (diag)
2609 return diag;
2610 if (!cpu_online(whichcpu)) {
2611 kdb_printf("cpu %ld is not online\n", whichcpu);
2612 return KDB_BADCPUNUM;
2613 }
2614 }
2615
2616 /* Most architectures use __per_cpu_offset[cpu], some use
2617 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2618 */
2619#ifdef __per_cpu_offset
2620#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2621#else
2622#ifdef CONFIG_SMP
2623#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2624#else
2625#define KDB_PCU(cpu) 0
2626#endif
2627#endif
2628 for_each_online_cpu(cpu) {
2629 if (KDB_FLAG(CMD_INTERRUPT))
2630 return 0;
2631
2632 if (whichcpu != ~0UL && whichcpu != cpu)
2633 continue;
2634 addr = symaddr + KDB_PCU(cpu);
2635 diag = kdb_getword(&val, addr, bytesperword);
2636 if (diag) {
2637 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2638 "read, diag=%d\n", cpu, addr, diag);
2639 continue;
2640 }
2641 kdb_printf("%5d ", cpu);
2642 kdb_md_line(fmtstr, addr,
2643 bytesperword == KDB_WORD_SIZE,
2644 1, bytesperword, 1, 1, 0);
2645 }
2646#undef KDB_PCU
2647 return 0;
2648}
2649
2650/*
2651 * display help for the use of cmd | grep pattern
2652 */
2653static int kdb_grep_help(int argc, const char **argv)
2654{
2655 kdb_printf("Usage of cmd args | grep pattern:\n");
2656 kdb_printf(" Any command's output may be filtered through an ");
2657 kdb_printf("emulated 'pipe'.\n");
2658 kdb_printf(" 'grep' is just a key word.\n");
2659 kdb_printf(" The pattern may include a very limited set of "
2660 "metacharacters:\n");
2661 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2662 kdb_printf(" And if there are spaces in the pattern, you may "
2663 "quote it:\n");
2664 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2665 " or \"^pat tern$\"\n");
2666 return 0;
2667}
2668
2669/*
2670 * kdb_register_repeat - This function is used to register a kernel
2671 * debugger command.
2672 * Inputs:
2673 * cmd Command name
2674 * func Function to execute the command
2675 * usage A simple usage string showing arguments
2676 * help A simple help string describing command
2677 * repeat Does the command auto repeat on enter?
2678 * Returns:
2679 * zero for success, one if a duplicate command.
2680 */
2681#define kdb_command_extend 50 /* arbitrary */
2682int kdb_register_repeat(char *cmd,
2683 kdb_func_t func,
2684 char *usage,
2685 char *help,
2686 short minlen,
2687 kdb_repeat_t repeat)
2688{
2689 int i;
2690 kdbtab_t *kp;
2691
2692 /*
2693 * Brute force method to determine duplicates
2694 */
2695 for_each_kdbcmd(kp, i) {
2696 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2697 kdb_printf("Duplicate kdb command registered: "
2698 "%s, func %p help %s\n", cmd, func, help);
2699 return 1;
2700 }
2701 }
2702
2703 /*
2704 * Insert command into first available location in table
2705 */
2706 for_each_kdbcmd(kp, i) {
2707 if (kp->cmd_name == NULL)
2708 break;
2709 }
2710
2711 if (i >= kdb_max_commands) {
2712 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2713 kdb_command_extend) * sizeof(*new), GFP_KDB);
2714 if (!new) {
2715 kdb_printf("Could not allocate new kdb_command "
2716 "table\n");
2717 return 1;
2718 }
2719 if (kdb_commands) {
2720 memcpy(new, kdb_commands,
2721 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2722 kfree(kdb_commands);
2723 }
2724 memset(new + kdb_max_commands, 0,
2725 kdb_command_extend * sizeof(*new));
2726 kdb_commands = new;
2727 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2728 kdb_max_commands += kdb_command_extend;
2729 }
2730
2731 kp->cmd_name = cmd;
2732 kp->cmd_func = func;
2733 kp->cmd_usage = usage;
2734 kp->cmd_help = help;
2735 kp->cmd_flags = 0;
2736 kp->cmd_minlen = minlen;
2737 kp->cmd_repeat = repeat;
2738
2739 return 0;
2740}
2741EXPORT_SYMBOL_GPL(kdb_register_repeat);
2742
2743
2744/*
2745 * kdb_register - Compatibility register function for commands that do
2746 * not need to specify a repeat state. Equivalent to
2747 * kdb_register_repeat with KDB_REPEAT_NONE.
2748 * Inputs:
2749 * cmd Command name
2750 * func Function to execute the command
2751 * usage A simple usage string showing arguments
2752 * help A simple help string describing command
2753 * Returns:
2754 * zero for success, one if a duplicate command.
2755 */
2756int kdb_register(char *cmd,
2757 kdb_func_t func,
2758 char *usage,
2759 char *help,
2760 short minlen)
2761{
2762 return kdb_register_repeat(cmd, func, usage, help, minlen,
2763 KDB_REPEAT_NONE);
2764}
2765EXPORT_SYMBOL_GPL(kdb_register);
2766
2767/*
2768 * kdb_unregister - This function is used to unregister a kernel
2769 * debugger command. It is generally called when a module which
2770 * implements kdb commands is unloaded.
2771 * Inputs:
2772 * cmd Command name
2773 * Returns:
2774 * zero for success, one command not registered.
2775 */
2776int kdb_unregister(char *cmd)
2777{
2778 int i;
2779 kdbtab_t *kp;
2780
2781 /*
2782 * find the command.
2783 */
2784 for_each_kdbcmd(kp, i) {
2785 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2786 kp->cmd_name = NULL;
2787 return 0;
2788 }
2789 }
2790
2791 /* Couldn't find it. */
2792 return 1;
2793}
2794EXPORT_SYMBOL_GPL(kdb_unregister);
2795
2796/* Initialize the kdb command table. */
2797static void __init kdb_inittab(void)
2798{
2799 int i;
2800 kdbtab_t *kp;
2801
2802 for_each_kdbcmd(kp, i)
2803 kp->cmd_name = NULL;
2804
2805 kdb_register_repeat("md", kdb_md, "<vaddr>",
2806 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2807 KDB_REPEAT_NO_ARGS);
2808 kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2809 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2810 kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2811 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2812 kdb_register_repeat("mds", kdb_md, "<vaddr>",
2813 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2814 kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2815 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2816 kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2817 "Continue Execution", 1, KDB_REPEAT_NONE);
2818 kdb_register_repeat("rd", kdb_rd, "",
2819 "Display Registers", 0, KDB_REPEAT_NONE);
2820 kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2821 "Modify Registers", 0, KDB_REPEAT_NONE);
2822 kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2823 "Display exception frame", 0, KDB_REPEAT_NONE);
2824 kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2825 "Stack traceback", 1, KDB_REPEAT_NONE);
2826 kdb_register_repeat("btp", kdb_bt, "<pid>",
2827 "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2828 kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]",
2829 "Display stack all processes", 0, KDB_REPEAT_NONE);
2830 kdb_register_repeat("btc", kdb_bt, "",
2831 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2832 kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2833 "Backtrace process given its struct task address", 0,
2834 KDB_REPEAT_NONE);
2835 kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>",
2836 "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
2837 kdb_register_repeat("env", kdb_env, "",
2838 "Show environment variables", 0, KDB_REPEAT_NONE);
2839 kdb_register_repeat("set", kdb_set, "",
2840 "Set environment variables", 0, KDB_REPEAT_NONE);
2841 kdb_register_repeat("help", kdb_help, "",
2842 "Display Help Message", 1, KDB_REPEAT_NONE);
2843 kdb_register_repeat("?", kdb_help, "",
2844 "Display Help Message", 0, KDB_REPEAT_NONE);
2845 kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2846 "Switch to new cpu", 0, KDB_REPEAT_NONE);
2847 kdb_register_repeat("kgdb", kdb_kgdb, "",
2848 "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2849 kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2850 "Display active task list", 0, KDB_REPEAT_NONE);
2851 kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2852 "Switch to another task", 0, KDB_REPEAT_NONE);
2853 kdb_register_repeat("reboot", kdb_reboot, "",
2854 "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2855#if defined(CONFIG_MODULES)
2856 kdb_register_repeat("lsmod", kdb_lsmod, "",
2857 "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2858#endif
2859#if defined(CONFIG_MAGIC_SYSRQ)
2860 kdb_register_repeat("sr", kdb_sr, "<key>",
2861 "Magic SysRq key", 0, KDB_REPEAT_NONE);
2862#endif
2863#if defined(CONFIG_PRINTK)
2864 kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2865 "Display syslog buffer", 0, KDB_REPEAT_NONE);
2866#endif
2867 kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2868 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2869 kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2870 "Send a signal to a process", 0, KDB_REPEAT_NONE);
2871 kdb_register_repeat("summary", kdb_summary, "",
2872 "Summarize the system", 4, KDB_REPEAT_NONE);
2873 kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2874 "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2875 kdb_register_repeat("grephelp", kdb_grep_help, "",
2876 "Display help on | grep", 0, KDB_REPEAT_NONE);
2877}
2878
2879/* Execute any commands defined in kdb_cmds. */
2880static void __init kdb_cmd_init(void)
2881{
2882 int i, diag;
2883 for (i = 0; kdb_cmds[i]; ++i) {
2884 diag = kdb_parse(kdb_cmds[i]);
2885 if (diag)
2886 kdb_printf("kdb command %s failed, kdb diag %d\n",
2887 kdb_cmds[i], diag);
2888 }
2889 if (defcmd_in_progress) {
2890 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2891 kdb_parse("endefcmd");
2892 }
2893}
2894
2895/* Initialize kdb_printf, breakpoint tables and kdb state */
2896void __init kdb_init(int lvl)
2897{
2898 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2899 int i;
2900
2901 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2902 return;
2903 for (i = kdb_init_lvl; i < lvl; i++) {
2904 switch (i) {
2905 case KDB_NOT_INITIALIZED:
2906 kdb_inittab(); /* Initialize Command Table */
2907 kdb_initbptab(); /* Initialize Breakpoints */
2908 break;
2909 case KDB_INIT_EARLY:
2910 kdb_cmd_init(); /* Build kdb_cmds tables */
2911 break;
2912 }
2913 }
2914 kdb_init_lvl = lvl;
2915}
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/types.h>
16#include <linux/string.h>
17#include <linux/kernel.h>
18#include <linux/kmsg_dump.h>
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sched/loadavg.h>
22#include <linux/sched/stat.h>
23#include <linux/sched/debug.h>
24#include <linux/sysrq.h>
25#include <linux/smp.h>
26#include <linux/utsname.h>
27#include <linux/vmalloc.h>
28#include <linux/atomic.h>
29#include <linux/module.h>
30#include <linux/moduleparam.h>
31#include <linux/mm.h>
32#include <linux/init.h>
33#include <linux/kallsyms.h>
34#include <linux/kgdb.h>
35#include <linux/kdb.h>
36#include <linux/list.h>
37#include <linux/notifier.h>
38#include <linux/interrupt.h>
39#include <linux/delay.h>
40#include <linux/nmi.h>
41#include <linux/time.h>
42#include <linux/ptrace.h>
43#include <linux/sysctl.h>
44#include <linux/cpu.h>
45#include <linux/kdebug.h>
46#include <linux/proc_fs.h>
47#include <linux/uaccess.h>
48#include <linux/slab.h>
49#include "kdb_private.h"
50
51#undef MODULE_PARAM_PREFIX
52#define MODULE_PARAM_PREFIX "kdb."
53
54static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
55module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
56
57char kdb_grep_string[KDB_GREP_STRLEN];
58int kdb_grepping_flag;
59EXPORT_SYMBOL(kdb_grepping_flag);
60int kdb_grep_leading;
61int kdb_grep_trailing;
62
63/*
64 * Kernel debugger state flags
65 */
66unsigned int kdb_flags;
67
68/*
69 * kdb_lock protects updates to kdb_initial_cpu. Used to
70 * single thread processors through the kernel debugger.
