Loading...
1#include <linux/bootmem.h>
2#include <linux/linkage.h>
3#include <linux/bitops.h>
4#include <linux/kernel.h>
5#include <linux/module.h>
6#include <linux/percpu.h>
7#include <linux/string.h>
8#include <linux/delay.h>
9#include <linux/sched.h>
10#include <linux/init.h>
11#include <linux/kgdb.h>
12#include <linux/smp.h>
13#include <linux/io.h>
14
15#include <asm/stackprotector.h>
16#include <asm/perf_event.h>
17#include <asm/mmu_context.h>
18#include <asm/archrandom.h>
19#include <asm/hypervisor.h>
20#include <asm/processor.h>
21#include <asm/debugreg.h>
22#include <asm/sections.h>
23#include <linux/topology.h>
24#include <linux/cpumask.h>
25#include <asm/pgtable.h>
26#include <linux/atomic.h>
27#include <asm/proto.h>
28#include <asm/setup.h>
29#include <asm/apic.h>
30#include <asm/desc.h>
31#include <asm/i387.h>
32#include <asm/fpu-internal.h>
33#include <asm/mtrr.h>
34#include <linux/numa.h>
35#include <asm/asm.h>
36#include <asm/cpu.h>
37#include <asm/mce.h>
38#include <asm/msr.h>
39#include <asm/pat.h>
40
41#ifdef CONFIG_X86_LOCAL_APIC
42#include <asm/uv/uv.h>
43#endif
44
45#include "cpu.h"
46
47/* all of these masks are initialized in setup_cpu_local_masks() */
48cpumask_var_t cpu_initialized_mask;
49cpumask_var_t cpu_callout_mask;
50cpumask_var_t cpu_callin_mask;
51
52/* representing cpus for which sibling maps can be computed */
53cpumask_var_t cpu_sibling_setup_mask;
54
55/* correctly size the local cpu masks */
56void __init setup_cpu_local_masks(void)
57{
58 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
59 alloc_bootmem_cpumask_var(&cpu_callin_mask);
60 alloc_bootmem_cpumask_var(&cpu_callout_mask);
61 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
62}
63
64static void __cpuinit default_init(struct cpuinfo_x86 *c)
65{
66#ifdef CONFIG_X86_64
67 cpu_detect_cache_sizes(c);
68#else
69 /* Not much we can do here... */
70 /* Check if at least it has cpuid */
71 if (c->cpuid_level == -1) {
72 /* No cpuid. It must be an ancient CPU */
73 if (c->x86 == 4)
74 strcpy(c->x86_model_id, "486");
75 else if (c->x86 == 3)
76 strcpy(c->x86_model_id, "386");
77 }
78#endif
79}
80
81static const struct cpu_dev __cpuinitconst default_cpu = {
82 .c_init = default_init,
83 .c_vendor = "Unknown",
84 .c_x86_vendor = X86_VENDOR_UNKNOWN,
85};
86
87static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
88
89DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
90#ifdef CONFIG_X86_64
91 /*
92 * We need valid kernel segments for data and code in long mode too
93 * IRET will check the segment types kkeil 2000/10/28
94 * Also sysret mandates a special GDT layout
95 *
96 * TLS descriptors are currently at a different place compared to i386.
97 * Hopefully nobody expects them at a fixed place (Wine?)
98 */
99 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
100 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
101 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
102 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
103 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
104 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
105#else
106 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
107 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
108 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
109 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
110 /*
111 * Segments used for calling PnP BIOS have byte granularity.
112 * They code segments and data segments have fixed 64k limits,
113 * the transfer segment sizes are set at run time.
114 */
115 /* 32-bit code */
116 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
117 /* 16-bit code */
118 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
119 /* 16-bit data */
120 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
121 /* 16-bit data */
122 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
123 /* 16-bit data */
124 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
125 /*
126 * The APM segments have byte granularity and their bases
127 * are set at run time. All have 64k limits.
128 */
129 /* 32-bit code */
130 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
131 /* 16-bit code */
132 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
133 /* data */
134 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
135
136 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
137 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
138 GDT_STACK_CANARY_INIT
139#endif
140} };
141EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
142
143static int __init x86_xsave_setup(char *s)
144{
145 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
146 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
147 setup_clear_cpu_cap(X86_FEATURE_AVX);
148 setup_clear_cpu_cap(X86_FEATURE_AVX2);
149 return 1;
150}
151__setup("noxsave", x86_xsave_setup);
152
153static int __init x86_xsaveopt_setup(char *s)
154{
155 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
156 return 1;
157}
158__setup("noxsaveopt", x86_xsaveopt_setup);
159
160#ifdef CONFIG_X86_32
161static int cachesize_override __cpuinitdata = -1;
162static int disable_x86_serial_nr __cpuinitdata = 1;
163
164static int __init cachesize_setup(char *str)
165{
166 get_option(&str, &cachesize_override);
167 return 1;
168}
169__setup("cachesize=", cachesize_setup);
170
171static int __init x86_fxsr_setup(char *s)
172{
173 setup_clear_cpu_cap(X86_FEATURE_FXSR);
174 setup_clear_cpu_cap(X86_FEATURE_XMM);
175 return 1;
176}
177__setup("nofxsr", x86_fxsr_setup);
178
179static int __init x86_sep_setup(char *s)
180{
181 setup_clear_cpu_cap(X86_FEATURE_SEP);
182 return 1;
183}
184__setup("nosep", x86_sep_setup);
185
186/* Standard macro to see if a specific flag is changeable */
187static inline int flag_is_changeable_p(u32 flag)
188{
189 u32 f1, f2;
190
191 /*
192 * Cyrix and IDT cpus allow disabling of CPUID
193 * so the code below may return different results
194 * when it is executed before and after enabling
195 * the CPUID. Add "volatile" to not allow gcc to
196 * optimize the subsequent calls to this function.
197 */
198 asm volatile ("pushfl \n\t"
199 "pushfl \n\t"
200 "popl %0 \n\t"
201 "movl %0, %1 \n\t"
202 "xorl %2, %0 \n\t"
203 "pushl %0 \n\t"
204 "popfl \n\t"
205 "pushfl \n\t"
206 "popl %0 \n\t"
207 "popfl \n\t"
208
209 : "=&r" (f1), "=&r" (f2)
210 : "ir" (flag));
211
212 return ((f1^f2) & flag) != 0;
213}
214
215/* Probe for the CPUID instruction */
216static int __cpuinit have_cpuid_p(void)
217{
218 return flag_is_changeable_p(X86_EFLAGS_ID);
219}
220
221static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
222{
223 unsigned long lo, hi;
224
225 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
226 return;
227
228 /* Disable processor serial number: */
229
230 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
231 lo |= 0x200000;
232 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
233
234 printk(KERN_NOTICE "CPU serial number disabled.\n");
235 clear_cpu_cap(c, X86_FEATURE_PN);
236
237 /* Disabling the serial number may affect the cpuid level */
238 c->cpuid_level = cpuid_eax(0);
239}
240
241static int __init x86_serial_nr_setup(char *s)
242{
243 disable_x86_serial_nr = 0;
244 return 1;
245}
246__setup("serialnumber", x86_serial_nr_setup);
247#else
248static inline int flag_is_changeable_p(u32 flag)
249{
250 return 1;
251}
252/* Probe for the CPUID instruction */
253static inline int have_cpuid_p(void)
254{
255 return 1;
256}
257static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
258{
259}
260#endif
261
262static int disable_smep __cpuinitdata;
263static __init int setup_disable_smep(char *arg)
264{
265 disable_smep = 1;
266 return 1;
267}
268__setup("nosmep", setup_disable_smep);
269
270static __cpuinit void setup_smep(struct cpuinfo_x86 *c)
271{
272 if (cpu_has(c, X86_FEATURE_SMEP)) {
273 if (unlikely(disable_smep)) {
274 setup_clear_cpu_cap(X86_FEATURE_SMEP);
275 clear_in_cr4(X86_CR4_SMEP);
276 } else
277 set_in_cr4(X86_CR4_SMEP);
278 }
279}
280
281/*
282 * Some CPU features depend on higher CPUID levels, which may not always
283 * be available due to CPUID level capping or broken virtualization
284 * software. Add those features to this table to auto-disable them.
285 */
286struct cpuid_dependent_feature {
287 u32 feature;
288 u32 level;
289};
290
291static const struct cpuid_dependent_feature __cpuinitconst
292cpuid_dependent_features[] = {
293 { X86_FEATURE_MWAIT, 0x00000005 },
294 { X86_FEATURE_DCA, 0x00000009 },
295 { X86_FEATURE_XSAVE, 0x0000000d },
296 { 0, 0 }
297};
298
299static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
300{
301 const struct cpuid_dependent_feature *df;
302
303 for (df = cpuid_dependent_features; df->feature; df++) {
304
305 if (!cpu_has(c, df->feature))
306 continue;
307 /*
308 * Note: cpuid_level is set to -1 if unavailable, but
309 * extended_extended_level is set to 0 if unavailable
310 * and the legitimate extended levels are all negative
311 * when signed; hence the weird messing around with
312 * signs here...
313 */
314 if (!((s32)df->level < 0 ?
