Loading...
Note: File does not exist in v3.5.6.
1// SPDX-License-Identifier: GPL-2.0-only
2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 */
6#include <uapi/linux/btf.h>
7#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
11#include <linux/btf.h>
12#include <linux/bpf_verifier.h>
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
17#include <linux/stringify.h>
18#include <linux/bsearch.h>
19#include <linux/sort.h>
20#include <linux/perf_event.h>
21#include <linux/ctype.h>
22#include <linux/error-injection.h>
23#include <linux/bpf_lsm.h>
24#include <linux/btf_ids.h>
25
26#include "disasm.h"
27
28static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 [_id] = & _name ## _verifier_ops,
31#define BPF_MAP_TYPE(_id, _ops)
32#define BPF_LINK_TYPE(_id, _name)
33#include <linux/bpf_types.h>
34#undef BPF_PROG_TYPE
35#undef BPF_MAP_TYPE
36#undef BPF_LINK_TYPE
37};
38
39/* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
50 * Since it's analyzing all paths through the program, the length of the
51 * analysis is limited to 64k insn, which may be hit even if total number of
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
79 * Most of the time the registers have SCALAR_VALUE type, which
80 * means the register has some value, but it's not a valid pointer.
81 * (like pointer plus pointer becomes SCALAR_VALUE type)
82 *
83 * When verifier sees load or store instructions the type of base register
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135 * returns either pointer to map value or NULL.
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
162 */
163
164/* verifier_state + insn_idx are pushed to stack when branch is encountered */
165struct bpf_verifier_stack_elem {
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
170 struct bpf_verifier_state st;
171 int insn_idx;
172 int prev_insn_idx;
173 struct bpf_verifier_stack_elem *next;
174 /* length of verifier log at the time this state was pushed on stack */
175 u32 log_pos;
176};
177
178#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
179#define BPF_COMPLEXITY_LIMIT_STATES 64
180
181#define BPF_MAP_KEY_POISON (1ULL << 63)
182#define BPF_MAP_KEY_SEEN (1ULL << 62)
183
184#define BPF_MAP_PTR_UNPRIV 1UL
185#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
186 POISON_POINTER_DELTA))
187#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188
189static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190{
191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192}
193
194static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195{
196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197}
198
199static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 const struct bpf_map *map, bool unpriv)
201{
202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 unpriv |= bpf_map_ptr_unpriv(aux);
204 aux->map_ptr_state = (unsigned long)map |
205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206}
207
208static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209{
210 return aux->map_key_state & BPF_MAP_KEY_POISON;
211}
212
213static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214{
215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216}
217
218static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219{
220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221}
222
223static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224{
225 bool poisoned = bpf_map_key_poisoned(aux);
226
227 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229}
230
231static bool bpf_pseudo_call(const struct bpf_insn *insn)
232{
233 return insn->code == (BPF_JMP | BPF_CALL) &&
234 insn->src_reg == BPF_PSEUDO_CALL;
235}
236
237static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
238{
239 return insn->code == (BPF_JMP | BPF_CALL) &&
240 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
241}
242
243static bool bpf_pseudo_func(const struct bpf_insn *insn)
244{
245 return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
246 insn->src_reg == BPF_PSEUDO_FUNC;
247}
248
249struct bpf_call_arg_meta {
250 struct bpf_map *map_ptr;
251 bool raw_mode;
252 bool pkt_access;
253 int regno;
254 int access_size;
255 int mem_size;
256 u64 msize_max_value;
257 int ref_obj_id;
258 int func_id;
259 struct btf *btf;
260 u32 btf_id;
261 struct btf *ret_btf;
262 u32 ret_btf_id;
263 u32 subprogno;
264};
265
266struct btf *btf_vmlinux;
267
268static DEFINE_MUTEX(bpf_verifier_lock);
269
270static const struct bpf_line_info *
271find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
272{
273 const struct bpf_line_info *linfo;
274 const struct bpf_prog *prog;
275 u32 i, nr_linfo;
276
277 prog = env->prog;
278 nr_linfo = prog->aux->nr_linfo;
279
280 if (!nr_linfo || insn_off >= prog->len)
281 return NULL;
282
283 linfo = prog->aux->linfo;
284 for (i = 1; i < nr_linfo; i++)
285 if (insn_off < linfo[i].insn_off)
286 break;
287
288 return &linfo[i - 1];
289}
290
291void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
292 va_list args)
293{
294 unsigned int n;
295
296 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
297
298 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
299 "verifier log line truncated - local buffer too short\n");
300
301 n = min(log->len_total - log->len_used - 1, n);
302 log->kbuf[n] = '\0';
303
304 if (log->level == BPF_LOG_KERNEL) {
305 pr_err("BPF:%s\n", log->kbuf);
306 return;
307 }
308 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
309 log->len_used += n;
310 else
311 log->ubuf = NULL;
312}
313
314static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
315{
316 char zero = 0;
317
318 if (!bpf_verifier_log_needed(log))
319 return;
320
321 log->len_used = new_pos;
322 if (put_user(zero, log->ubuf + new_pos))
323 log->ubuf = NULL;
324}
325
326/* log_level controls verbosity level of eBPF verifier.
327 * bpf_verifier_log_write() is used to dump the verification trace to the log,
328 * so the user can figure out what's wrong with the program
329 */
330__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
331 const char *fmt, ...)
332{
333 va_list args;
334
335 if (!bpf_verifier_log_needed(&env->log))
336 return;
337
338 va_start(args, fmt);
339 bpf_verifier_vlog(&env->log, fmt, args);
340 va_end(args);
341}
342EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
343
344__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
345{
346 struct bpf_verifier_env *env = private_data;
347 va_list args;
348
349 if (!bpf_verifier_log_needed(&env->log))
350 return;
351
352 va_start(args, fmt);
353 bpf_verifier_vlog(&env->log, fmt, args);
354 va_end(args);
355}
356
357__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
358 const char *fmt, ...)
359{
360 va_list args;
361
362 if (!bpf_verifier_log_needed(log))
363 return;
364
365 va_start(args, fmt);
366 bpf_verifier_vlog(log, fmt, args);
367 va_end(args);
368}
369
370static const char *ltrim(const char *s)
371{
372 while (isspace(*s))
373 s++;
374
375 return s;
376}
377
378__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
379 u32 insn_off,
380 const char *prefix_fmt, ...)
381{
382 const struct bpf_line_info *linfo;
383
384 if (!bpf_verifier_log_needed(&env->log))
385 return;
386
387 linfo = find_linfo(env, insn_off);
388 if (!linfo || linfo == env->prev_linfo)
389 return;
390
391 if (prefix_fmt) {
392 va_list args;
393
394 va_start(args, prefix_fmt);
395 bpf_verifier_vlog(&env->log, prefix_fmt, args);
396 va_end(args);
397 }
398
399 verbose(env, "%s\n",
400 ltrim(btf_name_by_offset(env->prog->aux->btf,
401 linfo->line_off)));
402
403 env->prev_linfo = linfo;
404}
405
406static void verbose_invalid_scalar(struct bpf_verifier_env *env,
407 struct bpf_reg_state *reg,
408 struct tnum *range, const char *ctx,
409 const char *reg_name)
410{
411 char tn_buf[48];
412
413 verbose(env, "At %s the register %s ", ctx, reg_name);
414 if (!tnum_is_unknown(reg->var_off)) {
415 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
416 verbose(env, "has value %s", tn_buf);
417 } else {
418 verbose(env, "has unknown scalar value");
419 }
420 tnum_strn(tn_buf, sizeof(tn_buf), *range);
421 verbose(env, " should have been in %s\n", tn_buf);
422}
423
424static bool type_is_pkt_pointer(enum bpf_reg_type type)
425{
426 return type == PTR_TO_PACKET ||
427 type == PTR_TO_PACKET_META;
428}
429
430static bool type_is_sk_pointer(enum bpf_reg_type type)
431{
432 return type == PTR_TO_SOCKET ||
433 type == PTR_TO_SOCK_COMMON ||
434 type == PTR_TO_TCP_SOCK ||
435 type == PTR_TO_XDP_SOCK;
436}
437
438static bool reg_type_not_null(enum bpf_reg_type type)
439{
440 return type == PTR_TO_SOCKET ||
441 type == PTR_TO_TCP_SOCK ||
442 type == PTR_TO_MAP_VALUE ||
443 type == PTR_TO_MAP_KEY ||
444 type == PTR_TO_SOCK_COMMON;
445}
446
447static bool reg_type_may_be_null(enum bpf_reg_type type)
448{
449 return type == PTR_TO_MAP_VALUE_OR_NULL ||
450 type == PTR_TO_SOCKET_OR_NULL ||
451 type == PTR_TO_SOCK_COMMON_OR_NULL ||
452 type == PTR_TO_TCP_SOCK_OR_NULL ||
453 type == PTR_TO_BTF_ID_OR_NULL ||
454 type == PTR_TO_MEM_OR_NULL ||
455 type == PTR_TO_RDONLY_BUF_OR_NULL ||
456 type == PTR_TO_RDWR_BUF_OR_NULL;
457}
458
459static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
460{
461 return reg->type == PTR_TO_MAP_VALUE &&
462 map_value_has_spin_lock(reg->map_ptr);
463}
464
465static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
466{
467 return type == PTR_TO_SOCKET ||
468 type == PTR_TO_SOCKET_OR_NULL ||
469 type == PTR_TO_TCP_SOCK ||
470 type == PTR_TO_TCP_SOCK_OR_NULL ||
471 type == PTR_TO_MEM ||
472 type == PTR_TO_MEM_OR_NULL;
473}
474
475static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
476{
477 return type == ARG_PTR_TO_SOCK_COMMON;
478}
479
480static bool arg_type_may_be_null(enum bpf_arg_type type)
481{
482 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
483 type == ARG_PTR_TO_MEM_OR_NULL ||
484 type == ARG_PTR_TO_CTX_OR_NULL ||
485 type == ARG_PTR_TO_SOCKET_OR_NULL ||
486 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL ||
487 type == ARG_PTR_TO_STACK_OR_NULL;
488}
489
490/* Determine whether the function releases some resources allocated by another
491 * function call. The first reference type argument will be assumed to be
492 * released by release_reference().
493 */
494static bool is_release_function(enum bpf_func_id func_id)
495{
496 return func_id == BPF_FUNC_sk_release ||
497 func_id == BPF_FUNC_ringbuf_submit ||
498 func_id == BPF_FUNC_ringbuf_discard;
499}
500
501static bool may_be_acquire_function(enum bpf_func_id func_id)
502{
503 return func_id == BPF_FUNC_sk_lookup_tcp ||
504 func_id == BPF_FUNC_sk_lookup_udp ||
505 func_id == BPF_FUNC_skc_lookup_tcp ||
506 func_id == BPF_FUNC_map_lookup_elem ||
507 func_id == BPF_FUNC_ringbuf_reserve;
508}
509
510static bool is_acquire_function(enum bpf_func_id func_id,
511 const struct bpf_map *map)
512{
513 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
514
515 if (func_id == BPF_FUNC_sk_lookup_tcp ||
516 func_id == BPF_FUNC_sk_lookup_udp ||
517 func_id == BPF_FUNC_skc_lookup_tcp ||
518 func_id == BPF_FUNC_ringbuf_reserve)
519 return true;
520
521 if (func_id == BPF_FUNC_map_lookup_elem &&
522 (map_type == BPF_MAP_TYPE_SOCKMAP ||
523 map_type == BPF_MAP_TYPE_SOCKHASH))
524 return true;
525
526 return false;
527}
528
529static bool is_ptr_cast_function(enum bpf_func_id func_id)
530{
531 return func_id == BPF_FUNC_tcp_sock ||
532 func_id == BPF_FUNC_sk_fullsock ||
533 func_id == BPF_FUNC_skc_to_tcp_sock ||
534 func_id == BPF_FUNC_skc_to_tcp6_sock ||
535 func_id == BPF_FUNC_skc_to_udp6_sock ||
536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 func_id == BPF_FUNC_skc_to_tcp_request_sock;
538}
539
540static bool is_cmpxchg_insn(const struct bpf_insn *insn)
541{
542 return BPF_CLASS(insn->code) == BPF_STX &&
543 BPF_MODE(insn->code) == BPF_ATOMIC &&
544 insn->imm == BPF_CMPXCHG;
545}
546
547/* string representation of 'enum bpf_reg_type' */
548static const char * const reg_type_str[] = {
549 [NOT_INIT] = "?",
550 [SCALAR_VALUE] = "inv",
551 [PTR_TO_CTX] = "ctx",
552 [CONST_PTR_TO_MAP] = "map_ptr",
553 [PTR_TO_MAP_VALUE] = "map_value",
554 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
555 [PTR_TO_STACK] = "fp",
556 [PTR_TO_PACKET] = "pkt",
557 [PTR_TO_PACKET_META] = "pkt_meta",
558 [PTR_TO_PACKET_END] = "pkt_end",
559 [PTR_TO_FLOW_KEYS] = "flow_keys",
560 [PTR_TO_SOCKET] = "sock",
561 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
562 [PTR_TO_SOCK_COMMON] = "sock_common",
563 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
564 [PTR_TO_TCP_SOCK] = "tcp_sock",
565 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
566 [PTR_TO_TP_BUFFER] = "tp_buffer",
567 [PTR_TO_XDP_SOCK] = "xdp_sock",
568 [PTR_TO_BTF_ID] = "ptr_",
569 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
570 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_",
571 [PTR_TO_MEM] = "mem",
572 [PTR_TO_MEM_OR_NULL] = "mem_or_null",
573 [PTR_TO_RDONLY_BUF] = "rdonly_buf",
574 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
575 [PTR_TO_RDWR_BUF] = "rdwr_buf",
576 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
577 [PTR_TO_FUNC] = "func",
578 [PTR_TO_MAP_KEY] = "map_key",
579};
580
581static char slot_type_char[] = {
582 [STACK_INVALID] = '?',
583 [STACK_SPILL] = 'r',
584 [STACK_MISC] = 'm',
585 [STACK_ZERO] = '0',
586};
587
588static void print_liveness(struct bpf_verifier_env *env,
589 enum bpf_reg_liveness live)
590{
591 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
592 verbose(env, "_");
593 if (live & REG_LIVE_READ)
594 verbose(env, "r");
595 if (live & REG_LIVE_WRITTEN)
596 verbose(env, "w");
597 if (live & REG_LIVE_DONE)
598 verbose(env, "D");
599}
600
601static struct bpf_func_state *func(struct bpf_verifier_env *env,
602 const struct bpf_reg_state *reg)
603{
604 struct bpf_verifier_state *cur = env->cur_state;
605
606 return cur->frame[reg->frameno];
607}
608
609static const char *kernel_type_name(const struct btf* btf, u32 id)
610{
611 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
612}
613
614static void print_verifier_state(struct bpf_verifier_env *env,
615 const struct bpf_func_state *state)
616{
617 const struct bpf_reg_state *reg;
618 enum bpf_reg_type t;
619 int i;
620
621 if (state->frameno)
622 verbose(env, " frame%d:", state->frameno);
623 for (i = 0; i < MAX_BPF_REG; i++) {
624 reg = &state->regs[i];
625 t = reg->type;
626 if (t == NOT_INIT)
627 continue;
628 verbose(env, " R%d", i);
629 print_liveness(env, reg->live);
630 verbose(env, "=%s", reg_type_str[t]);
631 if (t == SCALAR_VALUE && reg->precise)
632 verbose(env, "P");
633 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
634 tnum_is_const(reg->var_off)) {
635 /* reg->off should be 0 for SCALAR_VALUE */
636 verbose(env, "%lld", reg->var_off.value + reg->off);
637 } else {
638 if (t == PTR_TO_BTF_ID ||
639 t == PTR_TO_BTF_ID_OR_NULL ||
640 t == PTR_TO_PERCPU_BTF_ID)
641 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
642 verbose(env, "(id=%d", reg->id);
643 if (reg_type_may_be_refcounted_or_null(t))
644 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
645 if (t != SCALAR_VALUE)
646 verbose(env, ",off=%d", reg->off);
647 if (type_is_pkt_pointer(t))
648 verbose(env, ",r=%d", reg->range);
649 else if (t == CONST_PTR_TO_MAP ||
650 t == PTR_TO_MAP_KEY ||
651 t == PTR_TO_MAP_VALUE ||
652 t == PTR_TO_MAP_VALUE_OR_NULL)
653 verbose(env, ",ks=%d,vs=%d",
654 reg->map_ptr->key_size,
655 reg->map_ptr->value_size);
656 if (tnum_is_const(reg->var_off)) {
657 /* Typically an immediate SCALAR_VALUE, but
658 * could be a pointer whose offset is too big
659 * for reg->off
660 */
661 verbose(env, ",imm=%llx", reg->var_off.value);
662 } else {
663 if (reg->smin_value != reg->umin_value &&
664 reg->smin_value != S64_MIN)
665 verbose(env, ",smin_value=%lld",
666 (long long)reg->smin_value);
667 if (reg->smax_value != reg->umax_value &&
668 reg->smax_value != S64_MAX)
669 verbose(env, ",smax_value=%lld",
670 (long long)reg->smax_value);
671 if (reg->umin_value != 0)
672 verbose(env, ",umin_value=%llu",
673 (unsigned long long)reg->umin_value);
674 if (reg->umax_value != U64_MAX)
675 verbose(env, ",umax_value=%llu",
676 (unsigned long long)reg->umax_value);
677 if (!tnum_is_unknown(reg->var_off)) {
678 char tn_buf[48];
679
680 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
681 verbose(env, ",var_off=%s", tn_buf);
682 }
683 if (reg->s32_min_value != reg->smin_value &&
684 reg->s32_min_value != S32_MIN)
685 verbose(env, ",s32_min_value=%d",
686 (int)(reg->s32_min_value));
687 if (reg->s32_max_value != reg->smax_value &&
688 reg->s32_max_value != S32_MAX)
689 verbose(env, ",s32_max_value=%d",
690 (int)(reg->s32_max_value));
691 if (reg->u32_min_value != reg->umin_value &&
692 reg->u32_min_value != U32_MIN)
693 verbose(env, ",u32_min_value=%d",
694 (int)(reg->u32_min_value));
695 if (reg->u32_max_value != reg->umax_value &&
696 reg->u32_max_value != U32_MAX)
697 verbose(env, ",u32_max_value=%d",
698 (int)(reg->u32_max_value));
699 }
700 verbose(env, ")");
701 }
702 }
703 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
704 char types_buf[BPF_REG_SIZE + 1];
705 bool valid = false;
706 int j;
707
708 for (j = 0; j < BPF_REG_SIZE; j++) {
709 if (state->stack[i].slot_type[j] != STACK_INVALID)
710 valid = true;
711 types_buf[j] = slot_type_char[
712 state->stack[i].slot_type[j]];
713 }
714 types_buf[BPF_REG_SIZE] = 0;
715 if (!valid)
716 continue;
717 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
718 print_liveness(env, state->stack[i].spilled_ptr.live);
719 if (state->stack[i].slot_type[0] == STACK_SPILL) {
720 reg = &state->stack[i].spilled_ptr;
721 t = reg->type;
722 verbose(env, "=%s", reg_type_str[t]);
723 if (t == SCALAR_VALUE && reg->precise)
724 verbose(env, "P");
725 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
726 verbose(env, "%lld", reg->var_off.value + reg->off);
727 } else {
728 verbose(env, "=%s", types_buf);
729 }
730 }
731 if (state->acquired_refs && state->refs[0].id) {
732 verbose(env, " refs=%d", state->refs[0].id);
733 for (i = 1; i < state->acquired_refs; i++)
734 if (state->refs[i].id)
735 verbose(env, ",%d", state->refs[i].id);
736 }
737 verbose(env, "\n");
738}
739
740/* copy array src of length n * size bytes to dst. dst is reallocated if it's too
741 * small to hold src. This is different from krealloc since we don't want to preserve
742 * the contents of dst.
743 *
744 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
745 * not be allocated.
746 */
747static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
748{
749 size_t bytes;
750
751 if (ZERO_OR_NULL_PTR(src))
752 goto out;
753
754 if (unlikely(check_mul_overflow(n, size, &bytes)))
755 return NULL;
756
757 if (ksize(dst) < bytes) {
758 kfree(dst);
759 dst = kmalloc_track_caller(bytes, flags);
760 if (!dst)
761 return NULL;
762 }
763
764 memcpy(dst, src, bytes);
765out:
766 return dst ? dst : ZERO_SIZE_PTR;
767}
768
769/* resize an array from old_n items to new_n items. the array is reallocated if it's too
770 * small to hold new_n items. new items are zeroed out if the array grows.
771 *
772 * Contrary to krealloc_array, does not free arr if new_n is zero.
773 */
774static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
775{
776 if (!new_n || old_n == new_n)
777 goto out;
778
779 arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
780 if (!arr)
781 return NULL;
782
783 if (new_n > old_n)
784 memset(arr + old_n * size, 0, (new_n - old_n) * size);
785
786out:
787 return arr ? arr : ZERO_SIZE_PTR;
788}
789
790static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
791{
792 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
793 sizeof(struct bpf_reference_state), GFP_KERNEL);
794 if (!dst->refs)
795 return -ENOMEM;
796
797 dst->acquired_refs = src->acquired_refs;
798 return 0;
799}
800
801static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
802{
803 size_t n = src->allocated_stack / BPF_REG_SIZE;
804
805 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
806 GFP_KERNEL);
807 if (!dst->stack)
808 return -ENOMEM;
809
810 dst->allocated_stack = src->allocated_stack;
811 return 0;
812}
813
814static int resize_reference_state(struct bpf_func_state *state, size_t n)
815{
816 state->refs = realloc_array(state->refs, state->acquired_refs, n,
817 sizeof(struct bpf_reference_state));
818 if (!state->refs)
819 return -ENOMEM;
820
821 state->acquired_refs = n;
822 return 0;
823}
824
825static int grow_stack_state(struct bpf_func_state *state, int size)
826{
827 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
828
829 if (old_n >= n)
830 return 0;
831
832 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
833 if (!state->stack)
834 return -ENOMEM;
835
836 state->allocated_stack = size;
837 return 0;
838}
839
840/* Acquire a pointer id from the env and update the state->refs to include
841 * this new pointer reference.
842 * On success, returns a valid pointer id to associate with the register
843 * On failure, returns a negative errno.
844 */
845static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
846{
847 struct bpf_func_state *state = cur_func(env);
848 int new_ofs = state->acquired_refs;
849 int id, err;
850
851 err = resize_reference_state(state, state->acquired_refs + 1);
852 if (err)
853 return err;
854 id = ++env->id_gen;
855 state->refs[new_ofs].id = id;
856 state->refs[new_ofs].insn_idx = insn_idx;
857
858 return id;
859}
860
861/* release function corresponding to acquire_reference_state(). Idempotent. */
862static int release_reference_state(struct bpf_func_state *state, int ptr_id)
863{
864 int i, last_idx;
865
866 last_idx = state->acquired_refs - 1;
867 for (i = 0; i < state->acquired_refs; i++) {
868 if (state->refs[i].id == ptr_id) {
869 if (last_idx && i != last_idx)
870 memcpy(&state->refs[i], &state->refs[last_idx],
871 sizeof(*state->refs));
872 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
873 state->acquired_refs--;
874 return 0;
875 }
876 }
877 return -EINVAL;
878}
879
880static void free_func_state(struct bpf_func_state *state)
881{
882 if (!state)
883 return;
884 kfree(state->refs);
885 kfree(state->stack);
886 kfree(state);
887}
888
889static void clear_jmp_history(struct bpf_verifier_state *state)
890{
891 kfree(state->jmp_history);
892 state->jmp_history = NULL;
893 state->jmp_history_cnt = 0;
894}
895
896static void free_verifier_state(struct bpf_verifier_state *state,
897 bool free_self)
898{
899 int i;
900
901 for (i = 0; i <= state->curframe; i++) {
902 free_func_state(state->frame[i]);
903 state->frame[i] = NULL;
904 }
905 clear_jmp_history(state);
906 if (free_self)
907 kfree(state);
908}
909
910/* copy verifier state from src to dst growing dst stack space
911 * when necessary to accommodate larger src stack
912 */
913static int copy_func_state(struct bpf_func_state *dst,
914 const struct bpf_func_state *src)
915{
916 int err;
917
918 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
919 err = copy_reference_state(dst, src);
920 if (err)
921 return err;
922 return copy_stack_state(dst, src);
923}
924
925static int copy_verifier_state(struct bpf_verifier_state *dst_state,
926 const struct bpf_verifier_state *src)
927{
928 struct bpf_func_state *dst;
929 int i, err;
930
931 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
932 src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
933 GFP_USER);
934 if (!dst_state->jmp_history)
935 return -ENOMEM;
936 dst_state->jmp_history_cnt = src->jmp_history_cnt;
937
938 /* if dst has more stack frames then src frame, free them */
939 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
940 free_func_state(dst_state->frame[i]);
941 dst_state->frame[i] = NULL;
942 }
943 dst_state->speculative = src->speculative;
944 dst_state->curframe = src->curframe;
945 dst_state->active_spin_lock = src->active_spin_lock;
946 dst_state->branches = src->branches;
947 dst_state->parent = src->parent;
948 dst_state->first_insn_idx = src->first_insn_idx;
949 dst_state->last_insn_idx = src->last_insn_idx;
950 for (i = 0; i <= src->curframe; i++) {
951 dst = dst_state->frame[i];
952 if (!dst) {
953 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
954 if (!dst)
955 return -ENOMEM;
956 dst_state->frame[i] = dst;
957 }
958 err = copy_func_state(dst, src->frame[i]);
959 if (err)
960 return err;
961 }
962 return 0;
963}
964
965static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
966{
967 while (st) {
968 u32 br = --st->branches;
969
970 /* WARN_ON(br > 1) technically makes sense here,
971 * but see comment in push_stack(), hence:
972 */
973 WARN_ONCE((int)br < 0,
974 "BUG update_branch_counts:branches_to_explore=%d\n",
975 br);
976 if (br)
977 break;
978 st = st->parent;
979 }
980}
981
982static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
983 int *insn_idx, bool pop_log)
984{
985 struct bpf_verifier_state *cur = env->cur_state;
986 struct bpf_verifier_stack_elem *elem, *head = env->head;
987 int err;
988
989 if (env->head == NULL)
990 return -ENOENT;
991
992 if (cur) {
993 err = copy_verifier_state(cur, &head->st);
994 if (err)
995 return err;
996 }
997 if (pop_log)
998 bpf_vlog_reset(&env->log, head->log_pos);
999 if (insn_idx)
1000 *insn_idx = head->insn_idx;
1001 if (prev_insn_idx)
1002 *prev_insn_idx = head->prev_insn_idx;
1003 elem = head->next;
1004 free_verifier_state(&head->st, false);
1005 kfree(head);
1006 env->head = elem;
1007 env->stack_size--;
1008 return 0;
1009}
1010
1011static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1012 int insn_idx, int prev_insn_idx,
1013 bool speculative)
1014{
1015 struct bpf_verifier_state *cur = env->cur_state;
1016 struct bpf_verifier_stack_elem *elem;
1017 int err;
1018
1019 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1020 if (!elem)
1021 goto err;
1022
1023 elem->insn_idx = insn_idx;
1024 elem->prev_insn_idx = prev_insn_idx;
1025 elem->next = env->head;
1026 elem->log_pos = env->log.len_used;
1027 env->head = elem;
1028 env->stack_size++;
1029 err = copy_verifier_state(&elem->st, cur);
1030 if (err)
1031 goto err;
1032 elem->st.speculative |= speculative;
1033 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1034 verbose(env, "The sequence of %d jumps is too complex.\n",
1035 env->stack_size);
1036 goto err;
1037 }
1038 if (elem->st.parent) {
1039 ++elem->st.parent->branches;
1040 /* WARN_ON(branches > 2) technically makes sense here,
1041 * but
1042 * 1. speculative states will bump 'branches' for non-branch
1043 * instructions
1044 * 2. is_state_visited() heuristics may decide not to create
1045 * a new state for a sequence of branches and all such current
1046 * and cloned states will be pointing to a single parent state
1047 * which might have large 'branches' count.
1048 */
1049 }
1050 return &elem->st;
1051err:
1052 free_verifier_state(env->cur_state, true);
1053 env->cur_state = NULL;
1054 /* pop all elements and return */
1055 while (!pop_stack(env, NULL, NULL, false));
1056 return NULL;
1057}
1058
1059#define CALLER_SAVED_REGS 6
1060static const int caller_saved[CALLER_SAVED_REGS] = {
1061 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1062};
1063
1064static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1065 struct bpf_reg_state *reg);
1066
1067/* This helper doesn't clear reg->id */
1068static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1069{
1070 reg->var_off = tnum_const(imm);
1071 reg->smin_value = (s64)imm;
1072 reg->smax_value = (s64)imm;
1073 reg->umin_value = imm;
1074 reg->umax_value = imm;
1075
1076 reg->s32_min_value = (s32)imm;
1077 reg->s32_max_value = (s32)imm;
1078 reg->u32_min_value = (u32)imm;
1079 reg->u32_max_value = (u32)imm;
1080}
1081
1082/* Mark the unknown part of a register (variable offset or scalar value) as
1083 * known to have the value @imm.
1084 */
1085static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1086{
1087 /* Clear id, off, and union(map_ptr, range) */
1088 memset(((u8 *)reg) + sizeof(reg->type), 0,
1089 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1090 ___mark_reg_known(reg, imm);
1091}
1092
1093static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1094{
1095 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1096 reg->s32_min_value = (s32)imm;
1097 reg->s32_max_value = (s32)imm;
1098 reg->u32_min_value = (u32)imm;
1099 reg->u32_max_value = (u32)imm;
1100}
1101
1102/* Mark the 'variable offset' part of a register as zero. This should be
1103 * used only on registers holding a pointer type.
1104 */
1105static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1106{
1107 __mark_reg_known(reg, 0);
1108}
1109
1110static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1111{
1112 __mark_reg_known(reg, 0);
1113 reg->type = SCALAR_VALUE;
1114}
1115
1116static void mark_reg_known_zero(struct bpf_verifier_env *env,
1117 struct bpf_reg_state *regs, u32 regno)
1118{
1119 if (WARN_ON(regno >= MAX_BPF_REG)) {
1120 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1121 /* Something bad happened, let's kill all regs */
1122 for (regno = 0; regno < MAX_BPF_REG; regno++)
1123 __mark_reg_not_init(env, regs + regno);
1124 return;
1125 }
1126 __mark_reg_known_zero(regs + regno);
1127}
1128
1129static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1130{
1131 switch (reg->type) {
1132 case PTR_TO_MAP_VALUE_OR_NULL: {
1133 const struct bpf_map *map = reg->map_ptr;
1134
1135 if (map->inner_map_meta) {
1136 reg->type = CONST_PTR_TO_MAP;
1137 reg->map_ptr = map->inner_map_meta;
1138 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1139 reg->type = PTR_TO_XDP_SOCK;
1140 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1141 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1142 reg->type = PTR_TO_SOCKET;
1143 } else {
1144 reg->type = PTR_TO_MAP_VALUE;
1145 }
1146 break;
1147 }
1148 case PTR_TO_SOCKET_OR_NULL:
1149 reg->type = PTR_TO_SOCKET;
1150 break;
1151 case PTR_TO_SOCK_COMMON_OR_NULL:
1152 reg->type = PTR_TO_SOCK_COMMON;
1153 break;
1154 case PTR_TO_TCP_SOCK_OR_NULL:
1155 reg->type = PTR_TO_TCP_SOCK;
1156 break;
1157 case PTR_TO_BTF_ID_OR_NULL:
1158 reg->type = PTR_TO_BTF_ID;
1159 break;
1160 case PTR_TO_MEM_OR_NULL:
1161 reg->type = PTR_TO_MEM;
1162 break;
1163 case PTR_TO_RDONLY_BUF_OR_NULL:
1164 reg->type = PTR_TO_RDONLY_BUF;
1165 break;
1166 case PTR_TO_RDWR_BUF_OR_NULL:
1167 reg->type = PTR_TO_RDWR_BUF;
1168 break;
1169 default:
1170 WARN_ONCE(1, "unknown nullable register type");
1171 }
1172}
1173
1174static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1175{
1176 return type_is_pkt_pointer(reg->type);
1177}
1178
1179static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1180{
1181 return reg_is_pkt_pointer(reg) ||
1182 reg->type == PTR_TO_PACKET_END;
1183}
1184
1185/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1186static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1187 enum bpf_reg_type which)
1188{
1189 /* The register can already have a range from prior markings.
1190 * This is fine as long as it hasn't been advanced from its
1191 * origin.
1192 */
1193 return reg->type == which &&
1194 reg->id == 0 &&
1195 reg->off == 0 &&
1196 tnum_equals_const(reg->var_off, 0);
1197}
1198
1199/* Reset the min/max bounds of a register */
1200static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1201{
1202 reg->smin_value = S64_MIN;
1203 reg->smax_value = S64_MAX;
1204 reg->umin_value = 0;
1205 reg->umax_value = U64_MAX;
1206
1207 reg->s32_min_value = S32_MIN;
1208 reg->s32_max_value = S32_MAX;
1209 reg->u32_min_value = 0;
1210 reg->u32_max_value = U32_MAX;
1211}
1212
1213static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1214{
1215 reg->smin_value = S64_MIN;
1216 reg->smax_value = S64_MAX;
1217 reg->umin_value = 0;
1218 reg->umax_value = U64_MAX;
1219}
1220
1221static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1222{
1223 reg->s32_min_value = S32_MIN;
1224 reg->s32_max_value = S32_MAX;
1225 reg->u32_min_value = 0;
1226 reg->u32_max_value = U32_MAX;
1227}
1228
1229static void __update_reg32_bounds(struct bpf_reg_state *reg)
1230{
1231 struct tnum var32_off = tnum_subreg(reg->var_off);
1232
1233 /* min signed is max(sign bit) | min(other bits) */
1234 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1235 var32_off.value | (var32_off.mask & S32_MIN));
1236 /* max signed is min(sign bit) | max(other bits) */
1237 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1238 var32_off.value | (var32_off.mask & S32_MAX));
1239 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1240 reg->u32_max_value = min(reg->u32_max_value,
1241 (u32)(var32_off.value | var32_off.mask));
1242}
1243
1244static void __update_reg64_bounds(struct bpf_reg_state *reg)
1245{
1246 /* min signed is max(sign bit) | min(other bits) */
1247 reg->smin_value = max_t(s64, reg->smin_value,
1248 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1249 /* max signed is min(sign bit) | max(other bits) */
1250 reg->smax_value = min_t(s64, reg->smax_value,
1251 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1252 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1253 reg->umax_value = min(reg->umax_value,
1254 reg->var_off.value | reg->var_off.mask);
1255}
1256
1257static void __update_reg_bounds(struct bpf_reg_state *reg)
1258{
1259 __update_reg32_bounds(reg);
1260 __update_reg64_bounds(reg);
1261}
1262
1263/* Uses signed min/max values to inform unsigned, and vice-versa */
1264static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1265{
1266 /* Learn sign from signed bounds.
1267 * If we cannot cross the sign boundary, then signed and unsigned bounds
1268 * are the same, so combine. This works even in the negative case, e.g.
1269 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1270 */
1271 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1272 reg->s32_min_value = reg->u32_min_value =
1273 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1274 reg->s32_max_value = reg->u32_max_value =
1275 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1276 return;
1277 }
1278 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1279 * boundary, so we must be careful.
1280 */
1281 if ((s32)reg->u32_max_value >= 0) {
1282 /* Positive. We can't learn anything from the smin, but smax
1283 * is positive, hence safe.
1284 */
1285 reg->s32_min_value = reg->u32_min_value;
1286 reg->s32_max_value = reg->u32_max_value =
1287 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1288 } else if ((s32)reg->u32_min_value < 0) {
1289 /* Negative. We can't learn anything from the smax, but smin
1290 * is negative, hence safe.
1291 */
1292 reg->s32_min_value = reg->u32_min_value =
1293 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1294 reg->s32_max_value = reg->u32_max_value;
1295 }
1296}
1297
1298static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1299{
1300 /* Learn sign from signed bounds.
1301 * If we cannot cross the sign boundary, then signed and unsigned bounds
1302 * are the same, so combine. This works even in the negative case, e.g.
1303 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1304 */
1305 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1306 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1307 reg->umin_value);
1308 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1309 reg->umax_value);
1310 return;
1311 }
1312 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1313 * boundary, so we must be careful.
1314 */
1315 if ((s64)reg->umax_value >= 0) {
1316 /* Positive. We can't learn anything from the smin, but smax
1317 * is positive, hence safe.
1318 */
1319 reg->smin_value = reg->umin_value;
1320 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1321 reg->umax_value);
1322 } else if ((s64)reg->umin_value < 0) {
1323 /* Negative. We can't learn anything from the smax, but smin
1324 * is negative, hence safe.
1325 */
1326 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1327 reg->umin_value);
1328 reg->smax_value = reg->umax_value;
1329 }
1330}
1331
1332static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1333{
1334 __reg32_deduce_bounds(reg);
1335 __reg64_deduce_bounds(reg);
1336}
1337
1338/* Attempts to improve var_off based on unsigned min/max information */
1339static void __reg_bound_offset(struct bpf_reg_state *reg)
1340{
1341 struct tnum var64_off = tnum_intersect(reg->var_off,
1342 tnum_range(reg->umin_value,
1343 reg->umax_value));
1344 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1345 tnum_range(reg->u32_min_value,
1346 reg->u32_max_value));
1347
1348 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1349}
1350
1351static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1352{
1353 reg->umin_value = reg->u32_min_value;
1354 reg->umax_value = reg->u32_max_value;
1355 /* Attempt to pull 32-bit signed bounds into 64-bit bounds
1356 * but must be positive otherwise set to worse case bounds
1357 * and refine later from tnum.
1358 */
1359 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1360 reg->smax_value = reg->s32_max_value;
1361 else
1362 reg->smax_value = U32_MAX;
1363 if (reg->s32_min_value >= 0)
1364 reg->smin_value = reg->s32_min_value;
1365 else
1366 reg->smin_value = 0;
1367}
1368
1369static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1370{
1371 /* special case when 64-bit register has upper 32-bit register
1372 * zeroed. Typically happens after zext or <<32, >>32 sequence
1373 * allowing us to use 32-bit bounds directly,
1374 */
1375 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1376 __reg_assign_32_into_64(reg);
1377 } else {
1378 /* Otherwise the best we can do is push lower 32bit known and
1379 * unknown bits into register (var_off set from jmp logic)
1380 * then learn as much as possible from the 64-bit tnum
1381 * known and unknown bits. The previous smin/smax bounds are
1382 * invalid here because of jmp32 compare so mark them unknown
1383 * so they do not impact tnum bounds calculation.
1384 */
1385 __mark_reg64_unbounded(reg);
1386 __update_reg_bounds(reg);
1387 }
1388
1389 /* Intersecting with the old var_off might have improved our bounds
1390 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1391 * then new var_off is (0; 0x7f...fc) which improves our umax.
1392 */
1393 __reg_deduce_bounds(reg);
1394 __reg_bound_offset(reg);
1395 __update_reg_bounds(reg);
1396}
1397
1398static bool __reg64_bound_s32(s64 a)
1399{
1400 return a > S32_MIN && a < S32_MAX;
1401}
1402
1403static bool __reg64_bound_u32(u64 a)
1404{
1405 return a > U32_MIN && a < U32_MAX;
1406}
1407
1408static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1409{
1410 __mark_reg32_unbounded(reg);
1411
1412 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1413 reg->s32_min_value = (s32)reg->smin_value;
1414 reg->s32_max_value = (s32)reg->smax_value;
1415 }
1416 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1417 reg->u32_min_value = (u32)reg->umin_value;
1418 reg->u32_max_value = (u32)reg->umax_value;
1419 }
1420
1421 /* Intersecting with the old var_off might have improved our bounds
1422 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1423 * then new var_off is (0; 0x7f...fc) which improves our umax.
1424 */
1425 __reg_deduce_bounds(reg);
1426 __reg_bound_offset(reg);
1427 __update_reg_bounds(reg);
1428}
1429
1430/* Mark a register as having a completely unknown (scalar) value. */
1431static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1432 struct bpf_reg_state *reg)
1433{
1434 /*
1435 * Clear type, id, off, and union(map_ptr, range) and
1436 * padding between 'type' and union
1437 */
1438 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1439 reg->type = SCALAR_VALUE;
1440 reg->var_off = tnum_unknown;
1441 reg->frameno = 0;
1442 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1443 __mark_reg_unbounded(reg);
1444}
1445
1446static void mark_reg_unknown(struct bpf_verifier_env *env,
1447 struct bpf_reg_state *regs, u32 regno)
1448{
1449 if (WARN_ON(regno >= MAX_BPF_REG)) {
1450 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1451 /* Something bad happened, let's kill all regs except FP */
1452 for (regno = 0; regno < BPF_REG_FP; regno++)
1453 __mark_reg_not_init(env, regs + regno);
1454 return;
1455 }
1456 __mark_reg_unknown(env, regs + regno);
1457}
1458
1459static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1460 struct bpf_reg_state *reg)
1461{
1462 __mark_reg_unknown(env, reg);
1463 reg->type = NOT_INIT;
1464}
1465
1466static void mark_reg_not_init(struct bpf_verifier_env *env,
1467 struct bpf_reg_state *regs, u32 regno)
1468{
1469 if (WARN_ON(regno >= MAX_BPF_REG)) {
1470 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1471 /* Something bad happened, let's kill all regs except FP */
1472 for (regno = 0; regno < BPF_REG_FP; regno++)
1473 __mark_reg_not_init(env, regs + regno);
1474 return;
1475 }
1476 __mark_reg_not_init(env, regs + regno);
1477}
1478
1479static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1480 struct bpf_reg_state *regs, u32 regno,
1481 enum bpf_reg_type reg_type,
1482 struct btf *btf, u32 btf_id)
1483{
1484 if (reg_type == SCALAR_VALUE) {
1485 mark_reg_unknown(env, regs, regno);
1486 return;
1487 }
1488 mark_reg_known_zero(env, regs, regno);
1489 regs[regno].type = PTR_TO_BTF_ID;
1490 regs[regno].btf = btf;
1491 regs[regno].btf_id = btf_id;
1492}
1493
1494#define DEF_NOT_SUBREG (0)
1495static void init_reg_state(struct bpf_verifier_env *env,
1496 struct bpf_func_state *state)
1497{
1498 struct bpf_reg_state *regs = state->regs;
1499 int i;
1500
1501 for (i = 0; i < MAX_BPF_REG; i++) {
1502 mark_reg_not_init(env, regs, i);
1503 regs[i].live = REG_LIVE_NONE;
1504 regs[i].parent = NULL;
1505 regs[i].subreg_def = DEF_NOT_SUBREG;
1506 }
1507
1508 /* frame pointer */
1509 regs[BPF_REG_FP].type = PTR_TO_STACK;
1510 mark_reg_known_zero(env, regs, BPF_REG_FP);
1511 regs[BPF_REG_FP].frameno = state->frameno;
1512}
1513
1514#define BPF_MAIN_FUNC (-1)
1515static void init_func_state(struct bpf_verifier_env *env,
1516 struct bpf_func_state *state,
1517 int callsite, int frameno, int subprogno)
1518{
1519 state->callsite = callsite;
1520 state->frameno = frameno;
1521 state->subprogno = subprogno;
1522 init_reg_state(env, state);
1523}
1524
1525enum reg_arg_type {
1526 SRC_OP, /* register is used as source operand */
1527 DST_OP, /* register is used as destination operand */
1528 DST_OP_NO_MARK /* same as above, check only, don't mark */
1529};
1530
1531static int cmp_subprogs(const void *a, const void *b)
1532{
1533 return ((struct bpf_subprog_info *)a)->start -
1534 ((struct bpf_subprog_info *)b)->start;
1535}
1536
1537static int find_subprog(struct bpf_verifier_env *env, int off)
1538{
1539 struct bpf_subprog_info *p;
1540
1541 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1542 sizeof(env->subprog_info[0]), cmp_subprogs);
1543 if (!p)
1544 return -ENOENT;
1545 return p - env->subprog_info;
1546
1547}
1548
1549static int add_subprog(struct bpf_verifier_env *env, int off)
1550{
1551 int insn_cnt = env->prog->len;
1552 int ret;
1553
1554 if (off >= insn_cnt || off < 0) {
1555 verbose(env, "call to invalid destination\n");
1556 return -EINVAL;
1557 }
1558 ret = find_subprog(env, off);
1559 if (ret >= 0)
1560 return ret;
1561 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1562 verbose(env, "too many subprograms\n");
1563 return -E2BIG;
1564 }
1565 /* determine subprog starts. The end is one before the next starts */
1566 env->subprog_info[env->subprog_cnt++].start = off;
1567 sort(env->subprog_info, env->subprog_cnt,
1568 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1569 return env->subprog_cnt - 1;
1570}
1571
1572struct bpf_kfunc_desc {
1573 struct btf_func_model func_model;
1574 u32 func_id;
1575 s32 imm;
1576};
1577
1578#define MAX_KFUNC_DESCS 256
1579struct bpf_kfunc_desc_tab {
1580 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1581 u32 nr_descs;
1582};
1583
1584static int kfunc_desc_cmp_by_id(const void *a, const void *b)
1585{
1586 const struct bpf_kfunc_desc *d0 = a;
1587 const struct bpf_kfunc_desc *d1 = b;
1588
1589 /* func_id is not greater than BTF_MAX_TYPE */
1590 return d0->func_id - d1->func_id;
1591}
1592
1593static const struct bpf_kfunc_desc *
1594find_kfunc_desc(const struct bpf_prog *prog, u32 func_id)
1595{
1596 struct bpf_kfunc_desc desc = {
1597 .func_id = func_id,
1598 };
1599 struct bpf_kfunc_desc_tab *tab;
1600
1601 tab = prog->aux->kfunc_tab;
1602 return bsearch(&desc, tab->descs, tab->nr_descs,
1603 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id);
1604}
1605
1606static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id)
1607{
1608 const struct btf_type *func, *func_proto;
1609 struct bpf_kfunc_desc_tab *tab;
1610 struct bpf_prog_aux *prog_aux;
1611 struct bpf_kfunc_desc *desc;
1612 const char *func_name;
1613 unsigned long addr;
1614 int err;
1615
1616 prog_aux = env->prog->aux;
1617 tab = prog_aux->kfunc_tab;
1618 if (!tab) {
1619 if (!btf_vmlinux) {
1620 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1621 return -ENOTSUPP;
1622 }
1623
1624 if (!env->prog->jit_requested) {
1625 verbose(env, "JIT is required for calling kernel function\n");
1626 return -ENOTSUPP;
1627 }
1628
1629 if (!bpf_jit_supports_kfunc_call()) {
1630 verbose(env, "JIT does not support calling kernel function\n");
1631 return -ENOTSUPP;
1632 }
1633
1634 if (!env->prog->gpl_compatible) {
1635 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1636 return -EINVAL;
1637 }
1638
1639 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1640 if (!tab)
1641 return -ENOMEM;
1642 prog_aux->kfunc_tab = tab;
1643 }
1644
1645 if (find_kfunc_desc(env->prog, func_id))
1646 return 0;
1647
1648 if (tab->nr_descs == MAX_KFUNC_DESCS) {
1649 verbose(env, "too many different kernel function calls\n");
1650 return -E2BIG;
1651 }
1652
1653 func = btf_type_by_id(btf_vmlinux, func_id);
1654 if (!func || !btf_type_is_func(func)) {
1655 verbose(env, "kernel btf_id %u is not a function\n",
1656 func_id);
1657 return -EINVAL;
1658 }
1659 func_proto = btf_type_by_id(btf_vmlinux, func->type);
1660 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1661 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1662 func_id);
1663 return -EINVAL;
1664 }
1665
1666 func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
1667 addr = kallsyms_lookup_name(func_name);
1668 if (!addr) {
1669 verbose(env, "cannot find address for kernel function %s\n",
1670 func_name);
1671 return -EINVAL;
1672 }
1673
1674 desc = &tab->descs[tab->nr_descs++];
1675 desc->func_id = func_id;
1676 desc->imm = BPF_CAST_CALL(addr) - __bpf_call_base;
1677 err = btf_distill_func_proto(&env->log, btf_vmlinux,
1678 func_proto, func_name,
1679 &desc->func_model);
1680 if (!err)
1681 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1682 kfunc_desc_cmp_by_id, NULL);
1683 return err;
1684}
1685
1686static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1687{
1688 const struct bpf_kfunc_desc *d0 = a;
1689 const struct bpf_kfunc_desc *d1 = b;
1690
1691 if (d0->imm > d1->imm)
1692 return 1;
1693 else if (d0->imm < d1->imm)
1694 return -1;
1695 return 0;
1696}
1697
1698static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1699{
1700 struct bpf_kfunc_desc_tab *tab;
1701
1702 tab = prog->aux->kfunc_tab;
1703 if (!tab)
1704 return;
1705
1706 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1707 kfunc_desc_cmp_by_imm, NULL);
1708}
1709
1710bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1711{
1712 return !!prog->aux->kfunc_tab;
1713}
1714
1715const struct btf_func_model *
1716bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1717 const struct bpf_insn *insn)
1718{
1719 const struct bpf_kfunc_desc desc = {
1720 .imm = insn->imm,
1721 };
1722 const struct bpf_kfunc_desc *res;
1723 struct bpf_kfunc_desc_tab *tab;
1724
1725 tab = prog->aux->kfunc_tab;
1726 res = bsearch(&desc, tab->descs, tab->nr_descs,
1727 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1728
1729 return res ? &res->func_model : NULL;
1730}
1731
1732static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
1733{
1734 struct bpf_subprog_info *subprog = env->subprog_info;
1735 struct bpf_insn *insn = env->prog->insnsi;
1736 int i, ret, insn_cnt = env->prog->len;
1737
1738 /* Add entry function. */
1739 ret = add_subprog(env, 0);
1740 if (ret)
1741 return ret;
1742
1743 for (i = 0; i < insn_cnt; i++, insn++) {
1744 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
1745 !bpf_pseudo_kfunc_call(insn))
1746 continue;
1747
1748 if (!env->bpf_capable) {
1749 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1750 return -EPERM;
1751 }
1752
1753 if (bpf_pseudo_func(insn)) {
1754 ret = add_subprog(env, i + insn->imm + 1);
1755 if (ret >= 0)
1756 /* remember subprog */
1757 insn[1].imm = ret;
1758 } else if (bpf_pseudo_call(insn)) {
1759 ret = add_subprog(env, i + insn->imm + 1);
1760 } else {
1761 ret = add_kfunc_call(env, insn->imm);
1762 }
1763
1764 if (ret < 0)
1765 return ret;
1766 }
1767
1768 /* Add a fake 'exit' subprog which could simplify subprog iteration
1769 * logic. 'subprog_cnt' should not be increased.
1770 */
1771 subprog[env->subprog_cnt].start = insn_cnt;
1772
1773 if (env->log.level & BPF_LOG_LEVEL2)
1774 for (i = 0; i < env->subprog_cnt; i++)
1775 verbose(env, "func#%d @%d\n", i, subprog[i].start);
1776
1777 return 0;
1778}
1779
1780static int check_subprogs(struct bpf_verifier_env *env)
1781{
1782 int i, subprog_start, subprog_end, off, cur_subprog = 0;
1783 struct bpf_subprog_info *subprog = env->subprog_info;
1784 struct bpf_insn *insn = env->prog->insnsi;
1785 int insn_cnt = env->prog->len;
1786
1787 /* now check that all jumps are within the same subprog */
1788 subprog_start = subprog[cur_subprog].start;
1789 subprog_end = subprog[cur_subprog + 1].start;
1790 for (i = 0; i < insn_cnt; i++) {
1791 u8 code = insn[i].code;
1792
1793 if (code == (BPF_JMP | BPF_CALL) &&
1794 insn[i].imm == BPF_FUNC_tail_call &&
1795 insn[i].src_reg != BPF_PSEUDO_CALL)
1796 subprog[cur_subprog].has_tail_call = true;
1797 if (BPF_CLASS(code) == BPF_LD &&
1798 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1799 subprog[cur_subprog].has_ld_abs = true;
1800 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1801 goto next;
1802 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1803 goto next;
1804 off = i + insn[i].off + 1;
1805 if (off < subprog_start || off >= subprog_end) {
1806 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1807 return -EINVAL;
1808 }
1809next:
1810 if (i == subprog_end - 1) {
1811 /* to avoid fall-through from one subprog into another
1812 * the last insn of the subprog should be either exit
1813 * or unconditional jump back
1814 */
1815 if (code != (BPF_JMP | BPF_EXIT) &&
1816 code != (BPF_JMP | BPF_JA)) {
1817 verbose(env, "last insn is not an exit or jmp\n");
1818 return -EINVAL;
1819 }
1820 subprog_start = subprog_end;
1821 cur_subprog++;
1822 if (cur_subprog < env->subprog_cnt)
1823 subprog_end = subprog[cur_subprog + 1].start;
1824 }
1825 }
1826 return 0;
1827}
1828
1829/* Parentage chain of this register (or stack slot) should take care of all
1830 * issues like callee-saved registers, stack slot allocation time, etc.
1831 */
1832static int mark_reg_read(struct bpf_verifier_env *env,
1833 const struct bpf_reg_state *state,
1834 struct bpf_reg_state *parent, u8 flag)
1835{
1836 bool writes = parent == state->parent; /* Observe write marks */
1837 int cnt = 0;
1838
1839 while (parent) {
1840 /* if read wasn't screened by an earlier write ... */
1841 if (writes && state->live & REG_LIVE_WRITTEN)
1842 break;
1843 if (parent->live & REG_LIVE_DONE) {
1844 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1845 reg_type_str[parent->type],
1846 parent->var_off.value, parent->off);
1847 return -EFAULT;
1848 }
1849 /* The first condition is more likely to be true than the
1850 * second, checked it first.
