Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1/*
  2 * Driver for TI Multi PLL CDCE913/925/937/949 clock synthesizer
  3 *
  4 * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1,
  5 * Y4/Y5 to PLL2, and so on. PLL frequency is set on a first-come-first-serve
  6 * basis. Clients can directly request any frequency that the chip can
  7 * deliver using the standard clk framework. In addition, the device can
  8 * be configured and activated via the devicetree.
  9 *
 10 * Copyright (C) 2014, Topic Embedded Products
 11 * Licenced under GPL
 12 */
 13#include <linux/clk.h>
 14#include <linux/clk-provider.h>
 15#include <linux/delay.h>
 16#include <linux/module.h>
 17#include <linux/i2c.h>
 18#include <linux/regmap.h>
 19#include <linux/regulator/consumer.h>
 20#include <linux/slab.h>
 21#include <linux/gcd.h>
 22
 23/* Each chip has different number of PLLs and outputs, for example:
 24 * The CECE925 has 2 PLLs which can be routed through dividers to 5 outputs.
 25 * Model this as 2 PLL clocks which are parents to the outputs.
 26 */
 27
 28enum {
 29	CDCE913,
 30	CDCE925,
 31	CDCE937,
 32	CDCE949,
 33};
 34
 35struct clk_cdce925_chip_info {
 36	int num_plls;
 37	int num_outputs;
 38};
 39
 40static const struct clk_cdce925_chip_info clk_cdce925_chip_info_tbl[] = {
 41	[CDCE913] = { .num_plls = 1, .num_outputs = 3 },
 42	[CDCE925] = { .num_plls = 2, .num_outputs = 5 },
 43	[CDCE937] = { .num_plls = 3, .num_outputs = 7 },
 44	[CDCE949] = { .num_plls = 4, .num_outputs = 9 },
 45};
 46
 47#define MAX_NUMBER_OF_PLLS	4
 48#define MAX_NUMBER_OF_OUTPUTS	9
 49
 50#define CDCE925_REG_GLOBAL1	0x01
 51#define CDCE925_REG_Y1SPIPDIVH	0x02
 52#define CDCE925_REG_PDIVL	0x03
 53#define CDCE925_REG_XCSEL	0x05
 54/* PLL parameters start at 0x10, steps of 0x10 */
 55#define CDCE925_OFFSET_PLL	0x10
 56/* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
 57#define CDCE925_PLL_MUX_OUTPUTS	0x14
 58#define CDCE925_PLL_MULDIV	0x18
 59
 60#define CDCE925_PLL_FREQUENCY_MIN	 80000000ul
 61#define CDCE925_PLL_FREQUENCY_MAX	230000000ul
 62struct clk_cdce925_chip;
 63
 64struct clk_cdce925_output {
 65	struct clk_hw hw;
 66	struct clk_cdce925_chip *chip;
 67	u8 index;
 68	u16 pdiv; /* 1..127 for Y2-Y9; 1..1023 for Y1 */
 69};
 70#define to_clk_cdce925_output(_hw) \
 71	container_of(_hw, struct clk_cdce925_output, hw)
 72
 73struct clk_cdce925_pll {
 74	struct clk_hw hw;
 75	struct clk_cdce925_chip *chip;
 76	u8 index;
 77	u16 m;   /* 1..511 */
 78	u16 n;   /* 1..4095 */
 79};
 80#define to_clk_cdce925_pll(_hw)	container_of(_hw, struct clk_cdce925_pll, hw)
 81
 82struct clk_cdce925_chip {
 83	struct regmap *regmap;
 84	struct i2c_client *i2c_client;
 85	const struct clk_cdce925_chip_info *chip_info;
 86	struct clk_cdce925_pll pll[MAX_NUMBER_OF_PLLS];
 87	struct clk_cdce925_output clk[MAX_NUMBER_OF_OUTPUTS];
 88};
 89
 90/* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
 91
 92static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
 93	u16 n, u16 m)
 94{
 95	if ((!m || !n) || (m == n))
 96		return parent_rate; /* In bypass mode runs at same frequency */
 97	return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
 98}
 99
100static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
101		unsigned long parent_rate)
102{
103	/* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
104	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
105
106	return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
107}
108
109static void cdce925_pll_find_rate(unsigned long rate,
110		unsigned long parent_rate, u16 *n, u16 *m)
111{
112	unsigned long un;
113	unsigned long um;
114	unsigned long g;
115
116	if (rate <= parent_rate) {
117		/* Can always deliver parent_rate in bypass mode */
118		rate = parent_rate;
119		*n = 0;
120		*m = 0;
121	} else {
122		/* In PLL mode, need to apply min/max range */
123		if (rate < CDCE925_PLL_FREQUENCY_MIN)
124			rate = CDCE925_PLL_FREQUENCY_MIN;
125		else if (rate > CDCE925_PLL_FREQUENCY_MAX)