71 */
72int kdb_initial_cpu = -1; /* cpu number that owns kdb */
73int kdb_nextline = 1;
74int kdb_state; /* General KDB state */
75
76struct task_struct *kdb_current_task;
77struct pt_regs *kdb_current_regs;
78
79const char *kdb_diemsg;
80static int kdb_go_count;
81#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
82static unsigned int kdb_continue_catastrophic =
83 CONFIG_KDB_CONTINUE_CATASTROPHIC;
84#else
85static unsigned int kdb_continue_catastrophic;
86#endif
87
88/* kdb_cmds_head describes the available commands. */
89static LIST_HEAD(kdb_cmds_head);
90
91typedef struct _kdbmsg {
92 int km_diag; /* kdb diagnostic */
93 char *km_msg; /* Corresponding message text */
94} kdbmsg_t;
95
96#define KDBMSG(msgnum, text) \
97 { KDB_##msgnum, text }
98
99static kdbmsg_t kdbmsgs[] = {
100 KDBMSG(NOTFOUND, "Command Not Found"),
101 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
102 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
103 "8 is only allowed on 64 bit systems"),
104 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
105 KDBMSG(NOTENV, "Cannot find environment variable"),
106 KDBMSG(NOENVVALUE, "Environment variable should have value"),
107 KDBMSG(NOTIMP, "Command not implemented"),
108 KDBMSG(ENVFULL, "Environment full"),
109 KDBMSG(ENVBUFFULL, "Environment buffer full"),
110 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
111#ifdef CONFIG_CPU_XSCALE
112 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
113#else
114 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
115#endif
116 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
117 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
118 KDBMSG(BADMODE, "Invalid IDMODE"),
119 KDBMSG(BADINT, "Illegal numeric value"),
120 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
121 KDBMSG(BADREG, "Invalid register name"),
122 KDBMSG(BADCPUNUM, "Invalid cpu number"),
123 KDBMSG(BADLENGTH, "Invalid length field"),
124 KDBMSG(NOBP, "No Breakpoint exists"),
125 KDBMSG(BADADDR, "Invalid address"),
126 KDBMSG(NOPERM, "Permission denied"),
127};
128#undef KDBMSG
129
130static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
131
132
133/*
134 * Initial environment. This is all kept static and local to
135 * this file. We don't want to rely on the memory allocation
136 * mechanisms in the kernel, so we use a very limited allocate-only
137 * heap for new and altered environment variables. The entire
138 * environment is limited to a fixed number of entries (add more
139 * to __env[] if required) and a fixed amount of heap (add more to
140 * KDB_ENVBUFSIZE if required).
141 */
142
143static char *__env[31] = {
144#if defined(CONFIG_SMP)
145 "PROMPT=[%d]kdb> ",
146#else
147 "PROMPT=kdb> ",
148#endif
149 "MOREPROMPT=more> ",
150 "RADIX=16",
151 "MDCOUNT=8", /* lines of md output */
152 KDB_PLATFORM_ENV,
153 "DTABCOUNT=30",
154 "NOSECT=1",
155};
156
157static const int __nenv = ARRAY_SIZE(__env);
158
159struct task_struct *kdb_curr_task(int cpu)
160{
161 struct task_struct *p = curr_task(cpu);
162#ifdef _TIF_MCA_INIT
163 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
164 p = krp->p;
165#endif
166 return p;
167}
168
169/*
170 * Check whether the flags of the current command and the permissions
171 * of the kdb console has allow a command to be run.
172 */
173static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
174 bool no_args)
175{
176 /* permissions comes from userspace so needs massaging slightly */
177 permissions &= KDB_ENABLE_MASK;
178 permissions |= KDB_ENABLE_ALWAYS_SAFE;
179
180 /* some commands change group when launched with no arguments */
181 if (no_args)
182 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
183
184 flags |= KDB_ENABLE_ALL;
185
186 return permissions & flags;
187}
188
189/*
190 * kdbgetenv - This function will return the character string value of
191 * an environment variable.
192 * Parameters:
193 * match A character string representing an environment variable.
194 * Returns:
195 * NULL No environment variable matches 'match'
196 * char* Pointer to string value of environment variable.
197 */
198char *kdbgetenv(const char *match)
199{
200 char **ep = __env;
201 int matchlen = strlen(match);
202 int i;
203
204 for (i = 0; i < __nenv; i++) {
205 char *e = *ep++;
206
207 if (!e)
208 continue;
209
210 if ((strncmp(match, e, matchlen) == 0)
211 && ((e[matchlen] == '\0')
212 || (e[matchlen] == '='))) {
213 char *cp = strchr(e, '=');
214 return cp ? ++cp : "";
215 }
216 }
217 return NULL;
218}
219
220/*
221 * kdballocenv - This function is used to allocate bytes for
222 * environment entries.
223 * Parameters:
224 * match A character string representing a numeric value
225 * Outputs:
226 * *value the unsigned long representation of the env variable 'match'
227 * Returns:
228 * Zero on success, a kdb diagnostic on failure.
229 * Remarks:
230 * We use a static environment buffer (envbuffer) to hold the values
231 * of dynamically generated environment variables (see kdb_set). Buffer
232 * space once allocated is never free'd, so over time, the amount of space
233 * (currently 512 bytes) will be exhausted if env variables are changed
234 * frequently.
235 */
236static char *kdballocenv(size_t bytes)
237{
238#define KDB_ENVBUFSIZE 512
239 static char envbuffer[KDB_ENVBUFSIZE];
240 static int envbufsize;
241 char *ep = NULL;
242
243 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
244 ep = &envbuffer[envbufsize];
245 envbufsize += bytes;
246 }
247 return ep;
248}
249
250/*
251 * kdbgetulenv - This function will return the value of an unsigned
252 * long-valued environment variable.
253 * Parameters:
254 * match A character string representing a numeric value
255 * Outputs:
256 * *value the unsigned long representation of the env variable 'match'
257 * Returns:
258 * Zero on success, a kdb diagnostic on failure.
259 */
260static int kdbgetulenv(const char *match, unsigned long *value)
261{
262 char *ep;
263
264 ep = kdbgetenv(match);
265 if (!ep)
266 return KDB_NOTENV;
267 if (strlen(ep) == 0)
268 return KDB_NOENVVALUE;
269
270 *value = simple_strtoul(ep, NULL, 0);
271
272 return 0;
273}
274
275/*
276 * kdbgetintenv - This function will return the value of an
277 * integer-valued environment variable.
278 * Parameters:
279 * match A character string representing an integer-valued env variable
280 * Outputs:
281 * *value the integer representation of the environment variable 'match'
282 * Returns:
283 * Zero on success, a kdb diagnostic on failure.
284 */
285int kdbgetintenv(const char *match, int *value)
286{
287 unsigned long val;
288 int diag;
289
290 diag = kdbgetulenv(match, &val);
291 if (!diag)
292 *value = (int) val;
293 return diag;
294}
295
296/*
297 * kdb_setenv() - Alter an existing environment variable or create a new one.
298 * @var: Name of the variable
299 * @val: Value of the variable
300 *
301 * Return: Zero on success, a kdb diagnostic on failure.
302 */
303static int kdb_setenv(const char *var, const char *val)
304{
305 int i;
306 char *ep;
307 size_t varlen, vallen;
308
309 varlen = strlen(var);
310 vallen = strlen(val);
311 ep = kdballocenv(varlen + vallen + 2);
312 if (ep == (char *)0)
313 return KDB_ENVBUFFULL;
314
315 sprintf(ep, "%s=%s", var, val);
316
317 for (i = 0; i < __nenv; i++) {
318 if (__env[i]
319 && ((strncmp(__env[i], var, varlen) == 0)
320 && ((__env[i][varlen] == '\0')
321 || (__env[i][varlen] == '=')))) {
322 __env[i] = ep;
323 return 0;
324 }
325 }
326
327 /*
328 * Wasn't existing variable. Fit into slot.
329 */
330 for (i = 0; i < __nenv-1; i++) {
331 if (__env[i] == (char *)0) {
332 __env[i] = ep;
333 return 0;
334 }
335 }
336
337 return KDB_ENVFULL;
338}
339
340/*
341 * kdb_printenv() - Display the current environment variables.
342 */
343static void kdb_printenv(void)
344{
345 int i;
346
347 for (i = 0; i < __nenv; i++) {
348 if (__env[i])
349 kdb_printf("%s\n", __env[i]);
350 }
351}
352
353/*
354 * kdbgetularg - This function will convert a numeric string into an
355 * unsigned long value.
356 * Parameters:
357 * arg A character string representing a numeric value
358 * Outputs:
359 * *value the unsigned long representation of arg.
360 * Returns:
361 * Zero on success, a kdb diagnostic on failure.
362 */
363int kdbgetularg(const char *arg, unsigned long *value)
364{
365 char *endp;
366 unsigned long val;
367
368 val = simple_strtoul(arg, &endp, 0);
369
370 if (endp == arg) {
371 /*
372 * Also try base 16, for us folks too lazy to type the
373 * leading 0x...
374 */
375 val = simple_strtoul(arg, &endp, 16);
376 if (endp == arg)
377 return KDB_BADINT;
378 }
379
380 *value = val;
381
382 return 0;
383}
384
385int kdbgetu64arg(const char *arg, u64 *value)
386{
387 char *endp;
388 u64 val;
389
390 val = simple_strtoull(arg, &endp, 0);
391
392 if (endp == arg) {
393
394 val = simple_strtoull(arg, &endp, 16);
395 if (endp == arg)
396 return KDB_BADINT;
397 }
398
399 *value = val;
400
401 return 0;
402}
403
404/*
405 * kdb_set - This function implements the 'set' command. Alter an
406 * existing environment variable or create a new one.
407 */
408int kdb_set(int argc, const char **argv)
409{
410 /*
411 * we can be invoked two ways:
412 * set var=value argv[1]="var", argv[2]="value"
413 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
414 * - if the latter, shift 'em down.
415 */
416 if (argc == 3) {
417 argv[2] = argv[3];
418 argc--;
419 }
420
421 if (argc != 2)
422 return KDB_ARGCOUNT;
423
424 /*
425 * Censor sensitive variables
426 */
427 if (strcmp(argv[1], "PROMPT") == 0 &&
428 !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
429 return KDB_NOPERM;
430
431 /*
432 * Check for internal variables
433 */
434 if (strcmp(argv[1], "KDBDEBUG") == 0) {
435 unsigned int debugflags;
436 char *cp;
437
438 debugflags = simple_strtoul(argv[2], &cp, 0);
439 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
440 kdb_printf("kdb: illegal debug flags '%s'\n",
441 argv[2]);
442 return 0;
443 }
444 kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
445 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
446
447 return 0;
448 }
449
450 /*
451 * Tokenizer squashed the '=' sign. argv[1] is variable
452 * name, argv[2] = value.
453 */
454 return kdb_setenv(argv[1], argv[2]);
455}
456
457static int kdb_check_regs(void)
458{
459 if (!kdb_current_regs) {
460 kdb_printf("No current kdb registers."
461 " You may need to select another task\n");
462 return KDB_BADREG;
463 }
464 return 0;
465}
466
467/*
468 * kdbgetaddrarg - This function is responsible for parsing an
469 * address-expression and returning the value of the expression,
470 * symbol name, and offset to the caller.
471 *
472 * The argument may consist of a numeric value (decimal or
473 * hexadecimal), a symbol name, a register name (preceded by the
474 * percent sign), an environment variable with a numeric value
475 * (preceded by a dollar sign) or a simple arithmetic expression
476 * consisting of a symbol name, +/-, and a numeric constant value
477 * (offset).
478 * Parameters:
479 * argc - count of arguments in argv
480 * argv - argument vector
481 * *nextarg - index to next unparsed argument in argv[]
482 * regs - Register state at time of KDB entry
483 * Outputs:
484 * *value - receives the value of the address-expression
485 * *offset - receives the offset specified, if any
486 * *name - receives the symbol name, if any
487 * *nextarg - index to next unparsed argument in argv[]
488 * Returns:
489 * zero is returned on success, a kdb diagnostic code is
490 * returned on error.
491 */
492int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
493 unsigned long *value, long *offset,
494 char **name)
495{
496 unsigned long addr;
497 unsigned long off = 0;
498 int positive;
499 int diag;
500 int found = 0;
501 char *symname;
502 char symbol = '\0';
503 char *cp;
504 kdb_symtab_t symtab;
505
506 /*
507 * If the enable flags prohibit both arbitrary memory access
508 * and flow control then there are no reasonable grounds to
509 * provide symbol lookup.
510 */
511 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
512 kdb_cmd_enabled, false))
513 return KDB_NOPERM;
514
515 /*
516 * Process arguments which follow the following syntax:
517 *
518 * symbol | numeric-address [+/- numeric-offset]
519 * %register
520 * $environment-variable
521 */
522
523 if (*nextarg > argc)
524 return KDB_ARGCOUNT;
525
526 symname = (char *)argv[*nextarg];
527
528 /*
529 * If there is no whitespace between the symbol
530 * or address and the '+' or '-' symbols, we
531 * remember the character and replace it with a
532 * null so the symbol/value can be properly parsed
533 */
534 cp = strpbrk(symname, "+-");
535 if (cp != NULL) {
536 symbol = *cp;
537 *cp++ = '\0';
538 }
539
540 if (symname[0] == '$') {
541 diag = kdbgetulenv(&symname[1], &addr);
542 if (diag)
543 return diag;
544 } else if (symname[0] == '%') {
545 diag = kdb_check_regs();
546 if (diag)
547 return diag;
548 /* Implement register values with % at a later time as it is
549 * arch optional.