1851 */
1852 if ((parent->live & REG_LIVE_READ) == flag ||
1853 parent->live & REG_LIVE_READ64)
1854 /* The parentage chain never changes and
1855 * this parent was already marked as LIVE_READ.
1856 * There is no need to keep walking the chain again and
1857 * keep re-marking all parents as LIVE_READ.
1858 * This case happens when the same register is read
1859 * multiple times without writes into it in-between.
1860 * Also, if parent has the stronger REG_LIVE_READ64 set,
1861 * then no need to set the weak REG_LIVE_READ32.
1862 */
1863 break;
1864 /* ... then we depend on parent's value */
1865 parent->live |= flag;
1866 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1867 if (flag == REG_LIVE_READ64)
1868 parent->live &= ~REG_LIVE_READ32;
1869 state = parent;
1870 parent = state->parent;
1871 writes = true;
1872 cnt++;
1873 }
1874
1875 if (env->longest_mark_read_walk < cnt)
1876 env->longest_mark_read_walk = cnt;
1877 return 0;
1878}
1879
1880/* This function is supposed to be used by the following 32-bit optimization
1881 * code only. It returns TRUE if the source or destination register operates
1882 * on 64-bit, otherwise return FALSE.
1883 */
1884static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1885 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1886{
1887 u8 code, class, op;
1888
1889 code = insn->code;
1890 class = BPF_CLASS(code);
1891 op = BPF_OP(code);
1892 if (class == BPF_JMP) {
1893 /* BPF_EXIT for "main" will reach here. Return TRUE
1894 * conservatively.
1895 */
1896 if (op == BPF_EXIT)
1897 return true;
1898 if (op == BPF_CALL) {
1899 /* BPF to BPF call will reach here because of marking
1900 * caller saved clobber with DST_OP_NO_MARK for which we
1901 * don't care the register def because they are anyway
1902 * marked as NOT_INIT already.
1903 */
1904 if (insn->src_reg == BPF_PSEUDO_CALL)
1905 return false;
1906 /* Helper call will reach here because of arg type
1907 * check, conservatively return TRUE.
1908 */
1909 if (t == SRC_OP)
1910 return true;
1911
1912 return false;
1913 }
1914 }
1915
1916 if (class == BPF_ALU64 || class == BPF_JMP ||
1917 /* BPF_END always use BPF_ALU class. */
1918 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1919 return true;
1920
1921 if (class == BPF_ALU || class == BPF_JMP32)
1922 return false;
1923
1924 if (class == BPF_LDX) {
1925 if (t != SRC_OP)
1926 return BPF_SIZE(code) == BPF_DW;
1927 /* LDX source must be ptr. */
1928 return true;
1929 }
1930
1931 if (class == BPF_STX) {
1932 /* BPF_STX (including atomic variants) has multiple source
1933 * operands, one of which is a ptr. Check whether the caller is
1934 * asking about it.
1935 */
1936 if (t == SRC_OP && reg->type != SCALAR_VALUE)
1937 return true;
1938 return BPF_SIZE(code) == BPF_DW;
1939 }
1940
1941 if (class == BPF_LD) {
1942 u8 mode = BPF_MODE(code);
1943
1944 /* LD_IMM64 */
1945 if (mode == BPF_IMM)
1946 return true;
1947
1948 /* Both LD_IND and LD_ABS return 32-bit data. */
1949 if (t != SRC_OP)
1950 return false;
1951
1952 /* Implicit ctx ptr. */
1953 if (regno == BPF_REG_6)
1954 return true;
1955
1956 /* Explicit source could be any width. */
1957 return true;
1958 }
1959
1960 if (class == BPF_ST)
1961 /* The only source register for BPF_ST is a ptr. */
1962 return true;
1963
1964 /* Conservatively return true at default. */
1965 return true;
1966}
1967
1968/* Return the regno defined by the insn, or -1. */
1969static int insn_def_regno(const struct bpf_insn *insn)
1970{
1971 switch (BPF_CLASS(insn->code)) {
1972 case BPF_JMP:
1973 case BPF_JMP32:
1974 case BPF_ST:
1975 return -1;
1976 case BPF_STX:
1977 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
1978 (insn->imm & BPF_FETCH)) {
1979 if (insn->imm == BPF_CMPXCHG)
1980 return BPF_REG_0;
1981 else
1982 return insn->src_reg;
1983 } else {
1984 return -1;
1985 }
1986 default:
1987 return insn->dst_reg;
1988 }
1989}
1990
1991/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1992static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1993{
1994 int dst_reg = insn_def_regno(insn);
1995
1996 if (dst_reg == -1)
1997 return false;
1998
1999 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2000}
2001
2002static void mark_insn_zext(struct bpf_verifier_env *env,
2003 struct bpf_reg_state *reg)
2004{
2005 s32 def_idx = reg->subreg_def;
2006
2007 if (def_idx == DEF_NOT_SUBREG)
2008 return;
2009
2010 env->insn_aux_data[def_idx - 1].zext_dst = true;
2011 /* The dst will be zero extended, so won't be sub-register anymore. */
2012 reg->subreg_def = DEF_NOT_SUBREG;
2013}
2014
2015static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2016 enum reg_arg_type t)
2017{
2018 struct bpf_verifier_state *vstate = env->cur_state;
2019 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2020 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2021 struct bpf_reg_state *reg, *regs = state->regs;
2022 bool rw64;
2023
2024 if (regno >= MAX_BPF_REG) {
2025 verbose(env, "R%d is invalid\n", regno);
2026 return -EINVAL;
2027 }
2028
2029 reg = ®s[regno];
2030 rw64 = is_reg64(env, insn, regno, reg, t);
2031 if (t == SRC_OP) {
2032 /* check whether register used as source operand can be read */
2033 if (reg->type == NOT_INIT) {
2034 verbose(env, "R%d !read_ok\n", regno);
2035 return -EACCES;
2036 }
2037 /* We don't need to worry about FP liveness because it's read-only */
2038 if (regno == BPF_REG_FP)
2039 return 0;
2040
2041 if (rw64)
2042 mark_insn_zext(env, reg);
2043
2044 return mark_reg_read(env, reg, reg->parent,
2045 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2046 } else {
2047 /* check whether register used as dest operand can be written to */
2048 if (regno == BPF_REG_FP) {
2049 verbose(env, "frame pointer is read only\n");
2050 return -EACCES;
2051 }
2052 reg->live |= REG_LIVE_WRITTEN;
2053 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2054 if (t == DST_OP)
2055 mark_reg_unknown(env, regs, regno);
2056 }
2057 return 0;
2058}
2059
2060/* for any branch, call, exit record the history of jmps in the given state */
2061static int push_jmp_history(struct bpf_verifier_env *env,
2062 struct bpf_verifier_state *cur)
2063{
2064 u32 cnt = cur->jmp_history_cnt;
2065 struct bpf_idx_pair *p;
2066
2067 cnt++;
2068 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2069 if (!p)
2070 return -ENOMEM;
2071 p[cnt - 1].idx = env->insn_idx;
2072 p[cnt - 1].prev_idx = env->prev_insn_idx;
2073 cur->jmp_history = p;
2074 cur->jmp_history_cnt = cnt;
2075 return 0;
2076}
2077
2078/* Backtrack one insn at a time. If idx is not at the top of recorded
2079 * history then previous instruction came from straight line execution.
2080 */
2081static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2082 u32 *history)
2083{
2084 u32 cnt = *history;
2085
2086 if (cnt && st->jmp_history[cnt - 1].idx == i) {
2087 i = st->jmp_history[cnt - 1].prev_idx;
2088 (*history)--;
2089 } else {
2090 i--;
2091 }
2092 return i;
2093}
2094
2095static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2096{
2097 const struct btf_type *func;
2098
2099 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2100 return NULL;
2101
2102 func = btf_type_by_id(btf_vmlinux, insn->imm);
2103 return btf_name_by_offset(btf_vmlinux, func->name_off);
2104}
2105
2106/* For given verifier state backtrack_insn() is called from the last insn to
2107 * the first insn. Its purpose is to compute a bitmask of registers and
2108 * stack slots that needs precision in the parent verifier state.
2109 */
2110static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2111 u32 *reg_mask, u64 *stack_mask)
2112{
2113 const struct bpf_insn_cbs cbs = {
2114 .cb_call = disasm_kfunc_name,
2115 .cb_print = verbose,
2116 .private_data = env,
2117 };
2118 struct bpf_insn *insn = env->prog->insnsi + idx;
2119 u8 class = BPF_CLASS(insn->code);
2120 u8 opcode = BPF_OP(insn->code);
2121 u8 mode = BPF_MODE(insn->code);
2122 u32 dreg = 1u << insn->dst_reg;
2123 u32 sreg = 1u << insn->src_reg;
2124 u32 spi;
2125
2126 if (insn->code == 0)
2127 return 0;
2128 if (env->log.level & BPF_LOG_LEVEL) {
2129 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2130 verbose(env, "%d: ", idx);
2131 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2132 }
2133
2134 if (class == BPF_ALU || class == BPF_ALU64) {
2135 if (!(*reg_mask & dreg))
2136 return 0;
2137 if (opcode == BPF_MOV) {
2138 if (BPF_SRC(insn->code) == BPF_X) {
2139 /* dreg = sreg
2140 * dreg needs precision after this insn
2141 * sreg needs precision before this insn
2142 */
2143 *reg_mask &= ~dreg;
2144 *reg_mask |= sreg;
2145 } else {
2146 /* dreg = K
2147 * dreg needs precision after this insn.
2148 * Corresponding register is already marked
2149 * as precise=true in this verifier state.
2150 * No further markings in parent are necessary
2151 */
2152 *reg_mask &= ~dreg;
2153 }
2154 } else {
2155 if (BPF_SRC(insn->code) == BPF_X) {
2156 /* dreg += sreg
2157 * both dreg and sreg need precision
2158 * before this insn
2159 */
2160 *reg_mask |= sreg;
2161 } /* else dreg += K
2162 * dreg still needs precision before this insn
2163 */
2164 }
2165 } else if (class == BPF_LDX) {
2166 if (!(*reg_mask & dreg))
2167 return 0;
2168 *reg_mask &= ~dreg;
2169
2170 /* scalars can only be spilled into stack w/o losing precision.
2171 * Load from any other memory can be zero extended.
2172 * The desire to keep that precision is already indicated
2173 * by 'precise' mark in corresponding register of this state.
2174 * No further tracking necessary.
2175 */
2176 if (insn->src_reg != BPF_REG_FP)
2177 return 0;
2178 if (BPF_SIZE(insn->code) != BPF_DW)
2179 return 0;
2180
2181 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
2182 * that [fp - off] slot contains scalar that needs to be
2183 * tracked with precision
2184 */
2185 spi = (-insn->off - 1) / BPF_REG_SIZE;
2186 if (spi >= 64) {
2187 verbose(env, "BUG spi %d\n", spi);
2188 WARN_ONCE(1, "verifier backtracking bug");
2189 return -EFAULT;
2190 }
2191 *stack_mask |= 1ull << spi;
2192 } else if (class == BPF_STX || class == BPF_ST) {
2193 if (*reg_mask & dreg)
2194 /* stx & st shouldn't be using _scalar_ dst_reg
2195 * to access memory. It means backtracking
2196 * encountered a case of pointer subtraction.
2197 */
2198 return -ENOTSUPP;
2199 /* scalars can only be spilled into stack */
2200 if (insn->dst_reg != BPF_REG_FP)
2201 return 0;
2202 if (BPF_SIZE(insn->code) != BPF_DW)
2203 return 0;
2204 spi = (-insn->off - 1) / BPF_REG_SIZE;
2205 if (spi >= 64) {
2206 verbose(env, "BUG spi %d\n", spi);
2207 WARN_ONCE(1, "verifier backtracking bug");
2208 return -EFAULT;
2209 }
2210 if (!(*stack_mask & (1ull << spi)))
2211 return 0;
2212 *stack_mask &= ~(1ull << spi);
2213 if (class == BPF_STX)
2214 *reg_mask |= sreg;
2215 } else if (class == BPF_JMP || class == BPF_JMP32) {
2216 if (opcode == BPF_CALL) {
2217 if (insn->src_reg == BPF_PSEUDO_CALL)
2218 return -ENOTSUPP;
2219 /* regular helper call sets R0 */
2220 *reg_mask &= ~1;
2221 if (*reg_mask & 0x3f) {
2222 /* if backtracing was looking for registers R1-R5
2223 * they should have been found already.
2224 */
2225 verbose(env, "BUG regs %x\n", *reg_mask);
2226 WARN_ONCE(1, "verifier backtracking bug");
2227 return -EFAULT;
2228 }
2229 } else if (opcode == BPF_EXIT) {
2230 return -ENOTSUPP;
2231 }
2232 } else if (class == BPF_LD) {
2233 if (!(*reg_mask & dreg))
2234 return 0;
2235 *reg_mask &= ~dreg;
2236 /* It's ld_imm64 or ld_abs or ld_ind.
2237 * For ld_imm64 no further tracking of precision
2238 * into parent is necessary
2239 */
2240 if (mode == BPF_IND || mode == BPF_ABS)
2241 /* to be analyzed */
2242 return -ENOTSUPP;
2243 }
2244 return 0;
2245}
2246
2247/* the scalar precision tracking algorithm:
2248 * . at the start all registers have precise=false.
2249 * . scalar ranges are tracked as normal through alu and jmp insns.
2250 * . once precise value of the scalar register is used in:
2251 * . ptr + scalar alu
2252 * . if (scalar cond K|scalar)
2253 * . helper_call(.., scalar, ...) where ARG_CONST is expected
2254 * backtrack through the verifier states and mark all registers and
2255 * stack slots with spilled constants that these scalar regisers
2256 * should be precise.
2257 * . during state pruning two registers (or spilled stack slots)
2258 * are equivalent if both are not precise.
2259 *
2260 * Note the verifier cannot simply walk register parentage chain,
2261 * since many different registers and stack slots could have been
2262 * used to compute single precise scalar.
2263 *
2264 * The approach of starting with precise=true for all registers and then
2265 * backtrack to mark a register as not precise when the verifier detects
2266 * that program doesn't care about specific value (e.g., when helper
2267 * takes register as ARG_ANYTHING parameter) is not safe.
2268 *
2269 * It's ok to walk single parentage chain of the verifier states.
2270 * It's possible that this backtracking will go all the way till 1st insn.
2271 * All other branches will be explored for needing precision later.
2272 *
2273 * The backtracking needs to deal with cases like:
2274 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2275 * r9 -= r8
2276 * r5 = r9
2277 * if r5 > 0x79f goto pc+7
2278 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2279 * r5 += 1
2280 * ...
2281 * call bpf_perf_event_output#25
2282 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2283 *
2284 * and this case:
2285 * r6 = 1
2286 * call foo // uses callee's r6 inside to compute r0
2287 * r0 += r6
2288 * if r0 == 0 goto
2289 *
2290 * to track above reg_mask/stack_mask needs to be independent for each frame.
2291 *
2292 * Also if parent's curframe > frame where backtracking started,
2293 * the verifier need to mark registers in both frames, otherwise callees
2294 * may incorrectly prune callers. This is similar to
2295 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2296 *
2297 * For now backtracking falls back into conservative marking.
2298 */
2299static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2300 struct bpf_verifier_state *st)
2301{
2302 struct bpf_func_state *func;
2303 struct bpf_reg_state *reg;
2304 int i, j;
2305
2306 /* big hammer: mark all scalars precise in this path.
2307 * pop_stack may still get !precise scalars.
2308 */
2309 for (; st; st = st->parent)
2310 for (i = 0; i <= st->curframe; i++) {
2311 func = st->frame[i];
2312 for (j = 0; j < BPF_REG_FP; j++) {
2313 reg = &func->regs[j];
2314 if (reg->type != SCALAR_VALUE)
2315 continue;
2316 reg->precise = true;
2317 }
2318 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2319 if (func->stack[j].slot_type[0] != STACK_SPILL)
2320 continue;
2321 reg = &func->stack[j].spilled_ptr;
2322 if (reg->type != SCALAR_VALUE)
2323 continue;
2324 reg->precise = true;
2325 }
2326 }
2327}
2328
2329static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2330 int spi)
2331{
2332 struct bpf_verifier_state *st = env->cur_state;
2333 int first_idx = st->first_insn_idx;
2334 int last_idx = env->insn_idx;
2335 struct bpf_func_state *func;
2336 struct bpf_reg_state *reg;
2337 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2338 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2339 bool skip_first = true;
2340 bool new_marks = false;
2341 int i, err;
2342
2343 if (!env->bpf_capable)
2344 return 0;
2345
2346 func = st->frame[st->curframe];
2347 if (regno >= 0) {
2348 reg = &func->regs[regno];
2349 if (reg->type != SCALAR_VALUE) {
2350 WARN_ONCE(1, "backtracing misuse");
2351 return -EFAULT;
2352 }
2353 if (!reg->precise)
2354 new_marks = true;
2355 else
2356 reg_mask = 0;
2357 reg->precise = true;
2358 }
2359
2360 while (spi >= 0) {
2361 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2362 stack_mask = 0;
2363 break;
2364 }
2365 reg = &func->stack[spi].spilled_ptr;
2366 if (reg->type != SCALAR_VALUE) {
2367 stack_mask = 0;
2368 break;
2369 }
2370 if (!reg->precise)
2371 new_marks = true;
2372 else
2373 stack_mask = 0;
2374 reg->precise = true;
2375 break;
2376 }
2377
2378 if (!new_marks)
2379 return 0;
2380 if (!reg_mask && !stack_mask)
2381 return 0;
2382 for (;;) {
2383 DECLARE_BITMAP(mask, 64);
2384 u32 history = st->jmp_history_cnt;
2385
2386 if (env->log.level & BPF_LOG_LEVEL)
2387 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2388 for (i = last_idx;;) {
2389 if (skip_first) {
2390 err = 0;
2391 skip_first = false;
2392 } else {
2393 err = backtrack_insn(env, i, ®_mask, &stack_mask);
2394 }
2395 if (err == -ENOTSUPP) {
2396 mark_all_scalars_precise(env, st);
2397 return 0;
2398 } else if (err) {
2399 return err;
2400 }
2401 if (!reg_mask && !stack_mask)
2402 /* Found assignment(s) into tracked register in this state.
2403 * Since this state is already marked, just return.
2404 * Nothing to be tracked further in the parent state.
2405 */
2406 return 0;
2407 if (i == first_idx)
2408 break;
2409 i = get_prev_insn_idx(st, i, &history);
2410 if (i >= env->prog->len) {
2411 /* This can happen if backtracking reached insn 0
2412 * and there are still reg_mask or stack_mask
2413 * to backtrack.
2414 * It means the backtracking missed the spot where
2415 * particular register was initialized with a constant.
2416 */
2417 verbose(env, "BUG backtracking idx %d\n", i);
2418 WARN_ONCE(1, "verifier backtracking bug");
2419 return -EFAULT;
2420 }
2421 }
2422 st = st->parent;
2423 if (!st)
2424 break;
2425
2426 new_marks = false;
2427 func = st->frame[st->curframe];
2428 bitmap_from_u64(mask, reg_mask);
2429 for_each_set_bit(i, mask, 32) {
2430 reg = &func->regs[i];
2431 if (reg->type != SCALAR_VALUE) {
2432 reg_mask &= ~(1u << i);
2433 continue;
2434 }
2435 if (!reg->precise)
2436 new_marks = true;
2437 reg->precise = true;
2438 }
2439
2440 bitmap_from_u64(mask, stack_mask);
2441 for_each_set_bit(i, mask, 64) {
2442 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2443 /* the sequence of instructions:
2444 * 2: (bf) r3 = r10
2445 * 3: (7b) *(u64 *)(r3 -8) = r0
2446 * 4: (79) r4 = *(u64 *)(r10 -8)
2447 * doesn't contain jmps. It's backtracked
2448 * as a single block.
2449 * During backtracking insn 3 is not recognized as
2450 * stack access, so at the end of backtracking
2451 * stack slot fp-8 is still marked in stack_mask.
2452 * However the parent state may not have accessed
2453 * fp-8 and it's "unallocated" stack space.
2454 * In such case fallback to conservative.
2455 */
2456 mark_all_scalars_precise(env, st);
2457 return 0;
2458 }
2459
2460 if (func->stack[i].slot_type[0] != STACK_SPILL) {
2461 stack_mask &= ~(1ull << i);
2462 continue;
2463 }
2464 reg = &func->stack[i].spilled_ptr;
2465 if (reg->type != SCALAR_VALUE) {
2466 stack_mask &= ~(1ull << i);
2467 continue;
2468 }
2469 if (!reg->precise)
2470 new_marks = true;
2471 reg->precise = true;
2472 }
2473 if (env->log.level & BPF_LOG_LEVEL) {
2474 print_verifier_state(env, func);
2475 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2476 new_marks ? "didn't have" : "already had",
2477 reg_mask, stack_mask);
2478 }
2479
2480 if (!reg_mask && !stack_mask)
2481 break;
2482 if (!new_marks)
2483 break;
2484
2485 last_idx = st->last_insn_idx;
2486 first_idx = st->first_insn_idx;
2487 }
2488 return 0;
2489}
2490
2491static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2492{
2493 return __mark_chain_precision(env, regno, -1);
2494}
2495
2496static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2497{
2498 return __mark_chain_precision(env, -1, spi);
2499}
2500
2501static bool is_spillable_regtype(enum bpf_reg_type type)
2502{
2503 switch (type) {
2504 case PTR_TO_MAP_VALUE:
2505 case PTR_TO_MAP_VALUE_OR_NULL:
2506 case PTR_TO_STACK:
2507 case PTR_TO_CTX:
2508 case PTR_TO_PACKET:
2509 case PTR_TO_PACKET_META:
2510 case PTR_TO_PACKET_END:
2511 case PTR_TO_FLOW_KEYS:
2512 case CONST_PTR_TO_MAP:
2513 case PTR_TO_SOCKET:
2514 case PTR_TO_SOCKET_OR_NULL:
2515 case PTR_TO_SOCK_COMMON:
2516 case PTR_TO_SOCK_COMMON_OR_NULL:
2517 case PTR_TO_TCP_SOCK:
2518 case PTR_TO_TCP_SOCK_OR_NULL:
2519 case PTR_TO_XDP_SOCK:
2520 case PTR_TO_BTF_ID:
2521 case PTR_TO_BTF_ID_OR_NULL:
2522 case PTR_TO_RDONLY_BUF:
2523 case PTR_TO_RDONLY_BUF_OR_NULL:
2524 case PTR_TO_RDWR_BUF:
2525 case PTR_TO_RDWR_BUF_OR_NULL:
2526 case PTR_TO_PERCPU_BTF_ID:
2527 case PTR_TO_MEM:
2528 case PTR_TO_MEM_OR_NULL:
2529 case PTR_TO_FUNC:
2530 case PTR_TO_MAP_KEY:
2531 return true;
2532 default:
2533 return false;
2534 }
2535}
2536
2537/* Does this register contain a constant zero? */
2538static bool register_is_null(struct bpf_reg_state *reg)
2539{
2540 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2541}
2542
2543static bool register_is_const(struct bpf_reg_state *reg)
2544{
2545 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2546}
2547
2548static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2549{
2550 return tnum_is_unknown(reg->var_off) &&
2551 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2552 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2553 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2554 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2555}
2556
2557static bool register_is_bounded(struct bpf_reg_state *reg)
2558{
2559 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2560}
2561
2562static bool __is_pointer_value(bool allow_ptr_leaks,
2563 const struct bpf_reg_state *reg)
2564{
2565 if (allow_ptr_leaks)
2566 return false;
2567
2568 return reg->type != SCALAR_VALUE;
2569}
2570
2571static void save_register_state(struct bpf_func_state *state,
2572 int spi, struct bpf_reg_state *reg)
2573{
2574 int i;
2575
2576 state->stack[spi].spilled_ptr = *reg;
2577 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2578
2579 for (i = 0; i < BPF_REG_SIZE; i++)
2580 state->stack[spi].slot_type[i] = STACK_SPILL;
2581}
2582
2583/* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2584 * stack boundary and alignment are checked in check_mem_access()
2585 */
2586static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2587 /* stack frame we're writing to */
2588 struct bpf_func_state *state,
2589 int off, int size, int value_regno,
2590 int insn_idx)
2591{
2592 struct bpf_func_state *cur; /* state of the current function */
2593 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2594 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2595 struct bpf_reg_state *reg = NULL;
2596
2597 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
2598 if (err)
2599 return err;
2600 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2601 * so it's aligned access and [off, off + size) are within stack limits
2602 */
2603 if (!env->allow_ptr_leaks &&
2604 state->stack[spi].slot_type[0] == STACK_SPILL &&
2605 size != BPF_REG_SIZE) {
2606 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2607 return -EACCES;
2608 }
2609
2610 cur = env->cur_state->frame[env->cur_state->curframe];
2611 if (value_regno >= 0)
2612 reg = &cur->regs[value_regno];
2613 if (!env->bypass_spec_v4) {
2614 bool sanitize = reg && is_spillable_regtype(reg->type);
2615
2616 for (i = 0; i < size; i++) {
2617 if (state->stack[spi].slot_type[i] == STACK_INVALID) {
2618 sanitize = true;
2619 break;
2620 }
2621 }
2622
2623 if (sanitize)
2624 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2625 }
2626
2627 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2628 !register_is_null(reg) && env->bpf_capable) {
2629 if (dst_reg != BPF_REG_FP) {
2630 /* The backtracking logic can only recognize explicit
2631 * stack slot address like [fp - 8]. Other spill of
2632 * scalar via different register has to be conservative.
2633 * Backtrack from here and mark all registers as precise
2634 * that contributed into 'reg' being a constant.
2635 */
2636 err = mark_chain_precision(env, value_regno);
2637 if (err)
2638 return err;
2639 }
2640 save_register_state(state, spi, reg);
2641 } else if (reg && is_spillable_regtype(reg->type)) {
2642 /* register containing pointer is being spilled into stack */
2643 if (size != BPF_REG_SIZE) {
2644 verbose_linfo(env, insn_idx, "; ");
2645 verbose(env, "invalid size of register spill\n");
2646 return -EACCES;
2647 }
2648 if (state != cur && reg->type == PTR_TO_STACK) {
2649 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2650 return -EINVAL;
2651 }
2652 save_register_state(state, spi, reg);
2653 } else {
2654 u8 type = STACK_MISC;
2655
2656 /* regular write of data into stack destroys any spilled ptr */
2657 state->stack[spi].spilled_ptr.type = NOT_INIT;
2658 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2659 if (state->stack[spi].slot_type[0] == STACK_SPILL)
2660 for (i = 0; i < BPF_REG_SIZE; i++)
2661 state->stack[spi].slot_type[i] = STACK_MISC;
2662
2663 /* only mark the slot as written if all 8 bytes were written
2664 * otherwise read propagation may incorrectly stop too soon
2665 * when stack slots are partially written.
2666 * This heuristic means that read propagation will be
2667 * conservative, since it will add reg_live_read marks
2668 * to stack slots all the way to first state when programs
2669 * writes+reads less than 8 bytes
2670 */
2671 if (size == BPF_REG_SIZE)
2672 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2673
2674 /* when we zero initialize stack slots mark them as such */
2675 if (reg && register_is_null(reg)) {
2676 /* backtracking doesn't work for STACK_ZERO yet. */
2677 err = mark_chain_precision(env, value_regno);
2678 if (err)
2679 return err;
2680 type = STACK_ZERO;
2681 }
2682
2683 /* Mark slots affected by this stack write. */
2684 for (i = 0; i < size; i++)
2685 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2686 type;
2687 }
2688 return 0;
2689}
2690
2691/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2692 * known to contain a variable offset.
2693 * This function checks whether the write is permitted and conservatively
2694 * tracks the effects of the write, considering that each stack slot in the
2695 * dynamic range is potentially written to.
2696 *
2697 * 'off' includes 'regno->off'.
2698 * 'value_regno' can be -1, meaning that an unknown value is being written to
2699 * the stack.
2700 *
2701 * Spilled pointers in range are not marked as written because we don't know
2702 * what's going to be actually written. This means that read propagation for
2703 * future reads cannot be terminated by this write.
2704 *
2705 * For privileged programs, uninitialized stack slots are considered
2706 * initialized by this write (even though we don't know exactly what offsets
2707 * are going to be written to). The idea is that we don't want the verifier to
2708 * reject future reads that access slots written to through variable offsets.
2709 */
2710static int check_stack_write_var_off(struct bpf_verifier_env *env,
2711 /* func where register points to */
2712 struct bpf_func_state *state,
2713 int ptr_regno, int off, int size,
2714 int value_regno, int insn_idx)
2715{
2716 struct bpf_func_state *cur; /* state of the current function */
2717 int min_off, max_off;
2718 int i, err;
2719 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2720 bool writing_zero = false;
2721 /* set if the fact that we're writing a zero is used to let any
2722 * stack slots remain STACK_ZERO
2723 */
2724 bool zero_used = false;
2725
2726 cur = env->cur_state->frame[env->cur_state->curframe];
2727 ptr_reg = &cur->regs[ptr_regno];
2728 min_off = ptr_reg->smin_value + off;
2729 max_off = ptr_reg->smax_value + off + size;
2730 if (value_regno >= 0)
2731 value_reg = &cur->regs[value_regno];
2732 if (value_reg && register_is_null(value_reg))
2733 writing_zero = true;
2734
2735 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
2736 if (err)
2737 return err;
2738
2739
2740 /* Variable offset writes destroy any spilled pointers in range. */
2741 for (i = min_off; i < max_off; i++) {
2742 u8 new_type, *stype;
2743 int slot, spi;
2744
2745 slot = -i - 1;
2746 spi = slot / BPF_REG_SIZE;
2747 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2748
2749 if (!env->allow_ptr_leaks
2750 && *stype != NOT_INIT
2751 && *stype != SCALAR_VALUE) {
2752 /* Reject the write if there's are spilled pointers in
2753 * range. If we didn't reject here, the ptr status
2754 * would be erased below (even though not all slots are
2755 * actually overwritten), possibly opening the door to
2756 * leaks.
2757 */
2758 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2759 insn_idx, i);
2760 return -EINVAL;
2761 }
2762
2763 /* Erase all spilled pointers. */
2764 state->stack[spi].spilled_ptr.type = NOT_INIT;
2765
2766 /* Update the slot type. */
2767 new_type = STACK_MISC;
2768 if (writing_zero && *stype == STACK_ZERO) {
2769 new_type = STACK_ZERO;
2770 zero_used = true;
2771 }
2772 /* If the slot is STACK_INVALID, we check whether it's OK to
2773 * pretend that it will be initialized by this write. The slot
2774 * might not actually be written to, and so if we mark it as
2775 * initialized future reads might leak uninitialized memory.
2776 * For privileged programs, we will accept such reads to slots
2777 * that may or may not be written because, if we're reject
2778 * them, the error would be too confusing.
2779 */
2780 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2781 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2782 insn_idx, i);
2783 return -EINVAL;
2784 }
2785 *stype = new_type;
2786 }
2787 if (zero_used) {
2788 /* backtracking doesn't work for STACK_ZERO yet. */
2789 err = mark_chain_precision(env, value_regno);
2790 if (err)
2791 return err;
2792 }
2793 return 0;
2794}
2795
2796/* When register 'dst_regno' is assigned some values from stack[min_off,
2797 * max_off), we set the register's type according to the types of the
2798 * respective stack slots. If all the stack values are known to be zeros, then
2799 * so is the destination reg. Otherwise, the register is considered to be
2800 * SCALAR. This function does not deal with register filling; the caller must
2801 * ensure that all spilled registers in the stack range have been marked as
2802 * read.
2803 */
2804static void mark_reg_stack_read(struct bpf_verifier_env *env,
2805 /* func where src register points to */
2806 struct bpf_func_state *ptr_state,
2807 int min_off, int max_off, int dst_regno)
2808{
2809 struct bpf_verifier_state *vstate = env->cur_state;
2810 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2811 int i, slot, spi;
2812 u8 *stype;
2813 int zeros = 0;
2814
2815 for (i = min_off; i < max_off; i++) {
2816 slot = -i - 1;
2817 spi = slot / BPF_REG_SIZE;
2818 stype = ptr_state->stack[spi].slot_type;
2819 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2820 break;
2821 zeros++;
2822 }
2823 if (zeros == max_off - min_off) {
2824 /* any access_size read into register is zero extended,
2825 * so the whole register == const_zero
2826 */
2827 __mark_reg_const_zero(&state->regs[dst_regno]);
2828 /* backtracking doesn't support STACK_ZERO yet,
2829 * so mark it precise here, so that later
2830 * backtracking can stop here.
2831 * Backtracking may not need this if this register
2832 * doesn't participate in pointer adjustment.
2833 * Forward propagation of precise flag is not
2834 * necessary either. This mark is only to stop
2835 * backtracking. Any register that contributed
2836 * to const 0 was marked precise before spill.
2837 */
2838 state->regs[dst_regno].precise = true;
2839 } else {
2840 /* have read misc data from the stack */
2841 mark_reg_unknown(env, state->regs, dst_regno);
2842 }
2843 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2844}
2845
2846/* Read the stack at 'off' and put the results into the register indicated by
2847 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2848 * spilled reg.
2849 *
2850 * 'dst_regno' can be -1, meaning that the read value is not going to a
2851 * register.
2852 *
2853 * The access is assumed to be within the current stack bounds.
2854 */
2855static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2856 /* func where src register points to */
2857 struct bpf_func_state *reg_state,
2858 int off, int size, int dst_regno)
2859{
2860 struct bpf_verifier_state *vstate = env->cur_state;
2861 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2862 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2863 struct bpf_reg_state *reg;
2864 u8 *stype;
2865
2866 stype = reg_state->stack[spi].slot_type;
2867 reg = ®_state->stack[spi].spilled_ptr;
2868
2869 if (stype[0] == STACK_SPILL) {
2870 if (size != BPF_REG_SIZE) {
2871 if (reg->type != SCALAR_VALUE) {
2872 verbose_linfo(env, env->insn_idx, "; ");
2873 verbose(env, "invalid size of register fill\n");
2874 return -EACCES;
2875 }
2876 if (dst_regno >= 0) {
2877 mark_reg_unknown(env, state->regs, dst_regno);
2878 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2879 }
2880 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2881 return 0;
2882 }
2883 for (i = 1; i < BPF_REG_SIZE; i++) {
2884 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2885 verbose(env, "corrupted spill memory\n");
2886 return -EACCES;
2887 }
2888 }
2889
2890 if (dst_regno >= 0) {
2891 /* restore register state from stack */
2892 state->regs[dst_regno] = *reg;
2893 /* mark reg as written since spilled pointer state likely
2894 * has its liveness marks cleared by is_state_visited()
2895 * which resets stack/reg liveness for state transitions
2896 */
2897 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2898 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2899 /* If dst_regno==-1, the caller is asking us whether
2900 * it is acceptable to use this value as a SCALAR_VALUE
2901 * (e.g. for XADD).
2902 * We must not allow unprivileged callers to do that
2903 * with spilled pointers.
2904 */
2905 verbose(env, "leaking pointer from stack off %d\n",
2906 off);
2907 return -EACCES;
2908 }
2909 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2910 } else {
2911 u8 type;
2912
2913 for (i = 0; i < size; i++) {
2914 type = stype[(slot - i) % BPF_REG_SIZE];
2915 if (type == STACK_MISC)
2916 continue;
2917 if (type == STACK_ZERO)
2918 continue;
2919 verbose(env, "invalid read from stack off %d+%d size %d\n",
2920 off, i, size);
2921 return -EACCES;
2922 }
2923 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2924 if (dst_regno >= 0)
2925 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
2926 }
2927 return 0;
2928}
2929
2930enum stack_access_src {
2931 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
2932 ACCESS_HELPER = 2, /* the access is performed by a helper */
2933};
2934
2935static int check_stack_range_initialized(struct bpf_verifier_env *env,
2936 int regno, int off, int access_size,
2937 bool zero_size_allowed,
2938 enum stack_access_src type,
2939 struct bpf_call_arg_meta *meta);
2940
2941static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2942{
2943 return cur_regs(env) + regno;
2944}
2945
2946/* Read the stack at 'ptr_regno + off' and put the result into the register
2947 * 'dst_regno'.
2948 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2949 * but not its variable offset.
2950 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2951 *
2952 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2953 * filling registers (i.e. reads of spilled register cannot be detected when
2954 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2955 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2956 * offset; for a fixed offset check_stack_read_fixed_off should be used
2957 * instead.
2958 */
2959static int check_stack_read_var_off(struct bpf_verifier_env *env,
2960 int ptr_regno, int off, int size, int dst_regno)
2961{
2962 /* The state of the source register. */
2963 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2964 struct bpf_func_state *ptr_state = func(env, reg);
2965 int err;
2966 int min_off, max_off;
2967
2968 /* Note that we pass a NULL meta, so raw access will not be permitted.
2969 */
2970 err = check_stack_range_initialized(env, ptr_regno, off, size,
2971 false, ACCESS_DIRECT, NULL);
2972 if (err)
2973 return err;
2974
2975 min_off = reg->smin_value + off;
2976 max_off = reg->smax_value + off;
2977 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
2978 return 0;
2979}
2980
2981/* check_stack_read dispatches to check_stack_read_fixed_off or
2982 * check_stack_read_var_off.
2983 *
2984 * The caller must ensure that the offset falls within the allocated stack
2985 * bounds.
2986 *
2987 * 'dst_regno' is a register which will receive the value from the stack. It
2988 * can be -1, meaning that the read value is not going to a register.
2989 */
2990static int check_stack_read(struct bpf_verifier_env *env,
2991 int ptr_regno, int off, int size,
2992 int dst_regno)
2993{
2994 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2995 struct bpf_func_state *state = func(env, reg);
2996 int err;
2997 /* Some accesses are only permitted with a static offset. */
2998 bool var_off = !tnum_is_const(reg->var_off);
2999
3000 /* The offset is required to be static when reads don't go to a
3001 * register, in order to not leak pointers (see
3002 * check_stack_read_fixed_off).
3003 */
3004 if (dst_regno < 0 && var_off) {
3005 char tn_buf[48];
3006
3007 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3008 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3009 tn_buf, off, size);
3010 return -EACCES;
3011 }
3012 /* Variable offset is prohibited for unprivileged mode for simplicity
3013 * since it requires corresponding support in Spectre masking for stack
3014 * ALU. See also retrieve_ptr_limit().
3015 */
3016 if (!env->bypass_spec_v1 && var_off) {
3017 char tn_buf[48];
3018
3019 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3020 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3021 ptr_regno, tn_buf);
3022 return -EACCES;
3023 }
3024
3025 if (!var_off) {
3026 off += reg->var_off.value;
3027 err = check_stack_read_fixed_off(env, state, off, size,
3028 dst_regno);
3029 } else {
3030 /* Variable offset stack reads need more conservative handling
3031 * than fixed offset ones. Note that dst_regno >= 0 on this
3032 * branch.
3033 */
3034 err = check_stack_read_var_off(env, ptr_regno, off, size,
3035 dst_regno);
3036 }
3037 return err;
3038}
3039
3040
3041/* check_stack_write dispatches to check_stack_write_fixed_off or
3042 * check_stack_write_var_off.
3043 *
3044 * 'ptr_regno' is the register used as a pointer into the stack.
3045 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3046 * 'value_regno' is the register whose value we're writing to the stack. It can
3047 * be -1, meaning that we're not writing from a register.
3048 *
3049 * The caller must ensure that the offset falls within the maximum stack size.
3050 */
3051static int check_stack_write(struct bpf_verifier_env *env,
3052 int ptr_regno, int off, int size,
3053 int value_regno, int insn_idx)
3054{
3055 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3056 struct bpf_func_state *state = func(env, reg);
3057 int err;
3058
3059 if (tnum_is_const(reg->var_off)) {
3060 off += reg->var_off.value;
3061 err = check_stack_write_fixed_off(env, state, off, size,
3062 value_regno, insn_idx);
3063 } else {
3064 /* Variable offset stack reads need more conservative handling
3065 * than fixed offset ones.
3066 */
3067 err = check_stack_write_var_off(env, state,
3068 ptr_regno, off, size,
3069 value_regno, insn_idx);
3070 }
3071 return err;
3072}
3073
3074static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3075 int off, int size, enum bpf_access_type type)
3076{
3077 struct bpf_reg_state *regs = cur_regs(env);
3078 struct bpf_map *map = regs[regno].map_ptr;
3079 u32 cap = bpf_map_flags_to_cap(map);
3080
3081 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3082 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3083 map->value_size, off, size);
3084 return -EACCES;
3085 }
3086
3087 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3088 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3089 map->value_size, off, size);
3090 return -EACCES;
3091 }
3092
3093 return 0;
3094}
3095
3096/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3097static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3098 int off, int size, u32 mem_size,
3099 bool zero_size_allowed)
3100{
3101 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3102 struct bpf_reg_state *reg;
3103
3104 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3105 return 0;
3106
3107 reg = &cur_regs(env)[regno];
3108 switch (reg->type) {
3109 case PTR_TO_MAP_KEY:
3110 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3111 mem_size, off, size);
3112 break;
3113 case PTR_TO_MAP_VALUE:
3114 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3115 mem_size, off, size);
3116 break;
3117 case PTR_TO_PACKET:
3118 case PTR_TO_PACKET_META:
3119 case PTR_TO_PACKET_END:
3120 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3121 off, size, regno, reg->id, off, mem_size);
3122 break;
3123 case PTR_TO_MEM:
3124 default:
3125 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3126 mem_size, off, size);
3127 }
3128
3129 return -EACCES;
3130}
3131
3132/* check read/write into a memory region with possible variable offset */
3133static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3134 int off, int size, u32 mem_size,
3135 bool zero_size_allowed)
3136{
3137 struct bpf_verifier_state *vstate = env->cur_state;
3138 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3139 struct bpf_reg_state *reg = &state->regs[regno];
3140 int err;
3141
3142 /* We may have adjusted the register pointing to memory region, so we
3143 * need to try adding each of min_value and max_value to off
3144 * to make sure our theoretical access will be safe.
3145 */
3146 if (env->log.level & BPF_LOG_LEVEL)
3147 print_verifier_state(env, state);
3148
3149 /* The minimum value is only important with signed
3150 * comparisons where we can't assume the floor of a
3151 * value is 0. If we are using signed variables for our
3152 * index'es we need to make sure that whatever we use
3153 * will have a set floor within our range.
3154 */
3155 if (reg->smin_value < 0 &&
3156 (reg->smin_value == S64_MIN ||
3157 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3158 reg->smin_value + off < 0)) {
3159 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3160 regno);
3161 return -EACCES;
3162 }
3163 err = __check_mem_access(env, regno, reg->smin_value + off, size,
3164 mem_size, zero_size_allowed);
3165 if (err) {
3166 verbose(env, "R%d min value is outside of the allowed memory range\n",
3167 regno);
3168 return err;
3169 }
3170
3171 /* If we haven't set a max value then we need to bail since we can't be
3172 * sure we won't do bad things.
3173 * If reg->umax_value + off could overflow, treat that as unbounded too.
3174 */
3175 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3176 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3177 regno);
3178 return -EACCES;
3179 }
3180 err = __check_mem_access(env, regno, reg->umax_value + off, size,
3181 mem_size, zero_size_allowed);
3182 if (err) {
3183 verbose(env, "R%d max value is outside of the allowed memory range\n",
3184 regno);
3185 return err;
3186 }
3187
3188 return 0;
3189}
3190
3191/* check read/write into a map element with possible variable offset */
3192static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3193 int off, int size, bool zero_size_allowed)
3194{
3195 struct bpf_verifier_state *vstate = env->cur_state;
3196 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3197 struct bpf_reg_state *reg = &state->regs[regno];
3198 struct bpf_map *map = reg->map_ptr;
3199 int err;
3200
3201 err = check_mem_region_access(env, regno, off, size, map->value_size,
3202 zero_size_allowed);
3203 if (err)
3204 return err;
3205
3206 if (map_value_has_spin_lock(map)) {
3207 u32 lock = map->spin_lock_off;
3208
3209 /* if any part of struct bpf_spin_lock can be touched by
3210 * load/store reject this program.
3211 * To check that [x1, x2) overlaps with [y1, y2)
3212 * it is sufficient to check x1 < y2 && y1 < x2.
3213 */
3214 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3215 lock < reg->umax_value + off + size) {
3216 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3217 return -EACCES;
3218 }
3219 }
3220 return err;
3221}
3222
3223#define MAX_PACKET_OFF 0xffff
3224
3225static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3226{
3227 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3228}
3229
3230static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3231 const struct bpf_call_arg_meta *meta,
3232 enum bpf_access_type t)
3233{
3234 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3235
3236 switch (prog_type) {
3237 /* Program types only with direct read access go here! */
3238 case BPF_PROG_TYPE_LWT_IN:
3239 case BPF_PROG_TYPE_LWT_OUT:
3240 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3241 case BPF_PROG_TYPE_SK_REUSEPORT:
3242 case BPF_PROG_TYPE_FLOW_DISSECTOR:
3243 case BPF_PROG_TYPE_CGROUP_SKB:
3244 if (t == BPF_WRITE)
3245 return false;
3246 fallthrough;
3247
3248 /* Program types with direct read + write access go here! */
3249 case BPF_PROG_TYPE_SCHED_CLS:
3250 case BPF_PROG_TYPE_SCHED_ACT:
3251 case BPF_PROG_TYPE_XDP:
3252 case BPF_PROG_TYPE_LWT_XMIT:
3253 case BPF_PROG_TYPE_SK_SKB:
3254 case BPF_PROG_TYPE_SK_MSG:
3255 if (meta)
3256 return meta->pkt_access;
3257
3258 env->seen_direct_write = true;
3259 return true;
3260
3261 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3262 if (t == BPF_WRITE)
3263 env->seen_direct_write = true;
3264
3265 return true;
3266
3267 default:
3268 return false;
3269 }
3270}
3271
3272static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3273 int size, bool zero_size_allowed)
3274{
3275 struct bpf_reg_state *regs = cur_regs(env);
3276 struct bpf_reg_state *reg = ®s[regno];
3277 int err;
3278
3279 /* We may have added a variable offset to the packet pointer; but any
3280 * reg->range we have comes after that. We are only checking the fixed
3281 * offset.
3282 */
3283
3284 /* We don't allow negative numbers, because we aren't tracking enough
3285 * detail to prove they're safe.
3286 */
3287 if (reg->smin_value < 0) {
3288 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3289 regno);
3290 return -EACCES;
3291 }
3292
3293 err = reg->range < 0 ? -EINVAL :
3294 __check_mem_access(env, regno, off, size, reg->range,
3295 zero_size_allowed);
3296 if (err) {
3297 verbose(env, "R%d offset is outside of the packet\n", regno);
3298 return err;
3299 }
3300
3301 /* __check_mem_access has made sure "off + size - 1" is within u16.
3302 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3303 * otherwise find_good_pkt_pointers would have refused to set range info
3304 * that __check_mem_access would have rejected this pkt access.
3305 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3306 */
3307 env->prog->aux->max_pkt_offset =
3308 max_t(u32, env->prog->aux->max_pkt_offset,
3309 off + reg->umax_value + size - 1);
3310
3311 return err;
3312}
3313
3314/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
3315static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3316 enum bpf_access_type t, enum bpf_reg_type *reg_type,
3317 struct btf **btf, u32 *btf_id)
3318{
3319 struct bpf_insn_access_aux info = {
3320 .reg_type = *reg_type,
3321 .log = &env->log,
3322 };
3323
3324 if (env->ops->is_valid_access &&
3325 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3326 /* A non zero info.ctx_field_size indicates that this field is a
3327 * candidate for later verifier transformation to load the whole
3328 * field and then apply a mask when accessed with a narrower
3329 * access than actual ctx access size. A zero info.ctx_field_size
3330 * will only allow for whole field access and rejects any other
3331 * type of narrower access.
3332 */
3333 *reg_type = info.reg_type;
3334
3335 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3336 *btf = info.btf;
3337 *btf_id = info.btf_id;
3338 } else {
3339 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3340 }
3341 /* remember the offset of last byte accessed in ctx */
3342 if (env->prog->aux->max_ctx_offset < off + size)
3343 env->prog->aux->max_ctx_offset = off + size;
3344 return 0;
3345 }
3346
3347 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3348 return -EACCES;
3349}
3350
3351static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3352 int size)
3353{
3354 if (size < 0 || off < 0 ||
3355 (u64)off + size > sizeof(struct bpf_flow_keys)) {
3356 verbose(env, "invalid access to flow keys off=%d size=%d\n",
3357 off, size);
3358 return -EACCES;
3359 }
3360 return 0;
3361}
3362
3363static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3364 u32 regno, int off, int size,
3365 enum bpf_access_type t)
3366{
3367 struct bpf_reg_state *regs = cur_regs(env);
3368 struct bpf_reg_state *reg = ®s[regno];
3369 struct bpf_insn_access_aux info = {};
3370 bool valid;
3371
3372 if (reg->smin_value < 0) {
3373 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3374 regno);
3375 return -EACCES;
3376 }
3377
3378 switch (reg->type) {
3379 case PTR_TO_SOCK_COMMON:
3380 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3381 break;
3382 case PTR_TO_SOCKET:
3383 valid = bpf_sock_is_valid_access(off, size, t, &info);
3384 break;
3385 case PTR_TO_TCP_SOCK:
3386 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3387 break;
3388 case PTR_TO_XDP_SOCK:
3389 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3390 break;
3391 default:
3392 valid = false;
3393 }
3394
3395
3396 if (valid) {
3397 env->insn_aux_data[insn_idx].ctx_field_size =
3398 info.ctx_field_size;
3399 return 0;
3400 }
3401
3402 verbose(env, "R%d invalid %s access off=%d size=%d\n",
3403 regno, reg_type_str[reg->type], off, size);
3404
3405 return -EACCES;
3406}
3407
3408static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3409{
3410 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3411}
3412
3413static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3414{
3415 const struct bpf_reg_state *reg = reg_state(env, regno);
3416
3417 return reg->type == PTR_TO_CTX;
3418}
3419
3420static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3421{
3422 const struct bpf_reg_state *reg = reg_state(env, regno);
3423
3424 return type_is_sk_pointer(reg->type);
3425}
3426
3427static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3428{
3429 const struct bpf_reg_state *reg = reg_state(env, regno);
3430
3431 return type_is_pkt_pointer(reg->type);
3432}
3433
3434static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3435{
3436 const struct bpf_reg_state *reg = reg_state(env, regno);
3437
3438 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3439 return reg->type == PTR_TO_FLOW_KEYS;
3440}
3441
3442static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3443 const struct bpf_reg_state *reg,
3444 int off, int size, bool strict)
3445{
3446 struct tnum reg_off;
3447 int ip_align;
3448
3449 /* Byte size accesses are always allowed. */
3450 if (!strict || size == 1)
3451 return 0;
3452
3453 /* For platforms that do not have a Kconfig enabling
3454 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3455 * NET_IP_ALIGN is universally set to '2'. And on platforms
3456 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3457 * to this code only in strict mode where we want to emulate
3458 * the NET_IP_ALIGN==2 checking. Therefore use an
3459 * unconditional IP align value of '2'.
3460 */
3461 ip_align = 2;
3462
3463 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3464 if (!tnum_is_aligned(reg_off, size)) {
3465 char tn_buf[48];
3466
3467 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3468 verbose(env,
3469 "misaligned packet access off %d+%s+%d+%d size %d\n",
3470 ip_align, tn_buf, reg->off, off, size);
3471 return -EACCES;
3472 }
3473
3474 return 0;
3475}
3476
3477static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3478 const struct bpf_reg_state *reg,
3479 const char *pointer_desc,
3480 int off, int size, bool strict)
3481{
3482 struct tnum reg_off;
3483
3484 /* Byte size accesses are always allowed. */
3485 if (!strict || size == 1)
3486 return 0;
3487
3488 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3489 if (!tnum_is_aligned(reg_off, size)) {
3490 char tn_buf[48];
3491
3492 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3493 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3494 pointer_desc, tn_buf, reg->off, off, size);
3495 return -EACCES;
3496 }
3497
3498 return 0;
3499}
3500
3501static int check_ptr_alignment(struct bpf_verifier_env *env,
3502 const struct bpf_reg_state *reg, int off,
3503 int size, bool strict_alignment_once)
3504{
3505 bool strict = env->strict_alignment || strict_alignment_once;
3506 const char *pointer_desc = "";
3507
3508 switch (reg->type) {
3509 case PTR_TO_PACKET:
3510 case PTR_TO_PACKET_META:
3511 /* Special case, because of NET_IP_ALIGN. Given metadata sits
3512 * right in front, treat it the very same way.
3513 */
3514 return check_pkt_ptr_alignment(env, reg, off, size, strict);
3515 case PTR_TO_FLOW_KEYS:
3516 pointer_desc = "flow keys ";
3517 break;
3518 case PTR_TO_MAP_KEY:
3519 pointer_desc = "key ";
3520 break;
3521 case PTR_TO_MAP_VALUE:
3522 pointer_desc = "value ";
3523 break;
3524 case PTR_TO_CTX:
3525 pointer_desc = "context ";
3526 break;
3527 case PTR_TO_STACK:
3528 pointer_desc = "stack ";
3529 /* The stack spill tracking logic in check_stack_write_fixed_off()
3530 * and check_stack_read_fixed_off() relies on stack accesses being
3531 * aligned.