126			rate = CDCE925_PLL_FREQUENCY_MAX;
127
128		g = gcd(rate, parent_rate);
129		um = parent_rate / g;
130		un = rate / g;
131		/* When outside hw range, reduce to fit (rounding errors) */
132		while ((un > 4095) || (um > 511)) {
133			un >>= 1;
134			um >>= 1;
135		}
136		if (un == 0)
137			un = 1;
138		if (um == 0)
139			um = 1;
140
141		*n = un;
142		*m = um;
143	}
144}
145
146static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
147		unsigned long *parent_rate)
148{
149	u16 n, m;
150
151	cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
152	return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
153}
154
155static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
156		unsigned long parent_rate)
157{
158	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
159
160	if (!rate || (rate == parent_rate)) {
161		data->m = 0; /* Bypass mode */
162		data->n = 0;
163		return 0;
164	}
165
166	if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
167		(rate > CDCE925_PLL_FREQUENCY_MAX)) {
168		pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
169		return -EINVAL;
170	}
171
172	if (rate < parent_rate) {
173		pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
174			rate, parent_rate);
175		return -EINVAL;
176	}
177
178	cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
179	return 0;
180}
181
182
183/* calculate p = max(0, 4 - int(log2 (n/m))) */
184static u8 cdce925_pll_calc_p(u16 n, u16 m)
185{
186	u8 p;
187	u16 r = n / m;
188
189	if (r >= 16)
190		return 0;
191	p = 4;
192	while (r > 1) {
193		r >>= 1;
194		--p;
195	}
196	return p;
197}
198
199/* Returns VCO range bits for VCO1_0_RANGE */
200static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
201{
202	struct clk *parent = clk_get_parent(hw->clk);
203	unsigned long rate = clk_get_rate(parent);
204
205	rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
206	if (rate >= 175000000)
207		return 0x3;
208	if (rate >= 150000000)
209		return 0x02;
210	if (rate >= 125000000)
211		return 0x01;
212	return 0x00;
213}
214
215/* I2C clock, hence everything must happen in (un)prepare because this
216 * may sleep */
217static int cdce925_pll_prepare(struct clk_hw *hw)
218{
219	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
220	u16 n = data->n;
221	u16 m = data->m;
222	u16 r;
223	u8 q;
224	u8 p;
225	u16 nn;
226	u8 pll[4]; /* Bits are spread out over 4 byte registers */
227	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
228	unsigned i;
229
230	if ((!m || !n) || (m == n)) {
231		/* Set PLL mux to bypass mode, leave the rest as is */
232		regmap_update_bits(data->chip->regmap,
233			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
234	} else {
235		/* According to data sheet: */
236		/* p = max(0, 4 - int(log2 (n/m))) */
237		p = cdce925_pll_calc_p(n, m);
238		/* nn = n * 2^p */
239		nn = n * BIT(p);
240		/* q = int(nn/m) */
241		q = nn / m;
242		if ((q < 16) || (q > 63)) {
243			pr_debug("%s invalid q=%d\n", __func__, q);
244			return -EINVAL;
245		}
246		r = nn - (m*q);
247		if (r > 511) {
248			pr_debug("%s invalid r=%d\n", __func__, r);
249			return -EINVAL;
250		}
251		pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
252			n, m, p, q, r);
253		/* encode into register bits */
254		pll[0] = n >> 4;
255		pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
256		pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
257		pll[3] = ((q & 0x07) << 5) | (p << 2) |
258				cdce925_pll_calc_range_bits(hw, n, m);
259		/* Write to registers */
260		for (i = 0; i < ARRAY_SIZE(pll); ++i)
261			regmap_write(data->chip->regmap,
262				reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
263		/* Enable PLL */
264		regmap_update_bits(data->chip->regmap,
265			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
266	}
267
268	return 0;
269}
270
271static void cdce925_pll_unprepare(struct clk_hw *hw)
272{
273	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
274	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
275
