Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1/*
  2 * Copyright (C) 2013 Broadcom Corporation
  3 * Copyright 2013 Linaro Limited
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation version 2.
  8 *
  9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 10 * kind, whether express or implied; without even the implied warranty
 11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 */
 14
 15#include <linux/io.h>
 16#include <linux/of_address.h>
 17
 18#include "clk-kona.h"
 19
 20/* These are used when a selector or trigger is found to be unneeded */
 21#define selector_clear_exists(sel)	((sel)->width = 0)
 22#define trigger_clear_exists(trig)	FLAG_CLEAR(trig, TRIG, EXISTS)
 23
 24/* Validity checking */
 25
 26static bool ccu_data_offsets_valid(struct ccu_data *ccu)
 27{
 28	struct ccu_policy *ccu_policy = &ccu->policy;
 29	u32 limit;
 30
 31	limit = ccu->range - sizeof(u32);
 32	limit = round_down(limit, sizeof(u32));
 33	if (ccu_policy_exists(ccu_policy)) {
 34		if (ccu_policy->enable.offset > limit) {
 35			pr_err("%s: bad policy enable offset for %s "
 36					"(%u > %u)\n", __func__,
 37				ccu->name, ccu_policy->enable.offset, limit);
 38			return false;
 39		}
 40		if (ccu_policy->control.offset > limit) {
 41			pr_err("%s: bad policy control offset for %s "
 42					"(%u > %u)\n", __func__,
 43				ccu->name, ccu_policy->control.offset, limit);
 44			return false;
 45		}
 46	}
 47
 48	return true;
 49}
 50
 51static bool clk_requires_trigger(struct kona_clk *bcm_clk)
 52{
 53	struct peri_clk_data *peri = bcm_clk->u.peri;
 54	struct bcm_clk_sel *sel;
 55	struct bcm_clk_div *div;
 56
 57	if (bcm_clk->type != bcm_clk_peri)
 58		return false;
 59
 60	sel = &peri->sel;
 61	if (sel->parent_count && selector_exists(sel))
 62		return true;
 63
 64	div = &peri->div;
 65	if (!divider_exists(div))
 66		return false;
 67
 68	/* Fixed dividers don't need triggers */
 69	if (!divider_is_fixed(div))
 70		return true;
 71
 72	div = &peri->pre_div;
 73
 74	return divider_exists(div) && !divider_is_fixed(div);
 75}
 76
 77static bool peri_clk_data_offsets_valid(struct kona_clk *bcm_clk)
 78{
 79	struct peri_clk_data *peri;
 80	struct bcm_clk_policy *policy;
 81	struct bcm_clk_gate *gate;
 82	struct bcm_clk_hyst *hyst;
 83	struct bcm_clk_div *div;
 84	struct bcm_clk_sel *sel;
 85	struct bcm_clk_trig *trig;
 86	const char *name;
 87	u32 range;
 88	u32 limit;
 89
 90	BUG_ON(bcm_clk->type != bcm_clk_peri);
 91	peri = bcm_clk->u.peri;
 92	name = bcm_clk->init_data.name;
 93	range = bcm_clk->ccu->range;
 94
 95	limit = range - sizeof(u32);
 96	limit = round_down(limit, sizeof(u32));
 97
 98	policy = &peri->policy;
 99	if (policy_exists(policy)) {
100		if (policy->offset > limit) {
101			pr_err("%s: bad policy offset for %s (%u > %u)\n",
102				__func__, name, policy->offset, limit);
103			return false;
104		}
105	}
106
107	gate = &peri->gate;
108	hyst = &peri->hyst;
109	if (gate_exists(gate)) {
110		if (gate->offset > limit) {
111			pr_err("%s: bad gate offset for %s (%u > %u)\n",
112				__func__, name, gate->offset, limit);
113			return false;
114		}
115
116		if (hyst_exists(hyst)) {
117			if (hyst->offset > limit) {
118				pr_err("%s: bad hysteresis offset for %s "
119					"(%u > %u)\n", __func__,
120					name, hyst->offset, limit);
121				return false;
122			}
123		}
124	} else if (hyst_exists(hyst)) {
125		pr_err("%s: hysteresis but no gate for %s\n", __func__, name);
126		return false;
127	}
128
129	div = &peri->div;
130	if (divider_exists(div)) {