3532 */
3533 strict = true;
3534 break;
3535 case PTR_TO_SOCKET:
3536 pointer_desc = "sock ";
3537 break;
3538 case PTR_TO_SOCK_COMMON:
3539 pointer_desc = "sock_common ";
3540 break;
3541 case PTR_TO_TCP_SOCK:
3542 pointer_desc = "tcp_sock ";
3543 break;
3544 case PTR_TO_XDP_SOCK:
3545 pointer_desc = "xdp_sock ";
3546 break;
3547 default:
3548 break;
3549 }
3550 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3551 strict);
3552}
3553
3554static int update_stack_depth(struct bpf_verifier_env *env,
3555 const struct bpf_func_state *func,
3556 int off)
3557{
3558 u16 stack = env->subprog_info[func->subprogno].stack_depth;
3559
3560 if (stack >= -off)
3561 return 0;
3562
3563 /* update known max for given subprogram */
3564 env->subprog_info[func->subprogno].stack_depth = -off;
3565 return 0;
3566}
3567
3568/* starting from main bpf function walk all instructions of the function
3569 * and recursively walk all callees that given function can call.
3570 * Ignore jump and exit insns.
3571 * Since recursion is prevented by check_cfg() this algorithm
3572 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3573 */
3574static int check_max_stack_depth(struct bpf_verifier_env *env)
3575{
3576 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3577 struct bpf_subprog_info *subprog = env->subprog_info;
3578 struct bpf_insn *insn = env->prog->insnsi;
3579 bool tail_call_reachable = false;
3580 int ret_insn[MAX_CALL_FRAMES];
3581 int ret_prog[MAX_CALL_FRAMES];
3582 int j;
3583
3584process_func:
3585 /* protect against potential stack overflow that might happen when
3586 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3587 * depth for such case down to 256 so that the worst case scenario
3588 * would result in 8k stack size (32 which is tailcall limit * 256 =
3589 * 8k).
3590 *
3591 * To get the idea what might happen, see an example:
3592 * func1 -> sub rsp, 128
3593 * subfunc1 -> sub rsp, 256
3594 * tailcall1 -> add rsp, 256
3595 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3596 * subfunc2 -> sub rsp, 64
3597 * subfunc22 -> sub rsp, 128
3598 * tailcall2 -> add rsp, 128
3599 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3600 *
3601 * tailcall will unwind the current stack frame but it will not get rid
3602 * of caller's stack as shown on the example above.
3603 */
3604 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3605 verbose(env,
3606 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3607 depth);
3608 return -EACCES;
3609 }
3610 /* round up to 32-bytes, since this is granularity
3611 * of interpreter stack size
3612 */
3613 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3614 if (depth > MAX_BPF_STACK) {
3615 verbose(env, "combined stack size of %d calls is %d. Too large\n",
3616 frame + 1, depth);
3617 return -EACCES;
3618 }
3619continue_func:
3620 subprog_end = subprog[idx + 1].start;
3621 for (; i < subprog_end; i++) {
3622 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
3623 continue;
3624 /* remember insn and function to return to */
3625 ret_insn[frame] = i + 1;
3626 ret_prog[frame] = idx;
3627
3628 /* find the callee */
3629 i = i + insn[i].imm + 1;
3630 idx = find_subprog(env, i);
3631 if (idx < 0) {
3632 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3633 i);
3634 return -EFAULT;
3635 }
3636
3637 if (subprog[idx].has_tail_call)
3638 tail_call_reachable = true;
3639
3640 frame++;
3641 if (frame >= MAX_CALL_FRAMES) {
3642 verbose(env, "the call stack of %d frames is too deep !\n",
3643 frame);
3644 return -E2BIG;
3645 }
3646 goto process_func;
3647 }
3648 /* if tail call got detected across bpf2bpf calls then mark each of the
3649 * currently present subprog frames as tail call reachable subprogs;
3650 * this info will be utilized by JIT so that we will be preserving the
3651 * tail call counter throughout bpf2bpf calls combined with tailcalls
3652 */
3653 if (tail_call_reachable)
3654 for (j = 0; j < frame; j++)
3655 subprog[ret_prog[j]].tail_call_reachable = true;
3656 if (subprog[0].tail_call_reachable)
3657 env->prog->aux->tail_call_reachable = true;
3658
3659 /* end of for() loop means the last insn of the 'subprog'
3660 * was reached. Doesn't matter whether it was JA or EXIT
3661 */
3662 if (frame == 0)
3663 return 0;
3664 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3665 frame--;
3666 i = ret_insn[frame];
3667 idx = ret_prog[frame];
3668 goto continue_func;
3669}
3670
3671#ifndef CONFIG_BPF_JIT_ALWAYS_ON
3672static int get_callee_stack_depth(struct bpf_verifier_env *env,
3673 const struct bpf_insn *insn, int idx)
3674{
3675 int start = idx + insn->imm + 1, subprog;
3676
3677 subprog = find_subprog(env, start);
3678 if (subprog < 0) {
3679 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3680 start);
3681 return -EFAULT;
3682 }
3683 return env->subprog_info[subprog].stack_depth;
3684}
3685#endif
3686
3687int check_ctx_reg(struct bpf_verifier_env *env,
3688 const struct bpf_reg_state *reg, int regno)
3689{
3690 /* Access to ctx or passing it to a helper is only allowed in
3691 * its original, unmodified form.
3692 */
3693
3694 if (reg->off) {
3695 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3696 regno, reg->off);
3697 return -EACCES;
3698 }
3699
3700 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3701 char tn_buf[48];
3702
3703 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3704 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3705 return -EACCES;
3706 }
3707
3708 return 0;
3709}
3710
3711static int __check_buffer_access(struct bpf_verifier_env *env,
3712 const char *buf_info,
3713 const struct bpf_reg_state *reg,
3714 int regno, int off, int size)
3715{
3716 if (off < 0) {
3717 verbose(env,
3718 "R%d invalid %s buffer access: off=%d, size=%d\n",
3719 regno, buf_info, off, size);
3720 return -EACCES;
3721 }
3722 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3723 char tn_buf[48];
3724
3725 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3726 verbose(env,
3727 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3728 regno, off, tn_buf);
3729 return -EACCES;
3730 }
3731
3732 return 0;
3733}
3734
3735static int check_tp_buffer_access(struct bpf_verifier_env *env,
3736 const struct bpf_reg_state *reg,
3737 int regno, int off, int size)
3738{
3739 int err;
3740
3741 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3742 if (err)
3743 return err;
3744
3745 if (off + size > env->prog->aux->max_tp_access)
3746 env->prog->aux->max_tp_access = off + size;
3747
3748 return 0;
3749}
3750
3751static int check_buffer_access(struct bpf_verifier_env *env,
3752 const struct bpf_reg_state *reg,
3753 int regno, int off, int size,
3754 bool zero_size_allowed,
3755 const char *buf_info,
3756 u32 *max_access)
3757{
3758 int err;
3759
3760 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3761 if (err)
3762 return err;
3763
3764 if (off + size > *max_access)
3765 *max_access = off + size;
3766
3767 return 0;
3768}
3769
3770/* BPF architecture zero extends alu32 ops into 64-bit registesr */
3771static void zext_32_to_64(struct bpf_reg_state *reg)
3772{
3773 reg->var_off = tnum_subreg(reg->var_off);
3774 __reg_assign_32_into_64(reg);
3775}
3776
3777/* truncate register to smaller size (in bytes)
3778 * must be called with size < BPF_REG_SIZE
3779 */
3780static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3781{
3782 u64 mask;
3783
3784 /* clear high bits in bit representation */
3785 reg->var_off = tnum_cast(reg->var_off, size);
3786
3787 /* fix arithmetic bounds */
3788 mask = ((u64)1 << (size * 8)) - 1;
3789 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3790 reg->umin_value &= mask;
3791 reg->umax_value &= mask;
3792 } else {
3793 reg->umin_value = 0;
3794 reg->umax_value = mask;
3795 }
3796 reg->smin_value = reg->umin_value;
3797 reg->smax_value = reg->umax_value;
3798
3799 /* If size is smaller than 32bit register the 32bit register
3800 * values are also truncated so we push 64-bit bounds into
3801 * 32-bit bounds. Above were truncated < 32-bits already.
3802 */
3803 if (size >= 4)
3804 return;
3805 __reg_combine_64_into_32(reg);
3806}
3807
3808static bool bpf_map_is_rdonly(const struct bpf_map *map)
3809{
3810 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3811}
3812
3813static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3814{
3815 void *ptr;
3816 u64 addr;
3817 int err;
3818
3819 err = map->ops->map_direct_value_addr(map, &addr, off);
3820 if (err)
3821 return err;
3822 ptr = (void *)(long)addr + off;
3823
3824 switch (size) {
3825 case sizeof(u8):
3826 *val = (u64)*(u8 *)ptr;
3827 break;
3828 case sizeof(u16):
3829 *val = (u64)*(u16 *)ptr;
3830 break;
3831 case sizeof(u32):
3832 *val = (u64)*(u32 *)ptr;
3833 break;
3834 case sizeof(u64):
3835 *val = *(u64 *)ptr;
3836 break;
3837 default:
3838 return -EINVAL;
3839 }
3840 return 0;
3841}
3842
3843static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3844 struct bpf_reg_state *regs,
3845 int regno, int off, int size,
3846 enum bpf_access_type atype,
3847 int value_regno)
3848{
3849 struct bpf_reg_state *reg = regs + regno;
3850 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3851 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
3852 u32 btf_id;
3853 int ret;
3854
3855 if (off < 0) {
3856 verbose(env,
3857 "R%d is ptr_%s invalid negative access: off=%d\n",
3858 regno, tname, off);
3859 return -EACCES;
3860 }
3861 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3862 char tn_buf[48];
3863
3864 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3865 verbose(env,
3866 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3867 regno, tname, off, tn_buf);
3868 return -EACCES;
3869 }
3870
3871 if (env->ops->btf_struct_access) {
3872 ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3873 off, size, atype, &btf_id);
3874 } else {
3875 if (atype != BPF_READ) {
3876 verbose(env, "only read is supported\n");
3877 return -EACCES;
3878 }
3879
3880 ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3881 atype, &btf_id);
3882 }
3883
3884 if (ret < 0)
3885 return ret;
3886
3887 if (atype == BPF_READ && value_regno >= 0)
3888 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
3889
3890 return 0;
3891}
3892
3893static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3894 struct bpf_reg_state *regs,
3895 int regno, int off, int size,
3896 enum bpf_access_type atype,
3897 int value_regno)
3898{
3899 struct bpf_reg_state *reg = regs + regno;
3900 struct bpf_map *map = reg->map_ptr;
3901 const struct btf_type *t;
3902 const char *tname;
3903 u32 btf_id;
3904 int ret;
3905
3906 if (!btf_vmlinux) {
3907 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3908 return -ENOTSUPP;
3909 }
3910
3911 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3912 verbose(env, "map_ptr access not supported for map type %d\n",
3913 map->map_type);
3914 return -ENOTSUPP;
3915 }
3916
3917 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3918 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3919
3920 if (!env->allow_ptr_to_map_access) {
3921 verbose(env,
3922 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3923 tname);
3924 return -EPERM;
3925 }
3926
3927 if (off < 0) {
3928 verbose(env, "R%d is %s invalid negative access: off=%d\n",
3929 regno, tname, off);
3930 return -EACCES;
3931 }
3932
3933 if (atype != BPF_READ) {
3934 verbose(env, "only read from %s is supported\n", tname);
3935 return -EACCES;
3936 }
3937
3938 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
3939 if (ret < 0)
3940 return ret;
3941
3942 if (value_regno >= 0)
3943 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
3944
3945 return 0;
3946}
3947
3948/* Check that the stack access at the given offset is within bounds. The
3949 * maximum valid offset is -1.
3950 *
3951 * The minimum valid offset is -MAX_BPF_STACK for writes, and
3952 * -state->allocated_stack for reads.
3953 */
3954static int check_stack_slot_within_bounds(int off,
3955 struct bpf_func_state *state,
3956 enum bpf_access_type t)
3957{
3958 int min_valid_off;
3959
3960 if (t == BPF_WRITE)
3961 min_valid_off = -MAX_BPF_STACK;
3962 else
3963 min_valid_off = -state->allocated_stack;
3964
3965 if (off < min_valid_off || off > -1)
3966 return -EACCES;
3967 return 0;
3968}
3969
3970/* Check that the stack access at 'regno + off' falls within the maximum stack
3971 * bounds.
3972 *
3973 * 'off' includes `regno->offset`, but not its dynamic part (if any).
3974 */
3975static int check_stack_access_within_bounds(
3976 struct bpf_verifier_env *env,
3977 int regno, int off, int access_size,
3978 enum stack_access_src src, enum bpf_access_type type)
3979{
3980 struct bpf_reg_state *regs = cur_regs(env);
3981 struct bpf_reg_state *reg = regs + regno;
3982 struct bpf_func_state *state = func(env, reg);
3983 int min_off, max_off;
3984 int err;
3985 char *err_extra;
3986
3987 if (src == ACCESS_HELPER)
3988 /* We don't know if helpers are reading or writing (or both). */
3989 err_extra = " indirect access to";
3990 else if (type == BPF_READ)
3991 err_extra = " read from";
3992 else
3993 err_extra = " write to";
3994
3995 if (tnum_is_const(reg->var_off)) {
3996 min_off = reg->var_off.value + off;
3997 if (access_size > 0)
3998 max_off = min_off + access_size - 1;
3999 else
4000 max_off = min_off;
4001 } else {
4002 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4003 reg->smin_value <= -BPF_MAX_VAR_OFF) {
4004 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4005 err_extra, regno);
4006 return -EACCES;
4007 }
4008 min_off = reg->smin_value + off;
4009 if (access_size > 0)
4010 max_off = reg->smax_value + off + access_size - 1;
4011 else
4012 max_off = min_off;
4013 }
4014
4015 err = check_stack_slot_within_bounds(min_off, state, type);
4016 if (!err)
4017 err = check_stack_slot_within_bounds(max_off, state, type);
4018
4019 if (err) {
4020 if (tnum_is_const(reg->var_off)) {
4021 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4022 err_extra, regno, off, access_size);
4023 } else {
4024 char tn_buf[48];
4025
4026 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4027 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4028 err_extra, regno, tn_buf, access_size);
4029 }
4030 }
4031 return err;
4032}
4033
4034/* check whether memory at (regno + off) is accessible for t = (read | write)
4035 * if t==write, value_regno is a register which value is stored into memory
4036 * if t==read, value_regno is a register which will receive the value from memory
4037 * if t==write && value_regno==-1, some unknown value is stored into memory
4038 * if t==read && value_regno==-1, don't care what we read from memory
4039 */
4040static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4041 int off, int bpf_size, enum bpf_access_type t,
4042 int value_regno, bool strict_alignment_once)
4043{
4044 struct bpf_reg_state *regs = cur_regs(env);
4045 struct bpf_reg_state *reg = regs + regno;
4046 struct bpf_func_state *state;
4047 int size, err = 0;
4048
4049 size = bpf_size_to_bytes(bpf_size);
4050 if (size < 0)
4051 return size;
4052
4053 /* alignment checks will add in reg->off themselves */
4054 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4055 if (err)
4056 return err;
4057
4058 /* for access checks, reg->off is just part of off */
4059 off += reg->off;
4060
4061 if (reg->type == PTR_TO_MAP_KEY) {
4062 if (t == BPF_WRITE) {
4063 verbose(env, "write to change key R%d not allowed\n", regno);
4064 return -EACCES;
4065 }
4066
4067 err = check_mem_region_access(env, regno, off, size,
4068 reg->map_ptr->key_size, false);
4069 if (err)
4070 return err;
4071 if (value_regno >= 0)
4072 mark_reg_unknown(env, regs, value_regno);
4073 } else if (reg->type == PTR_TO_MAP_VALUE) {
4074 if (t == BPF_WRITE && value_regno >= 0 &&
4075 is_pointer_value(env, value_regno)) {
4076 verbose(env, "R%d leaks addr into map\n", value_regno);
4077 return -EACCES;
4078 }
4079 err = check_map_access_type(env, regno, off, size, t);
4080 if (err)
4081 return err;
4082 err = check_map_access(env, regno, off, size, false);
4083 if (!err && t == BPF_READ && value_regno >= 0) {
4084 struct bpf_map *map = reg->map_ptr;
4085
4086 /* if map is read-only, track its contents as scalars */
4087 if (tnum_is_const(reg->var_off) &&
4088 bpf_map_is_rdonly(map) &&
4089 map->ops->map_direct_value_addr) {
4090 int map_off = off + reg->var_off.value;
4091 u64 val = 0;
4092
4093 err = bpf_map_direct_read(map, map_off, size,
4094 &val);
4095 if (err)
4096 return err;
4097
4098 regs[value_regno].type = SCALAR_VALUE;
4099 __mark_reg_known(®s[value_regno], val);
4100 } else {
4101 mark_reg_unknown(env, regs, value_regno);
4102 }
4103 }
4104 } else if (reg->type == PTR_TO_MEM) {
4105 if (t == BPF_WRITE && value_regno >= 0 &&
4106 is_pointer_value(env, value_regno)) {
4107 verbose(env, "R%d leaks addr into mem\n", value_regno);
4108 return -EACCES;
4109 }
4110 err = check_mem_region_access(env, regno, off, size,
4111 reg->mem_size, false);
4112 if (!err && t == BPF_READ && value_regno >= 0)
4113 mark_reg_unknown(env, regs, value_regno);
4114 } else if (reg->type == PTR_TO_CTX) {
4115 enum bpf_reg_type reg_type = SCALAR_VALUE;
4116 struct btf *btf = NULL;
4117 u32 btf_id = 0;
4118
4119 if (t == BPF_WRITE && value_regno >= 0 &&
4120 is_pointer_value(env, value_regno)) {
4121 verbose(env, "R%d leaks addr into ctx\n", value_regno);
4122 return -EACCES;
4123 }
4124
4125 err = check_ctx_reg(env, reg, regno);
4126 if (err < 0)
4127 return err;
4128
4129 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, &btf_id);
4130 if (err)
4131 verbose_linfo(env, insn_idx, "; ");
4132 if (!err && t == BPF_READ && value_regno >= 0) {
4133 /* ctx access returns either a scalar, or a
4134 * PTR_TO_PACKET[_META,_END]. In the latter
4135 * case, we know the offset is zero.
4136 */
4137 if (reg_type == SCALAR_VALUE) {
4138 mark_reg_unknown(env, regs, value_regno);
4139 } else {
4140 mark_reg_known_zero(env, regs,
4141 value_regno);
4142 if (reg_type_may_be_null(reg_type))
4143 regs[value_regno].id = ++env->id_gen;
4144 /* A load of ctx field could have different
4145 * actual load size with the one encoded in the
4146 * insn. When the dst is PTR, it is for sure not
4147 * a sub-register.
4148 */
4149 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4150 if (reg_type == PTR_TO_BTF_ID ||
4151 reg_type == PTR_TO_BTF_ID_OR_NULL) {
4152 regs[value_regno].btf = btf;
4153 regs[value_regno].btf_id = btf_id;
4154 }
4155 }
4156 regs[value_regno].type = reg_type;
4157 }
4158
4159 } else if (reg->type == PTR_TO_STACK) {
4160 /* Basic bounds checks. */
4161 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4162 if (err)
4163 return err;
4164
4165 state = func(env, reg);
4166 err = update_stack_depth(env, state, off);
4167 if (err)
4168 return err;
4169
4170 if (t == BPF_READ)
4171 err = check_stack_read(env, regno, off, size,
4172 value_regno);
4173 else
4174 err = check_stack_write(env, regno, off, size,
4175 value_regno, insn_idx);
4176 } else if (reg_is_pkt_pointer(reg)) {
4177 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4178 verbose(env, "cannot write into packet\n");
4179 return -EACCES;
4180 }
4181 if (t == BPF_WRITE && value_regno >= 0 &&
4182 is_pointer_value(env, value_regno)) {
4183 verbose(env, "R%d leaks addr into packet\n",
4184 value_regno);
4185 return -EACCES;
4186 }
4187 err = check_packet_access(env, regno, off, size, false);
4188 if (!err && t == BPF_READ && value_regno >= 0)
4189 mark_reg_unknown(env, regs, value_regno);
4190 } else if (reg->type == PTR_TO_FLOW_KEYS) {
4191 if (t == BPF_WRITE && value_regno >= 0 &&
4192 is_pointer_value(env, value_regno)) {
4193 verbose(env, "R%d leaks addr into flow keys\n",
4194 value_regno);
4195 return -EACCES;
4196 }
4197
4198 err = check_flow_keys_access(env, off, size);
4199 if (!err && t == BPF_READ && value_regno >= 0)
4200 mark_reg_unknown(env, regs, value_regno);
4201 } else if (type_is_sk_pointer(reg->type)) {
4202 if (t == BPF_WRITE) {
4203 verbose(env, "R%d cannot write into %s\n",
4204 regno, reg_type_str[reg->type]);
4205 return -EACCES;
4206 }
4207 err = check_sock_access(env, insn_idx, regno, off, size, t);
4208 if (!err && value_regno >= 0)
4209 mark_reg_unknown(env, regs, value_regno);
4210 } else if (reg->type == PTR_TO_TP_BUFFER) {
4211 err = check_tp_buffer_access(env, reg, regno, off, size);
4212 if (!err && t == BPF_READ && value_regno >= 0)
4213 mark_reg_unknown(env, regs, value_regno);
4214 } else if (reg->type == PTR_TO_BTF_ID) {
4215 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4216 value_regno);
4217 } else if (reg->type == CONST_PTR_TO_MAP) {
4218 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4219 value_regno);
4220 } else if (reg->type == PTR_TO_RDONLY_BUF) {
4221 if (t == BPF_WRITE) {
4222 verbose(env, "R%d cannot write into %s\n",
4223 regno, reg_type_str[reg->type]);
4224 return -EACCES;
4225 }
4226 err = check_buffer_access(env, reg, regno, off, size, false,
4227 "rdonly",
4228 &env->prog->aux->max_rdonly_access);
4229 if (!err && value_regno >= 0)
4230 mark_reg_unknown(env, regs, value_regno);
4231 } else if (reg->type == PTR_TO_RDWR_BUF) {
4232 err = check_buffer_access(env, reg, regno, off, size, false,
4233 "rdwr",
4234 &env->prog->aux->max_rdwr_access);
4235 if (!err && t == BPF_READ && value_regno >= 0)
4236 mark_reg_unknown(env, regs, value_regno);
4237 } else {
4238 verbose(env, "R%d invalid mem access '%s'\n", regno,
4239 reg_type_str[reg->type]);
4240 return -EACCES;
4241 }
4242
4243 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4244 regs[value_regno].type == SCALAR_VALUE) {
4245 /* b/h/w load zero-extends, mark upper bits as known 0 */
4246 coerce_reg_to_size(®s[value_regno], size);
4247 }
4248 return err;
4249}
4250
4251static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4252{
4253 int load_reg;
4254 int err;
4255
4256 switch (insn->imm) {
4257 case BPF_ADD:
4258 case BPF_ADD | BPF_FETCH:
4259 case BPF_AND:
4260 case BPF_AND | BPF_FETCH:
4261 case BPF_OR:
4262 case BPF_OR | BPF_FETCH:
4263 case BPF_XOR:
4264 case BPF_XOR | BPF_FETCH:
4265 case BPF_XCHG:
4266 case BPF_CMPXCHG:
4267 break;
4268 default:
4269 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4270 return -EINVAL;
4271 }
4272
4273 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4274 verbose(env, "invalid atomic operand size\n");
4275 return -EINVAL;
4276 }
4277
4278 /* check src1 operand */
4279 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4280 if (err)
4281 return err;
4282
4283 /* check src2 operand */
4284 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4285 if (err)
4286 return err;
4287
4288 if (insn->imm == BPF_CMPXCHG) {
4289 /* Check comparison of R0 with memory location */
4290 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4291 if (err)
4292 return err;
4293 }
4294
4295 if (is_pointer_value(env, insn->src_reg)) {
4296 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4297 return -EACCES;
4298 }
4299
4300 if (is_ctx_reg(env, insn->dst_reg) ||
4301 is_pkt_reg(env, insn->dst_reg) ||
4302 is_flow_key_reg(env, insn->dst_reg) ||
4303 is_sk_reg(env, insn->dst_reg)) {
4304 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4305 insn->dst_reg,
4306 reg_type_str[reg_state(env, insn->dst_reg)->type]);
4307 return -EACCES;
4308 }
4309
4310 if (insn->imm & BPF_FETCH) {
4311 if (insn->imm == BPF_CMPXCHG)
4312 load_reg = BPF_REG_0;
4313 else
4314 load_reg = insn->src_reg;
4315
4316 /* check and record load of old value */
4317 err = check_reg_arg(env, load_reg, DST_OP);
4318 if (err)
4319 return err;
4320 } else {
4321 /* This instruction accesses a memory location but doesn't
4322 * actually load it into a register.
4323 */
4324 load_reg = -1;
4325 }
4326
4327 /* check whether we can read the memory */
4328 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4329 BPF_SIZE(insn->code), BPF_READ, load_reg, true);
4330 if (err)
4331 return err;
4332
4333 /* check whether we can write into the same memory */
4334 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4335 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4336 if (err)
4337 return err;
4338
4339 return 0;
4340}
4341
4342/* When register 'regno' is used to read the stack (either directly or through
4343 * a helper function) make sure that it's within stack boundary and, depending
4344 * on the access type, that all elements of the stack are initialized.
4345 *
4346 * 'off' includes 'regno->off', but not its dynamic part (if any).
4347 *
4348 * All registers that have been spilled on the stack in the slots within the
4349 * read offsets are marked as read.
4350 */
4351static int check_stack_range_initialized(
4352 struct bpf_verifier_env *env, int regno, int off,
4353 int access_size, bool zero_size_allowed,
4354 enum stack_access_src type, struct bpf_call_arg_meta *meta)
4355{
4356 struct bpf_reg_state *reg = reg_state(env, regno);
4357 struct bpf_func_state *state = func(env, reg);
4358 int err, min_off, max_off, i, j, slot, spi;
4359 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4360 enum bpf_access_type bounds_check_type;
4361 /* Some accesses can write anything into the stack, others are
4362 * read-only.
4363 */
4364 bool clobber = false;
4365
4366 if (access_size == 0 && !zero_size_allowed) {
4367 verbose(env, "invalid zero-sized read\n");
4368 return -EACCES;
4369 }
4370
4371 if (type == ACCESS_HELPER) {
4372 /* The bounds checks for writes are more permissive than for
4373 * reads. However, if raw_mode is not set, we'll do extra
4374 * checks below.
4375 */
4376 bounds_check_type = BPF_WRITE;
4377 clobber = true;
4378 } else {
4379 bounds_check_type = BPF_READ;
4380 }
4381 err = check_stack_access_within_bounds(env, regno, off, access_size,
4382 type, bounds_check_type);
4383 if (err)
4384 return err;
4385
4386
4387 if (tnum_is_const(reg->var_off)) {
4388 min_off = max_off = reg->var_off.value + off;
4389 } else {
4390 /* Variable offset is prohibited for unprivileged mode for
4391 * simplicity since it requires corresponding support in
4392 * Spectre masking for stack ALU.
4393 * See also retrieve_ptr_limit().
4394 */
4395 if (!env->bypass_spec_v1) {
4396 char tn_buf[48];
4397
4398 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4399 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4400 regno, err_extra, tn_buf);
4401 return -EACCES;
4402 }
4403 /* Only initialized buffer on stack is allowed to be accessed
4404 * with variable offset. With uninitialized buffer it's hard to
4405 * guarantee that whole memory is marked as initialized on
4406 * helper return since specific bounds are unknown what may
4407 * cause uninitialized stack leaking.
4408 */
4409 if (meta && meta->raw_mode)
4410 meta = NULL;
4411
4412 min_off = reg->smin_value + off;
4413 max_off = reg->smax_value + off;
4414 }
4415
4416 if (meta && meta->raw_mode) {
4417 meta->access_size = access_size;
4418 meta->regno = regno;
4419 return 0;
4420 }
4421
4422 for (i = min_off; i < max_off + access_size; i++) {
4423 u8 *stype;
4424
4425 slot = -i - 1;
4426 spi = slot / BPF_REG_SIZE;
4427 if (state->allocated_stack <= slot)
4428 goto err;
4429 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4430 if (*stype == STACK_MISC)
4431 goto mark;
4432 if (*stype == STACK_ZERO) {
4433 if (clobber) {
4434 /* helper can write anything into the stack */
4435 *stype = STACK_MISC;
4436 }
4437 goto mark;
4438 }
4439
4440 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4441 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4442 goto mark;
4443
4444 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4445 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4446 env->allow_ptr_leaks)) {
4447 if (clobber) {
4448 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4449 for (j = 0; j < BPF_REG_SIZE; j++)
4450 state->stack[spi].slot_type[j] = STACK_MISC;
4451 }
4452 goto mark;
4453 }
4454
4455err:
4456 if (tnum_is_const(reg->var_off)) {
4457 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4458 err_extra, regno, min_off, i - min_off, access_size);
4459 } else {
4460 char tn_buf[48];
4461
4462 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4463 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4464 err_extra, regno, tn_buf, i - min_off, access_size);
4465 }
4466 return -EACCES;
4467mark:
4468 /* reading any byte out of 8-byte 'spill_slot' will cause
4469 * the whole slot to be marked as 'read'
4470 */
4471 mark_reg_read(env, &state->stack[spi].spilled_ptr,
4472 state->stack[spi].spilled_ptr.parent,
4473 REG_LIVE_READ64);
4474 }
4475 return update_stack_depth(env, state, min_off);
4476}
4477
4478static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4479 int access_size, bool zero_size_allowed,
4480 struct bpf_call_arg_meta *meta)
4481{
4482 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4483
4484 switch (reg->type) {
4485 case PTR_TO_PACKET:
4486 case PTR_TO_PACKET_META:
4487 return check_packet_access(env, regno, reg->off, access_size,
4488 zero_size_allowed);
4489 case PTR_TO_MAP_KEY:
4490 return check_mem_region_access(env, regno, reg->off, access_size,
4491 reg->map_ptr->key_size, false);
4492 case PTR_TO_MAP_VALUE:
4493 if (check_map_access_type(env, regno, reg->off, access_size,
4494 meta && meta->raw_mode ? BPF_WRITE :
4495 BPF_READ))
4496 return -EACCES;
4497 return check_map_access(env, regno, reg->off, access_size,
4498 zero_size_allowed);
4499 case PTR_TO_MEM:
4500 return check_mem_region_access(env, regno, reg->off,
4501 access_size, reg->mem_size,
4502 zero_size_allowed);
4503 case PTR_TO_RDONLY_BUF:
4504 if (meta && meta->raw_mode)
4505 return -EACCES;
4506 return check_buffer_access(env, reg, regno, reg->off,
4507 access_size, zero_size_allowed,
4508 "rdonly",
4509 &env->prog->aux->max_rdonly_access);
4510 case PTR_TO_RDWR_BUF:
4511 return check_buffer_access(env, reg, regno, reg->off,
4512 access_size, zero_size_allowed,
4513 "rdwr",
4514 &env->prog->aux->max_rdwr_access);
4515 case PTR_TO_STACK:
4516 return check_stack_range_initialized(
4517 env,
4518 regno, reg->off, access_size,
4519 zero_size_allowed, ACCESS_HELPER, meta);
4520 default: /* scalar_value or invalid ptr */
4521 /* Allow zero-byte read from NULL, regardless of pointer type */
4522 if (zero_size_allowed && access_size == 0 &&
4523 register_is_null(reg))
4524 return 0;
4525
4526 verbose(env, "R%d type=%s expected=%s\n", regno,
4527 reg_type_str[reg->type],
4528 reg_type_str[PTR_TO_STACK]);
4529 return -EACCES;
4530 }
4531}
4532
4533int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4534 u32 regno, u32 mem_size)
4535{
4536 if (register_is_null(reg))
4537 return 0;
4538
4539 if (reg_type_may_be_null(reg->type)) {
4540 /* Assuming that the register contains a value check if the memory
4541 * access is safe. Temporarily save and restore the register's state as
4542 * the conversion shouldn't be visible to a caller.
4543 */
4544 const struct bpf_reg_state saved_reg = *reg;
4545 int rv;
4546
4547 mark_ptr_not_null_reg(reg);
4548 rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4549 *reg = saved_reg;
4550 return rv;
4551 }
4552
4553 return check_helper_mem_access(env, regno, mem_size, true, NULL);
4554}
4555
4556/* Implementation details:
4557 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4558 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4559 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4560 * value_or_null->value transition, since the verifier only cares about
4561 * the range of access to valid map value pointer and doesn't care about actual
4562 * address of the map element.
4563 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4564 * reg->id > 0 after value_or_null->value transition. By doing so
4565 * two bpf_map_lookups will be considered two different pointers that
4566 * point to different bpf_spin_locks.
4567 * The verifier allows taking only one bpf_spin_lock at a time to avoid
4568 * dead-locks.
4569 * Since only one bpf_spin_lock is allowed the checks are simpler than
4570 * reg_is_refcounted() logic. The verifier needs to remember only
4571 * one spin_lock instead of array of acquired_refs.
4572 * cur_state->active_spin_lock remembers which map value element got locked
4573 * and clears it after bpf_spin_unlock.
4574 */
4575static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4576 bool is_lock)
4577{
4578 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4579 struct bpf_verifier_state *cur = env->cur_state;
4580 bool is_const = tnum_is_const(reg->var_off);
4581 struct bpf_map *map = reg->map_ptr;
4582 u64 val = reg->var_off.value;
4583
4584 if (!is_const) {
4585 verbose(env,
4586 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4587 regno);
4588 return -EINVAL;
4589 }
4590 if (!map->btf) {
4591 verbose(env,
4592 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
4593 map->name);
4594 return -EINVAL;
4595 }
4596 if (!map_value_has_spin_lock(map)) {
4597 if (map->spin_lock_off == -E2BIG)
4598 verbose(env,
4599 "map '%s' has more than one 'struct bpf_spin_lock'\n",
4600 map->name);
4601 else if (map->spin_lock_off == -ENOENT)
4602 verbose(env,
4603 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
4604 map->name);
4605 else
4606 verbose(env,
4607 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4608 map->name);
4609 return -EINVAL;
4610 }
4611 if (map->spin_lock_off != val + reg->off) {
4612 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4613 val + reg->off);
4614 return -EINVAL;
4615 }
4616 if (is_lock) {
4617 if (cur->active_spin_lock) {
4618 verbose(env,
4619 "Locking two bpf_spin_locks are not allowed\n");
4620 return -EINVAL;
4621 }
4622 cur->active_spin_lock = reg->id;
4623 } else {
4624 if (!cur->active_spin_lock) {
4625 verbose(env, "bpf_spin_unlock without taking a lock\n");
4626 return -EINVAL;
4627 }
4628 if (cur->active_spin_lock != reg->id) {
4629 verbose(env, "bpf_spin_unlock of different lock\n");
4630 return -EINVAL;
4631 }
4632 cur->active_spin_lock = 0;
4633 }
4634 return 0;
4635}
4636
4637static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4638{
4639 return type == ARG_PTR_TO_MEM ||
4640 type == ARG_PTR_TO_MEM_OR_NULL ||
4641 type == ARG_PTR_TO_UNINIT_MEM;
4642}
4643
4644static bool arg_type_is_mem_size(enum bpf_arg_type type)
4645{
4646 return type == ARG_CONST_SIZE ||
4647 type == ARG_CONST_SIZE_OR_ZERO;
4648}
4649
4650static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4651{
4652 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4653}
4654
4655static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4656{
4657 return type == ARG_PTR_TO_INT ||
4658 type == ARG_PTR_TO_LONG;
4659}
4660
4661static int int_ptr_type_to_size(enum bpf_arg_type type)
4662{
4663 if (type == ARG_PTR_TO_INT)
4664 return sizeof(u32);
4665 else if (type == ARG_PTR_TO_LONG)
4666 return sizeof(u64);
4667
4668 return -EINVAL;
4669}
4670
4671static int resolve_map_arg_type(struct bpf_verifier_env *env,
4672 const struct bpf_call_arg_meta *meta,
4673 enum bpf_arg_type *arg_type)
4674{
4675 if (!meta->map_ptr) {
4676 /* kernel subsystem misconfigured verifier */
4677 verbose(env, "invalid map_ptr to access map->type\n");
4678 return -EACCES;
4679 }
4680
4681 switch (meta->map_ptr->map_type) {
4682 case BPF_MAP_TYPE_SOCKMAP:
4683 case BPF_MAP_TYPE_SOCKHASH:
4684 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4685 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4686 } else {
4687 verbose(env, "invalid arg_type for sockmap/sockhash\n");
4688 return -EINVAL;
4689 }
4690 break;
4691
4692 default:
4693 break;
4694 }
4695 return 0;
4696}
4697
4698struct bpf_reg_types {
4699 const enum bpf_reg_type types[10];
4700 u32 *btf_id;
4701};
4702
4703static const struct bpf_reg_types map_key_value_types = {
4704 .types = {
4705 PTR_TO_STACK,
4706 PTR_TO_PACKET,
4707 PTR_TO_PACKET_META,
4708 PTR_TO_MAP_KEY,
4709 PTR_TO_MAP_VALUE,
4710 },
4711};
4712
4713static const struct bpf_reg_types sock_types = {
4714 .types = {
4715 PTR_TO_SOCK_COMMON,
4716 PTR_TO_SOCKET,
4717 PTR_TO_TCP_SOCK,
4718 PTR_TO_XDP_SOCK,
4719 },
4720};
4721
4722#ifdef CONFIG_NET
4723static const struct bpf_reg_types btf_id_sock_common_types = {
4724 .types = {
4725 PTR_TO_SOCK_COMMON,
4726 PTR_TO_SOCKET,
4727 PTR_TO_TCP_SOCK,
4728 PTR_TO_XDP_SOCK,
4729 PTR_TO_BTF_ID,
4730 },
4731 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4732};
4733#endif
4734
4735static const struct bpf_reg_types mem_types = {
4736 .types = {
4737 PTR_TO_STACK,
4738 PTR_TO_PACKET,
4739 PTR_TO_PACKET_META,
4740 PTR_TO_MAP_KEY,
4741 PTR_TO_MAP_VALUE,
4742 PTR_TO_MEM,
4743 PTR_TO_RDONLY_BUF,
4744 PTR_TO_RDWR_BUF,
4745 },
4746};
4747
4748static const struct bpf_reg_types int_ptr_types = {
4749 .types = {
4750 PTR_TO_STACK,
4751 PTR_TO_PACKET,
4752 PTR_TO_PACKET_META,
4753 PTR_TO_MAP_KEY,
4754 PTR_TO_MAP_VALUE,
4755 },
4756};
4757
4758static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4759static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4760static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4761static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4762static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4763static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4764static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4765static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4766static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
4767static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
4768static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
4769
4770static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4771 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
4772 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
4773 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
4774 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types,
4775 [ARG_CONST_SIZE] = &scalar_types,
4776 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
4777 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
4778 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
4779 [ARG_PTR_TO_CTX] = &context_types,
4780 [ARG_PTR_TO_CTX_OR_NULL] = &context_types,
4781 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
4782#ifdef CONFIG_NET
4783 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
4784#endif
4785 [ARG_PTR_TO_SOCKET] = &fullsock_types,
4786 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types,
4787 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
4788 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
4789 [ARG_PTR_TO_MEM] = &mem_types,
4790 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types,
4791 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
4792 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
4793 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types,
4794 [ARG_PTR_TO_INT] = &int_ptr_types,
4795 [ARG_PTR_TO_LONG] = &int_ptr_types,
4796 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
4797 [ARG_PTR_TO_FUNC] = &func_ptr_types,
4798 [ARG_PTR_TO_STACK_OR_NULL] = &stack_ptr_types,
4799 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
4800};
4801
4802static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4803 enum bpf_arg_type arg_type,
4804 const u32 *arg_btf_id)
4805{
4806 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4807 enum bpf_reg_type expected, type = reg->type;
4808 const struct bpf_reg_types *compatible;
4809 int i, j;
4810
4811 compatible = compatible_reg_types[arg_type];
4812 if (!compatible) {
4813 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4814 return -EFAULT;
4815 }
4816
4817 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4818 expected = compatible->types[i];
4819 if (expected == NOT_INIT)
4820 break;
4821
4822 if (type == expected)
4823 goto found;
4824 }
4825
4826 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4827 for (j = 0; j + 1 < i; j++)
4828 verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4829 verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4830 return -EACCES;
4831
4832found:
4833 if (type == PTR_TO_BTF_ID) {
4834 if (!arg_btf_id) {
4835 if (!compatible->btf_id) {
4836 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4837 return -EFAULT;
4838 }
4839 arg_btf_id = compatible->btf_id;
4840 }
4841
4842 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4843 btf_vmlinux, *arg_btf_id)) {
4844 verbose(env, "R%d is of type %s but %s is expected\n",
4845 regno, kernel_type_name(reg->btf, reg->btf_id),
4846 kernel_type_name(btf_vmlinux, *arg_btf_id));
4847 return -EACCES;
4848 }
4849
4850 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4851 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4852 regno);
4853 return -EACCES;
4854 }
4855 }
4856
4857 return 0;
4858}
4859
4860static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4861 struct bpf_call_arg_meta *meta,
4862 const struct bpf_func_proto *fn)
4863{
4864 u32 regno = BPF_REG_1 + arg;
4865 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4866 enum bpf_arg_type arg_type = fn->arg_type[arg];
4867 enum bpf_reg_type type = reg->type;
4868 int err = 0;
4869
4870 if (arg_type == ARG_DONTCARE)
4871 return 0;
4872
4873 err = check_reg_arg(env, regno, SRC_OP);
4874 if (err)
4875 return err;
4876
4877 if (arg_type == ARG_ANYTHING) {
4878 if (is_pointer_value(env, regno)) {
4879 verbose(env, "R%d leaks addr into helper function\n",
4880 regno);
4881 return -EACCES;
4882 }
4883 return 0;
4884 }
4885
4886 if (type_is_pkt_pointer(type) &&
4887 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4888 verbose(env, "helper access to the packet is not allowed\n");
4889 return -EACCES;
4890 }
4891
4892 if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4893 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4894 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4895 err = resolve_map_arg_type(env, meta, &arg_type);
4896 if (err)
4897 return err;
4898 }
4899
4900 if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4901 /* A NULL register has a SCALAR_VALUE type, so skip
4902 * type checking.
4903 */
4904 goto skip_type_check;
4905
4906 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4907 if (err)
4908 return err;
4909
4910 if (type == PTR_TO_CTX) {
4911 err = check_ctx_reg(env, reg, regno);
4912 if (err < 0)
4913 return err;
4914 }
4915
4916skip_type_check:
4917 if (reg->ref_obj_id) {
4918 if (meta->ref_obj_id) {
4919 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4920 regno, reg->ref_obj_id,
4921 meta->ref_obj_id);
4922 return -EFAULT;
4923 }
4924 meta->ref_obj_id = reg->ref_obj_id;
4925 }
4926
4927 if (arg_type == ARG_CONST_MAP_PTR) {
4928 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4929 meta->map_ptr = reg->map_ptr;
4930 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4931 /* bpf_map_xxx(..., map_ptr, ..., key) call:
4932 * check that [key, key + map->key_size) are within
4933 * stack limits and initialized
4934 */
4935 if (!meta->map_ptr) {
4936 /* in function declaration map_ptr must come before
4937 * map_key, so that it's verified and known before
4938 * we have to check map_key here. Otherwise it means
4939 * that kernel subsystem misconfigured verifier
4940 */
4941 verbose(env, "invalid map_ptr to access map->key\n");
4942 return -EACCES;
4943 }
4944 err = check_helper_mem_access(env, regno,
4945 meta->map_ptr->key_size, false,
4946 NULL);
4947 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4948 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4949 !register_is_null(reg)) ||
4950 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4951 /* bpf_map_xxx(..., map_ptr, ..., value) call:
4952 * check [value, value + map->value_size) validity
4953 */
4954 if (!meta->map_ptr) {
4955 /* kernel subsystem misconfigured verifier */
4956 verbose(env, "invalid map_ptr to access map->value\n");
4957 return -EACCES;
4958 }
4959 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4960 err = check_helper_mem_access(env, regno,
4961 meta->map_ptr->value_size, false,
4962 meta);
4963 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4964 if (!reg->btf_id) {
4965 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4966 return -EACCES;
4967 }
4968 meta->ret_btf = reg->btf;
4969 meta->ret_btf_id = reg->btf_id;
4970 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4971 if (meta->func_id == BPF_FUNC_spin_lock) {
4972 if (process_spin_lock(env, regno, true))
4973 return -EACCES;
4974 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
4975 if (process_spin_lock(env, regno, false))
4976 return -EACCES;
4977 } else {
4978 verbose(env, "verifier internal error\n");
4979 return -EFAULT;
4980 }
4981 } else if (arg_type == ARG_PTR_TO_FUNC) {
4982 meta->subprogno = reg->subprogno;
4983 } else if (arg_type_is_mem_ptr(arg_type)) {
4984 /* The access to this pointer is only checked when we hit the
4985 * next is_mem_size argument below.
4986 */
4987 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
4988 } else if (arg_type_is_mem_size(arg_type)) {
4989 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4990
4991 /* This is used to refine r0 return value bounds for helpers
4992 * that enforce this value as an upper bound on return values.
4993 * See do_refine_retval_range() for helpers that can refine
4994 * the return value. C type of helper is u32 so we pull register
4995 * bound from umax_value however, if negative verifier errors
4996 * out. Only upper bounds can be learned because retval is an
4997 * int type and negative retvals are allowed.
4998 */
4999 meta->msize_max_value = reg->umax_value;
5000
5001 /* The register is SCALAR_VALUE; the access check
5002 * happens using its boundaries.
5003 */
5004 if (!tnum_is_const(reg->var_off))
5005 /* For unprivileged variable accesses, disable raw
5006 * mode so that the program is required to
5007 * initialize all the memory that the helper could
5008 * just partially fill up.
5009 */
5010 meta = NULL;
5011
5012 if (reg->smin_value < 0) {
5013 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5014 regno);
5015 return -EACCES;
5016 }
5017
5018 if (reg->umin_value == 0) {
5019 err = check_helper_mem_access(env, regno - 1, 0,
5020 zero_size_allowed,
5021 meta);
5022 if (err)
5023 return err;
5024 }
5025
5026 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5027 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5028 regno);
5029 return -EACCES;
5030 }
5031 err = check_helper_mem_access(env, regno - 1,
5032 reg->umax_value,
5033 zero_size_allowed, meta);
5034 if (!err)
5035 err = mark_chain_precision(env, regno);
5036 } else if (arg_type_is_alloc_size(arg_type)) {
5037 if (!tnum_is_const(reg->var_off)) {
5038 verbose(env, "R%d is not a known constant'\n",
5039 regno);
5040 return -EACCES;
5041 }
5042 meta->mem_size = reg->var_off.value;
5043 } else if (arg_type_is_int_ptr(arg_type)) {
5044 int size = int_ptr_type_to_size(arg_type);
5045
5046 err = check_helper_mem_access(env, regno, size, false, meta);
5047 if (err)
5048 return err;
5049 err = check_ptr_alignment(env, reg, 0, size, true);
5050 } else if (arg_type == ARG_PTR_TO_CONST_STR) {
5051 struct bpf_map *map = reg->map_ptr;
5052 int map_off;
5053 u64 map_addr;
5054 char *str_ptr;
5055
5056 if (!bpf_map_is_rdonly(map)) {
5057 verbose(env, "R%d does not point to a readonly map'\n", regno);
5058 return -EACCES;
5059 }
5060
5061 if (!tnum_is_const(reg->var_off)) {
5062 verbose(env, "R%d is not a constant address'\n", regno);
5063 return -EACCES;
5064 }
5065
5066 if (!map->ops->map_direct_value_addr) {
5067 verbose(env, "no direct value access support for this map type\n");
5068 return -EACCES;
5069 }
5070
5071 err = check_map_access(env, regno, reg->off,
5072 map->value_size - reg->off, false);
5073 if (err)
5074 return err;
5075
5076 map_off = reg->off + reg->var_off.value;
5077 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5078 if (err) {
5079 verbose(env, "direct value access on string failed\n");
5080 return err;
5081 }
5082
5083 str_ptr = (char *)(long)(map_addr);
5084 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5085 verbose(env, "string is not zero-terminated\n");
5086 return -EINVAL;
5087 }
5088 }
5089
5090 return err;
5091}
5092
5093static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5094{
5095 enum bpf_attach_type eatype = env->prog->expected_attach_type;
5096 enum bpf_prog_type type = resolve_prog_type(env->prog);
5097
5098 if (func_id != BPF_FUNC_map_update_elem)
5099 return false;
5100
5101 /* It's not possible to get access to a locked struct sock in these
5102 * contexts, so updating is safe.
5103 */
5104 switch (type) {
5105 case BPF_PROG_TYPE_TRACING:
5106 if (eatype == BPF_TRACE_ITER)
5107 return true;
5108 break;
5109 case BPF_PROG_TYPE_SOCKET_FILTER:
5110 case BPF_PROG_TYPE_SCHED_CLS:
5111 case BPF_PROG_TYPE_SCHED_ACT:
5112 case BPF_PROG_TYPE_XDP:
5113 case BPF_PROG_TYPE_SK_REUSEPORT:
5114 case BPF_PROG_TYPE_FLOW_DISSECTOR:
5115 case BPF_PROG_TYPE_SK_LOOKUP:
5116 return true;
5117 default:
5118 break;
5119 }
5120
5121 verbose(env, "cannot update sockmap in this context\n");
5122 return false;
5123}
5124
5125static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5126{
5127 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5128}
5129
5130static int check_map_func_compatibility(struct bpf_verifier_env *env,
5131 struct bpf_map *map, int func_id)
5132{
5133 if (!map)
5134 return 0;
5135
5136 /* We need a two way check, first is from map perspective ... */
5137 switch (map->map_type) {
5138 case BPF_MAP_TYPE_PROG_ARRAY:
5139 if (func_id != BPF_FUNC_tail_call)
5140 goto error;
5141 break;
5142 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5143 if (func_id != BPF_FUNC_perf_event_read &&
5144 func_id != BPF_FUNC_perf_event_output &&
5145 func_id != BPF_FUNC_skb_output &&
5146 func_id != BPF_FUNC_perf_event_read_value &&
5147 func_id != BPF_FUNC_xdp_output)
5148 goto error;
5149 break;
5150 case BPF_MAP_TYPE_RINGBUF:
5151 if (func_id != BPF_FUNC_ringbuf_output &&
5152 func_id != BPF_FUNC_ringbuf_reserve &&
5153 func_id != BPF_FUNC_ringbuf_query)
5154 goto error;
5155 break;
5156 case BPF_MAP_TYPE_STACK_TRACE:
5157 if (func_id != BPF_FUNC_get_stackid)
5158 goto error;
5159 break;
5160 case BPF_MAP_TYPE_CGROUP_ARRAY:
5161 if (func_id != BPF_FUNC_skb_under_cgroup &&
5162 func_id != BPF_FUNC_current_task_under_cgroup)
5163 goto error;
5164 break;
5165 case BPF_MAP_TYPE_CGROUP_STORAGE:
5166 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
5167 if (func_id != BPF_FUNC_get_local_storage)
5168 goto error;
5169 break;
5170 case BPF_MAP_TYPE_DEVMAP:
5171 case BPF_MAP_TYPE_DEVMAP_HASH:
5172 if (func_id != BPF_FUNC_redirect_map &&
5173 func_id != BPF_FUNC_map_lookup_elem)
5174 goto error;
5175 break;
5176 /* Restrict bpf side of cpumap and xskmap, open when use-cases
5177 * appear.
