Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include "cgroup-internal.h"
   3
   4#include <linux/ctype.h>
   5#include <linux/kmod.h>
   6#include <linux/sort.h>
   7#include <linux/delay.h>
   8#include <linux/mm.h>
   9#include <linux/sched/signal.h>
  10#include <linux/sched/task.h>
  11#include <linux/magic.h>
  12#include <linux/slab.h>
  13#include <linux/vmalloc.h>
  14#include <linux/delayacct.h>
  15#include <linux/pid_namespace.h>
  16#include <linux/cgroupstats.h>
  17#include <linux/fs_parser.h>
  18
  19#include <trace/events/cgroup.h>
  20
  21/*
  22 * pidlists linger the following amount before being destroyed.  The goal
  23 * is avoiding frequent destruction in the middle of consecutive read calls
  24 * Expiring in the middle is a performance problem not a correctness one.
  25 * 1 sec should be enough.
  26 */
  27#define CGROUP_PIDLIST_DESTROY_DELAY	HZ
  28
  29/* Controllers blocked by the commandline in v1 */
  30static u16 cgroup_no_v1_mask;
  31
  32/* disable named v1 mounts */
  33static bool cgroup_no_v1_named;
  34
  35/*
  36 * pidlist destructions need to be flushed on cgroup destruction.  Use a
  37 * separate workqueue as flush domain.
  38 */
  39static struct workqueue_struct *cgroup_pidlist_destroy_wq;
  40
  41/* protects cgroup_subsys->release_agent_path */
  42static DEFINE_SPINLOCK(release_agent_path_lock);
  43
  44bool cgroup1_ssid_disabled(int ssid)
  45{
  46	return cgroup_no_v1_mask & (1 << ssid);
  47}
  48
  49/**
  50 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
  51 * @from: attach to all cgroups of a given task
  52 * @tsk: the task to be attached
  53 */
  54int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
  55{
  56	struct cgroup_root *root;
  57	int retval = 0;
  58
  59	mutex_lock(&cgroup_mutex);
  60	percpu_down_write(&cgroup_threadgroup_rwsem);
  61	for_each_root(root) {
  62		struct cgroup *from_cgrp;
  63
  64		if (root == &cgrp_dfl_root)
  65			continue;
  66
  67		spin_lock_irq(&css_set_lock);
  68		from_cgrp = task_cgroup_from_root(from, root);
  69		spin_unlock_irq(&css_set_lock);
  70
  71		retval = cgroup_attach_task(from_cgrp, tsk, false);
  72		if (retval)
  73			break;
  74	}
  75	percpu_up_write(&cgroup_threadgroup_rwsem);
  76	mutex_unlock(&cgroup_mutex);
  77
  78	return retval;
  79}
  80EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
  81
  82/**
  83 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
  84 * @to: cgroup to which the tasks will be moved
  85 * @from: cgroup in which the tasks currently reside
  86 *
  87 * Locking rules between cgroup_post_fork() and the migration path
  88 * guarantee that, if a task is forking while being migrated, the new child
  89 * is guaranteed to be either visible in the source cgroup after the
  90 * parent's migration is complete or put into the target cgroup.  No task
  91 * can slip out of migration through forking.
  92 */
  93int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
  94{
  95	DEFINE_CGROUP_MGCTX(mgctx);
  96	struct cgrp_cset_link *link;
  97	struct css_task_iter it;
  98	struct task_struct *task;
  99	int ret;
 100
 101	if (cgroup_on_dfl(to))
 102		return -EINVAL;
 103
 104	ret = cgroup_migrate_vet_dst(to);
 105	if (ret)
 106		return ret;
 107
 108	mutex_lock(&cgroup_mutex);
 109
 110	percpu_down_write(&cgroup_threadgroup_rwsem);
 111
 112	/* all tasks in @from are being moved, all csets are source */
 113	spin_lock_irq(&css_set_lock);
 114	list_for_each_entry(link, &from->cset_links, cset_link)
 115		cgroup_migrate_add_src(link->cset, to, &mgctx);
 116	spin_unlock_irq(&css_set_lock);
 117
 118	ret = cgroup_migrate_prepare_dst(&mgctx);
 119	if (ret)
 120		goto out_err;
 121
 122	/*
 123	 * Migrate tasks one-by-one until @from is empty.  This fails iff
 124	 * ->can_attach() fails.
 125	 */
 126	do {
 127		css_task_iter_start(&from->self, 0, &it);
 128
 129		do {
 130			task = css_task_iter_next(&it);
 131		} while (task && (task->flags & PF_EXITING));
 132
 133		if (task)
 134			get_task_struct(task);
 135		css_task_iter_end(&it);
 136
 137		if (task) {
 138			ret = cgroup_migrate(task, false, &mgctx);
 139			if (!ret)
 140				TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
 141			put_task_struct(task);
 142		}
 143	} while (task && !ret);
 144out_err:
 145	cgroup_migrate_finish(&mgctx);
 146	percpu_up_write(&cgroup_threadgroup_rwsem);
 147	mutex_unlock(&cgroup_mutex);
 148	return ret;
 149}
 150
 151/*
 152 * Stuff for reading the 'tasks'/'procs' files.