131		if (div->u.s.offset > limit) {
132			pr_err("%s: bad divider offset for %s (%u > %u)\n",
133				__func__, name, div->u.s.offset, limit);
134			return false;
135		}
136	}
137
138	div = &peri->pre_div;
139	if (divider_exists(div)) {
140		if (div->u.s.offset > limit) {
141			pr_err("%s: bad pre-divider offset for %s "
142					"(%u > %u)\n",
143				__func__, name, div->u.s.offset, limit);
144			return false;
145		}
146	}
147
148	sel = &peri->sel;
149	if (selector_exists(sel)) {
150		if (sel->offset > limit) {
151			pr_err("%s: bad selector offset for %s (%u > %u)\n",
152				__func__, name, sel->offset, limit);
153			return false;
154		}
155	}
156
157	trig = &peri->trig;
158	if (trigger_exists(trig)) {
159		if (trig->offset > limit) {
160			pr_err("%s: bad trigger offset for %s (%u > %u)\n",
161				__func__, name, trig->offset, limit);
162			return false;
163		}
164	}
165
166	trig = &peri->pre_trig;
167	if (trigger_exists(trig)) {
168		if (trig->offset > limit) {
169			pr_err("%s: bad pre-trigger offset for %s (%u > %u)\n",
170				__func__, name, trig->offset, limit);
171			return false;
172		}
173	}
174
175	return true;
176}
177
178/* A bit position must be less than the number of bits in a 32-bit register. */
179static bool bit_posn_valid(u32 bit_posn, const char *field_name,
180			const char *clock_name)
181{
182	u32 limit = BITS_PER_BYTE * sizeof(u32) - 1;
183
184	if (bit_posn > limit) {
185		pr_err("%s: bad %s bit for %s (%u > %u)\n", __func__,
186			field_name, clock_name, bit_posn, limit);
187		return false;
188	}
189	return true;
190}
191
192/*
193 * A bitfield must be at least 1 bit wide.  Both the low-order and
194 * high-order bits must lie within a 32-bit register.  We require
195 * fields to be less than 32 bits wide, mainly because we use
196 * shifting to produce field masks, and shifting a full word width
197 * is not well-defined by the C standard.
198 */
199static bool bitfield_valid(u32 shift, u32 width, const char *field_name,
200			const char *clock_name)
201{
202	u32 limit = BITS_PER_BYTE * sizeof(u32);
203
204	if (!width) {
205		pr_err("%s: bad %s field width 0 for %s\n", __func__,
206			field_name, clock_name);
207		return false;
208	}
209	if (shift + width > limit) {
210		pr_err("%s: bad %s for %s (%u + %u > %u)\n", __func__,
211			field_name, clock_name, shift, width, limit);
212		return false;
213	}
214	return true;
215}
216
217static bool
218ccu_policy_valid(struct ccu_policy *ccu_policy, const char *ccu_name)
219{
220	struct bcm_lvm_en *enable = &ccu_policy->enable;
221	struct bcm_policy_ctl *control;
222
223	if (!bit_posn_valid(enable->bit, "policy enable", ccu_name))
224		return false;
225
226	control = &ccu_policy->control;
227	if (!bit_posn_valid(control->go_bit, "policy control GO", ccu_name))
228		return false;
229
230	if (!bit_posn_valid(control->atl_bit, "policy control ATL", ccu_name))
231		return false;
232
233	if (!bit_posn_valid(control->ac_bit, "policy control AC", ccu_name))
234		return false;
235
236	return true;
237}
238
239static bool policy_valid(struct bcm_clk_policy *policy, const char *clock_name)
240{
241	if (!bit_posn_valid(policy->bit, "policy", clock_name))
242		return false;
243
244	return true;
245}
246
247/*
248 * All gates, if defined, have a status bit, and for hardware-only
249 * gates, that's it.  Gates that can be software controlled also
250 * have an enable bit.  And a gate that can be hardware or software
251 * controlled will have a hardware/software select bit.