315 (u32)df->level > (u32)c->extended_cpuid_level :
316 (s32)df->level > (s32)c->cpuid_level))
317 continue;
318
319 clear_cpu_cap(c, df->feature);
320 if (!warn)
321 continue;
322
323 printk(KERN_WARNING
324 "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
325 x86_cap_flags[df->feature], df->level);
326 }
327}
328
329/*
330 * Naming convention should be: <Name> [(<Codename>)]
331 * This table only is used unless init_<vendor>() below doesn't set it;
332 * in particular, if CPUID levels 0x80000002..4 are supported, this
333 * isn't used
334 */
335
336/* Look up CPU names by table lookup. */
337static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
338{
339 const struct cpu_model_info *info;
340
341 if (c->x86_model >= 16)
342 return NULL; /* Range check */
343
344 if (!this_cpu)
345 return NULL;
346
347 info = this_cpu->c_models;
348
349 while (info && info->family) {
350 if (info->family == c->x86)
351 return info->model_names[c->x86_model];
352 info++;
353 }
354 return NULL; /* Not found */
355}
356
357__u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
358__u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
359
360void load_percpu_segment(int cpu)
361{
362#ifdef CONFIG_X86_32
363 loadsegment(fs, __KERNEL_PERCPU);
364#else
365 loadsegment(gs, 0);
366 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
367#endif
368 load_stack_canary_segment();
369}
370
371/*
372 * Current gdt points %fs at the "master" per-cpu area: after this,
373 * it's on the real one.
374 */
375void switch_to_new_gdt(int cpu)
376{
377 struct desc_ptr gdt_descr;
378
379 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
380 gdt_descr.size = GDT_SIZE - 1;
381 load_gdt(&gdt_descr);
382 /* Reload the per-cpu base */
383
384 load_percpu_segment(cpu);
385}
386
387static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
388
389static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
390{
391 unsigned int *v;
392 char *p, *q;
393
394 if (c->extended_cpuid_level < 0x80000004)
395 return;
396
397 v = (unsigned int *)c->x86_model_id;
398 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
399 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
400 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
401 c->x86_model_id[48] = 0;
402
403 /*
404 * Intel chips right-justify this string for some dumb reason;
405 * undo that brain damage:
406 */
407 p = q = &c->x86_model_id[0];
408 while (*p == ' ')
409 p++;
410 if (p != q) {
411 while (*p)
412 *q++ = *p++;
413 while (q <= &c->x86_model_id[48])
414 *q++ = '\0'; /* Zero-pad the rest */
415 }
416}
417
418void __cpuinit cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
419{
420 unsigned int n, dummy, ebx, ecx, edx, l2size;
421
422 n = c->extended_cpuid_level;
423
424 if (n >= 0x80000005) {
425 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
426 c->x86_cache_size = (ecx>>24) + (edx>>24);
427#ifdef CONFIG_X86_64
428 /* On K8 L1 TLB is inclusive, so don't count it */
429 c->x86_tlbsize = 0;
430#endif
431 }
432
433 if (n < 0x80000006) /* Some chips just has a large L1. */
434 return;
435
436 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
437 l2size = ecx >> 16;
438
439#ifdef CONFIG_X86_64
440 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
441#else
442 /* do processor-specific cache resizing */
443 if (this_cpu->c_size_cache)
444 l2size = this_cpu->c_size_cache(c, l2size);
445
446 /* Allow user to override all this if necessary. */
447 if (cachesize_override != -1)
448 l2size = cachesize_override;
449
450 if (l2size == 0)
451 return; /* Again, no L2 cache is possible */
452#endif
453
454 c->x86_cache_size = l2size;
455}
456
457void __cpuinit detect_ht(struct cpuinfo_x86 *c)
458{
459#ifdef CONFIG_X86_HT
460 u32 eax, ebx, ecx, edx;
461 int index_msb, core_bits;
462 static bool printed;
463
464 if (!cpu_has(c, X86_FEATURE_HT))
465 return;
466
467 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
468 goto out;
469
470 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
471 return;
472
473 cpuid(1, &eax, &ebx, &ecx, &edx);
474
475 smp_num_siblings = (ebx & 0xff0000) >> 16;
476
477 if (smp_num_siblings == 1) {
478 printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
479 goto out;
480 }
481
482 if (smp_num_siblings <= 1)
483 goto out;
484
485 index_msb = get_count_order(smp_num_siblings);
486 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
487
488 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
489
490 index_msb = get_count_order(smp_num_siblings);
491
492 core_bits = get_count_order(c->x86_max_cores);
493
494 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
495 ((1 << core_bits) - 1);
496
497out:
498 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
499 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
500 c->phys_proc_id);
501 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
502 c->cpu_core_id);
503 printed = 1;
504 }
505#endif
506}
507
508static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
509{
510 char *v = c->x86_vendor_id;
511 int i;
512
513 for (i = 0; i < X86_VENDOR_NUM; i++) {
514 if (!cpu_devs[i])
515 break;
516
517 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
518 (cpu_devs[i]->c_ident[1] &&
519 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
520
521 this_cpu = cpu_devs[i];
522 c->x86_vendor = this_cpu->c_x86_vendor;
523 return;
524 }
525 }
526
527 printk_once(KERN_ERR
528 "CPU: vendor_id '%s' unknown, using generic init.\n" \
529 "CPU: Your system may be unstable.\n", v);
530
531 c->x86_vendor = X86_VENDOR_UNKNOWN;
532 this_cpu = &default_cpu;
533}
534
535void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
536{
537 /* Get vendor name */
538 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
539 (unsigned int *)&c->x86_vendor_id[0],
540 (unsigned int *)&c->x86_vendor_id[8],
541 (unsigned int *)&c->x86_vendor_id[4]);
542
543 c->x86 = 4;
544 /* Intel-defined flags: level 0x00000001 */
545 if (c->cpuid_level >= 0x00000001) {
546 u32 junk, tfms, cap0, misc;
547
548 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
549 c->x86 = (tfms >> 8) & 0xf;
550 c->x86_model = (tfms >> 4) & 0xf;
551 c->x86_mask = tfms & 0xf;
552
553 if (c->x86 == 0xf)
554 c->x86 += (tfms >> 20) & 0xff;
555 if (c->x86 >= 0x6)
556 c->x86_model += ((tfms >> 16) & 0xf) << 4;
557
558 if (cap0 & (1<<19)) {
559 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
560 c->x86_cache_alignment = c->x86_clflush_size;
561 }
562 }
563}
564
565void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
566{
567 u32 tfms, xlvl;
568 u32 ebx;
569
570 /* Intel-defined flags: level 0x00000001 */
571 if (c->cpuid_level >= 0x00000001) {
572 u32 capability, excap;
573
574 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
575 c->x86_capability[0] = capability;
576 c->x86_capability[4] = excap;
577 }
578
579 /* Additional Intel-defined flags: level 0x00000007 */
580 if (c->cpuid_level >= 0x00000007) {
581 u32 eax, ebx, ecx, edx;
582
583 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
584
585 c->x86_capability[9] = ebx;
586 }
587
588 /* AMD-defined flags: level 0x80000001 */
589 xlvl = cpuid_eax(0x80000000);
590 c->extended_cpuid_level = xlvl;
591
592 if ((xlvl & 0xffff0000) == 0x80000000) {
593 if (xlvl >= 0x80000001) {
594 c->x86_capability[1] = cpuid_edx(0x80000001);
595 c->x86_capability[6] = cpuid_ecx(0x80000001);
596 }
597 }
598
599 if (c->extended_cpuid_level >= 0x80000008) {
600 u32 eax = cpuid_eax(0x80000008);
601
602 c->x86_virt_bits = (eax >> 8) & 0xff;
603 c->x86_phys_bits = eax & 0xff;
604 }
605#ifdef CONFIG_X86_32
606 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
607 c->x86_phys_bits = 36;
608#endif
609
610 if (c->extended_cpuid_level >= 0x80000007)
611 c->x86_power = cpuid_edx(0x80000007);
612
613 init_scattered_cpuid_features(c);
614}
615
616static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
617{
618#ifdef CONFIG_X86_32
619 int i;
620
621 /*
622 * First of all, decide if this is a 486 or higher
623 * It's a 486 if we can modify the AC flag
624 */
625 if (flag_is_changeable_p(X86_EFLAGS_AC))
626 c->x86 = 4;
627 else
628 c->x86 = 3;
629
630 for (i = 0; i < X86_VENDOR_NUM; i++)
631 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
632 c->x86_vendor_id[0] = 0;
633 cpu_devs[i]->c_identify(c);
634 if (c->x86_vendor_id[0]) {
635 get_cpu_vendor(c);
636 break;
637 }
638 }
639#endif
640}
641
642/*
643 * Do minimum CPU detection early.
644 * Fields really needed: vendor, cpuid_level, family, model, mask,
645 * cache alignment.
646 * The others are not touched to avoid unwanted side effects.
647 *
648 * WARNING: this function is only called on the BP. Don't add code here
649 * that is supposed to run on all CPUs.
650 */
651static void __init early_identify_cpu(struct cpuinfo_x86 *c)
652{
653#ifdef CONFIG_X86_64
654 c->x86_clflush_size = 64;
655 c->x86_phys_bits = 36;
656 c->x86_virt_bits = 48;
657#else
658 c->x86_clflush_size = 32;
659 c->x86_phys_bits = 32;
660 c->x86_virt_bits = 32;
661#endif
662 c->x86_cache_alignment = c->x86_clflush_size;
663
664 memset(&c->x86_capability, 0, sizeof c->x86_capability);
665 c->extended_cpuid_level = 0;
666
667 if (!have_cpuid_p())
668 identify_cpu_without_cpuid(c);
669
670 /* cyrix could have cpuid enabled via c_identify()*/
671 if (!have_cpuid_p())
672 return;
673
674 cpu_detect(c);
675
676 get_cpu_vendor(c);
677
678 get_cpu_cap(c);
679
680 if (this_cpu->c_early_init)
681 this_cpu->c_early_init(c);
682
683 c->cpu_index = 0;
684 filter_cpuid_features(c, false);
685
686 setup_smep(c);
687
688 if (this_cpu->c_bsp_init)
689 this_cpu->c_bsp_init(c);
690}
691
692void __init early_cpu_init(void)
693{
694 const struct cpu_dev *const *cdev;
695 int count = 0;
696
697#ifdef CONFIG_PROCESSOR_SELECT
698 printk(KERN_INFO "KERNEL supported cpus:\n");
699#endif
700
701 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
702 const struct cpu_dev *cpudev = *cdev;
703
704 if (count >= X86_VENDOR_NUM)
705 break;
706 cpu_devs[count] = cpudev;
707 count++;
708
709#ifdef CONFIG_PROCESSOR_SELECT
710 {
711 unsigned int j;
712
713 for (j = 0; j < 2; j++) {
714 if (!cpudev->c_ident[j])
715 continue;
716 printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
717 cpudev->c_ident[j]);
718 }
719 }
720#endif
721 }
722 early_identify_cpu(&boot_cpu_data);
723}
724
725/*
726 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
727 * unfortunately, that's not true in practice because of early VIA
728 * chips and (more importantly) broken virtualizers that are not easy
729 * to detect. In the latter case it doesn't even *fail* reliably, so
730 * probing for it doesn't even work. Disable it completely on 32-bit
731 * unless we can find a reliable way to detect all the broken cases.
