Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Copyright (C) 1994 Linus Torvalds
  4 *
  5 *  Pentium III FXSR, SSE support
  6 *  General FPU state handling cleanups
  7 *	Gareth Hughes <gareth@valinux.com>, May 2000
  8 */
  9#include <asm/fpu/internal.h>
 10#include <asm/fpu/regset.h>
 11#include <asm/fpu/signal.h>
 12#include <asm/fpu/types.h>
 13#include <asm/traps.h>
 14#include <asm/irq_regs.h>
 15
 16#include <linux/hardirq.h>
 17#include <linux/pkeys.h>
 18
 19#define CREATE_TRACE_POINTS
 20#include <asm/trace/fpu.h>
 21
 22/*
 23 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
 24 * depending on the FPU hardware format:
 25 */
 26union fpregs_state init_fpstate __ro_after_init;
 27
 28/*
 29 * Track whether the kernel is using the FPU state
 30 * currently.
 31 *
 32 * This flag is used:
 33 *
 34 *   - by IRQ context code to potentially use the FPU
 35 *     if it's unused.
 36 *
 37 *   - to debug kernel_fpu_begin()/end() correctness
 38 */
 39static DEFINE_PER_CPU(bool, in_kernel_fpu);
 40
 41/*
 42 * Track which context is using the FPU on the CPU:
 43 */
 44DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
 45
 46static bool kernel_fpu_disabled(void)
 47{
 48	return this_cpu_read(in_kernel_fpu);
 49}
 50
 51static bool interrupted_kernel_fpu_idle(void)
 52{
 53	return !kernel_fpu_disabled();
 54}
 55
 56/*
 57 * Were we in user mode (or vm86 mode) when we were
 58 * interrupted?
 59 *
 60 * Doing kernel_fpu_begin/end() is ok if we are running
 61 * in an interrupt context from user mode - we'll just
 62 * save the FPU state as required.
 63 */
 64static bool interrupted_user_mode(void)
 65{
 66	struct pt_regs *regs = get_irq_regs();
 67	return regs && user_mode(regs);
 68}
 69
 70/*
 71 * Can we use the FPU in kernel mode with the
 72 * whole "kernel_fpu_begin/end()" sequence?
 73 *
 74 * It's always ok in process context (ie "not interrupt")
 75 * but it is sometimes ok even from an irq.
 76 */
 77bool irq_fpu_usable(void)
 78{
 79	return !in_interrupt() ||
 80		interrupted_user_mode() ||
 81		interrupted_kernel_fpu_idle();
 82}
 83EXPORT_SYMBOL(irq_fpu_usable);
 84
 85/*
 86 * Save the FPU register state in fpu->state. The register state is
 87 * preserved.
 88 *
 89 * Must be called with fpregs_lock() held.
 90 *
 91 * The legacy FNSAVE instruction clears all FPU state unconditionally, so
 92 * register state has to be reloaded. That might be a pointless exercise
 93 * when the FPU is going to be used by another task right after that. But
 94 * this only affects 20+ years old 32bit systems and avoids conditionals all
 95 * over the place.
 96 *
 97 * FXSAVE and all XSAVE variants preserve the FPU register state.
 98 */
 99void save_fpregs_to_fpstate(struct fpu *fpu)
100{
101	if (likely(use_xsave())) {
102		os_xsave(&fpu->state.xsave);
103
104		/*
105		 * AVX512 state is tracked here because its use is
106		 * known to slow the max clock speed of the core.
107		 */
108		if (fpu->state.xsave.header.xfeatures & XFEATURE_MASK_AVX512)
109			fpu->avx512_timestamp = jiffies;
110		return;
111	}
112
113	if (likely(use_fxsr())) {
114		fxsave(&fpu->state.fxsave);
115		return;
116	}
117
118	/*
119	 * Legacy FPU register saving, FNSAVE always clears FPU registers,
120	 * so we have to reload them from the memory state.
121	 */
122	asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
123	frstor(&fpu->state.fsave);
124}
125EXPORT_SYMBOL(save_fpregs_to_fpstate);
126
127void __restore_fpregs_from_fpstate(union fpregs_state *fpstate, u64 mask)
128{
129	/*
130	 * AMD K7/K8 and later CPUs up to Zen don't save/restore
131	 * FDP/FIP/FOP unless an exception is pending. Clear the x87 state
132	 * here by setting it to fixed values.  "m" is a random variable
133	 * that should be in L1.