5178 */
5179 case BPF_MAP_TYPE_CPUMAP:
5180 if (func_id != BPF_FUNC_redirect_map)
5181 goto error;
5182 break;
5183 case BPF_MAP_TYPE_XSKMAP:
5184 if (func_id != BPF_FUNC_redirect_map &&
5185 func_id != BPF_FUNC_map_lookup_elem)
5186 goto error;
5187 break;
5188 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5189 case BPF_MAP_TYPE_HASH_OF_MAPS:
5190 if (func_id != BPF_FUNC_map_lookup_elem)
5191 goto error;
5192 break;
5193 case BPF_MAP_TYPE_SOCKMAP:
5194 if (func_id != BPF_FUNC_sk_redirect_map &&
5195 func_id != BPF_FUNC_sock_map_update &&
5196 func_id != BPF_FUNC_map_delete_elem &&
5197 func_id != BPF_FUNC_msg_redirect_map &&
5198 func_id != BPF_FUNC_sk_select_reuseport &&
5199 func_id != BPF_FUNC_map_lookup_elem &&
5200 !may_update_sockmap(env, func_id))
5201 goto error;
5202 break;
5203 case BPF_MAP_TYPE_SOCKHASH:
5204 if (func_id != BPF_FUNC_sk_redirect_hash &&
5205 func_id != BPF_FUNC_sock_hash_update &&
5206 func_id != BPF_FUNC_map_delete_elem &&
5207 func_id != BPF_FUNC_msg_redirect_hash &&
5208 func_id != BPF_FUNC_sk_select_reuseport &&
5209 func_id != BPF_FUNC_map_lookup_elem &&
5210 !may_update_sockmap(env, func_id))
5211 goto error;
5212 break;
5213 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5214 if (func_id != BPF_FUNC_sk_select_reuseport)
5215 goto error;
5216 break;
5217 case BPF_MAP_TYPE_QUEUE:
5218 case BPF_MAP_TYPE_STACK:
5219 if (func_id != BPF_FUNC_map_peek_elem &&
5220 func_id != BPF_FUNC_map_pop_elem &&
5221 func_id != BPF_FUNC_map_push_elem)
5222 goto error;
5223 break;
5224 case BPF_MAP_TYPE_SK_STORAGE:
5225 if (func_id != BPF_FUNC_sk_storage_get &&
5226 func_id != BPF_FUNC_sk_storage_delete)
5227 goto error;
5228 break;
5229 case BPF_MAP_TYPE_INODE_STORAGE:
5230 if (func_id != BPF_FUNC_inode_storage_get &&
5231 func_id != BPF_FUNC_inode_storage_delete)
5232 goto error;
5233 break;
5234 case BPF_MAP_TYPE_TASK_STORAGE:
5235 if (func_id != BPF_FUNC_task_storage_get &&
5236 func_id != BPF_FUNC_task_storage_delete)
5237 goto error;
5238 break;
5239 default:
5240 break;
5241 }
5242
5243 /* ... and second from the function itself. */
5244 switch (func_id) {
5245 case BPF_FUNC_tail_call:
5246 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5247 goto error;
5248 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5249 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
5250 return -EINVAL;
5251 }
5252 break;
5253 case BPF_FUNC_perf_event_read:
5254 case BPF_FUNC_perf_event_output:
5255 case BPF_FUNC_perf_event_read_value:
5256 case BPF_FUNC_skb_output:
5257 case BPF_FUNC_xdp_output:
5258 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5259 goto error;
5260 break;
5261 case BPF_FUNC_ringbuf_output:
5262 case BPF_FUNC_ringbuf_reserve:
5263 case BPF_FUNC_ringbuf_query:
5264 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
5265 goto error;
5266 break;
5267 case BPF_FUNC_get_stackid:
5268 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5269 goto error;
5270 break;
5271 case BPF_FUNC_current_task_under_cgroup:
5272 case BPF_FUNC_skb_under_cgroup:
5273 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5274 goto error;
5275 break;
5276 case BPF_FUNC_redirect_map:
5277 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
5278 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
5279 map->map_type != BPF_MAP_TYPE_CPUMAP &&
5280 map->map_type != BPF_MAP_TYPE_XSKMAP)
5281 goto error;
5282 break;
5283 case BPF_FUNC_sk_redirect_map:
5284 case BPF_FUNC_msg_redirect_map:
5285 case BPF_FUNC_sock_map_update:
5286 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5287 goto error;
5288 break;
5289 case BPF_FUNC_sk_redirect_hash:
5290 case BPF_FUNC_msg_redirect_hash:
5291 case BPF_FUNC_sock_hash_update:
5292 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5293 goto error;
5294 break;
5295 case BPF_FUNC_get_local_storage:
5296 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5297 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5298 goto error;
5299 break;
5300 case BPF_FUNC_sk_select_reuseport:
5301 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5302 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5303 map->map_type != BPF_MAP_TYPE_SOCKHASH)
5304 goto error;
5305 break;
5306 case BPF_FUNC_map_peek_elem:
5307 case BPF_FUNC_map_pop_elem:
5308 case BPF_FUNC_map_push_elem:
5309 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5310 map->map_type != BPF_MAP_TYPE_STACK)
5311 goto error;
5312 break;
5313 case BPF_FUNC_sk_storage_get:
5314 case BPF_FUNC_sk_storage_delete:
5315 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5316 goto error;
5317 break;
5318 case BPF_FUNC_inode_storage_get:
5319 case BPF_FUNC_inode_storage_delete:
5320 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5321 goto error;
5322 break;
5323 case BPF_FUNC_task_storage_get:
5324 case BPF_FUNC_task_storage_delete:
5325 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5326 goto error;
5327 break;
5328 default:
5329 break;
5330 }
5331
5332 return 0;
5333error:
5334 verbose(env, "cannot pass map_type %d into func %s#%d\n",
5335 map->map_type, func_id_name(func_id), func_id);
5336 return -EINVAL;
5337}
5338
5339static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5340{
5341 int count = 0;
5342
5343 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5344 count++;
5345 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5346 count++;
5347 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5348 count++;
5349 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5350 count++;
5351 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5352 count++;
5353
5354 /* We only support one arg being in raw mode at the moment,
5355 * which is sufficient for the helper functions we have
5356 * right now.
5357 */
5358 return count <= 1;
5359}
5360
5361static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5362 enum bpf_arg_type arg_next)
5363{
5364 return (arg_type_is_mem_ptr(arg_curr) &&
5365 !arg_type_is_mem_size(arg_next)) ||
5366 (!arg_type_is_mem_ptr(arg_curr) &&
5367 arg_type_is_mem_size(arg_next));
5368}
5369
5370static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5371{
5372 /* bpf_xxx(..., buf, len) call will access 'len'
5373 * bytes from memory 'buf'. Both arg types need
5374 * to be paired, so make sure there's no buggy
5375 * helper function specification.
5376 */
5377 if (arg_type_is_mem_size(fn->arg1_type) ||
5378 arg_type_is_mem_ptr(fn->arg5_type) ||
5379 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5380 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5381 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5382 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5383 return false;
5384
5385 return true;
5386}
5387
5388static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5389{
5390 int count = 0;
5391
5392 if (arg_type_may_be_refcounted(fn->arg1_type))
5393 count++;
5394 if (arg_type_may_be_refcounted(fn->arg2_type))
5395 count++;
5396 if (arg_type_may_be_refcounted(fn->arg3_type))
5397 count++;
5398 if (arg_type_may_be_refcounted(fn->arg4_type))
5399 count++;
5400 if (arg_type_may_be_refcounted(fn->arg5_type))
5401 count++;
5402
5403 /* A reference acquiring function cannot acquire
5404 * another refcounted ptr.
5405 */
5406 if (may_be_acquire_function(func_id) && count)
5407 return false;
5408
5409 /* We only support one arg being unreferenced at the moment,
5410 * which is sufficient for the helper functions we have right now.
5411 */
5412 return count <= 1;
5413}
5414
5415static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5416{
5417 int i;
5418
5419 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5420 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5421 return false;
5422
5423 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5424 return false;
5425 }
5426
5427 return true;
5428}
5429
5430static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5431{
5432 return check_raw_mode_ok(fn) &&
5433 check_arg_pair_ok(fn) &&
5434 check_btf_id_ok(fn) &&
5435 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5436}
5437
5438/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5439 * are now invalid, so turn them into unknown SCALAR_VALUE.
5440 */
5441static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5442 struct bpf_func_state *state)
5443{
5444 struct bpf_reg_state *regs = state->regs, *reg;
5445 int i;
5446
5447 for (i = 0; i < MAX_BPF_REG; i++)
5448 if (reg_is_pkt_pointer_any(®s[i]))
5449 mark_reg_unknown(env, regs, i);
5450
5451 bpf_for_each_spilled_reg(i, state, reg) {
5452 if (!reg)
5453 continue;
5454 if (reg_is_pkt_pointer_any(reg))
5455 __mark_reg_unknown(env, reg);
5456 }
5457}
5458
5459static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5460{
5461 struct bpf_verifier_state *vstate = env->cur_state;
5462 int i;
5463
5464 for (i = 0; i <= vstate->curframe; i++)
5465 __clear_all_pkt_pointers(env, vstate->frame[i]);
5466}
5467
5468enum {
5469 AT_PKT_END = -1,
5470 BEYOND_PKT_END = -2,
5471};
5472
5473static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5474{
5475 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5476 struct bpf_reg_state *reg = &state->regs[regn];
5477
5478 if (reg->type != PTR_TO_PACKET)
5479 /* PTR_TO_PACKET_META is not supported yet */
5480 return;
5481
5482 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5483 * How far beyond pkt_end it goes is unknown.
5484 * if (!range_open) it's the case of pkt >= pkt_end
5485 * if (range_open) it's the case of pkt > pkt_end
5486 * hence this pointer is at least 1 byte bigger than pkt_end
5487 */
5488 if (range_open)
5489 reg->range = BEYOND_PKT_END;
5490 else
5491 reg->range = AT_PKT_END;
5492}
5493
5494static void release_reg_references(struct bpf_verifier_env *env,
5495 struct bpf_func_state *state,
5496 int ref_obj_id)
5497{
5498 struct bpf_reg_state *regs = state->regs, *reg;
5499 int i;
5500
5501 for (i = 0; i < MAX_BPF_REG; i++)
5502 if (regs[i].ref_obj_id == ref_obj_id)
5503 mark_reg_unknown(env, regs, i);
5504
5505 bpf_for_each_spilled_reg(i, state, reg) {
5506 if (!reg)
5507 continue;
5508 if (reg->ref_obj_id == ref_obj_id)
5509 __mark_reg_unknown(env, reg);
5510 }
5511}
5512
5513/* The pointer with the specified id has released its reference to kernel
5514 * resources. Identify all copies of the same pointer and clear the reference.
5515 */
5516static int release_reference(struct bpf_verifier_env *env,
5517 int ref_obj_id)
5518{
5519 struct bpf_verifier_state *vstate = env->cur_state;
5520 int err;
5521 int i;
5522
5523 err = release_reference_state(cur_func(env), ref_obj_id);
5524 if (err)
5525 return err;
5526
5527 for (i = 0; i <= vstate->curframe; i++)
5528 release_reg_references(env, vstate->frame[i], ref_obj_id);
5529
5530 return 0;
5531}
5532
5533static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5534 struct bpf_reg_state *regs)
5535{
5536 int i;
5537
5538 /* after the call registers r0 - r5 were scratched */
5539 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5540 mark_reg_not_init(env, regs, caller_saved[i]);
5541 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5542 }
5543}
5544
5545typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5546 struct bpf_func_state *caller,
5547 struct bpf_func_state *callee,
5548 int insn_idx);
5549
5550static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5551 int *insn_idx, int subprog,
5552 set_callee_state_fn set_callee_state_cb)
5553{
5554 struct bpf_verifier_state *state = env->cur_state;
5555 struct bpf_func_info_aux *func_info_aux;
5556 struct bpf_func_state *caller, *callee;
5557 int err;
5558 bool is_global = false;
5559
5560 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5561 verbose(env, "the call stack of %d frames is too deep\n",
5562 state->curframe + 2);
5563 return -E2BIG;
5564 }
5565
5566 caller = state->frame[state->curframe];
5567 if (state->frame[state->curframe + 1]) {
5568 verbose(env, "verifier bug. Frame %d already allocated\n",
5569 state->curframe + 1);
5570 return -EFAULT;
5571 }
5572
5573 func_info_aux = env->prog->aux->func_info_aux;
5574 if (func_info_aux)
5575 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5576 err = btf_check_subprog_arg_match(env, subprog, caller->regs);
5577 if (err == -EFAULT)
5578 return err;
5579 if (is_global) {
5580 if (err) {
5581 verbose(env, "Caller passes invalid args into func#%d\n",
5582 subprog);
5583 return err;
5584 } else {
5585 if (env->log.level & BPF_LOG_LEVEL)
5586 verbose(env,
5587 "Func#%d is global and valid. Skipping.\n",
5588 subprog);
5589 clear_caller_saved_regs(env, caller->regs);
5590
5591 /* All global functions return a 64-bit SCALAR_VALUE */
5592 mark_reg_unknown(env, caller->regs, BPF_REG_0);
5593 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5594
5595 /* continue with next insn after call */
5596 return 0;
5597 }
5598 }
5599
5600 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5601 if (!callee)
5602 return -ENOMEM;
5603 state->frame[state->curframe + 1] = callee;
5604
5605 /* callee cannot access r0, r6 - r9 for reading and has to write
5606 * into its own stack before reading from it.
5607 * callee can read/write into caller's stack
5608 */
5609 init_func_state(env, callee,
5610 /* remember the callsite, it will be used by bpf_exit */
5611 *insn_idx /* callsite */,
5612 state->curframe + 1 /* frameno within this callchain */,
5613 subprog /* subprog number within this prog */);
5614
5615 /* Transfer references to the callee */
5616 err = copy_reference_state(callee, caller);
5617 if (err)
5618 return err;
5619
5620 err = set_callee_state_cb(env, caller, callee, *insn_idx);
5621 if (err)
5622 return err;
5623
5624 clear_caller_saved_regs(env, caller->regs);
5625
5626 /* only increment it after check_reg_arg() finished */
5627 state->curframe++;
5628
5629 /* and go analyze first insn of the callee */
5630 *insn_idx = env->subprog_info[subprog].start - 1;
5631
5632 if (env->log.level & BPF_LOG_LEVEL) {
5633 verbose(env, "caller:\n");
5634 print_verifier_state(env, caller);
5635 verbose(env, "callee:\n");
5636 print_verifier_state(env, callee);
5637 }
5638 return 0;
5639}
5640
5641int map_set_for_each_callback_args(struct bpf_verifier_env *env,
5642 struct bpf_func_state *caller,
5643 struct bpf_func_state *callee)
5644{
5645 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
5646 * void *callback_ctx, u64 flags);
5647 * callback_fn(struct bpf_map *map, void *key, void *value,
5648 * void *callback_ctx);
5649 */
5650 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
5651
5652 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
5653 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
5654 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5655
5656 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
5657 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
5658 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5659
5660 /* pointer to stack or null */
5661 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
5662
5663 /* unused */
5664 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
5665 return 0;
5666}
5667
5668static int set_callee_state(struct bpf_verifier_env *env,
5669 struct bpf_func_state *caller,
5670 struct bpf_func_state *callee, int insn_idx)
5671{
5672 int i;
5673
5674 /* copy r1 - r5 args that callee can access. The copy includes parent
5675 * pointers, which connects us up to the liveness chain
5676 */
5677 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5678 callee->regs[i] = caller->regs[i];
5679 return 0;
5680}
5681
5682static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5683 int *insn_idx)
5684{
5685 int subprog, target_insn;
5686
5687 target_insn = *insn_idx + insn->imm + 1;
5688 subprog = find_subprog(env, target_insn);
5689 if (subprog < 0) {
5690 verbose(env, "verifier bug. No program starts at insn %d\n",
5691 target_insn);
5692 return -EFAULT;
5693 }
5694
5695 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
5696}
5697
5698static int set_map_elem_callback_state(struct bpf_verifier_env *env,
5699 struct bpf_func_state *caller,
5700 struct bpf_func_state *callee,
5701 int insn_idx)
5702{
5703 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
5704 struct bpf_map *map;
5705 int err;
5706
5707 if (bpf_map_ptr_poisoned(insn_aux)) {
5708 verbose(env, "tail_call abusing map_ptr\n");
5709 return -EINVAL;
5710 }
5711
5712 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
5713 if (!map->ops->map_set_for_each_callback_args ||
5714 !map->ops->map_for_each_callback) {
5715 verbose(env, "callback function not allowed for map\n");
5716 return -ENOTSUPP;
5717 }
5718
5719 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
5720 if (err)
5721 return err;
5722
5723 callee->in_callback_fn = true;
5724 return 0;
5725}
5726
5727static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5728{
5729 struct bpf_verifier_state *state = env->cur_state;
5730 struct bpf_func_state *caller, *callee;
5731 struct bpf_reg_state *r0;
5732 int err;
5733
5734 callee = state->frame[state->curframe];
5735 r0 = &callee->regs[BPF_REG_0];
5736 if (r0->type == PTR_TO_STACK) {
5737 /* technically it's ok to return caller's stack pointer
5738 * (or caller's caller's pointer) back to the caller,
5739 * since these pointers are valid. Only current stack
5740 * pointer will be invalid as soon as function exits,
5741 * but let's be conservative
5742 */
5743 verbose(env, "cannot return stack pointer to the caller\n");
5744 return -EINVAL;
5745 }
5746
5747 state->curframe--;
5748 caller = state->frame[state->curframe];
5749 if (callee->in_callback_fn) {
5750 /* enforce R0 return value range [0, 1]. */
5751 struct tnum range = tnum_range(0, 1);
5752
5753 if (r0->type != SCALAR_VALUE) {
5754 verbose(env, "R0 not a scalar value\n");
5755 return -EACCES;
5756 }
5757 if (!tnum_in(range, r0->var_off)) {
5758 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
5759 return -EINVAL;
5760 }
5761 } else {
5762 /* return to the caller whatever r0 had in the callee */
5763 caller->regs[BPF_REG_0] = *r0;
5764 }
5765
5766 /* Transfer references to the caller */
5767 err = copy_reference_state(caller, callee);
5768 if (err)
5769 return err;
5770
5771 *insn_idx = callee->callsite + 1;
5772 if (env->log.level & BPF_LOG_LEVEL) {
5773 verbose(env, "returning from callee:\n");
5774 print_verifier_state(env, callee);
5775 verbose(env, "to caller at %d:\n", *insn_idx);
5776 print_verifier_state(env, caller);
5777 }
5778 /* clear everything in the callee */
5779 free_func_state(callee);
5780 state->frame[state->curframe + 1] = NULL;
5781 return 0;
5782}
5783
5784static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5785 int func_id,
5786 struct bpf_call_arg_meta *meta)
5787{
5788 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0];
5789
5790 if (ret_type != RET_INTEGER ||
5791 (func_id != BPF_FUNC_get_stack &&
5792 func_id != BPF_FUNC_get_task_stack &&
5793 func_id != BPF_FUNC_probe_read_str &&
5794 func_id != BPF_FUNC_probe_read_kernel_str &&
5795 func_id != BPF_FUNC_probe_read_user_str))
5796 return;
5797
5798 ret_reg->smax_value = meta->msize_max_value;
5799 ret_reg->s32_max_value = meta->msize_max_value;
5800 ret_reg->smin_value = -MAX_ERRNO;
5801 ret_reg->s32_min_value = -MAX_ERRNO;
5802 __reg_deduce_bounds(ret_reg);
5803 __reg_bound_offset(ret_reg);
5804 __update_reg_bounds(ret_reg);
5805}
5806
5807static int
5808record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5809 int func_id, int insn_idx)
5810{
5811 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5812 struct bpf_map *map = meta->map_ptr;
5813
5814 if (func_id != BPF_FUNC_tail_call &&
5815 func_id != BPF_FUNC_map_lookup_elem &&
5816 func_id != BPF_FUNC_map_update_elem &&
5817 func_id != BPF_FUNC_map_delete_elem &&
5818 func_id != BPF_FUNC_map_push_elem &&
5819 func_id != BPF_FUNC_map_pop_elem &&
5820 func_id != BPF_FUNC_map_peek_elem &&
5821 func_id != BPF_FUNC_for_each_map_elem &&
5822 func_id != BPF_FUNC_redirect_map)
5823 return 0;
5824
5825 if (map == NULL) {
5826 verbose(env, "kernel subsystem misconfigured verifier\n");
5827 return -EINVAL;
5828 }
5829
5830 /* In case of read-only, some additional restrictions
5831 * need to be applied in order to prevent altering the
5832 * state of the map from program side.
5833 */
5834 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5835 (func_id == BPF_FUNC_map_delete_elem ||
5836 func_id == BPF_FUNC_map_update_elem ||
5837 func_id == BPF_FUNC_map_push_elem ||
5838 func_id == BPF_FUNC_map_pop_elem)) {
5839 verbose(env, "write into map forbidden\n");
5840 return -EACCES;
5841 }
5842
5843 if (!BPF_MAP_PTR(aux->map_ptr_state))
5844 bpf_map_ptr_store(aux, meta->map_ptr,
5845 !meta->map_ptr->bypass_spec_v1);
5846 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
5847 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
5848 !meta->map_ptr->bypass_spec_v1);
5849 return 0;
5850}
5851
5852static int
5853record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5854 int func_id, int insn_idx)
5855{
5856 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5857 struct bpf_reg_state *regs = cur_regs(env), *reg;
5858 struct bpf_map *map = meta->map_ptr;
5859 struct tnum range;
5860 u64 val;
5861 int err;
5862
5863 if (func_id != BPF_FUNC_tail_call)
5864 return 0;
5865 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5866 verbose(env, "kernel subsystem misconfigured verifier\n");
5867 return -EINVAL;
5868 }
5869
5870 range = tnum_range(0, map->max_entries - 1);
5871 reg = ®s[BPF_REG_3];
5872
5873 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5874 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5875 return 0;
5876 }
5877
5878 err = mark_chain_precision(env, BPF_REG_3);
5879 if (err)
5880 return err;
5881
5882 val = reg->var_off.value;
5883 if (bpf_map_key_unseen(aux))
5884 bpf_map_key_store(aux, val);
5885 else if (!bpf_map_key_poisoned(aux) &&
5886 bpf_map_key_immediate(aux) != val)
5887 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5888 return 0;
5889}
5890
5891static int check_reference_leak(struct bpf_verifier_env *env)
5892{
5893 struct bpf_func_state *state = cur_func(env);
5894 int i;
5895
5896 for (i = 0; i < state->acquired_refs; i++) {
5897 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5898 state->refs[i].id, state->refs[i].insn_idx);
5899 }
5900 return state->acquired_refs ? -EINVAL : 0;
5901}
5902
5903static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
5904 struct bpf_reg_state *regs)
5905{
5906 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3];
5907 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5];
5908 struct bpf_map *fmt_map = fmt_reg->map_ptr;
5909 int err, fmt_map_off, num_args;
5910 u64 fmt_addr;
5911 char *fmt;
5912
5913 /* data must be an array of u64 */
5914 if (data_len_reg->var_off.value % 8)
5915 return -EINVAL;
5916 num_args = data_len_reg->var_off.value / 8;
5917
5918 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
5919 * and map_direct_value_addr is set.
5920 */
5921 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
5922 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
5923 fmt_map_off);
5924 if (err) {
5925 verbose(env, "verifier bug\n");
5926 return -EFAULT;
5927 }
5928 fmt = (char *)(long)fmt_addr + fmt_map_off;
5929
5930 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
5931 * can focus on validating the format specifiers.
5932 */
5933 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
5934 if (err < 0)
5935 verbose(env, "Invalid format string\n");
5936
5937 return err;
5938}
5939
5940static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5941 int *insn_idx_p)
5942{
5943 const struct bpf_func_proto *fn = NULL;
5944 struct bpf_reg_state *regs;
5945 struct bpf_call_arg_meta meta;
5946 int insn_idx = *insn_idx_p;
5947 bool changes_data;
5948 int i, err, func_id;
5949
5950 /* find function prototype */
5951 func_id = insn->imm;
5952 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5953 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5954 func_id);
5955 return -EINVAL;
5956 }
5957
5958 if (env->ops->get_func_proto)
5959 fn = env->ops->get_func_proto(func_id, env->prog);
5960 if (!fn) {
5961 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5962 func_id);
5963 return -EINVAL;
5964 }
5965
5966 /* eBPF programs must be GPL compatible to use GPL-ed functions */
5967 if (!env->prog->gpl_compatible && fn->gpl_only) {
5968 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5969 return -EINVAL;
5970 }
5971
5972 if (fn->allowed && !fn->allowed(env->prog)) {
5973 verbose(env, "helper call is not allowed in probe\n");
5974 return -EINVAL;
5975 }
5976
5977 /* With LD_ABS/IND some JITs save/restore skb from r1. */
5978 changes_data = bpf_helper_changes_pkt_data(fn->func);
5979 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5980 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5981 func_id_name(func_id), func_id);
5982 return -EINVAL;
5983 }
5984
5985 memset(&meta, 0, sizeof(meta));
5986 meta.pkt_access = fn->pkt_access;
5987
5988 err = check_func_proto(fn, func_id);
5989 if (err) {
5990 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
5991 func_id_name(func_id), func_id);
5992 return err;
5993 }
5994
5995 meta.func_id = func_id;
5996 /* check args */
5997 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
5998 err = check_func_arg(env, i, &meta, fn);
5999 if (err)
6000 return err;
6001 }
6002
6003 err = record_func_map(env, &meta, func_id, insn_idx);
6004 if (err)
6005 return err;
6006
6007 err = record_func_key(env, &meta, func_id, insn_idx);
6008 if (err)
6009 return err;
6010
6011 /* Mark slots with STACK_MISC in case of raw mode, stack offset
6012 * is inferred from register state.
6013 */
6014 for (i = 0; i < meta.access_size; i++) {
6015 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6016 BPF_WRITE, -1, false);
6017 if (err)
6018 return err;
6019 }
6020
6021 if (func_id == BPF_FUNC_tail_call) {
6022 err = check_reference_leak(env);
6023 if (err) {
6024 verbose(env, "tail_call would lead to reference leak\n");
6025 return err;
6026 }
6027 } else if (is_release_function(func_id)) {
6028 err = release_reference(env, meta.ref_obj_id);
6029 if (err) {
6030 verbose(env, "func %s#%d reference has not been acquired before\n",
6031 func_id_name(func_id), func_id);
6032 return err;
6033 }
6034 }
6035
6036 regs = cur_regs(env);
6037
6038 /* check that flags argument in get_local_storage(map, flags) is 0,
6039 * this is required because get_local_storage() can't return an error.
6040 */
6041 if (func_id == BPF_FUNC_get_local_storage &&
6042 !register_is_null(®s[BPF_REG_2])) {
6043 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6044 return -EINVAL;
6045 }
6046
6047 if (func_id == BPF_FUNC_for_each_map_elem) {
6048 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6049 set_map_elem_callback_state);
6050 if (err < 0)
6051 return -EINVAL;
6052 }
6053
6054 if (func_id == BPF_FUNC_snprintf) {
6055 err = check_bpf_snprintf_call(env, regs);
6056 if (err < 0)
6057 return err;
6058 }
6059
6060 /* reset caller saved regs */
6061 for (i = 0; i < CALLER_SAVED_REGS; i++) {
6062 mark_reg_not_init(env, regs, caller_saved[i]);
6063 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6064 }
6065
6066 /* helper call returns 64-bit value. */
6067 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6068
6069 /* update return register (already marked as written above) */
6070 if (fn->ret_type == RET_INTEGER) {
6071 /* sets type to SCALAR_VALUE */
6072 mark_reg_unknown(env, regs, BPF_REG_0);
6073 } else if (fn->ret_type == RET_VOID) {
6074 regs[BPF_REG_0].type = NOT_INIT;
6075 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
6076 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6077 /* There is no offset yet applied, variable or fixed */
6078 mark_reg_known_zero(env, regs, BPF_REG_0);
6079 /* remember map_ptr, so that check_map_access()
6080 * can check 'value_size' boundary of memory access
6081 * to map element returned from bpf_map_lookup_elem()
6082 */
6083 if (meta.map_ptr == NULL) {
6084 verbose(env,
6085 "kernel subsystem misconfigured verifier\n");
6086 return -EINVAL;
6087 }
6088 regs[BPF_REG_0].map_ptr = meta.map_ptr;
6089 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6090 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
6091 if (map_value_has_spin_lock(meta.map_ptr))
6092 regs[BPF_REG_0].id = ++env->id_gen;
6093 } else {
6094 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
6095 }
6096 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
6097 mark_reg_known_zero(env, regs, BPF_REG_0);
6098 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
6099 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
6100 mark_reg_known_zero(env, regs, BPF_REG_0);
6101 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
6102 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
6103 mark_reg_known_zero(env, regs, BPF_REG_0);
6104 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
6105 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
6106 mark_reg_known_zero(env, regs, BPF_REG_0);
6107 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
6108 regs[BPF_REG_0].mem_size = meta.mem_size;
6109 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
6110 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
6111 const struct btf_type *t;
6112
6113 mark_reg_known_zero(env, regs, BPF_REG_0);
6114 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
6115 if (!btf_type_is_struct(t)) {
6116 u32 tsize;
6117 const struct btf_type *ret;
6118 const char *tname;
6119
6120 /* resolve the type size of ksym. */
6121 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
6122 if (IS_ERR(ret)) {
6123 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
6124 verbose(env, "unable to resolve the size of type '%s': %ld\n",
6125 tname, PTR_ERR(ret));
6126 return -EINVAL;
6127 }
6128 regs[BPF_REG_0].type =
6129 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6130 PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
6131 regs[BPF_REG_0].mem_size = tsize;
6132 } else {
6133 regs[BPF_REG_0].type =
6134 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6135 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
6136 regs[BPF_REG_0].btf = meta.ret_btf;
6137 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6138 }
6139 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
6140 fn->ret_type == RET_PTR_TO_BTF_ID) {
6141 int ret_btf_id;
6142
6143 mark_reg_known_zero(env, regs, BPF_REG_0);
6144 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
6145 PTR_TO_BTF_ID :
6146 PTR_TO_BTF_ID_OR_NULL;
6147 ret_btf_id = *fn->ret_btf_id;
6148 if (ret_btf_id == 0) {
6149 verbose(env, "invalid return type %d of func %s#%d\n",
6150 fn->ret_type, func_id_name(func_id), func_id);
6151 return -EINVAL;
6152 }
6153 /* current BPF helper definitions are only coming from
6154 * built-in code with type IDs from vmlinux BTF
6155 */
6156 regs[BPF_REG_0].btf = btf_vmlinux;
6157 regs[BPF_REG_0].btf_id = ret_btf_id;
6158 } else {
6159 verbose(env, "unknown return type %d of func %s#%d\n",
6160 fn->ret_type, func_id_name(func_id), func_id);
6161 return -EINVAL;
6162 }
6163
6164 if (reg_type_may_be_null(regs[BPF_REG_0].type))
6165 regs[BPF_REG_0].id = ++env->id_gen;
6166
6167 if (is_ptr_cast_function(func_id)) {
6168 /* For release_reference() */
6169 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
6170 } else if (is_acquire_function(func_id, meta.map_ptr)) {
6171 int id = acquire_reference_state(env, insn_idx);
6172
6173 if (id < 0)
6174 return id;
6175 /* For mark_ptr_or_null_reg() */
6176 regs[BPF_REG_0].id = id;
6177 /* For release_reference() */
6178 regs[BPF_REG_0].ref_obj_id = id;
6179 }
6180
6181 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6182
6183 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
6184 if (err)
6185 return err;
6186
6187 if ((func_id == BPF_FUNC_get_stack ||
6188 func_id == BPF_FUNC_get_task_stack) &&
6189 !env->prog->has_callchain_buf) {
6190 const char *err_str;
6191
6192#ifdef CONFIG_PERF_EVENTS
6193 err = get_callchain_buffers(sysctl_perf_event_max_stack);
6194 err_str = "cannot get callchain buffer for func %s#%d\n";
6195#else
6196 err = -ENOTSUPP;
6197 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6198#endif
6199 if (err) {
6200 verbose(env, err_str, func_id_name(func_id), func_id);
6201 return err;
6202 }
6203
6204 env->prog->has_callchain_buf = true;
6205 }
6206
6207 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6208 env->prog->call_get_stack = true;
6209
6210 if (changes_data)
6211 clear_all_pkt_pointers(env);
6212 return 0;
6213}
6214
6215/* mark_btf_func_reg_size() is used when the reg size is determined by
6216 * the BTF func_proto's return value size and argument.
6217 */
6218static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6219 size_t reg_size)
6220{
6221 struct bpf_reg_state *reg = &cur_regs(env)[regno];
6222
6223 if (regno == BPF_REG_0) {
6224 /* Function return value */
6225 reg->live |= REG_LIVE_WRITTEN;
6226 reg->subreg_def = reg_size == sizeof(u64) ?
6227 DEF_NOT_SUBREG : env->insn_idx + 1;
6228 } else {
6229 /* Function argument */
6230 if (reg_size == sizeof(u64)) {
6231 mark_insn_zext(env, reg);
6232 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6233 } else {
6234 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6235 }
6236 }
6237}
6238
6239static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6240{
6241 const struct btf_type *t, *func, *func_proto, *ptr_type;
6242 struct bpf_reg_state *regs = cur_regs(env);
6243 const char *func_name, *ptr_type_name;
6244 u32 i, nargs, func_id, ptr_type_id;
6245 const struct btf_param *args;
6246 int err;
6247
6248 func_id = insn->imm;
6249 func = btf_type_by_id(btf_vmlinux, func_id);
6250 func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
6251 func_proto = btf_type_by_id(btf_vmlinux, func->type);
6252
6253 if (!env->ops->check_kfunc_call ||
6254 !env->ops->check_kfunc_call(func_id)) {
6255 verbose(env, "calling kernel function %s is not allowed\n",
6256 func_name);
6257 return -EACCES;
6258 }
6259
6260 /* Check the arguments */
6261 err = btf_check_kfunc_arg_match(env, btf_vmlinux, func_id, regs);
6262 if (err)
6263 return err;
6264
6265 for (i = 0; i < CALLER_SAVED_REGS; i++)
6266 mark_reg_not_init(env, regs, caller_saved[i]);
6267
6268 /* Check return type */
6269 t = btf_type_skip_modifiers(btf_vmlinux, func_proto->type, NULL);
6270 if (btf_type_is_scalar(t)) {
6271 mark_reg_unknown(env, regs, BPF_REG_0);
6272 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6273 } else if (btf_type_is_ptr(t)) {
6274 ptr_type = btf_type_skip_modifiers(btf_vmlinux, t->type,
6275 &ptr_type_id);
6276 if (!btf_type_is_struct(ptr_type)) {
6277 ptr_type_name = btf_name_by_offset(btf_vmlinux,
6278 ptr_type->name_off);
6279 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6280 func_name, btf_type_str(ptr_type),
6281 ptr_type_name);
6282 return -EINVAL;
6283 }
6284 mark_reg_known_zero(env, regs, BPF_REG_0);
6285 regs[BPF_REG_0].btf = btf_vmlinux;
6286 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6287 regs[BPF_REG_0].btf_id = ptr_type_id;
6288 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6289 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6290
6291 nargs = btf_type_vlen(func_proto);
6292 args = (const struct btf_param *)(func_proto + 1);
6293 for (i = 0; i < nargs; i++) {
6294 u32 regno = i + 1;
6295
6296 t = btf_type_skip_modifiers(btf_vmlinux, args[i].type, NULL);
6297 if (btf_type_is_ptr(t))
6298 mark_btf_func_reg_size(env, regno, sizeof(void *));
6299 else
6300 /* scalar. ensured by btf_check_kfunc_arg_match() */
6301 mark_btf_func_reg_size(env, regno, t->size);
6302 }
6303
6304 return 0;
6305}
6306
6307static bool signed_add_overflows(s64 a, s64 b)
6308{
6309 /* Do the add in u64, where overflow is well-defined */
6310 s64 res = (s64)((u64)a + (u64)b);
6311
6312 if (b < 0)
6313 return res > a;
6314 return res < a;
6315}
6316
6317static bool signed_add32_overflows(s32 a, s32 b)
6318{
6319 /* Do the add in u32, where overflow is well-defined */
6320 s32 res = (s32)((u32)a + (u32)b);
6321
6322 if (b < 0)
6323 return res > a;
6324 return res < a;
6325}
6326
6327static bool signed_sub_overflows(s64 a, s64 b)
6328{
6329 /* Do the sub in u64, where overflow is well-defined */
6330 s64 res = (s64)((u64)a - (u64)b);
6331
6332 if (b < 0)
6333 return res < a;
6334 return res > a;
6335}
6336
6337static bool signed_sub32_overflows(s32 a, s32 b)
6338{
6339 /* Do the sub in u32, where overflow is well-defined */
6340 s32 res = (s32)((u32)a - (u32)b);
6341
6342 if (b < 0)
6343 return res < a;
6344 return res > a;
6345}
6346
6347static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6348 const struct bpf_reg_state *reg,
6349 enum bpf_reg_type type)
6350{
6351 bool known = tnum_is_const(reg->var_off);
6352 s64 val = reg->var_off.value;
6353 s64 smin = reg->smin_value;
6354
6355 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6356 verbose(env, "math between %s pointer and %lld is not allowed\n",
6357 reg_type_str[type], val);
6358 return false;
6359 }
6360
6361 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6362 verbose(env, "%s pointer offset %d is not allowed\n",
6363 reg_type_str[type], reg->off);
6364 return false;
6365 }
6366
6367 if (smin == S64_MIN) {
6368 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6369 reg_type_str[type]);
6370 return false;
6371 }
6372
6373 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6374 verbose(env, "value %lld makes %s pointer be out of bounds\n",
6375 smin, reg_type_str[type]);
6376 return false;
6377 }
6378
6379 return true;
6380}
6381
6382static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6383{
6384 return &env->insn_aux_data[env->insn_idx];
6385}
6386
6387enum {
6388 REASON_BOUNDS = -1,
6389 REASON_TYPE = -2,
6390 REASON_PATHS = -3,
6391 REASON_LIMIT = -4,
6392 REASON_STACK = -5,
6393};
6394
6395static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
6396 u32 *alu_limit, bool mask_to_left)
6397{
6398 u32 max = 0, ptr_limit = 0;
6399
6400 switch (ptr_reg->type) {
6401 case PTR_TO_STACK:
6402 /* Offset 0 is out-of-bounds, but acceptable start for the
6403 * left direction, see BPF_REG_FP. Also, unknown scalar
6404 * offset where we would need to deal with min/max bounds is
6405 * currently prohibited for unprivileged.
6406 */
6407 max = MAX_BPF_STACK + mask_to_left;
6408 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
6409 break;
6410 case PTR_TO_MAP_VALUE:
6411 max = ptr_reg->map_ptr->value_size;
6412 ptr_limit = (mask_to_left ?
6413 ptr_reg->smin_value :
6414 ptr_reg->umax_value) + ptr_reg->off;
6415 break;
6416 default:
6417 return REASON_TYPE;
6418 }
6419
6420 if (ptr_limit >= max)
6421 return REASON_LIMIT;
6422 *alu_limit = ptr_limit;
6423 return 0;
6424}
6425
6426static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6427 const struct bpf_insn *insn)
6428{
6429 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
6430}
6431
6432static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6433 u32 alu_state, u32 alu_limit)
6434{
6435 /* If we arrived here from different branches with different
6436 * state or limits to sanitize, then this won't work.
6437 */
6438 if (aux->alu_state &&
6439 (aux->alu_state != alu_state ||
6440 aux->alu_limit != alu_limit))
6441 return REASON_PATHS;
6442
6443 /* Corresponding fixup done in do_misc_fixups(). */
6444 aux->alu_state = alu_state;
6445 aux->alu_limit = alu_limit;
6446 return 0;
6447}
6448
6449static int sanitize_val_alu(struct bpf_verifier_env *env,
6450 struct bpf_insn *insn)
6451{
6452 struct bpf_insn_aux_data *aux = cur_aux(env);
6453
6454 if (can_skip_alu_sanitation(env, insn))
6455 return 0;
6456
6457 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6458}
6459
6460static bool sanitize_needed(u8 opcode)
6461{
6462 return opcode == BPF_ADD || opcode == BPF_SUB;
6463}
6464
6465struct bpf_sanitize_info {
6466 struct bpf_insn_aux_data aux;
6467 bool mask_to_left;
6468};
6469
6470static struct bpf_verifier_state *
6471sanitize_speculative_path(struct bpf_verifier_env *env,
6472 const struct bpf_insn *insn,
6473 u32 next_idx, u32 curr_idx)
6474{
6475 struct bpf_verifier_state *branch;
6476 struct bpf_reg_state *regs;
6477
6478 branch = push_stack(env, next_idx, curr_idx, true);
6479 if (branch && insn) {
6480 regs = branch->frame[branch->curframe]->regs;
6481 if (BPF_SRC(insn->code) == BPF_K) {
6482 mark_reg_unknown(env, regs, insn->dst_reg);
6483 } else if (BPF_SRC(insn->code) == BPF_X) {
6484 mark_reg_unknown(env, regs, insn->dst_reg);
6485 mark_reg_unknown(env, regs, insn->src_reg);
6486 }
6487 }
6488 return branch;
6489}
6490
6491static int sanitize_ptr_alu(struct bpf_verifier_env *env,
6492 struct bpf_insn *insn,
6493 const struct bpf_reg_state *ptr_reg,
6494 const struct bpf_reg_state *off_reg,
6495 struct bpf_reg_state *dst_reg,
6496 struct bpf_sanitize_info *info,
6497 const bool commit_window)
6498{
6499 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
6500 struct bpf_verifier_state *vstate = env->cur_state;
6501 bool off_is_imm = tnum_is_const(off_reg->var_off);
6502 bool off_is_neg = off_reg->smin_value < 0;
6503 bool ptr_is_dst_reg = ptr_reg == dst_reg;
6504 u8 opcode = BPF_OP(insn->code);
6505 u32 alu_state, alu_limit;
6506 struct bpf_reg_state tmp;
6507 bool ret;
6508 int err;
6509
6510 if (can_skip_alu_sanitation(env, insn))
6511 return 0;
6512
6513 /* We already marked aux for masking from non-speculative
6514 * paths, thus we got here in the first place. We only care
6515 * to explore bad access from here.
6516 */
6517 if (vstate->speculative)
6518 goto do_sim;
6519
6520 if (!commit_window) {
6521 if (!tnum_is_const(off_reg->var_off) &&
6522 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
6523 return REASON_BOUNDS;
6524
6525 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
6526 (opcode == BPF_SUB && !off_is_neg);
6527 }
6528
6529 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
6530 if (err < 0)
6531 return err;
6532
6533 if (commit_window) {
6534 /* In commit phase we narrow the masking window based on
6535 * the observed pointer move after the simulated operation.
6536 */
6537 alu_state = info->aux.alu_state;
6538 alu_limit = abs(info->aux.alu_limit - alu_limit);
6539 } else {
6540 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
6541 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
6542 alu_state |= ptr_is_dst_reg ?
6543 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
6544
6545 /* Limit pruning on unknown scalars to enable deep search for
6546 * potential masking differences from other program paths.
6547 */
6548 if (!off_is_imm)
6549 env->explore_alu_limits = true;
6550 }
6551
6552 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
6553 if (err < 0)
6554 return err;
6555do_sim:
6556 /* If we're in commit phase, we're done here given we already
6557 * pushed the truncated dst_reg into the speculative verification
6558 * stack.
6559 *
6560 * Also, when register is a known constant, we rewrite register-based
6561 * operation to immediate-based, and thus do not need masking (and as
6562 * a consequence, do not need to simulate the zero-truncation either).
6563 */
6564 if (commit_window || off_is_imm)
6565 return 0;
6566
6567 /* Simulate and find potential out-of-bounds access under
6568 * speculative execution from truncation as a result of
6569 * masking when off was not within expected range. If off
6570 * sits in dst, then we temporarily need to move ptr there
6571 * to simulate dst (== 0) +/-= ptr. Needed, for example,
6572 * for cases where we use K-based arithmetic in one direction
6573 * and truncated reg-based in the other in order to explore
6574 * bad access.
6575 */
6576 if (!ptr_is_dst_reg) {
6577 tmp = *dst_reg;
6578 *dst_reg = *ptr_reg;
6579 }
6580 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
6581 env->insn_idx);
6582 if (!ptr_is_dst_reg && ret)
6583 *dst_reg = tmp;
6584 return !ret ? REASON_STACK : 0;
6585}
6586
6587static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
6588{
6589 struct bpf_verifier_state *vstate = env->cur_state;
6590
6591 /* If we simulate paths under speculation, we don't update the
6592 * insn as 'seen' such that when we verify unreachable paths in
6593 * the non-speculative domain, sanitize_dead_code() can still
6594 * rewrite/sanitize them.
6595 */
6596 if (!vstate->speculative)
6597 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
6598}
6599
6600static int sanitize_err(struct bpf_verifier_env *env,
6601 const struct bpf_insn *insn, int reason,
6602 const struct bpf_reg_state *off_reg,
6603 const struct bpf_reg_state *dst_reg)
6604{
6605 static const char *err = "pointer arithmetic with it prohibited for !root";
6606 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
6607 u32 dst = insn->dst_reg, src = insn->src_reg;
6608
6609 switch (reason) {
6610 case REASON_BOUNDS:
6611 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
6612 off_reg == dst_reg ? dst : src, err);
6613 break;
6614 case REASON_TYPE:
6615 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
6616 off_reg == dst_reg ? src : dst, err);
6617 break;
6618 case REASON_PATHS:
6619 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
6620 dst, op, err);
6621 break;
6622 case REASON_LIMIT:
6623 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
6624 dst, op, err);
6625 break;
6626 case REASON_STACK:
6627 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
6628 dst, err);
6629 break;
6630 default:
6631 verbose(env, "verifier internal error: unknown reason (%d)\n",
6632 reason);
6633 break;
6634 }
6635
6636 return -EACCES;
6637}
6638
6639/* check that stack access falls within stack limits and that 'reg' doesn't
6640 * have a variable offset.
6641 *
6642 * Variable offset is prohibited for unprivileged mode for simplicity since it
6643 * requires corresponding support in Spectre masking for stack ALU. See also
6644 * retrieve_ptr_limit().
6645 *
6646 *
6647 * 'off' includes 'reg->off'.
6648 */
6649static int check_stack_access_for_ptr_arithmetic(
6650 struct bpf_verifier_env *env,
6651 int regno,
6652 const struct bpf_reg_state *reg,
6653 int off)
6654{
6655 if (!tnum_is_const(reg->var_off)) {
6656 char tn_buf[48];
6657
6658 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6659 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
6660 regno, tn_buf, off);
6661 return -EACCES;
6662 }
6663
6664 if (off >= 0 || off < -MAX_BPF_STACK) {
6665 verbose(env, "R%d stack pointer arithmetic goes out of range, "
6666 "prohibited for !root; off=%d\n", regno, off);
6667 return -EACCES;
6668 }
6669
6670 return 0;
6671}
6672
6673static int sanitize_check_bounds(struct bpf_verifier_env *env,
6674 const struct bpf_insn *insn,
6675 const struct bpf_reg_state *dst_reg)
6676{
6677 u32 dst = insn->dst_reg;
6678
6679 /* For unprivileged we require that resulting offset must be in bounds
6680 * in order to be able to sanitize access later on.
6681 */
6682 if (env->bypass_spec_v1)
6683 return 0;
6684
6685 switch (dst_reg->type) {
6686 case PTR_TO_STACK:
6687 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
6688 dst_reg->off + dst_reg->var_off.value))
6689 return -EACCES;
6690 break;
6691 case PTR_TO_MAP_VALUE:
6692 if (check_map_access(env, dst, dst_reg->off, 1, false)) {
6693 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6694 "prohibited for !root\n", dst);
6695 return -EACCES;
6696 }
6697 break;
6698 default:
6699 break;
6700 }
6701
6702 return 0;
6703}
6704
6705/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
6706 * Caller should also handle BPF_MOV case separately.
6707 * If we return -EACCES, caller may want to try again treating pointer as a
6708 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
6709 */
6710static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6711 struct bpf_insn *insn,
6712 const struct bpf_reg_state *ptr_reg,
6713 const struct bpf_reg_state *off_reg)
6714{
6715 struct bpf_verifier_state *vstate = env->cur_state;
6716 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6717 struct bpf_reg_state *regs = state->regs, *dst_reg;
6718 bool known = tnum_is_const(off_reg->var_off);
6719 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6720 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6721 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6722 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
6723 struct bpf_sanitize_info info = {};
6724 u8 opcode = BPF_OP(insn->code);
6725 u32 dst = insn->dst_reg;
6726 int ret;
6727
6728 dst_reg = ®s[dst];
6729
6730 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6731 smin_val > smax_val || umin_val > umax_val) {
6732 /* Taint dst register if offset had invalid bounds derived from
6733 * e.g. dead branches.
6734 */
6735 __mark_reg_unknown(env, dst_reg);
6736 return 0;
6737 }
6738
6739 if (BPF_CLASS(insn->code) != BPF_ALU64) {
6740 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6741 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6742 __mark_reg_unknown(env, dst_reg);
6743 return 0;
6744 }
6745
6746 verbose(env,
6747 "R%d 32-bit pointer arithmetic prohibited\n",
6748 dst);
6749 return -EACCES;
6750 }
6751
6752 switch (ptr_reg->type) {
6753 case PTR_TO_MAP_VALUE_OR_NULL:
6754 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6755 dst, reg_type_str[ptr_reg->type]);
6756 return -EACCES;
6757 case CONST_PTR_TO_MAP:
6758 /* smin_val represents the known value */
6759 if (known && smin_val == 0 && opcode == BPF_ADD)
6760 break;
6761 fallthrough;
6762 case PTR_TO_PACKET_END:
6763 case PTR_TO_SOCKET:
6764 case PTR_TO_SOCKET_OR_NULL:
6765 case PTR_TO_SOCK_COMMON:
6766 case PTR_TO_SOCK_COMMON_OR_NULL:
6767 case PTR_TO_TCP_SOCK:
6768 case PTR_TO_TCP_SOCK_OR_NULL:
6769 case PTR_TO_XDP_SOCK:
6770 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6771 dst, reg_type_str[ptr_reg->type]);
6772 return -EACCES;
6773 default:
6774 break;
6775 }
6776
6777 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6778 * The id may be overwritten later if we create a new variable offset.
6779 */
6780 dst_reg->type = ptr_reg->type;
6781 dst_reg->id = ptr_reg->id;
6782
6783 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6784 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6785 return -EINVAL;
6786
6787 /* pointer types do not carry 32-bit bounds at the moment. */
6788 __mark_reg32_unbounded(dst_reg);
6789
6790 if (sanitize_needed(opcode)) {
6791 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
6792 &info, false);
6793 if (ret < 0)
6794 return sanitize_err(env, insn, ret, off_reg, dst_reg);
6795 }
6796
6797 switch (opcode) {
6798 case BPF_ADD:
6799 /* We can take a fixed offset as long as it doesn't overflow
6800 * the s32 'off' field
6801 */
6802 if (known && (ptr_reg->off + smin_val ==
6803 (s64)(s32)(ptr_reg->off + smin_val))) {
6804 /* pointer += K. Accumulate it into fixed offset */
6805 dst_reg->smin_value = smin_ptr;
6806 dst_reg->smax_value = smax_ptr;
6807 dst_reg->umin_value = umin_ptr;
6808 dst_reg->umax_value = umax_ptr;
6809 dst_reg->var_off = ptr_reg->var_off;
6810 dst_reg->off = ptr_reg->off + smin_val;
6811 dst_reg->raw = ptr_reg->raw;
6812 break;
6813 }
6814 /* A new variable offset is created. Note that off_reg->off
6815 * == 0, since it's a scalar.
6816 * dst_reg gets the pointer type and since some positive
6817 * integer value was added to the pointer, give it a new 'id'
6818 * if it's a PTR_TO_PACKET.
6819 * this creates a new 'base' pointer, off_reg (variable) gets
6820 * added into the variable offset, and we copy the fixed offset
6821 * from ptr_reg.
6822 */
6823 if (signed_add_overflows(smin_ptr, smin_val) ||
6824 signed_add_overflows(smax_ptr, smax_val)) {
6825 dst_reg->smin_value = S64_MIN;
6826 dst_reg->smax_value = S64_MAX;
6827 } else {
6828 dst_reg->smin_value = smin_ptr + smin_val;
6829 dst_reg->smax_value = smax_ptr + smax_val;
6830 }
6831 if (umin_ptr + umin_val < umin_ptr ||
6832 umax_ptr + umax_val < umax_ptr) {
6833 dst_reg->umin_value = 0;
6834 dst_reg->umax_value = U64_MAX;
6835 } else {
6836 dst_reg->umin_value = umin_ptr + umin_val;
6837 dst_reg->umax_value = umax_ptr + umax_val;
6838 }
6839 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6840 dst_reg->off = ptr_reg->off;
6841 dst_reg->raw = ptr_reg->raw;
6842 if (reg_is_pkt_pointer(ptr_reg)) {
6843 dst_reg->id = ++env->id_gen;
6844 /* something was added to pkt_ptr, set range to zero */
6845 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6846 }
6847 break;
6848 case BPF_SUB:
6849 if (dst_reg == off_reg) {
6850 /* scalar -= pointer. Creates an unknown scalar */
6851 verbose(env, "R%d tried to subtract pointer from scalar\n",
6852 dst);
6853 return -EACCES;
6854 }
6855 /* We don't allow subtraction from FP, because (according to
6856 * test_verifier.c test "invalid fp arithmetic", JITs might not
6857 * be able to deal with it.
6858 */
6859 if (ptr_reg->type == PTR_TO_STACK) {
6860 verbose(env, "R%d subtraction from stack pointer prohibited\n",
6861 dst);
6862 return -EACCES;
6863 }
6864 if (known && (ptr_reg->off - smin_val ==
6865 (s64)(s32)(ptr_reg->off - smin_val))) {
6866 /* pointer -= K. Subtract it from fixed offset */
6867 dst_reg->smin_value = smin_ptr;
6868 dst_reg->smax_value = smax_ptr;
6869 dst_reg->umin_value = umin_ptr;
6870 dst_reg->umax_value = umax_ptr;
6871 dst_reg->var_off = ptr_reg->var_off;
6872 dst_reg->id = ptr_reg->id;
6873 dst_reg->off = ptr_reg->off - smin_val;
6874 dst_reg->raw = ptr_reg->raw;
6875 break;
6876 }
6877 /* A new variable offset is created. If the subtrahend is known
6878 * nonnegative, then any reg->range we had before is still good.
