Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for IDT Versaclock 5
   4 *
   5 * Copyright (C) 2017 Marek Vasut <marek.vasut@gmail.com>
   6 */
   7
   8/*
   9 * Possible optimizations:
  10 * - Use spread spectrum
  11 * - Use integer divider in FOD if applicable
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/clk-provider.h>
  16#include <linux/delay.h>
  17#include <linux/i2c.h>
  18#include <linux/interrupt.h>
  19#include <linux/mod_devicetable.h>
  20#include <linux/module.h>
  21#include <linux/of.h>
  22#include <linux/of_platform.h>
  23#include <linux/rational.h>
  24#include <linux/regmap.h>
  25#include <linux/slab.h>
  26
  27#include <dt-bindings/clk/versaclock.h>
  28
  29/* VersaClock5 registers */
  30#define VC5_OTP_CONTROL				0x00
  31
  32/* Factory-reserved register block */
  33#define VC5_RSVD_DEVICE_ID			0x01
  34#define VC5_RSVD_ADC_GAIN_7_0			0x02
  35#define VC5_RSVD_ADC_GAIN_15_8			0x03
  36#define VC5_RSVD_ADC_OFFSET_7_0			0x04
  37#define VC5_RSVD_ADC_OFFSET_15_8		0x05
  38#define VC5_RSVD_TEMPY				0x06
  39#define VC5_RSVD_OFFSET_TBIN			0x07
  40#define VC5_RSVD_GAIN				0x08
  41#define VC5_RSVD_TEST_NP			0x09
  42#define VC5_RSVD_UNUSED				0x0a
  43#define VC5_RSVD_BANDGAP_TRIM_UP		0x0b
  44#define VC5_RSVD_BANDGAP_TRIM_DN		0x0c
  45#define VC5_RSVD_CLK_R_12_CLK_AMP_4		0x0d
  46#define VC5_RSVD_CLK_R_34_CLK_AMP_4		0x0e
  47#define VC5_RSVD_CLK_AMP_123			0x0f
  48
  49/* Configuration register block */
  50#define VC5_PRIM_SRC_SHDN			0x10
  51#define VC5_PRIM_SRC_SHDN_EN_XTAL		BIT(7)
  52#define VC5_PRIM_SRC_SHDN_EN_CLKIN		BIT(6)
  53#define VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ	BIT(3)
  54#define VC5_PRIM_SRC_SHDN_SP			BIT(1)
  55#define VC5_PRIM_SRC_SHDN_EN_GBL_SHDN		BIT(0)
  56
  57#define VC5_VCO_BAND				0x11
  58#define VC5_XTAL_X1_LOAD_CAP			0x12
  59#define VC5_XTAL_X2_LOAD_CAP			0x13
  60#define VC5_REF_DIVIDER				0x15
  61#define VC5_REF_DIVIDER_SEL_PREDIV2		BIT(7)
  62#define VC5_REF_DIVIDER_REF_DIV(n)		((n) & 0x3f)
  63
  64#define VC5_VCO_CTRL_AND_PREDIV			0x16
  65#define VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV	BIT(7)
  66
  67#define VC5_FEEDBACK_INT_DIV			0x17
  68#define VC5_FEEDBACK_INT_DIV_BITS		0x18
  69#define VC5_FEEDBACK_FRAC_DIV(n)		(0x19 + (n))
  70#define VC5_RC_CONTROL0				0x1e
  71#define VC5_RC_CONTROL1				0x1f
  72
  73/* These registers are named "Unused Factory Reserved Registers" */
  74#define VC5_RESERVED_X0(idx)		(0x20 + ((idx) * 0x10))
  75#define VC5_RESERVED_X0_BYPASS_SYNC	BIT(7) /* bypass_sync<idx> bit */
  76
  77/* Output divider control for divider 1,2,3,4 */
  78#define VC5_OUT_DIV_CONTROL(idx)	(0x21 + ((idx) * 0x10))
  79#define VC5_OUT_DIV_CONTROL_RESET	BIT(7)
  80#define VC5_OUT_DIV_CONTROL_SELB_NORM	BIT(3)
  81#define VC5_OUT_DIV_CONTROL_SEL_EXT	BIT(2)
  82#define VC5_OUT_DIV_CONTROL_INT_MODE	BIT(1)
  83#define VC5_OUT_DIV_CONTROL_EN_FOD	BIT(0)
  84
  85#define VC5_OUT_DIV_FRAC(idx, n)	(0x22 + ((idx) * 0x10) + (n))
  86#define VC5_OUT_DIV_FRAC4_OD_SCEE	BIT(1)
  87
  88#define VC5_OUT_DIV_STEP_SPREAD(idx, n)	(0x26 + ((idx) * 0x10) + (n))
  89#define VC5_OUT_DIV_SPREAD_MOD(idx, n)	(0x29 + ((idx) * 0x10) + (n))
  90#define VC5_OUT_DIV_SKEW_INT(idx, n)	(0x2b + ((idx) * 0x10) + (n))
  91#define VC5_OUT_DIV_INT(idx, n)		(0x2d + ((idx) * 0x10) + (n))
  92#define VC5_OUT_DIV_SKEW_FRAC(idx)	(0x2f + ((idx) * 0x10))
  93
  94/* Clock control register for clock 1,2 */
  95#define VC5_CLK_OUTPUT_CFG(idx, n)	(0x60 + ((idx) * 0x2) + (n))
  96#define VC5_CLK_OUTPUT_CFG0_CFG_SHIFT	5
  97#define VC5_CLK_OUTPUT_CFG0_CFG_MASK GENMASK(7, VC5_CLK_OUTPUT_CFG0_CFG_SHIFT)
  98
  99#define VC5_CLK_OUTPUT_CFG0_CFG_LVPECL	(VC5_LVPECL)
 100#define VC5_CLK_OUTPUT_CFG0_CFG_CMOS		(VC5_CMOS)
 101#define VC5_CLK_OUTPUT_CFG0_CFG_HCSL33	(VC5_HCSL33)
 102#define VC5_CLK_OUTPUT_CFG0_CFG_LVDS		(VC5_LVDS)
 103#define VC5_CLK_OUTPUT_CFG0_CFG_CMOS2		(VC5_CMOS2)
 104#define VC5_CLK_OUTPUT_CFG0_CFG_CMOSD		(VC5_CMOSD)
 105#define VC5_CLK_OUTPUT_CFG0_CFG_HCSL25	(VC5_HCSL25)
 106
 107#define VC5_CLK_OUTPUT_CFG0_PWR_SHIFT	3
 108#define VC5_CLK_OUTPUT_CFG0_PWR_MASK GENMASK(4, VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
 109#define VC5_CLK_OUTPUT_CFG0_PWR_18	(0<<VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
 110#define VC5_CLK_OUTPUT_CFG0_PWR_25	(2<<VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
 111#define VC5_CLK_OUTPUT_CFG0_PWR_33	(3<<VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
 112#define VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT	0
 113#define VC5_CLK_OUTPUT_CFG0_SLEW_MASK GENMASK(1, VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
 114#define VC5_CLK_OUTPUT_CFG0_SLEW_80	(0<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
 115#define VC5_CLK_OUTPUT_CFG0_SLEW_85	(1<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
 116#define VC5_CLK_OUTPUT_CFG0_SLEW_90	(2<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
 117#define VC5_CLK_OUTPUT_CFG0_SLEW_100	(3<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
 118#define VC5_CLK_OUTPUT_CFG1_EN_CLKBUF	BIT(0)