732 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
733 */
734static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
735{
736#ifdef CONFIG_X86_32
737 clear_cpu_cap(c, X86_FEATURE_NOPL);
738#else
739 set_cpu_cap(c, X86_FEATURE_NOPL);
740#endif
741}
742
743static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
744{
745 c->extended_cpuid_level = 0;
746
747 if (!have_cpuid_p())
748 identify_cpu_without_cpuid(c);
749
750 /* cyrix could have cpuid enabled via c_identify()*/
751 if (!have_cpuid_p())
752 return;
753
754 cpu_detect(c);
755
756 get_cpu_vendor(c);
757
758 get_cpu_cap(c);
759
760 if (c->cpuid_level >= 0x00000001) {
761 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
762#ifdef CONFIG_X86_32
763# ifdef CONFIG_X86_HT
764 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
765# else
766 c->apicid = c->initial_apicid;
767# endif
768#endif
769 c->phys_proc_id = c->initial_apicid;
770 }
771
772 setup_smep(c);
773
774 get_model_name(c); /* Default name */
775
776 detect_nopl(c);
777}
778
779/*
780 * This does the hard work of actually picking apart the CPU stuff...
781 */
782static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
783{
784 int i;
785
786 c->loops_per_jiffy = loops_per_jiffy;
787 c->x86_cache_size = -1;
788 c->x86_vendor = X86_VENDOR_UNKNOWN;
789 c->x86_model = c->x86_mask = 0; /* So far unknown... */
790 c->x86_vendor_id[0] = '\0'; /* Unset */
791 c->x86_model_id[0] = '\0'; /* Unset */
792 c->x86_max_cores = 1;
793 c->x86_coreid_bits = 0;
794#ifdef CONFIG_X86_64
795 c->x86_clflush_size = 64;
796 c->x86_phys_bits = 36;
797 c->x86_virt_bits = 48;
798#else
799 c->cpuid_level = -1; /* CPUID not detected */
800 c->x86_clflush_size = 32;
801 c->x86_phys_bits = 32;
802 c->x86_virt_bits = 32;
803#endif
804 c->x86_cache_alignment = c->x86_clflush_size;
805 memset(&c->x86_capability, 0, sizeof c->x86_capability);
806
807 generic_identify(c);
808
809 if (this_cpu->c_identify)
810 this_cpu->c_identify(c);
811
812 /* Clear/Set all flags overriden by options, after probe */
813 for (i = 0; i < NCAPINTS; i++) {
814 c->x86_capability[i] &= ~cpu_caps_cleared[i];
815 c->x86_capability[i] |= cpu_caps_set[i];
816 }
817
818#ifdef CONFIG_X86_64
819 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
820#endif
821
822 /*
823 * Vendor-specific initialization. In this section we
824 * canonicalize the feature flags, meaning if there are
825 * features a certain CPU supports which CPUID doesn't
826 * tell us, CPUID claiming incorrect flags, or other bugs,
827 * we handle them here.
828 *
829 * At the end of this section, c->x86_capability better
830 * indicate the features this CPU genuinely supports!
831 */
832 if (this_cpu->c_init)
833 this_cpu->c_init(c);
834
835 /* Disable the PN if appropriate */
836 squash_the_stupid_serial_number(c);
837
838 /*
839 * The vendor-specific functions might have changed features.
840 * Now we do "generic changes."
841 */
842
843 /* Filter out anything that depends on CPUID levels we don't have */
844 filter_cpuid_features(c, true);
845
846 /* If the model name is still unset, do table lookup. */
847 if (!c->x86_model_id[0]) {
848 const char *p;
849 p = table_lookup_model(c);
850 if (p)
851 strcpy(c->x86_model_id, p);
852 else
853 /* Last resort... */
854 sprintf(c->x86_model_id, "%02x/%02x",
855 c->x86, c->x86_model);
856 }
857
858#ifdef CONFIG_X86_64
859 detect_ht(c);
860#endif
861
862 init_hypervisor(c);
863 x86_init_rdrand(c);
864
865 /*
866 * Clear/Set all flags overriden by options, need do it
867 * before following smp all cpus cap AND.
868 */
869 for (i = 0; i < NCAPINTS; i++) {
870 c->x86_capability[i] &= ~cpu_caps_cleared[i];
871 c->x86_capability[i] |= cpu_caps_set[i];
872 }
873
874 /*
875 * On SMP, boot_cpu_data holds the common feature set between
876 * all CPUs; so make sure that we indicate which features are
877 * common between the CPUs. The first time this routine gets
878 * executed, c == &boot_cpu_data.
879 */
880 if (c != &boot_cpu_data) {
881 /* AND the already accumulated flags with these */
882 for (i = 0; i < NCAPINTS; i++)
883 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
884 }
885
886 /* Init Machine Check Exception if available. */
887 mcheck_cpu_init(c);
888
889 select_idle_routine(c);
890
891#ifdef CONFIG_NUMA
892 numa_add_cpu(smp_processor_id());
893#endif
894}
895
896#ifdef CONFIG_X86_64
897static void vgetcpu_set_mode(void)
898{
899 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
900 vgetcpu_mode = VGETCPU_RDTSCP;
901 else
902 vgetcpu_mode = VGETCPU_LSL;
903}
904#endif
905
906void __init identify_boot_cpu(void)
907{
908 identify_cpu(&boot_cpu_data);
909 init_amd_e400_c1e_mask();
910#ifdef CONFIG_X86_32
911 sysenter_setup();
912 enable_sep_cpu();
913#else
914 vgetcpu_set_mode();
915#endif
916}
917
918void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
919{
920 BUG_ON(c == &boot_cpu_data);
921 identify_cpu(c);
922#ifdef CONFIG_X86_32
923 enable_sep_cpu();
924#endif
925 mtrr_ap_init();
926}
927
928struct msr_range {
929 unsigned min;
930 unsigned max;
931};
932
933static const struct msr_range msr_range_array[] __cpuinitconst = {
934 { 0x00000000, 0x00000418},
935 { 0xc0000000, 0xc000040b},
936 { 0xc0010000, 0xc0010142},
937 { 0xc0011000, 0xc001103b},
938};
939
940static void __cpuinit __print_cpu_msr(void)
941{
942 unsigned index_min, index_max;
943 unsigned index;
944 u64 val;
945 int i;
946
947 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
948 index_min = msr_range_array[i].min;
949 index_max = msr_range_array[i].max;
950
951 for (index = index_min; index < index_max; index++) {
952 if (rdmsrl_amd_safe(index, &val))
953 continue;
954 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
955 }
956 }
957}
958
959static int show_msr __cpuinitdata;
960
961static __init int setup_show_msr(char *arg)
962{
963 int num;
964
965 get_option(&arg, &num);
966
967 if (num > 0)
968 show_msr = num;
969 return 1;
970}
971__setup("show_msr=", setup_show_msr);
972
973static __init int setup_noclflush(char *arg)
974{
975 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
976 return 1;
977}
978__setup("noclflush", setup_noclflush);
979
980void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
981{
982 const char *vendor = NULL;
983
984 if (c->x86_vendor < X86_VENDOR_NUM) {
985 vendor = this_cpu->c_vendor;
986 } else {
987 if (c->cpuid_level >= 0)
988 vendor = c->x86_vendor_id;
989 }
990
991 if (vendor && !strstr(c->x86_model_id, vendor))
992 printk(KERN_CONT "%s ", vendor);
993
994 if (c->x86_model_id[0])
995 printk(KERN_CONT "%s", c->x86_model_id);
996 else
997 printk(KERN_CONT "%d86", c->x86);
998
999 if (c->x86_mask || c->cpuid_level >= 0)
1000 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
1001 else
1002 printk(KERN_CONT "\n");
1003
1004 print_cpu_msr(c);
1005}
1006
1007void __cpuinit print_cpu_msr(struct cpuinfo_x86 *c)
1008{
1009 if (c->cpu_index < show_msr)
1010 __print_cpu_msr();
1011}
1012
1013static __init int setup_disablecpuid(char *arg)
1014{
1015 int bit;
1016
1017 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1018 setup_clear_cpu_cap(bit);
1019 else
1020 return 0;
1021
1022 return 1;
1023}
1024__setup("clearcpuid=", setup_disablecpuid);
1025
1026#ifdef CONFIG_X86_64
1027struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1028struct desc_ptr nmi_idt_descr = { NR_VECTORS * 16 - 1,
1029 (unsigned long) nmi_idt_table };
1030
1031DEFINE_PER_CPU_FIRST(union irq_stack_union,
1032 irq_stack_union) __aligned(PAGE_SIZE);
1033
1034/*
1035 * The following four percpu variables are hot. Align current_task to
1036 * cacheline size such that all four fall in the same cacheline.
1037 */
1038DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1039 &init_task;
1040EXPORT_PER_CPU_SYMBOL(current_task);
1041
1042DEFINE_PER_CPU(unsigned long, kernel_stack) =
1043 (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1044EXPORT_PER_CPU_SYMBOL(kernel_stack);
1045
1046DEFINE_PER_CPU(char *, irq_stack_ptr) =
1047 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1048
1049DEFINE_PER_CPU(unsigned int, irq_count) = -1;
1050
1051DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1052
1053/*
1054 * Special IST stacks which the CPU switches to when it calls
1055 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1056 * limit), all of them are 4K, except the debug stack which
1057 * is 8K.