 153 *
 154 * Reading this file can return large amounts of data if a cgroup has
 155 * *lots* of attached tasks. So it may need several calls to read(),
 156 * but we cannot guarantee that the information we produce is correct
 157 * unless we produce it entirely atomically.
 158 *
 159 */
 160
 161/* which pidlist file are we talking about? */
 162enum cgroup_filetype {
 163	CGROUP_FILE_PROCS,
 164	CGROUP_FILE_TASKS,
 165};
 166
 167/*
 168 * A pidlist is a list of pids that virtually represents the contents of one
 169 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
 170 * a pair (one each for procs, tasks) for each pid namespace that's relevant
 171 * to the cgroup.
 172 */
 173struct cgroup_pidlist {
 174	/*
 175	 * used to find which pidlist is wanted. doesn't change as long as
 176	 * this particular list stays in the list.
 177	*/
 178	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
 179	/* array of xids */
 180	pid_t *list;
 181	/* how many elements the above list has */
 182	int length;
 183	/* each of these stored in a list by its cgroup */
 184	struct list_head links;
 185	/* pointer to the cgroup we belong to, for list removal purposes */
 186	struct cgroup *owner;
 187	/* for delayed destruction */
 188	struct delayed_work destroy_dwork;
 189};
 190
 191/*
 192 * Used to destroy all pidlists lingering waiting for destroy timer.  None
 193 * should be left afterwards.
 194 */
 195void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
 196{
 197	struct cgroup_pidlist *l, *tmp_l;
 198
 199	mutex_lock(&cgrp->pidlist_mutex);
 200	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
 201		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
 202	mutex_unlock(&cgrp->pidlist_mutex);
 203
 204	flush_workqueue(cgroup_pidlist_destroy_wq);
 205	BUG_ON(!list_empty(&cgrp->pidlists));
 206}
 207
 208static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
 209{
 210	struct delayed_work *dwork = to_delayed_work(work);
 211	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
 212						destroy_dwork);
 213	struct cgroup_pidlist *tofree = NULL;
 214
 215	mutex_lock(&l->owner->pidlist_mutex);
 216
 217	/*
 218	 * Destroy iff we didn't get queued again.  The state won't change
 219	 * as destroy_dwork can only be queued while locked.
 220	 */
 221	if (!delayed_work_pending(dwork)) {
 222		list_del(&l->links);
 223		kvfree(l->list);
 224		put_pid_ns(l->key.ns);
 225		tofree = l;
 226	}
 227
 228	mutex_unlock(&l->owner->pidlist_mutex);
 229	kfree(tofree);
 230}
 231
 232/*
 233 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
 234 * Returns the number of unique elements.
 235 */
 236static int pidlist_uniq(pid_t *list, int length)
 237{
 238	int src, dest = 1;
 239
 240	/*
 241	 * we presume the 0th element is unique, so i starts at 1. trivial
 242	 * edge cases first; no work needs to be done for either
 243	 */
 244	if (length == 0 || length == 1)
 245		return length;
 246	/* src and dest walk down the list; dest counts unique elements */
 247	for (src = 1; src < length; src++) {
 248		/* find next unique element */
 249		while (list[src] == list[src-1]) {
 250			src++;
 251			if (src == length)
 252				goto after;
 253		}
 254		/* dest always points to where the next unique element goes */
 255		list[dest] = list[src];
 256		dest++;
 257	}
 258after:
 259	return dest;
 260}
 261
 262/*
 263 * The two pid files - task and cgroup.procs - guaranteed that the result
 264 * is sorted, which forced this whole pidlist fiasco.  As pid order is
 265 * different per namespace, each namespace needs differently sorted list,
 266 * making it impossible to use, for example, single rbtree of member tasks
 267 * sorted by task pointer.  As pidlists can be fairly large, allocating one
 268 * per open file is dangerous, so cgroup had to implement shared pool of
 269 * pidlists keyed by cgroup and namespace.
 270 */
 271static int cmppid(const void *a, const void *b)
 272{
 273	return *(pid_t *)a - *(pid_t *)b;
 274}
 275
 276static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
 277						  enum cgroup_filetype type)
 278{
 279	struct cgroup_pidlist *l;
 280	/* don't need task_nsproxy() if we're looking at ourself */
 281	struct pid_namespace *ns = task_active_pid_ns(current);
 282
 283	lockdep_assert_held(&cgrp->pidlist_mutex);
 284
 285	list_for_each_entry(l, &cgrp->pidlists, links)
 286		if (l->key.type == type && l->key.ns == ns)
 287			return l;
 288	return NULL;
 289}
 290
 291/*
 292 * find the appropriate pidlist for our purpose (given procs vs tasks)
 293 * returns with the lock on that pidlist already held, and takes care
 294 * of the use count, or returns NULL with no locks held if we're out of
 295 * memory.