252 */
253static bool gate_valid(struct bcm_clk_gate *gate, const char *field_name,
254			const char *clock_name)
255{
256	if (!bit_posn_valid(gate->status_bit, "gate status", clock_name))
257		return false;
258
259	if (gate_is_sw_controllable(gate)) {
260		if (!bit_posn_valid(gate->en_bit, "gate enable", clock_name))
261			return false;
262
263		if (gate_is_hw_controllable(gate)) {
264			if (!bit_posn_valid(gate->hw_sw_sel_bit,
265						"gate hw/sw select",
266						clock_name))
267				return false;
268		}
269	} else {
270		BUG_ON(!gate_is_hw_controllable(gate));
271	}
272
273	return true;
274}
275
276static bool hyst_valid(struct bcm_clk_hyst *hyst, const char *clock_name)
277{
278	if (!bit_posn_valid(hyst->en_bit, "hysteresis enable", clock_name))
279		return false;
280
281	if (!bit_posn_valid(hyst->val_bit, "hysteresis value", clock_name))
282		return false;
283
284	return true;
285}
286
287/*
288 * A selector bitfield must be valid.  Its parent_sel array must
289 * also be reasonable for the field.
290 */
291static bool sel_valid(struct bcm_clk_sel *sel, const char *field_name,
292			const char *clock_name)
293{
294	if (!bitfield_valid(sel->shift, sel->width, field_name, clock_name))
295		return false;
296
297	if (sel->parent_count) {
298		u32 max_sel;
299		u32 limit;
300
301		/*
302		 * Make sure the selector field can hold all the
303		 * selector values we expect to be able to use.  A
304		 * clock only needs to have a selector defined if it
305		 * has more than one parent.  And in that case the
306		 * highest selector value will be in the last entry
307		 * in the array.
308		 */
309		max_sel = sel->parent_sel[sel->parent_count - 1];
310		limit = (1 << sel->width) - 1;
311		if (max_sel > limit) {
312			pr_err("%s: bad selector for %s "
313					"(%u needs > %u bits)\n",
314				__func__, clock_name, max_sel,
315				sel->width);
316			return false;
317		}
318	} else {
319		pr_warn("%s: ignoring selector for %s (no parents)\n",
320			__func__, clock_name);
321		selector_clear_exists(sel);
322		kfree(sel->parent_sel);
323		sel->parent_sel = NULL;
324	}
325
326	return true;
327}
328
329/*
330 * A fixed divider just needs to be non-zero.  A variable divider
331 * has to have a valid divider bitfield, and if it has a fraction,
332 * the width of the fraction must not be no more than the width of
333 * the divider as a whole.
334 */
335static bool div_valid(struct bcm_clk_div *div, const char *field_name,
336			const char *clock_name)
337{
338	if (divider_is_fixed(div)) {
339		/* Any fixed divider value but 0 is OK */
340		if (div->u.fixed == 0) {
341			pr_err("%s: bad %s fixed value 0 for %s\n", __func__,
342				field_name, clock_name);
343			return false;
344		}
345		return true;
346	}
347	if (!bitfield_valid(div->u.s.shift, div->u.s.width,
348				field_name, clock_name))
349		return false;
350
351	if (divider_has_fraction(div))
352		if (div->u.s.frac_width > div->u.s.width) {
353			pr_warn("%s: bad %s fraction width for %s (%u > %u)\n",
354				__func__, field_name, clock_name,
355				div->u.s.frac_width, div->u.s.width);
356			return false;
357		}
358
359	return true;
360}
361
362/*
363 * If a clock has two dividers, the combined number of fractional
364 * bits must be representable in a 32-bit unsigned value.  This
365 * is because we scale up a dividend using both dividers before
366 * dividing to improve accuracy, and we need to avoid overflow.