1058 */
1059static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1060 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1061 [DEBUG_STACK - 1] = DEBUG_STKSZ
1062};
1063
1064static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1065 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1066
1067/* May not be marked __init: used by software suspend */
1068void syscall_init(void)
1069{
1070 /*
1071 * LSTAR and STAR live in a bit strange symbiosis.
1072 * They both write to the same internal register. STAR allows to
1073 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1074 */
1075 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
1076 wrmsrl(MSR_LSTAR, system_call);
1077 wrmsrl(MSR_CSTAR, ignore_sysret);
1078
1079#ifdef CONFIG_IA32_EMULATION
1080 syscall32_cpu_init();
1081#endif
1082
1083 /* Flags to clear on syscall */
1084 wrmsrl(MSR_SYSCALL_MASK,
1085 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
1086}
1087
1088unsigned long kernel_eflags;
1089
1090/*
1091 * Copies of the original ist values from the tss are only accessed during
1092 * debugging, no special alignment required.
1093 */
1094DEFINE_PER_CPU(struct orig_ist, orig_ist);
1095
1096static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1097DEFINE_PER_CPU(int, debug_stack_usage);
1098
1099int is_debug_stack(unsigned long addr)
1100{
1101 return __get_cpu_var(debug_stack_usage) ||
1102 (addr <= __get_cpu_var(debug_stack_addr) &&
1103 addr > (__get_cpu_var(debug_stack_addr) - DEBUG_STKSZ));
1104}
1105
1106static DEFINE_PER_CPU(u32, debug_stack_use_ctr);
1107
1108void debug_stack_set_zero(void)
1109{
1110 this_cpu_inc(debug_stack_use_ctr);
1111 load_idt((const struct desc_ptr *)&nmi_idt_descr);
1112}
1113
1114void debug_stack_reset(void)
1115{
1116 if (WARN_ON(!this_cpu_read(debug_stack_use_ctr)))
1117 return;
1118 if (this_cpu_dec_return(debug_stack_use_ctr) == 0)
1119 load_idt((const struct desc_ptr *)&idt_descr);
1120}
1121
1122#else /* CONFIG_X86_64 */
1123
1124DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1125EXPORT_PER_CPU_SYMBOL(current_task);
1126DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1127
1128#ifdef CONFIG_CC_STACKPROTECTOR
1129DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1130#endif
1131
1132/* Make sure %fs and %gs are initialized properly in idle threads */
1133struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
1134{
1135 memset(regs, 0, sizeof(struct pt_regs));
1136 regs->fs = __KERNEL_PERCPU;
1137 regs->gs = __KERNEL_STACK_CANARY;
1138
1139 return regs;
1140}
1141#endif /* CONFIG_X86_64 */
1142
1143/*
1144 * Clear all 6 debug registers:
1145 */
1146static void clear_all_debug_regs(void)
1147{
1148 int i;
1149
1150 for (i = 0; i < 8; i++) {
1151 /* Ignore db4, db5 */
1152 if ((i == 4) || (i == 5))
1153 continue;
1154
1155 set_debugreg(0, i);
1156 }
1157}
1158
1159#ifdef CONFIG_KGDB
1160/*
1161 * Restore debug regs if using kgdbwait and you have a kernel debugger
1162 * connection established.
1163 */
1164static void dbg_restore_debug_regs(void)
1165{
1166 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1167 arch_kgdb_ops.correct_hw_break();
1168}
1169#else /* ! CONFIG_KGDB */
1170#define dbg_restore_debug_regs()
1171#endif /* ! CONFIG_KGDB */
1172
1173/*
1174 * cpu_init() initializes state that is per-CPU. Some data is already
1175 * initialized (naturally) in the bootstrap process, such as the GDT
1176 * and IDT. We reload them nevertheless, this function acts as a
1177 * 'CPU state barrier', nothing should get across.
1178 * A lot of state is already set up in PDA init for 64 bit
1179 */
1180#ifdef CONFIG_X86_64
1181
1182void __cpuinit cpu_init(void)
1183{
1184 struct orig_ist *oist;
1185 struct task_struct *me;
1186 struct tss_struct *t;
1187 unsigned long v;
1188 int cpu;
1189 int i;
1190
1191 cpu = stack_smp_processor_id();
1192 t = &per_cpu(init_tss, cpu);
1193 oist = &per_cpu(orig_ist, cpu);
1194
1195#ifdef CONFIG_NUMA
1196 if (cpu != 0 && this_cpu_read(numa_node) == 0 &&
1197 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1198 set_numa_node(early_cpu_to_node(cpu));
1199#endif
1200
1201 me = current;
1202
1203 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1204 panic("CPU#%d already initialized!\n", cpu);
1205
1206 pr_debug("Initializing CPU#%d\n", cpu);
1207
1208 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1209
1210 /*
1211 * Initialize the per-CPU GDT with the boot GDT,
1212 * and set up the GDT descriptor:
1213 */
1214
1215 switch_to_new_gdt(cpu);
1216 loadsegment(fs, 0);
1217
1218 load_idt((const struct desc_ptr *)&idt_descr);
1219
1220 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1221 syscall_init();
1222
1223 wrmsrl(MSR_FS_BASE, 0);
1224 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1225 barrier();
1226
1227 x86_configure_nx();
1228 if (cpu != 0)
1229 enable_x2apic();
1230
1231 /*
1232 * set up and load the per-CPU TSS
1233 */
1234 if (!oist->ist[0]) {
1235 char *estacks = per_cpu(exception_stacks, cpu);
1236
1237 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1238 estacks += exception_stack_sizes[v];
1239 oist->ist[v] = t->x86_tss.ist[v] =
1240 (unsigned long)estacks;
1241 if (v == DEBUG_STACK-1)
1242 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1243 }
1244 }
1245
1246 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1247
1248 /*
1249 * <= is required because the CPU will access up to
1250 * 8 bits beyond the end of the IO permission bitmap.
1251 */
1252 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1253 t->io_bitmap[i] = ~0UL;
1254
1255 atomic_inc(&init_mm.mm_count);
1256 me->active_mm = &init_mm;
1257 BUG_ON(me->mm);
1258 enter_lazy_tlb(&init_mm, me);
1259
1260 load_sp0(t, ¤t->thread);
1261 set_tss_desc(cpu, t);
1262 load_TR_desc();
1263 load_LDT(&init_mm.context);
1264
1265 clear_all_debug_regs();
1266 dbg_restore_debug_regs();
1267
1268 fpu_init();
1269 xsave_init();
1270
1271 raw_local_save_flags(kernel_eflags);
1272
1273 if (is_uv_system())
1274 uv_cpu_init();
1275}
1276
1277#else
1278
1279void __cpuinit cpu_init(void)
1280{
1281 int cpu = smp_processor_id();
1282 struct task_struct *curr = current;
1283 struct tss_struct *t = &per_cpu(init_tss, cpu);
1284 struct thread_struct *thread = &curr->thread;
1285
1286 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1287 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1288 for (;;)
1289 local_irq_enable();
1290 }
1291
1292 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1293
1294 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1295 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1296
1297 load_idt(&idt_descr);
1298 switch_to_new_gdt(cpu);
1299
1300 /*
1301 * Set up and load the per-CPU TSS and LDT
1302 */
1303 atomic_inc(&init_mm.mm_count);
1304 curr->active_mm = &init_mm;
1305 BUG_ON(curr->mm);
1306 enter_lazy_tlb(&init_mm, curr);
1307
1308 load_sp0(t, thread);
1309 set_tss_desc(cpu, t);
1310 load_TR_desc();
1311 load_LDT(&init_mm.context);
1312
1313 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1314
1315#ifdef CONFIG_DOUBLEFAULT
1316 /* Set up doublefault TSS pointer in the GDT */
1317 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1318#endif
1319
1320 clear_all_debug_regs();
1321 dbg_restore_debug_regs();
1322
1323 fpu_init();
1324 xsave_init();
1325}
1326#endif
1// SPDX-License-Identifier: GPL-2.0-only
2/* cpu_feature_enabled() cannot be used this early */
3#define USE_EARLY_PGTABLE_L5
4
5#include <linux/memblock.h>
6#include <linux/linkage.h>
7#include <linux/bitops.h>
8#include <linux/kernel.h>
9#include <linux/export.h>
10#include <linux/percpu.h>
11#include <linux/string.h>
12#include <linux/ctype.h>
13#include <linux/delay.h>
14#include <linux/sched/mm.h>
15#include <linux/sched/clock.h>
16#include <linux/sched/task.h>
17#include <linux/sched/smt.h>
18#include <linux/init.h>
19#include <linux/kprobes.h>
20#include <linux/kgdb.h>
21#include <linux/smp.h>
22#include <linux/io.h>
23#include <linux/syscore_ops.h>
24#include <linux/pgtable.h>
25
26#include <asm/cmdline.h>
27#include <asm/stackprotector.h>
28#include <asm/perf_event.h>
29#include <asm/mmu_context.h>
30#include <asm/doublefault.h>
31#include <asm/archrandom.h>
32#include <asm/hypervisor.h>
33#include <asm/processor.h>
34#include <asm/tlbflush.h>
35#include <asm/debugreg.h>
36#include <asm/sections.h>
37#include <asm/vsyscall.h>
38#include <linux/topology.h>
39#include <linux/cpumask.h>
40#include <linux/atomic.h>
41#include <asm/proto.h>
42#include <asm/setup.h>
43#include <asm/apic.h>
44#include <asm/desc.h>
45#include <asm/fpu/internal.h>
46#include <asm/mtrr.h>
47#include <asm/hwcap2.h>
48#include <linux/numa.h>
49#include <asm/numa.h>
50#include <asm/asm.h>
51#include <asm/bugs.h>
52#include <asm/cpu.h>
53#include <asm/mce.h>
54#include <asm/msr.h>
55#include <asm/memtype.h>
56#include <asm/microcode.h>
57#include <asm/microcode_intel.h>
58#include <asm/intel-family.h>
59#include <asm/cpu_device_id.h>
60#include <asm/uv/uv.h>
61#include <asm/sigframe.h>
62
63#include "cpu.h"
64
65u32 elf_hwcap2 __read_mostly;
66
67/* all of these masks are initialized in setup_cpu_local_masks() */
68cpumask_var_t cpu_initialized_mask;
69cpumask_var_t cpu_callout_mask;
70cpumask_var_t cpu_callin_mask;
71
72/* representing cpus for which sibling maps can be computed */
73cpumask_var_t cpu_sibling_setup_mask;
74
75/* Number of siblings per CPU package */
76int smp_num_siblings = 1;
77EXPORT_SYMBOL(smp_num_siblings);
78
79/* Last level cache ID of each logical CPU */
80DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
81
82/* correctly size the local cpu masks */
83void __init setup_cpu_local_masks(void)
84{
85 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
86 alloc_bootmem_cpumask_var(&cpu_callin_mask);
87 alloc_bootmem_cpumask_var(&cpu_callout_mask);
88 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
89}
90
91static void default_init(struct cpuinfo_x86 *c)
92{
93#ifdef CONFIG_X86_64
94 cpu_detect_cache_sizes(c);
95#else
96 /* Not much we can do here... */
97 /* Check if at least it has cpuid */
98 if (c->cpuid_level == -1) {
99 /* No cpuid. It must be an ancient CPU */
100 if (c->x86 == 4)
101 strcpy(c->x86_model_id, "486");
102 else if (c->x86 == 3)
103 strcpy(c->x86_model_id, "386");
104 }
105#endif
106}
107
108static const struct cpu_dev default_cpu = {
109 .c_init = default_init,
110 .c_vendor = "Unknown",
111 .c_x86_vendor = X86_VENDOR_UNKNOWN,
112};
113
114static const struct cpu_dev *this_cpu = &default_cpu;
115
116DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
117#ifdef CONFIG_X86_64
118 /*
119 * We need valid kernel segments for data and code in long mode too
120 * IRET will check the segment types kkeil 2000/10/28
121 * Also sysret mandates a special GDT layout
122 *
123 * TLS descriptors are currently at a different place compared to i386.