6879 */
6880 if (signed_sub_overflows(smin_ptr, smax_val) ||
6881 signed_sub_overflows(smax_ptr, smin_val)) {
6882 /* Overflow possible, we know nothing */
6883 dst_reg->smin_value = S64_MIN;
6884 dst_reg->smax_value = S64_MAX;
6885 } else {
6886 dst_reg->smin_value = smin_ptr - smax_val;
6887 dst_reg->smax_value = smax_ptr - smin_val;
6888 }
6889 if (umin_ptr < umax_val) {
6890 /* Overflow possible, we know nothing */
6891 dst_reg->umin_value = 0;
6892 dst_reg->umax_value = U64_MAX;
6893 } else {
6894 /* Cannot overflow (as long as bounds are consistent) */
6895 dst_reg->umin_value = umin_ptr - umax_val;
6896 dst_reg->umax_value = umax_ptr - umin_val;
6897 }
6898 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6899 dst_reg->off = ptr_reg->off;
6900 dst_reg->raw = ptr_reg->raw;
6901 if (reg_is_pkt_pointer(ptr_reg)) {
6902 dst_reg->id = ++env->id_gen;
6903 /* something was added to pkt_ptr, set range to zero */
6904 if (smin_val < 0)
6905 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6906 }
6907 break;
6908 case BPF_AND:
6909 case BPF_OR:
6910 case BPF_XOR:
6911 /* bitwise ops on pointers are troublesome, prohibit. */
6912 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6913 dst, bpf_alu_string[opcode >> 4]);
6914 return -EACCES;
6915 default:
6916 /* other operators (e.g. MUL,LSH) produce non-pointer results */
6917 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6918 dst, bpf_alu_string[opcode >> 4]);
6919 return -EACCES;
6920 }
6921
6922 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6923 return -EINVAL;
6924
6925 __update_reg_bounds(dst_reg);
6926 __reg_deduce_bounds(dst_reg);
6927 __reg_bound_offset(dst_reg);
6928
6929 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
6930 return -EACCES;
6931 if (sanitize_needed(opcode)) {
6932 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
6933 &info, true);
6934 if (ret < 0)
6935 return sanitize_err(env, insn, ret, off_reg, dst_reg);
6936 }
6937
6938 return 0;
6939}
6940
6941static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6942 struct bpf_reg_state *src_reg)
6943{
6944 s32 smin_val = src_reg->s32_min_value;
6945 s32 smax_val = src_reg->s32_max_value;
6946 u32 umin_val = src_reg->u32_min_value;
6947 u32 umax_val = src_reg->u32_max_value;
6948
6949 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6950 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6951 dst_reg->s32_min_value = S32_MIN;
6952 dst_reg->s32_max_value = S32_MAX;
6953 } else {
6954 dst_reg->s32_min_value += smin_val;
6955 dst_reg->s32_max_value += smax_val;
6956 }
6957 if (dst_reg->u32_min_value + umin_val < umin_val ||
6958 dst_reg->u32_max_value + umax_val < umax_val) {
6959 dst_reg->u32_min_value = 0;
6960 dst_reg->u32_max_value = U32_MAX;
6961 } else {
6962 dst_reg->u32_min_value += umin_val;
6963 dst_reg->u32_max_value += umax_val;
6964 }
6965}
6966
6967static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6968 struct bpf_reg_state *src_reg)
6969{
6970 s64 smin_val = src_reg->smin_value;
6971 s64 smax_val = src_reg->smax_value;
6972 u64 umin_val = src_reg->umin_value;
6973 u64 umax_val = src_reg->umax_value;
6974
6975 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6976 signed_add_overflows(dst_reg->smax_value, smax_val)) {
6977 dst_reg->smin_value = S64_MIN;
6978 dst_reg->smax_value = S64_MAX;
6979 } else {
6980 dst_reg->smin_value += smin_val;
6981 dst_reg->smax_value += smax_val;
6982 }
6983 if (dst_reg->umin_value + umin_val < umin_val ||
6984 dst_reg->umax_value + umax_val < umax_val) {
6985 dst_reg->umin_value = 0;
6986 dst_reg->umax_value = U64_MAX;
6987 } else {
6988 dst_reg->umin_value += umin_val;
6989 dst_reg->umax_value += umax_val;
6990 }
6991}
6992
6993static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
6994 struct bpf_reg_state *src_reg)
6995{
6996 s32 smin_val = src_reg->s32_min_value;
6997 s32 smax_val = src_reg->s32_max_value;
6998 u32 umin_val = src_reg->u32_min_value;
6999 u32 umax_val = src_reg->u32_max_value;
7000
7001 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
7002 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
7003 /* Overflow possible, we know nothing */
7004 dst_reg->s32_min_value = S32_MIN;
7005 dst_reg->s32_max_value = S32_MAX;
7006 } else {
7007 dst_reg->s32_min_value -= smax_val;
7008 dst_reg->s32_max_value -= smin_val;
7009 }
7010 if (dst_reg->u32_min_value < umax_val) {
7011 /* Overflow possible, we know nothing */
7012 dst_reg->u32_min_value = 0;
7013 dst_reg->u32_max_value = U32_MAX;
7014 } else {
7015 /* Cannot overflow (as long as bounds are consistent) */
7016 dst_reg->u32_min_value -= umax_val;
7017 dst_reg->u32_max_value -= umin_val;
7018 }
7019}
7020
7021static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
7022 struct bpf_reg_state *src_reg)
7023{
7024 s64 smin_val = src_reg->smin_value;
7025 s64 smax_val = src_reg->smax_value;
7026 u64 umin_val = src_reg->umin_value;
7027 u64 umax_val = src_reg->umax_value;
7028
7029 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
7030 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
7031 /* Overflow possible, we know nothing */
7032 dst_reg->smin_value = S64_MIN;
7033 dst_reg->smax_value = S64_MAX;
7034 } else {
7035 dst_reg->smin_value -= smax_val;
7036 dst_reg->smax_value -= smin_val;
7037 }
7038 if (dst_reg->umin_value < umax_val) {
7039 /* Overflow possible, we know nothing */
7040 dst_reg->umin_value = 0;
7041 dst_reg->umax_value = U64_MAX;
7042 } else {
7043 /* Cannot overflow (as long as bounds are consistent) */
7044 dst_reg->umin_value -= umax_val;
7045 dst_reg->umax_value -= umin_val;
7046 }
7047}
7048
7049static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7050 struct bpf_reg_state *src_reg)
7051{
7052 s32 smin_val = src_reg->s32_min_value;
7053 u32 umin_val = src_reg->u32_min_value;
7054 u32 umax_val = src_reg->u32_max_value;
7055
7056 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7057 /* Ain't nobody got time to multiply that sign */
7058 __mark_reg32_unbounded(dst_reg);
7059 return;
7060 }
7061 /* Both values are positive, so we can work with unsigned and
7062 * copy the result to signed (unless it exceeds S32_MAX).
7063 */
7064 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7065 /* Potential overflow, we know nothing */
7066 __mark_reg32_unbounded(dst_reg);
7067 return;
7068 }
7069 dst_reg->u32_min_value *= umin_val;
7070 dst_reg->u32_max_value *= umax_val;
7071 if (dst_reg->u32_max_value > S32_MAX) {
7072 /* Overflow possible, we know nothing */
7073 dst_reg->s32_min_value = S32_MIN;
7074 dst_reg->s32_max_value = S32_MAX;
7075 } else {
7076 dst_reg->s32_min_value = dst_reg->u32_min_value;
7077 dst_reg->s32_max_value = dst_reg->u32_max_value;
7078 }
7079}
7080
7081static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7082 struct bpf_reg_state *src_reg)
7083{
7084 s64 smin_val = src_reg->smin_value;
7085 u64 umin_val = src_reg->umin_value;
7086 u64 umax_val = src_reg->umax_value;
7087
7088 if (smin_val < 0 || dst_reg->smin_value < 0) {
7089 /* Ain't nobody got time to multiply that sign */
7090 __mark_reg64_unbounded(dst_reg);
7091 return;
7092 }
7093 /* Both values are positive, so we can work with unsigned and
7094 * copy the result to signed (unless it exceeds S64_MAX).
7095 */
7096 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7097 /* Potential overflow, we know nothing */
7098 __mark_reg64_unbounded(dst_reg);
7099 return;
7100 }
7101 dst_reg->umin_value *= umin_val;
7102 dst_reg->umax_value *= umax_val;
7103 if (dst_reg->umax_value > S64_MAX) {
7104 /* Overflow possible, we know nothing */
7105 dst_reg->smin_value = S64_MIN;
7106 dst_reg->smax_value = S64_MAX;
7107 } else {
7108 dst_reg->smin_value = dst_reg->umin_value;
7109 dst_reg->smax_value = dst_reg->umax_value;
7110 }
7111}
7112
7113static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7114 struct bpf_reg_state *src_reg)
7115{
7116 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7117 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7118 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7119 s32 smin_val = src_reg->s32_min_value;
7120 u32 umax_val = src_reg->u32_max_value;
7121
7122 if (src_known && dst_known) {
7123 __mark_reg32_known(dst_reg, var32_off.value);
7124 return;
7125 }
7126
7127 /* We get our minimum from the var_off, since that's inherently
7128 * bitwise. Our maximum is the minimum of the operands' maxima.
7129 */
7130 dst_reg->u32_min_value = var32_off.value;
7131 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7132 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7133 /* Lose signed bounds when ANDing negative numbers,
7134 * ain't nobody got time for that.
7135 */
7136 dst_reg->s32_min_value = S32_MIN;
7137 dst_reg->s32_max_value = S32_MAX;
7138 } else {
7139 /* ANDing two positives gives a positive, so safe to
7140 * cast result into s64.
7141 */
7142 dst_reg->s32_min_value = dst_reg->u32_min_value;
7143 dst_reg->s32_max_value = dst_reg->u32_max_value;
7144 }
7145}
7146
7147static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7148 struct bpf_reg_state *src_reg)
7149{
7150 bool src_known = tnum_is_const(src_reg->var_off);
7151 bool dst_known = tnum_is_const(dst_reg->var_off);
7152 s64 smin_val = src_reg->smin_value;
7153 u64 umax_val = src_reg->umax_value;
7154
7155 if (src_known && dst_known) {
7156 __mark_reg_known(dst_reg, dst_reg->var_off.value);
7157 return;
7158 }
7159
7160 /* We get our minimum from the var_off, since that's inherently
7161 * bitwise. Our maximum is the minimum of the operands' maxima.
7162 */
7163 dst_reg->umin_value = dst_reg->var_off.value;
7164 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7165 if (dst_reg->smin_value < 0 || smin_val < 0) {
7166 /* Lose signed bounds when ANDing negative numbers,
7167 * ain't nobody got time for that.
7168 */
7169 dst_reg->smin_value = S64_MIN;
7170 dst_reg->smax_value = S64_MAX;
7171 } else {
7172 /* ANDing two positives gives a positive, so safe to
7173 * cast result into s64.
7174 */
7175 dst_reg->smin_value = dst_reg->umin_value;
7176 dst_reg->smax_value = dst_reg->umax_value;
7177 }
7178 /* We may learn something more from the var_off */
7179 __update_reg_bounds(dst_reg);
7180}
7181
7182static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7183 struct bpf_reg_state *src_reg)
7184{
7185 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7186 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7187 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7188 s32 smin_val = src_reg->s32_min_value;
7189 u32 umin_val = src_reg->u32_min_value;
7190
7191 if (src_known && dst_known) {
7192 __mark_reg32_known(dst_reg, var32_off.value);
7193 return;
7194 }
7195
7196 /* We get our maximum from the var_off, and our minimum is the
7197 * maximum of the operands' minima
7198 */
7199 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7200 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7201 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7202 /* Lose signed bounds when ORing negative numbers,
7203 * ain't nobody got time for that.
7204 */
7205 dst_reg->s32_min_value = S32_MIN;
7206 dst_reg->s32_max_value = S32_MAX;
7207 } else {
7208 /* ORing two positives gives a positive, so safe to
7209 * cast result into s64.
7210 */
7211 dst_reg->s32_min_value = dst_reg->u32_min_value;
7212 dst_reg->s32_max_value = dst_reg->u32_max_value;
7213 }
7214}
7215
7216static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7217 struct bpf_reg_state *src_reg)
7218{
7219 bool src_known = tnum_is_const(src_reg->var_off);
7220 bool dst_known = tnum_is_const(dst_reg->var_off);
7221 s64 smin_val = src_reg->smin_value;
7222 u64 umin_val = src_reg->umin_value;
7223
7224 if (src_known && dst_known) {
7225 __mark_reg_known(dst_reg, dst_reg->var_off.value);
7226 return;
7227 }
7228
7229 /* We get our maximum from the var_off, and our minimum is the
7230 * maximum of the operands' minima
7231 */
7232 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7233 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7234 if (dst_reg->smin_value < 0 || smin_val < 0) {
7235 /* Lose signed bounds when ORing negative numbers,
7236 * ain't nobody got time for that.
7237 */
7238 dst_reg->smin_value = S64_MIN;
7239 dst_reg->smax_value = S64_MAX;
7240 } else {
7241 /* ORing two positives gives a positive, so safe to
7242 * cast result into s64.
7243 */
7244 dst_reg->smin_value = dst_reg->umin_value;
7245 dst_reg->smax_value = dst_reg->umax_value;
7246 }
7247 /* We may learn something more from the var_off */
7248 __update_reg_bounds(dst_reg);
7249}
7250
7251static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7252 struct bpf_reg_state *src_reg)
7253{
7254 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7255 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7256 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7257 s32 smin_val = src_reg->s32_min_value;
7258
7259 if (src_known && dst_known) {
7260 __mark_reg32_known(dst_reg, var32_off.value);
7261 return;
7262 }
7263
7264 /* We get both minimum and maximum from the var32_off. */
7265 dst_reg->u32_min_value = var32_off.value;
7266 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7267
7268 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7269 /* XORing two positive sign numbers gives a positive,
7270 * so safe to cast u32 result into s32.
7271 */
7272 dst_reg->s32_min_value = dst_reg->u32_min_value;
7273 dst_reg->s32_max_value = dst_reg->u32_max_value;
7274 } else {
7275 dst_reg->s32_min_value = S32_MIN;
7276 dst_reg->s32_max_value = S32_MAX;
7277 }
7278}
7279
7280static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7281 struct bpf_reg_state *src_reg)
7282{
7283 bool src_known = tnum_is_const(src_reg->var_off);
7284 bool dst_known = tnum_is_const(dst_reg->var_off);
7285 s64 smin_val = src_reg->smin_value;
7286
7287 if (src_known && dst_known) {
7288 /* dst_reg->var_off.value has been updated earlier */
7289 __mark_reg_known(dst_reg, dst_reg->var_off.value);
7290 return;
7291 }
7292
7293 /* We get both minimum and maximum from the var_off. */
7294 dst_reg->umin_value = dst_reg->var_off.value;
7295 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7296
7297 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7298 /* XORing two positive sign numbers gives a positive,
7299 * so safe to cast u64 result into s64.
7300 */
7301 dst_reg->smin_value = dst_reg->umin_value;
7302 dst_reg->smax_value = dst_reg->umax_value;
7303 } else {
7304 dst_reg->smin_value = S64_MIN;
7305 dst_reg->smax_value = S64_MAX;
7306 }
7307
7308 __update_reg_bounds(dst_reg);
7309}
7310
7311static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7312 u64 umin_val, u64 umax_val)
7313{
7314 /* We lose all sign bit information (except what we can pick
7315 * up from var_off)
7316 */
7317 dst_reg->s32_min_value = S32_MIN;
7318 dst_reg->s32_max_value = S32_MAX;
7319 /* If we might shift our top bit out, then we know nothing */
7320 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7321 dst_reg->u32_min_value = 0;
7322 dst_reg->u32_max_value = U32_MAX;
7323 } else {
7324 dst_reg->u32_min_value <<= umin_val;
7325 dst_reg->u32_max_value <<= umax_val;
7326 }
7327}
7328
7329static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7330 struct bpf_reg_state *src_reg)
7331{
7332 u32 umax_val = src_reg->u32_max_value;
7333 u32 umin_val = src_reg->u32_min_value;
7334 /* u32 alu operation will zext upper bits */
7335 struct tnum subreg = tnum_subreg(dst_reg->var_off);
7336
7337 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7338 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7339 /* Not required but being careful mark reg64 bounds as unknown so
7340 * that we are forced to pick them up from tnum and zext later and
7341 * if some path skips this step we are still safe.
7342 */
7343 __mark_reg64_unbounded(dst_reg);
7344 __update_reg32_bounds(dst_reg);
7345}
7346
7347static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7348 u64 umin_val, u64 umax_val)
7349{
7350 /* Special case <<32 because it is a common compiler pattern to sign
7351 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7352 * positive we know this shift will also be positive so we can track
7353 * bounds correctly. Otherwise we lose all sign bit information except
7354 * what we can pick up from var_off. Perhaps we can generalize this
7355 * later to shifts of any length.
7356 */
7357 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7358 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7359 else
7360 dst_reg->smax_value = S64_MAX;
7361
7362 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7363 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7364 else
7365 dst_reg->smin_value = S64_MIN;
7366
7367 /* If we might shift our top bit out, then we know nothing */
7368 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7369 dst_reg->umin_value = 0;
7370 dst_reg->umax_value = U64_MAX;
7371 } else {
7372 dst_reg->umin_value <<= umin_val;
7373 dst_reg->umax_value <<= umax_val;
7374 }
7375}
7376
7377static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7378 struct bpf_reg_state *src_reg)
7379{
7380 u64 umax_val = src_reg->umax_value;
7381 u64 umin_val = src_reg->umin_value;
7382
7383 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
7384 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7385 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7386
7387 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7388 /* We may learn something more from the var_off */
7389 __update_reg_bounds(dst_reg);
7390}
7391
7392static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7393 struct bpf_reg_state *src_reg)
7394{
7395 struct tnum subreg = tnum_subreg(dst_reg->var_off);
7396 u32 umax_val = src_reg->u32_max_value;
7397 u32 umin_val = src_reg->u32_min_value;
7398
7399 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
7400 * be negative, then either:
7401 * 1) src_reg might be zero, so the sign bit of the result is
7402 * unknown, so we lose our signed bounds
7403 * 2) it's known negative, thus the unsigned bounds capture the
7404 * signed bounds
7405 * 3) the signed bounds cross zero, so they tell us nothing
7406 * about the result
7407 * If the value in dst_reg is known nonnegative, then again the
7408 * unsigned bounds capture the signed bounds.
7409 * Thus, in all cases it suffices to blow away our signed bounds
7410 * and rely on inferring new ones from the unsigned bounds and
7411 * var_off of the result.
7412 */
7413 dst_reg->s32_min_value = S32_MIN;
7414 dst_reg->s32_max_value = S32_MAX;
7415
7416 dst_reg->var_off = tnum_rshift(subreg, umin_val);
7417 dst_reg->u32_min_value >>= umax_val;
7418 dst_reg->u32_max_value >>= umin_val;
7419
7420 __mark_reg64_unbounded(dst_reg);
7421 __update_reg32_bounds(dst_reg);
7422}
7423
7424static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
7425 struct bpf_reg_state *src_reg)
7426{
7427 u64 umax_val = src_reg->umax_value;
7428 u64 umin_val = src_reg->umin_value;
7429
7430 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
7431 * be negative, then either:
7432 * 1) src_reg might be zero, so the sign bit of the result is
7433 * unknown, so we lose our signed bounds
7434 * 2) it's known negative, thus the unsigned bounds capture the
7435 * signed bounds
7436 * 3) the signed bounds cross zero, so they tell us nothing
7437 * about the result
7438 * If the value in dst_reg is known nonnegative, then again the
7439 * unsigned bounds capture the signed bounds.
7440 * Thus, in all cases it suffices to blow away our signed bounds
7441 * and rely on inferring new ones from the unsigned bounds and
7442 * var_off of the result.
7443 */
7444 dst_reg->smin_value = S64_MIN;
7445 dst_reg->smax_value = S64_MAX;
7446 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
7447 dst_reg->umin_value >>= umax_val;
7448 dst_reg->umax_value >>= umin_val;
7449
7450 /* Its not easy to operate on alu32 bounds here because it depends
7451 * on bits being shifted in. Take easy way out and mark unbounded
7452 * so we can recalculate later from tnum.
7453 */
7454 __mark_reg32_unbounded(dst_reg);
7455 __update_reg_bounds(dst_reg);
7456}
7457
7458static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
7459 struct bpf_reg_state *src_reg)
7460{
7461 u64 umin_val = src_reg->u32_min_value;
7462
7463 /* Upon reaching here, src_known is true and
7464 * umax_val is equal to umin_val.
7465 */
7466 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
7467 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
7468
7469 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
7470
7471 /* blow away the dst_reg umin_value/umax_value and rely on
7472 * dst_reg var_off to refine the result.
7473 */
7474 dst_reg->u32_min_value = 0;
7475 dst_reg->u32_max_value = U32_MAX;
7476
7477 __mark_reg64_unbounded(dst_reg);
7478 __update_reg32_bounds(dst_reg);
7479}
7480
7481static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
7482 struct bpf_reg_state *src_reg)
7483{
7484 u64 umin_val = src_reg->umin_value;
7485
7486 /* Upon reaching here, src_known is true and umax_val is equal
7487 * to umin_val.
7488 */
7489 dst_reg->smin_value >>= umin_val;
7490 dst_reg->smax_value >>= umin_val;
7491
7492 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
7493
7494 /* blow away the dst_reg umin_value/umax_value and rely on
7495 * dst_reg var_off to refine the result.
7496 */
7497 dst_reg->umin_value = 0;
7498 dst_reg->umax_value = U64_MAX;
7499
7500 /* Its not easy to operate on alu32 bounds here because it depends
7501 * on bits being shifted in from upper 32-bits. Take easy way out
7502 * and mark unbounded so we can recalculate later from tnum.
7503 */
7504 __mark_reg32_unbounded(dst_reg);
7505 __update_reg_bounds(dst_reg);
7506}
7507
7508/* WARNING: This function does calculations on 64-bit values, but the actual
7509 * execution may occur on 32-bit values. Therefore, things like bitshifts
7510 * need extra checks in the 32-bit case.
7511 */
7512static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
7513 struct bpf_insn *insn,
7514 struct bpf_reg_state *dst_reg,
7515 struct bpf_reg_state src_reg)
7516{
7517 struct bpf_reg_state *regs = cur_regs(env);
7518 u8 opcode = BPF_OP(insn->code);
7519 bool src_known;
7520 s64 smin_val, smax_val;
7521 u64 umin_val, umax_val;
7522 s32 s32_min_val, s32_max_val;
7523 u32 u32_min_val, u32_max_val;
7524 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
7525 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
7526 int ret;
7527
7528 smin_val = src_reg.smin_value;
7529 smax_val = src_reg.smax_value;
7530 umin_val = src_reg.umin_value;
7531 umax_val = src_reg.umax_value;
7532
7533 s32_min_val = src_reg.s32_min_value;
7534 s32_max_val = src_reg.s32_max_value;
7535 u32_min_val = src_reg.u32_min_value;
7536 u32_max_val = src_reg.u32_max_value;
7537
7538 if (alu32) {
7539 src_known = tnum_subreg_is_const(src_reg.var_off);
7540 if ((src_known &&
7541 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
7542 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
7543 /* Taint dst register if offset had invalid bounds
7544 * derived from e.g. dead branches.
7545 */
7546 __mark_reg_unknown(env, dst_reg);
7547 return 0;
7548 }
7549 } else {
7550 src_known = tnum_is_const(src_reg.var_off);
7551 if ((src_known &&
7552 (smin_val != smax_val || umin_val != umax_val)) ||
7553 smin_val > smax_val || umin_val > umax_val) {
7554 /* Taint dst register if offset had invalid bounds
7555 * derived from e.g. dead branches.
7556 */
7557 __mark_reg_unknown(env, dst_reg);
7558 return 0;
7559 }
7560 }
7561
7562 if (!src_known &&
7563 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
7564 __mark_reg_unknown(env, dst_reg);
7565 return 0;
7566 }
7567
7568 if (sanitize_needed(opcode)) {
7569 ret = sanitize_val_alu(env, insn);
7570 if (ret < 0)
7571 return sanitize_err(env, insn, ret, NULL, NULL);
7572 }
7573
7574 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
7575 * There are two classes of instructions: The first class we track both
7576 * alu32 and alu64 sign/unsigned bounds independently this provides the
7577 * greatest amount of precision when alu operations are mixed with jmp32
7578 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
7579 * and BPF_OR. This is possible because these ops have fairly easy to
7580 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
7581 * See alu32 verifier tests for examples. The second class of
7582 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
7583 * with regards to tracking sign/unsigned bounds because the bits may
7584 * cross subreg boundaries in the alu64 case. When this happens we mark
7585 * the reg unbounded in the subreg bound space and use the resulting
7586 * tnum to calculate an approximation of the sign/unsigned bounds.
7587 */
7588 switch (opcode) {
7589 case BPF_ADD:
7590 scalar32_min_max_add(dst_reg, &src_reg);
7591 scalar_min_max_add(dst_reg, &src_reg);
7592 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
7593 break;
7594 case BPF_SUB:
7595 scalar32_min_max_sub(dst_reg, &src_reg);
7596 scalar_min_max_sub(dst_reg, &src_reg);
7597 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
7598 break;
7599 case BPF_MUL:
7600 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
7601 scalar32_min_max_mul(dst_reg, &src_reg);
7602 scalar_min_max_mul(dst_reg, &src_reg);
7603 break;
7604 case BPF_AND:
7605 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
7606 scalar32_min_max_and(dst_reg, &src_reg);
7607 scalar_min_max_and(dst_reg, &src_reg);
7608 break;
7609 case BPF_OR:
7610 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
7611 scalar32_min_max_or(dst_reg, &src_reg);
7612 scalar_min_max_or(dst_reg, &src_reg);
7613 break;
7614 case BPF_XOR:
7615 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
7616 scalar32_min_max_xor(dst_reg, &src_reg);
7617 scalar_min_max_xor(dst_reg, &src_reg);
7618 break;
7619 case BPF_LSH:
7620 if (umax_val >= insn_bitness) {
7621 /* Shifts greater than 31 or 63 are undefined.
7622 * This includes shifts by a negative number.
7623 */
7624 mark_reg_unknown(env, regs, insn->dst_reg);
7625 break;
7626 }
7627 if (alu32)
7628 scalar32_min_max_lsh(dst_reg, &src_reg);
7629 else
7630 scalar_min_max_lsh(dst_reg, &src_reg);
7631 break;
7632 case BPF_RSH:
7633 if (umax_val >= insn_bitness) {
7634 /* Shifts greater than 31 or 63 are undefined.
7635 * This includes shifts by a negative number.
7636 */
7637 mark_reg_unknown(env, regs, insn->dst_reg);
7638 break;
7639 }
7640 if (alu32)
7641 scalar32_min_max_rsh(dst_reg, &src_reg);
7642 else
7643 scalar_min_max_rsh(dst_reg, &src_reg);
7644 break;
7645 case BPF_ARSH:
7646 if (umax_val >= insn_bitness) {
7647 /* Shifts greater than 31 or 63 are undefined.
7648 * This includes shifts by a negative number.
7649 */
7650 mark_reg_unknown(env, regs, insn->dst_reg);
7651 break;
7652 }
7653 if (alu32)
7654 scalar32_min_max_arsh(dst_reg, &src_reg);
7655 else
7656 scalar_min_max_arsh(dst_reg, &src_reg);
7657 break;
7658 default:
7659 mark_reg_unknown(env, regs, insn->dst_reg);
7660 break;
7661 }
7662
7663 /* ALU32 ops are zero extended into 64bit register */
7664 if (alu32)
7665 zext_32_to_64(dst_reg);
7666
7667 __update_reg_bounds(dst_reg);
7668 __reg_deduce_bounds(dst_reg);
7669 __reg_bound_offset(dst_reg);
7670 return 0;
7671}
7672
7673/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7674 * and var_off.
7675 */
7676static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7677 struct bpf_insn *insn)
7678{
7679 struct bpf_verifier_state *vstate = env->cur_state;
7680 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7681 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
7682 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7683 u8 opcode = BPF_OP(insn->code);
7684 int err;
7685
7686 dst_reg = ®s[insn->dst_reg];
7687 src_reg = NULL;
7688 if (dst_reg->type != SCALAR_VALUE)
7689 ptr_reg = dst_reg;
7690 else
7691 /* Make sure ID is cleared otherwise dst_reg min/max could be
7692 * incorrectly propagated into other registers by find_equal_scalars()
7693 */
7694 dst_reg->id = 0;
7695 if (BPF_SRC(insn->code) == BPF_X) {
7696 src_reg = ®s[insn->src_reg];
7697 if (src_reg->type != SCALAR_VALUE) {
7698 if (dst_reg->type != SCALAR_VALUE) {
7699 /* Combining two pointers by any ALU op yields
7700 * an arbitrary scalar. Disallow all math except
7701 * pointer subtraction
7702 */
7703 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7704 mark_reg_unknown(env, regs, insn->dst_reg);
7705 return 0;
7706 }
7707 verbose(env, "R%d pointer %s pointer prohibited\n",
7708 insn->dst_reg,
7709 bpf_alu_string[opcode >> 4]);
7710 return -EACCES;
7711 } else {
7712 /* scalar += pointer
7713 * This is legal, but we have to reverse our
7714 * src/dest handling in computing the range
7715 */
7716 err = mark_chain_precision(env, insn->dst_reg);
7717 if (err)
7718 return err;
7719 return adjust_ptr_min_max_vals(env, insn,
7720 src_reg, dst_reg);
7721 }
7722 } else if (ptr_reg) {
7723 /* pointer += scalar */
7724 err = mark_chain_precision(env, insn->src_reg);
7725 if (err)
7726 return err;
7727 return adjust_ptr_min_max_vals(env, insn,
7728 dst_reg, src_reg);
7729 }
7730 } else {
7731 /* Pretend the src is a reg with a known value, since we only
7732 * need to be able to read from this state.
7733 */
7734 off_reg.type = SCALAR_VALUE;
7735 __mark_reg_known(&off_reg, insn->imm);
7736 src_reg = &off_reg;
7737 if (ptr_reg) /* pointer += K */
7738 return adjust_ptr_min_max_vals(env, insn,
7739 ptr_reg, src_reg);
7740 }
7741
7742 /* Got here implies adding two SCALAR_VALUEs */
7743 if (WARN_ON_ONCE(ptr_reg)) {
7744 print_verifier_state(env, state);
7745 verbose(env, "verifier internal error: unexpected ptr_reg\n");
7746 return -EINVAL;
7747 }
7748 if (WARN_ON(!src_reg)) {
7749 print_verifier_state(env, state);
7750 verbose(env, "verifier internal error: no src_reg\n");
7751 return -EINVAL;
7752 }
7753 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
7754}
7755
7756/* check validity of 32-bit and 64-bit arithmetic operations */
7757static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
7758{
7759 struct bpf_reg_state *regs = cur_regs(env);
7760 u8 opcode = BPF_OP(insn->code);
7761 int err;
7762
7763 if (opcode == BPF_END || opcode == BPF_NEG) {
7764 if (opcode == BPF_NEG) {
7765 if (BPF_SRC(insn->code) != 0 ||
7766 insn->src_reg != BPF_REG_0 ||
7767 insn->off != 0 || insn->imm != 0) {
7768 verbose(env, "BPF_NEG uses reserved fields\n");
7769 return -EINVAL;
7770 }
7771 } else {
7772 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
7773 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7774 BPF_CLASS(insn->code) == BPF_ALU64) {
7775 verbose(env, "BPF_END uses reserved fields\n");
7776 return -EINVAL;
7777 }
7778 }
7779
7780 /* check src operand */
7781 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7782 if (err)
7783 return err;
7784
7785 if (is_pointer_value(env, insn->dst_reg)) {
7786 verbose(env, "R%d pointer arithmetic prohibited\n",
7787 insn->dst_reg);
7788 return -EACCES;
7789 }
7790
7791 /* check dest operand */
7792 err = check_reg_arg(env, insn->dst_reg, DST_OP);
7793 if (err)
7794 return err;
7795
7796 } else if (opcode == BPF_MOV) {
7797
7798 if (BPF_SRC(insn->code) == BPF_X) {
7799 if (insn->imm != 0 || insn->off != 0) {
7800 verbose(env, "BPF_MOV uses reserved fields\n");
7801 return -EINVAL;
7802 }
7803
7804 /* check src operand */
7805 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7806 if (err)
7807 return err;
7808 } else {
7809 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7810 verbose(env, "BPF_MOV uses reserved fields\n");
7811 return -EINVAL;
7812 }
7813 }
7814
7815 /* check dest operand, mark as required later */
7816 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7817 if (err)
7818 return err;
7819
7820 if (BPF_SRC(insn->code) == BPF_X) {
7821 struct bpf_reg_state *src_reg = regs + insn->src_reg;
7822 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7823
7824 if (BPF_CLASS(insn->code) == BPF_ALU64) {
7825 /* case: R1 = R2
7826 * copy register state to dest reg
7827 */
7828 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7829 /* Assign src and dst registers the same ID
7830 * that will be used by find_equal_scalars()
7831 * to propagate min/max range.
7832 */
7833 src_reg->id = ++env->id_gen;
7834 *dst_reg = *src_reg;
7835 dst_reg->live |= REG_LIVE_WRITTEN;
7836 dst_reg->subreg_def = DEF_NOT_SUBREG;
7837 } else {
7838 /* R1 = (u32) R2 */
7839 if (is_pointer_value(env, insn->src_reg)) {
7840 verbose(env,
7841 "R%d partial copy of pointer\n",
7842 insn->src_reg);
7843 return -EACCES;
7844 } else if (src_reg->type == SCALAR_VALUE) {
7845 *dst_reg = *src_reg;
7846 /* Make sure ID is cleared otherwise
7847 * dst_reg min/max could be incorrectly
7848 * propagated into src_reg by find_equal_scalars()
7849 */
7850 dst_reg->id = 0;
7851 dst_reg->live |= REG_LIVE_WRITTEN;
7852 dst_reg->subreg_def = env->insn_idx + 1;
7853 } else {
7854 mark_reg_unknown(env, regs,
7855 insn->dst_reg);
7856 }
7857 zext_32_to_64(dst_reg);
7858 }
7859 } else {
7860 /* case: R = imm
7861 * remember the value we stored into this reg
7862 */
7863 /* clear any state __mark_reg_known doesn't set */
7864 mark_reg_unknown(env, regs, insn->dst_reg);
7865 regs[insn->dst_reg].type = SCALAR_VALUE;
7866 if (BPF_CLASS(insn->code) == BPF_ALU64) {
7867 __mark_reg_known(regs + insn->dst_reg,
7868 insn->imm);
7869 } else {
7870 __mark_reg_known(regs + insn->dst_reg,
7871 (u32)insn->imm);
7872 }
7873 }
7874
7875 } else if (opcode > BPF_END) {
7876 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
7877 return -EINVAL;
7878
7879 } else { /* all other ALU ops: and, sub, xor, add, ... */
7880
7881 if (BPF_SRC(insn->code) == BPF_X) {
7882 if (insn->imm != 0 || insn->off != 0) {
7883 verbose(env, "BPF_ALU uses reserved fields\n");
7884 return -EINVAL;
7885 }
7886 /* check src1 operand */
7887 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7888 if (err)
7889 return err;
7890 } else {
7891 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7892 verbose(env, "BPF_ALU uses reserved fields\n");
7893 return -EINVAL;
7894 }
7895 }
7896
7897 /* check src2 operand */
7898 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7899 if (err)
7900 return err;
7901
7902 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7903 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
7904 verbose(env, "div by zero\n");
7905 return -EINVAL;
7906 }
7907
7908 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7909 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7910 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7911
7912 if (insn->imm < 0 || insn->imm >= size) {
7913 verbose(env, "invalid shift %d\n", insn->imm);
7914 return -EINVAL;
7915 }
7916 }
7917
7918 /* check dest operand */
7919 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7920 if (err)
7921 return err;
7922
7923 return adjust_reg_min_max_vals(env, insn);
7924 }
7925
7926 return 0;
7927}
7928
7929static void __find_good_pkt_pointers(struct bpf_func_state *state,
7930 struct bpf_reg_state *dst_reg,
7931 enum bpf_reg_type type, int new_range)
7932{
7933 struct bpf_reg_state *reg;
7934 int i;
7935
7936 for (i = 0; i < MAX_BPF_REG; i++) {
7937 reg = &state->regs[i];
7938 if (reg->type == type && reg->id == dst_reg->id)
7939 /* keep the maximum range already checked */
7940 reg->range = max(reg->range, new_range);
7941 }
7942
7943 bpf_for_each_spilled_reg(i, state, reg) {
7944 if (!reg)
7945 continue;
7946 if (reg->type == type && reg->id == dst_reg->id)
7947 reg->range = max(reg->range, new_range);
7948 }
7949}
7950
7951static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
7952 struct bpf_reg_state *dst_reg,
7953 enum bpf_reg_type type,
7954 bool range_right_open)
7955{
7956 int new_range, i;
7957
7958 if (dst_reg->off < 0 ||
7959 (dst_reg->off == 0 && range_right_open))
7960 /* This doesn't give us any range */
7961 return;
7962
7963 if (dst_reg->umax_value > MAX_PACKET_OFF ||
7964 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
7965 /* Risk of overflow. For instance, ptr + (1<<63) may be less
7966 * than pkt_end, but that's because it's also less than pkt.
7967 */
7968 return;
7969
7970 new_range = dst_reg->off;
7971 if (range_right_open)
7972 new_range--;
7973
7974 /* Examples for register markings:
7975 *
7976 * pkt_data in dst register:
7977 *
7978 * r2 = r3;
7979 * r2 += 8;
7980 * if (r2 > pkt_end) goto <handle exception>
7981 * <access okay>
7982 *
7983 * r2 = r3;
7984 * r2 += 8;
7985 * if (r2 < pkt_end) goto <access okay>
7986 * <handle exception>
7987 *
7988 * Where:
7989 * r2 == dst_reg, pkt_end == src_reg
7990 * r2=pkt(id=n,off=8,r=0)
7991 * r3=pkt(id=n,off=0,r=0)
7992 *
7993 * pkt_data in src register:
7994 *
7995 * r2 = r3;
7996 * r2 += 8;
7997 * if (pkt_end >= r2) goto <access okay>
7998 * <handle exception>
7999 *
8000 * r2 = r3;
8001 * r2 += 8;
8002 * if (pkt_end <= r2) goto <handle exception>
8003 * <access okay>
8004 *
8005 * Where:
8006 * pkt_end == dst_reg, r2 == src_reg
8007 * r2=pkt(id=n,off=8,r=0)
8008 * r3=pkt(id=n,off=0,r=0)
8009 *
8010 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
8011 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
8012 * and [r3, r3 + 8-1) respectively is safe to access depending on
8013 * the check.
8014 */
8015
8016 /* If our ids match, then we must have the same max_value. And we
8017 * don't care about the other reg's fixed offset, since if it's too big
8018 * the range won't allow anything.
8019 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
8020 */
8021 for (i = 0; i <= vstate->curframe; i++)
8022 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
8023 new_range);
8024}
8025
8026static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
8027{
8028 struct tnum subreg = tnum_subreg(reg->var_off);
8029 s32 sval = (s32)val;
8030
8031 switch (opcode) {
8032 case BPF_JEQ:
8033 if (tnum_is_const(subreg))
8034 return !!tnum_equals_const(subreg, val);
8035 break;
8036 case BPF_JNE:
8037 if (tnum_is_const(subreg))
8038 return !tnum_equals_const(subreg, val);
8039 break;
8040 case BPF_JSET:
8041 if ((~subreg.mask & subreg.value) & val)
8042 return 1;
8043 if (!((subreg.mask | subreg.value) & val))
8044 return 0;
8045 break;
8046 case BPF_JGT:
8047 if (reg->u32_min_value > val)
8048 return 1;
8049 else if (reg->u32_max_value <= val)
8050 return 0;
8051 break;
8052 case BPF_JSGT:
8053 if (reg->s32_min_value > sval)
8054 return 1;
8055 else if (reg->s32_max_value <= sval)
8056 return 0;
8057 break;
8058 case BPF_JLT:
8059 if (reg->u32_max_value < val)
8060 return 1;
8061 else if (reg->u32_min_value >= val)
8062 return 0;
8063 break;
8064 case BPF_JSLT:
8065 if (reg->s32_max_value < sval)
8066 return 1;
8067 else if (reg->s32_min_value >= sval)
8068 return 0;
8069 break;
8070 case BPF_JGE:
8071 if (reg->u32_min_value >= val)
8072 return 1;
8073 else if (reg->u32_max_value < val)
8074 return 0;
8075 break;
8076 case BPF_JSGE:
8077 if (reg->s32_min_value >= sval)
8078 return 1;
8079 else if (reg->s32_max_value < sval)
8080 return 0;
8081 break;
8082 case BPF_JLE:
8083 if (reg->u32_max_value <= val)
8084 return 1;
8085 else if (reg->u32_min_value > val)
8086 return 0;
8087 break;
8088 case BPF_JSLE:
8089 if (reg->s32_max_value <= sval)
8090 return 1;
8091 else if (reg->s32_min_value > sval)
8092 return 0;
8093 break;
8094 }
8095
8096 return -1;
8097}
8098
8099
8100static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8101{
8102 s64 sval = (s64)val;
8103
8104 switch (opcode) {
8105 case BPF_JEQ:
8106 if (tnum_is_const(reg->var_off))
8107 return !!tnum_equals_const(reg->var_off, val);
8108 break;
8109 case BPF_JNE:
8110 if (tnum_is_const(reg->var_off))
8111 return !tnum_equals_const(reg->var_off, val);
8112 break;
8113 case BPF_JSET:
8114 if ((~reg->var_off.mask & reg->var_off.value) & val)
8115 return 1;
8116 if (!((reg->var_off.mask | reg->var_off.value) & val))
8117 return 0;
8118 break;
8119 case BPF_JGT:
8120 if (reg->umin_value > val)
8121 return 1;
8122 else if (reg->umax_value <= val)
8123 return 0;
8124 break;
8125 case BPF_JSGT:
8126 if (reg->smin_value > sval)
8127 return 1;
8128 else if (reg->smax_value <= sval)
8129 return 0;
8130 break;
8131 case BPF_JLT:
8132 if (reg->umax_value < val)
8133 return 1;
8134 else if (reg->umin_value >= val)
8135 return 0;
8136 break;
8137 case BPF_JSLT:
8138 if (reg->smax_value < sval)
8139 return 1;
8140 else if (reg->smin_value >= sval)
8141 return 0;
8142 break;
8143 case BPF_JGE:
8144 if (reg->umin_value >= val)
8145 return 1;
8146 else if (reg->umax_value < val)
8147 return 0;
8148 break;
8149 case BPF_JSGE:
8150 if (reg->smin_value >= sval)
8151 return 1;
8152 else if (reg->smax_value < sval)
8153 return 0;
8154 break;
8155 case BPF_JLE:
8156 if (reg->umax_value <= val)
8157 return 1;
8158 else if (reg->umin_value > val)
8159 return 0;
8160 break;
8161 case BPF_JSLE:
8162 if (reg->smax_value <= sval)
8163 return 1;
8164 else if (reg->smin_value > sval)
8165 return 0;
8166 break;
8167 }
8168
8169 return -1;
8170}
8171
8172/* compute branch direction of the expression "if (reg opcode val) goto target;"
8173 * and return:
8174 * 1 - branch will be taken and "goto target" will be executed
8175 * 0 - branch will not be taken and fall-through to next insn
8176 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8177 * range [0,10]
8178 */
8179static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8180 bool is_jmp32)
8181{
8182 if (__is_pointer_value(false, reg)) {
8183 if (!reg_type_not_null(reg->type))
8184 return -1;
8185
8186 /* If pointer is valid tests against zero will fail so we can
8187 * use this to direct branch taken.
8188 */
8189 if (val != 0)
8190 return -1;
8191
8192 switch (opcode) {
8193 case BPF_JEQ:
8194 return 0;
8195 case BPF_JNE:
8196 return 1;
8197 default:
8198 return -1;
8199 }
8200 }
8201
8202 if (is_jmp32)
8203 return is_branch32_taken(reg, val, opcode);
8204 return is_branch64_taken(reg, val, opcode);
8205}
8206
8207static int flip_opcode(u32 opcode)
8208{
8209 /* How can we transform "a <op> b" into "b <op> a"? */
8210 static const u8 opcode_flip[16] = {
8211 /* these stay the same */
8212 [BPF_JEQ >> 4] = BPF_JEQ,
8213 [BPF_JNE >> 4] = BPF_JNE,
8214 [BPF_JSET >> 4] = BPF_JSET,
8215 /* these swap "lesser" and "greater" (L and G in the opcodes) */
8216 [BPF_JGE >> 4] = BPF_JLE,
8217 [BPF_JGT >> 4] = BPF_JLT,
8218 [BPF_JLE >> 4] = BPF_JGE,
8219 [BPF_JLT >> 4] = BPF_JGT,
8220 [BPF_JSGE >> 4] = BPF_JSLE,
8221 [BPF_JSGT >> 4] = BPF_JSLT,
8222 [BPF_JSLE >> 4] = BPF_JSGE,
8223 [BPF_JSLT >> 4] = BPF_JSGT
8224 };
8225 return opcode_flip[opcode >> 4];
8226}
8227
8228static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8229 struct bpf_reg_state *src_reg,
8230 u8 opcode)
8231{
8232 struct bpf_reg_state *pkt;
8233
8234 if (src_reg->type == PTR_TO_PACKET_END) {
8235 pkt = dst_reg;
8236 } else if (dst_reg->type == PTR_TO_PACKET_END) {
8237 pkt = src_reg;
8238 opcode = flip_opcode(opcode);
8239 } else {
8240 return -1;
8241 }
8242
8243 if (pkt->range >= 0)
8244 return -1;
8245
8246 switch (opcode) {
8247 case BPF_JLE:
8248 /* pkt <= pkt_end */
8249 fallthrough;
8250 case BPF_JGT:
8251 /* pkt > pkt_end */
8252 if (pkt->range == BEYOND_PKT_END)
8253 /* pkt has at last one extra byte beyond pkt_end */
8254 return opcode == BPF_JGT;
8255 break;
8256 case BPF_JLT:
8257 /* pkt < pkt_end */
8258 fallthrough;
8259 case BPF_JGE:
8260 /* pkt >= pkt_end */
8261 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8262 return opcode == BPF_JGE;
8263 break;
8264 }
8265 return -1;
8266}
8267
8268/* Adjusts the register min/max values in the case that the dst_reg is the
8269 * variable register that we are working on, and src_reg is a constant or we're
8270 * simply doing a BPF_K check.
8271 * In JEQ/JNE cases we also adjust the var_off values.
8272 */
8273static void reg_set_min_max(struct bpf_reg_state *true_reg,
8274 struct bpf_reg_state *false_reg,
8275 u64 val, u32 val32,
8276 u8 opcode, bool is_jmp32)
8277{
8278 struct tnum false_32off = tnum_subreg(false_reg->var_off);
8279 struct tnum false_64off = false_reg->var_off;
8280 struct tnum true_32off = tnum_subreg(true_reg->var_off);
8281 struct tnum true_64off = true_reg->var_off;
8282 s64 sval = (s64)val;
8283 s32 sval32 = (s32)val32;
8284
8285 /* If the dst_reg is a pointer, we can't learn anything about its
8286 * variable offset from the compare (unless src_reg were a pointer into
8287 * the same object, but we don't bother with that.
8288 * Since false_reg and true_reg have the same type by construction, we
8289 * only need to check one of them for pointerness.
8290 */
8291 if (__is_pointer_value(false, false_reg))
8292 return;
8293
8294 switch (opcode) {
8295 case BPF_JEQ:
8296 case BPF_JNE:
8297 {
8298 struct bpf_reg_state *reg =
8299 opcode == BPF_JEQ ? true_reg : false_reg;
8300
8301 /* JEQ/JNE comparison doesn't change the register equivalence.
8302 * r1 = r2;
8303 * if (r1 == 42) goto label;
8304 * ...
8305 * label: // here both r1 and r2 are known to be 42.
8306 *
8307 * Hence when marking register as known preserve it's ID.
8308 */
8309 if (is_jmp32)
8310 __mark_reg32_known(reg, val32);
8311 else
8312 ___mark_reg_known(reg, val);
8313 break;
8314 }
8315 case BPF_JSET:
8316 if (is_jmp32) {
8317 false_32off = tnum_and(false_32off, tnum_const(~val32));
8318 if (is_power_of_2(val32))
8319 true_32off = tnum_or(true_32off,
8320 tnum_const(val32));
8321 } else {
8322 false_64off = tnum_and(false_64off, tnum_const(~val));
8323 if (is_power_of_2(val))
8324 true_64off = tnum_or(true_64off,
8325 tnum_const(val));
8326 }
8327 break;
8328 case BPF_JGE:
8329 case BPF_JGT:
8330 {
8331 if (is_jmp32) {
8332 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
8333 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8334
8335 false_reg->u32_max_value = min(false_reg->u32_max_value,
8336 false_umax);
8337 true_reg->u32_min_value = max(true_reg->u32_min_value,
8338 true_umin);
8339 } else {
8340 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
8341 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8342
8343 false_reg->umax_value = min(false_reg->umax_value, false_umax);
8344 true_reg->umin_value = max(true_reg->umin_value, true_umin);
8345 }
8346 break;
8347 }
8348 case BPF_JSGE:
8349 case BPF_JSGT:
8350 {
8351 if (is_jmp32) {
8352 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
8353 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
8354
8355 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8356 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8357 } else {
8358 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
8359 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8360
8361 false_reg->smax_value = min(false_reg->smax_value, false_smax);
8362 true_reg->smin_value = max(true_reg->smin_value, true_smin);
8363 }
8364 break;
8365 }
8366 case BPF_JLE:
8367 case BPF_JLT:
8368 {
8369 if (is_jmp32) {
8370 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
8371 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8372
8373 false_reg->u32_min_value = max(false_reg->u32_min_value,
8374 false_umin);
8375 true_reg->u32_max_value = min(true_reg->u32_max_value,
8376 true_umax);
8377 } else {
8378 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
8379 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8380
8381 false_reg->umin_value = max(false_reg->umin_value, false_umin);
8382 true_reg->umax_value = min(true_reg->umax_value, true_umax);
8383 }
8384 break;
8385 }
8386 case BPF_JSLE:
8387 case BPF_JSLT:
8388 {
8389 if (is_jmp32) {
8390 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
8391 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
8392
8393 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8394 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8395 } else {
8396 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
8397 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8398
8399 false_reg->smin_value = max(false_reg->smin_value, false_smin);
8400 true_reg->smax_value = min(true_reg->smax_value, true_smax);
8401 }
8402 break;
8403 }
8404 default:
8405 return;
8406 }
8407
8408 if (is_jmp32) {
8409 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
8410 tnum_subreg(false_32off));
8411 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
8412 tnum_subreg(true_32off));
8413 __reg_combine_32_into_64(false_reg);
8414 __reg_combine_32_into_64(true_reg);
8415 } else {
8416 false_reg->var_off = false_64off;
8417 true_reg->var_off = true_64off;
8418 __reg_combine_64_into_32(false_reg);
8419 __reg_combine_64_into_32(true_reg);
8420 }
8421}
8422
8423/* Same as above, but for the case that dst_reg holds a constant and src_reg is
8424 * the variable reg.
8425 */
8426static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
8427 struct bpf_reg_state *false_reg,
8428 u64 val, u32 val32,
8429 u8 opcode, bool is_jmp32)
8430{
8431 opcode = flip_opcode(opcode);
8432 /* This uses zero as "not present in table"; luckily the zero opcode,
8433 * BPF_JA, can't get here.
8434 */
8435 if (opcode)
8436 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
8437}
8438
8439/* Regs are known to be equal, so intersect their min/max/var_off */
8440static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
8441 struct bpf_reg_state *dst_reg)
8442{
8443 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
8444 dst_reg->umin_value);
8445 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
8446 dst_reg->umax_value);
8447 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
8448 dst_reg->smin_value);
8449 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
8450 dst_reg->smax_value);
8451 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
8452 dst_reg->var_off);
8453 /* We might have learned new bounds from the var_off. */
8454 __update_reg_bounds(src_reg);
8455 __update_reg_bounds(dst_reg);
8456 /* We might have learned something about the sign bit. */
8457 __reg_deduce_bounds(src_reg);
8458 __reg_deduce_bounds(dst_reg);
8459 /* We might have learned some bits from the bounds. */
8460 __reg_bound_offset(src_reg);
8461 __reg_bound_offset(dst_reg);
8462 /* Intersecting with the old var_off might have improved our bounds
8463 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
8464 * then new var_off is (0; 0x7f...fc) which improves our umax.
8465 */
8466 __update_reg_bounds(src_reg);
8467 __update_reg_bounds(dst_reg);
8468}
8469
8470static void reg_combine_min_max(struct bpf_reg_state *true_src,
8471 struct bpf_reg_state *true_dst,
8472 struct bpf_reg_state *false_src,
8473 struct bpf_reg_state *false_dst,
8474 u8 opcode)
8475{
8476 switch (opcode) {
8477 case BPF_JEQ:
8478 __reg_combine_min_max(true_src, true_dst);
8479 break;
8480 case BPF_JNE:
8481 __reg_combine_min_max(false_src, false_dst);
8482 break;
8483 }
8484}
8485
8486static void mark_ptr_or_null_reg(struct bpf_func_state *state,
8487 struct bpf_reg_state *reg, u32 id,
8488 bool is_null)
8489{
8490 if (reg_type_may_be_null(reg->type) && reg->id == id &&
8491 !WARN_ON_ONCE(!reg->id)) {
8492 /* Old offset (both fixed and variable parts) should
8493 * have been known-zero, because we don't allow pointer
8494 * arithmetic on pointers that might be NULL.
8495 */
8496 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
8497 !tnum_equals_const(reg->var_off, 0) ||
8498 reg->off)) {
8499 __mark_reg_known_zero(reg);
8500 reg->off = 0;
8501 }
8502 if (is_null) {
8503 reg->type = SCALAR_VALUE;
8504 /* We don't need id and ref_obj_id from this point
8505 * onwards anymore, thus we should better reset it,
8506 * so that state pruning has chances to take effect.
8507 */
8508 reg->id = 0;
8509 reg->ref_obj_id = 0;
8510
8511 return;
8512 }
8513
8514 mark_ptr_not_null_reg(reg);
8515
8516 if (!reg_may_point_to_spin_lock(reg)) {
8517 /* For not-NULL ptr, reg->ref_obj_id will be reset
8518 * in release_reg_references().
8519 *
8520 * reg->id is still used by spin_lock ptr. Other
8521 * than spin_lock ptr type, reg->id can be reset.
8522 */
8523 reg->id = 0;
8524 }
8525 }
8526}
8527
8528static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
8529 bool is_null)
8530{
8531 struct bpf_reg_state *reg;
8532 int i;
8533
8534 for (i = 0; i < MAX_BPF_REG; i++)
8535 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
8536
8537 bpf_for_each_spilled_reg(i, state, reg) {
8538 if (!reg)
8539 continue;
8540 mark_ptr_or_null_reg(state, reg, id, is_null);
8541 }
8542}
8543
8544/* The logic is similar to find_good_pkt_pointers(), both could eventually
8545 * be folded together at some point.