367 */
368static bool kona_dividers_valid(struct kona_clk *bcm_clk)
369{
370	struct peri_clk_data *peri = bcm_clk->u.peri;
371	struct bcm_clk_div *div;
372	struct bcm_clk_div *pre_div;
373	u32 limit;
374
375	BUG_ON(bcm_clk->type != bcm_clk_peri);
376
377	if (!divider_exists(&peri->div) || !divider_exists(&peri->pre_div))
378		return true;
379
380	div = &peri->div;
381	pre_div = &peri->pre_div;
382	if (divider_is_fixed(div) || divider_is_fixed(pre_div))
383		return true;
384
385	limit = BITS_PER_BYTE * sizeof(u32);
386
387	return div->u.s.frac_width + pre_div->u.s.frac_width <= limit;
388}
389
390
391/* A trigger just needs to represent a valid bit position */
392static bool trig_valid(struct bcm_clk_trig *trig, const char *field_name,
393			const char *clock_name)
394{
395	return bit_posn_valid(trig->bit, field_name, clock_name);
396}
397
398/* Determine whether the set of peripheral clock registers are valid. */
399static bool
400peri_clk_data_valid(struct kona_clk *bcm_clk)
401{
402	struct peri_clk_data *peri;
403	struct bcm_clk_policy *policy;
404	struct bcm_clk_gate *gate;
405	struct bcm_clk_hyst *hyst;
406	struct bcm_clk_sel *sel;
407	struct bcm_clk_div *div;
408	struct bcm_clk_div *pre_div;
409	struct bcm_clk_trig *trig;
410	const char *name;
411
412	BUG_ON(bcm_clk->type != bcm_clk_peri);
413
414	/*
415	 * First validate register offsets.  This is the only place
416	 * where we need something from the ccu, so we do these
417	 * together.
418	 */
419	if (!peri_clk_data_offsets_valid(bcm_clk))
420		return false;
421
422	peri = bcm_clk->u.peri;
423	name = bcm_clk->init_data.name;
424
425	policy = &peri->policy;
426	if (policy_exists(policy) && !policy_valid(policy, name))
427		return false;
428
429	gate = &peri->gate;
430	if (gate_exists(gate) && !gate_valid(gate, "gate", name))
431		return false;
432
433	hyst = &peri->hyst;
434	if (hyst_exists(hyst) && !hyst_valid(hyst, name))
435		return false;
436
437	sel = &peri->sel;
438	if (selector_exists(sel)) {
439		if (!sel_valid(sel, "selector", name))
440			return false;
441
442	} else if (sel->parent_count > 1) {
443		pr_err("%s: multiple parents but no selector for %s\n",
444			__func__, name);
445
446		return false;
447	}
448
449	div = &peri->div;
450	pre_div = &peri->pre_div;
451	if (divider_exists(div)) {
452		if (!div_valid(div, "divider", name))
453			return false;
454
455		if (divider_exists(pre_div))
456			if (!div_valid(pre_div, "pre-divider", name))
457				return false;
458	} else if (divider_exists(pre_div)) {
459		pr_err("%s: pre-divider but no divider for %s\n", __func__,
460			name);
461		return false;
462	}
463
464	trig = &peri->trig;
465	if (trigger_exists(trig)) {
466		if (!trig_valid(trig, "trigger", name))
467			return false;
468
469		if (trigger_exists(&peri->pre_trig)) {
470			if (!trig_valid(trig, "pre-trigger", name)) {
471				return false;
472			}
473		}
474		if (!clk_requires_trigger(bcm_clk)) {
475			pr_warn("%s: ignoring trigger for %s (not needed)\n",
476				__func__, name);
477			trigger_clear_exists(trig);
478		}
479	} else if (trigger_exists(&peri->pre_trig)) {
480		pr_err("%s: pre-trigger but no trigger for %s\n", __func__,
481			name);
482		return false;
483	} else if (clk_requires_trigger(bcm_clk)) {
484		pr_err("%s: required trigger missing for %s\n", __func__,
485			name);
486		return false;
487	}
488
489	return kona_dividers_valid(bcm_clk);
490}
491
492static bool kona_clk_valid(struct kona_clk *bcm_clk)
493{
494	switch (bcm_clk->type) {
495	case bcm_clk_peri:
496		if (!peri_clk_data_valid(bcm_clk))
497			return false;
498		break;
499	default:
500		pr_err("%s: unrecognized clock type (%d)\n", __func__,
501			(int)bcm_clk->type);
502		return false;
503	}
504	return true;
505}
506
507/*
508 * Scan an array of parent clock names to determine whether there
509 * are any entries containing BAD_CLK_NAME.  Such entries are
510 * placeholders for non-supported clocks.  Keep track of the
511 * position of each clock name in the original array.