124 * Hopefully nobody expects them at a fixed place (Wine?)
125 */
126 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
127 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
128 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
129 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
130 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
131 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
132#else
133 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
134 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
135 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
136 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
137 /*
138 * Segments used for calling PnP BIOS have byte granularity.
139 * They code segments and data segments have fixed 64k limits,
140 * the transfer segment sizes are set at run time.
141 */
142 /* 32-bit code */
143 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
144 /* 16-bit code */
145 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
146 /* 16-bit data */
147 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
148 /* 16-bit data */
149 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
150 /* 16-bit data */
151 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
152 /*
153 * The APM segments have byte granularity and their bases
154 * are set at run time. All have 64k limits.
155 */
156 /* 32-bit code */
157 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
158 /* 16-bit code */
159 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
160 /* data */
161 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
162
163 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
164 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
165#endif
166} };
167EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
168
169#ifdef CONFIG_X86_64
170static int __init x86_nopcid_setup(char *s)
171{
172 /* nopcid doesn't accept parameters */
173 if (s)
174 return -EINVAL;
175
176 /* do not emit a message if the feature is not present */
177 if (!boot_cpu_has(X86_FEATURE_PCID))
178 return 0;
179
180 setup_clear_cpu_cap(X86_FEATURE_PCID);
181 pr_info("nopcid: PCID feature disabled\n");
182 return 0;
183}
184early_param("nopcid", x86_nopcid_setup);
185#endif
186
187static int __init x86_noinvpcid_setup(char *s)
188{
189 /* noinvpcid doesn't accept parameters */
190 if (s)
191 return -EINVAL;
192
193 /* do not emit a message if the feature is not present */
194 if (!boot_cpu_has(X86_FEATURE_INVPCID))
195 return 0;
196
197 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
198 pr_info("noinvpcid: INVPCID feature disabled\n");
199 return 0;
200}
201early_param("noinvpcid", x86_noinvpcid_setup);
202
203#ifdef CONFIG_X86_32
204static int cachesize_override = -1;
205static int disable_x86_serial_nr = 1;
206
207static int __init cachesize_setup(char *str)
208{
209 get_option(&str, &cachesize_override);
210 return 1;
211}
212__setup("cachesize=", cachesize_setup);
213
214static int __init x86_sep_setup(char *s)
215{
216 setup_clear_cpu_cap(X86_FEATURE_SEP);
217 return 1;
218}
219__setup("nosep", x86_sep_setup);
220
221/* Standard macro to see if a specific flag is changeable */
222static inline int flag_is_changeable_p(u32 flag)
223{
224 u32 f1, f2;
225
226 /*
227 * Cyrix and IDT cpus allow disabling of CPUID
228 * so the code below may return different results
229 * when it is executed before and after enabling
230 * the CPUID. Add "volatile" to not allow gcc to
231 * optimize the subsequent calls to this function.
232 */
233 asm volatile ("pushfl \n\t"
234 "pushfl \n\t"
235 "popl %0 \n\t"
236 "movl %0, %1 \n\t"
237 "xorl %2, %0 \n\t"
238 "pushl %0 \n\t"
239 "popfl \n\t"
240 "pushfl \n\t"
241 "popl %0 \n\t"
242 "popfl \n\t"
243
244 : "=&r" (f1), "=&r" (f2)
245 : "ir" (flag));
246
247 return ((f1^f2) & flag) != 0;
248}
249
250/* Probe for the CPUID instruction */
251int have_cpuid_p(void)
252{
253 return flag_is_changeable_p(X86_EFLAGS_ID);
254}
255
256static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
257{
258 unsigned long lo, hi;
259
260 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
261 return;
262
263 /* Disable processor serial number: */
264
265 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
266 lo |= 0x200000;
267 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
268
269 pr_notice("CPU serial number disabled.\n");
270 clear_cpu_cap(c, X86_FEATURE_PN);
271
272 /* Disabling the serial number may affect the cpuid level */
273 c->cpuid_level = cpuid_eax(0);
274}
275
276static int __init x86_serial_nr_setup(char *s)
277{
278 disable_x86_serial_nr = 0;
279 return 1;
280}
281__setup("serialnumber", x86_serial_nr_setup);
282#else
283static inline int flag_is_changeable_p(u32 flag)
284{
285 return 1;
286}
287static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
288{
289}
290#endif
291
292static __init int setup_disable_smep(char *arg)
293{
294 setup_clear_cpu_cap(X86_FEATURE_SMEP);
295 return 1;
296}
297__setup("nosmep", setup_disable_smep);
298
299static __always_inline void setup_smep(struct cpuinfo_x86 *c)
300{
301 if (cpu_has(c, X86_FEATURE_SMEP))
302 cr4_set_bits(X86_CR4_SMEP);
303}
304
305static __init int setup_disable_smap(char *arg)
306{
307 setup_clear_cpu_cap(X86_FEATURE_SMAP);
308 return 1;
309}
310__setup("nosmap", setup_disable_smap);
311
312static __always_inline void setup_smap(struct cpuinfo_x86 *c)
313{
314 unsigned long eflags = native_save_fl();
315
316 /* This should have been cleared long ago */
317 BUG_ON(eflags & X86_EFLAGS_AC);
318
319 if (cpu_has(c, X86_FEATURE_SMAP)) {
320#ifdef CONFIG_X86_SMAP
321 cr4_set_bits(X86_CR4_SMAP);
322#else
323 clear_cpu_cap(c, X86_FEATURE_SMAP);
324 cr4_clear_bits(X86_CR4_SMAP);
325#endif
326 }
327}
328
329static __always_inline void setup_umip(struct cpuinfo_x86 *c)
330{
331 /* Check the boot processor, plus build option for UMIP. */
332 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
333 goto out;
334
335 /* Check the current processor's cpuid bits. */
336 if (!cpu_has(c, X86_FEATURE_UMIP))
337 goto out;
338
339 cr4_set_bits(X86_CR4_UMIP);
340
341 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
342
343 return;
344
345out:
346 /*
347 * Make sure UMIP is disabled in case it was enabled in a
348 * previous boot (e.g., via kexec).
349 */
350 cr4_clear_bits(X86_CR4_UMIP);
351}
352
353/* These bits should not change their value after CPU init is finished. */
354static const unsigned long cr4_pinned_mask =
355 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
356static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
357static unsigned long cr4_pinned_bits __ro_after_init;
358
359void native_write_cr0(unsigned long val)
360{
361 unsigned long bits_missing = 0;
362
363set_register:
364 asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
365
366 if (static_branch_likely(&cr_pinning)) {
367 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
368 bits_missing = X86_CR0_WP;
369 val |= bits_missing;
370 goto set_register;
371 }
372 /* Warn after we've set the missing bits. */
373 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
374 }
375}
376EXPORT_SYMBOL(native_write_cr0);
377
378void native_write_cr4(unsigned long val)
379{
380 unsigned long bits_changed = 0;
381
382set_register:
383 asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
384
385 if (static_branch_likely(&cr_pinning)) {
386 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
387 bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
388 val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
389 goto set_register;
390 }
391 /* Warn after we've corrected the changed bits. */
392 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
393 bits_changed);
394 }
395}
396#if IS_MODULE(CONFIG_LKDTM)
397EXPORT_SYMBOL_GPL(native_write_cr4);
398#endif
399
400void cr4_update_irqsoff(unsigned long set, unsigned long clear)
401{
402 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
403
404 lockdep_assert_irqs_disabled();
405
406 newval = (cr4 & ~clear) | set;
407 if (newval != cr4) {
408 this_cpu_write(cpu_tlbstate.cr4, newval);
409 __write_cr4(newval);
410 }
411}
412EXPORT_SYMBOL(cr4_update_irqsoff);
413
414/* Read the CR4 shadow. */
415unsigned long cr4_read_shadow(void)
416{
417 return this_cpu_read(cpu_tlbstate.cr4);
418}
419EXPORT_SYMBOL_GPL(cr4_read_shadow);
420
421void cr4_init(void)
422{
423 unsigned long cr4 = __read_cr4();
424
425 if (boot_cpu_has(X86_FEATURE_PCID))
426 cr4 |= X86_CR4_PCIDE;
427 if (static_branch_likely(&cr_pinning))
428 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
429
430 __write_cr4(cr4);
431
432 /* Initialize cr4 shadow for this CPU. */
433 this_cpu_write(cpu_tlbstate.cr4, cr4);
434}
435
436/*
437 * Once CPU feature detection is finished (and boot params have been
438 * parsed), record any of the sensitive CR bits that are set, and
439 * enable CR pinning.