8546 */
8547static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
8548 bool is_null)
8549{
8550 struct bpf_func_state *state = vstate->frame[vstate->curframe];
8551 struct bpf_reg_state *regs = state->regs;
8552 u32 ref_obj_id = regs[regno].ref_obj_id;
8553 u32 id = regs[regno].id;
8554 int i;
8555
8556 if (ref_obj_id && ref_obj_id == id && is_null)
8557 /* regs[regno] is in the " == NULL" branch.
8558 * No one could have freed the reference state before
8559 * doing the NULL check.
8560 */
8561 WARN_ON_ONCE(release_reference_state(state, id));
8562
8563 for (i = 0; i <= vstate->curframe; i++)
8564 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
8565}
8566
8567static bool try_match_pkt_pointers(const struct bpf_insn *insn,
8568 struct bpf_reg_state *dst_reg,
8569 struct bpf_reg_state *src_reg,
8570 struct bpf_verifier_state *this_branch,
8571 struct bpf_verifier_state *other_branch)
8572{
8573 if (BPF_SRC(insn->code) != BPF_X)
8574 return false;
8575
8576 /* Pointers are always 64-bit. */
8577 if (BPF_CLASS(insn->code) == BPF_JMP32)
8578 return false;
8579
8580 switch (BPF_OP(insn->code)) {
8581 case BPF_JGT:
8582 if ((dst_reg->type == PTR_TO_PACKET &&
8583 src_reg->type == PTR_TO_PACKET_END) ||
8584 (dst_reg->type == PTR_TO_PACKET_META &&
8585 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8586 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
8587 find_good_pkt_pointers(this_branch, dst_reg,
8588 dst_reg->type, false);
8589 mark_pkt_end(other_branch, insn->dst_reg, true);
8590 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8591 src_reg->type == PTR_TO_PACKET) ||
8592 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8593 src_reg->type == PTR_TO_PACKET_META)) {
8594 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
8595 find_good_pkt_pointers(other_branch, src_reg,
8596 src_reg->type, true);
8597 mark_pkt_end(this_branch, insn->src_reg, false);
8598 } else {
8599 return false;
8600 }
8601 break;
8602 case BPF_JLT:
8603 if ((dst_reg->type == PTR_TO_PACKET &&
8604 src_reg->type == PTR_TO_PACKET_END) ||
8605 (dst_reg->type == PTR_TO_PACKET_META &&
8606 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8607 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
8608 find_good_pkt_pointers(other_branch, dst_reg,
8609 dst_reg->type, true);
8610 mark_pkt_end(this_branch, insn->dst_reg, false);
8611 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8612 src_reg->type == PTR_TO_PACKET) ||
8613 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8614 src_reg->type == PTR_TO_PACKET_META)) {
8615 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
8616 find_good_pkt_pointers(this_branch, src_reg,
8617 src_reg->type, false);
8618 mark_pkt_end(other_branch, insn->src_reg, true);
8619 } else {
8620 return false;
8621 }
8622 break;
8623 case BPF_JGE:
8624 if ((dst_reg->type == PTR_TO_PACKET &&
8625 src_reg->type == PTR_TO_PACKET_END) ||
8626 (dst_reg->type == PTR_TO_PACKET_META &&
8627 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8628 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
8629 find_good_pkt_pointers(this_branch, dst_reg,
8630 dst_reg->type, true);
8631 mark_pkt_end(other_branch, insn->dst_reg, false);
8632 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8633 src_reg->type == PTR_TO_PACKET) ||
8634 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8635 src_reg->type == PTR_TO_PACKET_META)) {
8636 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
8637 find_good_pkt_pointers(other_branch, src_reg,
8638 src_reg->type, false);
8639 mark_pkt_end(this_branch, insn->src_reg, true);
8640 } else {
8641 return false;
8642 }
8643 break;
8644 case BPF_JLE:
8645 if ((dst_reg->type == PTR_TO_PACKET &&
8646 src_reg->type == PTR_TO_PACKET_END) ||
8647 (dst_reg->type == PTR_TO_PACKET_META &&
8648 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8649 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
8650 find_good_pkt_pointers(other_branch, dst_reg,
8651 dst_reg->type, false);
8652 mark_pkt_end(this_branch, insn->dst_reg, true);
8653 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8654 src_reg->type == PTR_TO_PACKET) ||
8655 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8656 src_reg->type == PTR_TO_PACKET_META)) {
8657 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
8658 find_good_pkt_pointers(this_branch, src_reg,
8659 src_reg->type, true);
8660 mark_pkt_end(other_branch, insn->src_reg, false);
8661 } else {
8662 return false;
8663 }
8664 break;
8665 default:
8666 return false;
8667 }
8668
8669 return true;
8670}
8671
8672static void find_equal_scalars(struct bpf_verifier_state *vstate,
8673 struct bpf_reg_state *known_reg)
8674{
8675 struct bpf_func_state *state;
8676 struct bpf_reg_state *reg;
8677 int i, j;
8678
8679 for (i = 0; i <= vstate->curframe; i++) {
8680 state = vstate->frame[i];
8681 for (j = 0; j < MAX_BPF_REG; j++) {
8682 reg = &state->regs[j];
8683 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8684 *reg = *known_reg;
8685 }
8686
8687 bpf_for_each_spilled_reg(j, state, reg) {
8688 if (!reg)
8689 continue;
8690 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8691 *reg = *known_reg;
8692 }
8693 }
8694}
8695
8696static int check_cond_jmp_op(struct bpf_verifier_env *env,
8697 struct bpf_insn *insn, int *insn_idx)
8698{
8699 struct bpf_verifier_state *this_branch = env->cur_state;
8700 struct bpf_verifier_state *other_branch;
8701 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
8702 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
8703 u8 opcode = BPF_OP(insn->code);
8704 bool is_jmp32;
8705 int pred = -1;
8706 int err;
8707
8708 /* Only conditional jumps are expected to reach here. */
8709 if (opcode == BPF_JA || opcode > BPF_JSLE) {
8710 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
8711 return -EINVAL;
8712 }
8713
8714 if (BPF_SRC(insn->code) == BPF_X) {
8715 if (insn->imm != 0) {
8716 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8717 return -EINVAL;
8718 }
8719
8720 /* check src1 operand */
8721 err = check_reg_arg(env, insn->src_reg, SRC_OP);
8722 if (err)
8723 return err;
8724
8725 if (is_pointer_value(env, insn->src_reg)) {
8726 verbose(env, "R%d pointer comparison prohibited\n",
8727 insn->src_reg);
8728 return -EACCES;
8729 }
8730 src_reg = ®s[insn->src_reg];
8731 } else {
8732 if (insn->src_reg != BPF_REG_0) {
8733 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8734 return -EINVAL;
8735 }
8736 }
8737
8738 /* check src2 operand */
8739 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8740 if (err)
8741 return err;
8742
8743 dst_reg = ®s[insn->dst_reg];
8744 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
8745
8746 if (BPF_SRC(insn->code) == BPF_K) {
8747 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8748 } else if (src_reg->type == SCALAR_VALUE &&
8749 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8750 pred = is_branch_taken(dst_reg,
8751 tnum_subreg(src_reg->var_off).value,
8752 opcode,
8753 is_jmp32);
8754 } else if (src_reg->type == SCALAR_VALUE &&
8755 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8756 pred = is_branch_taken(dst_reg,
8757 src_reg->var_off.value,
8758 opcode,
8759 is_jmp32);
8760 } else if (reg_is_pkt_pointer_any(dst_reg) &&
8761 reg_is_pkt_pointer_any(src_reg) &&
8762 !is_jmp32) {
8763 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
8764 }
8765
8766 if (pred >= 0) {
8767 /* If we get here with a dst_reg pointer type it is because
8768 * above is_branch_taken() special cased the 0 comparison.
8769 */
8770 if (!__is_pointer_value(false, dst_reg))
8771 err = mark_chain_precision(env, insn->dst_reg);
8772 if (BPF_SRC(insn->code) == BPF_X && !err &&
8773 !__is_pointer_value(false, src_reg))
8774 err = mark_chain_precision(env, insn->src_reg);
8775 if (err)
8776 return err;
8777 }
8778
8779 if (pred == 1) {
8780 /* Only follow the goto, ignore fall-through. If needed, push
8781 * the fall-through branch for simulation under speculative
8782 * execution.
8783 */
8784 if (!env->bypass_spec_v1 &&
8785 !sanitize_speculative_path(env, insn, *insn_idx + 1,
8786 *insn_idx))
8787 return -EFAULT;
8788 *insn_idx += insn->off;
8789 return 0;
8790 } else if (pred == 0) {
8791 /* Only follow the fall-through branch, since that's where the
8792 * program will go. If needed, push the goto branch for
8793 * simulation under speculative execution.
8794 */
8795 if (!env->bypass_spec_v1 &&
8796 !sanitize_speculative_path(env, insn,
8797 *insn_idx + insn->off + 1,
8798 *insn_idx))
8799 return -EFAULT;
8800 return 0;
8801 }
8802
8803 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8804 false);
8805 if (!other_branch)
8806 return -EFAULT;
8807 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
8808
8809 /* detect if we are comparing against a constant value so we can adjust
8810 * our min/max values for our dst register.
8811 * this is only legit if both are scalars (or pointers to the same
8812 * object, I suppose, but we don't support that right now), because
8813 * otherwise the different base pointers mean the offsets aren't
8814 * comparable.
8815 */
8816 if (BPF_SRC(insn->code) == BPF_X) {
8817 struct bpf_reg_state *src_reg = ®s[insn->src_reg];
8818
8819 if (dst_reg->type == SCALAR_VALUE &&
8820 src_reg->type == SCALAR_VALUE) {
8821 if (tnum_is_const(src_reg->var_off) ||
8822 (is_jmp32 &&
8823 tnum_is_const(tnum_subreg(src_reg->var_off))))
8824 reg_set_min_max(&other_branch_regs[insn->dst_reg],
8825 dst_reg,
8826 src_reg->var_off.value,
8827 tnum_subreg(src_reg->var_off).value,
8828 opcode, is_jmp32);
8829 else if (tnum_is_const(dst_reg->var_off) ||
8830 (is_jmp32 &&
8831 tnum_is_const(tnum_subreg(dst_reg->var_off))))
8832 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
8833 src_reg,
8834 dst_reg->var_off.value,
8835 tnum_subreg(dst_reg->var_off).value,
8836 opcode, is_jmp32);
8837 else if (!is_jmp32 &&
8838 (opcode == BPF_JEQ || opcode == BPF_JNE))
8839 /* Comparing for equality, we can combine knowledge */
8840 reg_combine_min_max(&other_branch_regs[insn->src_reg],
8841 &other_branch_regs[insn->dst_reg],
8842 src_reg, dst_reg, opcode);
8843 if (src_reg->id &&
8844 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
8845 find_equal_scalars(this_branch, src_reg);
8846 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8847 }
8848
8849 }
8850 } else if (dst_reg->type == SCALAR_VALUE) {
8851 reg_set_min_max(&other_branch_regs[insn->dst_reg],
8852 dst_reg, insn->imm, (u32)insn->imm,
8853 opcode, is_jmp32);
8854 }
8855
8856 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8857 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
8858 find_equal_scalars(this_branch, dst_reg);
8859 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
8860 }
8861
8862 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8863 * NOTE: these optimizations below are related with pointer comparison
8864 * which will never be JMP32.
8865 */
8866 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
8867 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
8868 reg_type_may_be_null(dst_reg->type)) {
8869 /* Mark all identical registers in each branch as either
8870 * safe or unknown depending R == 0 or R != 0 conditional.
8871 */
8872 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8873 opcode == BPF_JNE);
8874 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8875 opcode == BPF_JEQ);
8876 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg],
8877 this_branch, other_branch) &&
8878 is_pointer_value(env, insn->dst_reg)) {
8879 verbose(env, "R%d pointer comparison prohibited\n",
8880 insn->dst_reg);
8881 return -EACCES;
8882 }
8883 if (env->log.level & BPF_LOG_LEVEL)
8884 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
8885 return 0;
8886}
8887
8888/* verify BPF_LD_IMM64 instruction */
8889static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
8890{
8891 struct bpf_insn_aux_data *aux = cur_aux(env);
8892 struct bpf_reg_state *regs = cur_regs(env);
8893 struct bpf_reg_state *dst_reg;
8894 struct bpf_map *map;
8895 int err;
8896
8897 if (BPF_SIZE(insn->code) != BPF_DW) {
8898 verbose(env, "invalid BPF_LD_IMM insn\n");
8899 return -EINVAL;
8900 }
8901 if (insn->off != 0) {
8902 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
8903 return -EINVAL;
8904 }
8905
8906 err = check_reg_arg(env, insn->dst_reg, DST_OP);
8907 if (err)
8908 return err;
8909
8910 dst_reg = ®s[insn->dst_reg];
8911 if (insn->src_reg == 0) {
8912 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8913
8914 dst_reg->type = SCALAR_VALUE;
8915 __mark_reg_known(®s[insn->dst_reg], imm);
8916 return 0;
8917 }
8918
8919 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8920 mark_reg_known_zero(env, regs, insn->dst_reg);
8921
8922 dst_reg->type = aux->btf_var.reg_type;
8923 switch (dst_reg->type) {
8924 case PTR_TO_MEM:
8925 dst_reg->mem_size = aux->btf_var.mem_size;
8926 break;
8927 case PTR_TO_BTF_ID:
8928 case PTR_TO_PERCPU_BTF_ID:
8929 dst_reg->btf = aux->btf_var.btf;
8930 dst_reg->btf_id = aux->btf_var.btf_id;
8931 break;
8932 default:
8933 verbose(env, "bpf verifier is misconfigured\n");
8934 return -EFAULT;
8935 }
8936 return 0;
8937 }
8938
8939 if (insn->src_reg == BPF_PSEUDO_FUNC) {
8940 struct bpf_prog_aux *aux = env->prog->aux;
8941 u32 subprogno = insn[1].imm;
8942
8943 if (!aux->func_info) {
8944 verbose(env, "missing btf func_info\n");
8945 return -EINVAL;
8946 }
8947 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
8948 verbose(env, "callback function not static\n");
8949 return -EINVAL;
8950 }
8951
8952 dst_reg->type = PTR_TO_FUNC;
8953 dst_reg->subprogno = subprogno;
8954 return 0;
8955 }
8956
8957 map = env->used_maps[aux->map_index];
8958 mark_reg_known_zero(env, regs, insn->dst_reg);
8959 dst_reg->map_ptr = map;
8960
8961 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
8962 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
8963 dst_reg->type = PTR_TO_MAP_VALUE;
8964 dst_reg->off = aux->map_off;
8965 if (map_value_has_spin_lock(map))
8966 dst_reg->id = ++env->id_gen;
8967 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
8968 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
8969 dst_reg->type = CONST_PTR_TO_MAP;
8970 } else {
8971 verbose(env, "bpf verifier is misconfigured\n");
8972 return -EINVAL;
8973 }
8974
8975 return 0;
8976}
8977
8978static bool may_access_skb(enum bpf_prog_type type)
8979{
8980 switch (type) {
8981 case BPF_PROG_TYPE_SOCKET_FILTER:
8982 case BPF_PROG_TYPE_SCHED_CLS:
8983 case BPF_PROG_TYPE_SCHED_ACT:
8984 return true;
8985 default:
8986 return false;
8987 }
8988}
8989
8990/* verify safety of LD_ABS|LD_IND instructions:
8991 * - they can only appear in the programs where ctx == skb
8992 * - since they are wrappers of function calls, they scratch R1-R5 registers,
8993 * preserve R6-R9, and store return value into R0
8994 *
8995 * Implicit input:
8996 * ctx == skb == R6 == CTX
8997 *
8998 * Explicit input:
8999 * SRC == any register
9000 * IMM == 32-bit immediate
9001 *
9002 * Output:
9003 * R0 - 8/16/32-bit skb data converted to cpu endianness
9004 */
9005static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
9006{
9007 struct bpf_reg_state *regs = cur_regs(env);
9008 static const int ctx_reg = BPF_REG_6;
9009 u8 mode = BPF_MODE(insn->code);
9010 int i, err;
9011
9012 if (!may_access_skb(resolve_prog_type(env->prog))) {
9013 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
9014 return -EINVAL;
9015 }
9016
9017 if (!env->ops->gen_ld_abs) {
9018 verbose(env, "bpf verifier is misconfigured\n");
9019 return -EINVAL;
9020 }
9021
9022 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
9023 BPF_SIZE(insn->code) == BPF_DW ||
9024 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
9025 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
9026 return -EINVAL;
9027 }
9028
9029 /* check whether implicit source operand (register R6) is readable */
9030 err = check_reg_arg(env, ctx_reg, SRC_OP);
9031 if (err)
9032 return err;
9033
9034 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
9035 * gen_ld_abs() may terminate the program at runtime, leading to
9036 * reference leak.
9037 */
9038 err = check_reference_leak(env);
9039 if (err) {
9040 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
9041 return err;
9042 }
9043
9044 if (env->cur_state->active_spin_lock) {
9045 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
9046 return -EINVAL;
9047 }
9048
9049 if (regs[ctx_reg].type != PTR_TO_CTX) {
9050 verbose(env,
9051 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
9052 return -EINVAL;
9053 }
9054
9055 if (mode == BPF_IND) {
9056 /* check explicit source operand */
9057 err = check_reg_arg(env, insn->src_reg, SRC_OP);
9058 if (err)
9059 return err;
9060 }
9061
9062 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg);
9063 if (err < 0)
9064 return err;
9065
9066 /* reset caller saved regs to unreadable */
9067 for (i = 0; i < CALLER_SAVED_REGS; i++) {
9068 mark_reg_not_init(env, regs, caller_saved[i]);
9069 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9070 }
9071
9072 /* mark destination R0 register as readable, since it contains
9073 * the value fetched from the packet.
9074 * Already marked as written above.
9075 */
9076 mark_reg_unknown(env, regs, BPF_REG_0);
9077 /* ld_abs load up to 32-bit skb data. */
9078 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
9079 return 0;
9080}
9081
9082static int check_return_code(struct bpf_verifier_env *env)
9083{
9084 struct tnum enforce_attach_type_range = tnum_unknown;
9085 const struct bpf_prog *prog = env->prog;
9086 struct bpf_reg_state *reg;
9087 struct tnum range = tnum_range(0, 1);
9088 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9089 int err;
9090 const bool is_subprog = env->cur_state->frame[0]->subprogno;
9091
9092 /* LSM and struct_ops func-ptr's return type could be "void" */
9093 if (!is_subprog &&
9094 (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
9095 prog_type == BPF_PROG_TYPE_LSM) &&
9096 !prog->aux->attach_func_proto->type)
9097 return 0;
9098
9099 /* eBPF calling convention is such that R0 is used
9100 * to return the value from eBPF program.
9101 * Make sure that it's readable at this time
9102 * of bpf_exit, which means that program wrote
9103 * something into it earlier
9104 */
9105 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9106 if (err)
9107 return err;
9108
9109 if (is_pointer_value(env, BPF_REG_0)) {
9110 verbose(env, "R0 leaks addr as return value\n");
9111 return -EACCES;
9112 }
9113
9114 reg = cur_regs(env) + BPF_REG_0;
9115 if (is_subprog) {
9116 if (reg->type != SCALAR_VALUE) {
9117 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
9118 reg_type_str[reg->type]);
9119 return -EINVAL;
9120 }
9121 return 0;
9122 }
9123
9124 switch (prog_type) {
9125 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9126 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
9127 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9128 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9129 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9130 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9131 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
9132 range = tnum_range(1, 1);
9133 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9134 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9135 range = tnum_range(0, 3);
9136 break;
9137 case BPF_PROG_TYPE_CGROUP_SKB:
9138 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9139 range = tnum_range(0, 3);
9140 enforce_attach_type_range = tnum_range(2, 3);
9141 }
9142 break;
9143 case BPF_PROG_TYPE_CGROUP_SOCK:
9144 case BPF_PROG_TYPE_SOCK_OPS:
9145 case BPF_PROG_TYPE_CGROUP_DEVICE:
9146 case BPF_PROG_TYPE_CGROUP_SYSCTL:
9147 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
9148 break;
9149 case BPF_PROG_TYPE_RAW_TRACEPOINT:
9150 if (!env->prog->aux->attach_btf_id)
9151 return 0;
9152 range = tnum_const(0);
9153 break;
9154 case BPF_PROG_TYPE_TRACING:
9155 switch (env->prog->expected_attach_type) {
9156 case BPF_TRACE_FENTRY:
9157 case BPF_TRACE_FEXIT:
9158 range = tnum_const(0);
9159 break;
9160 case BPF_TRACE_RAW_TP:
9161 case BPF_MODIFY_RETURN:
9162 return 0;
9163 case BPF_TRACE_ITER:
9164 break;
9165 default:
9166 return -ENOTSUPP;
9167 }
9168 break;
9169 case BPF_PROG_TYPE_SK_LOOKUP:
9170 range = tnum_range(SK_DROP, SK_PASS);
9171 break;
9172 case BPF_PROG_TYPE_EXT:
9173 /* freplace program can return anything as its return value
9174 * depends on the to-be-replaced kernel func or bpf program.
9175 */
9176 default:
9177 return 0;
9178 }
9179
9180 if (reg->type != SCALAR_VALUE) {
9181 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
9182 reg_type_str[reg->type]);
9183 return -EINVAL;
9184 }
9185
9186 if (!tnum_in(range, reg->var_off)) {
9187 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
9188 return -EINVAL;
9189 }
9190
9191 if (!tnum_is_unknown(enforce_attach_type_range) &&
9192 tnum_in(enforce_attach_type_range, reg->var_off))
9193 env->prog->enforce_expected_attach_type = 1;
9194 return 0;
9195}
9196
9197/* non-recursive DFS pseudo code
9198 * 1 procedure DFS-iterative(G,v):
9199 * 2 label v as discovered
9200 * 3 let S be a stack
9201 * 4 S.push(v)
9202 * 5 while S is not empty
9203 * 6 t <- S.pop()
9204 * 7 if t is what we're looking for:
9205 * 8 return t
9206 * 9 for all edges e in G.adjacentEdges(t) do
9207 * 10 if edge e is already labelled
9208 * 11 continue with the next edge
9209 * 12 w <- G.adjacentVertex(t,e)
9210 * 13 if vertex w is not discovered and not explored
9211 * 14 label e as tree-edge
9212 * 15 label w as discovered
9213 * 16 S.push(w)
9214 * 17 continue at 5
9215 * 18 else if vertex w is discovered
9216 * 19 label e as back-edge
9217 * 20 else
9218 * 21 // vertex w is explored
9219 * 22 label e as forward- or cross-edge
9220 * 23 label t as explored
9221 * 24 S.pop()
9222 *
9223 * convention:
9224 * 0x10 - discovered
9225 * 0x11 - discovered and fall-through edge labelled
9226 * 0x12 - discovered and fall-through and branch edges labelled
9227 * 0x20 - explored
9228 */
9229
9230enum {
9231 DISCOVERED = 0x10,
9232 EXPLORED = 0x20,
9233 FALLTHROUGH = 1,
9234 BRANCH = 2,
9235};
9236
9237static u32 state_htab_size(struct bpf_verifier_env *env)
9238{
9239 return env->prog->len;
9240}
9241
9242static struct bpf_verifier_state_list **explored_state(
9243 struct bpf_verifier_env *env,
9244 int idx)
9245{
9246 struct bpf_verifier_state *cur = env->cur_state;
9247 struct bpf_func_state *state = cur->frame[cur->curframe];
9248
9249 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
9250}
9251
9252static void init_explored_state(struct bpf_verifier_env *env, int idx)
9253{
9254 env->insn_aux_data[idx].prune_point = true;
9255}
9256
9257enum {
9258 DONE_EXPLORING = 0,
9259 KEEP_EXPLORING = 1,
9260};
9261
9262/* t, w, e - match pseudo-code above:
9263 * t - index of current instruction
9264 * w - next instruction
9265 * e - edge
9266 */
9267static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9268 bool loop_ok)
9269{
9270 int *insn_stack = env->cfg.insn_stack;
9271 int *insn_state = env->cfg.insn_state;
9272
9273 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
9274 return DONE_EXPLORING;
9275
9276 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
9277 return DONE_EXPLORING;
9278
9279 if (w < 0 || w >= env->prog->len) {
9280 verbose_linfo(env, t, "%d: ", t);
9281 verbose(env, "jump out of range from insn %d to %d\n", t, w);
9282 return -EINVAL;
9283 }
9284
9285 if (e == BRANCH)
9286 /* mark branch target for state pruning */
9287 init_explored_state(env, w);
9288
9289 if (insn_state[w] == 0) {
9290 /* tree-edge */
9291 insn_state[t] = DISCOVERED | e;
9292 insn_state[w] = DISCOVERED;
9293 if (env->cfg.cur_stack >= env->prog->len)
9294 return -E2BIG;
9295 insn_stack[env->cfg.cur_stack++] = w;
9296 return KEEP_EXPLORING;
9297 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
9298 if (loop_ok && env->bpf_capable)
9299 return DONE_EXPLORING;
9300 verbose_linfo(env, t, "%d: ", t);
9301 verbose_linfo(env, w, "%d: ", w);
9302 verbose(env, "back-edge from insn %d to %d\n", t, w);
9303 return -EINVAL;
9304 } else if (insn_state[w] == EXPLORED) {
9305 /* forward- or cross-edge */
9306 insn_state[t] = DISCOVERED | e;
9307 } else {
9308 verbose(env, "insn state internal bug\n");
9309 return -EFAULT;
9310 }
9311 return DONE_EXPLORING;
9312}
9313
9314static int visit_func_call_insn(int t, int insn_cnt,
9315 struct bpf_insn *insns,
9316 struct bpf_verifier_env *env,
9317 bool visit_callee)
9318{
9319 int ret;
9320
9321 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9322 if (ret)
9323 return ret;
9324
9325 if (t + 1 < insn_cnt)
9326 init_explored_state(env, t + 1);
9327 if (visit_callee) {
9328 init_explored_state(env, t);
9329 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
9330 env, false);
9331 }
9332 return ret;
9333}
9334
9335/* Visits the instruction at index t and returns one of the following:
9336 * < 0 - an error occurred
9337 * DONE_EXPLORING - the instruction was fully explored
9338 * KEEP_EXPLORING - there is still work to be done before it is fully explored
9339 */
9340static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9341{
9342 struct bpf_insn *insns = env->prog->insnsi;
9343 int ret;
9344
9345 if (bpf_pseudo_func(insns + t))
9346 return visit_func_call_insn(t, insn_cnt, insns, env, true);
9347
9348 /* All non-branch instructions have a single fall-through edge. */
9349 if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9350 BPF_CLASS(insns[t].code) != BPF_JMP32)
9351 return push_insn(t, t + 1, FALLTHROUGH, env, false);
9352
9353 switch (BPF_OP(insns[t].code)) {
9354 case BPF_EXIT:
9355 return DONE_EXPLORING;
9356
9357 case BPF_CALL:
9358 return visit_func_call_insn(t, insn_cnt, insns, env,
9359 insns[t].src_reg == BPF_PSEUDO_CALL);
9360
9361 case BPF_JA:
9362 if (BPF_SRC(insns[t].code) != BPF_K)
9363 return -EINVAL;
9364
9365 /* unconditional jump with single edge */
9366 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9367 true);
9368 if (ret)
9369 return ret;
9370
9371 /* unconditional jmp is not a good pruning point,
9372 * but it's marked, since backtracking needs
9373 * to record jmp history in is_state_visited().
9374 */
9375 init_explored_state(env, t + insns[t].off + 1);
9376 /* tell verifier to check for equivalent states
9377 * after every call and jump
9378 */
9379 if (t + 1 < insn_cnt)
9380 init_explored_state(env, t + 1);
9381
9382 return ret;
9383
9384 default:
9385 /* conditional jump with two edges */
9386 init_explored_state(env, t);
9387 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
9388 if (ret)
9389 return ret;
9390
9391 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
9392 }
9393}
9394
9395/* non-recursive depth-first-search to detect loops in BPF program
9396 * loop == back-edge in directed graph
9397 */
9398static int check_cfg(struct bpf_verifier_env *env)
9399{
9400 int insn_cnt = env->prog->len;
9401 int *insn_stack, *insn_state;
9402 int ret = 0;
9403 int i;
9404
9405 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9406 if (!insn_state)
9407 return -ENOMEM;
9408
9409 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9410 if (!insn_stack) {
9411 kvfree(insn_state);
9412 return -ENOMEM;
9413 }
9414
9415 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
9416 insn_stack[0] = 0; /* 0 is the first instruction */
9417 env->cfg.cur_stack = 1;
9418
9419 while (env->cfg.cur_stack > 0) {
9420 int t = insn_stack[env->cfg.cur_stack - 1];
9421
9422 ret = visit_insn(t, insn_cnt, env);
9423 switch (ret) {
9424 case DONE_EXPLORING:
9425 insn_state[t] = EXPLORED;
9426 env->cfg.cur_stack--;
9427 break;
9428 case KEEP_EXPLORING:
9429 break;
9430 default:
9431 if (ret > 0) {
9432 verbose(env, "visit_insn internal bug\n");
9433 ret = -EFAULT;
9434 }
9435 goto err_free;
9436 }
9437 }
9438
9439 if (env->cfg.cur_stack < 0) {
9440 verbose(env, "pop stack internal bug\n");
9441 ret = -EFAULT;
9442 goto err_free;
9443 }
9444
9445 for (i = 0; i < insn_cnt; i++) {
9446 if (insn_state[i] != EXPLORED) {
9447 verbose(env, "unreachable insn %d\n", i);
9448 ret = -EINVAL;
9449 goto err_free;
9450 }
9451 }
9452 ret = 0; /* cfg looks good */
9453
9454err_free:
9455 kvfree(insn_state);
9456 kvfree(insn_stack);
9457 env->cfg.insn_state = env->cfg.insn_stack = NULL;
9458 return ret;
9459}
9460
9461static int check_abnormal_return(struct bpf_verifier_env *env)
9462{
9463 int i;
9464
9465 for (i = 1; i < env->subprog_cnt; i++) {
9466 if (env->subprog_info[i].has_ld_abs) {
9467 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
9468 return -EINVAL;
9469 }
9470 if (env->subprog_info[i].has_tail_call) {
9471 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
9472 return -EINVAL;
9473 }
9474 }
9475 return 0;
9476}
9477
9478/* The minimum supported BTF func info size */
9479#define MIN_BPF_FUNCINFO_SIZE 8
9480#define MAX_FUNCINFO_REC_SIZE 252
9481
9482static int check_btf_func(struct bpf_verifier_env *env,
9483 const union bpf_attr *attr,
9484 bpfptr_t uattr)
9485{
9486 const struct btf_type *type, *func_proto, *ret_type;
9487 u32 i, nfuncs, urec_size, min_size;
9488 u32 krec_size = sizeof(struct bpf_func_info);
9489 struct bpf_func_info *krecord;
9490 struct bpf_func_info_aux *info_aux = NULL;
9491 struct bpf_prog *prog;
9492 const struct btf *btf;
9493 bpfptr_t urecord;
9494 u32 prev_offset = 0;
9495 bool scalar_return;
9496 int ret = -ENOMEM;
9497
9498 nfuncs = attr->func_info_cnt;
9499 if (!nfuncs) {
9500 if (check_abnormal_return(env))
9501 return -EINVAL;
9502 return 0;
9503 }
9504
9505 if (nfuncs != env->subprog_cnt) {
9506 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
9507 return -EINVAL;
9508 }
9509
9510 urec_size = attr->func_info_rec_size;
9511 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
9512 urec_size > MAX_FUNCINFO_REC_SIZE ||
9513 urec_size % sizeof(u32)) {
9514 verbose(env, "invalid func info rec size %u\n", urec_size);
9515 return -EINVAL;
9516 }
9517
9518 prog = env->prog;
9519 btf = prog->aux->btf;
9520
9521 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
9522 min_size = min_t(u32, krec_size, urec_size);
9523
9524 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
9525 if (!krecord)
9526 return -ENOMEM;
9527 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
9528 if (!info_aux)
9529 goto err_free;
9530
9531 for (i = 0; i < nfuncs; i++) {
9532 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
9533 if (ret) {
9534 if (ret == -E2BIG) {
9535 verbose(env, "nonzero tailing record in func info");
9536 /* set the size kernel expects so loader can zero
9537 * out the rest of the record.
9538 */
9539 if (copy_to_bpfptr_offset(uattr,
9540 offsetof(union bpf_attr, func_info_rec_size),
9541 &min_size, sizeof(min_size)))
9542 ret = -EFAULT;
9543 }
9544 goto err_free;
9545 }
9546
9547 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
9548 ret = -EFAULT;
9549 goto err_free;
9550 }
9551
9552 /* check insn_off */
9553 ret = -EINVAL;
9554 if (i == 0) {
9555 if (krecord[i].insn_off) {
9556 verbose(env,
9557 "nonzero insn_off %u for the first func info record",
9558 krecord[i].insn_off);
9559 goto err_free;
9560 }
9561 } else if (krecord[i].insn_off <= prev_offset) {
9562 verbose(env,
9563 "same or smaller insn offset (%u) than previous func info record (%u)",
9564 krecord[i].insn_off, prev_offset);
9565 goto err_free;
9566 }
9567
9568 if (env->subprog_info[i].start != krecord[i].insn_off) {
9569 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
9570 goto err_free;
9571 }
9572
9573 /* check type_id */
9574 type = btf_type_by_id(btf, krecord[i].type_id);
9575 if (!type || !btf_type_is_func(type)) {
9576 verbose(env, "invalid type id %d in func info",
9577 krecord[i].type_id);
9578 goto err_free;
9579 }
9580 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
9581
9582 func_proto = btf_type_by_id(btf, type->type);
9583 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
9584 /* btf_func_check() already verified it during BTF load */
9585 goto err_free;
9586 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
9587 scalar_return =
9588 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
9589 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
9590 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
9591 goto err_free;
9592 }
9593 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
9594 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
9595 goto err_free;
9596 }
9597
9598 prev_offset = krecord[i].insn_off;
9599 bpfptr_add(&urecord, urec_size);
9600 }
9601
9602 prog->aux->func_info = krecord;
9603 prog->aux->func_info_cnt = nfuncs;
9604 prog->aux->func_info_aux = info_aux;
9605 return 0;
9606
9607err_free:
9608 kvfree(krecord);
9609 kfree(info_aux);
9610 return ret;
9611}
9612
9613static void adjust_btf_func(struct bpf_verifier_env *env)
9614{
9615 struct bpf_prog_aux *aux = env->prog->aux;
9616 int i;
9617
9618 if (!aux->func_info)
9619 return;
9620
9621 for (i = 0; i < env->subprog_cnt; i++)
9622 aux->func_info[i].insn_off = env->subprog_info[i].start;
9623}
9624
9625#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
9626 sizeof(((struct bpf_line_info *)(0))->line_col))
9627#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
9628
9629static int check_btf_line(struct bpf_verifier_env *env,
9630 const union bpf_attr *attr,
9631 bpfptr_t uattr)
9632{
9633 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
9634 struct bpf_subprog_info *sub;
9635 struct bpf_line_info *linfo;
9636 struct bpf_prog *prog;
9637 const struct btf *btf;
9638 bpfptr_t ulinfo;
9639 int err;
9640
9641 nr_linfo = attr->line_info_cnt;
9642 if (!nr_linfo)
9643 return 0;
9644 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
9645 return -EINVAL;
9646
9647 rec_size = attr->line_info_rec_size;
9648 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
9649 rec_size > MAX_LINEINFO_REC_SIZE ||
9650 rec_size & (sizeof(u32) - 1))
9651 return -EINVAL;
9652
9653 /* Need to zero it in case the userspace may
9654 * pass in a smaller bpf_line_info object.
9655 */
9656 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
9657 GFP_KERNEL | __GFP_NOWARN);
9658 if (!linfo)
9659 return -ENOMEM;
9660
9661 prog = env->prog;
9662 btf = prog->aux->btf;
9663
9664 s = 0;
9665 sub = env->subprog_info;
9666 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
9667 expected_size = sizeof(struct bpf_line_info);
9668 ncopy = min_t(u32, expected_size, rec_size);
9669 for (i = 0; i < nr_linfo; i++) {
9670 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
9671 if (err) {
9672 if (err == -E2BIG) {
9673 verbose(env, "nonzero tailing record in line_info");
9674 if (copy_to_bpfptr_offset(uattr,
9675 offsetof(union bpf_attr, line_info_rec_size),
9676 &expected_size, sizeof(expected_size)))
9677 err = -EFAULT;
9678 }
9679 goto err_free;
9680 }
9681
9682 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
9683 err = -EFAULT;
9684 goto err_free;
9685 }
9686
9687 /*
9688 * Check insn_off to ensure
9689 * 1) strictly increasing AND
9690 * 2) bounded by prog->len
9691 *
9692 * The linfo[0].insn_off == 0 check logically falls into
9693 * the later "missing bpf_line_info for func..." case
9694 * because the first linfo[0].insn_off must be the
9695 * first sub also and the first sub must have
9696 * subprog_info[0].start == 0.
9697 */
9698 if ((i && linfo[i].insn_off <= prev_offset) ||
9699 linfo[i].insn_off >= prog->len) {
9700 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
9701 i, linfo[i].insn_off, prev_offset,
9702 prog->len);
9703 err = -EINVAL;
9704 goto err_free;
9705 }
9706
9707 if (!prog->insnsi[linfo[i].insn_off].code) {
9708 verbose(env,
9709 "Invalid insn code at line_info[%u].insn_off\n",
9710 i);
9711 err = -EINVAL;
9712 goto err_free;
9713 }
9714
9715 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
9716 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
9717 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
9718 err = -EINVAL;
9719 goto err_free;
9720 }
9721
9722 if (s != env->subprog_cnt) {
9723 if (linfo[i].insn_off == sub[s].start) {
9724 sub[s].linfo_idx = i;
9725 s++;
9726 } else if (sub[s].start < linfo[i].insn_off) {
9727 verbose(env, "missing bpf_line_info for func#%u\n", s);
9728 err = -EINVAL;
9729 goto err_free;
9730 }
9731 }
9732
9733 prev_offset = linfo[i].insn_off;
9734 bpfptr_add(&ulinfo, rec_size);
9735 }
9736
9737 if (s != env->subprog_cnt) {
9738 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
9739 env->subprog_cnt - s, s);
9740 err = -EINVAL;
9741 goto err_free;
9742 }
9743
9744 prog->aux->linfo = linfo;
9745 prog->aux->nr_linfo = nr_linfo;
9746
9747 return 0;
9748
9749err_free:
9750 kvfree(linfo);
9751 return err;
9752}
9753
9754static int check_btf_info(struct bpf_verifier_env *env,
9755 const union bpf_attr *attr,
9756 bpfptr_t uattr)
9757{
9758 struct btf *btf;
9759 int err;
9760
9761 if (!attr->func_info_cnt && !attr->line_info_cnt) {
9762 if (check_abnormal_return(env))
9763 return -EINVAL;
9764 return 0;
9765 }
9766
9767 btf = btf_get_by_fd(attr->prog_btf_fd);
9768 if (IS_ERR(btf))
9769 return PTR_ERR(btf);
9770 if (btf_is_kernel(btf)) {
9771 btf_put(btf);
9772 return -EACCES;
9773 }
9774 env->prog->aux->btf = btf;
9775
9776 err = check_btf_func(env, attr, uattr);
9777 if (err)
9778 return err;
9779
9780 err = check_btf_line(env, attr, uattr);
9781 if (err)
9782 return err;
9783
9784 return 0;
9785}
9786
9787/* check %cur's range satisfies %old's */
9788static bool range_within(struct bpf_reg_state *old,
9789 struct bpf_reg_state *cur)
9790{
9791 return old->umin_value <= cur->umin_value &&
9792 old->umax_value >= cur->umax_value &&
9793 old->smin_value <= cur->smin_value &&
9794 old->smax_value >= cur->smax_value &&
9795 old->u32_min_value <= cur->u32_min_value &&
9796 old->u32_max_value >= cur->u32_max_value &&
9797 old->s32_min_value <= cur->s32_min_value &&
9798 old->s32_max_value >= cur->s32_max_value;
9799}
9800
9801/* If in the old state two registers had the same id, then they need to have
9802 * the same id in the new state as well. But that id could be different from
9803 * the old state, so we need to track the mapping from old to new ids.
9804 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9805 * regs with old id 5 must also have new id 9 for the new state to be safe. But
9806 * regs with a different old id could still have new id 9, we don't care about
9807 * that.
9808 * So we look through our idmap to see if this old id has been seen before. If
9809 * so, we require the new id to match; otherwise, we add the id pair to the map.
9810 */
9811static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
9812{
9813 unsigned int i;
9814
9815 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
9816 if (!idmap[i].old) {
9817 /* Reached an empty slot; haven't seen this id before */
9818 idmap[i].old = old_id;
9819 idmap[i].cur = cur_id;
9820 return true;
9821 }
9822 if (idmap[i].old == old_id)
9823 return idmap[i].cur == cur_id;
9824 }
9825 /* We ran out of idmap slots, which should be impossible */
9826 WARN_ON_ONCE(1);
9827 return false;
9828}
9829
9830static void clean_func_state(struct bpf_verifier_env *env,
9831 struct bpf_func_state *st)
9832{
9833 enum bpf_reg_liveness live;
9834 int i, j;
9835
9836 for (i = 0; i < BPF_REG_FP; i++) {
9837 live = st->regs[i].live;
9838 /* liveness must not touch this register anymore */
9839 st->regs[i].live |= REG_LIVE_DONE;
9840 if (!(live & REG_LIVE_READ))
9841 /* since the register is unused, clear its state
9842 * to make further comparison simpler
9843 */
9844 __mark_reg_not_init(env, &st->regs[i]);
9845 }
9846
9847 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9848 live = st->stack[i].spilled_ptr.live;
9849 /* liveness must not touch this stack slot anymore */
9850 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9851 if (!(live & REG_LIVE_READ)) {
9852 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9853 for (j = 0; j < BPF_REG_SIZE; j++)
9854 st->stack[i].slot_type[j] = STACK_INVALID;
9855 }
9856 }
9857}
9858
9859static void clean_verifier_state(struct bpf_verifier_env *env,
9860 struct bpf_verifier_state *st)
9861{
9862 int i;
9863
9864 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9865 /* all regs in this state in all frames were already marked */
9866 return;
9867
9868 for (i = 0; i <= st->curframe; i++)
9869 clean_func_state(env, st->frame[i]);
9870}
9871
9872/* the parentage chains form a tree.
9873 * the verifier states are added to state lists at given insn and
9874 * pushed into state stack for future exploration.
9875 * when the verifier reaches bpf_exit insn some of the verifer states
9876 * stored in the state lists have their final liveness state already,
9877 * but a lot of states will get revised from liveness point of view when
9878 * the verifier explores other branches.
9879 * Example:
9880 * 1: r0 = 1
9881 * 2: if r1 == 100 goto pc+1
9882 * 3: r0 = 2
9883 * 4: exit
9884 * when the verifier reaches exit insn the register r0 in the state list of
9885 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9886 * of insn 2 and goes exploring further. At the insn 4 it will walk the
9887 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9888 *
9889 * Since the verifier pushes the branch states as it sees them while exploring
9890 * the program the condition of walking the branch instruction for the second
9891 * time means that all states below this branch were already explored and
9892 * their final liveness marks are already propagated.
9893 * Hence when the verifier completes the search of state list in is_state_visited()
9894 * we can call this clean_live_states() function to mark all liveness states
9895 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9896 * will not be used.
9897 * This function also clears the registers and stack for states that !READ
9898 * to simplify state merging.
9899 *
9900 * Important note here that walking the same branch instruction in the callee
9901 * doesn't meant that the states are DONE. The verifier has to compare
9902 * the callsites
9903 */
9904static void clean_live_states(struct bpf_verifier_env *env, int insn,
9905 struct bpf_verifier_state *cur)
9906{
9907 struct bpf_verifier_state_list *sl;
9908 int i;
9909
9910 sl = *explored_state(env, insn);
9911 while (sl) {
9912 if (sl->state.branches)
9913 goto next;
9914 if (sl->state.insn_idx != insn ||
9915 sl->state.curframe != cur->curframe)
9916 goto next;
9917 for (i = 0; i <= cur->curframe; i++)
9918 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9919 goto next;
9920 clean_verifier_state(env, &sl->state);
9921next:
9922 sl = sl->next;
9923 }
9924}
9925
9926/* Returns true if (rold safe implies rcur safe) */
9927static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
9928 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
9929{
9930 bool equal;
9931
9932 if (!(rold->live & REG_LIVE_READ))
9933 /* explored state didn't use this */
9934 return true;
9935
9936 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
9937
9938 if (rold->type == PTR_TO_STACK)
9939 /* two stack pointers are equal only if they're pointing to
9940 * the same stack frame, since fp-8 in foo != fp-8 in bar
9941 */
9942 return equal && rold->frameno == rcur->frameno;
9943
9944 if (equal)
9945 return true;
9946
9947 if (rold->type == NOT_INIT)
9948 /* explored state can't have used this */
9949 return true;
9950 if (rcur->type == NOT_INIT)
9951 return false;
9952 switch (rold->type) {
9953 case SCALAR_VALUE:
9954 if (env->explore_alu_limits)
9955 return false;
9956 if (rcur->type == SCALAR_VALUE) {
9957 if (!rold->precise && !rcur->precise)
9958 return true;
9959 /* new val must satisfy old val knowledge */
9960 return range_within(rold, rcur) &&
9961 tnum_in(rold->var_off, rcur->var_off);
9962 } else {
9963 /* We're trying to use a pointer in place of a scalar.
9964 * Even if the scalar was unbounded, this could lead to
9965 * pointer leaks because scalars are allowed to leak
9966 * while pointers are not. We could make this safe in
9967 * special cases if root is calling us, but it's
9968 * probably not worth the hassle.
9969 */
9970 return false;
9971 }
9972 case PTR_TO_MAP_KEY:
9973 case PTR_TO_MAP_VALUE:
9974 /* If the new min/max/var_off satisfy the old ones and
9975 * everything else matches, we are OK.
9976 * 'id' is not compared, since it's only used for maps with
9977 * bpf_spin_lock inside map element and in such cases if
9978 * the rest of the prog is valid for one map element then
9979 * it's valid for all map elements regardless of the key
9980 * used in bpf_map_lookup()
9981 */
9982 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9983 range_within(rold, rcur) &&
9984 tnum_in(rold->var_off, rcur->var_off);
9985 case PTR_TO_MAP_VALUE_OR_NULL:
9986 /* a PTR_TO_MAP_VALUE could be safe to use as a
9987 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9988 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9989 * checked, doing so could have affected others with the same
9990 * id, and we can't check for that because we lost the id when
9991 * we converted to a PTR_TO_MAP_VALUE.
9992 */
9993 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
9994 return false;
9995 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
9996 return false;
9997 /* Check our ids match any regs they're supposed to */
9998 return check_ids(rold->id, rcur->id, idmap);
9999 case PTR_TO_PACKET_META:
10000 case PTR_TO_PACKET:
10001 if (rcur->type != rold->type)
10002 return false;
10003 /* We must have at least as much range as the old ptr
10004 * did, so that any accesses which were safe before are
10005 * still safe. This is true even if old range < old off,
10006 * since someone could have accessed through (ptr - k), or
10007 * even done ptr -= k in a register, to get a safe access.
10008 */
10009 if (rold->range > rcur->range)
10010 return false;
10011 /* If the offsets don't match, we can't trust our alignment;
10012 * nor can we be sure that we won't fall out of range.
10013 */
10014 if (rold->off != rcur->off)
10015 return false;
10016 /* id relations must be preserved */
10017 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
10018 return false;
10019 /* new val must satisfy old val knowledge */
10020 return range_within(rold, rcur) &&
10021 tnum_in(rold->var_off, rcur->var_off);
10022 case PTR_TO_CTX:
10023 case CONST_PTR_TO_MAP:
10024 case PTR_TO_PACKET_END:
10025 case PTR_TO_FLOW_KEYS:
10026 case PTR_TO_SOCKET:
10027 case PTR_TO_SOCKET_OR_NULL:
10028 case PTR_TO_SOCK_COMMON:
10029 case PTR_TO_SOCK_COMMON_OR_NULL:
10030 case PTR_TO_TCP_SOCK:
10031 case PTR_TO_TCP_SOCK_OR_NULL:
10032 case PTR_TO_XDP_SOCK:
10033 /* Only valid matches are exact, which memcmp() above
10034 * would have accepted
10035 */
10036 default:
10037 /* Don't know what's going on, just say it's not safe */
10038 return false;
10039 }
10040
10041 /* Shouldn't get here; if we do, say it's not safe */
10042 WARN_ON_ONCE(1);
10043 return false;
10044}
10045
10046static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
10047 struct bpf_func_state *cur, struct bpf_id_pair *idmap)
10048{
10049 int i, spi;
10050
10051 /* walk slots of the explored stack and ignore any additional
10052 * slots in the current stack, since explored(safe) state
10053 * didn't use them
10054 */
10055 for (i = 0; i < old->allocated_stack; i++) {
10056 spi = i / BPF_REG_SIZE;
10057
10058 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10059 i += BPF_REG_SIZE - 1;
10060 /* explored state didn't use this */
10061 continue;
10062 }
10063
10064 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10065 continue;
10066
10067 /* explored stack has more populated slots than current stack
10068 * and these slots were used
10069 */
10070 if (i >= cur->allocated_stack)
10071 return false;
10072
10073 /* if old state was safe with misc data in the stack
10074 * it will be safe with zero-initialized stack.
10075 * The opposite is not true
10076 */
10077 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10078 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10079 continue;
10080 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10081 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10082 /* Ex: old explored (safe) state has STACK_SPILL in
10083 * this stack slot, but current has STACK_MISC ->
10084 * this verifier states are not equivalent,
10085 * return false to continue verification of this path
10086 */
10087 return false;
10088 if (i % BPF_REG_SIZE)
10089 continue;
10090 if (old->stack[spi].slot_type[0] != STACK_SPILL)
10091 continue;
10092 if (!regsafe(env, &old->stack[spi].spilled_ptr,
10093 &cur->stack[spi].spilled_ptr, idmap))
10094 /* when explored and current stack slot are both storing
10095 * spilled registers, check that stored pointers types
10096 * are the same as well.
10097 * Ex: explored safe path could have stored
10098 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10099 * but current path has stored:
10100 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10101 * such verifier states are not equivalent.
10102 * return false to continue verification of this path
10103 */
10104 return false;
10105 }
10106 return true;
10107}
10108
10109static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10110{
10111 if (old->acquired_refs != cur->acquired_refs)
10112 return false;
10113 return !memcmp(old->refs, cur->refs,
10114 sizeof(*old->refs) * old->acquired_refs);
10115}
10116
10117/* compare two verifier states
10118 *
10119 * all states stored in state_list are known to be valid, since
10120 * verifier reached 'bpf_exit' instruction through them
10121 *
10122 * this function is called when verifier exploring different branches of
10123 * execution popped from the state stack. If it sees an old state that has
10124 * more strict register state and more strict stack state then this execution
10125 * branch doesn't need to be explored further, since verifier already
10126 * concluded that more strict state leads to valid finish.
10127 *
10128 * Therefore two states are equivalent if register state is more conservative
10129 * and explored stack state is more conservative than the current one.
10130 * Example:
10131 * explored current
10132 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10133 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10134 *
10135 * In other words if current stack state (one being explored) has more
10136 * valid slots than old one that already passed validation, it means
10137 * the verifier can stop exploring and conclude that current state is valid too
10138 *
10139 * Similarly with registers. If explored state has register type as invalid
10140 * whereas register type in current state is meaningful, it means that
10141 * the current state will reach 'bpf_exit' instruction safely
10142 */
10143static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
10144 struct bpf_func_state *cur)
10145{
10146 int i;
10147
10148 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
10149 for (i = 0; i < MAX_BPF_REG; i++)
10150 if (!regsafe(env, &old->regs[i], &cur->regs[i],
10151 env->idmap_scratch))
10152 return false;
10153
10154 if (!stacksafe(env, old, cur, env->idmap_scratch))
10155 return false;
10156
10157 if (!refsafe(old, cur))
10158 return false;
10159
10160 return true;
10161}
10162
10163static bool states_equal(struct bpf_verifier_env *env,
10164 struct bpf_verifier_state *old,
10165 struct bpf_verifier_state *cur)
10166{
10167 int i;
10168
10169 if (old->curframe != cur->curframe)
10170 return false;
10171
10172 /* Verification state from speculative execution simulation
10173 * must never prune a non-speculative execution one.
10174 */
10175 if (old->speculative && !cur->speculative)
10176 return false;
10177
10178 if (old->active_spin_lock != cur->active_spin_lock)
10179 return false;
10180
10181 /* for states to be equal callsites have to be the same
10182 * and all frame states need to be equivalent
10183 */
10184 for (i = 0; i <= old->curframe; i++) {
10185 if (old->frame[i]->callsite != cur->frame[i]->callsite)
10186 return false;
10187 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
10188 return false;
10189 }
10190 return true;
10191}
10192
10193/* Return 0 if no propagation happened. Return negative error code if error
10194 * happened. Otherwise, return the propagated bit.