 296 */
 297static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
 298						enum cgroup_filetype type)
 299{
 300	struct cgroup_pidlist *l;
 301
 302	lockdep_assert_held(&cgrp->pidlist_mutex);
 303
 304	l = cgroup_pidlist_find(cgrp, type);
 305	if (l)
 306		return l;
 307
 308	/* entry not found; create a new one */
 309	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
 310	if (!l)
 311		return l;
 312
 313	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
 314	l->key.type = type;
 315	/* don't need task_nsproxy() if we're looking at ourself */
 316	l->key.ns = get_pid_ns(task_active_pid_ns(current));
 317	l->owner = cgrp;
 318	list_add(&l->links, &cgrp->pidlists);
 319	return l;
 320}
 321
 322/*
 323 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 324 */
 325static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
 326			      struct cgroup_pidlist **lp)
 327{
 328	pid_t *array;
 329	int length;
 330	int pid, n = 0; /* used for populating the array */
 331	struct css_task_iter it;
 332	struct task_struct *tsk;
 333	struct cgroup_pidlist *l;
 334
 335	lockdep_assert_held(&cgrp->pidlist_mutex);
 336
 337	/*
 338	 * If cgroup gets more users after we read count, we won't have
 339	 * enough space - tough.  This race is indistinguishable to the
 340	 * caller from the case that the additional cgroup users didn't
 341	 * show up until sometime later on.
 342	 */
 343	length = cgroup_task_count(cgrp);
 344	array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
 345	if (!array)
 346		return -ENOMEM;
 347	/* now, populate the array */
 348	css_task_iter_start(&cgrp->self, 0, &it);
 349	while ((tsk = css_task_iter_next(&it))) {
 350		if (unlikely(n == length))
 351			break;
 352		/* get tgid or pid for procs or tasks file respectively */
 353		if (type == CGROUP_FILE_PROCS)
 354			pid = task_tgid_vnr(tsk);
 355		else
 356			pid = task_pid_vnr(tsk);
 357		if (pid > 0) /* make sure to only use valid results */
 358			array[n++] = pid;
 359	}
 360	css_task_iter_end(&it);
 361	length = n;
 362	/* now sort & (if procs) strip out duplicates */
 363	sort(array, length, sizeof(pid_t), cmppid, NULL);
 364	if (type == CGROUP_FILE_PROCS)
 365		length = pidlist_uniq(array, length);
 366
 367	l = cgroup_pidlist_find_create(cgrp, type);
 368	if (!l) {
 369		kvfree(array);
 370		return -ENOMEM;
 371	}
 372
 373	/* store array, freeing old if necessary */
 374	kvfree(l->list);
 375	l->list = array;
 376	l->length = length;
 377	*lp = l;
 378	return 0;
 379}
 380
 381/*
 382 * seq_file methods for the tasks/procs files. The seq_file position is the
 383 * next pid to display; the seq_file iterator is a pointer to the pid
 384 * in the cgroup->l->list array.
 385 */
 386
 387static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
 388{
 389	/*
 390	 * Initially we receive a position value that corresponds to
 391	 * one more than the last pid shown (or 0 on the first call or
 392	 * after a seek to the start). Use a binary-search to find the
 393	 * next pid to display, if any
 394	 */
 395	struct kernfs_open_file *of = s->private;
 396	struct cgroup *cgrp = seq_css(s)->cgroup;
 397	struct cgroup_pidlist *l;
 398	enum cgroup_filetype type = seq_cft(s)->private;
 399	int index = 0, pid = *pos;
 400	int *iter, ret;
 401
 402	mutex_lock(&cgrp->pidlist_mutex);
 403
 404	/*
 405	 * !NULL @of->priv indicates that this isn't the first start()
 406	 * after open.  If the matching pidlist is around, we can use that.
 407	 * Look for it.  Note that @of->priv can't be used directly.  It
 408	 * could already have been destroyed.
 409	 */
 410	if (of->priv)
 411		of->priv = cgroup_pidlist_find(cgrp, type);
 412
 413	/*
 414	 * Either this is the first start() after open or the matching
 415	 * pidlist has been destroyed inbetween.  Create a new one.
 416	 */
 417	if (!of->priv) {
 418		ret = pidlist_array_load(cgrp, type,
 419					 (struct cgroup_pidlist **)&of->priv);
 420		if (ret)
 421			return ERR_PTR(ret);
 422	}
 423	l = of->priv;
 424
 425	if (pid) {
 426		int end = l->length;
 427
 428		while (index < end) {
 429			int mid = (index + end) / 2;
 430			if (l->list[mid] == pid) {
 431				index = mid;
 432				break;
 433			} else if (l->list[mid] <= pid)
 434				index = mid + 1;
 435			else
 436				end = mid;
 437		}
 438	}
 439	/* If we're off the end of the array, we're done */
 440	if (index >= l->length)
 441		return NULL;
 442	/* Update the abstract position to be the actual pid that we found */
 443	iter = l->list + index;
 444	*pos = *iter;
 445	return iter;
 446}
 447
 448static void cgroup_pidlist_stop(struct seq_file *s, void *v)
 449{
 450	struct kernfs_open_file *of = s->private;
 451	struct cgroup_pidlist *l = of->priv;
 452
 453	if (l)
 454		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
 455				 CGROUP_PIDLIST_DESTROY_DELAY);
 456	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
 457}
 458
 459static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
 460{
 461	struct kernfs_open_file *of = s->private;
 462	struct cgroup_pidlist *l = of->priv;
 463	pid_t *p = v;
 464	pid_t *end = l->list + l->length;
 465	/*
 466	 * Advance to the next pid in the array. If this goes off the
 467	 * end, we're done
 468	 */
 469	p++;
 470	if (p >= end) {
 471		(*pos)++;
 472		return NULL;
 473	} else {
 474		*pos = *p;
 475		return p;
 476	}
 477}
 478
 479static int cgroup_pidlist_show(struct seq_file *s, void *v)
 480{
 481	seq_printf(s, "%d\n", *(int *)v);
 482
 483	return 0;
 484}
 485
 486static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
 487				     char *buf, size_t nbytes, loff_t off,
 488				     bool threadgroup)
 489{
 490	struct cgroup *cgrp;
 491	struct task_struct *task;
 492	const struct cred *cred, *tcred;
 493	ssize_t ret;
 494	bool locked;
 495
 496	cgrp = cgroup_kn_lock_live(of->kn, false);
 497	if (!cgrp)
 498		return -ENODEV;
 499
 500	task = cgroup_procs_write_start(buf, threadgroup, &locked);
 501	ret = PTR_ERR_OR_ZERO(task);
 502	if (ret)
 503		goto out_unlock;
 504
 505	/*
 506	 * Even if we're attaching all tasks in the thread group, we only
 507	 * need to check permissions on one of them.