440 */
441static void __init setup_cr_pinning(void)
442{
443 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
444 static_key_enable(&cr_pinning.key);
445}
446
447static __init int x86_nofsgsbase_setup(char *arg)
448{
449 /* Require an exact match without trailing characters. */
450 if (strlen(arg))
451 return 0;
452
453 /* Do not emit a message if the feature is not present. */
454 if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
455 return 1;
456
457 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
458 pr_info("FSGSBASE disabled via kernel command line\n");
459 return 1;
460}
461__setup("nofsgsbase", x86_nofsgsbase_setup);
462
463/*
464 * Protection Keys are not available in 32-bit mode.
465 */
466static bool pku_disabled;
467
468static __always_inline void setup_pku(struct cpuinfo_x86 *c)
469{
470 if (c == &boot_cpu_data) {
471 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
472 return;
473 /*
474 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
475 * bit to be set. Enforce it.
476 */
477 setup_force_cpu_cap(X86_FEATURE_OSPKE);
478
479 } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
480 return;
481 }
482
483 cr4_set_bits(X86_CR4_PKE);
484 /* Load the default PKRU value */
485 pkru_write_default();
486}
487
488#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
489static __init int setup_disable_pku(char *arg)
490{
491 /*
492 * Do not clear the X86_FEATURE_PKU bit. All of the
493 * runtime checks are against OSPKE so clearing the
494 * bit does nothing.
495 *
496 * This way, we will see "pku" in cpuinfo, but not
497 * "ospke", which is exactly what we want. It shows
498 * that the CPU has PKU, but the OS has not enabled it.
499 * This happens to be exactly how a system would look
500 * if we disabled the config option.
501 */
502 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
503 pku_disabled = true;
504 return 1;
505}
506__setup("nopku", setup_disable_pku);
507#endif /* CONFIG_X86_64 */
508
509/*
510 * Some CPU features depend on higher CPUID levels, which may not always
511 * be available due to CPUID level capping or broken virtualization
512 * software. Add those features to this table to auto-disable them.
513 */
514struct cpuid_dependent_feature {
515 u32 feature;
516 u32 level;
517};
518
519static const struct cpuid_dependent_feature
520cpuid_dependent_features[] = {
521 { X86_FEATURE_MWAIT, 0x00000005 },
522 { X86_FEATURE_DCA, 0x00000009 },
523 { X86_FEATURE_XSAVE, 0x0000000d },
524 { 0, 0 }
525};
526
527static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
528{
529 const struct cpuid_dependent_feature *df;
530
531 for (df = cpuid_dependent_features; df->feature; df++) {
532
533 if (!cpu_has(c, df->feature))
534 continue;
535 /*
536 * Note: cpuid_level is set to -1 if unavailable, but
537 * extended_extended_level is set to 0 if unavailable
538 * and the legitimate extended levels are all negative
539 * when signed; hence the weird messing around with
540 * signs here...
541 */
542 if (!((s32)df->level < 0 ?
543 (u32)df->level > (u32)c->extended_cpuid_level :
544 (s32)df->level > (s32)c->cpuid_level))
545 continue;
546
547 clear_cpu_cap(c, df->feature);
548 if (!warn)
549 continue;
550
551 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
552 x86_cap_flag(df->feature), df->level);
553 }
554}
555
556/*
557 * Naming convention should be: <Name> [(<Codename>)]
558 * This table only is used unless init_<vendor>() below doesn't set it;
559 * in particular, if CPUID levels 0x80000002..4 are supported, this
560 * isn't used
561 */
562
563/* Look up CPU names by table lookup. */
564static const char *table_lookup_model(struct cpuinfo_x86 *c)
565{
566#ifdef CONFIG_X86_32
567 const struct legacy_cpu_model_info *info;
568
569 if (c->x86_model >= 16)
570 return NULL; /* Range check */
571
572 if (!this_cpu)
573 return NULL;
574
575 info = this_cpu->legacy_models;
576
577 while (info->family) {
578 if (info->family == c->x86)
579 return info->model_names[c->x86_model];
580 info++;
581 }
582#endif
583 return NULL; /* Not found */
584}
585
586/* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
587__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
588__u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
589
590void load_percpu_segment(int cpu)
591{
592#ifdef CONFIG_X86_32
593 loadsegment(fs, __KERNEL_PERCPU);
594#else
595 __loadsegment_simple(gs, 0);
596 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
597#endif
598}
599
600#ifdef CONFIG_X86_32
601/* The 32-bit entry code needs to find cpu_entry_area. */
602DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
603#endif
604
605/* Load the original GDT from the per-cpu structure */
606void load_direct_gdt(int cpu)
607{
608 struct desc_ptr gdt_descr;
609
610 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
611 gdt_descr.size = GDT_SIZE - 1;
612 load_gdt(&gdt_descr);
613}
614EXPORT_SYMBOL_GPL(load_direct_gdt);
615
616/* Load a fixmap remapping of the per-cpu GDT */
617void load_fixmap_gdt(int cpu)
618{
619 struct desc_ptr gdt_descr;
620
621 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
622 gdt_descr.size = GDT_SIZE - 1;
623 load_gdt(&gdt_descr);
624}
625EXPORT_SYMBOL_GPL(load_fixmap_gdt);
626
627/*
628 * Current gdt points %fs at the "master" per-cpu area: after this,
629 * it's on the real one.
630 */
631void switch_to_new_gdt(int cpu)
632{
633 /* Load the original GDT */
634 load_direct_gdt(cpu);
635 /* Reload the per-cpu base */
636 load_percpu_segment(cpu);
637}
638
639static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
640
641static void get_model_name(struct cpuinfo_x86 *c)
642{
643 unsigned int *v;
644 char *p, *q, *s;
645
646 if (c->extended_cpuid_level < 0x80000004)
647 return;
648
649 v = (unsigned int *)c->x86_model_id;
650 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
651 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
652 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
653 c->x86_model_id[48] = 0;
654
655 /* Trim whitespace */
656 p = q = s = &c->x86_model_id[0];
657
658 while (*p == ' ')
659 p++;
660
661 while (*p) {
662 /* Note the last non-whitespace index */
663 if (!isspace(*p))
664 s = q;
665
666 *q++ = *p++;
667 }
668
669 *(s + 1) = '\0';
670}
671
672void detect_num_cpu_cores(struct cpuinfo_x86 *c)
673{
674 unsigned int eax, ebx, ecx, edx;
675
676 c->x86_max_cores = 1;
677 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
678 return;
679
680 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
681 if (eax & 0x1f)
682 c->x86_max_cores = (eax >> 26) + 1;
683}
684
685void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
686{
687 unsigned int n, dummy, ebx, ecx, edx, l2size;
688
689 n = c->extended_cpuid_level;
690
691 if (n >= 0x80000005) {
692 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
693 c->x86_cache_size = (ecx>>24) + (edx>>24);
694#ifdef CONFIG_X86_64
695 /* On K8 L1 TLB is inclusive, so don't count it */
696 c->x86_tlbsize = 0;
697#endif
698 }
699
700 if (n < 0x80000006) /* Some chips just has a large L1. */
701 return;
702
703 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
704 l2size = ecx >> 16;
705
706#ifdef CONFIG_X86_64
707 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
708#else
709 /* do processor-specific cache resizing */
710 if (this_cpu->legacy_cache_size)
711 l2size = this_cpu->legacy_cache_size(c, l2size);
712
713 /* Allow user to override all this if necessary. */
714 if (cachesize_override != -1)
715 l2size = cachesize_override;
716
717 if (l2size == 0)
718 return; /* Again, no L2 cache is possible */
719#endif
720
721 c->x86_cache_size = l2size;
722}
723
724u16 __read_mostly tlb_lli_4k[NR_INFO];
725u16 __read_mostly tlb_lli_2m[NR_INFO];
726u16 __read_mostly tlb_lli_4m[NR_INFO];
727u16 __read_mostly tlb_lld_4k[NR_INFO];
728u16 __read_mostly tlb_lld_2m[NR_INFO];
729u16 __read_mostly tlb_lld_4m[NR_INFO];
730u16 __read_mostly tlb_lld_1g[NR_INFO];
731
732static void cpu_detect_tlb(struct cpuinfo_x86 *c)
733{
734 if (this_cpu->c_detect_tlb)
735 this_cpu->c_detect_tlb(c);
736
737 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
738 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
739 tlb_lli_4m[ENTRIES]);
740
741 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
742 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
743 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
744}
745
746int detect_ht_early(struct cpuinfo_x86 *c)
747{
748#ifdef CONFIG_SMP
749 u32 eax, ebx, ecx, edx;
750
751 if (!cpu_has(c, X86_FEATURE_HT))
752 return -1;
753
754 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
755 return -1;
756
757 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
758 return -1;
759
760 cpuid(1, &eax, &ebx, &ecx, &edx);
761
762 smp_num_siblings = (ebx & 0xff0000) >> 16;
763 if (smp_num_siblings == 1)
764 pr_info_once("CPU0: Hyper-Threading is disabled\n");
765#endif
766 return 0;
767}
768
769void detect_ht(struct cpuinfo_x86 *c)
770{
771#ifdef CONFIG_SMP
772 int index_msb, core_bits;
773
774 if (detect_ht_early(c) < 0)
775 return;
776
777 index_msb = get_count_order(smp_num_siblings);
778 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
779
780 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
781
782 index_msb = get_count_order(smp_num_siblings);
783
784 core_bits = get_count_order(c->x86_max_cores);
785
786 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
787 ((1 << core_bits) - 1);
788#endif
789}
790
791static void get_cpu_vendor(struct cpuinfo_x86 *c)
792{
793 char *v = c->x86_vendor_id;
794 int i;
795
796 for (i = 0; i < X86_VENDOR_NUM; i++) {
797 if (!cpu_devs[i])
798 break;
799
800 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
801 (cpu_devs[i]->c_ident[1] &&
802 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
803
804 this_cpu = cpu_devs[i];
805 c->x86_vendor = this_cpu->c_x86_vendor;
806 return;
807 }
808 }
809
810 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
811 "CPU: Your system may be unstable.\n", v);
812
813 c->x86_vendor = X86_VENDOR_UNKNOWN;
814 this_cpu = &default_cpu;
815}
816
817void cpu_detect(struct cpuinfo_x86 *c)
818{
819 /* Get vendor name */
820 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
821 (unsigned int *)&c->x86_vendor_id[0],
822 (unsigned int *)&c->x86_vendor_id[8],
823 (unsigned int *)&c->x86_vendor_id[4]);
824
825 c->x86 = 4;
826 /* Intel-defined flags: level 0x00000001 */
827 if (c->cpuid_level >= 0x00000001) {
828 u32 junk, tfms, cap0, misc;
829
830 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
831 c->x86 = x86_family(tfms);
832 c->x86_model = x86_model(tfms);
833 c->x86_stepping = x86_stepping(tfms);
834
835 if (cap0 & (1<<19)) {
836 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
837 c->x86_cache_alignment = c->x86_clflush_size;
838 }
839 }
840}
841
842static void apply_forced_caps(struct cpuinfo_x86 *c)
843{
844 int i;
845
846 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
847 c->x86_capability[i] &= ~cpu_caps_cleared[i];
848 c->x86_capability[i] |= cpu_caps_set[i];
849 }
850}
851
852static void init_speculation_control(struct cpuinfo_x86 *c)
853{
854 /*
855 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
856 * and they also have a different bit for STIBP support. Also,
857 * a hypervisor might have set the individual AMD bits even on
858 * Intel CPUs, for finer-grained selection of what's available.