276	regmap_update_bits(data->chip->regmap,
277			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
278}
279
280static const struct clk_ops cdce925_pll_ops = {
281	.prepare = cdce925_pll_prepare,
282	.unprepare = cdce925_pll_unprepare,
283	.recalc_rate = cdce925_pll_recalc_rate,
284	.round_rate = cdce925_pll_round_rate,
285	.set_rate = cdce925_pll_set_rate,
286};
287
288
289static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
290{
291	switch (data->index) {
292	case 0:
293		regmap_update_bits(data->chip->regmap,
294			CDCE925_REG_Y1SPIPDIVH,
295			0x03, (pdiv >> 8) & 0x03);
296		regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
297		break;
298	case 1:
299		regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
300		break;
301	case 2:
302		regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
303		break;
304	case 3:
305		regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
306		break;
307	case 4:
308		regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
309		break;
310	case 5:
311		regmap_update_bits(data->chip->regmap, 0x36, 0x7F, pdiv);
312		break;
313	case 6:
314		regmap_update_bits(data->chip->regmap, 0x37, 0x7F, pdiv);
315		break;
316	case 7:
317		regmap_update_bits(data->chip->regmap, 0x46, 0x7F, pdiv);
318		break;
319	case 8:
320		regmap_update_bits(data->chip->regmap, 0x47, 0x7F, pdiv);
321		break;
322	}
323}
324
325static void cdce925_clk_activate(struct clk_cdce925_output *data)
326{
327	switch (data->index) {
328	case 0:
329		regmap_update_bits(data->chip->regmap,
330			CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
331		break;
332	case 1:
333	case 2:
334		regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
335		break;
336	case 3:
337	case 4:
338		regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
339		break;
340	case 5:
341	case 6:
342		regmap_update_bits(data->chip->regmap, 0x34, 0x03, 0x03);
343		break;
344	case 7:
345	case 8:
346		regmap_update_bits(data->chip->regmap, 0x44, 0x03, 0x03);
347		break;
348	}
349}
350
351static int cdce925_clk_prepare(struct clk_hw *hw)
352{
353	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
354
355	cdce925_clk_set_pdiv(data, data->pdiv);
356	cdce925_clk_activate(data);
357	return 0;
358}
359
360static void cdce925_clk_unprepare(struct clk_hw *hw)
361{
362	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
363
364	/* Disable clock by setting divider to "0" */
365	cdce925_clk_set_pdiv(data, 0);
366}
367
368static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
369		unsigned long parent_rate)
370{
371	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
372
373	if (data->pdiv)
374		return parent_rate / data->pdiv;
375	return 0;
376}
377
378static u16 cdce925_calc_divider(unsigned long rate,
379		unsigned long parent_rate)
380{
381	unsigned long divider;
382
383	if (!rate)
384		return 0;
385	if (rate >= parent_rate)
386		return 1;
387
388	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
389	if (divider > 0x7F)
390		divider = 0x7F;
391
392	return (u16)divider;
393}
394
395static unsigned long cdce925_clk_best_parent_rate(
396	struct clk_hw *hw, unsigned long rate)
397{
398	struct clk *pll = clk_get_parent(hw->clk);
399	struct clk *root = clk_get_parent(pll);
400	unsigned long root_rate = clk_get_rate(root);
401	unsigned long best_rate_error = rate;
402	u16 pdiv_min;
403	u16 pdiv_max;
404	u16 pdiv_best;
405	u16 pdiv_now;
406
407	if (root_rate % rate == 0)
408		return root_rate; /* Don't need the PLL, use bypass */
409
410	pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
411	pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
412
413	if (pdiv_min > pdiv_max)
414		return 0; /* No can do? */
415
416	pdiv_best = pdiv_min;
417	for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
418		unsigned long target_rate = rate * pdiv_now;
419		long pll_rate = clk_round_rate(pll, target_rate);
420		unsigned long actual_rate;
421		unsigned long rate_error;
422
423		if (pll_rate <= 0)
424			continue;