 508	 */
 509	cred = current_cred();
 510	tcred = get_task_cred(task);
 511	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
 512	    !uid_eq(cred->euid, tcred->uid) &&
 513	    !uid_eq(cred->euid, tcred->suid))
 514		ret = -EACCES;
 515	put_cred(tcred);
 516	if (ret)
 517		goto out_finish;
 518
 519	ret = cgroup_attach_task(cgrp, task, threadgroup);
 520
 521out_finish:
 522	cgroup_procs_write_finish(task, locked);
 523out_unlock:
 524	cgroup_kn_unlock(of->kn);
 525
 526	return ret ?: nbytes;
 527}
 528
 529static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
 530				   char *buf, size_t nbytes, loff_t off)
 531{
 532	return __cgroup1_procs_write(of, buf, nbytes, off, true);
 533}
 534
 535static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
 536				   char *buf, size_t nbytes, loff_t off)
 537{
 538	return __cgroup1_procs_write(of, buf, nbytes, off, false);
 539}
 540
 541static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
 542					  char *buf, size_t nbytes, loff_t off)
 543{
 544	struct cgroup *cgrp;
 545
 546	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
 547
 548	cgrp = cgroup_kn_lock_live(of->kn, false);
 549	if (!cgrp)
 550		return -ENODEV;
 551	spin_lock(&release_agent_path_lock);
 552	strlcpy(cgrp->root->release_agent_path, strstrip(buf),
 553		sizeof(cgrp->root->release_agent_path));
 554	spin_unlock(&release_agent_path_lock);
 555	cgroup_kn_unlock(of->kn);
 556	return nbytes;
 557}
 558
 559static int cgroup_release_agent_show(struct seq_file *seq, void *v)
 560{
 561	struct cgroup *cgrp = seq_css(seq)->cgroup;
 562
 563	spin_lock(&release_agent_path_lock);
 564	seq_puts(seq, cgrp->root->release_agent_path);
 565	spin_unlock(&release_agent_path_lock);
 566	seq_putc(seq, '\n');
 567	return 0;
 568}
 569
 570static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
 571{
 572	seq_puts(seq, "0\n");
 573	return 0;
 574}
 575
 576static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
 577					 struct cftype *cft)
 578{
 579	return notify_on_release(css->cgroup);
 580}
 581
 582static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
 583					  struct cftype *cft, u64 val)
 584{
 585	if (val)
 586		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
 587	else
 588		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
 589	return 0;
 590}
 591
 592static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
 593				      struct cftype *cft)
 594{
 595	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 596}
 597
 598static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
 599				       struct cftype *cft, u64 val)
 600{
 601	if (val)
 602		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 603	else
 604		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 605	return 0;
 606}
 607
 608/* cgroup core interface files for the legacy hierarchies */
 609struct cftype cgroup1_base_files[] = {
 610	{
 611		.name = "cgroup.procs",
 612		.seq_start = cgroup_pidlist_start,
 613		.seq_next = cgroup_pidlist_next,
 614		.seq_stop = cgroup_pidlist_stop,
 615		.seq_show = cgroup_pidlist_show,
 616		.private = CGROUP_FILE_PROCS,
 617		.write = cgroup1_procs_write,
 618	},
 619	{
 620		.name = "cgroup.clone_children",
 621		.read_u64 = cgroup_clone_children_read,
 622		.write_u64 = cgroup_clone_children_write,
 623	},
 624	{
 625		.name = "cgroup.sane_behavior",
 626		.flags = CFTYPE_ONLY_ON_ROOT,
 627		.seq_show = cgroup_sane_behavior_show,
 628	},
 629	{
 630		.name = "tasks",
 631		.seq_start = cgroup_pidlist_start,
 632		.seq_next = cgroup_pidlist_next,
 633		.seq_stop = cgroup_pidlist_stop,
 634		.seq_show = cgroup_pidlist_show,
 635		.private = CGROUP_FILE_TASKS,
 636		.write = cgroup1_tasks_write,
 637	},
 638	{
 639		.name = "notify_on_release",
 640		.read_u64 = cgroup_read_notify_on_release,
 641		.write_u64 = cgroup_write_notify_on_release,
 642	},
 643	{
 644		.name = "release_agent",
 645		.flags = CFTYPE_ONLY_ON_ROOT,
 646		.seq_show = cgroup_release_agent_show,
 647		.write = cgroup_release_agent_write,
 648		.max_write_len = PATH_MAX - 1,
 649	},
 650	{ }	/* terminate */
 651};
 652
 653/* Display information about each subsystem and each hierarchy */
 654int proc_cgroupstats_show(struct seq_file *m, void *v)
 655{
 656	struct cgroup_subsys *ss;
 657	int i;
 658
 659	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
 660	/*
 661	 * ideally we don't want subsystems moving around while we do this.