859 */
860 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
861 set_cpu_cap(c, X86_FEATURE_IBRS);
862 set_cpu_cap(c, X86_FEATURE_IBPB);
863 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
864 }
865
866 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
867 set_cpu_cap(c, X86_FEATURE_STIBP);
868
869 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
870 cpu_has(c, X86_FEATURE_VIRT_SSBD))
871 set_cpu_cap(c, X86_FEATURE_SSBD);
872
873 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
874 set_cpu_cap(c, X86_FEATURE_IBRS);
875 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
876 }
877
878 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
879 set_cpu_cap(c, X86_FEATURE_IBPB);
880
881 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
882 set_cpu_cap(c, X86_FEATURE_STIBP);
883 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
884 }
885
886 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
887 set_cpu_cap(c, X86_FEATURE_SSBD);
888 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
889 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
890 }
891}
892
893void get_cpu_cap(struct cpuinfo_x86 *c)
894{
895 u32 eax, ebx, ecx, edx;
896
897 /* Intel-defined flags: level 0x00000001 */
898 if (c->cpuid_level >= 0x00000001) {
899 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
900
901 c->x86_capability[CPUID_1_ECX] = ecx;
902 c->x86_capability[CPUID_1_EDX] = edx;
903 }
904
905 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
906 if (c->cpuid_level >= 0x00000006)
907 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
908
909 /* Additional Intel-defined flags: level 0x00000007 */
910 if (c->cpuid_level >= 0x00000007) {
911 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
912 c->x86_capability[CPUID_7_0_EBX] = ebx;
913 c->x86_capability[CPUID_7_ECX] = ecx;
914 c->x86_capability[CPUID_7_EDX] = edx;
915
916 /* Check valid sub-leaf index before accessing it */
917 if (eax >= 1) {
918 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
919 c->x86_capability[CPUID_7_1_EAX] = eax;
920 }
921 }
922
923 /* Extended state features: level 0x0000000d */
924 if (c->cpuid_level >= 0x0000000d) {
925 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
926
927 c->x86_capability[CPUID_D_1_EAX] = eax;
928 }
929
930 /* AMD-defined flags: level 0x80000001 */
931 eax = cpuid_eax(0x80000000);
932 c->extended_cpuid_level = eax;
933
934 if ((eax & 0xffff0000) == 0x80000000) {
935 if (eax >= 0x80000001) {
936 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
937
938 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
939 c->x86_capability[CPUID_8000_0001_EDX] = edx;
940 }
941 }
942
943 if (c->extended_cpuid_level >= 0x80000007) {
944 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
945
946 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
947 c->x86_power = edx;
948 }
949
950 if (c->extended_cpuid_level >= 0x80000008) {
951 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
952 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
953 }
954
955 if (c->extended_cpuid_level >= 0x8000000a)
956 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
957
958 if (c->extended_cpuid_level >= 0x8000001f)
959 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
960
961 init_scattered_cpuid_features(c);
962 init_speculation_control(c);
963
964 /*
965 * Clear/Set all flags overridden by options, after probe.
966 * This needs to happen each time we re-probe, which may happen
967 * several times during CPU initialization.
968 */
969 apply_forced_caps(c);
970}
971
972void get_cpu_address_sizes(struct cpuinfo_x86 *c)
973{
974 u32 eax, ebx, ecx, edx;
975
976 if (c->extended_cpuid_level >= 0x80000008) {
977 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
978
979 c->x86_virt_bits = (eax >> 8) & 0xff;
980 c->x86_phys_bits = eax & 0xff;
981 }
982#ifdef CONFIG_X86_32
983 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
984 c->x86_phys_bits = 36;
985#endif
986 c->x86_cache_bits = c->x86_phys_bits;
987}
988
989static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
990{
991#ifdef CONFIG_X86_32
992 int i;
993
994 /*
995 * First of all, decide if this is a 486 or higher
996 * It's a 486 if we can modify the AC flag
997 */
998 if (flag_is_changeable_p(X86_EFLAGS_AC))
999 c->x86 = 4;
1000 else
1001 c->x86 = 3;
1002
1003 for (i = 0; i < X86_VENDOR_NUM; i++)
1004 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1005 c->x86_vendor_id[0] = 0;
1006 cpu_devs[i]->c_identify(c);
1007 if (c->x86_vendor_id[0]) {
1008 get_cpu_vendor(c);
1009 break;
1010 }
1011 }
1012#endif
1013}
1014
1015#define NO_SPECULATION BIT(0)
1016#define NO_MELTDOWN BIT(1)
1017#define NO_SSB BIT(2)
1018#define NO_L1TF BIT(3)
1019#define NO_MDS BIT(4)
1020#define MSBDS_ONLY BIT(5)
1021#define NO_SWAPGS BIT(6)
1022#define NO_ITLB_MULTIHIT BIT(7)
1023#define NO_SPECTRE_V2 BIT(8)
1024
1025#define VULNWL(vendor, family, model, whitelist) \
1026 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1027
1028#define VULNWL_INTEL(model, whitelist) \
1029 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1030
1031#define VULNWL_AMD(family, whitelist) \
1032 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1033
1034#define VULNWL_HYGON(family, whitelist) \
1035 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1036
1037static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1038 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1039 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1040 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1041 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1042
1043 /* Intel Family 6 */
1044 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1045 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1046 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1047 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1048 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1049
1050 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1051 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1052 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1053 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1054 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1055 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1056
1057 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1058
1059 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1060 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1061
1062 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1063 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1064 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1065
1066 /*
1067 * Technically, swapgs isn't serializing on AMD (despite it previously
1068 * being documented as such in the APM). But according to AMD, %gs is
1069 * updated non-speculatively, and the issuing of %gs-relative memory
1070 * operands will be blocked until the %gs update completes, which is
1071 * good enough for our purposes.