 119
 120#define VC5_CLK_OE_SHDN				0x68
 121#define VC5_CLK_OS_SHDN				0x69
 122
 123#define VC5_GLOBAL_REGISTER			0x76
 124#define VC5_GLOBAL_REGISTER_GLOBAL_RESET	BIT(5)
 125
 126/* PLL/VCO runs between 2.5 GHz and 3.0 GHz */
 127#define VC5_PLL_VCO_MIN				2500000000UL
 128#define VC5_PLL_VCO_MAX				3000000000UL
 129
 130/* VC5 Input mux settings */
 131#define VC5_MUX_IN_XIN		BIT(0)
 132#define VC5_MUX_IN_CLKIN	BIT(1)
 133
 134/* Maximum number of clk_out supported by this driver */
 135#define VC5_MAX_CLK_OUT_NUM	5
 136
 137/* Maximum number of FODs supported by this driver */
 138#define VC5_MAX_FOD_NUM	4
 139
 140/* flags to describe chip features */
 141/* chip has built-in oscilator */
 142#define VC5_HAS_INTERNAL_XTAL	BIT(0)
 143/* chip has PFD requency doubler */
 144#define VC5_HAS_PFD_FREQ_DBL	BIT(1)
 145/* chip has bits to disable FOD sync */
 146#define VC5_HAS_BYPASS_SYNC_BIT	BIT(2)
 147
 148/* Supported IDT VC5 models. */
 149enum vc5_model {
 150	IDT_VC5_5P49V5923,
 151	IDT_VC5_5P49V5925,
 152	IDT_VC5_5P49V5933,
 153	IDT_VC5_5P49V5935,
 154	IDT_VC6_5P49V6901,
 155	IDT_VC6_5P49V6965,
 156};
 157
 158/* Structure to describe features of a particular VC5 model */
 159struct vc5_chip_info {
 160	const enum vc5_model	model;
 161	const unsigned int	clk_fod_cnt;
 162	const unsigned int	clk_out_cnt;
 163	const u32		flags;
 164};
 165
 166struct vc5_driver_data;
 167
 168struct vc5_hw_data {
 169	struct clk_hw		hw;
 170	struct vc5_driver_data	*vc5;
 171	u32			div_int;
 172	u32			div_frc;
 173	unsigned int		num;
 174};
 175
 176struct vc5_out_data {
 177	struct clk_hw		hw;
 178	struct vc5_driver_data	*vc5;
 179	unsigned int		num;
 180	unsigned int		clk_output_cfg0;
 181	unsigned int		clk_output_cfg0_mask;
 182};
 183
 184struct vc5_driver_data {
 185	struct i2c_client	*client;
 186	struct regmap		*regmap;
 187	const struct vc5_chip_info	*chip_info;
 188
 189	struct clk		*pin_xin;
 190	struct clk		*pin_clkin;
 191	unsigned char		clk_mux_ins;
 192	struct clk_hw		clk_mux;
 193	struct clk_hw		clk_mul;
 194	struct clk_hw		clk_pfd;
 195	struct vc5_hw_data	clk_pll;
 196	struct vc5_hw_data	clk_fod[VC5_MAX_FOD_NUM];
 197	struct vc5_out_data	clk_out[VC5_MAX_CLK_OUT_NUM];
 198};
 199
 200/*
 201 * VersaClock5 i2c regmap
 202 */
 203static bool vc5_regmap_is_writeable(struct device *dev, unsigned int reg)
 204{
 205	/* Factory reserved regs, make them read-only */
 206	if (reg <= 0xf)
 207		return false;
 208
 209	/* Factory reserved regs, make them read-only */
 210	if (reg == 0x14 || reg == 0x1c || reg == 0x1d)
 211		return false;
 212
 213	return true;
 214}
 215
 216static const struct regmap_config vc5_regmap_config = {
 217	.reg_bits = 8,
 218	.val_bits = 8,
 219	.cache_type = REGCACHE_RBTREE,
 220	.max_register = 0x76,
 221	.writeable_reg = vc5_regmap_is_writeable,
 222};
 223
 224/*
 225 * VersaClock5 input multiplexer between XTAL and CLKIN divider
 226 */
 227static unsigned char vc5_mux_get_parent(struct clk_hw *hw)
 228{
 229	struct vc5_driver_data *vc5 =
 230		container_of(hw, struct vc5_driver_data, clk_mux);
 231	const u8 mask = VC5_PRIM_SRC_SHDN_EN_XTAL | VC5_PRIM_SRC_SHDN_EN_CLKIN;
 232	unsigned int src;
 233
 234	regmap_read(vc5->regmap, VC5_PRIM_SRC_SHDN, &src);
 235	src &= mask;
 236
 237	if (src == VC5_PRIM_SRC_SHDN_EN_XTAL)
 238		return 0;
 239
 240	if (src == VC5_PRIM_SRC_SHDN_EN_CLKIN)
 241		return 1;
 242
 243	dev_warn(&vc5->client->dev,
 244		 "Invalid clock input configuration (%02x)\n", src);
 245	return 0;
 246}
 247
 248static int vc5_mux_set_parent(struct clk_hw *hw, u8 index)
 249{
 250	struct vc5_driver_data *vc5 =
 251		container_of(hw, struct vc5_driver_data, clk_mux);
 252	const u8 mask = VC5_PRIM_SRC_SHDN_EN_XTAL | VC5_PRIM_SRC_SHDN_EN_CLKIN;
 253	u8 src;
 254
 255	if ((index > 1) || !vc5->clk_mux_ins)
 256		return -EINVAL;
 257
 258	if (vc5->clk_mux_ins == (VC5_MUX_IN_CLKIN | VC5_MUX_IN_XIN)) {
 259		if (index == 0)
 260			src = VC5_PRIM_SRC_SHDN_EN_XTAL;
 261		if (index == 1)
 262			src = VC5_PRIM_SRC_SHDN_EN_CLKIN;
 263	} else {
 264		if (index != 0)
 265			return -EINVAL;
 266
 267		if (vc5->clk_mux_ins == VC5_MUX_IN_XIN)
 268			src = VC5_PRIM_SRC_SHDN_EN_XTAL;
 269		else if (vc5->clk_mux_ins == VC5_MUX_IN_CLKIN)
 270			src = VC5_PRIM_SRC_SHDN_EN_CLKIN;
 271		else /* Invalid; should have been caught by vc5_probe() */
 272			return -EINVAL;
 273	}
 274
 275	return regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN, mask, src);
 276}
 277
 278static const struct clk_ops vc5_mux_ops = {
 279	.set_parent	= vc5_mux_set_parent,
 280	.get_parent	= vc5_mux_get_parent,
 281};
 282
 283static unsigned long vc5_dbl_recalc_rate(struct clk_hw *hw,
 284					 unsigned long parent_rate)
 285{
 286	struct vc5_driver_data *vc5 =
 287		container_of(hw, struct vc5_driver_data, clk_mul);
 288	unsigned int premul;
 289
 290	regmap_read(vc5->regmap, VC5_PRIM_SRC_SHDN, &premul);
 291	if (premul & VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ)
 292		parent_rate *= 2;
 293
 294	return parent_rate;
 295}
 296