134	 */
135	if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
136		asm volatile(
137			"fnclex\n\t"
138			"emms\n\t"
139			"fildl %P[addr]"	/* set F?P to defined value */
140			: : [addr] "m" (fpstate));
141	}
142
143	if (use_xsave()) {
144		os_xrstor(&fpstate->xsave, mask);
145	} else {
146		if (use_fxsr())
147			fxrstor(&fpstate->fxsave);
148		else
149			frstor(&fpstate->fsave);
150	}
151}
152EXPORT_SYMBOL_GPL(__restore_fpregs_from_fpstate);
153
154void kernel_fpu_begin_mask(unsigned int kfpu_mask)
155{
156	preempt_disable();
157
158	WARN_ON_FPU(!irq_fpu_usable());
159	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
160
161	this_cpu_write(in_kernel_fpu, true);
162
163	if (!(current->flags & PF_KTHREAD) &&
164	    !test_thread_flag(TIF_NEED_FPU_LOAD)) {
165		set_thread_flag(TIF_NEED_FPU_LOAD);
166		save_fpregs_to_fpstate(&current->thread.fpu);
167	}
168	__cpu_invalidate_fpregs_state();
169
170	/* Put sane initial values into the control registers. */
171	if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM))
172		ldmxcsr(MXCSR_DEFAULT);
173
174	if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU))
175		asm volatile ("fninit");
176}
177EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask);
178
179void kernel_fpu_end(void)
180{
181	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
182
183	this_cpu_write(in_kernel_fpu, false);
184	preempt_enable();
185}
186EXPORT_SYMBOL_GPL(kernel_fpu_end);
187
188/*
189 * Sync the FPU register state to current's memory register state when the
190 * current task owns the FPU. The hardware register state is preserved.
191 */
192void fpu_sync_fpstate(struct fpu *fpu)
193{
194	WARN_ON_FPU(fpu != &current->thread.fpu);
195
196	fpregs_lock();
197	trace_x86_fpu_before_save(fpu);
198
199	if (!test_thread_flag(TIF_NEED_FPU_LOAD))
200		save_fpregs_to_fpstate(fpu);
201
202	trace_x86_fpu_after_save(fpu);
203	fpregs_unlock();
204}
205
206static inline void fpstate_init_xstate(struct xregs_state *xsave)
207{
208	/*
209	 * XRSTORS requires these bits set in xcomp_bv, or it will
210	 * trigger #GP:
211	 */
212	xsave->header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT | xfeatures_mask_all;
213}
214
215static inline void fpstate_init_fxstate(struct fxregs_state *fx)
216{
217	fx->cwd = 0x37f;
218	fx->mxcsr = MXCSR_DEFAULT;
219}
220
221/*
222 * Legacy x87 fpstate state init:
223 */
224static inline void fpstate_init_fstate(struct fregs_state *fp)
225{
226	fp->cwd = 0xffff037fu;
227	fp->swd = 0xffff0000u;
228	fp->twd = 0xffffffffu;
229	fp->fos = 0xffff0000u;
230}
231
232void fpstate_init(union fpregs_state *state)
233{
234	if (!static_cpu_has(X86_FEATURE_FPU)) {
235		fpstate_init_soft(&state->soft);
236		return;
237	}
238
239	memset(state, 0, fpu_kernel_xstate_size);
240
241	if (static_cpu_has(X86_FEATURE_XSAVES))
242		fpstate_init_xstate(&state->xsave);
243	if (static_cpu_has(X86_FEATURE_FXSR))
244		fpstate_init_fxstate(&state->fxsave);
245	else
246		fpstate_init_fstate(&state->fsave);
247}
248EXPORT_SYMBOL_GPL(fpstate_init);
249
250/* Clone current's FPU state on fork */
251int fpu_clone(struct task_struct *dst)
252{
253	struct fpu *src_fpu = &current->thread.fpu;
254	struct fpu *dst_fpu = &dst->thread.fpu;
255
256	/* The new task's FPU state cannot be valid in the hardware. */
257	dst_fpu->last_cpu = -1;
258
259	if (!cpu_feature_enabled(X86_FEATURE_FPU))
260		return 0;
261
262	/*
263	 * Don't let 'init optimized' areas of the XSAVE area
264	 * leak into the child task:
265	 */
266	memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
267
268	/*
269	 * If the FPU registers are not owned by current just memcpy() the
270	 * state.  Otherwise save the FPU registers directly into the
271	 * child's FPU context, without any memory-to-memory copying.