425		actual_rate = pll_rate / pdiv_now;
426		rate_error = abs((long)actual_rate - (long)rate);
427		if (rate_error < best_rate_error) {
428			pdiv_best = pdiv_now;
429			best_rate_error = rate_error;
430		}
431		/* TODO: Consider PLL frequency based on smaller n/m values
432		 * and pick the better one if the error is equal */
433	}
434
435	return rate * pdiv_best;
436}
437
438static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
439		unsigned long *parent_rate)
440{
441	unsigned long l_parent_rate = *parent_rate;
442	u16 divider = cdce925_calc_divider(rate, l_parent_rate);
443
444	if (l_parent_rate / divider != rate) {
445		l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
446		divider = cdce925_calc_divider(rate, l_parent_rate);
447		*parent_rate = l_parent_rate;
448	}
449
450	if (divider)
451		return (long)(l_parent_rate / divider);
452	return 0;
453}
454
455static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
456		unsigned long parent_rate)
457{
458	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
459
460	data->pdiv = cdce925_calc_divider(rate, parent_rate);
461
462	return 0;
463}
464
465static const struct clk_ops cdce925_clk_ops = {
466	.prepare = cdce925_clk_prepare,
467	.unprepare = cdce925_clk_unprepare,
468	.recalc_rate = cdce925_clk_recalc_rate,
469	.round_rate = cdce925_clk_round_rate,
470	.set_rate = cdce925_clk_set_rate,
471};
472
473
474static u16 cdce925_y1_calc_divider(unsigned long rate,
475		unsigned long parent_rate)
476{
477	unsigned long divider;
478
479	if (!rate)
480		return 0;
481	if (rate >= parent_rate)
482		return 1;
483
484	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
485	if (divider > 0x3FF) /* Y1 has 10-bit divider */
486		divider = 0x3FF;
487
488	return (u16)divider;
489}
490
491static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
492		unsigned long *parent_rate)
493{
494	unsigned long l_parent_rate = *parent_rate;
495	u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
496
497	if (divider)
498		return (long)(l_parent_rate / divider);
499	return 0;
500}
501
502static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
503		unsigned long parent_rate)
504{
505	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
506
507	data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
508
509	return 0;
510}
511
512static const struct clk_ops cdce925_clk_y1_ops = {
513	.prepare = cdce925_clk_prepare,
514	.unprepare = cdce925_clk_unprepare,
515	.recalc_rate = cdce925_clk_recalc_rate,
516	.round_rate = cdce925_clk_y1_round_rate,
517	.set_rate = cdce925_clk_y1_set_rate,
518};
519
520#define CDCE925_I2C_COMMAND_BLOCK_TRANSFER	0x00
521#define CDCE925_I2C_COMMAND_BYTE_TRANSFER	0x80
522
523static int cdce925_regmap_i2c_write(
524	void *context, const void *data, size_t count)
525{
526	struct device *dev = context;
527	struct i2c_client *i2c = to_i2c_client(dev);
528	int ret;
529	u8 reg_data[2];
530
531	if (count != 2)
532		return -ENOTSUPP;
533
534	/* First byte is command code */
535	reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
536	reg_data[1] = ((u8 *)data)[1];
537
538	dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
539			reg_data[0], reg_data[1]);
540
541	ret = i2c_master_send(i2c, reg_data, count);
542	if (likely(ret == count))
543		return 0;
544	else if (ret < 0)
545		return ret;
546	else
547		return -EIO;
548}
549
550static int cdce925_regmap_i2c_read(void *context,
551	   const void *reg, size_t reg_size, void *val, size_t val_size)
552{
553	struct device *dev = context;
554	struct i2c_client *i2c = to_i2c_client(dev);
555	struct i2c_msg xfer[2];
556	int ret;
557	u8 reg_data[2];
558
559	if (reg_size != 1)
560		return -ENOTSUPP;
561
562	xfer[0].addr = i2c->addr;
563	xfer[0].flags = 0;
564	xfer[0].buf = reg_data;
565	if (val_size == 1) {
566		reg_data[0] =
567			CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
568		xfer[0].len = 1;
569	} else {
570		reg_data[0] =
571			CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
572		reg_data[1] = val_size;