 297static long vc5_dbl_round_rate(struct clk_hw *hw, unsigned long rate,
 298			       unsigned long *parent_rate)
 299{
 300	if ((*parent_rate == rate) || ((*parent_rate * 2) == rate))
 301		return rate;
 302	else
 303		return -EINVAL;
 304}
 305
 306static int vc5_dbl_set_rate(struct clk_hw *hw, unsigned long rate,
 307			    unsigned long parent_rate)
 308{
 309	struct vc5_driver_data *vc5 =
 310		container_of(hw, struct vc5_driver_data, clk_mul);
 311	u32 mask;
 312
 313	if ((parent_rate * 2) == rate)
 314		mask = VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ;
 315	else
 316		mask = 0;
 317
 318	regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN,
 319			   VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ,
 320			   mask);
 321
 322	return 0;
 323}
 324
 325static const struct clk_ops vc5_dbl_ops = {
 326	.recalc_rate	= vc5_dbl_recalc_rate,
 327	.round_rate	= vc5_dbl_round_rate,
 328	.set_rate	= vc5_dbl_set_rate,
 329};
 330
 331static unsigned long vc5_pfd_recalc_rate(struct clk_hw *hw,
 332					 unsigned long parent_rate)
 333{
 334	struct vc5_driver_data *vc5 =
 335		container_of(hw, struct vc5_driver_data, clk_pfd);
 336	unsigned int prediv, div;
 337
 338	regmap_read(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV, &prediv);
 339
 340	/* The bypass_prediv is set, PLL fed from Ref_in directly. */
 341	if (prediv & VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV)
 342		return parent_rate;
 343
 344	regmap_read(vc5->regmap, VC5_REF_DIVIDER, &div);
 345
 346	/* The Sel_prediv2 is set, PLL fed from prediv2 (Ref_in / 2) */
 347	if (div & VC5_REF_DIVIDER_SEL_PREDIV2)
 348		return parent_rate / 2;
 349	else
 350		return parent_rate / VC5_REF_DIVIDER_REF_DIV(div);
 351}
 352
 353static long vc5_pfd_round_rate(struct clk_hw *hw, unsigned long rate,
 354			       unsigned long *parent_rate)
 355{
 356	unsigned long idiv;
 357
 358	/* PLL cannot operate with input clock above 50 MHz. */
 359	if (rate > 50000000)
 360		return -EINVAL;
 361
 362	/* CLKIN within range of PLL input, feed directly to PLL. */
 363	if (*parent_rate <= 50000000)
 364		return *parent_rate;
 365
 366	idiv = DIV_ROUND_UP(*parent_rate, rate);
 367	if (idiv > 127)
 368		return -EINVAL;
 369
 370	return *parent_rate / idiv;
 371}
 372
 373static int vc5_pfd_set_rate(struct clk_hw *hw, unsigned long rate,
 374			    unsigned long parent_rate)
 375{
 376	struct vc5_driver_data *vc5 =
 377		container_of(hw, struct vc5_driver_data, clk_pfd);
 378	unsigned long idiv;
 379	u8 div;
 380
 381	/* CLKIN within range of PLL input, feed directly to PLL. */
 382	if (parent_rate <= 50000000) {
 383		regmap_update_bits(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV,
 384				   VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV,
 385				   VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV);
 386		regmap_update_bits(vc5->regmap, VC5_REF_DIVIDER, 0xff, 0x00);
 387		return 0;
 388	}
 389
 390	idiv = DIV_ROUND_UP(parent_rate, rate);
 391
 392	/* We have dedicated div-2 predivider. */
 393	if (idiv == 2)
 394		div = VC5_REF_DIVIDER_SEL_PREDIV2;
 395	else
 396		div = VC5_REF_DIVIDER_REF_DIV(idiv);
 397
 398	regmap_update_bits(vc5->regmap, VC5_REF_DIVIDER, 0xff, div);
 399	regmap_update_bits(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV,
 400			   VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV, 0);
 401
 402	return 0;
 403}
 404
 405static const struct clk_ops vc5_pfd_ops = {
 406	.recalc_rate	= vc5_pfd_recalc_rate,
 407	.round_rate	= vc5_pfd_round_rate,
 408	.set_rate	= vc5_pfd_set_rate,
 409};
 410
 411/*
 412 * VersaClock5 PLL/VCO
 413 */
 414static unsigned long vc5_pll_recalc_rate(struct clk_hw *hw,
 415					 unsigned long parent_rate)
 416{
 417	struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
 418	struct vc5_driver_data *vc5 = hwdata->vc5;
 419	u32 div_int, div_frc;
 420	u8 fb[5];
 421
 422	regmap_bulk_read(vc5->regmap, VC5_FEEDBACK_INT_DIV, fb, 5);
 423
 424	div_int = (fb[0] << 4) | (fb[1] >> 4);
 425	div_frc = (fb[2] << 16) | (fb[3] << 8) | fb[4];
 426
 427	/* The PLL divider has 12 integer bits and 24 fractional bits */
 428	return (parent_rate * div_int) + ((parent_rate * div_frc) >> 24);
 429}
 430
 431static long vc5_pll_round_rate(struct clk_hw *hw, unsigned long rate,
 432			       unsigned long *parent_rate)
 433{
 434	struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
 435	u32 div_int;
 436	u64 div_frc;
 437
 438	if (rate < VC5_PLL_VCO_MIN)
 439		rate = VC5_PLL_VCO_MIN;
 440	if (rate > VC5_PLL_VCO_MAX)
 441		rate = VC5_PLL_VCO_MAX;
 442
 443	/* Determine integer part, which is 12 bit wide */
 444	div_int = rate / *parent_rate;
 445	if (div_int > 0xfff)
 446		rate = *parent_rate * 0xfff;
 447
 448	/* Determine best fractional part, which is 24 bit wide */
 449	div_frc = rate % *parent_rate;
 450	div_frc *= BIT(24) - 1;
 451	do_div(div_frc, *parent_rate);
 452
 453	hwdata->div_int = div_int;
 454	hwdata->div_frc = (u32)div_frc;
 455
 456	return (*parent_rate * div_int) + ((*parent_rate * div_frc) >> 24);
 457}
 458