 662	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
 663	 * subsys/hierarchy state.
 664	 */
 665	mutex_lock(&cgroup_mutex);
 666
 667	for_each_subsys(ss, i)
 668		seq_printf(m, "%s\t%d\t%d\t%d\n",
 669			   ss->legacy_name, ss->root->hierarchy_id,
 670			   atomic_read(&ss->root->nr_cgrps),
 671			   cgroup_ssid_enabled(i));
 672
 673	mutex_unlock(&cgroup_mutex);
 674	return 0;
 675}
 676
 677/**
 678 * cgroupstats_build - build and fill cgroupstats
 679 * @stats: cgroupstats to fill information into
 680 * @dentry: A dentry entry belonging to the cgroup for which stats have
 681 * been requested.
 682 *
 683 * Build and fill cgroupstats so that taskstats can export it to user
 684 * space.
 685 */
 686int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
 687{
 688	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
 689	struct cgroup *cgrp;
 690	struct css_task_iter it;
 691	struct task_struct *tsk;
 692
 693	/* it should be kernfs_node belonging to cgroupfs and is a directory */
 694	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
 695	    kernfs_type(kn) != KERNFS_DIR)
 696		return -EINVAL;
 697
 698	mutex_lock(&cgroup_mutex);
 699
 700	/*
 701	 * We aren't being called from kernfs and there's no guarantee on
 702	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
 703	 * @kn->priv is RCU safe.  Let's do the RCU dancing.
 704	 */
 705	rcu_read_lock();
 706	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
 707	if (!cgrp || cgroup_is_dead(cgrp)) {
 708		rcu_read_unlock();
 709		mutex_unlock(&cgroup_mutex);
 710		return -ENOENT;
 711	}
 712	rcu_read_unlock();
 713
 714	css_task_iter_start(&cgrp->self, 0, &it);
 715	while ((tsk = css_task_iter_next(&it))) {
 716		switch (READ_ONCE(tsk->__state)) {
 717		case TASK_RUNNING:
 718			stats->nr_running++;
 719			break;
 720		case TASK_INTERRUPTIBLE:
 721			stats->nr_sleeping++;
 722			break;
 723		case TASK_UNINTERRUPTIBLE:
 724			stats->nr_uninterruptible++;
 725			break;
 726		case TASK_STOPPED:
 727			stats->nr_stopped++;
 728			break;
 729		default:
 730			if (tsk->in_iowait)
 731				stats->nr_io_wait++;
 732			break;
 733		}
 734	}
 735	css_task_iter_end(&it);
 736
 737	mutex_unlock(&cgroup_mutex);
 738	return 0;
 739}
 740
 741void cgroup1_check_for_release(struct cgroup *cgrp)
 742{
 743	if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
 744	    !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
 745		schedule_work(&cgrp->release_agent_work);
 746}
 747
 748/*
 749 * Notify userspace when a cgroup is released, by running the
 750 * configured release agent with the name of the cgroup (path
 751 * relative to the root of cgroup file system) as the argument.
 752 *
 753 * Most likely, this user command will try to rmdir this cgroup.
 754 *
 755 * This races with the possibility that some other task will be
 756 * attached to this cgroup before it is removed, or that some other
 757 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 758 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 759 * unused, and this cgroup will be reprieved from its death sentence,
 760 * to continue to serve a useful existence.  Next time it's released,
 761 * we will get notified again, if it still has 'notify_on_release' set.
 762 *
 763 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 764 * means only wait until the task is successfully execve()'d.  The
 765 * separate release agent task is forked by call_usermodehelper(),
 766 * then control in this thread returns here, without waiting for the
 767 * release agent task.  We don't bother to wait because the caller of
 768 * this routine has no use for the exit status of the release agent
 769 * task, so no sense holding our caller up for that.