573		xfer[0].len = 2;
574	}
575
576	xfer[1].addr = i2c->addr;
577	xfer[1].flags = I2C_M_RD;
578	xfer[1].len = val_size;
579	xfer[1].buf = val;
580
581	ret = i2c_transfer(i2c->adapter, xfer, 2);
582	if (likely(ret == 2)) {
583		dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
584				reg_size, val_size, reg_data[0], *((u8 *)val));
585		return 0;
586	} else if (ret < 0)
587		return ret;
588	else
589		return -EIO;
590}
591
592static struct clk_hw *
593of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data)
594{
595	struct clk_cdce925_chip *data = _data;
596	unsigned int idx = clkspec->args[0];
597
598	if (idx >= ARRAY_SIZE(data->clk)) {
599		pr_err("%s: invalid index %u\n", __func__, idx);
600		return ERR_PTR(-EINVAL);
601	}
602
603	return &data->clk[idx].hw;
604}
605
606static void cdce925_regulator_disable(void *regulator)
607{
608	regulator_disable(regulator);
609}
610
611static int cdce925_regulator_enable(struct device *dev, const char *name)
612{
613	struct regulator *regulator;
614	int err;
615
616	regulator = devm_regulator_get(dev, name);
617	if (IS_ERR(regulator))
618		return PTR_ERR(regulator);
619
620	err = regulator_enable(regulator);
621	if (err) {
622		dev_err(dev, "Failed to enable %s: %d\n", name, err);
623		return err;
624	}
625
626	return devm_add_action_or_reset(dev, cdce925_regulator_disable,
627					regulator);
628}
629
630/* The CDCE925 uses a funky way to read/write registers. Bulk mode is
631 * just weird, so just use the single byte mode exclusively. */
632static struct regmap_bus regmap_cdce925_bus = {
633	.write = cdce925_regmap_i2c_write,
634	.read = cdce925_regmap_i2c_read,
635};
636
637static int cdce925_probe(struct i2c_client *client,
638		const struct i2c_device_id *id)
639{
640	struct clk_cdce925_chip *data;
641	struct device_node *node = client->dev.of_node;
642	const char *parent_name;
643	const char *pll_clk_name[MAX_NUMBER_OF_PLLS] = {NULL,};
644	struct clk_init_data init;
645	u32 value;
646	int i;
647	int err;
648	struct device_node *np_output;
649	char child_name[6];
650	struct regmap_config config = {
651		.name = "configuration0",
652		.reg_bits = 8,
653		.val_bits = 8,
654		.cache_type = REGCACHE_RBTREE,
655	};
656
657	dev_dbg(&client->dev, "%s\n", __func__);
658
659	err = cdce925_regulator_enable(&client->dev, "vdd");
660	if (err)
661		return err;
662
663	err = cdce925_regulator_enable(&client->dev, "vddout");
664	if (err)
665		return err;
666
667	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
668	if (!data)
669		return -ENOMEM;
670
671	data->i2c_client = client;
672	data->chip_info = &clk_cdce925_chip_info_tbl[id->driver_data];
673	config.max_register = CDCE925_OFFSET_PLL +
674		data->chip_info->num_plls * 0x10 - 1;
675	data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
676			&client->dev, &config);
677	if (IS_ERR(data->regmap)) {
678		dev_err(&client->dev, "failed to allocate register map\n");
679		return PTR_ERR(data->regmap);
680	}
681	i2c_set_clientdata(client, data);
682
683	parent_name = of_clk_get_parent_name(node, 0);
684	if (!parent_name) {
685		dev_err(&client->dev, "missing parent clock\n");
686		return -ENODEV;
687	}
688	dev_dbg(&client->dev, "parent is: %s\n", parent_name);
689
690	if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
691		regmap_write(data->regmap,
692			CDCE925_REG_XCSEL, (value << 3) & 0xF8);
693	/* PWDN bit */
694	regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
695
696	/* Set input source for Y1 to be the XTAL */
697	regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
698
699	init.ops = &cdce925_pll_ops;
700	init.flags = 0;
701	init.parent_names = &parent_name;
702	init.num_parents = 1;
703
704	/* Register PLL clocks */
705	for (i = 0; i < data->chip_info->num_plls; ++i) {
706		pll_clk_name[i] = kasprintf(GFP_KERNEL, "%pOFn.pll%d",
707			client->dev.of_node, i);
708		init.name = pll_clk_name[i];
709		data->pll[i].chip = data;
710		data->pll[i].hw.init = &init;
711		data->pll[i].index = i;