10195 */
10196static int propagate_liveness_reg(struct bpf_verifier_env *env,
10197 struct bpf_reg_state *reg,
10198 struct bpf_reg_state *parent_reg)
10199{
10200 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10201 u8 flag = reg->live & REG_LIVE_READ;
10202 int err;
10203
10204 /* When comes here, read flags of PARENT_REG or REG could be any of
10205 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10206 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10207 */
10208 if (parent_flag == REG_LIVE_READ64 ||
10209 /* Or if there is no read flag from REG. */
10210 !flag ||
10211 /* Or if the read flag from REG is the same as PARENT_REG. */
10212 parent_flag == flag)
10213 return 0;
10214
10215 err = mark_reg_read(env, reg, parent_reg, flag);
10216 if (err)
10217 return err;
10218
10219 return flag;
10220}
10221
10222/* A write screens off any subsequent reads; but write marks come from the
10223 * straight-line code between a state and its parent. When we arrive at an
10224 * equivalent state (jump target or such) we didn't arrive by the straight-line
10225 * code, so read marks in the state must propagate to the parent regardless
10226 * of the state's write marks. That's what 'parent == state->parent' comparison
10227 * in mark_reg_read() is for.
10228 */
10229static int propagate_liveness(struct bpf_verifier_env *env,
10230 const struct bpf_verifier_state *vstate,
10231 struct bpf_verifier_state *vparent)
10232{
10233 struct bpf_reg_state *state_reg, *parent_reg;
10234 struct bpf_func_state *state, *parent;
10235 int i, frame, err = 0;
10236
10237 if (vparent->curframe != vstate->curframe) {
10238 WARN(1, "propagate_live: parent frame %d current frame %d\n",
10239 vparent->curframe, vstate->curframe);
10240 return -EFAULT;
10241 }
10242 /* Propagate read liveness of registers... */
10243 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
10244 for (frame = 0; frame <= vstate->curframe; frame++) {
10245 parent = vparent->frame[frame];
10246 state = vstate->frame[frame];
10247 parent_reg = parent->regs;
10248 state_reg = state->regs;
10249 /* We don't need to worry about FP liveness, it's read-only */
10250 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
10251 err = propagate_liveness_reg(env, &state_reg[i],
10252 &parent_reg[i]);
10253 if (err < 0)
10254 return err;
10255 if (err == REG_LIVE_READ64)
10256 mark_insn_zext(env, &parent_reg[i]);
10257 }
10258
10259 /* Propagate stack slots. */
10260 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10261 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
10262 parent_reg = &parent->stack[i].spilled_ptr;
10263 state_reg = &state->stack[i].spilled_ptr;
10264 err = propagate_liveness_reg(env, state_reg,
10265 parent_reg);
10266 if (err < 0)
10267 return err;
10268 }
10269 }
10270 return 0;
10271}
10272
10273/* find precise scalars in the previous equivalent state and
10274 * propagate them into the current state
10275 */
10276static int propagate_precision(struct bpf_verifier_env *env,
10277 const struct bpf_verifier_state *old)
10278{
10279 struct bpf_reg_state *state_reg;
10280 struct bpf_func_state *state;
10281 int i, err = 0;
10282
10283 state = old->frame[old->curframe];
10284 state_reg = state->regs;
10285 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10286 if (state_reg->type != SCALAR_VALUE ||
10287 !state_reg->precise)
10288 continue;
10289 if (env->log.level & BPF_LOG_LEVEL2)
10290 verbose(env, "propagating r%d\n", i);
10291 err = mark_chain_precision(env, i);
10292 if (err < 0)
10293 return err;
10294 }
10295
10296 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
10297 if (state->stack[i].slot_type[0] != STACK_SPILL)
10298 continue;
10299 state_reg = &state->stack[i].spilled_ptr;
10300 if (state_reg->type != SCALAR_VALUE ||
10301 !state_reg->precise)
10302 continue;
10303 if (env->log.level & BPF_LOG_LEVEL2)
10304 verbose(env, "propagating fp%d\n",
10305 (-i - 1) * BPF_REG_SIZE);
10306 err = mark_chain_precision_stack(env, i);
10307 if (err < 0)
10308 return err;
10309 }
10310 return 0;
10311}
10312
10313static bool states_maybe_looping(struct bpf_verifier_state *old,
10314 struct bpf_verifier_state *cur)
10315{
10316 struct bpf_func_state *fold, *fcur;
10317 int i, fr = cur->curframe;
10318
10319 if (old->curframe != fr)
10320 return false;
10321
10322 fold = old->frame[fr];
10323 fcur = cur->frame[fr];
10324 for (i = 0; i < MAX_BPF_REG; i++)
10325 if (memcmp(&fold->regs[i], &fcur->regs[i],
10326 offsetof(struct bpf_reg_state, parent)))
10327 return false;
10328 return true;
10329}
10330
10331
10332static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
10333{
10334 struct bpf_verifier_state_list *new_sl;
10335 struct bpf_verifier_state_list *sl, **pprev;
10336 struct bpf_verifier_state *cur = env->cur_state, *new;
10337 int i, j, err, states_cnt = 0;
10338 bool add_new_state = env->test_state_freq ? true : false;
10339
10340 cur->last_insn_idx = env->prev_insn_idx;
10341 if (!env->insn_aux_data[insn_idx].prune_point)
10342 /* this 'insn_idx' instruction wasn't marked, so we will not
10343 * be doing state search here
10344 */
10345 return 0;
10346
10347 /* bpf progs typically have pruning point every 4 instructions
10348 * http://vger.kernel.org/bpfconf2019.html#session-1
10349 * Do not add new state for future pruning if the verifier hasn't seen
10350 * at least 2 jumps and at least 8 instructions.
10351 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
10352 * In tests that amounts to up to 50% reduction into total verifier
10353 * memory consumption and 20% verifier time speedup.
10354 */
10355 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
10356 env->insn_processed - env->prev_insn_processed >= 8)
10357 add_new_state = true;
10358
10359 pprev = explored_state(env, insn_idx);
10360 sl = *pprev;
10361
10362 clean_live_states(env, insn_idx, cur);
10363
10364 while (sl) {
10365 states_cnt++;
10366 if (sl->state.insn_idx != insn_idx)
10367 goto next;
10368 if (sl->state.branches) {
10369 if (states_maybe_looping(&sl->state, cur) &&
10370 states_equal(env, &sl->state, cur)) {
10371 verbose_linfo(env, insn_idx, "; ");
10372 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
10373 return -EINVAL;
10374 }
10375 /* if the verifier is processing a loop, avoid adding new state
10376 * too often, since different loop iterations have distinct
10377 * states and may not help future pruning.
10378 * This threshold shouldn't be too low to make sure that
10379 * a loop with large bound will be rejected quickly.
10380 * The most abusive loop will be:
10381 * r1 += 1
10382 * if r1 < 1000000 goto pc-2
10383 * 1M insn_procssed limit / 100 == 10k peak states.
10384 * This threshold shouldn't be too high either, since states
10385 * at the end of the loop are likely to be useful in pruning.
10386 */
10387 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
10388 env->insn_processed - env->prev_insn_processed < 100)
10389 add_new_state = false;
10390 goto miss;
10391 }
10392 if (states_equal(env, &sl->state, cur)) {
10393 sl->hit_cnt++;
10394 /* reached equivalent register/stack state,
10395 * prune the search.
10396 * Registers read by the continuation are read by us.
10397 * If we have any write marks in env->cur_state, they
10398 * will prevent corresponding reads in the continuation
10399 * from reaching our parent (an explored_state). Our
10400 * own state will get the read marks recorded, but
10401 * they'll be immediately forgotten as we're pruning
10402 * this state and will pop a new one.
10403 */
10404 err = propagate_liveness(env, &sl->state, cur);
10405
10406 /* if previous state reached the exit with precision and
10407 * current state is equivalent to it (except precsion marks)
10408 * the precision needs to be propagated back in
10409 * the current state.
10410 */
10411 err = err ? : push_jmp_history(env, cur);
10412 err = err ? : propagate_precision(env, &sl->state);
10413 if (err)
10414 return err;
10415 return 1;
10416 }
10417miss:
10418 /* when new state is not going to be added do not increase miss count.
10419 * Otherwise several loop iterations will remove the state
10420 * recorded earlier. The goal of these heuristics is to have
10421 * states from some iterations of the loop (some in the beginning
10422 * and some at the end) to help pruning.
10423 */
10424 if (add_new_state)
10425 sl->miss_cnt++;
10426 /* heuristic to determine whether this state is beneficial
10427 * to keep checking from state equivalence point of view.
10428 * Higher numbers increase max_states_per_insn and verification time,
10429 * but do not meaningfully decrease insn_processed.
10430 */
10431 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
10432 /* the state is unlikely to be useful. Remove it to
10433 * speed up verification
10434 */
10435 *pprev = sl->next;
10436 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
10437 u32 br = sl->state.branches;
10438
10439 WARN_ONCE(br,
10440 "BUG live_done but branches_to_explore %d\n",
10441 br);
10442 free_verifier_state(&sl->state, false);
10443 kfree(sl);
10444 env->peak_states--;
10445 } else {
10446 /* cannot free this state, since parentage chain may
10447 * walk it later. Add it for free_list instead to
10448 * be freed at the end of verification
10449 */
10450 sl->next = env->free_list;
10451 env->free_list = sl;
10452 }
10453 sl = *pprev;
10454 continue;
10455 }
10456next:
10457 pprev = &sl->next;
10458 sl = *pprev;
10459 }
10460
10461 if (env->max_states_per_insn < states_cnt)
10462 env->max_states_per_insn = states_cnt;
10463
10464 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
10465 return push_jmp_history(env, cur);
10466
10467 if (!add_new_state)
10468 return push_jmp_history(env, cur);
10469
10470 /* There were no equivalent states, remember the current one.
10471 * Technically the current state is not proven to be safe yet,
10472 * but it will either reach outer most bpf_exit (which means it's safe)
10473 * or it will be rejected. When there are no loops the verifier won't be
10474 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
10475 * again on the way to bpf_exit.
10476 * When looping the sl->state.branches will be > 0 and this state
10477 * will not be considered for equivalence until branches == 0.
10478 */
10479 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
10480 if (!new_sl)
10481 return -ENOMEM;
10482 env->total_states++;
10483 env->peak_states++;
10484 env->prev_jmps_processed = env->jmps_processed;
10485 env->prev_insn_processed = env->insn_processed;
10486
10487 /* add new state to the head of linked list */
10488 new = &new_sl->state;
10489 err = copy_verifier_state(new, cur);
10490 if (err) {
10491 free_verifier_state(new, false);
10492 kfree(new_sl);
10493 return err;
10494 }
10495 new->insn_idx = insn_idx;
10496 WARN_ONCE(new->branches != 1,
10497 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
10498
10499 cur->parent = new;
10500 cur->first_insn_idx = insn_idx;
10501 clear_jmp_history(cur);
10502 new_sl->next = *explored_state(env, insn_idx);
10503 *explored_state(env, insn_idx) = new_sl;
10504 /* connect new state to parentage chain. Current frame needs all
10505 * registers connected. Only r6 - r9 of the callers are alive (pushed
10506 * to the stack implicitly by JITs) so in callers' frames connect just
10507 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
10508 * the state of the call instruction (with WRITTEN set), and r0 comes
10509 * from callee with its full parentage chain, anyway.
10510 */
10511 /* clear write marks in current state: the writes we did are not writes
10512 * our child did, so they don't screen off its reads from us.
10513 * (There are no read marks in current state, because reads always mark
10514 * their parent and current state never has children yet. Only
10515 * explored_states can get read marks.)
10516 */
10517 for (j = 0; j <= cur->curframe; j++) {
10518 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
10519 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
10520 for (i = 0; i < BPF_REG_FP; i++)
10521 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
10522 }
10523
10524 /* all stack frames are accessible from callee, clear them all */
10525 for (j = 0; j <= cur->curframe; j++) {
10526 struct bpf_func_state *frame = cur->frame[j];
10527 struct bpf_func_state *newframe = new->frame[j];
10528
10529 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
10530 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
10531 frame->stack[i].spilled_ptr.parent =
10532 &newframe->stack[i].spilled_ptr;
10533 }
10534 }
10535 return 0;
10536}
10537
10538/* Return true if it's OK to have the same insn return a different type. */
10539static bool reg_type_mismatch_ok(enum bpf_reg_type type)
10540{
10541 switch (type) {
10542 case PTR_TO_CTX:
10543 case PTR_TO_SOCKET:
10544 case PTR_TO_SOCKET_OR_NULL:
10545 case PTR_TO_SOCK_COMMON:
10546 case PTR_TO_SOCK_COMMON_OR_NULL:
10547 case PTR_TO_TCP_SOCK:
10548 case PTR_TO_TCP_SOCK_OR_NULL:
10549 case PTR_TO_XDP_SOCK:
10550 case PTR_TO_BTF_ID:
10551 case PTR_TO_BTF_ID_OR_NULL:
10552 return false;
10553 default:
10554 return true;
10555 }
10556}
10557
10558/* If an instruction was previously used with particular pointer types, then we
10559 * need to be careful to avoid cases such as the below, where it may be ok
10560 * for one branch accessing the pointer, but not ok for the other branch:
10561 *
10562 * R1 = sock_ptr
10563 * goto X;
10564 * ...
10565 * R1 = some_other_valid_ptr;
10566 * goto X;
10567 * ...
10568 * R2 = *(u32 *)(R1 + 0);
10569 */
10570static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
10571{
10572 return src != prev && (!reg_type_mismatch_ok(src) ||
10573 !reg_type_mismatch_ok(prev));
10574}
10575
10576static int do_check(struct bpf_verifier_env *env)
10577{
10578 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
10579 struct bpf_verifier_state *state = env->cur_state;
10580 struct bpf_insn *insns = env->prog->insnsi;
10581 struct bpf_reg_state *regs;
10582 int insn_cnt = env->prog->len;
10583 bool do_print_state = false;
10584 int prev_insn_idx = -1;
10585
10586 for (;;) {
10587 struct bpf_insn *insn;
10588 u8 class;
10589 int err;
10590
10591 env->prev_insn_idx = prev_insn_idx;
10592 if (env->insn_idx >= insn_cnt) {
10593 verbose(env, "invalid insn idx %d insn_cnt %d\n",
10594 env->insn_idx, insn_cnt);
10595 return -EFAULT;
10596 }
10597
10598 insn = &insns[env->insn_idx];
10599 class = BPF_CLASS(insn->code);
10600
10601 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
10602 verbose(env,
10603 "BPF program is too large. Processed %d insn\n",
10604 env->insn_processed);
10605 return -E2BIG;
10606 }
10607
10608 err = is_state_visited(env, env->insn_idx);
10609 if (err < 0)
10610 return err;
10611 if (err == 1) {
10612 /* found equivalent state, can prune the search */
10613 if (env->log.level & BPF_LOG_LEVEL) {
10614 if (do_print_state)
10615 verbose(env, "\nfrom %d to %d%s: safe\n",
10616 env->prev_insn_idx, env->insn_idx,
10617 env->cur_state->speculative ?
10618 " (speculative execution)" : "");
10619 else
10620 verbose(env, "%d: safe\n", env->insn_idx);
10621 }
10622 goto process_bpf_exit;
10623 }
10624
10625 if (signal_pending(current))
10626 return -EAGAIN;
10627
10628 if (need_resched())
10629 cond_resched();
10630
10631 if (env->log.level & BPF_LOG_LEVEL2 ||
10632 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
10633 if (env->log.level & BPF_LOG_LEVEL2)
10634 verbose(env, "%d:", env->insn_idx);
10635 else
10636 verbose(env, "\nfrom %d to %d%s:",
10637 env->prev_insn_idx, env->insn_idx,
10638 env->cur_state->speculative ?
10639 " (speculative execution)" : "");
10640 print_verifier_state(env, state->frame[state->curframe]);
10641 do_print_state = false;
10642 }
10643
10644 if (env->log.level & BPF_LOG_LEVEL) {
10645 const struct bpf_insn_cbs cbs = {
10646 .cb_call = disasm_kfunc_name,
10647 .cb_print = verbose,
10648 .private_data = env,
10649 };
10650
10651 verbose_linfo(env, env->insn_idx, "; ");
10652 verbose(env, "%d: ", env->insn_idx);
10653 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
10654 }
10655
10656 if (bpf_prog_is_dev_bound(env->prog->aux)) {
10657 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
10658 env->prev_insn_idx);
10659 if (err)
10660 return err;
10661 }
10662
10663 regs = cur_regs(env);
10664 sanitize_mark_insn_seen(env);
10665 prev_insn_idx = env->insn_idx;
10666
10667 if (class == BPF_ALU || class == BPF_ALU64) {
10668 err = check_alu_op(env, insn);
10669 if (err)
10670 return err;
10671
10672 } else if (class == BPF_LDX) {
10673 enum bpf_reg_type *prev_src_type, src_reg_type;
10674
10675 /* check for reserved fields is already done */
10676
10677 /* check src operand */
10678 err = check_reg_arg(env, insn->src_reg, SRC_OP);
10679 if (err)
10680 return err;
10681
10682 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
10683 if (err)
10684 return err;
10685
10686 src_reg_type = regs[insn->src_reg].type;
10687
10688 /* check that memory (src_reg + off) is readable,
10689 * the state of dst_reg will be updated by this func
10690 */
10691 err = check_mem_access(env, env->insn_idx, insn->src_reg,
10692 insn->off, BPF_SIZE(insn->code),
10693 BPF_READ, insn->dst_reg, false);
10694 if (err)
10695 return err;
10696
10697 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10698
10699 if (*prev_src_type == NOT_INIT) {
10700 /* saw a valid insn
10701 * dst_reg = *(u32 *)(src_reg + off)
10702 * save type to validate intersecting paths
10703 */
10704 *prev_src_type = src_reg_type;
10705
10706 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
10707 /* ABuser program is trying to use the same insn
10708 * dst_reg = *(u32*) (src_reg + off)
10709 * with different pointer types:
10710 * src_reg == ctx in one branch and
10711 * src_reg == stack|map in some other branch.
10712 * Reject it.
10713 */
10714 verbose(env, "same insn cannot be used with different pointers\n");
10715 return -EINVAL;
10716 }
10717
10718 } else if (class == BPF_STX) {
10719 enum bpf_reg_type *prev_dst_type, dst_reg_type;
10720
10721 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
10722 err = check_atomic(env, env->insn_idx, insn);
10723 if (err)
10724 return err;
10725 env->insn_idx++;
10726 continue;
10727 }
10728
10729 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
10730 verbose(env, "BPF_STX uses reserved fields\n");
10731 return -EINVAL;
10732 }
10733
10734 /* check src1 operand */
10735 err = check_reg_arg(env, insn->src_reg, SRC_OP);
10736 if (err)
10737 return err;
10738 /* check src2 operand */
10739 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10740 if (err)
10741 return err;
10742
10743 dst_reg_type = regs[insn->dst_reg].type;
10744
10745 /* check that memory (dst_reg + off) is writeable */
10746 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10747 insn->off, BPF_SIZE(insn->code),
10748 BPF_WRITE, insn->src_reg, false);
10749 if (err)
10750 return err;
10751
10752 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10753
10754 if (*prev_dst_type == NOT_INIT) {
10755 *prev_dst_type = dst_reg_type;
10756 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
10757 verbose(env, "same insn cannot be used with different pointers\n");
10758 return -EINVAL;
10759 }
10760
10761 } else if (class == BPF_ST) {
10762 if (BPF_MODE(insn->code) != BPF_MEM ||
10763 insn->src_reg != BPF_REG_0) {
10764 verbose(env, "BPF_ST uses reserved fields\n");
10765 return -EINVAL;
10766 }
10767 /* check src operand */
10768 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10769 if (err)
10770 return err;
10771
10772 if (is_ctx_reg(env, insn->dst_reg)) {
10773 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
10774 insn->dst_reg,
10775 reg_type_str[reg_state(env, insn->dst_reg)->type]);
10776 return -EACCES;
10777 }
10778
10779 /* check that memory (dst_reg + off) is writeable */
10780 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10781 insn->off, BPF_SIZE(insn->code),
10782 BPF_WRITE, -1, false);
10783 if (err)
10784 return err;
10785
10786 } else if (class == BPF_JMP || class == BPF_JMP32) {
10787 u8 opcode = BPF_OP(insn->code);
10788
10789 env->jmps_processed++;
10790 if (opcode == BPF_CALL) {
10791 if (BPF_SRC(insn->code) != BPF_K ||
10792 insn->off != 0 ||
10793 (insn->src_reg != BPF_REG_0 &&
10794 insn->src_reg != BPF_PSEUDO_CALL &&
10795 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
10796 insn->dst_reg != BPF_REG_0 ||
10797 class == BPF_JMP32) {
10798 verbose(env, "BPF_CALL uses reserved fields\n");
10799 return -EINVAL;
10800 }
10801
10802 if (env->cur_state->active_spin_lock &&
10803 (insn->src_reg == BPF_PSEUDO_CALL ||
10804 insn->imm != BPF_FUNC_spin_unlock)) {
10805 verbose(env, "function calls are not allowed while holding a lock\n");
10806 return -EINVAL;
10807 }
10808 if (insn->src_reg == BPF_PSEUDO_CALL)
10809 err = check_func_call(env, insn, &env->insn_idx);
10810 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
10811 err = check_kfunc_call(env, insn);
10812 else
10813 err = check_helper_call(env, insn, &env->insn_idx);
10814 if (err)
10815 return err;
10816 } else if (opcode == BPF_JA) {
10817 if (BPF_SRC(insn->code) != BPF_K ||
10818 insn->imm != 0 ||
10819 insn->src_reg != BPF_REG_0 ||
10820 insn->dst_reg != BPF_REG_0 ||
10821 class == BPF_JMP32) {
10822 verbose(env, "BPF_JA uses reserved fields\n");
10823 return -EINVAL;
10824 }
10825
10826 env->insn_idx += insn->off + 1;
10827 continue;
10828
10829 } else if (opcode == BPF_EXIT) {
10830 if (BPF_SRC(insn->code) != BPF_K ||
10831 insn->imm != 0 ||
10832 insn->src_reg != BPF_REG_0 ||
10833 insn->dst_reg != BPF_REG_0 ||
10834 class == BPF_JMP32) {
10835 verbose(env, "BPF_EXIT uses reserved fields\n");
10836 return -EINVAL;
10837 }
10838
10839 if (env->cur_state->active_spin_lock) {
10840 verbose(env, "bpf_spin_unlock is missing\n");
10841 return -EINVAL;
10842 }
10843
10844 if (state->curframe) {
10845 /* exit from nested function */
10846 err = prepare_func_exit(env, &env->insn_idx);
10847 if (err)
10848 return err;
10849 do_print_state = true;
10850 continue;
10851 }
10852
10853 err = check_reference_leak(env);
10854 if (err)
10855 return err;
10856
10857 err = check_return_code(env);
10858 if (err)
10859 return err;
10860process_bpf_exit:
10861 update_branch_counts(env, env->cur_state);
10862 err = pop_stack(env, &prev_insn_idx,
10863 &env->insn_idx, pop_log);
10864 if (err < 0) {
10865 if (err != -ENOENT)
10866 return err;
10867 break;
10868 } else {
10869 do_print_state = true;
10870 continue;
10871 }
10872 } else {
10873 err = check_cond_jmp_op(env, insn, &env->insn_idx);
10874 if (err)
10875 return err;
10876 }
10877 } else if (class == BPF_LD) {
10878 u8 mode = BPF_MODE(insn->code);
10879
10880 if (mode == BPF_ABS || mode == BPF_IND) {
10881 err = check_ld_abs(env, insn);
10882 if (err)
10883 return err;
10884
10885 } else if (mode == BPF_IMM) {
10886 err = check_ld_imm(env, insn);
10887 if (err)
10888 return err;
10889
10890 env->insn_idx++;
10891 sanitize_mark_insn_seen(env);
10892 } else {
10893 verbose(env, "invalid BPF_LD mode\n");
10894 return -EINVAL;
10895 }
10896 } else {
10897 verbose(env, "unknown insn class %d\n", class);
10898 return -EINVAL;
10899 }
10900
10901 env->insn_idx++;
10902 }
10903
10904 return 0;
10905}
10906
10907static int find_btf_percpu_datasec(struct btf *btf)
10908{
10909 const struct btf_type *t;
10910 const char *tname;
10911 int i, n;
10912
10913 /*
10914 * Both vmlinux and module each have their own ".data..percpu"
10915 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
10916 * types to look at only module's own BTF types.
10917 */
10918 n = btf_nr_types(btf);
10919 if (btf_is_module(btf))
10920 i = btf_nr_types(btf_vmlinux);
10921 else
10922 i = 1;
10923
10924 for(; i < n; i++) {
10925 t = btf_type_by_id(btf, i);
10926 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
10927 continue;
10928
10929 tname = btf_name_by_offset(btf, t->name_off);
10930 if (!strcmp(tname, ".data..percpu"))
10931 return i;
10932 }
10933
10934 return -ENOENT;
10935}
10936
10937/* replace pseudo btf_id with kernel symbol address */
10938static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10939 struct bpf_insn *insn,
10940 struct bpf_insn_aux_data *aux)
10941{
10942 const struct btf_var_secinfo *vsi;
10943 const struct btf_type *datasec;
10944 struct btf_mod_pair *btf_mod;
10945 const struct btf_type *t;
10946 const char *sym_name;
10947 bool percpu = false;
10948 u32 type, id = insn->imm;
10949 struct btf *btf;
10950 s32 datasec_id;
10951 u64 addr;
10952 int i, btf_fd, err;
10953
10954 btf_fd = insn[1].imm;
10955 if (btf_fd) {
10956 btf = btf_get_by_fd(btf_fd);
10957 if (IS_ERR(btf)) {
10958 verbose(env, "invalid module BTF object FD specified.\n");
10959 return -EINVAL;
10960 }
10961 } else {
10962 if (!btf_vmlinux) {
10963 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10964 return -EINVAL;
10965 }
10966 btf = btf_vmlinux;
10967 btf_get(btf);
10968 }
10969
10970 t = btf_type_by_id(btf, id);
10971 if (!t) {
10972 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
10973 err = -ENOENT;
10974 goto err_put;
10975 }
10976
10977 if (!btf_type_is_var(t)) {
10978 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
10979 err = -EINVAL;
10980 goto err_put;
10981 }
10982
10983 sym_name = btf_name_by_offset(btf, t->name_off);
10984 addr = kallsyms_lookup_name(sym_name);
10985 if (!addr) {
10986 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
10987 sym_name);
10988 err = -ENOENT;
10989 goto err_put;
10990 }
10991
10992 datasec_id = find_btf_percpu_datasec(btf);
10993 if (datasec_id > 0) {
10994 datasec = btf_type_by_id(btf, datasec_id);
10995 for_each_vsi(i, datasec, vsi) {
10996 if (vsi->type == id) {
10997 percpu = true;
10998 break;
10999 }
11000 }
11001 }
11002
11003 insn[0].imm = (u32)addr;
11004 insn[1].imm = addr >> 32;
11005
11006 type = t->type;
11007 t = btf_type_skip_modifiers(btf, type, NULL);
11008 if (percpu) {
11009 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
11010 aux->btf_var.btf = btf;
11011 aux->btf_var.btf_id = type;
11012 } else if (!btf_type_is_struct(t)) {
11013 const struct btf_type *ret;
11014 const char *tname;
11015 u32 tsize;
11016
11017 /* resolve the type size of ksym. */
11018 ret = btf_resolve_size(btf, t, &tsize);
11019 if (IS_ERR(ret)) {
11020 tname = btf_name_by_offset(btf, t->name_off);
11021 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
11022 tname, PTR_ERR(ret));
11023 err = -EINVAL;
11024 goto err_put;
11025 }
11026 aux->btf_var.reg_type = PTR_TO_MEM;
11027 aux->btf_var.mem_size = tsize;
11028 } else {
11029 aux->btf_var.reg_type = PTR_TO_BTF_ID;
11030 aux->btf_var.btf = btf;
11031 aux->btf_var.btf_id = type;
11032 }
11033
11034 /* check whether we recorded this BTF (and maybe module) already */
11035 for (i = 0; i < env->used_btf_cnt; i++) {
11036 if (env->used_btfs[i].btf == btf) {
11037 btf_put(btf);
11038 return 0;
11039 }
11040 }
11041
11042 if (env->used_btf_cnt >= MAX_USED_BTFS) {
11043 err = -E2BIG;
11044 goto err_put;
11045 }
11046
11047 btf_mod = &env->used_btfs[env->used_btf_cnt];
11048 btf_mod->btf = btf;
11049 btf_mod->module = NULL;
11050
11051 /* if we reference variables from kernel module, bump its refcount */
11052 if (btf_is_module(btf)) {
11053 btf_mod->module = btf_try_get_module(btf);
11054 if (!btf_mod->module) {
11055 err = -ENXIO;
11056 goto err_put;
11057 }
11058 }
11059
11060 env->used_btf_cnt++;
11061
11062 return 0;
11063err_put:
11064 btf_put(btf);
11065 return err;
11066}
11067
11068static int check_map_prealloc(struct bpf_map *map)
11069{
11070 return (map->map_type != BPF_MAP_TYPE_HASH &&
11071 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11072 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
11073 !(map->map_flags & BPF_F_NO_PREALLOC);
11074}
11075
11076static bool is_tracing_prog_type(enum bpf_prog_type type)
11077{
11078 switch (type) {
11079 case BPF_PROG_TYPE_KPROBE:
11080 case BPF_PROG_TYPE_TRACEPOINT:
11081 case BPF_PROG_TYPE_PERF_EVENT:
11082 case BPF_PROG_TYPE_RAW_TRACEPOINT:
11083 return true;
11084 default:
11085 return false;
11086 }
11087}
11088
11089static bool is_preallocated_map(struct bpf_map *map)
11090{
11091 if (!check_map_prealloc(map))
11092 return false;
11093 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11094 return false;
11095 return true;
11096}
11097
11098static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11099 struct bpf_map *map,
11100 struct bpf_prog *prog)
11101
11102{
11103 enum bpf_prog_type prog_type = resolve_prog_type(prog);
11104 /*
11105 * Validate that trace type programs use preallocated hash maps.
11106 *
11107 * For programs attached to PERF events this is mandatory as the
11108 * perf NMI can hit any arbitrary code sequence.
11109 *
11110 * All other trace types using preallocated hash maps are unsafe as
11111 * well because tracepoint or kprobes can be inside locked regions
11112 * of the memory allocator or at a place where a recursion into the
11113 * memory allocator would see inconsistent state.
11114 *
11115 * On RT enabled kernels run-time allocation of all trace type
11116 * programs is strictly prohibited due to lock type constraints. On
11117 * !RT kernels it is allowed for backwards compatibility reasons for
11118 * now, but warnings are emitted so developers are made aware of
11119 * the unsafety and can fix their programs before this is enforced.
11120 */
11121 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11122 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
11123 verbose(env, "perf_event programs can only use preallocated hash map\n");
11124 return -EINVAL;
11125 }
11126 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11127 verbose(env, "trace type programs can only use preallocated hash map\n");
11128 return -EINVAL;
11129 }
11130 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11131 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
11132 }
11133
11134 if (map_value_has_spin_lock(map)) {
11135 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11136 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11137 return -EINVAL;
11138 }
11139
11140 if (is_tracing_prog_type(prog_type)) {
11141 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11142 return -EINVAL;
11143 }
11144
11145 if (prog->aux->sleepable) {
11146 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11147 return -EINVAL;
11148 }
11149 }
11150
11151 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
11152 !bpf_offload_prog_map_match(prog, map)) {
11153 verbose(env, "offload device mismatch between prog and map\n");
11154 return -EINVAL;
11155 }
11156
11157 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11158 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11159 return -EINVAL;
11160 }
11161
11162 if (prog->aux->sleepable)
11163 switch (map->map_type) {
11164 case BPF_MAP_TYPE_HASH:
11165 case BPF_MAP_TYPE_LRU_HASH:
11166 case BPF_MAP_TYPE_ARRAY:
11167 case BPF_MAP_TYPE_PERCPU_HASH:
11168 case BPF_MAP_TYPE_PERCPU_ARRAY:
11169 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11170 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11171 case BPF_MAP_TYPE_HASH_OF_MAPS:
11172 if (!is_preallocated_map(map)) {
11173 verbose(env,
11174 "Sleepable programs can only use preallocated maps\n");
11175 return -EINVAL;
11176 }
11177 break;
11178 case BPF_MAP_TYPE_RINGBUF:
11179 break;
11180 default:
11181 verbose(env,
11182 "Sleepable programs can only use array, hash, and ringbuf maps\n");
11183 return -EINVAL;
11184 }
11185
11186 return 0;
11187}
11188
11189static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11190{
11191 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11192 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11193}
11194
11195/* find and rewrite pseudo imm in ld_imm64 instructions:
11196 *
11197 * 1. if it accesses map FD, replace it with actual map pointer.
11198 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11199 *
11200 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
11201 */
11202static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
11203{
11204 struct bpf_insn *insn = env->prog->insnsi;
11205 int insn_cnt = env->prog->len;
11206 int i, j, err;
11207
11208 err = bpf_prog_calc_tag(env->prog);
11209 if (err)
11210 return err;
11211
11212 for (i = 0; i < insn_cnt; i++, insn++) {
11213 if (BPF_CLASS(insn->code) == BPF_LDX &&
11214 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
11215 verbose(env, "BPF_LDX uses reserved fields\n");
11216 return -EINVAL;
11217 }
11218
11219 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
11220 struct bpf_insn_aux_data *aux;
11221 struct bpf_map *map;
11222 struct fd f;
11223 u64 addr;
11224 u32 fd;
11225
11226 if (i == insn_cnt - 1 || insn[1].code != 0 ||
11227 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11228 insn[1].off != 0) {
11229 verbose(env, "invalid bpf_ld_imm64 insn\n");
11230 return -EINVAL;
11231 }
11232
11233 if (insn[0].src_reg == 0)
11234 /* valid generic load 64-bit imm */
11235 goto next_insn;
11236
11237 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11238 aux = &env->insn_aux_data[i];
11239 err = check_pseudo_btf_id(env, insn, aux);
11240 if (err)
11241 return err;
11242 goto next_insn;
11243 }
11244
11245 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11246 aux = &env->insn_aux_data[i];
11247 aux->ptr_type = PTR_TO_FUNC;
11248 goto next_insn;
11249 }
11250
11251 /* In final convert_pseudo_ld_imm64() step, this is
11252 * converted into regular 64-bit imm load insn.
11253 */
11254 switch (insn[0].src_reg) {
11255 case BPF_PSEUDO_MAP_VALUE:
11256 case BPF_PSEUDO_MAP_IDX_VALUE:
11257 break;
11258 case BPF_PSEUDO_MAP_FD:
11259 case BPF_PSEUDO_MAP_IDX:
11260 if (insn[1].imm == 0)
11261 break;
11262 fallthrough;
11263 default:
11264 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
11265 return -EINVAL;
11266 }
11267
11268 switch (insn[0].src_reg) {
11269 case BPF_PSEUDO_MAP_IDX_VALUE:
11270 case BPF_PSEUDO_MAP_IDX:
11271 if (bpfptr_is_null(env->fd_array)) {
11272 verbose(env, "fd_idx without fd_array is invalid\n");
11273 return -EPROTO;
11274 }
11275 if (copy_from_bpfptr_offset(&fd, env->fd_array,
11276 insn[0].imm * sizeof(fd),
11277 sizeof(fd)))
11278 return -EFAULT;
11279 break;
11280 default:
11281 fd = insn[0].imm;
11282 break;
11283 }
11284
11285 f = fdget(fd);
11286 map = __bpf_map_get(f);
11287 if (IS_ERR(map)) {
11288 verbose(env, "fd %d is not pointing to valid bpf_map\n",
11289 insn[0].imm);
11290 return PTR_ERR(map);
11291 }
11292
11293 err = check_map_prog_compatibility(env, map, env->prog);
11294 if (err) {
11295 fdput(f);
11296 return err;
11297 }
11298
11299 aux = &env->insn_aux_data[i];
11300 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
11301 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
11302 addr = (unsigned long)map;
11303 } else {
11304 u32 off = insn[1].imm;
11305
11306 if (off >= BPF_MAX_VAR_OFF) {
11307 verbose(env, "direct value offset of %u is not allowed\n", off);
11308 fdput(f);
11309 return -EINVAL;
11310 }
11311
11312 if (!map->ops->map_direct_value_addr) {
11313 verbose(env, "no direct value access support for this map type\n");
11314 fdput(f);
11315 return -EINVAL;
11316 }
11317
11318 err = map->ops->map_direct_value_addr(map, &addr, off);
11319 if (err) {
11320 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
11321 map->value_size, off);
11322 fdput(f);
11323 return err;
11324 }
11325
11326 aux->map_off = off;
11327 addr += off;
11328 }
11329
11330 insn[0].imm = (u32)addr;
11331 insn[1].imm = addr >> 32;
11332
11333 /* check whether we recorded this map already */
11334 for (j = 0; j < env->used_map_cnt; j++) {
11335 if (env->used_maps[j] == map) {
11336 aux->map_index = j;
11337 fdput(f);
11338 goto next_insn;
11339 }
11340 }
11341
11342 if (env->used_map_cnt >= MAX_USED_MAPS) {
11343 fdput(f);
11344 return -E2BIG;
11345 }
11346
11347 /* hold the map. If the program is rejected by verifier,
11348 * the map will be released by release_maps() or it
11349 * will be used by the valid program until it's unloaded
11350 * and all maps are released in free_used_maps()
11351 */
11352 bpf_map_inc(map);
11353
11354 aux->map_index = env->used_map_cnt;
11355 env->used_maps[env->used_map_cnt++] = map;
11356
11357 if (bpf_map_is_cgroup_storage(map) &&
11358 bpf_cgroup_storage_assign(env->prog->aux, map)) {
11359 verbose(env, "only one cgroup storage of each type is allowed\n");
11360 fdput(f);
11361 return -EBUSY;
11362 }
11363
11364 fdput(f);
11365next_insn:
11366 insn++;
11367 i++;
11368 continue;
11369 }
11370
11371 /* Basic sanity check before we invest more work here. */
11372 if (!bpf_opcode_in_insntable(insn->code)) {
11373 verbose(env, "unknown opcode %02x\n", insn->code);
11374 return -EINVAL;
11375 }
11376 }
11377
11378 /* now all pseudo BPF_LD_IMM64 instructions load valid
11379 * 'struct bpf_map *' into a register instead of user map_fd.
11380 * These pointers will be used later by verifier to validate map access.
11381 */
11382 return 0;
11383}
11384
11385/* drop refcnt of maps used by the rejected program */
11386static void release_maps(struct bpf_verifier_env *env)
11387{
11388 __bpf_free_used_maps(env->prog->aux, env->used_maps,
11389 env->used_map_cnt);
11390}
11391
11392/* drop refcnt of maps used by the rejected program */
11393static void release_btfs(struct bpf_verifier_env *env)
11394{
11395 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
11396 env->used_btf_cnt);
11397}
11398
11399/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
11400static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
11401{
11402 struct bpf_insn *insn = env->prog->insnsi;
11403 int insn_cnt = env->prog->len;
11404 int i;
11405
11406 for (i = 0; i < insn_cnt; i++, insn++) {
11407 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
11408 continue;
11409 if (insn->src_reg == BPF_PSEUDO_FUNC)
11410 continue;
11411 insn->src_reg = 0;
11412 }
11413}
11414
11415/* single env->prog->insni[off] instruction was replaced with the range
11416 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
11417 * [0, off) and [off, end) to new locations, so the patched range stays zero
11418 */
11419static void adjust_insn_aux_data(struct bpf_verifier_env *env,
11420 struct bpf_insn_aux_data *new_data,
11421 struct bpf_prog *new_prog, u32 off, u32 cnt)
11422{
11423 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
11424 struct bpf_insn *insn = new_prog->insnsi;
11425 u32 old_seen = old_data[off].seen;
11426 u32 prog_len;
11427 int i;
11428
11429 /* aux info at OFF always needs adjustment, no matter fast path
11430 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
11431 * original insn at old prog.
11432 */
11433 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
11434
11435 if (cnt == 1)
11436 return;
11437 prog_len = new_prog->len;
11438
11439 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
11440 memcpy(new_data + off + cnt - 1, old_data + off,
11441 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
11442 for (i = off; i < off + cnt - 1; i++) {
11443 /* Expand insni[off]'s seen count to the patched range. */
11444 new_data[i].seen = old_seen;
11445 new_data[i].zext_dst = insn_has_def32(env, insn + i);
11446 }
11447 env->insn_aux_data = new_data;
11448 vfree(old_data);
11449}
11450
11451static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
11452{
11453 int i;
11454
11455 if (len == 1)
11456 return;
11457 /* NOTE: fake 'exit' subprog should be updated as well. */
11458 for (i = 0; i <= env->subprog_cnt; i++) {
11459 if (env->subprog_info[i].start <= off)
11460 continue;
11461 env->subprog_info[i].start += len - 1;
11462 }
11463}
11464
11465static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
11466{
11467 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
11468 int i, sz = prog->aux->size_poke_tab;
11469 struct bpf_jit_poke_descriptor *desc;
11470
11471 for (i = 0; i < sz; i++) {
11472 desc = &tab[i];
11473 if (desc->insn_idx <= off)
11474 continue;
11475 desc->insn_idx += len - 1;
11476 }
11477}
11478
11479static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
11480 const struct bpf_insn *patch, u32 len)
11481{
11482 struct bpf_prog *new_prog;
11483 struct bpf_insn_aux_data *new_data = NULL;
11484
11485 if (len > 1) {
11486 new_data = vzalloc(array_size(env->prog->len + len - 1,
11487 sizeof(struct bpf_insn_aux_data)));
11488 if (!new_data)
11489 return NULL;
11490 }
11491
11492 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
11493 if (IS_ERR(new_prog)) {
11494 if (PTR_ERR(new_prog) == -ERANGE)
11495 verbose(env,
11496 "insn %d cannot be patched due to 16-bit range\n",
11497 env->insn_aux_data[off].orig_idx);
11498 vfree(new_data);
11499 return NULL;
11500 }
11501 adjust_insn_aux_data(env, new_data, new_prog, off, len);
11502 adjust_subprog_starts(env, off, len);
11503 adjust_poke_descs(new_prog, off, len);
11504 return new_prog;
11505}
11506
11507static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
11508 u32 off, u32 cnt)
11509{
11510 int i, j;
11511
11512 /* find first prog starting at or after off (first to remove) */
11513 for (i = 0; i < env->subprog_cnt; i++)
11514 if (env->subprog_info[i].start >= off)
11515 break;
11516 /* find first prog starting at or after off + cnt (first to stay) */
11517 for (j = i; j < env->subprog_cnt; j++)
11518 if (env->subprog_info[j].start >= off + cnt)
11519 break;
11520 /* if j doesn't start exactly at off + cnt, we are just removing
11521 * the front of previous prog
11522 */
11523 if (env->subprog_info[j].start != off + cnt)
11524 j--;
11525
11526 if (j > i) {
11527 struct bpf_prog_aux *aux = env->prog->aux;
11528 int move;
11529
11530 /* move fake 'exit' subprog as well */
11531 move = env->subprog_cnt + 1 - j;
11532
11533 memmove(env->subprog_info + i,
11534 env->subprog_info + j,
11535 sizeof(*env->subprog_info) * move);
11536 env->subprog_cnt -= j - i;
11537
11538 /* remove func_info */
11539 if (aux->func_info) {
11540 move = aux->func_info_cnt - j;
11541
11542 memmove(aux->func_info + i,
11543 aux->func_info + j,
11544 sizeof(*aux->func_info) * move);
11545 aux->func_info_cnt -= j - i;
11546 /* func_info->insn_off is set after all code rewrites,
11547 * in adjust_btf_func() - no need to adjust
11548 */
11549 }
11550 } else {
11551 /* convert i from "first prog to remove" to "first to adjust" */
11552 if (env->subprog_info[i].start == off)
11553 i++;
11554 }
11555
11556 /* update fake 'exit' subprog as well */
11557 for (; i <= env->subprog_cnt; i++)
11558 env->subprog_info[i].start -= cnt;
11559
11560 return 0;
11561}
11562
11563static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
11564 u32 cnt)
11565{
11566 struct bpf_prog *prog = env->prog;
11567 u32 i, l_off, l_cnt, nr_linfo;
11568 struct bpf_line_info *linfo;
11569
11570 nr_linfo = prog->aux->nr_linfo;
11571 if (!nr_linfo)
11572 return 0;
11573
11574 linfo = prog->aux->linfo;
11575
11576 /* find first line info to remove, count lines to be removed */
11577 for (i = 0; i < nr_linfo; i++)
11578 if (linfo[i].insn_off >= off)
11579 break;
11580
11581 l_off = i;
11582 l_cnt = 0;
11583 for (; i < nr_linfo; i++)
11584 if (linfo[i].insn_off < off + cnt)
11585 l_cnt++;
11586 else
11587 break;
11588
11589 /* First live insn doesn't match first live linfo, it needs to "inherit"
11590 * last removed linfo. prog is already modified, so prog->len == off
11591 * means no live instructions after (tail of the program was removed).
11592 */
11593 if (prog->len != off && l_cnt &&
11594 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
11595 l_cnt--;
11596 linfo[--i].insn_off = off + cnt;
11597 }
11598
11599 /* remove the line info which refer to the removed instructions */
11600 if (l_cnt) {
11601 memmove(linfo + l_off, linfo + i,
11602 sizeof(*linfo) * (nr_linfo - i));
11603
11604 prog->aux->nr_linfo -= l_cnt;
11605 nr_linfo = prog->aux->nr_linfo;
11606 }
11607
11608 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
11609 for (i = l_off; i < nr_linfo; i++)
11610 linfo[i].insn_off -= cnt;
11611
11612 /* fix up all subprogs (incl. 'exit') which start >= off */
11613 for (i = 0; i <= env->subprog_cnt; i++)
11614 if (env->subprog_info[i].linfo_idx > l_off) {
11615 /* program may have started in the removed region but
11616 * may not be fully removed
11617 */
11618 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
11619 env->subprog_info[i].linfo_idx -= l_cnt;
11620 else
11621 env->subprog_info[i].linfo_idx = l_off;
11622 }
11623
11624 return 0;
11625}
11626
11627static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
11628{
11629 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11630 unsigned int orig_prog_len = env->prog->len;
11631 int err;
11632
11633 if (bpf_prog_is_dev_bound(env->prog->aux))
11634 bpf_prog_offload_remove_insns(env, off, cnt);
11635
11636 err = bpf_remove_insns(env->prog, off, cnt);
11637 if (err)
11638 return err;
11639
11640 err = adjust_subprog_starts_after_remove(env, off, cnt);
11641 if (err)
11642 return err;
11643
11644 err = bpf_adj_linfo_after_remove(env, off, cnt);
11645 if (err)
11646 return err;
11647
11648 memmove(aux_data + off, aux_data + off + cnt,
11649 sizeof(*aux_data) * (orig_prog_len - off - cnt));
11650
11651 return 0;
11652}
11653
11654/* The verifier does more data flow analysis than llvm and will not
11655 * explore branches that are dead at run time. Malicious programs can
11656 * have dead code too. Therefore replace all dead at-run-time code
11657 * with 'ja -1'.
11658 *
11659 * Just nops are not optimal, e.g. if they would sit at the end of the
11660 * program and through another bug we would manage to jump there, then
11661 * we'd execute beyond program memory otherwise. Returning exception
11662 * code also wouldn't work since we can have subprogs where the dead
11663 * code could be located.
11664 */
11665static void sanitize_dead_code(struct bpf_verifier_env *env)
11666{
11667 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11668 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
11669 struct bpf_insn *insn = env->prog->insnsi;
11670 const int insn_cnt = env->prog->len;
11671 int i;
11672
11673 for (i = 0; i < insn_cnt; i++) {
11674 if (aux_data[i].seen)
11675 continue;
11676 memcpy(insn + i, &trap, sizeof(trap));
11677 aux_data[i].zext_dst = false;
11678 }
11679}
11680
11681static bool insn_is_cond_jump(u8 code)
11682{
11683 u8 op;
11684
11685 if (BPF_CLASS(code) == BPF_JMP32)
11686 return true;
11687
11688 if (BPF_CLASS(code) != BPF_JMP)
11689 return false;
11690
11691 op = BPF_OP(code);
11692 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
11693}
11694
11695static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
11696{
11697 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11698 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11699 struct bpf_insn *insn = env->prog->insnsi;
11700 const int insn_cnt = env->prog->len;
11701 int i;
11702
11703 for (i = 0; i < insn_cnt; i++, insn++) {
11704 if (!insn_is_cond_jump(insn->code))
11705 continue;
11706
11707 if (!aux_data[i + 1].seen)
11708 ja.off = insn->off;
11709 else if (!aux_data[i + 1 + insn->off].seen)
11710 ja.off = 0;
11711 else
11712 continue;
11713
11714 if (bpf_prog_is_dev_bound(env->prog->aux))
11715 bpf_prog_offload_replace_insn(env, i, &ja);
11716
11717 memcpy(insn, &ja, sizeof(ja));
11718 }
11719}
11720
11721static int opt_remove_dead_code(struct bpf_verifier_env *env)
11722{
11723 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11724 int insn_cnt = env->prog->len;
11725 int i, err;
11726
11727 for (i = 0; i < insn_cnt; i++) {
11728 int j;
11729
11730 j = 0;
11731 while (i + j < insn_cnt && !aux_data[i + j].seen)
11732 j++;
11733 if (!j)
11734 continue;
11735
11736 err = verifier_remove_insns(env, i, j);
11737 if (err)
11738 return err;
11739 insn_cnt = env->prog->len;
11740 }
11741
11742 return 0;
11743}
11744
11745static int opt_remove_nops(struct bpf_verifier_env *env)
11746{
11747 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11748 struct bpf_insn *insn = env->prog->insnsi;
11749 int insn_cnt = env->prog->len;
11750 int i, err;
11751
11752 for (i = 0; i < insn_cnt; i++) {
11753 if (memcmp(&insn[i], &ja, sizeof(ja)))
11754 continue;
11755
11756 err = verifier_remove_insns(env, i, 1);
11757 if (err)
11758 return err;
11759 insn_cnt--;
11760 i--;
11761 }
11762
11763 return 0;
11764}
11765
11766static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
11767 const union bpf_attr *attr)
11768{
11769 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
11770 struct bpf_insn_aux_data *aux = env->insn_aux_data;
11771 int i, patch_len, delta = 0, len = env->prog->len;
11772 struct bpf_insn *insns = env->prog->insnsi;
11773 struct bpf_prog *new_prog;
11774 bool rnd_hi32;
11775
11776 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
11777 zext_patch[1] = BPF_ZEXT_REG(0);
11778 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
11779 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
11780 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
11781 for (i = 0; i < len; i++) {
11782 int adj_idx = i + delta;
11783 struct bpf_insn insn;
11784 int load_reg;
11785
11786 insn = insns[adj_idx];
11787 load_reg = insn_def_regno(&insn);
11788 if (!aux[adj_idx].zext_dst) {
11789 u8 code, class;
11790 u32 imm_rnd;
11791
11792 if (!rnd_hi32)
11793 continue;
11794
11795 code = insn.code;
11796 class = BPF_CLASS(code);
11797 if (load_reg == -1)
11798 continue;
11799
11800 /* NOTE: arg "reg" (the fourth one) is only used for
11801 * BPF_STX + SRC_OP, so it is safe to pass NULL
11802 * here.
11803 */
11804 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
11805 if (class == BPF_LD &&
11806 BPF_MODE(code) == BPF_IMM)
11807 i++;
11808 continue;
11809 }
11810
11811 /* ctx load could be transformed into wider load. */
11812 if (class == BPF_LDX &&
11813 aux[adj_idx].ptr_type == PTR_TO_CTX)
11814 continue;
11815
11816 imm_rnd = get_random_int();
11817 rnd_hi32_patch[0] = insn;
11818 rnd_hi32_patch[1].imm = imm_rnd;
11819 rnd_hi32_patch[3].dst_reg = load_reg;
11820 patch = rnd_hi32_patch;
11821 patch_len = 4;
11822 goto apply_patch_buffer;
11823 }
11824
11825 /* Add in an zero-extend instruction if a) the JIT has requested
11826 * it or b) it's a CMPXCHG.
11827 *
11828 * The latter is because: BPF_CMPXCHG always loads a value into
11829 * R0, therefore always zero-extends. However some archs'
11830 * equivalent instruction only does this load when the
11831 * comparison is successful. This detail of CMPXCHG is
11832 * orthogonal to the general zero-extension behaviour of the
11833 * CPU, so it's treated independently of bpf_jit_needs_zext.