 770 */
 771void cgroup1_release_agent(struct work_struct *work)
 772{
 773	struct cgroup *cgrp =
 774		container_of(work, struct cgroup, release_agent_work);
 775	char *pathbuf, *agentbuf;
 776	char *argv[3], *envp[3];
 777	int ret;
 778
 779	/* snoop agent path and exit early if empty */
 780	if (!cgrp->root->release_agent_path[0])
 781		return;
 782
 783	/* prepare argument buffers */
 784	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
 785	agentbuf = kmalloc(PATH_MAX, GFP_KERNEL);
 786	if (!pathbuf || !agentbuf)
 787		goto out_free;
 788
 789	spin_lock(&release_agent_path_lock);
 790	strlcpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX);
 791	spin_unlock(&release_agent_path_lock);
 792	if (!agentbuf[0])
 793		goto out_free;
 794
 795	ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
 796	if (ret < 0 || ret >= PATH_MAX)
 797		goto out_free;
 798
 799	argv[0] = agentbuf;
 800	argv[1] = pathbuf;
 801	argv[2] = NULL;
 802
 803	/* minimal command environment */
 804	envp[0] = "HOME=/";
 805	envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
 806	envp[2] = NULL;
 807
 808	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
 809out_free:
 810	kfree(agentbuf);
 811	kfree(pathbuf);
 812}
 813
 814/*
 815 * cgroup_rename - Only allow simple rename of directories in place.
 816 */
 817static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
 818			  const char *new_name_str)
 819{
 820	struct cgroup *cgrp = kn->priv;
 821	int ret;
 822
 823	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
 824	if (strchr(new_name_str, '\n'))
 825		return -EINVAL;
 826
 827	if (kernfs_type(kn) != KERNFS_DIR)
 828		return -ENOTDIR;
 829	if (kn->parent != new_parent)
 830		return -EIO;
 831
 832	/*
 833	 * We're gonna grab cgroup_mutex which nests outside kernfs
 834	 * active_ref.  kernfs_rename() doesn't require active_ref
 835	 * protection.  Break them before grabbing cgroup_mutex.
 836	 */
 837	kernfs_break_active_protection(new_parent);
 838	kernfs_break_active_protection(kn);
 839
 840	mutex_lock(&cgroup_mutex);
 841
 842	ret = kernfs_rename(kn, new_parent, new_name_str);
 843	if (!ret)
 844		TRACE_CGROUP_PATH(rename, cgrp);
 845
 846	mutex_unlock(&cgroup_mutex);
 847
 848	kernfs_unbreak_active_protection(kn);
 849	kernfs_unbreak_active_protection(new_parent);
 850	return ret;
 851}
 852
 853static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
 854{
 855	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
 856	struct cgroup_subsys *ss;
 857	int ssid;
 858
 859	for_each_subsys(ss, ssid)
 860		if (root->subsys_mask & (1 << ssid))
 861			seq_show_option(seq, ss->legacy_name, NULL);
 862	if (root->flags & CGRP_ROOT_NOPREFIX)
 863		seq_puts(seq, ",noprefix");
 864	if (root->flags & CGRP_ROOT_XATTR)
 865		seq_puts(seq, ",xattr");
 866	if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
 867		seq_puts(seq, ",cpuset_v2_mode");
 868
 869	spin_lock(&release_agent_path_lock);
 870	if (strlen(root->release_agent_path))
 871		seq_show_option(seq, "release_agent",
 872				root->release_agent_path);
 873	spin_unlock(&release_agent_path_lock);
 874
 875	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
 876		seq_puts(seq, ",clone_children");
 877	if (strlen(root->name))
 878		seq_show_option(seq, "name", root->name);
 879	return 0;
 880}
 881
 882enum cgroup1_param {
 883	Opt_all,
 884	Opt_clone_children,
 885	Opt_cpuset_v2_mode,
 886	Opt_name,
 887	Opt_none,
 888	Opt_noprefix,
 889	Opt_release_agent,
 890	Opt_xattr,
 891};
 892
 893const struct fs_parameter_spec cgroup1_fs_parameters[] = {
 894	fsparam_flag  ("all",		Opt_all),
 895	fsparam_flag  ("clone_children", Opt_clone_children),
 896	fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
 897	fsparam_string("name",		Opt_name),
 898	fsparam_flag  ("none",		Opt_none),
 899	fsparam_flag  ("noprefix",	Opt_noprefix),
 900	fsparam_string("release_agent",	Opt_release_agent),
 901	fsparam_flag  ("xattr",		Opt_xattr),
 902	{}
 903};
 904
 905int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
 906{
 907	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
 908	struct cgroup_subsys *ss;
 909	struct fs_parse_result result;
 910	int opt, i;
 911
 912	opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
 913	if (opt == -ENOPARAM) {
 914		int ret;
 915
 916		ret = vfs_parse_fs_param_source(fc, param);
 917		if (ret != -ENOPARAM)
 918			return ret;
 919		for_each_subsys(ss, i) {
 920			if (strcmp(param->key, ss->legacy_name))
 921				continue;
 922			if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i))
 923				return invalfc(fc, "Disabled controller '%s'",
 924					       param->key);
 925			ctx->subsys_mask |= (1 << i);
 926			return 0;
 927		}
 928		return invalfc(fc, "Unknown subsys name '%s'", param->key);
 929	}
 930	if (opt < 0)
 931		return opt;
 932
 933	switch (opt) {
 934	case Opt_none:
 935		/* Explicitly have no subsystems */
 936		ctx->none = true;
 937		break;
 938	case Opt_all:
 939		ctx->all_ss = true;
 940		break;
 941	case Opt_noprefix:
 942		ctx->flags |= CGRP_ROOT_NOPREFIX;