512 *
513 * Allocates an array of pointers to to hold the names of all
514 * non-null entries in the original array, and returns a pointer to
515 * that array in *names.  This will be used for registering the
516 * clock with the common clock code.  On successful return,
517 * *count indicates how many entries are in that names array.
518 *
519 * If there is more than one entry in the resulting names array,
520 * another array is allocated to record the parent selector value
521 * for each (defined) parent clock.  This is the value that
522 * represents this parent clock in the clock's source selector
523 * register.  The position of the clock in the original parent array
524 * defines that selector value.  The number of entries in this array
525 * is the same as the number of entries in the parent names array.
526 *
527 * The array of selector values is returned.  If the clock has no
528 * parents, no selector is required and a null pointer is returned.
529 *
530 * Returns a null pointer if the clock names array supplied was
531 * null.  (This is not an error.)
532 *
533 * Returns a pointer-coded error if an error occurs.
534 */
535static u32 *parent_process(const char *clocks[],
536			u32 *count, const char ***names)
537{
538	static const char **parent_names;
539	static u32 *parent_sel;
540	const char **clock;
541	u32 parent_count;
542	u32 bad_count = 0;
543	u32 orig_count;
544	u32 i;
545	u32 j;
546
547	*count = 0;	/* In case of early return */
548	*names = NULL;
549	if (!clocks)
550		return NULL;
551
552	/*
553	 * Count the number of names in the null-terminated array,
554	 * and find out how many of those are actually clock names.
555	 */
556	for (clock = clocks; *clock; clock++)
557		if (*clock == BAD_CLK_NAME)
558			bad_count++;
559	orig_count = (u32)(clock - clocks);
560	parent_count = orig_count - bad_count;
561
562	/* If all clocks are unsupported, we treat it as no clock */
563	if (!parent_count)
564		return NULL;
565
566	/* Avoid exceeding our parent clock limit */
567	if (parent_count > PARENT_COUNT_MAX) {
568		pr_err("%s: too many parents (%u > %u)\n", __func__,
569			parent_count, PARENT_COUNT_MAX);
570		return ERR_PTR(-EINVAL);
571	}
572
573	/*
574	 * There is one parent name for each defined parent clock.
575	 * We also maintain an array containing the selector value
576	 * for each defined clock.  If there's only one clock, the
577	 * selector is not required, but we allocate space for the
578	 * array anyway to keep things simple.
579	 */
580	parent_names = kmalloc_array(parent_count, sizeof(*parent_names),
581			       GFP_KERNEL);
582	if (!parent_names)
583		return ERR_PTR(-ENOMEM);
584
585	/* There is at least one parent, so allocate a selector array */
586	parent_sel = kmalloc_array(parent_count, sizeof(*parent_sel),
587				   GFP_KERNEL);
588	if (!parent_sel) {
589		kfree(parent_names);
590
591		return ERR_PTR(-ENOMEM);
592	}
593
594	/* Now fill in the parent names and selector arrays */
595	for (i = 0, j = 0; i < orig_count; i++) {
596		if (clocks[i] != BAD_CLK_NAME) {
597			parent_names[j] = clocks[i];
598			parent_sel[j] = i;
599			j++;
600		}
601	}
602	*names = parent_names;
603	*count = parent_count;
604
605	return parent_sel;
606}
607
608static int
609clk_sel_setup(const char **clocks, struct bcm_clk_sel *sel,
610		struct clk_init_data *init_data)
611{
612	const char **parent_names = NULL;
613	u32 parent_count = 0;
614	u32 *parent_sel;
615
616	/*
617	 * If a peripheral clock has multiple parents, the value
618	 * used by the hardware to select that parent is represented
619	 * by the parent clock's position in the "clocks" list.  Some
620	 * values don't have defined or supported clocks; these will
621	 * have BAD_CLK_NAME entries in the parents[] array.  The
622	 * list is terminated by a NULL entry.