550 */
551 return KDB_NOTIMP;
552 } else {
553 found = kdbgetsymval(symname, &symtab);
554 if (found) {
555 addr = symtab.sym_start;
556 } else {
557 diag = kdbgetularg(argv[*nextarg], &addr);
558 if (diag)
559 return diag;
560 }
561 }
562
563 if (!found)
564 found = kdbnearsym(addr, &symtab);
565
566 (*nextarg)++;
567
568 if (name)
569 *name = symname;
570 if (value)
571 *value = addr;
572 if (offset && name && *name)
573 *offset = addr - symtab.sym_start;
574
575 if ((*nextarg > argc)
576 && (symbol == '\0'))
577 return 0;
578
579 /*
580 * check for +/- and offset
581 */
582
583 if (symbol == '\0') {
584 if ((argv[*nextarg][0] != '+')
585 && (argv[*nextarg][0] != '-')) {
586 /*
587 * Not our argument. Return.
588 */
589 return 0;
590 } else {
591 positive = (argv[*nextarg][0] == '+');
592 (*nextarg)++;
593 }
594 } else
595 positive = (symbol == '+');
596
597 /*
598 * Now there must be an offset!
599 */
600 if ((*nextarg > argc)
601 && (symbol == '\0')) {
602 return KDB_INVADDRFMT;
603 }
604
605 if (!symbol) {
606 cp = (char *)argv[*nextarg];
607 (*nextarg)++;
608 }
609
610 diag = kdbgetularg(cp, &off);
611 if (diag)
612 return diag;
613
614 if (!positive)
615 off = -off;
616
617 if (offset)
618 *offset += off;
619
620 if (value)
621 *value += off;
622
623 return 0;
624}
625
626static void kdb_cmderror(int diag)
627{
628 int i;
629
630 if (diag >= 0) {
631 kdb_printf("no error detected (diagnostic is %d)\n", diag);
632 return;
633 }
634
635 for (i = 0; i < __nkdb_err; i++) {
636 if (kdbmsgs[i].km_diag == diag) {
637 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
638 return;
639 }
640 }
641
642 kdb_printf("Unknown diag %d\n", -diag);
643}
644
645/*
646 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
647 * command which defines one command as a set of other commands,
648 * terminated by endefcmd. kdb_defcmd processes the initial
649 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
650 * the following commands until 'endefcmd'.
651 * Inputs:
652 * argc argument count
653 * argv argument vector
654 * Returns:
655 * zero for success, a kdb diagnostic if error
656 */
657struct defcmd_set {
658 int count;
659 bool usable;
660 char *name;
661 char *usage;
662 char *help;
663 char **command;
664};
665static struct defcmd_set *defcmd_set;
666static int defcmd_set_count;
667static bool defcmd_in_progress;
668
669/* Forward references */
670static int kdb_exec_defcmd(int argc, const char **argv);
671
672static int kdb_defcmd2(const char *cmdstr, const char *argv0)
673{
674 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
675 char **save_command = s->command;
676 if (strcmp(argv0, "endefcmd") == 0) {
677 defcmd_in_progress = false;
678 if (!s->count)
679 s->usable = false;
680 if (s->usable)
681 /* macros are always safe because when executed each
682 * internal command re-enters kdb_parse() and is
683 * safety checked individually.
684 */
685 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
686 s->help, 0,
687 KDB_ENABLE_ALWAYS_SAFE);
688 return 0;
689 }
690 if (!s->usable)
691 return KDB_NOTIMP;
692 s->command = kcalloc(s->count + 1, sizeof(*(s->command)), GFP_KDB);
693 if (!s->command) {
694 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
695 cmdstr);
696 s->usable = false;
697 return KDB_NOTIMP;
698 }
699 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
700 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
701 kfree(save_command);
702 return 0;
703}
704
705static int kdb_defcmd(int argc, const char **argv)
706{
707 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
708 if (defcmd_in_progress) {
709 kdb_printf("kdb: nested defcmd detected, assuming missing "
710 "endefcmd\n");
711 kdb_defcmd2("endefcmd", "endefcmd");
712 }
713 if (argc == 0) {
714 int i;
715 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
716 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
717 s->usage, s->help);
718 for (i = 0; i < s->count; ++i)
719 kdb_printf("%s", s->command[i]);
720 kdb_printf("endefcmd\n");
721 }
722 return 0;
723 }
724 if (argc != 3)
725 return KDB_ARGCOUNT;
726 if (in_dbg_master()) {
727 kdb_printf("Command only available during kdb_init()\n");
728 return KDB_NOTIMP;
729 }
730 defcmd_set = kmalloc_array(defcmd_set_count + 1, sizeof(*defcmd_set),
731 GFP_KDB);
732 if (!defcmd_set)
733 goto fail_defcmd;
734 memcpy(defcmd_set, save_defcmd_set,
735 defcmd_set_count * sizeof(*defcmd_set));
736 s = defcmd_set + defcmd_set_count;
737 memset(s, 0, sizeof(*s));
738 s->usable = true;
739 s->name = kdb_strdup(argv[1], GFP_KDB);
740 if (!s->name)
741 goto fail_name;
742 s->usage = kdb_strdup(argv[2], GFP_KDB);
743 if (!s->usage)
744 goto fail_usage;
745 s->help = kdb_strdup(argv[3], GFP_KDB);
746 if (!s->help)
747 goto fail_help;
748 if (s->usage[0] == '"') {
749 strcpy(s->usage, argv[2]+1);
750 s->usage[strlen(s->usage)-1] = '\0';
751 }
752 if (s->help[0] == '"') {
753 strcpy(s->help, argv[3]+1);
754 s->help[strlen(s->help)-1] = '\0';
755 }
756 ++defcmd_set_count;
757 defcmd_in_progress = true;
758 kfree(save_defcmd_set);
759 return 0;
760fail_help:
761 kfree(s->usage);
762fail_usage:
763 kfree(s->name);
764fail_name:
765 kfree(defcmd_set);
766fail_defcmd:
767 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
768 defcmd_set = save_defcmd_set;
769 return KDB_NOTIMP;
770}
771
772/*
773 * kdb_exec_defcmd - Execute the set of commands associated with this
774 * defcmd name.
775 * Inputs:
776 * argc argument count
777 * argv argument vector
778 * Returns:
779 * zero for success, a kdb diagnostic if error
780 */
781static int kdb_exec_defcmd(int argc, const char **argv)
782{
783 int i, ret;
784 struct defcmd_set *s;
785 if (argc != 0)
786 return KDB_ARGCOUNT;
787 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
788 if (strcmp(s->name, argv[0]) == 0)
789 break;
790 }
791 if (i == defcmd_set_count) {
792 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
793 argv[0]);
794 return KDB_NOTIMP;
795 }
796 for (i = 0; i < s->count; ++i) {
797 /* Recursive use of kdb_parse, do not use argv after
798 * this point */
799 argv = NULL;
800 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
801 ret = kdb_parse(s->command[i]);
802 if (ret)
803 return ret;
804 }
805 return 0;
806}
807
808/* Command history */
809#define KDB_CMD_HISTORY_COUNT 32
810#define CMD_BUFLEN 200 /* kdb_printf: max printline
811 * size == 256 */
812static unsigned int cmd_head, cmd_tail;
813static unsigned int cmdptr;
814static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
815static char cmd_cur[CMD_BUFLEN];
816
817/*
818 * The "str" argument may point to something like | grep xyz
819 */
820static void parse_grep(const char *str)
821{
822 int len;
823 char *cp = (char *)str, *cp2;
824
825 /* sanity check: we should have been called with the \ first */
826 if (*cp != '|')
827 return;
828 cp++;
829 while (isspace(*cp))
830 cp++;
831 if (!str_has_prefix(cp, "grep ")) {
832 kdb_printf("invalid 'pipe', see grephelp\n");
833 return;
834 }
835 cp += 5;
836 while (isspace(*cp))
837 cp++;
838 cp2 = strchr(cp, '\n');
839 if (cp2)
840 *cp2 = '\0'; /* remove the trailing newline */
841 len = strlen(cp);
842 if (len == 0) {
843 kdb_printf("invalid 'pipe', see grephelp\n");
844 return;
845 }
846 /* now cp points to a nonzero length search string */
847 if (*cp == '"') {
848 /* allow it be "x y z" by removing the "'s - there must
849 be two of them */
850 cp++;
851 cp2 = strchr(cp, '"');
852 if (!cp2) {
853 kdb_printf("invalid quoted string, see grephelp\n");
854 return;
855 }
856 *cp2 = '\0'; /* end the string where the 2nd " was */
857 }
858 kdb_grep_leading = 0;
859 if (*cp == '^') {
860 kdb_grep_leading = 1;
861 cp++;
862 }
863 len = strlen(cp);
864 kdb_grep_trailing = 0;
865 if (*(cp+len-1) == '$') {
866 kdb_grep_trailing = 1;
867 *(cp+len-1) = '\0';
868 }
869 len = strlen(cp);
870 if (!len)
871 return;
872 if (len >= KDB_GREP_STRLEN) {
873 kdb_printf("search string too long\n");
874 return;
875 }
876 strcpy(kdb_grep_string, cp);
877 kdb_grepping_flag++;
878 return;
879}
880
881/*
882 * kdb_parse - Parse the command line, search the command table for a
883 * matching command and invoke the command function. This
884 * function may be called recursively, if it is, the second call
885 * will overwrite argv and cbuf. It is the caller's
886 * responsibility to save their argv if they recursively call
887 * kdb_parse().
888 * Parameters:
889 * cmdstr The input command line to be parsed.
890 * regs The registers at the time kdb was entered.
891 * Returns:
892 * Zero for success, a kdb diagnostic if failure.
893 * Remarks:
894 * Limited to 20 tokens.
895 *
896 * Real rudimentary tokenization. Basically only whitespace
897 * is considered a token delimiter (but special consideration
898 * is taken of the '=' sign as used by the 'set' command).
899 *
900 * The algorithm used to tokenize the input string relies on
901 * there being at least one whitespace (or otherwise useless)
902 * character between tokens as the character immediately following
903 * the token is altered in-place to a null-byte to terminate the
904 * token string.
905 */
906
907#define MAXARGC 20
908
909int kdb_parse(const char *cmdstr)
910{
911 static char *argv[MAXARGC];
912 static int argc;
913 static char cbuf[CMD_BUFLEN+2];
914 char *cp;
915 char *cpp, quoted;
916 kdbtab_t *tp;
917 int escaped, ignore_errors = 0, check_grep = 0;
918
919 /*
920 * First tokenize the command string.
921 */
922 cp = (char *)cmdstr;
923
924 if (KDB_FLAG(CMD_INTERRUPT)) {
925 /* Previous command was interrupted, newline must not
926 * repeat the command */
927 KDB_FLAG_CLEAR(CMD_INTERRUPT);
928 KDB_STATE_SET(PAGER);
929 argc = 0; /* no repeat */
930 }
931
932 if (*cp != '\n' && *cp != '\0') {
933 argc = 0;
934 cpp = cbuf;
935 while (*cp) {
936 /* skip whitespace */
937 while (isspace(*cp))
938 cp++;
939 if ((*cp == '\0') || (*cp == '\n') ||
940 (*cp == '#' && !defcmd_in_progress))
941 break;
942 /* special case: check for | grep pattern */
943 if (*cp == '|') {
944 check_grep++;
945 break;
946 }
947 if (cpp >= cbuf + CMD_BUFLEN) {
948 kdb_printf("kdb_parse: command buffer "
949 "overflow, command ignored\n%s\n",
950 cmdstr);
951 return KDB_NOTFOUND;
952 }
953 if (argc >= MAXARGC - 1) {
954 kdb_printf("kdb_parse: too many arguments, "
955 "command ignored\n%s\n", cmdstr);
956 return KDB_NOTFOUND;
957 }
958 argv[argc++] = cpp;
959 escaped = 0;
960 quoted = '\0';
961 /* Copy to next unquoted and unescaped
962 * whitespace or '=' */
963 while (*cp && *cp != '\n' &&
964 (escaped || quoted || !isspace(*cp))) {
965 if (cpp >= cbuf + CMD_BUFLEN)
966 break;
967 if (escaped) {
968 escaped = 0;
969 *cpp++ = *cp++;
970 continue;
971 }
972 if (*cp == '\\') {
973 escaped = 1;
974 ++cp;
975 continue;
976 }
977 if (*cp == quoted)
978 quoted = '\0';
979 else if (*cp == '\'' || *cp == '"')
980 quoted = *cp;
981 *cpp = *cp++;
982 if (*cpp == '=' && !quoted)
983 break;
984 ++cpp;
985 }
986 *cpp++ = '\0'; /* Squash a ws or '=' character */
987 }
988 }
989 if (!argc)
990 return 0;
991 if (check_grep)
992 parse_grep(cp);
993 if (defcmd_in_progress) {
994 int result = kdb_defcmd2(cmdstr, argv[0]);
995 if (!defcmd_in_progress) {
996 argc = 0; /* avoid repeat on endefcmd */
997 *(argv[0]) = '\0';
998 }
999 return result;
1000 }
1001 if (argv[0][0] == '-' && argv[0][1] &&
1002 (argv[0][1] < '0' || argv[0][1] > '9')) {
1003 ignore_errors = 1;
1004 ++argv[0];
1005 }
1006
1007 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1008 /*
1009 * If this command is allowed to be abbreviated,
1010 * check to see if this is it.