 943		break;
 944	case Opt_clone_children:
 945		ctx->cpuset_clone_children = true;
 946		break;
 947	case Opt_cpuset_v2_mode:
 948		ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
 949		break;
 950	case Opt_xattr:
 951		ctx->flags |= CGRP_ROOT_XATTR;
 952		break;
 953	case Opt_release_agent:
 954		/* Specifying two release agents is forbidden */
 955		if (ctx->release_agent)
 956			return invalfc(fc, "release_agent respecified");
 957		ctx->release_agent = param->string;
 958		param->string = NULL;
 959		break;
 960	case Opt_name:
 961		/* blocked by boot param? */
 962		if (cgroup_no_v1_named)
 963			return -ENOENT;
 964		/* Can't specify an empty name */
 965		if (!param->size)
 966			return invalfc(fc, "Empty name");
 967		if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
 968			return invalfc(fc, "Name too long");
 969		/* Must match [\w.-]+ */
 970		for (i = 0; i < param->size; i++) {
 971			char c = param->string[i];
 972			if (isalnum(c))
 973				continue;
 974			if ((c == '.') || (c == '-') || (c == '_'))
 975				continue;
 976			return invalfc(fc, "Invalid name");
 977		}
 978		/* Specifying two names is forbidden */
 979		if (ctx->name)
 980			return invalfc(fc, "name respecified");
 981		ctx->name = param->string;
 982		param->string = NULL;
 983		break;
 984	}
 985	return 0;
 986}
 987
 988static int check_cgroupfs_options(struct fs_context *fc)
 989{
 990	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
 991	u16 mask = U16_MAX;
 992	u16 enabled = 0;
 993	struct cgroup_subsys *ss;
 994	int i;
 995
 996#ifdef CONFIG_CPUSETS
 997	mask = ~((u16)1 << cpuset_cgrp_id);
 998#endif
 999	for_each_subsys(ss, i)
1000		if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1001			enabled |= 1 << i;
1002
1003	ctx->subsys_mask &= enabled;
1004
1005	/*
1006	 * In absence of 'none', 'name=' and subsystem name options,
1007	 * let's default to 'all'.
1008	 */
1009	if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1010		ctx->all_ss = true;
1011
1012	if (ctx->all_ss) {
1013		/* Mutually exclusive option 'all' + subsystem name */
1014		if (ctx->subsys_mask)
1015			return invalfc(fc, "subsys name conflicts with all");
1016		/* 'all' => select all the subsystems */
1017		ctx->subsys_mask = enabled;
1018	}
1019
1020	/*
1021	 * We either have to specify by name or by subsystems. (So all
1022	 * empty hierarchies must have a name).
1023	 */
1024	if (!ctx->subsys_mask && !ctx->name)
1025		return invalfc(fc, "Need name or subsystem set");
1026
1027	/*
1028	 * Option noprefix was introduced just for backward compatibility
1029	 * with the old cpuset, so we allow noprefix only if mounting just
1030	 * the cpuset subsystem.
1031	 */
1032	if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1033		return invalfc(fc, "noprefix used incorrectly");
1034
1035	/* Can't specify "none" and some subsystems */
1036	if (ctx->subsys_mask && ctx->none)
1037		return invalfc(fc, "none used incorrectly");
1038
1039	return 0;
1040}
1041
1042int cgroup1_reconfigure(struct fs_context *fc)
1043{
1044	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1045	struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1046	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1047	int ret = 0;
1048	u16 added_mask, removed_mask;
1049
1050	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1051
1052	/* See what subsystems are wanted */
1053	ret = check_cgroupfs_options(fc);
1054	if (ret)
1055		goto out_unlock;
1056
1057	if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1058		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1059			task_tgid_nr(current), current->comm);
1060
1061	added_mask = ctx->subsys_mask & ~root->subsys_mask;
1062	removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1063
1064	/* Don't allow flags or name to change at remount */
1065	if ((ctx->flags ^ root->flags) ||
1066	    (ctx->name && strcmp(ctx->name, root->name))) {
1067		errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1068		       ctx->flags, ctx->name ?: "", root->flags, root->name);
1069		ret = -EINVAL;
1070		goto out_unlock;
1071	}
1072
1073	/* remounting is not allowed for populated hierarchies */
1074	if (!list_empty(&root->cgrp.self.children)) {
1075		ret = -EBUSY;
1076		goto out_unlock;
1077	}
1078
1079	ret = rebind_subsystems(root, added_mask);
1080	if (ret)
1081		goto out_unlock;
1082
1083	WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1084
1085	if (ctx->release_agent) {
1086		spin_lock(&release_agent_path_lock);
1087		strcpy(root->release_agent_path, ctx->release_agent);
1088		spin_unlock(&release_agent_path_lock);
1089	}
1090
1091	trace_cgroup_remount(root);
1092
1093 out_unlock:
1094	mutex_unlock(&cgroup_mutex);
1095	return ret;
1096}
1097
1098struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1099	.rename			= cgroup1_rename,
1100	.show_options		= cgroup1_show_options,
1101	.mkdir			= cgroup_mkdir,
1102	.rmdir			= cgroup_rmdir,
1103	.show_path		= cgroup_show_path,
1104};
1105
1106/*
1107 * The guts of cgroup1 mount - find or create cgroup_root to use.