623	 *
624	 * We need to supply (only) the names of defined parent
625	 * clocks when registering a clock though, so we use an
626	 * array of parent selector values to map between the
627	 * indexes the common clock code uses and the selector
628	 * values we need.
629	 */
630	parent_sel = parent_process(clocks, &parent_count, &parent_names);
631	if (IS_ERR(parent_sel)) {
632		int ret = PTR_ERR(parent_sel);
633
634		pr_err("%s: error processing parent clocks for %s (%d)\n",
635			__func__, init_data->name, ret);
636
637		return ret;
638	}
639
640	init_data->parent_names = parent_names;
641	init_data->num_parents = parent_count;
642
643	sel->parent_count = parent_count;
644	sel->parent_sel = parent_sel;
645
646	return 0;
647}
648
649static void clk_sel_teardown(struct bcm_clk_sel *sel,
650		struct clk_init_data *init_data)
651{
652	kfree(sel->parent_sel);
653	sel->parent_sel = NULL;
654	sel->parent_count = 0;
655
656	init_data->num_parents = 0;
657	kfree(init_data->parent_names);
658	init_data->parent_names = NULL;
659}
660
661static void peri_clk_teardown(struct peri_clk_data *data,
662				struct clk_init_data *init_data)
663{
664	clk_sel_teardown(&data->sel, init_data);
665}
666
667/*
668 * Caller is responsible for freeing the parent_names[] and
669 * parent_sel[] arrays in the peripheral clock's "data" structure
670 * that can be assigned if the clock has one or more parent clocks
671 * associated with it.
672 */
673static int
674peri_clk_setup(struct peri_clk_data *data, struct clk_init_data *init_data)
675{
676	init_data->flags = CLK_IGNORE_UNUSED;
677
678	return clk_sel_setup(data->clocks, &data->sel, init_data);
679}
680
681static void bcm_clk_teardown(struct kona_clk *bcm_clk)
682{
683	switch (bcm_clk->type) {
684	case bcm_clk_peri:
685		peri_clk_teardown(bcm_clk->u.data, &bcm_clk->init_data);
686		break;
687	default:
688		break;
689	}
690	bcm_clk->u.data = NULL;
691	bcm_clk->type = bcm_clk_none;
692}
693
694static void kona_clk_teardown(struct clk_hw *hw)
695{
696	struct kona_clk *bcm_clk;
697
698	if (!hw)
699		return;
700
701	clk_hw_unregister(hw);
702
703	bcm_clk = to_kona_clk(hw);
704	bcm_clk_teardown(bcm_clk);
705}
706
707static int kona_clk_setup(struct kona_clk *bcm_clk)
708{
709	int ret;
710	struct clk_init_data *init_data = &bcm_clk->init_data;
711
712	switch (bcm_clk->type) {
713	case bcm_clk_peri:
714		ret = peri_clk_setup(bcm_clk->u.data, init_data);
715		if (ret)
716			return ret;
717		break;
718	default:
719		pr_err("%s: clock type %d invalid for %s\n", __func__,
720			(int)bcm_clk->type, init_data->name);
721		return -EINVAL;
722	}
723
724	/* Make sure everything makes sense before we set it up */
725	if (!kona_clk_valid(bcm_clk)) {
726		pr_err("%s: clock data invalid for %s\n", __func__,
727			init_data->name);
728		ret = -EINVAL;
729		goto out_teardown;
730	}
731
732	bcm_clk->hw.init = init_data;
733	ret = clk_hw_register(NULL, &bcm_clk->hw);
734	if (ret) {
735		pr_err("%s: error registering clock %s (%d)\n", __func__,
736			init_data->name, ret);
737		goto out_teardown;