1011 */
1012 if (tp->cmd_minlen && (strlen(argv[0]) <= tp->cmd_minlen) &&
1013 (strncmp(argv[0], tp->cmd_name, tp->cmd_minlen) == 0))
1014 break;
1015
1016 if (strcmp(argv[0], tp->cmd_name) == 0)
1017 break;
1018 }
1019
1020 /*
1021 * If we don't find a command by this name, see if the first
1022 * few characters of this match any of the known commands.
1023 * e.g., md1c20 should match md.
1024 */
1025 if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1026 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1027 if (strncmp(argv[0], tp->cmd_name,
1028 strlen(tp->cmd_name)) == 0)
1029 break;
1030 }
1031 }
1032
1033 if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1034 int result;
1035
1036 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1037 return KDB_NOPERM;
1038
1039 KDB_STATE_SET(CMD);
1040 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1041 if (result && ignore_errors && result > KDB_CMD_GO)
1042 result = 0;
1043 KDB_STATE_CLEAR(CMD);
1044
1045 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1046 return result;
1047
1048 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1049 if (argv[argc])
1050 *(argv[argc]) = '\0';
1051 return result;
1052 }
1053
1054 /*
1055 * If the input with which we were presented does not
1056 * map to an existing command, attempt to parse it as an
1057 * address argument and display the result. Useful for
1058 * obtaining the address of a variable, or the nearest symbol
1059 * to an address contained in a register.
1060 */
1061 {
1062 unsigned long value;
1063 char *name = NULL;
1064 long offset;
1065 int nextarg = 0;
1066
1067 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1068 &value, &offset, &name)) {
1069 return KDB_NOTFOUND;
1070 }
1071
1072 kdb_printf("%s = ", argv[0]);
1073 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1074 kdb_printf("\n");
1075 return 0;
1076 }
1077}
1078
1079
1080static int handle_ctrl_cmd(char *cmd)
1081{
1082#define CTRL_P 16
1083#define CTRL_N 14
1084
1085 /* initial situation */
1086 if (cmd_head == cmd_tail)
1087 return 0;
1088 switch (*cmd) {
1089 case CTRL_P:
1090 if (cmdptr != cmd_tail)
1091 cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1092 KDB_CMD_HISTORY_COUNT;
1093 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1094 return 1;
1095 case CTRL_N:
1096 if (cmdptr != cmd_head)
1097 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1098 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1099 return 1;
1100 }
1101 return 0;
1102}
1103
1104/*
1105 * kdb_reboot - This function implements the 'reboot' command. Reboot
1106 * the system immediately, or loop for ever on failure.
1107 */
1108static int kdb_reboot(int argc, const char **argv)
1109{
1110 emergency_restart();
1111 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1112 while (1)
1113 cpu_relax();
1114 /* NOTREACHED */
1115 return 0;
1116}
1117
1118static void kdb_dumpregs(struct pt_regs *regs)
1119{
1120 int old_lvl = console_loglevel;
1121 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1122 kdb_trap_printk++;
1123 show_regs(regs);
1124 kdb_trap_printk--;
1125 kdb_printf("\n");
1126 console_loglevel = old_lvl;
1127}
1128
1129static void kdb_set_current_task(struct task_struct *p)
1130{
1131 kdb_current_task = p;
1132
1133 if (kdb_task_has_cpu(p)) {
1134 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1135 return;
1136 }
1137 kdb_current_regs = NULL;
1138}
1139
1140static void drop_newline(char *buf)
1141{
1142 size_t len = strlen(buf);
1143
1144 if (len == 0)
1145 return;
1146 if (*(buf + len - 1) == '\n')
1147 *(buf + len - 1) = '\0';
1148}
1149
1150/*
1151 * kdb_local - The main code for kdb. This routine is invoked on a
1152 * specific processor, it is not global. The main kdb() routine
1153 * ensures that only one processor at a time is in this routine.
1154 * This code is called with the real reason code on the first
1155 * entry to a kdb session, thereafter it is called with reason
1156 * SWITCH, even if the user goes back to the original cpu.
1157 * Inputs:
1158 * reason The reason KDB was invoked
1159 * error The hardware-defined error code
1160 * regs The exception frame at time of fault/breakpoint.
1161 * db_result Result code from the break or debug point.
1162 * Returns:
1163 * 0 KDB was invoked for an event which it wasn't responsible
1164 * 1 KDB handled the event for which it was invoked.
1165 * KDB_CMD_GO User typed 'go'.
1166 * KDB_CMD_CPU User switched to another cpu.
1167 * KDB_CMD_SS Single step.
1168 */
1169static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1170 kdb_dbtrap_t db_result)
1171{
1172 char *cmdbuf;
1173 int diag;
1174 struct task_struct *kdb_current =
1175 kdb_curr_task(raw_smp_processor_id());
1176
1177 KDB_DEBUG_STATE("kdb_local 1", reason);
1178 kdb_go_count = 0;
1179 if (reason == KDB_REASON_DEBUG) {
1180 /* special case below */
1181 } else {
1182 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1183 kdb_current, kdb_current ? kdb_current->pid : 0);
1184#if defined(CONFIG_SMP)
1185 kdb_printf("on processor %d ", raw_smp_processor_id());
1186#endif
1187 }
1188
1189 switch (reason) {
1190 case KDB_REASON_DEBUG:
1191 {
1192 /*
1193 * If re-entering kdb after a single step
1194 * command, don't print the message.
1195 */
1196 switch (db_result) {
1197 case KDB_DB_BPT:
1198 kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1199 kdb_current, kdb_current->pid);
1200#if defined(CONFIG_SMP)
1201 kdb_printf("on processor %d ", raw_smp_processor_id());
1202#endif
1203 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1204 instruction_pointer(regs));
1205 break;
1206 case KDB_DB_SS:
1207 break;
1208 case KDB_DB_SSBPT:
1209 KDB_DEBUG_STATE("kdb_local 4", reason);
1210 return 1; /* kdba_db_trap did the work */
1211 default:
1212 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1213 db_result);
1214 break;
1215 }
1216
1217 }
1218 break;
1219 case KDB_REASON_ENTER:
1220 if (KDB_STATE(KEYBOARD))
1221 kdb_printf("due to Keyboard Entry\n");
1222 else
1223 kdb_printf("due to KDB_ENTER()\n");
1224 break;
1225 case KDB_REASON_KEYBOARD:
1226 KDB_STATE_SET(KEYBOARD);
1227 kdb_printf("due to Keyboard Entry\n");
1228 break;
1229 case KDB_REASON_ENTER_SLAVE:
1230 /* drop through, slaves only get released via cpu switch */
1231 case KDB_REASON_SWITCH:
1232 kdb_printf("due to cpu switch\n");
1233 break;
1234 case KDB_REASON_OOPS:
1235 kdb_printf("Oops: %s\n", kdb_diemsg);
1236 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1237 instruction_pointer(regs));
1238 kdb_dumpregs(regs);
1239 break;
1240 case KDB_REASON_SYSTEM_NMI:
1241 kdb_printf("due to System NonMaskable Interrupt\n");
1242 break;
1243 case KDB_REASON_NMI:
1244 kdb_printf("due to NonMaskable Interrupt @ "
1245 kdb_machreg_fmt "\n",
1246 instruction_pointer(regs));
1247 break;
1248 case KDB_REASON_SSTEP:
1249 case KDB_REASON_BREAK:
1250 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1251 reason == KDB_REASON_BREAK ?
1252 "Breakpoint" : "SS trap", instruction_pointer(regs));
1253 /*
1254 * Determine if this breakpoint is one that we
1255 * are interested in.
1256 */
1257 if (db_result != KDB_DB_BPT) {
1258 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1259 db_result);
1260 KDB_DEBUG_STATE("kdb_local 6", reason);
1261 return 0; /* Not for us, dismiss it */
1262 }
1263 break;
1264 case KDB_REASON_RECURSE:
1265 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1266 instruction_pointer(regs));
1267 break;
1268 default:
1269 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1270 KDB_DEBUG_STATE("kdb_local 8", reason);
1271 return 0; /* Not for us, dismiss it */
1272 }
1273
1274 while (1) {
1275 /*
1276 * Initialize pager context.
1277 */
1278 kdb_nextline = 1;
1279 KDB_STATE_CLEAR(SUPPRESS);
1280 kdb_grepping_flag = 0;
1281 /* ensure the old search does not leak into '/' commands */
1282 kdb_grep_string[0] = '\0';
1283
1284 cmdbuf = cmd_cur;
1285 *cmdbuf = '\0';
1286 *(cmd_hist[cmd_head]) = '\0';
1287
1288do_full_getstr:
1289 /* PROMPT can only be set if we have MEM_READ permission. */
1290 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1291 raw_smp_processor_id());
1292 if (defcmd_in_progress)
1293 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1294
1295 /*
1296 * Fetch command from keyboard
1297 */
1298 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1299 if (*cmdbuf != '\n') {
1300 if (*cmdbuf < 32) {
1301 if (cmdptr == cmd_head) {
1302 strscpy(cmd_hist[cmd_head], cmd_cur,
1303 CMD_BUFLEN);
1304 *(cmd_hist[cmd_head] +
1305 strlen(cmd_hist[cmd_head])-1) = '\0';
1306 }
1307 if (!handle_ctrl_cmd(cmdbuf))
1308 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1309 cmdbuf = cmd_cur;
1310 goto do_full_getstr;
1311 } else {
1312 strscpy(cmd_hist[cmd_head], cmd_cur,
1313 CMD_BUFLEN);
1314 }
1315
1316 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1317 if (cmd_head == cmd_tail)
1318 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1319 }
1320
1321 cmdptr = cmd_head;
1322 diag = kdb_parse(cmdbuf);
1323 if (diag == KDB_NOTFOUND) {
1324 drop_newline(cmdbuf);
1325 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1326 diag = 0;
1327 }
1328 if (diag == KDB_CMD_GO
1329 || diag == KDB_CMD_CPU
1330 || diag == KDB_CMD_SS
1331 || diag == KDB_CMD_KGDB)
1332 break;
1333
1334 if (diag)
1335 kdb_cmderror(diag);
1336 }
1337 KDB_DEBUG_STATE("kdb_local 9", diag);
1338 return diag;
1339}
1340
1341
1342/*
1343 * kdb_print_state - Print the state data for the current processor
1344 * for debugging.
1345 * Inputs:
1346 * text Identifies the debug point
1347 * value Any integer value to be printed, e.g. reason code.
1348 */
1349void kdb_print_state(const char *text, int value)
1350{
1351 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1352 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1353 kdb_state);
1354}
1355
1356/*
1357 * kdb_main_loop - After initial setup and assignment of the
1358 * controlling cpu, all cpus are in this loop. One cpu is in
1359 * control and will issue the kdb prompt, the others will spin
1360 * until 'go' or cpu switch.
1361 *
1362 * To get a consistent view of the kernel stacks for all
1363 * processes, this routine is invoked from the main kdb code via
1364 * an architecture specific routine. kdba_main_loop is
1365 * responsible for making the kernel stacks consistent for all
1366 * processes, there should be no difference between a blocked
1367 * process and a running process as far as kdb is concerned.
1368 * Inputs:
1369 * reason The reason KDB was invoked
1370 * error The hardware-defined error code
1371 * reason2 kdb's current reason code.
1372 * Initially error but can change
1373 * according to kdb state.
1374 * db_result Result code from break or debug point.
1375 * regs The exception frame at time of fault/breakpoint.