712		err = devm_clk_hw_register(&client->dev, &data->pll[i].hw);
713		if (err) {
714			dev_err(&client->dev, "Failed register PLL %d\n", i);
715			goto error;
716		}
717		sprintf(child_name, "PLL%d", i+1);
718		np_output = of_get_child_by_name(node, child_name);
719		if (!np_output)
720			continue;
721		if (!of_property_read_u32(np_output,
722			"clock-frequency", &value)) {
723			err = clk_set_rate(data->pll[i].hw.clk, value);
724			if (err)
725				dev_err(&client->dev,
726					"unable to set PLL frequency %ud\n",
727					value);
728		}
729		if (!of_property_read_u32(np_output,
730			"spread-spectrum", &value)) {
731			u8 flag = of_property_read_bool(np_output,
732				"spread-spectrum-center") ? 0x80 : 0x00;
733			regmap_update_bits(data->regmap,
734				0x16 + (i*CDCE925_OFFSET_PLL),
735				0x80, flag);
736			regmap_update_bits(data->regmap,
737				0x12 + (i*CDCE925_OFFSET_PLL),
738				0x07, value & 0x07);
739		}
740		of_node_put(np_output);
741	}
742
743	/* Register output clock Y1 */
744	init.ops = &cdce925_clk_y1_ops;
745	init.flags = 0;
746	init.num_parents = 1;
747	init.parent_names = &parent_name; /* Mux Y1 to input */
748	init.name = kasprintf(GFP_KERNEL, "%pOFn.Y1", client->dev.of_node);
749	data->clk[0].chip = data;
750	data->clk[0].hw.init = &init;
751	data->clk[0].index = 0;
752	data->clk[0].pdiv = 1;
753	err = devm_clk_hw_register(&client->dev, &data->clk[0].hw);
754	kfree(init.name); /* clock framework made a copy of the name */
755	if (err) {
756		dev_err(&client->dev, "clock registration Y1 failed\n");
757		goto error;
758	}
759
760	/* Register output clocks Y2 .. Y5*/
761	init.ops = &cdce925_clk_ops;
762	init.flags = CLK_SET_RATE_PARENT;
763	init.num_parents = 1;
764	for (i = 1; i < data->chip_info->num_outputs; ++i) {
765		init.name = kasprintf(GFP_KERNEL, "%pOFn.Y%d",
766			client->dev.of_node, i+1);
767		data->clk[i].chip = data;
768		data->clk[i].hw.init = &init;
769		data->clk[i].index = i;
770		data->clk[i].pdiv = 1;
771		switch (i) {
772		case 1:
773		case 2:
774			/* Mux Y2/3 to PLL1 */
775			init.parent_names = &pll_clk_name[0];
776			break;
777		case 3:
778		case 4:
779			/* Mux Y4/5 to PLL2 */
780			init.parent_names = &pll_clk_name[1];
781			break;
782		case 5:
783		case 6:
784			/* Mux Y6/7 to PLL3 */
785			init.parent_names = &pll_clk_name[2];
786			break;
787		case 7:
788		case 8:
789			/* Mux Y8/9 to PLL4 */
790			init.parent_names = &pll_clk_name[3];
791			break;
792		}
793		err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
794		kfree(init.name); /* clock framework made a copy of the name */
795		if (err) {
796			dev_err(&client->dev, "clock registration failed\n");
797			goto error;
798		}
799	}
800
801	/* Register the output clocks */
802	err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get,
803				  data);
804	if (err)
805		dev_err(&client->dev, "unable to add OF clock provider\n");
806
807	err = 0;
808
809error:
810	for (i = 0; i < data->chip_info->num_plls; ++i)
811		/* clock framework made a copy of the name */
812		kfree(pll_clk_name[i]);
813
814	return err;
815}
816
817static const struct i2c_device_id cdce925_id[] = {
818	{ "cdce913", CDCE913 },
819	{ "cdce925", CDCE925 },
820	{ "cdce937", CDCE937 },
821	{ "cdce949", CDCE949 },
822	{ }
823};
824MODULE_DEVICE_TABLE(i2c, cdce925_id);
825
826static const struct of_device_id clk_cdce925_of_match[] = {
827	{ .compatible = "ti,cdce913" },
828	{ .compatible = "ti,cdce925" },
829	{ .compatible = "ti,cdce937" },
830	{ .compatible = "ti,cdce949" },
831	{ },
832};
833MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
834
835static struct i2c_driver cdce925_driver = {
836	.driver = {
837		.name = "cdce925",
838		.of_match_table = of_match_ptr(clk_cdce925_of_match),
839	},
840	.probe		= cdce925_probe,
841	.id_table	= cdce925_id,
842};
843module_i2c_driver(cdce925_driver);
844
845MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
846MODULE_DESCRIPTION("TI CDCE913/925/937/949 driver");
847MODULE_LICENSE("GPL");