738	}
739
740	return 0;
741out_teardown:
742	bcm_clk_teardown(bcm_clk);
743
744	return ret;
745}
746
747static void ccu_clks_teardown(struct ccu_data *ccu)
748{
749	u32 i;
750
751	for (i = 0; i < ccu->clk_num; i++)
752		kona_clk_teardown(&ccu->kona_clks[i].hw);
753}
754
755static void kona_ccu_teardown(struct ccu_data *ccu)
756{
757	if (!ccu->base)
758		return;
759
760	of_clk_del_provider(ccu->node);	/* safe if never added */
761	ccu_clks_teardown(ccu);
762	of_node_put(ccu->node);
763	ccu->node = NULL;
764	iounmap(ccu->base);
765	ccu->base = NULL;
766}
767
768static bool ccu_data_valid(struct ccu_data *ccu)
769{
770	struct ccu_policy *ccu_policy;
771
772	if (!ccu_data_offsets_valid(ccu))
773		return false;
774
775	ccu_policy = &ccu->policy;
776	if (ccu_policy_exists(ccu_policy))
777		if (!ccu_policy_valid(ccu_policy, ccu->name))
778			return false;
779
780	return true;
781}
782
783static struct clk_hw *
784of_clk_kona_onecell_get(struct of_phandle_args *clkspec, void *data)
785{
786	struct ccu_data *ccu = data;
787	unsigned int idx = clkspec->args[0];
788
789	if (idx >= ccu->clk_num) {
790		pr_err("%s: invalid index %u\n", __func__, idx);
791		return ERR_PTR(-EINVAL);
792	}
793
794	return &ccu->kona_clks[idx].hw;
795}
796
797/*
798 * Set up a CCU.  Call the provided ccu_clks_setup callback to
799 * initialize the array of clocks provided by the CCU.
800 */
801void __init kona_dt_ccu_setup(struct ccu_data *ccu,
802			struct device_node *node)
803{
804	struct resource res = { 0 };
805	resource_size_t range;
806	unsigned int i;
807	int ret;
808
809	ret = of_address_to_resource(node, 0, &res);
810	if (ret) {
811		pr_err("%s: no valid CCU registers found for %pOFn\n", __func__,
812			node);
813		goto out_err;
814	}
815
816	range = resource_size(&res);
817	if (range > (resource_size_t)U32_MAX) {
818		pr_err("%s: address range too large for %pOFn\n", __func__,
819			node);
820		goto out_err;
821	}
822
823	ccu->range = (u32)range;
824
825	if (!ccu_data_valid(ccu)) {
826		pr_err("%s: ccu data not valid for %pOFn\n", __func__, node);
827		goto out_err;
828	}
829
830	ccu->base = ioremap(res.start, ccu->range);
831	if (!ccu->base) {
832		pr_err("%s: unable to map CCU registers for %pOFn\n", __func__,
833			node);
834		goto out_err;
835	}
836	ccu->node = of_node_get(node);
837
838	/*
839	 * Set up each defined kona clock and save the result in
840	 * the clock framework clock array (in ccu->data).  Then
841	 * register as a provider for these clocks.
842	 */
843	for (i = 0; i < ccu->clk_num; i++) {
844		if (!ccu->kona_clks[i].ccu)
845			continue;
846		kona_clk_setup(&ccu->kona_clks[i]);
847	}
848
849	ret = of_clk_add_hw_provider(node, of_clk_kona_onecell_get, ccu);
850	if (ret) {
851		pr_err("%s: error adding ccu %pOFn as provider (%d)\n", __func__,
852				node, ret);
853		goto out_err;
854	}
855
856	if (!kona_ccu_init(ccu))
857		pr_err("Broadcom %pOFn initialization had errors\n", node);
858
859	return;
860out_err:
861	kona_ccu_teardown(ccu);
862	pr_err("Broadcom %pOFn setup aborted\n", node);
863}