1376 * should always be valid.
1377 * Returns:
1378 * 0 KDB was invoked for an event which it wasn't responsible
1379 * 1 KDB handled the event for which it was invoked.
1380 */
1381int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1382 kdb_dbtrap_t db_result, struct pt_regs *regs)
1383{
1384 int result = 1;
1385 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1386 while (1) {
1387 /*
1388 * All processors except the one that is in control
1389 * will spin here.
1390 */
1391 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1392 while (KDB_STATE(HOLD_CPU)) {
1393 /* state KDB is turned off by kdb_cpu to see if the
1394 * other cpus are still live, each cpu in this loop
1395 * turns it back on.
1396 */
1397 if (!KDB_STATE(KDB))
1398 KDB_STATE_SET(KDB);
1399 }
1400
1401 KDB_STATE_CLEAR(SUPPRESS);
1402 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1403 if (KDB_STATE(LEAVING))
1404 break; /* Another cpu said 'go' */
1405 /* Still using kdb, this processor is in control */
1406 result = kdb_local(reason2, error, regs, db_result);
1407 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1408
1409 if (result == KDB_CMD_CPU)
1410 break;
1411
1412 if (result == KDB_CMD_SS) {
1413 KDB_STATE_SET(DOING_SS);
1414 break;
1415 }
1416
1417 if (result == KDB_CMD_KGDB) {
1418 if (!KDB_STATE(DOING_KGDB))
1419 kdb_printf("Entering please attach debugger "
1420 "or use $D#44+ or $3#33\n");
1421 break;
1422 }
1423 if (result && result != 1 && result != KDB_CMD_GO)
1424 kdb_printf("\nUnexpected kdb_local return code %d\n",
1425 result);
1426 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1427 break;
1428 }
1429 if (KDB_STATE(DOING_SS))
1430 KDB_STATE_CLEAR(SSBPT);
1431
1432 /* Clean up any keyboard devices before leaving */
1433 kdb_kbd_cleanup_state();
1434
1435 return result;
1436}
1437
1438/*
1439 * kdb_mdr - This function implements the guts of the 'mdr', memory
1440 * read command.
1441 * mdr <addr arg>,<byte count>
1442 * Inputs:
1443 * addr Start address
1444 * count Number of bytes
1445 * Returns:
1446 * Always 0. Any errors are detected and printed by kdb_getarea.
1447 */
1448static int kdb_mdr(unsigned long addr, unsigned int count)
1449{
1450 unsigned char c;
1451 while (count--) {
1452 if (kdb_getarea(c, addr))
1453 return 0;
1454 kdb_printf("%02x", c);
1455 addr++;
1456 }
1457 kdb_printf("\n");
1458 return 0;
1459}
1460
1461/*
1462 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1463 * 'md8' 'mdr' and 'mds' commands.
1464 *
1465 * md|mds [<addr arg> [<line count> [<radix>]]]
1466 * mdWcN [<addr arg> [<line count> [<radix>]]]
1467 * where W = is the width (1, 2, 4 or 8) and N is the count.
1468 * for eg., md1c20 reads 20 bytes, 1 at a time.
1469 * mdr <addr arg>,<byte count>
1470 */
1471static void kdb_md_line(const char *fmtstr, unsigned long addr,
1472 int symbolic, int nosect, int bytesperword,
1473 int num, int repeat, int phys)
1474{
1475 /* print just one line of data */
1476 kdb_symtab_t symtab;
1477 char cbuf[32];
1478 char *c = cbuf;
1479 int i;
1480 int j;
1481 unsigned long word;
1482
1483 memset(cbuf, '\0', sizeof(cbuf));
1484 if (phys)
1485 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1486 else
1487 kdb_printf(kdb_machreg_fmt0 " ", addr);
1488
1489 for (i = 0; i < num && repeat--; i++) {
1490 if (phys) {
1491 if (kdb_getphysword(&word, addr, bytesperword))
1492 break;
1493 } else if (kdb_getword(&word, addr, bytesperword))
1494 break;
1495 kdb_printf(fmtstr, word);
1496 if (symbolic)
1497 kdbnearsym(word, &symtab);
1498 else
1499 memset(&symtab, 0, sizeof(symtab));
1500 if (symtab.sym_name) {
1501 kdb_symbol_print(word, &symtab, 0);
1502 if (!nosect) {
1503 kdb_printf("\n");
1504 kdb_printf(" %s %s "
1505 kdb_machreg_fmt " "
1506 kdb_machreg_fmt " "
1507 kdb_machreg_fmt, symtab.mod_name,
1508 symtab.sec_name, symtab.sec_start,
1509 symtab.sym_start, symtab.sym_end);
1510 }
1511 addr += bytesperword;
1512 } else {
1513 union {
1514 u64 word;
1515 unsigned char c[8];
1516 } wc;
1517 unsigned char *cp;
1518#ifdef __BIG_ENDIAN
1519 cp = wc.c + 8 - bytesperword;
1520#else
1521 cp = wc.c;
1522#endif
1523 wc.word = word;
1524#define printable_char(c) \
1525 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1526 for (j = 0; j < bytesperword; j++)
1527 *c++ = printable_char(*cp++);
1528 addr += bytesperword;
1529#undef printable_char
1530 }
1531 }
1532 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1533 " ", cbuf);
1534}
1535
1536static int kdb_md(int argc, const char **argv)
1537{
1538 static unsigned long last_addr;
1539 static int last_radix, last_bytesperword, last_repeat;
1540 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1541 int nosect = 0;
1542 char fmtchar, fmtstr[64];
1543 unsigned long addr;
1544 unsigned long word;
1545 long offset = 0;
1546 int symbolic = 0;
1547 int valid = 0;
1548 int phys = 0;
1549 int raw = 0;
1550
1551 kdbgetintenv("MDCOUNT", &mdcount);
1552 kdbgetintenv("RADIX", &radix);
1553 kdbgetintenv("BYTESPERWORD", &bytesperword);
1554
1555 /* Assume 'md <addr>' and start with environment values */
1556 repeat = mdcount * 16 / bytesperword;
1557
1558 if (strcmp(argv[0], "mdr") == 0) {
1559 if (argc == 2 || (argc == 0 && last_addr != 0))
1560 valid = raw = 1;
1561 else
1562 return KDB_ARGCOUNT;
1563 } else if (isdigit(argv[0][2])) {
1564 bytesperword = (int)(argv[0][2] - '0');
1565 if (bytesperword == 0) {
1566 bytesperword = last_bytesperword;
1567 if (bytesperword == 0)
1568 bytesperword = 4;
1569 }
1570 last_bytesperword = bytesperword;
1571 repeat = mdcount * 16 / bytesperword;
1572 if (!argv[0][3])
1573 valid = 1;
1574 else if (argv[0][3] == 'c' && argv[0][4]) {
1575 char *p;
1576 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1577 mdcount = ((repeat * bytesperword) + 15) / 16;
1578 valid = !*p;
1579 }
1580 last_repeat = repeat;
1581 } else if (strcmp(argv[0], "md") == 0)
1582 valid = 1;
1583 else if (strcmp(argv[0], "mds") == 0)
1584 valid = 1;
1585 else if (strcmp(argv[0], "mdp") == 0) {
1586 phys = valid = 1;
1587 }
1588 if (!valid)
1589 return KDB_NOTFOUND;
1590
1591 if (argc == 0) {
1592 if (last_addr == 0)
1593 return KDB_ARGCOUNT;
1594 addr = last_addr;
1595 radix = last_radix;
1596 bytesperword = last_bytesperword;
1597 repeat = last_repeat;
1598 if (raw)
1599 mdcount = repeat;
1600 else
1601 mdcount = ((repeat * bytesperword) + 15) / 16;
1602 }
1603
1604 if (argc) {
1605 unsigned long val;
1606 int diag, nextarg = 1;
1607 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1608 &offset, NULL);
1609 if (diag)
1610 return diag;
1611 if (argc > nextarg+2)
1612 return KDB_ARGCOUNT;
1613
1614 if (argc >= nextarg) {
1615 diag = kdbgetularg(argv[nextarg], &val);
1616 if (!diag) {
1617 mdcount = (int) val;
1618 if (raw)
1619 repeat = mdcount;
1620 else
1621 repeat = mdcount * 16 / bytesperword;
1622 }
1623 }
1624 if (argc >= nextarg+1) {
1625 diag = kdbgetularg(argv[nextarg+1], &val);
1626 if (!diag)
1627 radix = (int) val;
1628 }
1629 }
1630
1631 if (strcmp(argv[0], "mdr") == 0) {
1632 int ret;
1633 last_addr = addr;
1634 ret = kdb_mdr(addr, mdcount);
1635 last_addr += mdcount;
1636 last_repeat = mdcount;
1637 last_bytesperword = bytesperword; // to make REPEAT happy
1638 return ret;
1639 }
1640
1641 switch (radix) {
1642 case 10:
1643 fmtchar = 'd';
1644 break;
1645 case 16:
1646 fmtchar = 'x';
1647 break;
1648 case 8:
1649 fmtchar = 'o';
1650 break;
1651 default:
1652 return KDB_BADRADIX;
1653 }
1654
1655 last_radix = radix;
1656
1657 if (bytesperword > KDB_WORD_SIZE)
1658 return KDB_BADWIDTH;
1659
1660 switch (bytesperword) {
1661 case 8:
1662 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1663 break;
1664 case 4:
1665 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1666 break;
1667 case 2:
1668 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1669 break;
1670 case 1:
1671 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1672 break;
1673 default:
1674 return KDB_BADWIDTH;
1675 }
1676
1677 last_repeat = repeat;
1678 last_bytesperword = bytesperword;
1679
1680 if (strcmp(argv[0], "mds") == 0) {
1681 symbolic = 1;
1682 /* Do not save these changes as last_*, they are temporary mds
1683 * overrides.
1684 */
1685 bytesperword = KDB_WORD_SIZE;
1686 repeat = mdcount;
1687 kdbgetintenv("NOSECT", &nosect);
1688 }
1689
1690 /* Round address down modulo BYTESPERWORD */
1691
1692 addr &= ~(bytesperword-1);
1693
1694 while (repeat > 0) {
1695 unsigned long a;
1696 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1697
1698 if (KDB_FLAG(CMD_INTERRUPT))
1699 return 0;
1700 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1701 if (phys) {
1702 if (kdb_getphysword(&word, a, bytesperword)
1703 || word)
1704 break;
1705 } else if (kdb_getword(&word, a, bytesperword) || word)
1706 break;
1707 }
1708 n = min(num, repeat);
1709 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1710 num, repeat, phys);
1711 addr += bytesperword * n;
1712 repeat -= n;
1713 z = (z + num - 1) / num;
1714 if (z > 2) {
1715 int s = num * (z-2);
1716 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1717 " zero suppressed\n",
1718 addr, addr + bytesperword * s - 1);
1719 addr += bytesperword * s;
1720 repeat -= s;
1721 }
1722 }
1723 last_addr = addr;
1724
1725 return 0;
1726}
1727
1728/*
1729 * kdb_mm - This function implements the 'mm' command.
1730 * mm address-expression new-value
1731 * Remarks:
1732 * mm works on machine words, mmW works on bytes.
1733 */
1734static int kdb_mm(int argc, const char **argv)
1735{
1736 int diag;
1737 unsigned long addr;
1738 long offset = 0;
1739 unsigned long contents;
1740 int nextarg;
1741 int width;
1742
1743 if (argv[0][2] && !isdigit(argv[0][2]))
1744 return KDB_NOTFOUND;
1745
1746 if (argc < 2)
1747 return KDB_ARGCOUNT;
1748
1749 nextarg = 1;
1750 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1751 if (diag)
1752 return diag;
1753
1754 if (nextarg > argc)
1755 return KDB_ARGCOUNT;
1756 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1757 if (diag)
1758 return diag;
1759
1760 if (nextarg != argc + 1)
1761 return KDB_ARGCOUNT;
1762
1763 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1764 diag = kdb_putword(addr, contents, width);
1765 if (diag)
1766 return diag;
1767
1768 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1769
1770 return 0;
1771}
1772
1773/*
1774 * kdb_go - This function implements the 'go' command.