 459static int vc5_pll_set_rate(struct clk_hw *hw, unsigned long rate,
 460			    unsigned long parent_rate)
 461{
 462	struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
 463	struct vc5_driver_data *vc5 = hwdata->vc5;
 464	u8 fb[5];
 465
 466	fb[0] = hwdata->div_int >> 4;
 467	fb[1] = hwdata->div_int << 4;
 468	fb[2] = hwdata->div_frc >> 16;
 469	fb[3] = hwdata->div_frc >> 8;
 470	fb[4] = hwdata->div_frc;
 471
 472	return regmap_bulk_write(vc5->regmap, VC5_FEEDBACK_INT_DIV, fb, 5);
 473}
 474
 475static const struct clk_ops vc5_pll_ops = {
 476	.recalc_rate	= vc5_pll_recalc_rate,
 477	.round_rate	= vc5_pll_round_rate,
 478	.set_rate	= vc5_pll_set_rate,
 479};
 480
 481static unsigned long vc5_fod_recalc_rate(struct clk_hw *hw,
 482					 unsigned long parent_rate)
 483{
 484	struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
 485	struct vc5_driver_data *vc5 = hwdata->vc5;
 486	/* VCO frequency is divided by two before entering FOD */
 487	u32 f_in = parent_rate / 2;
 488	u32 div_int, div_frc;
 489	u8 od_int[2];
 490	u8 od_frc[4];
 491
 492	regmap_bulk_read(vc5->regmap, VC5_OUT_DIV_INT(hwdata->num, 0),
 493			 od_int, 2);
 494	regmap_bulk_read(vc5->regmap, VC5_OUT_DIV_FRAC(hwdata->num, 0),
 495			 od_frc, 4);
 496
 497	div_int = (od_int[0] << 4) | (od_int[1] >> 4);
 498	div_frc = (od_frc[0] << 22) | (od_frc[1] << 14) |
 499		  (od_frc[2] << 6) | (od_frc[3] >> 2);
 500
 501	/* Avoid division by zero if the output is not configured. */
 502	if (div_int == 0 && div_frc == 0)
 503		return 0;
 504
 505	/* The PLL divider has 12 integer bits and 30 fractional bits */
 506	return div64_u64((u64)f_in << 24ULL, ((u64)div_int << 24ULL) + div_frc);
 507}
 508
 509static long vc5_fod_round_rate(struct clk_hw *hw, unsigned long rate,
 510			       unsigned long *parent_rate)
 511{
 512	struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
 513	/* VCO frequency is divided by two before entering FOD */
 514	u32 f_in = *parent_rate / 2;
 515	u32 div_int;
 516	u64 div_frc;
 517
 518	/* Determine integer part, which is 12 bit wide */
 519	div_int = f_in / rate;
 520	/*
 521	 * WARNING: The clock chip does not output signal if the integer part
 522	 *          of the divider is 0xfff and fractional part is non-zero.
 523	 *          Clamp the divider at 0xffe to keep the code simple.
 524	 */
 525	if (div_int > 0xffe) {
 526		div_int = 0xffe;
 527		rate = f_in / div_int;
 528	}
 529
 530	/* Determine best fractional part, which is 30 bit wide */
 531	div_frc = f_in % rate;
 532	div_frc <<= 24;
 533	do_div(div_frc, rate);
 534
 535	hwdata->div_int = div_int;
 536	hwdata->div_frc = (u32)div_frc;
 537
 538	return div64_u64((u64)f_in << 24ULL, ((u64)div_int << 24ULL) + div_frc);
 539}
 540
 541static int vc5_fod_set_rate(struct clk_hw *hw, unsigned long rate,
 542			    unsigned long parent_rate)
 543{
 544	struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
 545	struct vc5_driver_data *vc5 = hwdata->vc5;
 546	u8 data[14] = {
 547		hwdata->div_frc >> 22, hwdata->div_frc >> 14,
 548		hwdata->div_frc >> 6, hwdata->div_frc << 2,
 549		0, 0, 0, 0, 0,
 550		0, 0,
 551		hwdata->div_int >> 4, hwdata->div_int << 4,
 552		0
 553	};
 554
 555	regmap_bulk_write(vc5->regmap, VC5_OUT_DIV_FRAC(hwdata->num, 0),
 556			  data, 14);
 557
 558	/*
 559	 * Toggle magic bit in undocumented register for unknown reason.
 560	 * This is what the IDT timing commander tool does and the chip
 561	 * datasheet somewhat implies this is needed, but the register
 562	 * and the bit is not documented.
 563	 */
 564	regmap_update_bits(vc5->regmap, VC5_GLOBAL_REGISTER,
 565			   VC5_GLOBAL_REGISTER_GLOBAL_RESET, 0);
 566	regmap_update_bits(vc5->regmap, VC5_GLOBAL_REGISTER,
 567			   VC5_GLOBAL_REGISTER_GLOBAL_RESET,
 568			   VC5_GLOBAL_REGISTER_GLOBAL_RESET);
 569	return 0;
 570}
 571
 572static const struct clk_ops vc5_fod_ops = {
 573	.recalc_rate	= vc5_fod_recalc_rate,
 574	.round_rate	= vc5_fod_round_rate,
 575	.set_rate	= vc5_fod_set_rate,
 576};
 577
 578static int vc5_clk_out_prepare(struct clk_hw *hw)
 579{
 580	struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
 581	struct vc5_driver_data *vc5 = hwdata->vc5;
 582	const u8 mask = VC5_OUT_DIV_CONTROL_SELB_NORM |
 583			VC5_OUT_DIV_CONTROL_SEL_EXT |
 584			VC5_OUT_DIV_CONTROL_EN_FOD;
 585	unsigned int src;
 586	int ret;
 587
 588	/*
 589	 * When enabling a FOD, all currently enabled FODs are briefly
 590	 * stopped in order to synchronize all of them. This causes a clock
 591	 * disruption to any unrelated chips that might be already using
 592	 * other clock outputs. Bypass the sync feature to avoid the issue,
 593	 * which is possible on the VersaClock 6E family via reserved
 594	 * registers.
 595	 */
 596	if (vc5->chip_info->flags & VC5_HAS_BYPASS_SYNC_BIT) {
 597		ret = regmap_update_bits(vc5->regmap,
 598					 VC5_RESERVED_X0(hwdata->num),
 599					 VC5_RESERVED_X0_BYPASS_SYNC,
 600					 VC5_RESERVED_X0_BYPASS_SYNC);
 601		if (ret)
 602			return ret;
 603	}
 604
 605	/*
 606	 * If the input mux is disabled, enable it first and
 607	 * select source from matching FOD.