272	 */
273	fpregs_lock();
274	if (test_thread_flag(TIF_NEED_FPU_LOAD))
275		memcpy(&dst_fpu->state, &src_fpu->state, fpu_kernel_xstate_size);
276
277	else
278		save_fpregs_to_fpstate(dst_fpu);
279	fpregs_unlock();
280
281	set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
282
283	trace_x86_fpu_copy_src(src_fpu);
284	trace_x86_fpu_copy_dst(dst_fpu);
285
286	return 0;
287}
288
289/*
290 * Drops current FPU state: deactivates the fpregs and
291 * the fpstate. NOTE: it still leaves previous contents
292 * in the fpregs in the eager-FPU case.
293 *
294 * This function can be used in cases where we know that
295 * a state-restore is coming: either an explicit one,
296 * or a reschedule.
297 */
298void fpu__drop(struct fpu *fpu)
299{
300	preempt_disable();
301
302	if (fpu == &current->thread.fpu) {
303		/* Ignore delayed exceptions from user space */
304		asm volatile("1: fwait\n"
305			     "2:\n"
306			     _ASM_EXTABLE(1b, 2b));
307		fpregs_deactivate(fpu);
308	}
309
310	trace_x86_fpu_dropped(fpu);
311
312	preempt_enable();
313}
314
315/*
316 * Clear FPU registers by setting them up from the init fpstate.
317 * Caller must do fpregs_[un]lock() around it.
318 */
319static inline void restore_fpregs_from_init_fpstate(u64 features_mask)
320{
321	if (use_xsave())
322		os_xrstor(&init_fpstate.xsave, features_mask);
323	else if (use_fxsr())
324		fxrstor(&init_fpstate.fxsave);
325	else
326		frstor(&init_fpstate.fsave);
327
328	pkru_write_default();
329}
330
331static inline unsigned int init_fpstate_copy_size(void)
332{
333	if (!use_xsave())
334		return fpu_kernel_xstate_size;
335
336	/* XSAVE(S) just needs the legacy and the xstate header part */
337	return sizeof(init_fpstate.xsave);
338}
339
340/*
341 * Reset current->fpu memory state to the init values.
342 */
343static void fpu_reset_fpstate(void)
344{
345	struct fpu *fpu = &current->thread.fpu;
346
347	fpregs_lock();
348	fpu__drop(fpu);
349	/*
350	 * This does not change the actual hardware registers. It just
351	 * resets the memory image and sets TIF_NEED_FPU_LOAD so a
352	 * subsequent return to usermode will reload the registers from the
353	 * task's memory image.
354	 *
355	 * Do not use fpstate_init() here. Just copy init_fpstate which has
356	 * the correct content already except for PKRU.
357	 *
358	 * PKRU handling does not rely on the xstate when restoring for
359	 * user space as PKRU is eagerly written in switch_to() and
360	 * flush_thread().
361	 */
362	memcpy(&fpu->state, &init_fpstate, init_fpstate_copy_size());
363	set_thread_flag(TIF_NEED_FPU_LOAD);
364	fpregs_unlock();
365}
366
367/*
368 * Reset current's user FPU states to the init states.  current's
369 * supervisor states, if any, are not modified by this function.  The
370 * caller guarantees that the XSTATE header in memory is intact.
371 */
372void fpu__clear_user_states(struct fpu *fpu)
373{
374	WARN_ON_FPU(fpu != &current->thread.fpu);
375
376	fpregs_lock();
377	if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
378		fpu_reset_fpstate();
379		fpregs_unlock();
380		return;
381	}
382
383	/*
384	 * Ensure that current's supervisor states are loaded into their
385	 * corresponding registers.