1775 * go [address-expression]
1776 */
1777static int kdb_go(int argc, const char **argv)
1778{
1779 unsigned long addr;
1780 int diag;
1781 int nextarg;
1782 long offset;
1783
1784 if (raw_smp_processor_id() != kdb_initial_cpu) {
1785 kdb_printf("go must execute on the entry cpu, "
1786 "please use \"cpu %d\" and then execute go\n",
1787 kdb_initial_cpu);
1788 return KDB_BADCPUNUM;
1789 }
1790 if (argc == 1) {
1791 nextarg = 1;
1792 diag = kdbgetaddrarg(argc, argv, &nextarg,
1793 &addr, &offset, NULL);
1794 if (diag)
1795 return diag;
1796 } else if (argc) {
1797 return KDB_ARGCOUNT;
1798 }
1799
1800 diag = KDB_CMD_GO;
1801 if (KDB_FLAG(CATASTROPHIC)) {
1802 kdb_printf("Catastrophic error detected\n");
1803 kdb_printf("kdb_continue_catastrophic=%d, ",
1804 kdb_continue_catastrophic);
1805 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1806 kdb_printf("type go a second time if you really want "
1807 "to continue\n");
1808 return 0;
1809 }
1810 if (kdb_continue_catastrophic == 2) {
1811 kdb_printf("forcing reboot\n");
1812 kdb_reboot(0, NULL);
1813 }
1814 kdb_printf("attempting to continue\n");
1815 }
1816 return diag;
1817}
1818
1819/*
1820 * kdb_rd - This function implements the 'rd' command.
1821 */
1822static int kdb_rd(int argc, const char **argv)
1823{
1824 int len = kdb_check_regs();
1825#if DBG_MAX_REG_NUM > 0
1826 int i;
1827 char *rname;
1828 int rsize;
1829 u64 reg64;
1830 u32 reg32;
1831 u16 reg16;
1832 u8 reg8;
1833
1834 if (len)
1835 return len;
1836
1837 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1838 rsize = dbg_reg_def[i].size * 2;
1839 if (rsize > 16)
1840 rsize = 2;
1841 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1842 len = 0;
1843 kdb_printf("\n");
1844 }
1845 if (len)
1846 len += kdb_printf(" ");
1847 switch(dbg_reg_def[i].size * 8) {
1848 case 8:
1849 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1850 if (!rname)
1851 break;
1852 len += kdb_printf("%s: %02x", rname, reg8);
1853 break;
1854 case 16:
1855 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1856 if (!rname)
1857 break;
1858 len += kdb_printf("%s: %04x", rname, reg16);
1859 break;
1860 case 32:
1861 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1862 if (!rname)
1863 break;
1864 len += kdb_printf("%s: %08x", rname, reg32);
1865 break;
1866 case 64:
1867 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1868 if (!rname)
1869 break;
1870 len += kdb_printf("%s: %016llx", rname, reg64);
1871 break;
1872 default:
1873 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1874 }
1875 }
1876 kdb_printf("\n");
1877#else
1878 if (len)
1879 return len;
1880
1881 kdb_dumpregs(kdb_current_regs);
1882#endif
1883 return 0;
1884}
1885
1886/*
1887 * kdb_rm - This function implements the 'rm' (register modify) command.
1888 * rm register-name new-contents
1889 * Remarks:
1890 * Allows register modification with the same restrictions as gdb
1891 */
1892static int kdb_rm(int argc, const char **argv)
1893{
1894#if DBG_MAX_REG_NUM > 0
1895 int diag;
1896 const char *rname;
1897 int i;
1898 u64 reg64;
1899 u32 reg32;
1900 u16 reg16;
1901 u8 reg8;
1902
1903 if (argc != 2)
1904 return KDB_ARGCOUNT;
1905 /*
1906 * Allow presence or absence of leading '%' symbol.
1907 */
1908 rname = argv[1];
1909 if (*rname == '%')
1910 rname++;
1911
1912 diag = kdbgetu64arg(argv[2], ®64);
1913 if (diag)
1914 return diag;
1915
1916 diag = kdb_check_regs();
1917 if (diag)
1918 return diag;
1919
1920 diag = KDB_BADREG;
1921 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1922 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1923 diag = 0;
1924 break;
1925 }
1926 }
1927 if (!diag) {
1928 switch(dbg_reg_def[i].size * 8) {
1929 case 8:
1930 reg8 = reg64;
1931 dbg_set_reg(i, ®8, kdb_current_regs);
1932 break;
1933 case 16:
1934 reg16 = reg64;
1935 dbg_set_reg(i, ®16, kdb_current_regs);
1936 break;
1937 case 32:
1938 reg32 = reg64;
1939 dbg_set_reg(i, ®32, kdb_current_regs);
1940 break;
1941 case 64:
1942 dbg_set_reg(i, ®64, kdb_current_regs);
1943 break;
1944 }
1945 }
1946 return diag;
1947#else
1948 kdb_printf("ERROR: Register set currently not implemented\n");
1949 return 0;
1950#endif
1951}
1952
1953#if defined(CONFIG_MAGIC_SYSRQ)
1954/*
1955 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1956 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1957 * sr <magic-sysrq-code>
1958 */
1959static int kdb_sr(int argc, const char **argv)
1960{
1961 bool check_mask =
1962 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1963
1964 if (argc != 1)
1965 return KDB_ARGCOUNT;
1966
1967 kdb_trap_printk++;
1968 __handle_sysrq(*argv[1], check_mask);
1969 kdb_trap_printk--;
1970
1971 return 0;
1972}
1973#endif /* CONFIG_MAGIC_SYSRQ */
1974
1975/*
1976 * kdb_ef - This function implements the 'regs' (display exception
1977 * frame) command. This command takes an address and expects to
1978 * find an exception frame at that address, formats and prints
1979 * it.
1980 * regs address-expression
1981 * Remarks:
1982 * Not done yet.
1983 */
1984static int kdb_ef(int argc, const char **argv)
1985{
1986 int diag;
1987 unsigned long addr;
1988 long offset;
1989 int nextarg;
1990
1991 if (argc != 1)
1992 return KDB_ARGCOUNT;
1993
1994 nextarg = 1;
1995 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1996 if (diag)
1997 return diag;
1998 show_regs((struct pt_regs *)addr);
1999 return 0;
2000}
2001
2002#if defined(CONFIG_MODULES)
2003/*
2004 * kdb_lsmod - This function implements the 'lsmod' command. Lists
2005 * currently loaded kernel modules.
2006 * Mostly taken from userland lsmod.
2007 */
2008static int kdb_lsmod(int argc, const char **argv)
2009{
2010 struct module *mod;
2011
2012 if (argc != 0)
2013 return KDB_ARGCOUNT;
2014
2015 kdb_printf("Module Size modstruct Used by\n");
2016 list_for_each_entry(mod, kdb_modules, list) {
2017 if (mod->state == MODULE_STATE_UNFORMED)
2018 continue;
2019
2020 kdb_printf("%-20s%8u 0x%px ", mod->name,
2021 mod->core_layout.size, (void *)mod);
2022#ifdef CONFIG_MODULE_UNLOAD
2023 kdb_printf("%4d ", module_refcount(mod));
2024#endif
2025 if (mod->state == MODULE_STATE_GOING)
2026 kdb_printf(" (Unloading)");
2027 else if (mod->state == MODULE_STATE_COMING)
2028 kdb_printf(" (Loading)");
2029 else
2030 kdb_printf(" (Live)");
2031 kdb_printf(" 0x%px", mod->core_layout.base);
2032
2033#ifdef CONFIG_MODULE_UNLOAD
2034 {
2035 struct module_use *use;
2036 kdb_printf(" [ ");
2037 list_for_each_entry(use, &mod->source_list,
2038 source_list)
2039 kdb_printf("%s ", use->target->name);
2040 kdb_printf("]\n");
2041 }
2042#endif
2043 }
2044
2045 return 0;
2046}
2047
2048#endif /* CONFIG_MODULES */
2049
2050/*
2051 * kdb_env - This function implements the 'env' command. Display the
2052 * current environment variables.
2053 */
2054
2055static int kdb_env(int argc, const char **argv)
2056{
2057 kdb_printenv();
2058
2059 if (KDB_DEBUG(MASK))
2060 kdb_printf("KDBDEBUG=0x%x\n",
2061 (kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2062
2063 return 0;
2064}
2065
2066#ifdef CONFIG_PRINTK
2067/*
2068 * kdb_dmesg - This function implements the 'dmesg' command to display
2069 * the contents of the syslog buffer.
2070 * dmesg [lines] [adjust]
2071 */
2072static int kdb_dmesg(int argc, const char **argv)
2073{
2074 int diag;
2075 int logging;
2076 int lines = 0;
2077 int adjust = 0;
2078 int n = 0;
2079 int skip = 0;
2080 struct kmsg_dump_iter iter;
2081 size_t len;
2082 char buf[201];
2083
2084 if (argc > 2)
2085 return KDB_ARGCOUNT;
2086 if (argc) {
2087 char *cp;
2088 lines = simple_strtol(argv[1], &cp, 0);
2089 if (*cp)
2090 lines = 0;
2091 if (argc > 1) {
2092 adjust = simple_strtoul(argv[2], &cp, 0);
2093 if (*cp || adjust < 0)
2094 adjust = 0;
2095 }
2096 }
2097
2098 /* disable LOGGING if set */
2099 diag = kdbgetintenv("LOGGING", &logging);
2100 if (!diag && logging) {
2101 const char *setargs[] = { "set", "LOGGING", "0" };
2102 kdb_set(2, setargs);
2103 }
2104
2105 kmsg_dump_rewind(&iter);
2106 while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL))
2107 n++;
2108
2109 if (lines < 0) {
2110 if (adjust >= n)
2111 kdb_printf("buffer only contains %d lines, nothing "
2112 "printed\n", n);
2113 else if (adjust - lines >= n)
2114 kdb_printf("buffer only contains %d lines, last %d "
2115 "lines printed\n", n, n - adjust);
2116 skip = adjust;
2117 lines = abs(lines);
2118 } else if (lines > 0) {
2119 skip = n - lines - adjust;
2120 lines = abs(lines);
2121 if (adjust >= n) {
2122 kdb_printf("buffer only contains %d lines, "
2123 "nothing printed\n", n);
2124 skip = n;
2125 } else if (skip < 0) {
2126 lines += skip;
2127 skip = 0;
2128 kdb_printf("buffer only contains %d lines, first "
2129 "%d lines printed\n", n, lines);
2130 }
2131 } else {
2132 lines = n;
2133 }
2134
2135 if (skip >= n || skip < 0)
2136 return 0;
2137
2138 kmsg_dump_rewind(&iter);
2139 while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) {
2140 if (skip) {
2141 skip--;
2142 continue;
2143 }
2144 if (!lines--)
2145 break;
2146 if (KDB_FLAG(CMD_INTERRUPT))
2147 return 0;
2148
2149 kdb_printf("%.*s\n", (int)len - 1, buf);
2150 }
2151
2152 return 0;
2153}
2154#endif /* CONFIG_PRINTK */
2155
2156/* Make sure we balance enable/disable calls, must disable first. */
2157static atomic_t kdb_nmi_disabled;
2158
2159static int kdb_disable_nmi(int argc, const char *argv[])
2160{
2161 if (atomic_read(&kdb_nmi_disabled))
2162 return 0;
2163 atomic_set(&kdb_nmi_disabled, 1);
2164 arch_kgdb_ops.enable_nmi(0);
2165 return 0;
2166}
2167
2168static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2169{
2170 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2171 return -EINVAL;
2172 arch_kgdb_ops.enable_nmi(1);
2173 return 0;
2174}
2175
2176static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2177 .set = kdb_param_enable_nmi,
2178};
2179module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2180
2181/*
2182 * kdb_cpu - This function implements the 'cpu' command.
2183 * cpu [<cpunum>]
2184 * Returns:
2185 * KDB_CMD_CPU for success, a kdb diagnostic if error
2186 */
2187static void kdb_cpu_status(void)
2188{
2189 int i, start_cpu, first_print = 1;
2190 char state, prev_state = '?';
2191
2192 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2193 kdb_printf("Available cpus: ");
2194 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2195 if (!cpu_online(i)) {
2196 state = 'F'; /* cpu is offline */
2197 } else if (!kgdb_info[i].enter_kgdb) {
2198 state = 'D'; /* cpu is online but unresponsive */
2199 } else {
2200 state = ' '; /* cpu is responding to kdb */
2201 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2202 state = 'I'; /* idle task */
2203 }
2204 if (state != prev_state) {
2205 if (prev_state != '?') {
2206 if (!first_print)
2207 kdb_printf(", ");
2208 first_print = 0;
2209 kdb_printf("%d", start_cpu);
2210 if (start_cpu < i-1)
2211 kdb_printf("-%d", i-1);
2212 if (prev_state != ' ')
2213 kdb_printf("(%c)", prev_state);
2214 }
2215 prev_state = state;
2216 start_cpu = i;
2217 }
2218 }
2219 /* print the trailing cpus, ignoring them if they are all offline */
2220 if (prev_state != 'F') {
2221 if (!first_print)
2222 kdb_printf(", ");
2223 kdb_printf("%d", start_cpu);
2224 if (start_cpu < i-1)
2225 kdb_printf("-%d", i-1);
2226 if (prev_state != ' ')
2227 kdb_printf("(%c)", prev_state);
2228 }
2229 kdb_printf("\n");
2230}
2231
2232static int kdb_cpu(int argc, const char **argv)
2233{
2234 unsigned long cpunum;
2235 int diag;
2236
2237 if (argc == 0) {
2238 kdb_cpu_status();
2239 return 0;
2240 }
2241
2242 if (argc != 1)
2243 return KDB_ARGCOUNT;
2244
2245 diag = kdbgetularg(argv[1], &cpunum);
2246 if (diag)
2247 return diag;
2248
2249 /*
2250 * Validate cpunum
2251 */
2252 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2253 return KDB_BADCPUNUM;
2254
2255 dbg_switch_cpu = cpunum;
2256
2257 /*
2258 * Switch to other cpu
2259 */
2260 return KDB_CMD_CPU;
2261}
2262
2263/* The user may not realize that ps/bta with no parameters does not print idle
2264 * or sleeping system daemon processes, so tell them how many were suppressed.