 608	 */
 609	regmap_read(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num), &src);
 610	if ((src & mask) == 0) {
 611		src = VC5_OUT_DIV_CONTROL_RESET | VC5_OUT_DIV_CONTROL_EN_FOD;
 612		ret = regmap_update_bits(vc5->regmap,
 613					 VC5_OUT_DIV_CONTROL(hwdata->num),
 614					 mask | VC5_OUT_DIV_CONTROL_RESET, src);
 615		if (ret)
 616			return ret;
 617	}
 618
 619	/* Enable the clock buffer */
 620	regmap_update_bits(vc5->regmap, VC5_CLK_OUTPUT_CFG(hwdata->num, 1),
 621			   VC5_CLK_OUTPUT_CFG1_EN_CLKBUF,
 622			   VC5_CLK_OUTPUT_CFG1_EN_CLKBUF);
 623	if (hwdata->clk_output_cfg0_mask) {
 624		dev_dbg(&vc5->client->dev, "Update output %d mask 0x%0X val 0x%0X\n",
 625			hwdata->num, hwdata->clk_output_cfg0_mask,
 626			hwdata->clk_output_cfg0);
 627
 628		regmap_update_bits(vc5->regmap,
 629			VC5_CLK_OUTPUT_CFG(hwdata->num, 0),
 630			hwdata->clk_output_cfg0_mask,
 631			hwdata->clk_output_cfg0);
 632	}
 633
 634	return 0;
 635}
 636
 637static void vc5_clk_out_unprepare(struct clk_hw *hw)
 638{
 639	struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
 640	struct vc5_driver_data *vc5 = hwdata->vc5;
 641
 642	/* Disable the clock buffer */
 643	regmap_update_bits(vc5->regmap, VC5_CLK_OUTPUT_CFG(hwdata->num, 1),
 644			   VC5_CLK_OUTPUT_CFG1_EN_CLKBUF, 0);
 645}
 646
 647static unsigned char vc5_clk_out_get_parent(struct clk_hw *hw)
 648{
 649	struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
 650	struct vc5_driver_data *vc5 = hwdata->vc5;
 651	const u8 mask = VC5_OUT_DIV_CONTROL_SELB_NORM |
 652			VC5_OUT_DIV_CONTROL_SEL_EXT |
 653			VC5_OUT_DIV_CONTROL_EN_FOD;
 654	const u8 fodclkmask = VC5_OUT_DIV_CONTROL_SELB_NORM |
 655			      VC5_OUT_DIV_CONTROL_EN_FOD;
 656	const u8 extclk = VC5_OUT_DIV_CONTROL_SELB_NORM |
 657			  VC5_OUT_DIV_CONTROL_SEL_EXT;
 658	unsigned int src;
 659
 660	regmap_read(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num), &src);
 661	src &= mask;
 662
 663	if (src == 0)	/* Input mux set to DISABLED */
 664		return 0;
 665
 666	if ((src & fodclkmask) == VC5_OUT_DIV_CONTROL_EN_FOD)
 667		return 0;
 668
 669	if (src == extclk)
 670		return 1;
 671
 672	dev_warn(&vc5->client->dev,
 673		 "Invalid clock output configuration (%02x)\n", src);
 674	return 0;
 675}
 676
 677static int vc5_clk_out_set_parent(struct clk_hw *hw, u8 index)
 678{
 679	struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
 680	struct vc5_driver_data *vc5 = hwdata->vc5;
 681	const u8 mask = VC5_OUT_DIV_CONTROL_RESET |
 682			VC5_OUT_DIV_CONTROL_SELB_NORM |
 683			VC5_OUT_DIV_CONTROL_SEL_EXT |
 684			VC5_OUT_DIV_CONTROL_EN_FOD;
 685	const u8 extclk = VC5_OUT_DIV_CONTROL_SELB_NORM |
 686			  VC5_OUT_DIV_CONTROL_SEL_EXT;
 687	u8 src = VC5_OUT_DIV_CONTROL_RESET;
 688
 689	if (index == 0)
 690		src |= VC5_OUT_DIV_CONTROL_EN_FOD;
 691	else
 692		src |= extclk;
 693
 694	return regmap_update_bits(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num),
 695				  mask, src);
 696}
 697
 698static const struct clk_ops vc5_clk_out_ops = {
 699	.prepare	= vc5_clk_out_prepare,
 700	.unprepare	= vc5_clk_out_unprepare,
 701	.set_parent	= vc5_clk_out_set_parent,
 702	.get_parent	= vc5_clk_out_get_parent,
 703};
 704
 705static struct clk_hw *vc5_of_clk_get(struct of_phandle_args *clkspec,
 706				     void *data)
 707{
 708	struct vc5_driver_data *vc5 = data;
 709	unsigned int idx = clkspec->args[0];
 710
 711	if (idx >= vc5->chip_info->clk_out_cnt)
 712		return ERR_PTR(-EINVAL);
 713
 714	return &vc5->clk_out[idx].hw;
 715}
 716
 717static int vc5_map_index_to_output(const enum vc5_model model,
 718				   const unsigned int n)
 719{
 720	switch (model) {
 721	case IDT_VC5_5P49V5933:
 722		return (n == 0) ? 0 : 3;
 723	case IDT_VC5_5P49V5923:
 724	case IDT_VC5_5P49V5925:
 725	case IDT_VC5_5P49V5935:
 726	case IDT_VC6_5P49V6901:
 727	case IDT_VC6_5P49V6965:
 728	default:
 729		return n;
 730	}
 731}
 732
 733static int vc5_update_mode(struct device_node *np_output,
 734			   struct vc5_out_data *clk_out)
 735{
 736	u32 value;
 737
 738	if (!of_property_read_u32(np_output, "idt,mode", &value)) {
 739		clk_out->clk_output_cfg0_mask |= VC5_CLK_OUTPUT_CFG0_CFG_MASK;
 740		switch (value) {
 741		case VC5_CLK_OUTPUT_CFG0_CFG_LVPECL:
 742		case VC5_CLK_OUTPUT_CFG0_CFG_CMOS:
 743		case VC5_CLK_OUTPUT_CFG0_CFG_HCSL33:
 744		case VC5_CLK_OUTPUT_CFG0_CFG_LVDS:
 745		case VC5_CLK_OUTPUT_CFG0_CFG_CMOS2:
 746		case VC5_CLK_OUTPUT_CFG0_CFG_CMOSD:
 747		case VC5_CLK_OUTPUT_CFG0_CFG_HCSL25:
 748			clk_out->clk_output_cfg0 |=
 749			    value << VC5_CLK_OUTPUT_CFG0_CFG_SHIFT;
 750			break;
 751		default:
 752			return -EINVAL;
 753		}
 754	}
 755	return 0;
 756}
 757
 758static int vc5_update_power(struct device_node *np_output,
 759			    struct vc5_out_data *clk_out)
 760{
 761	u32 value;
 762
 763	if (!of_property_read_u32(np_output, "idt,voltage-microvolt",
 764				  &value)) {
 765		clk_out->clk_output_cfg0_mask |= VC5_CLK_OUTPUT_CFG0_PWR_MASK;
 766		switch (value) {
 767		case 1800000:
 768			clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_PWR_18;
 769			break;
 770		case 2500000:
 771			clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_PWR_25;
 772			break;
 773		case 3300000:
 774			clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_PWR_33;
 775			break;
 776		default:
 777			return -EINVAL;
 778		}
 779	}
 780	return 0;
 781}
 782
 783static int vc5_map_cap_value(u32 femtofarads)
 784{
 785	int mapped_value;
 786
 787	/*
 788	 * The datasheet explicitly states 9000 - 25000 with 0.5pF
 789	 * steps, but the Programmer's guide shows the steps are 0.430pF.