386	 */
387	if (xfeatures_mask_supervisor() &&
388	    !fpregs_state_valid(fpu, smp_processor_id())) {
389		os_xrstor(&fpu->state.xsave, xfeatures_mask_supervisor());
390	}
391
392	/* Reset user states in registers. */
393	restore_fpregs_from_init_fpstate(xfeatures_mask_restore_user());
394
395	/*
396	 * Now all FPU registers have their desired values.  Inform the FPU
397	 * state machine that current's FPU registers are in the hardware
398	 * registers. The memory image does not need to be updated because
399	 * any operation relying on it has to save the registers first when
400	 * current's FPU is marked active.
401	 */
402	fpregs_mark_activate();
403	fpregs_unlock();
404}
405
406void fpu_flush_thread(void)
407{
408	fpu_reset_fpstate();
409}
410/*
411 * Load FPU context before returning to userspace.
412 */
413void switch_fpu_return(void)
414{
415	if (!static_cpu_has(X86_FEATURE_FPU))
416		return;
417
418	fpregs_restore_userregs();
419}
420EXPORT_SYMBOL_GPL(switch_fpu_return);
421
422#ifdef CONFIG_X86_DEBUG_FPU
423/*
424 * If current FPU state according to its tracking (loaded FPU context on this
425 * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
426 * loaded on return to userland.
427 */
428void fpregs_assert_state_consistent(void)
429{
430	struct fpu *fpu = &current->thread.fpu;
431
432	if (test_thread_flag(TIF_NEED_FPU_LOAD))
433		return;
434
435	WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
436}
437EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
438#endif
439
440void fpregs_mark_activate(void)
441{
442	struct fpu *fpu = &current->thread.fpu;
443
444	fpregs_activate(fpu);
445	fpu->last_cpu = smp_processor_id();
446	clear_thread_flag(TIF_NEED_FPU_LOAD);
447}
448EXPORT_SYMBOL_GPL(fpregs_mark_activate);
449
450/*
451 * x87 math exception handling:
452 */
453
454int fpu__exception_code(struct fpu *fpu, int trap_nr)
455{
456	int err;
457
458	if (trap_nr == X86_TRAP_MF) {
459		unsigned short cwd, swd;
460		/*
461		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
462		 * status.  0x3f is the exception bits in these regs, 0x200 is the
463		 * C1 reg you need in case of a stack fault, 0x040 is the stack
464		 * fault bit.  We should only be taking one exception at a time,
465		 * so if this combination doesn't produce any single exception,
466		 * then we have a bad program that isn't synchronizing its FPU usage
467		 * and it will suffer the consequences since we won't be able to
468		 * fully reproduce the context of the exception.
469		 */
470		if (boot_cpu_has(X86_FEATURE_FXSR)) {
471			cwd = fpu->state.fxsave.cwd;
472			swd = fpu->state.fxsave.swd;
473		} else {
474			cwd = (unsigned short)fpu->state.fsave.cwd;
475			swd = (unsigned short)fpu->state.fsave.swd;
476		}
477
478		err = swd & ~cwd;
479	} else {
480		/*
481		 * The SIMD FPU exceptions are handled a little differently, as there
482		 * is only a single status/control register.  Thus, to determine which
483		 * unmasked exception was caught we must mask the exception mask bits
484		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
485		 */
486		unsigned short mxcsr = MXCSR_DEFAULT;
487
488		if (boot_cpu_has(X86_FEATURE_XMM))
489			mxcsr = fpu->state.fxsave.mxcsr;
490
491		err = ~(mxcsr >> 7) & mxcsr;
492	}
493
494	if (err & 0x001) {	/* Invalid op */
495		/*
496		 * swd & 0x240 == 0x040: Stack Underflow
497		 * swd & 0x240 == 0x240: Stack Overflow
498		 * User must clear the SF bit (0x40) if set
499		 */
500		return FPE_FLTINV;
501	} else if (err & 0x004) { /* Divide by Zero */
502		return FPE_FLTDIV;
503	} else if (err & 0x008) { /* Overflow */
504		return FPE_FLTOVF;
505	} else if (err & 0x012) { /* Denormal, Underflow */
506		return FPE_FLTUND;
507	} else if (err & 0x020) { /* Precision */
508		return FPE_FLTRES;
509	}
510
511	/*
512	 * If we're using IRQ 13, or supposedly even some trap
513	 * X86_TRAP_MF implementations, it's possible
514	 * we get a spurious trap, which is not an error.
515	 */
516	return 0;
517}