2265 */
2266void kdb_ps_suppressed(void)
2267{
2268 int idle = 0, daemon = 0;
2269 unsigned long mask_I = kdb_task_state_string("I"),
2270 mask_M = kdb_task_state_string("M");
2271 unsigned long cpu;
2272 const struct task_struct *p, *g;
2273 for_each_online_cpu(cpu) {
2274 p = kdb_curr_task(cpu);
2275 if (kdb_task_state(p, mask_I))
2276 ++idle;
2277 }
2278 for_each_process_thread(g, p) {
2279 if (kdb_task_state(p, mask_M))
2280 ++daemon;
2281 }
2282 if (idle || daemon) {
2283 if (idle)
2284 kdb_printf("%d idle process%s (state I)%s\n",
2285 idle, idle == 1 ? "" : "es",
2286 daemon ? " and " : "");
2287 if (daemon)
2288 kdb_printf("%d sleeping system daemon (state M) "
2289 "process%s", daemon,
2290 daemon == 1 ? "" : "es");
2291 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2292 }
2293}
2294
2295/*
2296 * kdb_ps - This function implements the 'ps' command which shows a
2297 * list of the active processes.
2298 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2299 */
2300void kdb_ps1(const struct task_struct *p)
2301{
2302 int cpu;
2303 unsigned long tmp;
2304
2305 if (!p ||
2306 copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2307 return;
2308
2309 cpu = kdb_process_cpu(p);
2310 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n",
2311 (void *)p, p->pid, p->parent->pid,
2312 kdb_task_has_cpu(p), kdb_process_cpu(p),
2313 kdb_task_state_char(p),
2314 (void *)(&p->thread),
2315 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2316 p->comm);
2317 if (kdb_task_has_cpu(p)) {
2318 if (!KDB_TSK(cpu)) {
2319 kdb_printf(" Error: no saved data for this cpu\n");
2320 } else {
2321 if (KDB_TSK(cpu) != p)
2322 kdb_printf(" Error: does not match running "
2323 "process table (0x%px)\n", KDB_TSK(cpu));
2324 }
2325 }
2326}
2327
2328static int kdb_ps(int argc, const char **argv)
2329{
2330 struct task_struct *g, *p;
2331 unsigned long mask, cpu;
2332
2333 if (argc == 0)
2334 kdb_ps_suppressed();
2335 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2336 (int)(2*sizeof(void *))+2, "Task Addr",
2337 (int)(2*sizeof(void *))+2, "Thread");
2338 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2339 /* Run the active tasks first */
2340 for_each_online_cpu(cpu) {
2341 if (KDB_FLAG(CMD_INTERRUPT))
2342 return 0;
2343 p = kdb_curr_task(cpu);
2344 if (kdb_task_state(p, mask))
2345 kdb_ps1(p);
2346 }
2347 kdb_printf("\n");
2348 /* Now the real tasks */
2349 for_each_process_thread(g, p) {
2350 if (KDB_FLAG(CMD_INTERRUPT))
2351 return 0;
2352 if (kdb_task_state(p, mask))
2353 kdb_ps1(p);
2354 }
2355
2356 return 0;
2357}
2358
2359/*
2360 * kdb_pid - This function implements the 'pid' command which switches
2361 * the currently active process.
2362 * pid [<pid> | R]
2363 */
2364static int kdb_pid(int argc, const char **argv)
2365{
2366 struct task_struct *p;
2367 unsigned long val;
2368 int diag;
2369
2370 if (argc > 1)
2371 return KDB_ARGCOUNT;
2372
2373 if (argc) {
2374 if (strcmp(argv[1], "R") == 0) {
2375 p = KDB_TSK(kdb_initial_cpu);
2376 } else {
2377 diag = kdbgetularg(argv[1], &val);
2378 if (diag)
2379 return KDB_BADINT;
2380
2381 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2382 if (!p) {
2383 kdb_printf("No task with pid=%d\n", (pid_t)val);
2384 return 0;
2385 }
2386 }
2387 kdb_set_current_task(p);
2388 }
2389 kdb_printf("KDB current process is %s(pid=%d)\n",
2390 kdb_current_task->comm,
2391 kdb_current_task->pid);
2392
2393 return 0;
2394}
2395
2396static int kdb_kgdb(int argc, const char **argv)
2397{
2398 return KDB_CMD_KGDB;
2399}
2400
2401/*
2402 * kdb_help - This function implements the 'help' and '?' commands.
2403 */
2404static int kdb_help(int argc, const char **argv)
2405{
2406 kdbtab_t *kt;
2407
2408 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2409 kdb_printf("-----------------------------"
2410 "-----------------------------\n");
2411 list_for_each_entry(kt, &kdb_cmds_head, list_node) {
2412 char *space = "";
2413 if (KDB_FLAG(CMD_INTERRUPT))
2414 return 0;
2415 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2416 continue;
2417 if (strlen(kt->cmd_usage) > 20)
2418 space = "\n ";
2419 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2420 kt->cmd_usage, space, kt->cmd_help);
2421 }
2422 return 0;
2423}
2424
2425/*
2426 * kdb_kill - This function implements the 'kill' commands.
2427 */
2428static int kdb_kill(int argc, const char **argv)
2429{
2430 long sig, pid;
2431 char *endp;
2432 struct task_struct *p;
2433
2434 if (argc != 2)
2435 return KDB_ARGCOUNT;
2436
2437 sig = simple_strtol(argv[1], &endp, 0);
2438 if (*endp)
2439 return KDB_BADINT;
2440 if ((sig >= 0) || !valid_signal(-sig)) {
2441 kdb_printf("Invalid signal parameter.<-signal>\n");
2442 return 0;
2443 }
2444 sig = -sig;
2445
2446 pid = simple_strtol(argv[2], &endp, 0);
2447 if (*endp)
2448 return KDB_BADINT;
2449 if (pid <= 0) {
2450 kdb_printf("Process ID must be large than 0.\n");
2451 return 0;
2452 }
2453
2454 /* Find the process. */
2455 p = find_task_by_pid_ns(pid, &init_pid_ns);
2456 if (!p) {
2457 kdb_printf("The specified process isn't found.\n");
2458 return 0;
2459 }
2460 p = p->group_leader;
2461 kdb_send_sig(p, sig);
2462 return 0;
2463}
2464
2465/*
2466 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2467 * I cannot call that code directly from kdb, it has an unconditional
2468 * cli()/sti() and calls routines that take locks which can stop the debugger.
2469 */
2470static void kdb_sysinfo(struct sysinfo *val)
2471{
2472 u64 uptime = ktime_get_mono_fast_ns();
2473
2474 memset(val, 0, sizeof(*val));
2475 val->uptime = div_u64(uptime, NSEC_PER_SEC);
2476 val->loads[0] = avenrun[0];
2477 val->loads[1] = avenrun[1];
2478 val->loads[2] = avenrun[2];
2479 val->procs = nr_threads-1;
2480 si_meminfo(val);
2481
2482 return;
2483}
2484
2485/*
2486 * kdb_summary - This function implements the 'summary' command.
2487 */
2488static int kdb_summary(int argc, const char **argv)
2489{
2490 time64_t now;
2491 struct sysinfo val;
2492
2493 if (argc)
2494 return KDB_ARGCOUNT;
2495
2496 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2497 kdb_printf("release %s\n", init_uts_ns.name.release);
2498 kdb_printf("version %s\n", init_uts_ns.name.version);
2499 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2500 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2501 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2502
2503 now = __ktime_get_real_seconds();
2504 kdb_printf("date %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest);
2505 kdb_sysinfo(&val);
2506 kdb_printf("uptime ");
2507 if (val.uptime > (24*60*60)) {
2508 int days = val.uptime / (24*60*60);
2509 val.uptime %= (24*60*60);
2510 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2511 }
2512 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2513
2514 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2515 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2516 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2517 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2518
2519 /* Display in kilobytes */
2520#define K(x) ((x) << (PAGE_SHIFT - 10))
2521 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2522 "Buffers: %8lu kB\n",
2523 K(val.totalram), K(val.freeram), K(val.bufferram));
2524 return 0;
2525}
2526
2527/*
2528 * kdb_per_cpu - This function implements the 'per_cpu' command.
2529 */
2530static int kdb_per_cpu(int argc, const char **argv)
2531{
2532 char fmtstr[64];
2533 int cpu, diag, nextarg = 1;
2534 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2535
2536 if (argc < 1 || argc > 3)
2537 return KDB_ARGCOUNT;
2538
2539 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2540 if (diag)
2541 return diag;
2542
2543 if (argc >= 2) {
2544 diag = kdbgetularg(argv[2], &bytesperword);
2545 if (diag)
2546 return diag;
2547 }
2548 if (!bytesperword)
2549 bytesperword = KDB_WORD_SIZE;
2550 else if (bytesperword > KDB_WORD_SIZE)
2551 return KDB_BADWIDTH;
2552 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2553 if (argc >= 3) {
2554 diag = kdbgetularg(argv[3], &whichcpu);
2555 if (diag)
2556 return diag;
2557 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2558 kdb_printf("cpu %ld is not online\n", whichcpu);
2559 return KDB_BADCPUNUM;
2560 }
2561 }
2562
2563 /* Most architectures use __per_cpu_offset[cpu], some use
2564 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2565 */
2566#ifdef __per_cpu_offset
2567#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2568#else
2569#ifdef CONFIG_SMP
2570#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2571#else
2572#define KDB_PCU(cpu) 0
2573#endif
2574#endif
2575 for_each_online_cpu(cpu) {
2576 if (KDB_FLAG(CMD_INTERRUPT))
2577 return 0;
2578
2579 if (whichcpu != ~0UL && whichcpu != cpu)
2580 continue;
2581 addr = symaddr + KDB_PCU(cpu);
2582 diag = kdb_getword(&val, addr, bytesperword);
2583 if (diag) {
2584 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2585 "read, diag=%d\n", cpu, addr, diag);
2586 continue;
2587 }
2588 kdb_printf("%5d ", cpu);
2589 kdb_md_line(fmtstr, addr,
2590 bytesperword == KDB_WORD_SIZE,
2591 1, bytesperword, 1, 1, 0);
2592 }
2593#undef KDB_PCU
2594 return 0;
2595}
2596
2597/*
2598 * display help for the use of cmd | grep pattern
2599 */
2600static int kdb_grep_help(int argc, const char **argv)
2601{
2602 kdb_printf("Usage of cmd args | grep pattern:\n");
2603 kdb_printf(" Any command's output may be filtered through an ");
2604 kdb_printf("emulated 'pipe'.\n");
2605 kdb_printf(" 'grep' is just a key word.\n");
2606 kdb_printf(" The pattern may include a very limited set of "
2607 "metacharacters:\n");
2608 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2609 kdb_printf(" And if there are spaces in the pattern, you may "
2610 "quote it:\n");
2611 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2612 " or \"^pat tern$\"\n");
2613 return 0;
2614}
2615
2616/*
2617 * kdb_register_flags - This function is used to register a kernel
2618 * debugger command.
2619 * Inputs:
2620 * cmd Command name
2621 * func Function to execute the command
2622 * usage A simple usage string showing arguments
2623 * help A simple help string describing command
2624 * repeat Does the command auto repeat on enter?
2625 * Returns:
2626 * zero for success, one if a duplicate command.