 790	 * After getting feedback from Renesas, the .5pF steps were the
 791	 * goal, but 430nF was the actual values.
 792	 * Because of this, the actual range goes to 22760 instead of 25000
 793	 */
 794	if (femtofarads < 9000 || femtofarads > 22760)
 795		return -EINVAL;
 796
 797	/*
 798	 * The Programmer's guide shows XTAL[5:0] but in reality,
 799	 * XTAL[0] and XTAL[1] are both LSB which makes the math
 800	 * strange.  With clarfication from Renesas, setting the
 801	 * values should be simpler by ignoring XTAL[0]
 802	 */
 803	mapped_value = DIV_ROUND_CLOSEST(femtofarads - 9000, 430);
 804
 805	/*
 806	 * Since the calculation ignores XTAL[0], there is one
 807	 * special case where mapped_value = 32.  In reality, this means
 808	 * the real mapped value should be 111111b.  In other cases,
 809	 * the mapped_value needs to be shifted 1 to the left.
 810	 */
 811	if (mapped_value > 31)
 812		mapped_value = 0x3f;
 813	else
 814		mapped_value <<= 1;
 815
 816	return mapped_value;
 817}
 818static int vc5_update_cap_load(struct device_node *node, struct vc5_driver_data *vc5)
 819{
 820	u32 value;
 821	int mapped_value;
 822
 823	if (!of_property_read_u32(node, "idt,xtal-load-femtofarads", &value)) {
 824		mapped_value = vc5_map_cap_value(value);
 825		if (mapped_value < 0)
 826			return mapped_value;
 827
 828		/*
 829		 * The mapped_value is really the high 6 bits of
 830		 * VC5_XTAL_X1_LOAD_CAP and VC5_XTAL_X2_LOAD_CAP, so
 831		 * shift the value 2 places.
 832		 */
 833		regmap_update_bits(vc5->regmap, VC5_XTAL_X1_LOAD_CAP, ~0x03, mapped_value << 2);
 834		regmap_update_bits(vc5->regmap, VC5_XTAL_X2_LOAD_CAP, ~0x03, mapped_value << 2);
 835	}
 836
 837	return 0;
 838}
 839
 840static int vc5_update_slew(struct device_node *np_output,
 841			   struct vc5_out_data *clk_out)
 842{
 843	u32 value;
 844
 845	if (!of_property_read_u32(np_output, "idt,slew-percent", &value)) {
 846		clk_out->clk_output_cfg0_mask |= VC5_CLK_OUTPUT_CFG0_SLEW_MASK;
 847		switch (value) {
 848		case 80:
 849			clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_SLEW_80;
 850			break;
 851		case 85:
 852			clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_SLEW_85;
 853			break;
 854		case 90:
 855			clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_SLEW_90;
 856			break;
 857		case 100:
 858			clk_out->clk_output_cfg0 |=
 859			    VC5_CLK_OUTPUT_CFG0_SLEW_100;
 860			break;
 861		default:
 862			return -EINVAL;
 863		}
 864	}
 865	return 0;
 866}
 867
 868static int vc5_get_output_config(struct i2c_client *client,
 869				 struct vc5_out_data *clk_out)
 870{
 871	struct device_node *np_output;
 872	char *child_name;
 873	int ret = 0;
 874
 875	child_name = kasprintf(GFP_KERNEL, "OUT%d", clk_out->num + 1);
 876	if (!child_name)
 877		return -ENOMEM;
 878
 879	np_output = of_get_child_by_name(client->dev.of_node, child_name);
 880	kfree(child_name);
 881	if (!np_output)
 882		return 0;
 883
 884	ret = vc5_update_mode(np_output, clk_out);
 885	if (ret)
 886		goto output_error;
 887
 888	ret = vc5_update_power(np_output, clk_out);
 889	if (ret)
 890		goto output_error;
 891
 892	ret = vc5_update_slew(np_output, clk_out);
 893
 894output_error:
 895	if (ret) {
 896		dev_err(&client->dev,
 897			"Invalid clock output configuration OUT%d\n",
 898			clk_out->num + 1);
 899	}
 900
 901	of_node_put(np_output);
 902
 903	return ret;
 904}
 905
 906static const struct of_device_id clk_vc5_of_match[];
 907
 908static int vc5_probe(struct i2c_client *client, const struct i2c_device_id *id)
 909{
 910	struct vc5_driver_data *vc5;
 911	struct clk_init_data init;
 912	const char *parent_names[2];
 913	unsigned int n, idx = 0;
 914	int ret;
 915
 916	vc5 = devm_kzalloc(&client->dev, sizeof(*vc5), GFP_KERNEL);
 917	if (!vc5)
 918		return -ENOMEM;
 919
 920	i2c_set_clientdata(client, vc5);
 921	vc5->client = client;
 922	vc5->chip_info = of_device_get_match_data(&client->dev);
 923
 924	vc5->pin_xin = devm_clk_get(&client->dev, "xin");
 925	if (PTR_ERR(vc5->pin_xin) == -EPROBE_DEFER)
 926		return -EPROBE_DEFER;
 927
 928	vc5->pin_clkin = devm_clk_get(&client->dev, "clkin");
 929	if (PTR_ERR(vc5->pin_clkin) == -EPROBE_DEFER)
 930		return -EPROBE_DEFER;
 931
 932	vc5->regmap = devm_regmap_init_i2c(client, &vc5_regmap_config);
 933	if (IS_ERR(vc5->regmap)) {
 934		dev_err(&client->dev, "failed to allocate register map\n");
 935		return PTR_ERR(vc5->regmap);
 936	}
 937
 938	/* Register clock input mux */
 939	memset(&init, 0, sizeof(init));
 940
 941	if (!IS_ERR(vc5->pin_xin)) {
 942		vc5->clk_mux_ins |= VC5_MUX_IN_XIN;
 943		parent_names[init.num_parents++] = __clk_get_name(vc5->pin_xin);
 944	} else if (vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL) {
 945		vc5->pin_xin = clk_register_fixed_rate(&client->dev,
 946						       "internal-xtal", NULL,