11834 */
11835 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
11836 continue;
11837
11838 if (WARN_ON(load_reg == -1)) {
11839 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
11840 return -EFAULT;
11841 }
11842
11843 zext_patch[0] = insn;
11844 zext_patch[1].dst_reg = load_reg;
11845 zext_patch[1].src_reg = load_reg;
11846 patch = zext_patch;
11847 patch_len = 2;
11848apply_patch_buffer:
11849 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
11850 if (!new_prog)
11851 return -ENOMEM;
11852 env->prog = new_prog;
11853 insns = new_prog->insnsi;
11854 aux = env->insn_aux_data;
11855 delta += patch_len - 1;
11856 }
11857
11858 return 0;
11859}
11860
11861/* convert load instructions that access fields of a context type into a
11862 * sequence of instructions that access fields of the underlying structure:
11863 * struct __sk_buff -> struct sk_buff
11864 * struct bpf_sock_ops -> struct sock
11865 */
11866static int convert_ctx_accesses(struct bpf_verifier_env *env)
11867{
11868 const struct bpf_verifier_ops *ops = env->ops;
11869 int i, cnt, size, ctx_field_size, delta = 0;
11870 const int insn_cnt = env->prog->len;
11871 struct bpf_insn insn_buf[16], *insn;
11872 u32 target_size, size_default, off;
11873 struct bpf_prog *new_prog;
11874 enum bpf_access_type type;
11875 bool is_narrower_load;
11876
11877 if (ops->gen_prologue || env->seen_direct_write) {
11878 if (!ops->gen_prologue) {
11879 verbose(env, "bpf verifier is misconfigured\n");
11880 return -EINVAL;
11881 }
11882 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
11883 env->prog);
11884 if (cnt >= ARRAY_SIZE(insn_buf)) {
11885 verbose(env, "bpf verifier is misconfigured\n");
11886 return -EINVAL;
11887 } else if (cnt) {
11888 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
11889 if (!new_prog)
11890 return -ENOMEM;
11891
11892 env->prog = new_prog;
11893 delta += cnt - 1;
11894 }
11895 }
11896
11897 if (bpf_prog_is_dev_bound(env->prog->aux))
11898 return 0;
11899
11900 insn = env->prog->insnsi + delta;
11901
11902 for (i = 0; i < insn_cnt; i++, insn++) {
11903 bpf_convert_ctx_access_t convert_ctx_access;
11904 bool ctx_access;
11905
11906 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
11907 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
11908 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
11909 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
11910 type = BPF_READ;
11911 ctx_access = true;
11912 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
11913 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
11914 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
11915 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
11916 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
11917 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
11918 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
11919 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
11920 type = BPF_WRITE;
11921 ctx_access = BPF_CLASS(insn->code) == BPF_STX;
11922 } else {
11923 continue;
11924 }
11925
11926 if (type == BPF_WRITE &&
11927 env->insn_aux_data[i + delta].sanitize_stack_spill) {
11928 struct bpf_insn patch[] = {
11929 *insn,
11930 BPF_ST_NOSPEC(),
11931 };
11932
11933 cnt = ARRAY_SIZE(patch);
11934 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
11935 if (!new_prog)
11936 return -ENOMEM;
11937
11938 delta += cnt - 1;
11939 env->prog = new_prog;
11940 insn = new_prog->insnsi + i + delta;
11941 continue;
11942 }
11943
11944 if (!ctx_access)
11945 continue;
11946
11947 switch (env->insn_aux_data[i + delta].ptr_type) {
11948 case PTR_TO_CTX:
11949 if (!ops->convert_ctx_access)
11950 continue;
11951 convert_ctx_access = ops->convert_ctx_access;
11952 break;
11953 case PTR_TO_SOCKET:
11954 case PTR_TO_SOCK_COMMON:
11955 convert_ctx_access = bpf_sock_convert_ctx_access;
11956 break;
11957 case PTR_TO_TCP_SOCK:
11958 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11959 break;
11960 case PTR_TO_XDP_SOCK:
11961 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11962 break;
11963 case PTR_TO_BTF_ID:
11964 if (type == BPF_READ) {
11965 insn->code = BPF_LDX | BPF_PROBE_MEM |
11966 BPF_SIZE((insn)->code);
11967 env->prog->aux->num_exentries++;
11968 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
11969 verbose(env, "Writes through BTF pointers are not allowed\n");
11970 return -EINVAL;
11971 }
11972 continue;
11973 default:
11974 continue;
11975 }
11976
11977 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
11978 size = BPF_LDST_BYTES(insn);
11979
11980 /* If the read access is a narrower load of the field,
11981 * convert to a 4/8-byte load, to minimum program type specific
11982 * convert_ctx_access changes. If conversion is successful,
11983 * we will apply proper mask to the result.
11984 */
11985 is_narrower_load = size < ctx_field_size;
11986 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11987 off = insn->off;
11988 if (is_narrower_load) {
11989 u8 size_code;
11990
11991 if (type == BPF_WRITE) {
11992 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
11993 return -EINVAL;
11994 }
11995
11996 size_code = BPF_H;
11997 if (ctx_field_size == 4)
11998 size_code = BPF_W;
11999 else if (ctx_field_size == 8)
12000 size_code = BPF_DW;
12001
12002 insn->off = off & ~(size_default - 1);
12003 insn->code = BPF_LDX | BPF_MEM | size_code;
12004 }
12005
12006 target_size = 0;
12007 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12008 &target_size);
12009 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
12010 (ctx_field_size && !target_size)) {
12011 verbose(env, "bpf verifier is misconfigured\n");
12012 return -EINVAL;
12013 }
12014
12015 if (is_narrower_load && size < target_size) {
12016 u8 shift = bpf_ctx_narrow_access_offset(
12017 off, size, size_default) * 8;
12018 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
12019 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
12020 return -EINVAL;
12021 }
12022 if (ctx_field_size <= 4) {
12023 if (shift)
12024 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
12025 insn->dst_reg,
12026 shift);
12027 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
12028 (1 << size * 8) - 1);
12029 } else {
12030 if (shift)
12031 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12032 insn->dst_reg,
12033 shift);
12034 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
12035 (1ULL << size * 8) - 1);
12036 }
12037 }
12038
12039 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12040 if (!new_prog)
12041 return -ENOMEM;
12042
12043 delta += cnt - 1;
12044
12045 /* keep walking new program and skip insns we just inserted */
12046 env->prog = new_prog;
12047 insn = new_prog->insnsi + i + delta;
12048 }
12049
12050 return 0;
12051}
12052
12053static int jit_subprogs(struct bpf_verifier_env *env)
12054{
12055 struct bpf_prog *prog = env->prog, **func, *tmp;
12056 int i, j, subprog_start, subprog_end = 0, len, subprog;
12057 struct bpf_map *map_ptr;
12058 struct bpf_insn *insn;
12059 void *old_bpf_func;
12060 int err, num_exentries;
12061
12062 if (env->subprog_cnt <= 1)
12063 return 0;
12064
12065 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12066 if (bpf_pseudo_func(insn)) {
12067 env->insn_aux_data[i].call_imm = insn->imm;
12068 /* subprog is encoded in insn[1].imm */
12069 continue;
12070 }
12071
12072 if (!bpf_pseudo_call(insn))
12073 continue;
12074 /* Upon error here we cannot fall back to interpreter but
12075 * need a hard reject of the program. Thus -EFAULT is
12076 * propagated in any case.
12077 */
12078 subprog = find_subprog(env, i + insn->imm + 1);
12079 if (subprog < 0) {
12080 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12081 i + insn->imm + 1);
12082 return -EFAULT;
12083 }
12084 /* temporarily remember subprog id inside insn instead of
12085 * aux_data, since next loop will split up all insns into funcs
12086 */
12087 insn->off = subprog;
12088 /* remember original imm in case JIT fails and fallback
12089 * to interpreter will be needed
12090 */
12091 env->insn_aux_data[i].call_imm = insn->imm;
12092 /* point imm to __bpf_call_base+1 from JITs point of view */
12093 insn->imm = 1;
12094 }
12095
12096 err = bpf_prog_alloc_jited_linfo(prog);
12097 if (err)
12098 goto out_undo_insn;
12099
12100 err = -ENOMEM;
12101 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
12102 if (!func)
12103 goto out_undo_insn;
12104
12105 for (i = 0; i < env->subprog_cnt; i++) {
12106 subprog_start = subprog_end;
12107 subprog_end = env->subprog_info[i + 1].start;
12108
12109 len = subprog_end - subprog_start;
12110 /* BPF_PROG_RUN doesn't call subprogs directly,
12111 * hence main prog stats include the runtime of subprogs.
12112 * subprogs don't have IDs and not reachable via prog_get_next_id
12113 * func[i]->stats will never be accessed and stays NULL
12114 */
12115 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
12116 if (!func[i])
12117 goto out_free;
12118 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
12119 len * sizeof(struct bpf_insn));
12120 func[i]->type = prog->type;
12121 func[i]->len = len;
12122 if (bpf_prog_calc_tag(func[i]))
12123 goto out_free;
12124 func[i]->is_func = 1;
12125 func[i]->aux->func_idx = i;
12126 /* Below members will be freed only at prog->aux */
12127 func[i]->aux->btf = prog->aux->btf;
12128 func[i]->aux->func_info = prog->aux->func_info;
12129 func[i]->aux->poke_tab = prog->aux->poke_tab;
12130 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
12131
12132 for (j = 0; j < prog->aux->size_poke_tab; j++) {
12133 struct bpf_jit_poke_descriptor *poke;
12134
12135 poke = &prog->aux->poke_tab[j];
12136 if (poke->insn_idx < subprog_end &&
12137 poke->insn_idx >= subprog_start)
12138 poke->aux = func[i]->aux;
12139 }
12140
12141 /* Use bpf_prog_F_tag to indicate functions in stack traces.
12142 * Long term would need debug info to populate names
12143 */
12144 func[i]->aux->name[0] = 'F';
12145 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
12146 func[i]->jit_requested = 1;
12147 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
12148 func[i]->aux->linfo = prog->aux->linfo;
12149 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12150 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12151 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
12152 num_exentries = 0;
12153 insn = func[i]->insnsi;
12154 for (j = 0; j < func[i]->len; j++, insn++) {
12155 if (BPF_CLASS(insn->code) == BPF_LDX &&
12156 BPF_MODE(insn->code) == BPF_PROBE_MEM)
12157 num_exentries++;
12158 }
12159 func[i]->aux->num_exentries = num_exentries;
12160 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
12161 func[i] = bpf_int_jit_compile(func[i]);
12162 if (!func[i]->jited) {
12163 err = -ENOTSUPP;
12164 goto out_free;
12165 }
12166 cond_resched();
12167 }
12168
12169 /* at this point all bpf functions were successfully JITed
12170 * now populate all bpf_calls with correct addresses and
12171 * run last pass of JIT
12172 */
12173 for (i = 0; i < env->subprog_cnt; i++) {
12174 insn = func[i]->insnsi;
12175 for (j = 0; j < func[i]->len; j++, insn++) {
12176 if (bpf_pseudo_func(insn)) {
12177 subprog = insn[1].imm;
12178 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12179 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12180 continue;
12181 }
12182 if (!bpf_pseudo_call(insn))
12183 continue;
12184 subprog = insn->off;
12185 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
12186 __bpf_call_base;
12187 }
12188
12189 /* we use the aux data to keep a list of the start addresses
12190 * of the JITed images for each function in the program
12191 *
12192 * for some architectures, such as powerpc64, the imm field
12193 * might not be large enough to hold the offset of the start
12194 * address of the callee's JITed image from __bpf_call_base
12195 *
12196 * in such cases, we can lookup the start address of a callee
12197 * by using its subprog id, available from the off field of
12198 * the call instruction, as an index for this list
12199 */
12200 func[i]->aux->func = func;
12201 func[i]->aux->func_cnt = env->subprog_cnt;
12202 }
12203 for (i = 0; i < env->subprog_cnt; i++) {
12204 old_bpf_func = func[i]->bpf_func;
12205 tmp = bpf_int_jit_compile(func[i]);
12206 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12207 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
12208 err = -ENOTSUPP;
12209 goto out_free;
12210 }
12211 cond_resched();
12212 }
12213
12214 /* finally lock prog and jit images for all functions and
12215 * populate kallsysm
12216 */
12217 for (i = 0; i < env->subprog_cnt; i++) {
12218 bpf_prog_lock_ro(func[i]);
12219 bpf_prog_kallsyms_add(func[i]);
12220 }
12221
12222 /* Last step: make now unused interpreter insns from main
12223 * prog consistent for later dump requests, so they can
12224 * later look the same as if they were interpreted only.
12225 */
12226 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12227 if (bpf_pseudo_func(insn)) {
12228 insn[0].imm = env->insn_aux_data[i].call_imm;
12229 insn[1].imm = find_subprog(env, i + insn[0].imm + 1);
12230 continue;
12231 }
12232 if (!bpf_pseudo_call(insn))
12233 continue;
12234 insn->off = env->insn_aux_data[i].call_imm;
12235 subprog = find_subprog(env, i + insn->off + 1);
12236 insn->imm = subprog;
12237 }
12238
12239 prog->jited = 1;
12240 prog->bpf_func = func[0]->bpf_func;
12241 prog->aux->func = func;
12242 prog->aux->func_cnt = env->subprog_cnt;
12243 bpf_prog_jit_attempt_done(prog);
12244 return 0;
12245out_free:
12246 /* We failed JIT'ing, so at this point we need to unregister poke
12247 * descriptors from subprogs, so that kernel is not attempting to
12248 * patch it anymore as we're freeing the subprog JIT memory.
12249 */
12250 for (i = 0; i < prog->aux->size_poke_tab; i++) {
12251 map_ptr = prog->aux->poke_tab[i].tail_call.map;
12252 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12253 }
12254 /* At this point we're guaranteed that poke descriptors are not
12255 * live anymore. We can just unlink its descriptor table as it's
12256 * released with the main prog.
12257 */
12258 for (i = 0; i < env->subprog_cnt; i++) {
12259 if (!func[i])
12260 continue;
12261 func[i]->aux->poke_tab = NULL;
12262 bpf_jit_free(func[i]);
12263 }
12264 kfree(func);
12265out_undo_insn:
12266 /* cleanup main prog to be interpreted */
12267 prog->jit_requested = 0;
12268 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12269 if (!bpf_pseudo_call(insn))
12270 continue;
12271 insn->off = 0;
12272 insn->imm = env->insn_aux_data[i].call_imm;
12273 }
12274 bpf_prog_jit_attempt_done(prog);
12275 return err;
12276}
12277
12278static int fixup_call_args(struct bpf_verifier_env *env)
12279{
12280#ifndef CONFIG_BPF_JIT_ALWAYS_ON
12281 struct bpf_prog *prog = env->prog;
12282 struct bpf_insn *insn = prog->insnsi;
12283 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
12284 int i, depth;
12285#endif
12286 int err = 0;
12287
12288 if (env->prog->jit_requested &&
12289 !bpf_prog_is_dev_bound(env->prog->aux)) {
12290 err = jit_subprogs(env);
12291 if (err == 0)
12292 return 0;
12293 if (err == -EFAULT)
12294 return err;
12295 }
12296#ifndef CONFIG_BPF_JIT_ALWAYS_ON
12297 if (has_kfunc_call) {
12298 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
12299 return -EINVAL;
12300 }
12301 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
12302 /* When JIT fails the progs with bpf2bpf calls and tail_calls
12303 * have to be rejected, since interpreter doesn't support them yet.
12304 */
12305 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
12306 return -EINVAL;
12307 }
12308 for (i = 0; i < prog->len; i++, insn++) {
12309 if (bpf_pseudo_func(insn)) {
12310 /* When JIT fails the progs with callback calls
12311 * have to be rejected, since interpreter doesn't support them yet.
12312 */
12313 verbose(env, "callbacks are not allowed in non-JITed programs\n");
12314 return -EINVAL;
12315 }
12316
12317 if (!bpf_pseudo_call(insn))
12318 continue;
12319 depth = get_callee_stack_depth(env, insn, i);
12320 if (depth < 0)
12321 return depth;
12322 bpf_patch_call_args(insn, depth);
12323 }
12324 err = 0;
12325#endif
12326 return err;
12327}
12328
12329static int fixup_kfunc_call(struct bpf_verifier_env *env,
12330 struct bpf_insn *insn)
12331{
12332 const struct bpf_kfunc_desc *desc;
12333
12334 /* insn->imm has the btf func_id. Replace it with
12335 * an address (relative to __bpf_base_call).
12336 */
12337 desc = find_kfunc_desc(env->prog, insn->imm);
12338 if (!desc) {
12339 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
12340 insn->imm);
12341 return -EFAULT;
12342 }
12343
12344 insn->imm = desc->imm;
12345
12346 return 0;
12347}
12348
12349/* Do various post-verification rewrites in a single program pass.
12350 * These rewrites simplify JIT and interpreter implementations.
12351 */
12352static int do_misc_fixups(struct bpf_verifier_env *env)
12353{
12354 struct bpf_prog *prog = env->prog;
12355 bool expect_blinding = bpf_jit_blinding_enabled(prog);
12356 struct bpf_insn *insn = prog->insnsi;
12357 const struct bpf_func_proto *fn;
12358 const int insn_cnt = prog->len;
12359 const struct bpf_map_ops *ops;
12360 struct bpf_insn_aux_data *aux;
12361 struct bpf_insn insn_buf[16];
12362 struct bpf_prog *new_prog;
12363 struct bpf_map *map_ptr;
12364 int i, ret, cnt, delta = 0;
12365
12366 for (i = 0; i < insn_cnt; i++, insn++) {
12367 /* Make divide-by-zero exceptions impossible. */
12368 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
12369 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
12370 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
12371 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
12372 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
12373 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
12374 struct bpf_insn *patchlet;
12375 struct bpf_insn chk_and_div[] = {
12376 /* [R,W]x div 0 -> 0 */
12377 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12378 BPF_JNE | BPF_K, insn->src_reg,
12379 0, 2, 0),
12380 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
12381 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12382 *insn,
12383 };
12384 struct bpf_insn chk_and_mod[] = {
12385 /* [R,W]x mod 0 -> [R,W]x */
12386 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12387 BPF_JEQ | BPF_K, insn->src_reg,
12388 0, 1 + (is64 ? 0 : 1), 0),
12389 *insn,
12390 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12391 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
12392 };
12393
12394 patchlet = isdiv ? chk_and_div : chk_and_mod;
12395 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
12396 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
12397
12398 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
12399 if (!new_prog)
12400 return -ENOMEM;
12401
12402 delta += cnt - 1;
12403 env->prog = prog = new_prog;
12404 insn = new_prog->insnsi + i + delta;
12405 continue;
12406 }
12407
12408 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
12409 if (BPF_CLASS(insn->code) == BPF_LD &&
12410 (BPF_MODE(insn->code) == BPF_ABS ||
12411 BPF_MODE(insn->code) == BPF_IND)) {
12412 cnt = env->ops->gen_ld_abs(insn, insn_buf);
12413 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12414 verbose(env, "bpf verifier is misconfigured\n");
12415 return -EINVAL;
12416 }
12417
12418 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12419 if (!new_prog)
12420 return -ENOMEM;
12421
12422 delta += cnt - 1;
12423 env->prog = prog = new_prog;
12424 insn = new_prog->insnsi + i + delta;
12425 continue;
12426 }
12427
12428 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
12429 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
12430 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
12431 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
12432 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
12433 struct bpf_insn *patch = &insn_buf[0];
12434 bool issrc, isneg, isimm;
12435 u32 off_reg;
12436
12437 aux = &env->insn_aux_data[i + delta];
12438 if (!aux->alu_state ||
12439 aux->alu_state == BPF_ALU_NON_POINTER)
12440 continue;
12441
12442 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
12443 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
12444 BPF_ALU_SANITIZE_SRC;
12445 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
12446
12447 off_reg = issrc ? insn->src_reg : insn->dst_reg;
12448 if (isimm) {
12449 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12450 } else {
12451 if (isneg)
12452 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12453 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12454 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
12455 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
12456 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
12457 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
12458 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
12459 }
12460 if (!issrc)
12461 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
12462 insn->src_reg = BPF_REG_AX;
12463 if (isneg)
12464 insn->code = insn->code == code_add ?
12465 code_sub : code_add;
12466 *patch++ = *insn;
12467 if (issrc && isneg && !isimm)
12468 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12469 cnt = patch - insn_buf;
12470
12471 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12472 if (!new_prog)
12473 return -ENOMEM;
12474
12475 delta += cnt - 1;
12476 env->prog = prog = new_prog;
12477 insn = new_prog->insnsi + i + delta;
12478 continue;
12479 }
12480
12481 if (insn->code != (BPF_JMP | BPF_CALL))
12482 continue;
12483 if (insn->src_reg == BPF_PSEUDO_CALL)
12484 continue;
12485 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
12486 ret = fixup_kfunc_call(env, insn);
12487 if (ret)
12488 return ret;
12489 continue;
12490 }
12491
12492 if (insn->imm == BPF_FUNC_get_route_realm)
12493 prog->dst_needed = 1;
12494 if (insn->imm == BPF_FUNC_get_prandom_u32)
12495 bpf_user_rnd_init_once();
12496 if (insn->imm == BPF_FUNC_override_return)
12497 prog->kprobe_override = 1;
12498 if (insn->imm == BPF_FUNC_tail_call) {
12499 /* If we tail call into other programs, we
12500 * cannot make any assumptions since they can
12501 * be replaced dynamically during runtime in
12502 * the program array.
12503 */
12504 prog->cb_access = 1;
12505 if (!allow_tail_call_in_subprogs(env))
12506 prog->aux->stack_depth = MAX_BPF_STACK;
12507 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
12508
12509 /* mark bpf_tail_call as different opcode to avoid
12510 * conditional branch in the interpreter for every normal
12511 * call and to prevent accidental JITing by JIT compiler
12512 * that doesn't support bpf_tail_call yet
12513 */
12514 insn->imm = 0;
12515 insn->code = BPF_JMP | BPF_TAIL_CALL;
12516
12517 aux = &env->insn_aux_data[i + delta];
12518 if (env->bpf_capable && !expect_blinding &&
12519 prog->jit_requested &&
12520 !bpf_map_key_poisoned(aux) &&
12521 !bpf_map_ptr_poisoned(aux) &&
12522 !bpf_map_ptr_unpriv(aux)) {
12523 struct bpf_jit_poke_descriptor desc = {
12524 .reason = BPF_POKE_REASON_TAIL_CALL,
12525 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
12526 .tail_call.key = bpf_map_key_immediate(aux),
12527 .insn_idx = i + delta,
12528 };
12529
12530 ret = bpf_jit_add_poke_descriptor(prog, &desc);
12531 if (ret < 0) {
12532 verbose(env, "adding tail call poke descriptor failed\n");
12533 return ret;
12534 }
12535
12536 insn->imm = ret + 1;
12537 continue;
12538 }
12539
12540 if (!bpf_map_ptr_unpriv(aux))
12541 continue;
12542
12543 /* instead of changing every JIT dealing with tail_call
12544 * emit two extra insns:
12545 * if (index >= max_entries) goto out;
12546 * index &= array->index_mask;
12547 * to avoid out-of-bounds cpu speculation
12548 */
12549 if (bpf_map_ptr_poisoned(aux)) {
12550 verbose(env, "tail_call abusing map_ptr\n");
12551 return -EINVAL;
12552 }
12553
12554 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12555 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
12556 map_ptr->max_entries, 2);
12557 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
12558 container_of(map_ptr,
12559 struct bpf_array,
12560 map)->index_mask);
12561 insn_buf[2] = *insn;
12562 cnt = 3;
12563 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12564 if (!new_prog)
12565 return -ENOMEM;
12566
12567 delta += cnt - 1;
12568 env->prog = prog = new_prog;
12569 insn = new_prog->insnsi + i + delta;
12570 continue;
12571 }
12572
12573 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
12574 * and other inlining handlers are currently limited to 64 bit
12575 * only.
12576 */
12577 if (prog->jit_requested && BITS_PER_LONG == 64 &&
12578 (insn->imm == BPF_FUNC_map_lookup_elem ||
12579 insn->imm == BPF_FUNC_map_update_elem ||
12580 insn->imm == BPF_FUNC_map_delete_elem ||
12581 insn->imm == BPF_FUNC_map_push_elem ||
12582 insn->imm == BPF_FUNC_map_pop_elem ||
12583 insn->imm == BPF_FUNC_map_peek_elem ||
12584 insn->imm == BPF_FUNC_redirect_map)) {
12585 aux = &env->insn_aux_data[i + delta];
12586 if (bpf_map_ptr_poisoned(aux))
12587 goto patch_call_imm;
12588
12589 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12590 ops = map_ptr->ops;
12591 if (insn->imm == BPF_FUNC_map_lookup_elem &&
12592 ops->map_gen_lookup) {
12593 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
12594 if (cnt == -EOPNOTSUPP)
12595 goto patch_map_ops_generic;
12596 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12597 verbose(env, "bpf verifier is misconfigured\n");
12598 return -EINVAL;
12599 }
12600
12601 new_prog = bpf_patch_insn_data(env, i + delta,
12602 insn_buf, cnt);
12603 if (!new_prog)
12604 return -ENOMEM;
12605
12606 delta += cnt - 1;
12607 env->prog = prog = new_prog;
12608 insn = new_prog->insnsi + i + delta;
12609 continue;
12610 }
12611
12612 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
12613 (void *(*)(struct bpf_map *map, void *key))NULL));
12614 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
12615 (int (*)(struct bpf_map *map, void *key))NULL));
12616 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
12617 (int (*)(struct bpf_map *map, void *key, void *value,
12618 u64 flags))NULL));
12619 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
12620 (int (*)(struct bpf_map *map, void *value,
12621 u64 flags))NULL));
12622 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
12623 (int (*)(struct bpf_map *map, void *value))NULL));
12624 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
12625 (int (*)(struct bpf_map *map, void *value))NULL));
12626 BUILD_BUG_ON(!__same_type(ops->map_redirect,
12627 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
12628
12629patch_map_ops_generic:
12630 switch (insn->imm) {
12631 case BPF_FUNC_map_lookup_elem:
12632 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
12633 __bpf_call_base;
12634 continue;
12635 case BPF_FUNC_map_update_elem:
12636 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
12637 __bpf_call_base;
12638 continue;
12639 case BPF_FUNC_map_delete_elem:
12640 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
12641 __bpf_call_base;
12642 continue;
12643 case BPF_FUNC_map_push_elem:
12644 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
12645 __bpf_call_base;
12646 continue;
12647 case BPF_FUNC_map_pop_elem:
12648 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
12649 __bpf_call_base;
12650 continue;
12651 case BPF_FUNC_map_peek_elem:
12652 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
12653 __bpf_call_base;
12654 continue;
12655 case BPF_FUNC_redirect_map:
12656 insn->imm = BPF_CAST_CALL(ops->map_redirect) -
12657 __bpf_call_base;
12658 continue;
12659 }
12660
12661 goto patch_call_imm;
12662 }
12663
12664 /* Implement bpf_jiffies64 inline. */
12665 if (prog->jit_requested && BITS_PER_LONG == 64 &&
12666 insn->imm == BPF_FUNC_jiffies64) {
12667 struct bpf_insn ld_jiffies_addr[2] = {
12668 BPF_LD_IMM64(BPF_REG_0,
12669 (unsigned long)&jiffies),
12670 };
12671
12672 insn_buf[0] = ld_jiffies_addr[0];
12673 insn_buf[1] = ld_jiffies_addr[1];
12674 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
12675 BPF_REG_0, 0);
12676 cnt = 3;
12677
12678 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
12679 cnt);
12680 if (!new_prog)
12681 return -ENOMEM;
12682
12683 delta += cnt - 1;
12684 env->prog = prog = new_prog;
12685 insn = new_prog->insnsi + i + delta;
12686 continue;
12687 }
12688
12689patch_call_imm:
12690 fn = env->ops->get_func_proto(insn->imm, env->prog);
12691 /* all functions that have prototype and verifier allowed
12692 * programs to call them, must be real in-kernel functions
12693 */
12694 if (!fn->func) {
12695 verbose(env,
12696 "kernel subsystem misconfigured func %s#%d\n",
12697 func_id_name(insn->imm), insn->imm);
12698 return -EFAULT;
12699 }
12700 insn->imm = fn->func - __bpf_call_base;
12701 }
12702
12703 /* Since poke tab is now finalized, publish aux to tracker. */
12704 for (i = 0; i < prog->aux->size_poke_tab; i++) {
12705 map_ptr = prog->aux->poke_tab[i].tail_call.map;
12706 if (!map_ptr->ops->map_poke_track ||
12707 !map_ptr->ops->map_poke_untrack ||
12708 !map_ptr->ops->map_poke_run) {
12709 verbose(env, "bpf verifier is misconfigured\n");
12710 return -EINVAL;
12711 }
12712
12713 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
12714 if (ret < 0) {
12715 verbose(env, "tracking tail call prog failed\n");
12716 return ret;
12717 }
12718 }
12719
12720 sort_kfunc_descs_by_imm(env->prog);
12721
12722 return 0;
12723}
12724
12725static void free_states(struct bpf_verifier_env *env)
12726{
12727 struct bpf_verifier_state_list *sl, *sln;
12728 int i;
12729
12730 sl = env->free_list;
12731 while (sl) {
12732 sln = sl->next;
12733 free_verifier_state(&sl->state, false);
12734 kfree(sl);
12735 sl = sln;
12736 }
12737 env->free_list = NULL;
12738
12739 if (!env->explored_states)
12740 return;
12741
12742 for (i = 0; i < state_htab_size(env); i++) {
12743 sl = env->explored_states[i];
12744
12745 while (sl) {
12746 sln = sl->next;
12747 free_verifier_state(&sl->state, false);
12748 kfree(sl);
12749 sl = sln;
12750 }
12751 env->explored_states[i] = NULL;
12752 }
12753}
12754
12755static int do_check_common(struct bpf_verifier_env *env, int subprog)
12756{
12757 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
12758 struct bpf_verifier_state *state;
12759 struct bpf_reg_state *regs;
12760 int ret, i;
12761
12762 env->prev_linfo = NULL;
12763 env->pass_cnt++;
12764
12765 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
12766 if (!state)
12767 return -ENOMEM;
12768 state->curframe = 0;
12769 state->speculative = false;
12770 state->branches = 1;
12771 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
12772 if (!state->frame[0]) {
12773 kfree(state);
12774 return -ENOMEM;
12775 }
12776 env->cur_state = state;
12777 init_func_state(env, state->frame[0],
12778 BPF_MAIN_FUNC /* callsite */,
12779 0 /* frameno */,
12780 subprog);
12781
12782 regs = state->frame[state->curframe]->regs;
12783 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
12784 ret = btf_prepare_func_args(env, subprog, regs);
12785 if (ret)
12786 goto out;
12787 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
12788 if (regs[i].type == PTR_TO_CTX)
12789 mark_reg_known_zero(env, regs, i);
12790 else if (regs[i].type == SCALAR_VALUE)
12791 mark_reg_unknown(env, regs, i);
12792 else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
12793 const u32 mem_size = regs[i].mem_size;
12794
12795 mark_reg_known_zero(env, regs, i);
12796 regs[i].mem_size = mem_size;
12797 regs[i].id = ++env->id_gen;
12798 }
12799 }
12800 } else {
12801 /* 1st arg to a function */
12802 regs[BPF_REG_1].type = PTR_TO_CTX;
12803 mark_reg_known_zero(env, regs, BPF_REG_1);
12804 ret = btf_check_subprog_arg_match(env, subprog, regs);
12805 if (ret == -EFAULT)
12806 /* unlikely verifier bug. abort.
12807 * ret == 0 and ret < 0 are sadly acceptable for
12808 * main() function due to backward compatibility.
12809 * Like socket filter program may be written as:
12810 * int bpf_prog(struct pt_regs *ctx)
12811 * and never dereference that ctx in the program.
12812 * 'struct pt_regs' is a type mismatch for socket
12813 * filter that should be using 'struct __sk_buff'.
12814 */
12815 goto out;
12816 }
12817
12818 ret = do_check(env);
12819out:
12820 /* check for NULL is necessary, since cur_state can be freed inside
12821 * do_check() under memory pressure.
12822 */
12823 if (env->cur_state) {
12824 free_verifier_state(env->cur_state, true);
12825 env->cur_state = NULL;
12826 }
12827 while (!pop_stack(env, NULL, NULL, false));
12828 if (!ret && pop_log)
12829 bpf_vlog_reset(&env->log, 0);
12830 free_states(env);
12831 return ret;
12832}
12833
12834/* Verify all global functions in a BPF program one by one based on their BTF.
12835 * All global functions must pass verification. Otherwise the whole program is rejected.
12836 * Consider:
12837 * int bar(int);
12838 * int foo(int f)
12839 * {
12840 * return bar(f);
12841 * }
12842 * int bar(int b)
12843 * {
12844 * ...
12845 * }
12846 * foo() will be verified first for R1=any_scalar_value. During verification it
12847 * will be assumed that bar() already verified successfully and call to bar()
12848 * from foo() will be checked for type match only. Later bar() will be verified
12849 * independently to check that it's safe for R1=any_scalar_value.
12850 */
12851static int do_check_subprogs(struct bpf_verifier_env *env)
12852{
12853 struct bpf_prog_aux *aux = env->prog->aux;
12854 int i, ret;
12855
12856 if (!aux->func_info)
12857 return 0;
12858
12859 for (i = 1; i < env->subprog_cnt; i++) {
12860 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
12861 continue;
12862 env->insn_idx = env->subprog_info[i].start;
12863 WARN_ON_ONCE(env->insn_idx == 0);
12864 ret = do_check_common(env, i);
12865 if (ret) {
12866 return ret;
12867 } else if (env->log.level & BPF_LOG_LEVEL) {
12868 verbose(env,
12869 "Func#%d is safe for any args that match its prototype\n",
12870 i);
12871 }
12872 }
12873 return 0;
12874}
12875
12876static int do_check_main(struct bpf_verifier_env *env)
12877{
12878 int ret;
12879
12880 env->insn_idx = 0;
12881 ret = do_check_common(env, 0);
12882 if (!ret)
12883 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
12884 return ret;
12885}
12886
12887
12888static void print_verification_stats(struct bpf_verifier_env *env)
12889{
12890 int i;
12891
12892 if (env->log.level & BPF_LOG_STATS) {
12893 verbose(env, "verification time %lld usec\n",
12894 div_u64(env->verification_time, 1000));
12895 verbose(env, "stack depth ");
12896 for (i = 0; i < env->subprog_cnt; i++) {
12897 u32 depth = env->subprog_info[i].stack_depth;
12898
12899 verbose(env, "%d", depth);
12900 if (i + 1 < env->subprog_cnt)
12901 verbose(env, "+");
12902 }
12903 verbose(env, "\n");
12904 }
12905 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
12906 "total_states %d peak_states %d mark_read %d\n",
12907 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
12908 env->max_states_per_insn, env->total_states,
12909 env->peak_states, env->longest_mark_read_walk);
12910}
12911
12912static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
12913{
12914 const struct btf_type *t, *func_proto;
12915 const struct bpf_struct_ops *st_ops;
12916 const struct btf_member *member;
12917 struct bpf_prog *prog = env->prog;
12918 u32 btf_id, member_idx;
12919 const char *mname;
12920
12921 if (!prog->gpl_compatible) {
12922 verbose(env, "struct ops programs must have a GPL compatible license\n");
12923 return -EINVAL;
12924 }
12925
12926 btf_id = prog->aux->attach_btf_id;
12927 st_ops = bpf_struct_ops_find(btf_id);
12928 if (!st_ops) {
12929 verbose(env, "attach_btf_id %u is not a supported struct\n",
12930 btf_id);
12931 return -ENOTSUPP;
12932 }
12933
12934 t = st_ops->type;
12935 member_idx = prog->expected_attach_type;
12936 if (member_idx >= btf_type_vlen(t)) {
12937 verbose(env, "attach to invalid member idx %u of struct %s\n",
12938 member_idx, st_ops->name);
12939 return -EINVAL;
12940 }
12941
12942 member = &btf_type_member(t)[member_idx];
12943 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
12944 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
12945 NULL);
12946 if (!func_proto) {
12947 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
12948 mname, member_idx, st_ops->name);
12949 return -EINVAL;
12950 }
12951
12952 if (st_ops->check_member) {
12953 int err = st_ops->check_member(t, member);
12954
12955 if (err) {
12956 verbose(env, "attach to unsupported member %s of struct %s\n",
12957 mname, st_ops->name);
12958 return err;
12959 }
12960 }
12961
12962 prog->aux->attach_func_proto = func_proto;
12963 prog->aux->attach_func_name = mname;
12964 env->ops = st_ops->verifier_ops;
12965
12966 return 0;
12967}
12968#define SECURITY_PREFIX "security_"
12969
12970static int check_attach_modify_return(unsigned long addr, const char *func_name)
12971{
12972 if (within_error_injection_list(addr) ||
12973 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
12974 return 0;
12975
12976 return -EINVAL;
12977}
12978
12979/* list of non-sleepable functions that are otherwise on
12980 * ALLOW_ERROR_INJECTION list
12981 */
12982BTF_SET_START(btf_non_sleepable_error_inject)
12983/* Three functions below can be called from sleepable and non-sleepable context.
12984 * Assume non-sleepable from bpf safety point of view.
12985 */
12986BTF_ID(func, __add_to_page_cache_locked)
12987BTF_ID(func, should_fail_alloc_page)
12988BTF_ID(func, should_failslab)
12989BTF_SET_END(btf_non_sleepable_error_inject)
12990
12991static int check_non_sleepable_error_inject(u32 btf_id)
12992{
12993 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
12994}
12995
12996int bpf_check_attach_target(struct bpf_verifier_log *log,
12997 const struct bpf_prog *prog,
12998 const struct bpf_prog *tgt_prog,
12999 u32 btf_id,
13000 struct bpf_attach_target_info *tgt_info)
13001{
13002 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
13003 const char prefix[] = "btf_trace_";
13004 int ret = 0, subprog = -1, i;
13005 const struct btf_type *t;
13006 bool conservative = true;
13007 const char *tname;
13008 struct btf *btf;
13009 long addr = 0;
13010
13011 if (!btf_id) {
13012 bpf_log(log, "Tracing programs must provide btf_id\n");
13013 return -EINVAL;
13014 }
13015 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
13016 if (!btf) {
13017 bpf_log(log,
13018 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
13019 return -EINVAL;
13020 }
13021 t = btf_type_by_id(btf, btf_id);
13022 if (!t) {
13023 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
13024 return -EINVAL;
13025 }
13026 tname = btf_name_by_offset(btf, t->name_off);
13027 if (!tname) {
13028 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
13029 return -EINVAL;
13030 }
13031 if (tgt_prog) {
13032 struct bpf_prog_aux *aux = tgt_prog->aux;
13033
13034 for (i = 0; i < aux->func_info_cnt; i++)
13035 if (aux->func_info[i].type_id == btf_id) {
13036 subprog = i;
13037 break;
13038 }
13039 if (subprog == -1) {
13040 bpf_log(log, "Subprog %s doesn't exist\n", tname);
13041 return -EINVAL;
13042 }
13043 conservative = aux->func_info_aux[subprog].unreliable;
13044 if (prog_extension) {
13045 if (conservative) {
13046 bpf_log(log,
13047 "Cannot replace static functions\n");
13048 return -EINVAL;
13049 }
13050 if (!prog->jit_requested) {
13051 bpf_log(log,
13052 "Extension programs should be JITed\n");
13053 return -EINVAL;
13054 }
13055 }
13056 if (!tgt_prog->jited) {
13057 bpf_log(log, "Can attach to only JITed progs\n");
13058 return -EINVAL;
13059 }
13060 if (tgt_prog->type == prog->type) {
13061 /* Cannot fentry/fexit another fentry/fexit program.
13062 * Cannot attach program extension to another extension.
13063 * It's ok to attach fentry/fexit to extension program.
13064 */
13065 bpf_log(log, "Cannot recursively attach\n");
13066 return -EINVAL;
13067 }
13068 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
13069 prog_extension &&
13070 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
13071 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
13072 /* Program extensions can extend all program types
13073 * except fentry/fexit. The reason is the following.
13074 * The fentry/fexit programs are used for performance
13075 * analysis, stats and can be attached to any program
13076 * type except themselves. When extension program is
13077 * replacing XDP function it is necessary to allow
13078 * performance analysis of all functions. Both original
13079 * XDP program and its program extension. Hence
13080 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
13081 * allowed. If extending of fentry/fexit was allowed it
13082 * would be possible to create long call chain
13083 * fentry->extension->fentry->extension beyond
13084 * reasonable stack size. Hence extending fentry is not
13085 * allowed.
13086 */
13087 bpf_log(log, "Cannot extend fentry/fexit\n");
13088 return -EINVAL;
13089 }
13090 } else {
13091 if (prog_extension) {
13092 bpf_log(log, "Cannot replace kernel functions\n");
13093 return -EINVAL;
13094 }
13095 }
13096
13097 switch (prog->expected_attach_type) {
13098 case BPF_TRACE_RAW_TP:
13099 if (tgt_prog) {
13100 bpf_log(log,
13101 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
13102 return -EINVAL;
13103 }
13104 if (!btf_type_is_typedef(t)) {
13105 bpf_log(log, "attach_btf_id %u is not a typedef\n",
13106 btf_id);
13107 return -EINVAL;
13108 }
13109 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
13110 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
13111 btf_id, tname);
13112 return -EINVAL;
13113 }
13114 tname += sizeof(prefix) - 1;
13115 t = btf_type_by_id(btf, t->type);
13116 if (!btf_type_is_ptr(t))
13117 /* should never happen in valid vmlinux build */
13118 return -EINVAL;
13119 t = btf_type_by_id(btf, t->type);
13120 if (!btf_type_is_func_proto(t))
13121 /* should never happen in valid vmlinux build */
13122 return -EINVAL;
13123
13124 break;
13125 case BPF_TRACE_ITER:
13126 if (!btf_type_is_func(t)) {
13127 bpf_log(log, "attach_btf_id %u is not a function\n",
13128 btf_id);
13129 return -EINVAL;
13130 }
13131 t = btf_type_by_id(btf, t->type);
13132 if (!btf_type_is_func_proto(t))
13133 return -EINVAL;
13134 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13135 if (ret)
13136 return ret;
13137 break;
13138 default:
13139 if (!prog_extension)
13140 return -EINVAL;
13141 fallthrough;
13142 case BPF_MODIFY_RETURN:
13143 case BPF_LSM_MAC:
13144 case BPF_TRACE_FENTRY:
13145 case BPF_TRACE_FEXIT:
13146 if (!btf_type_is_func(t)) {
13147 bpf_log(log, "attach_btf_id %u is not a function\n",
13148 btf_id);
13149 return -EINVAL;
13150 }
13151 if (prog_extension &&
13152 btf_check_type_match(log, prog, btf, t))
13153 return -EINVAL;
13154 t = btf_type_by_id(btf, t->type);
13155 if (!btf_type_is_func_proto(t))
13156 return -EINVAL;
13157
13158 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
13159 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
13160 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
13161 return -EINVAL;
13162
13163 if (tgt_prog && conservative)
13164 t = NULL;
13165
13166 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13167 if (ret < 0)
13168 return ret;
13169
13170 if (tgt_prog) {
13171 if (subprog == 0)
13172 addr = (long) tgt_prog->bpf_func;
13173 else
13174 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
13175 } else {
13176 addr = kallsyms_lookup_name(tname);
13177 if (!addr) {
13178 bpf_log(log,
13179 "The address of function %s cannot be found\n",
13180 tname);
13181 return -ENOENT;
13182 }
13183 }
13184
13185 if (prog->aux->sleepable) {
13186 ret = -EINVAL;
13187 switch (prog->type) {
13188 case BPF_PROG_TYPE_TRACING:
13189 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
13190 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
13191 */
13192 if (!check_non_sleepable_error_inject(btf_id) &&
13193 within_error_injection_list(addr))
13194 ret = 0;
13195 break;
13196 case BPF_PROG_TYPE_LSM:
13197 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
13198 * Only some of them are sleepable.
13199 */
13200 if (bpf_lsm_is_sleepable_hook(btf_id))
13201 ret = 0;
13202 break;
13203 default:
13204 break;
13205 }
13206 if (ret) {
13207 bpf_log(log, "%s is not sleepable\n", tname);
13208 return ret;
13209 }
13210 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
13211 if (tgt_prog) {
13212 bpf_log(log, "can't modify return codes of BPF programs\n");
13213 return -EINVAL;
13214 }
13215 ret = check_attach_modify_return(addr, tname);
13216 if (ret) {
13217 bpf_log(log, "%s() is not modifiable\n", tname);
13218 return ret;
13219 }
13220 }
13221
13222 break;
13223 }
13224 tgt_info->tgt_addr = addr;
13225 tgt_info->tgt_name = tname;
13226 tgt_info->tgt_type = t;
13227 return 0;
13228}
13229
13230BTF_SET_START(btf_id_deny)
13231BTF_ID_UNUSED
13232#ifdef CONFIG_SMP
13233BTF_ID(func, migrate_disable)
13234BTF_ID(func, migrate_enable)
13235#endif
13236#if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
13237BTF_ID(func, rcu_read_unlock_strict)
13238#endif
13239BTF_SET_END(btf_id_deny)
13240
13241static int check_attach_btf_id(struct bpf_verifier_env *env)
13242{
13243 struct bpf_prog *prog = env->prog;
13244 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
13245 struct bpf_attach_target_info tgt_info = {};
13246 u32 btf_id = prog->aux->attach_btf_id;
13247 struct bpf_trampoline *tr;
13248 int ret;
13249 u64 key;
13250
13251 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
13252 if (prog->aux->sleepable)
13253 /* attach_btf_id checked to be zero already */
13254 return 0;
13255 verbose(env, "Syscall programs can only be sleepable\n");
13256 return -EINVAL;
13257 }
13258
13259 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
13260 prog->type != BPF_PROG_TYPE_LSM) {
13261 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
13262 return -EINVAL;
13263 }
13264
13265 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
13266 return check_struct_ops_btf_id(env);
13267
13268 if (prog->type != BPF_PROG_TYPE_TRACING &&
13269 prog->type != BPF_PROG_TYPE_LSM &&
13270 prog->type != BPF_PROG_TYPE_EXT)
13271 return 0;
13272
13273 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
13274 if (ret)
13275 return ret;
13276
13277 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
13278 /* to make freplace equivalent to their targets, they need to
13279 * inherit env->ops and expected_attach_type for the rest of the
13280 * verification
13281 */
13282 env->ops = bpf_verifier_ops[tgt_prog->type];
13283 prog->expected_attach_type = tgt_prog->expected_attach_type;
13284 }
13285
13286 /* store info about the attachment target that will be used later */
13287 prog->aux->attach_func_proto = tgt_info.tgt_type;
13288 prog->aux->attach_func_name = tgt_info.tgt_name;
13289
13290 if (tgt_prog) {
13291 prog->aux->saved_dst_prog_type = tgt_prog->type;
13292 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
13293 }
13294
13295 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
13296 prog->aux->attach_btf_trace = true;
13297 return 0;
13298 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
13299 if (!bpf_iter_prog_supported(prog))
13300 return -EINVAL;
13301 return 0;
13302 }
13303
13304 if (prog->type == BPF_PROG_TYPE_LSM) {
13305 ret = bpf_lsm_verify_prog(&env->log, prog);
13306 if (ret < 0)
13307 return ret;
13308 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
13309 btf_id_set_contains(&btf_id_deny, btf_id)) {
13310 return -EINVAL;
13311 }
13312
13313 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
13314 tr = bpf_trampoline_get(key, &tgt_info);
13315 if (!tr)
13316 return -ENOMEM;
13317
13318 prog->aux->dst_trampoline = tr;
13319 return 0;
13320}
13321
13322struct btf *bpf_get_btf_vmlinux(void)
13323{
13324 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
13325 mutex_lock(&bpf_verifier_lock);
13326 if (!btf_vmlinux)
13327 btf_vmlinux = btf_parse_vmlinux();
13328 mutex_unlock(&bpf_verifier_lock);
13329 }
13330 return btf_vmlinux;
13331}
13332
13333int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
13334{
13335 u64 start_time = ktime_get_ns();
13336 struct bpf_verifier_env *env;
13337 struct bpf_verifier_log *log;
13338 int i, len, ret = -EINVAL;
13339 bool is_priv;
13340
13341 /* no program is valid */
13342 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
13343 return -EINVAL;
13344
13345 /* 'struct bpf_verifier_env' can be global, but since it's not small,
13346 * allocate/free it every time bpf_check() is called
13347 */
13348 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
13349 if (!env)
13350 return -ENOMEM;
13351 log = &env->log;
13352
13353 len = (*prog)->len;
13354 env->insn_aux_data =
13355 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
13356 ret = -ENOMEM;
13357 if (!env->insn_aux_data)
13358 goto err_free_env;
13359 for (i = 0; i < len; i++)
13360 env->insn_aux_data[i].orig_idx = i;
13361 env->prog = *prog;
13362 env->ops = bpf_verifier_ops[env->prog->type];
13363 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
13364 is_priv = bpf_capable();
13365
13366 bpf_get_btf_vmlinux();
13367
13368 /* grab the mutex to protect few globals used by verifier */
13369 if (!is_priv)
13370 mutex_lock(&bpf_verifier_lock);
13371
13372 if (attr->log_level || attr->log_buf || attr->log_size) {
13373 /* user requested verbose verifier output
13374 * and supplied buffer to store the verification trace
13375 */
13376 log->level = attr->log_level;
13377 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
13378 log->len_total = attr->log_size;
13379
13380 ret = -EINVAL;
13381 /* log attributes have to be sane */
13382 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
13383 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
13384 goto err_unlock;
13385 }
13386
13387 if (IS_ERR(btf_vmlinux)) {
13388 /* Either gcc or pahole or kernel are broken. */
13389 verbose(env, "in-kernel BTF is malformed\n");
13390 ret = PTR_ERR(btf_vmlinux);
13391 goto skip_full_check;
13392 }
13393
13394 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
13395 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
13396 env->strict_alignment = true;
13397 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
13398 env->strict_alignment = false;
13399
13400 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
13401 env->allow_uninit_stack = bpf_allow_uninit_stack();
13402 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
13403 env->bypass_spec_v1 = bpf_bypass_spec_v1();
13404 env->bypass_spec_v4 = bpf_bypass_spec_v4();
13405 env->bpf_capable = bpf_capable();
13406
13407 if (is_priv)
13408 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
13409
13410 env->explored_states = kvcalloc(state_htab_size(env),
13411 sizeof(struct bpf_verifier_state_list *),
13412 GFP_USER);
13413 ret = -ENOMEM;
13414 if (!env->explored_states)
13415 goto skip_full_check;
13416
13417 ret = add_subprog_and_kfunc(env);
13418 if (ret < 0)
13419 goto skip_full_check;
13420
13421 ret = check_subprogs(env);
13422 if (ret < 0)
13423 goto skip_full_check;
13424
13425 ret = check_btf_info(env, attr, uattr);
13426 if (ret < 0)
13427 goto skip_full_check;
13428
13429 ret = check_attach_btf_id(env);
13430 if (ret)
13431 goto skip_full_check;
13432
13433 ret = resolve_pseudo_ldimm64(env);
13434 if (ret < 0)
13435 goto skip_full_check;
13436
13437 if (bpf_prog_is_dev_bound(env->prog->aux)) {
13438 ret = bpf_prog_offload_verifier_prep(env->prog);
13439 if (ret)
13440 goto skip_full_check;
13441 }
13442
13443 ret = check_cfg(env);
13444 if (ret < 0)
13445 goto skip_full_check;
13446
13447 ret = do_check_subprogs(env);
13448 ret = ret ?: do_check_main(env);
13449
13450 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
13451 ret = bpf_prog_offload_finalize(env);
13452
13453skip_full_check:
13454 kvfree(env->explored_states);
13455
13456 if (ret == 0)
13457 ret = check_max_stack_depth(env);
13458
13459 /* instruction rewrites happen after this point */
13460 if (is_priv) {
13461 if (ret == 0)
13462 opt_hard_wire_dead_code_branches(env);
13463 if (ret == 0)
13464 ret = opt_remove_dead_code(env);
13465 if (ret == 0)
13466 ret = opt_remove_nops(env);
13467 } else {
13468 if (ret == 0)
13469 sanitize_dead_code(env);
13470 }
13471
13472 if (ret == 0)
13473 /* program is valid, convert *(u32*)(ctx + off) accesses */
13474 ret = convert_ctx_accesses(env);
13475
13476 if (ret == 0)
13477 ret = do_misc_fixups(env);
13478
13479 /* do 32-bit optimization after insn patching has done so those patched
13480 * insns could be handled correctly.
13481 */
13482 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
13483 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
13484 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
13485 : false;
13486 }
13487
13488 if (ret == 0)
13489 ret = fixup_call_args(env);
13490
13491 env->verification_time = ktime_get_ns() - start_time;
13492 print_verification_stats(env);
13493
13494 if (log->level && bpf_verifier_log_full(log))
13495 ret = -ENOSPC;
13496 if (log->level && !log->ubuf) {
13497 ret = -EFAULT;
13498 goto err_release_maps;
13499 }
13500
13501 if (ret)
13502 goto err_release_maps;
13503
13504 if (env->used_map_cnt) {
13505 /* if program passed verifier, update used_maps in bpf_prog_info */
13506 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
13507 sizeof(env->used_maps[0]),
13508 GFP_KERNEL);
13509
13510 if (!env->prog->aux->used_maps) {
13511 ret = -ENOMEM;
13512 goto err_release_maps;
13513 }
13514
13515 memcpy(env->prog->aux->used_maps, env->used_maps,
13516 sizeof(env->used_maps[0]) * env->used_map_cnt);
13517 env->prog->aux->used_map_cnt = env->used_map_cnt;
13518 }
13519 if (env->used_btf_cnt) {
13520 /* if program passed verifier, update used_btfs in bpf_prog_aux */
13521 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
13522 sizeof(env->used_btfs[0]),
13523 GFP_KERNEL);
13524 if (!env->prog->aux->used_btfs) {
13525 ret = -ENOMEM;
13526 goto err_release_maps;
13527 }
13528
13529 memcpy(env->prog->aux->used_btfs, env->used_btfs,
13530 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
13531 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
13532 }
13533 if (env->used_map_cnt || env->used_btf_cnt) {
13534 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
13535 * bpf_ld_imm64 instructions
13536 */
13537 convert_pseudo_ld_imm64(env);
13538 }
13539
13540 adjust_btf_func(env);
13541
13542err_release_maps:
13543 if (!env->prog->aux->used_maps)
13544 /* if we didn't copy map pointers into bpf_prog_info, release
13545 * them now. Otherwise free_used_maps() will release them.
13546 */
13547 release_maps(env);
13548 if (!env->prog->aux->used_btfs)
13549 release_btfs(env);
13550
13551 /* extension progs temporarily inherit the attach_type of their targets
13552 for verification purposes, so set it back to zero before returning
13553 */
13554 if (env->prog->type == BPF_PROG_TYPE_EXT)
13555 env->prog->expected_attach_type = 0;
13556
13557 *prog = env->prog;
13558err_unlock:
13559 if (!is_priv)
13560 mutex_unlock(&bpf_verifier_lock);
13561 vfree(env->insn_aux_data);
13562err_free_env:
13563 kfree(env);
13564 return ret;
13565}