2627 */
2628int kdb_register_flags(char *cmd,
2629 kdb_func_t func,
2630 char *usage,
2631 char *help,
2632 short minlen,
2633 kdb_cmdflags_t flags)
2634{
2635 kdbtab_t *kp;
2636
2637 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2638 if (strcmp(kp->cmd_name, cmd) == 0) {
2639 kdb_printf("Duplicate kdb command registered: "
2640 "%s, func %px help %s\n", cmd, func, help);
2641 return 1;
2642 }
2643 }
2644
2645 kp = kmalloc(sizeof(*kp), GFP_KDB);
2646 if (!kp) {
2647 kdb_printf("Could not allocate new kdb_command table\n");
2648 return 1;
2649 }
2650
2651 kp->cmd_name = cmd;
2652 kp->cmd_func = func;
2653 kp->cmd_usage = usage;
2654 kp->cmd_help = help;
2655 kp->cmd_minlen = minlen;
2656 kp->cmd_flags = flags;
2657 kp->is_dynamic = true;
2658
2659 list_add_tail(&kp->list_node, &kdb_cmds_head);
2660
2661 return 0;
2662}
2663EXPORT_SYMBOL_GPL(kdb_register_flags);
2664
2665/*
2666 * kdb_register_table() - This function is used to register a kdb command
2667 * table.
2668 * @kp: pointer to kdb command table
2669 * @len: length of kdb command table
2670 */
2671void kdb_register_table(kdbtab_t *kp, size_t len)
2672{
2673 while (len--) {
2674 list_add_tail(&kp->list_node, &kdb_cmds_head);
2675 kp++;
2676 }
2677}
2678
2679/*
2680 * kdb_register - Compatibility register function for commands that do
2681 * not need to specify a repeat state. Equivalent to
2682 * kdb_register_flags with flags set to 0.
2683 * Inputs:
2684 * cmd Command name
2685 * func Function to execute the command
2686 * usage A simple usage string showing arguments
2687 * help A simple help string describing command
2688 * Returns:
2689 * zero for success, one if a duplicate command.
2690 */
2691int kdb_register(char *cmd,
2692 kdb_func_t func,
2693 char *usage,
2694 char *help,
2695 short minlen)
2696{
2697 return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2698}
2699EXPORT_SYMBOL_GPL(kdb_register);
2700
2701/*
2702 * kdb_unregister - This function is used to unregister a kernel
2703 * debugger command. It is generally called when a module which
2704 * implements kdb commands is unloaded.
2705 * Inputs:
2706 * cmd Command name
2707 * Returns:
2708 * zero for success, one command not registered.
2709 */
2710int kdb_unregister(char *cmd)
2711{
2712 kdbtab_t *kp;
2713
2714 /*
2715 * find the command.
2716 */
2717 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2718 if (strcmp(kp->cmd_name, cmd) == 0) {
2719 list_del(&kp->list_node);
2720 if (kp->is_dynamic)
2721 kfree(kp);
2722 return 0;
2723 }
2724 }
2725
2726 /* Couldn't find it. */
2727 return 1;
2728}
2729EXPORT_SYMBOL_GPL(kdb_unregister);
2730
2731static kdbtab_t maintab[] = {
2732 { .cmd_name = "md",
2733 .cmd_func = kdb_md,
2734 .cmd_usage = "<vaddr>",
2735 .cmd_help = "Display Memory Contents, also mdWcN, e.g. md8c1",
2736 .cmd_minlen = 1,
2737 .cmd_flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2738 },
2739 { .cmd_name = "mdr",
2740 .cmd_func = kdb_md,
2741 .cmd_usage = "<vaddr> <bytes>",
2742 .cmd_help = "Display Raw Memory",
2743 .cmd_flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2744 },
2745 { .cmd_name = "mdp",
2746 .cmd_func = kdb_md,
2747 .cmd_usage = "<paddr> <bytes>",
2748 .cmd_help = "Display Physical Memory",
2749 .cmd_flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2750 },
2751 { .cmd_name = "mds",
2752 .cmd_func = kdb_md,
2753 .cmd_usage = "<vaddr>",
2754 .cmd_help = "Display Memory Symbolically",
2755 .cmd_flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2756 },
2757 { .cmd_name = "mm",
2758 .cmd_func = kdb_mm,
2759 .cmd_usage = "<vaddr> <contents>",
2760 .cmd_help = "Modify Memory Contents",
2761 .cmd_flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS,
2762 },
2763 { .cmd_name = "go",
2764 .cmd_func = kdb_go,
2765 .cmd_usage = "[<vaddr>]",
2766 .cmd_help = "Continue Execution",
2767 .cmd_minlen = 1,
2768 .cmd_flags = KDB_ENABLE_REG_WRITE |
2769 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2770 },
2771 { .cmd_name = "rd",
2772 .cmd_func = kdb_rd,
2773 .cmd_usage = "",
2774 .cmd_help = "Display Registers",
2775 .cmd_flags = KDB_ENABLE_REG_READ,
2776 },
2777 { .cmd_name = "rm",
2778 .cmd_func = kdb_rm,
2779 .cmd_usage = "<reg> <contents>",
2780 .cmd_help = "Modify Registers",
2781 .cmd_flags = KDB_ENABLE_REG_WRITE,
2782 },
2783 { .cmd_name = "ef",
2784 .cmd_func = kdb_ef,
2785 .cmd_usage = "<vaddr>",
2786 .cmd_help = "Display exception frame",
2787 .cmd_flags = KDB_ENABLE_MEM_READ,
2788 },
2789 { .cmd_name = "bt",
2790 .cmd_func = kdb_bt,
2791 .cmd_usage = "[<vaddr>]",
2792 .cmd_help = "Stack traceback",
2793 .cmd_minlen = 1,
2794 .cmd_flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2795 },
2796 { .cmd_name = "btp",
2797 .cmd_func = kdb_bt,
2798 .cmd_usage = "<pid>",
2799 .cmd_help = "Display stack for process <pid>",
2800 .cmd_flags = KDB_ENABLE_INSPECT,
2801 },
2802 { .cmd_name = "bta",
2803 .cmd_func = kdb_bt,
2804 .cmd_usage = "[D|R|S|T|C|Z|E|U|I|M|A]",
2805 .cmd_help = "Backtrace all processes matching state flag",
2806 .cmd_flags = KDB_ENABLE_INSPECT,
2807 },
2808 { .cmd_name = "btc",
2809 .cmd_func = kdb_bt,
2810 .cmd_usage = "",
2811 .cmd_help = "Backtrace current process on each cpu",
2812 .cmd_flags = KDB_ENABLE_INSPECT,
2813 },
2814 { .cmd_name = "btt",
2815 .cmd_func = kdb_bt,
2816 .cmd_usage = "<vaddr>",
2817 .cmd_help = "Backtrace process given its struct task address",
2818 .cmd_flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2819 },
2820 { .cmd_name = "env",
2821 .cmd_func = kdb_env,
2822 .cmd_usage = "",
2823 .cmd_help = "Show environment variables",
2824 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2825 },
2826 { .cmd_name = "set",
2827 .cmd_func = kdb_set,
2828 .cmd_usage = "",
2829 .cmd_help = "Set environment variables",
2830 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2831 },
2832 { .cmd_name = "help",
2833 .cmd_func = kdb_help,
2834 .cmd_usage = "",
2835 .cmd_help = "Display Help Message",
2836 .cmd_minlen = 1,
2837 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2838 },
2839 { .cmd_name = "?",
2840 .cmd_func = kdb_help,
2841 .cmd_usage = "",
2842 .cmd_help = "Display Help Message",
2843 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2844 },
2845 { .cmd_name = "cpu",
2846 .cmd_func = kdb_cpu,
2847 .cmd_usage = "<cpunum>",
2848 .cmd_help = "Switch to new cpu",
2849 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2850 },
2851 { .cmd_name = "kgdb",
2852 .cmd_func = kdb_kgdb,
2853 .cmd_usage = "",
2854 .cmd_help = "Enter kgdb mode",
2855 .cmd_flags = 0,
2856 },
2857 { .cmd_name = "ps",
2858 .cmd_func = kdb_ps,
2859 .cmd_usage = "[<flags>|A]",
2860 .cmd_help = "Display active task list",
2861 .cmd_flags = KDB_ENABLE_INSPECT,
2862 },
2863 { .cmd_name = "pid",
2864 .cmd_func = kdb_pid,
2865 .cmd_usage = "<pidnum>",
2866 .cmd_help = "Switch to another task",
2867 .cmd_flags = KDB_ENABLE_INSPECT,
2868 },
2869 { .cmd_name = "reboot",
2870 .cmd_func = kdb_reboot,
2871 .cmd_usage = "",
2872 .cmd_help = "Reboot the machine immediately",
2873 .cmd_flags = KDB_ENABLE_REBOOT,
2874 },
2875#if defined(CONFIG_MODULES)
2876 { .cmd_name = "lsmod",
2877 .cmd_func = kdb_lsmod,
2878 .cmd_usage = "",
2879 .cmd_help = "List loaded kernel modules",
2880 .cmd_flags = KDB_ENABLE_INSPECT,
2881 },
2882#endif
2883#if defined(CONFIG_MAGIC_SYSRQ)
2884 { .cmd_name = "sr",
2885 .cmd_func = kdb_sr,
2886 .cmd_usage = "<key>",
2887 .cmd_help = "Magic SysRq key",
2888 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2889 },
2890#endif
2891#if defined(CONFIG_PRINTK)
2892 { .cmd_name = "dmesg",
2893 .cmd_func = kdb_dmesg,
2894 .cmd_usage = "[lines]",
2895 .cmd_help = "Display syslog buffer",
2896 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2897 },
2898#endif
2899 { .cmd_name = "defcmd",
2900 .cmd_func = kdb_defcmd,
2901 .cmd_usage = "name \"usage\" \"help\"",
2902 .cmd_help = "Define a set of commands, down to endefcmd",
2903 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2904 },
2905 { .cmd_name = "kill",
2906 .cmd_func = kdb_kill,
2907 .cmd_usage = "<-signal> <pid>",
2908 .cmd_help = "Send a signal to a process",
2909 .cmd_flags = KDB_ENABLE_SIGNAL,
2910 },
2911 { .cmd_name = "summary",
2912 .cmd_func = kdb_summary,
2913 .cmd_usage = "",
2914 .cmd_help = "Summarize the system",
2915 .cmd_minlen = 4,
2916 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2917 },
2918 { .cmd_name = "per_cpu",
2919 .cmd_func = kdb_per_cpu,
2920 .cmd_usage = "<sym> [<bytes>] [<cpu>]",
2921 .cmd_help = "Display per_cpu variables",
2922 .cmd_minlen = 3,
2923 .cmd_flags = KDB_ENABLE_MEM_READ,
2924 },
2925 { .cmd_name = "grephelp",
2926 .cmd_func = kdb_grep_help,
2927 .cmd_usage = "",
2928 .cmd_help = "Display help on | grep",
2929 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2930 },
2931};
2932
2933static kdbtab_t nmicmd = {
2934 .cmd_name = "disable_nmi",
2935 .cmd_func = kdb_disable_nmi,
2936 .cmd_usage = "",
2937 .cmd_help = "Disable NMI entry to KDB",
2938 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2939};
2940
2941/* Initialize the kdb command table. */
2942static void __init kdb_inittab(void)
2943{
2944 kdb_register_table(maintab, ARRAY_SIZE(maintab));
2945 if (arch_kgdb_ops.enable_nmi)
2946 kdb_register_table(&nmicmd, 1);
2947}
2948
2949/* Execute any commands defined in kdb_cmds. */
2950static void __init kdb_cmd_init(void)
2951{
2952 int i, diag;
2953 for (i = 0; kdb_cmds[i]; ++i) {
2954 diag = kdb_parse(kdb_cmds[i]);
2955 if (diag)
2956 kdb_printf("kdb command %s failed, kdb diag %d\n",
2957 kdb_cmds[i], diag);
2958 }
2959 if (defcmd_in_progress) {
2960 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2961 kdb_parse("endefcmd");
2962 }
2963}
2964
2965/* Initialize kdb_printf, breakpoint tables and kdb state */
2966void __init kdb_init(int lvl)
2967{
2968 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2969 int i;
2970
2971 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2972 return;
2973 for (i = kdb_init_lvl; i < lvl; i++) {
2974 switch (i) {
2975 case KDB_NOT_INITIALIZED:
2976 kdb_inittab(); /* Initialize Command Table */
2977 kdb_initbptab(); /* Initialize Breakpoints */
2978 break;
2979 case KDB_INIT_EARLY:
2980 kdb_cmd_init(); /* Build kdb_cmds tables */
2981 break;
2982 }
2983 }
2984 kdb_init_lvl = lvl;
2985}