 947						       0, 25000000);
 948		if (IS_ERR(vc5->pin_xin))
 949			return PTR_ERR(vc5->pin_xin);
 950		vc5->clk_mux_ins |= VC5_MUX_IN_XIN;
 951		parent_names[init.num_parents++] = __clk_get_name(vc5->pin_xin);
 952	}
 953
 954	if (!IS_ERR(vc5->pin_clkin)) {
 955		vc5->clk_mux_ins |= VC5_MUX_IN_CLKIN;
 956		parent_names[init.num_parents++] =
 957		    __clk_get_name(vc5->pin_clkin);
 958	}
 959
 960	if (!init.num_parents) {
 961		dev_err(&client->dev, "no input clock specified!\n");
 962		return -EINVAL;
 963	}
 964
 965	/* Configure Optional Loading Capacitance for external XTAL */
 966	if (!(vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL)) {
 967		ret = vc5_update_cap_load(client->dev.of_node, vc5);
 968		if (ret)
 969			goto err_clk_register;
 970	}
 971
 972	init.name = kasprintf(GFP_KERNEL, "%pOFn.mux", client->dev.of_node);
 973	init.ops = &vc5_mux_ops;
 974	init.flags = 0;
 975	init.parent_names = parent_names;
 976	vc5->clk_mux.init = &init;
 977	ret = devm_clk_hw_register(&client->dev, &vc5->clk_mux);
 978	if (ret)
 979		goto err_clk_register;
 980	kfree(init.name);	/* clock framework made a copy of the name */
 981
 982	if (vc5->chip_info->flags & VC5_HAS_PFD_FREQ_DBL) {
 983		/* Register frequency doubler */
 984		memset(&init, 0, sizeof(init));
 985		init.name = kasprintf(GFP_KERNEL, "%pOFn.dbl",
 986				      client->dev.of_node);
 987		init.ops = &vc5_dbl_ops;
 988		init.flags = CLK_SET_RATE_PARENT;
 989		init.parent_names = parent_names;
 990		parent_names[0] = clk_hw_get_name(&vc5->clk_mux);
 991		init.num_parents = 1;
 992		vc5->clk_mul.init = &init;
 993		ret = devm_clk_hw_register(&client->dev, &vc5->clk_mul);
 994		if (ret)
 995			goto err_clk_register;
 996		kfree(init.name); /* clock framework made a copy of the name */
 997	}
 998
 999	/* Register PFD */
1000	memset(&init, 0, sizeof(init));
1001	init.name = kasprintf(GFP_KERNEL, "%pOFn.pfd", client->dev.of_node);
1002	init.ops = &vc5_pfd_ops;
1003	init.flags = CLK_SET_RATE_PARENT;
1004	init.parent_names = parent_names;
1005	if (vc5->chip_info->flags & VC5_HAS_PFD_FREQ_DBL)
1006		parent_names[0] = clk_hw_get_name(&vc5->clk_mul);
1007	else
1008		parent_names[0] = clk_hw_get_name(&vc5->clk_mux);
1009	init.num_parents = 1;
1010	vc5->clk_pfd.init = &init;
1011	ret = devm_clk_hw_register(&client->dev, &vc5->clk_pfd);
1012	if (ret)
1013		goto err_clk_register;
1014	kfree(init.name);	/* clock framework made a copy of the name */
1015
1016	/* Register PLL */
1017	memset(&init, 0, sizeof(init));
1018	init.name = kasprintf(GFP_KERNEL, "%pOFn.pll", client->dev.of_node);
1019	init.ops = &vc5_pll_ops;
1020	init.flags = CLK_SET_RATE_PARENT;
1021	init.parent_names = parent_names;
1022	parent_names[0] = clk_hw_get_name(&vc5->clk_pfd);
1023	init.num_parents = 1;
1024	vc5->clk_pll.num = 0;
1025	vc5->clk_pll.vc5 = vc5;
1026	vc5->clk_pll.hw.init = &init;
1027	ret = devm_clk_hw_register(&client->dev, &vc5->clk_pll.hw);
1028	if (ret)
1029		goto err_clk_register;
1030	kfree(init.name); /* clock framework made a copy of the name */
1031
1032	/* Register FODs */
1033	for (n = 0; n < vc5->chip_info->clk_fod_cnt; n++) {
1034		idx = vc5_map_index_to_output(vc5->chip_info->model, n);
1035		memset(&init, 0, sizeof(init));
1036		init.name = kasprintf(GFP_KERNEL, "%pOFn.fod%d",
1037				      client->dev.of_node, idx);
1038		init.ops = &vc5_fod_ops;
1039		init.flags = CLK_SET_RATE_PARENT;
1040		init.parent_names = parent_names;
1041		parent_names[0] = clk_hw_get_name(&vc5->clk_pll.hw);
1042		init.num_parents = 1;
1043		vc5->clk_fod[n].num = idx;
1044		vc5->clk_fod[n].vc5 = vc5;
1045		vc5->clk_fod[n].hw.init = &init;
1046		ret = devm_clk_hw_register(&client->dev, &vc5->clk_fod[n].hw);
1047		if (ret)
1048			goto err_clk_register;
1049		kfree(init.name); /* clock framework made a copy of the name */
1050	}
1051
1052	/* Register MUX-connected OUT0_I2C_SELB output */
1053	memset(&init, 0, sizeof(init));
1054	init.name = kasprintf(GFP_KERNEL, "%pOFn.out0_sel_i2cb",
1055			      client->dev.of_node);
1056	init.ops = &vc5_clk_out_ops;
1057	init.flags = CLK_SET_RATE_PARENT;
1058	init.parent_names = parent_names;
1059	parent_names[0] = clk_hw_get_name(&vc5->clk_mux);
1060	init.num_parents = 1;
1061	vc5->clk_out[0].num = idx;
1062	vc5->clk_out[0].vc5 = vc5;
1063	vc5->clk_out[0].hw.init = &init;
1064	ret = devm_clk_hw_register(&client->dev, &vc5->clk_out[0].hw);
1065	if (ret)
1066		goto err_clk_register;
1067	kfree(init.name); /* clock framework made a copy of the name */
1068
1069	/* Register FOD-connected OUTx outputs */
1070	for (n = 1; n < vc5->chip_info->clk_out_cnt; n++) {
1071		idx = vc5_map_index_to_output(vc5->chip_info->model, n - 1);
1072		parent_names[0] = clk_hw_get_name(&vc5->clk_fod[idx].hw);
1073		if (n == 1)
1074			parent_names[1] = clk_hw_get_name(&vc5->clk_mux);
1075		else