1108 * Called with cgroup_mutex held; returns 0 on success, -E... on
1109 * error and positive - in case when the candidate is busy dying.
1110 * On success it stashes a reference to cgroup_root into given
1111 * cgroup_fs_context; that reference is *NOT* counting towards the
1112 * cgroup_root refcount.
1113 */
1114static int cgroup1_root_to_use(struct fs_context *fc)
1115{
1116	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1117	struct cgroup_root *root;
1118	struct cgroup_subsys *ss;
1119	int i, ret;
1120
1121	/* First find the desired set of subsystems */
1122	ret = check_cgroupfs_options(fc);
1123	if (ret)
1124		return ret;
1125
1126	/*
1127	 * Destruction of cgroup root is asynchronous, so subsystems may
1128	 * still be dying after the previous unmount.  Let's drain the
1129	 * dying subsystems.  We just need to ensure that the ones
1130	 * unmounted previously finish dying and don't care about new ones
1131	 * starting.  Testing ref liveliness is good enough.
1132	 */
1133	for_each_subsys(ss, i) {
1134		if (!(ctx->subsys_mask & (1 << i)) ||
1135		    ss->root == &cgrp_dfl_root)
1136			continue;
1137
1138		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1139			return 1;	/* restart */
1140		cgroup_put(&ss->root->cgrp);
1141	}
1142
1143	for_each_root(root) {
1144		bool name_match = false;
1145
1146		if (root == &cgrp_dfl_root)
1147			continue;
1148
1149		/*
1150		 * If we asked for a name then it must match.  Also, if
1151		 * name matches but sybsys_mask doesn't, we should fail.
1152		 * Remember whether name matched.
1153		 */
1154		if (ctx->name) {
1155			if (strcmp(ctx->name, root->name))
1156				continue;
1157			name_match = true;
1158		}
1159
1160		/*
1161		 * If we asked for subsystems (or explicitly for no
1162		 * subsystems) then they must match.
1163		 */
1164		if ((ctx->subsys_mask || ctx->none) &&
1165		    (ctx->subsys_mask != root->subsys_mask)) {
1166			if (!name_match)
1167				continue;
1168			return -EBUSY;
1169		}
1170
1171		if (root->flags ^ ctx->flags)
1172			pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1173
1174		ctx->root = root;
1175		return 0;
1176	}
1177
1178	/*
1179	 * No such thing, create a new one.  name= matching without subsys
1180	 * specification is allowed for already existing hierarchies but we
1181	 * can't create new one without subsys specification.
1182	 */
1183	if (!ctx->subsys_mask && !ctx->none)
1184		return invalfc(fc, "No subsys list or none specified");
1185
1186	/* Hierarchies may only be created in the initial cgroup namespace. */
1187	if (ctx->ns != &init_cgroup_ns)
1188		return -EPERM;
1189
1190	root = kzalloc(sizeof(*root), GFP_KERNEL);
1191	if (!root)
1192		return -ENOMEM;
1193
1194	ctx->root = root;
1195	init_cgroup_root(ctx);
1196
1197	ret = cgroup_setup_root(root, ctx->subsys_mask);
1198	if (ret)
1199		cgroup_free_root(root);
1200	return ret;
1201}
1202
1203int cgroup1_get_tree(struct fs_context *fc)
1204{
1205	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1206	int ret;
1207
1208	/* Check if the caller has permission to mount. */
1209	if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1210		return -EPERM;
1211
1212	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1213
1214	ret = cgroup1_root_to_use(fc);
1215	if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1216		ret = 1;	/* restart */
1217
1218	mutex_unlock(&cgroup_mutex);
1219
1220	if (!ret)
1221		ret = cgroup_do_get_tree(fc);
1222
1223	if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1224		fc_drop_locked(fc);
1225		ret = 1;
1226	}
1227
1228	if (unlikely(ret > 0)) {
1229		msleep(10);
1230		return restart_syscall();
1231	}
1232	return ret;
1233}
1234
1235static int __init cgroup1_wq_init(void)
1236{
1237	/*
1238	 * Used to destroy pidlists and separate to serve as flush domain.
1239	 * Cap @max_active to 1 too.
1240	 */
1241	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1242						    0, 1);
1243	BUG_ON(!cgroup_pidlist_destroy_wq);
1244	return 0;
1245}
1246core_initcall(cgroup1_wq_init);
1247
1248static int __init cgroup_no_v1(char *str)
1249{
1250	struct cgroup_subsys *ss;
1251	char *token;
1252	int i;
1253
1254	while ((token = strsep(&str, ",")) != NULL) {
1255		if (!*token)
1256			continue;
1257
1258		if (!strcmp(token, "all")) {
1259			cgroup_no_v1_mask = U16_MAX;
1260			continue;
1261		}
1262
1263		if (!strcmp(token, "named")) {
1264			cgroup_no_v1_named = true;
1265			continue;
1266		}
1267
1268		for_each_subsys(ss, i) {
1269			if (strcmp(token, ss->name) &&
1270			    strcmp(token, ss->legacy_name))
1271				continue;
1272
1273			cgroup_no_v1_mask |= 1 << i;
1274		}
1275	}
1276	return 1;
1277}
1278__setup("cgroup_no_v1=", cgroup_no_v1);