1076			parent_names[1] =
1077			    clk_hw_get_name(&vc5->clk_out[n - 1].hw);
1078
1079		memset(&init, 0, sizeof(init));
1080		init.name = kasprintf(GFP_KERNEL, "%pOFn.out%d",
1081				      client->dev.of_node, idx + 1);
1082		init.ops = &vc5_clk_out_ops;
1083		init.flags = CLK_SET_RATE_PARENT;
1084		init.parent_names = parent_names;
1085		init.num_parents = 2;
1086		vc5->clk_out[n].num = idx;
1087		vc5->clk_out[n].vc5 = vc5;
1088		vc5->clk_out[n].hw.init = &init;
1089		ret = devm_clk_hw_register(&client->dev, &vc5->clk_out[n].hw);
1090		if (ret)
1091			goto err_clk_register;
1092		kfree(init.name); /* clock framework made a copy of the name */
1093
1094		/* Fetch Clock Output configuration from DT (if specified) */
1095		ret = vc5_get_output_config(client, &vc5->clk_out[n]);
1096		if (ret)
1097			goto err_clk;
1098	}
1099
1100	ret = of_clk_add_hw_provider(client->dev.of_node, vc5_of_clk_get, vc5);
1101	if (ret) {
1102		dev_err(&client->dev, "unable to add clk provider\n");
1103		goto err_clk;
1104	}
1105
1106	return 0;
1107
1108err_clk_register:
1109	dev_err(&client->dev, "unable to register %s\n", init.name);
1110	kfree(init.name); /* clock framework made a copy of the name */
1111err_clk:
1112	if (vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL)
1113		clk_unregister_fixed_rate(vc5->pin_xin);
1114	return ret;
1115}
1116
1117static int vc5_remove(struct i2c_client *client)
1118{
1119	struct vc5_driver_data *vc5 = i2c_get_clientdata(client);
1120
1121	of_clk_del_provider(client->dev.of_node);
1122
1123	if (vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL)
1124		clk_unregister_fixed_rate(vc5->pin_xin);
1125
1126	return 0;
1127}
1128
1129static int __maybe_unused vc5_suspend(struct device *dev)
1130{
1131	struct vc5_driver_data *vc5 = dev_get_drvdata(dev);
1132
1133	regcache_cache_only(vc5->regmap, true);
1134	regcache_mark_dirty(vc5->regmap);
1135
1136	return 0;
1137}
1138
1139static int __maybe_unused vc5_resume(struct device *dev)
1140{
1141	struct vc5_driver_data *vc5 = dev_get_drvdata(dev);
1142	int ret;
1143
1144	regcache_cache_only(vc5->regmap, false);
1145	ret = regcache_sync(vc5->regmap);
1146	if (ret)
1147		dev_err(dev, "Failed to restore register map: %d\n", ret);
1148	return ret;
1149}
1150
1151static const struct vc5_chip_info idt_5p49v5923_info = {
1152	.model = IDT_VC5_5P49V5923,
1153	.clk_fod_cnt = 2,
1154	.clk_out_cnt = 3,
1155	.flags = 0,
1156};
1157
1158static const struct vc5_chip_info idt_5p49v5925_info = {
1159	.model = IDT_VC5_5P49V5925,
1160	.clk_fod_cnt = 4,
1161	.clk_out_cnt = 5,
1162	.flags = 0,
1163};
1164
1165static const struct vc5_chip_info idt_5p49v5933_info = {
1166	.model = IDT_VC5_5P49V5933,
1167	.clk_fod_cnt = 2,
1168	.clk_out_cnt = 3,
1169	.flags = VC5_HAS_INTERNAL_XTAL,
1170};
1171
1172static const struct vc5_chip_info idt_5p49v5935_info = {
1173	.model = IDT_VC5_5P49V5935,
1174	.clk_fod_cnt = 4,
1175	.clk_out_cnt = 5,
1176	.flags = VC5_HAS_INTERNAL_XTAL,
1177};
1178
1179static const struct vc5_chip_info idt_5p49v6901_info = {
1180	.model = IDT_VC6_5P49V6901,
1181	.clk_fod_cnt = 4,
1182	.clk_out_cnt = 5,
1183	.flags = VC5_HAS_PFD_FREQ_DBL,
1184};
1185
1186static const struct vc5_chip_info idt_5p49v6965_info = {
1187	.model = IDT_VC6_5P49V6965,
1188	.clk_fod_cnt = 4,
1189	.clk_out_cnt = 5,
1190	.flags = VC5_HAS_BYPASS_SYNC_BIT,
1191};
1192
1193static const struct i2c_device_id vc5_id[] = {
1194	{ "5p49v5923", .driver_data = IDT_VC5_5P49V5923 },
1195	{ "5p49v5925", .driver_data = IDT_VC5_5P49V5925 },
1196	{ "5p49v5933", .driver_data = IDT_VC5_5P49V5933 },
1197	{ "5p49v5935", .driver_data = IDT_VC5_5P49V5935 },
1198	{ "5p49v6901", .driver_data = IDT_VC6_5P49V6901 },
1199	{ "5p49v6965", .driver_data = IDT_VC6_5P49V6965 },
1200	{ }
1201};
1202MODULE_DEVICE_TABLE(i2c, vc5_id);
1203
1204static const struct of_device_id clk_vc5_of_match[] = {
1205	{ .compatible = "idt,5p49v5923", .data = &idt_5p49v5923_info },
1206	{ .compatible = "idt,5p49v5925", .data = &idt_5p49v5925_info },
1207	{ .compatible = "idt,5p49v5933", .data = &idt_5p49v5933_info },
1208	{ .compatible = "idt,5p49v5935", .data = &idt_5p49v5935_info },
1209	{ .compatible = "idt,5p49v6901", .data = &idt_5p49v6901_info },
1210	{ .compatible = "idt,5p49v6965", .data = &idt_5p49v6965_info },
1211	{ },
1212};
1213MODULE_DEVICE_TABLE(of, clk_vc5_of_match);
1214
1215static SIMPLE_DEV_PM_OPS(vc5_pm_ops, vc5_suspend, vc5_resume);
1216
1217static struct i2c_driver vc5_driver = {
1218	.driver = {
1219		.name = "vc5",
1220		.pm	= &vc5_pm_ops,
1221		.of_match_table = clk_vc5_of_match,
1222	},
1223	.probe		= vc5_probe,
1224	.remove		= vc5_remove,
1225	.id_table	= vc5_id,
1226};
1227module_i2c_driver(vc5_driver);
1228
1229MODULE_AUTHOR("Marek Vasut <marek.vasut@gmail.com>");
1230MODULE_DESCRIPTION("IDT VersaClock 5 driver");
1231MODULE_LICENSE("GPL");