1072 */
1073
1074 VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT),
1075
1076 /* AMD Family 0xf - 0x12 */
1077 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1078 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1079 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1080 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1081
1082 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1083 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1084 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1085
1086 /* Zhaoxin Family 7 */
1087 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS),
1088 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS),
1089 {}
1090};
1091
1092#define VULNBL_INTEL_STEPPINGS(model, steppings, issues) \
1093 X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6, \
1094 INTEL_FAM6_##model, steppings, \
1095 X86_FEATURE_ANY, issues)
1096
1097#define SRBDS BIT(0)
1098
1099static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1100 VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS),
1101 VULNBL_INTEL_STEPPINGS(HASWELL, X86_STEPPING_ANY, SRBDS),
1102 VULNBL_INTEL_STEPPINGS(HASWELL_L, X86_STEPPING_ANY, SRBDS),
1103 VULNBL_INTEL_STEPPINGS(HASWELL_G, X86_STEPPING_ANY, SRBDS),
1104 VULNBL_INTEL_STEPPINGS(BROADWELL_G, X86_STEPPING_ANY, SRBDS),
1105 VULNBL_INTEL_STEPPINGS(BROADWELL, X86_STEPPING_ANY, SRBDS),
1106 VULNBL_INTEL_STEPPINGS(SKYLAKE_L, X86_STEPPING_ANY, SRBDS),
1107 VULNBL_INTEL_STEPPINGS(SKYLAKE, X86_STEPPING_ANY, SRBDS),
1108 VULNBL_INTEL_STEPPINGS(KABYLAKE_L, X86_STEPPINGS(0x0, 0xC), SRBDS),
1109 VULNBL_INTEL_STEPPINGS(KABYLAKE, X86_STEPPINGS(0x0, 0xD), SRBDS),
1110 {}
1111};
1112
1113static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1114{
1115 const struct x86_cpu_id *m = x86_match_cpu(table);
1116
1117 return m && !!(m->driver_data & which);
1118}
1119
1120u64 x86_read_arch_cap_msr(void)
1121{
1122 u64 ia32_cap = 0;
1123
1124 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1125 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1126
1127 return ia32_cap;
1128}
1129
1130static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1131{
1132 u64 ia32_cap = x86_read_arch_cap_msr();
1133
1134 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1135 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1136 !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1137 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1138
1139 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1140 return;
1141
1142 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1143
1144 if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1145 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1146
1147 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1148 !(ia32_cap & ARCH_CAP_SSB_NO) &&
1149 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1150 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1151
1152 if (ia32_cap & ARCH_CAP_IBRS_ALL)
1153 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1154
1155 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1156 !(ia32_cap & ARCH_CAP_MDS_NO)) {
1157 setup_force_cpu_bug(X86_BUG_MDS);
1158 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1159 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1160 }
1161
1162 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1163 setup_force_cpu_bug(X86_BUG_SWAPGS);
1164
1165 /*
1166 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1167 * - TSX is supported or
1168 * - TSX_CTRL is present
1169 *
1170 * TSX_CTRL check is needed for cases when TSX could be disabled before
1171 * the kernel boot e.g. kexec.
1172 * TSX_CTRL check alone is not sufficient for cases when the microcode
1173 * update is not present or running as guest that don't get TSX_CTRL.
1174 */
1175 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1176 (cpu_has(c, X86_FEATURE_RTM) ||
1177 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1178 setup_force_cpu_bug(X86_BUG_TAA);
1179
1180 /*
1181 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1182 * in the vulnerability blacklist.
1183 */
1184 if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1185 cpu_has(c, X86_FEATURE_RDSEED)) &&
1186 cpu_matches(cpu_vuln_blacklist, SRBDS))
1187 setup_force_cpu_bug(X86_BUG_SRBDS);
1188
1189 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1190 return;
1191
1192 /* Rogue Data Cache Load? No! */
1193 if (ia32_cap & ARCH_CAP_RDCL_NO)
1194 return;
1195
1196 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1197
1198 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1199 return;
1200
1201 setup_force_cpu_bug(X86_BUG_L1TF);
1202}
1203
1204/*
1205 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1206 * unfortunately, that's not true in practice because of early VIA
1207 * chips and (more importantly) broken virtualizers that are not easy
1208 * to detect. In the latter case it doesn't even *fail* reliably, so
1209 * probing for it doesn't even work. Disable it completely on 32-bit
1210 * unless we can find a reliable way to detect all the broken cases.
1211 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1212 */
1213static void detect_nopl(void)
1214{
1215#ifdef CONFIG_X86_32
1216 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1217#else
1218 setup_force_cpu_cap(X86_FEATURE_NOPL);
1219#endif
1220}
1221
1222/*
1223 * We parse cpu parameters early because fpu__init_system() is executed
1224 * before parse_early_param().
1225 */
1226static void __init cpu_parse_early_param(void)
1227{
1228 char arg[128];
1229 char *argptr = arg;
1230 int arglen, res, bit;
1231
1232#ifdef CONFIG_X86_32
1233 if (cmdline_find_option_bool(boot_command_line, "no387"))
1234#ifdef CONFIG_MATH_EMULATION
1235 setup_clear_cpu_cap(X86_FEATURE_FPU);
1236#else
1237 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1238#endif
1239
1240 if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1241 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1242#endif
1243
1244 if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1245 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1246
1247 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1248 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1249
1250 if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1251 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1252
1253 arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1254 if (arglen <= 0)
1255 return;
1256
1257 pr_info("Clearing CPUID bits:");
1258 do {
1259 res = get_option(&argptr, &bit);
1260 if (res == 0 || res == 3)
1261 break;
1262
1263 /* If the argument was too long, the last bit may be cut off */
1264 if (res == 1 && arglen >= sizeof(arg))
1265 break;
1266
1267 if (bit >= 0 && bit < NCAPINTS * 32) {
1268 pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1269 setup_clear_cpu_cap(bit);
1270 }
1271 } while (res == 2);
1272 pr_cont("\n");
1273}
1274
1275/*
1276 * Do minimum CPU detection early.
1277 * Fields really needed: vendor, cpuid_level, family, model, mask,
1278 * cache alignment.
1279 * The others are not touched to avoid unwanted side effects.
1280 *
1281 * WARNING: this function is only called on the boot CPU. Don't add code
1282 * here that is supposed to run on all CPUs.
1283 */
1284static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1285{
1286#ifdef CONFIG_X86_64
1287 c->x86_clflush_size = 64;
1288 c->x86_phys_bits = 36;
1289 c->x86_virt_bits = 48;
1290#else
1291 c->x86_clflush_size = 32;
1292 c->x86_phys_bits = 32;
1293 c->x86_virt_bits = 32;
1294#endif
1295 c->x86_cache_alignment = c->x86_clflush_size;
1296
1297 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1298 c->extended_cpuid_level = 0;
1299
1300 if (!have_cpuid_p())
1301 identify_cpu_without_cpuid(c);
1302
1303 /* cyrix could have cpuid enabled via c_identify()*/
1304 if (have_cpuid_p()) {
1305 cpu_detect(c);
1306 get_cpu_vendor(c);
1307 get_cpu_cap(c);
1308 get_cpu_address_sizes(c);
1309 setup_force_cpu_cap(X86_FEATURE_CPUID);
1310 cpu_parse_early_param();
1311
1312 if (this_cpu->c_early_init)
1313 this_cpu->c_early_init(c);
1314
1315 c->cpu_index = 0;
1316 filter_cpuid_features(c, false);
1317
1318 if (this_cpu->c_bsp_init)
1319 this_cpu->c_bsp_init(c);
1320 } else {
1321 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1322 }
1323
1324 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1325
1326 cpu_set_bug_bits(c);
1327
1328 sld_setup(c);
1329
1330 fpu__init_system(c);
1331
1332 init_sigframe_size();
1333
1334#ifdef CONFIG_X86_32
1335 /*
1336 * Regardless of whether PCID is enumerated, the SDM says
1337 * that it can't be enabled in 32-bit mode.
1338 */
1339 setup_clear_cpu_cap(X86_FEATURE_PCID);
1340#endif
1341
1342 /*
1343 * Later in the boot process pgtable_l5_enabled() relies on
1344 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1345 * enabled by this point we need to clear the feature bit to avoid
1346 * false-positives at the later stage.
1347 *
1348 * pgtable_l5_enabled() can be false here for several reasons:
1349 * - 5-level paging is disabled compile-time;
1350 * - it's 32-bit kernel;
1351 * - machine doesn't support 5-level paging;
1352 * - user specified 'no5lvl' in kernel command line.
1353 */
1354 if (!pgtable_l5_enabled())
1355 setup_clear_cpu_cap(X86_FEATURE_LA57);
1356
1357 detect_nopl();
1358}
1359
1360void __init early_cpu_init(void)
1361{
1362 const struct cpu_dev *const *cdev;
1363 int count = 0;
1364
1365#ifdef CONFIG_PROCESSOR_SELECT
1366 pr_info("KERNEL supported cpus:\n");
1367#endif
1368
1369 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1370 const struct cpu_dev *cpudev = *cdev;
1371
1372 if (count >= X86_VENDOR_NUM)
1373 break;
1374 cpu_devs[count] = cpudev;
1375 count++;
1376
1377#ifdef CONFIG_PROCESSOR_SELECT
1378 {
1379 unsigned int j;
1380
1381 for (j = 0; j < 2; j++) {
1382 if (!cpudev->c_ident[j])
1383 continue;
1384 pr_info(" %s %s\n", cpudev->c_vendor,
1385 cpudev->c_ident[j]);
1386 }
1387 }
1388#endif
1389 }
1390 early_identify_cpu(&boot_cpu_data);
1391}
1392
1393static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1394{
1395#ifdef CONFIG_X86_64
1396 /*
1397 * Empirically, writing zero to a segment selector on AMD does
1398 * not clear the base, whereas writing zero to a segment
1399 * selector on Intel does clear the base. Intel's behavior
1400 * allows slightly faster context switches in the common case
1401 * where GS is unused by the prev and next threads.
1402 *
1403 * Since neither vendor documents this anywhere that I can see,
1404 * detect it directly instead of hard-coding the choice by
1405 * vendor.
1406 *
1407 * I've designated AMD's behavior as the "bug" because it's
1408 * counterintuitive and less friendly.
1409 */
1410
1411 unsigned long old_base, tmp;
1412 rdmsrl(MSR_FS_BASE, old_base);
1413 wrmsrl(MSR_FS_BASE, 1);
1414 loadsegment(fs, 0);
1415 rdmsrl(MSR_FS_BASE, tmp);
1416 if (tmp != 0)
1417 set_cpu_bug(c, X86_BUG_NULL_SEG);
1418 wrmsrl(MSR_FS_BASE, old_base);
1419#endif
1420}
1421
1422static void generic_identify(struct cpuinfo_x86 *c)
1423{
1424 c->extended_cpuid_level = 0;
1425
1426 if (!have_cpuid_p())
1427 identify_cpu_without_cpuid(c);
1428
1429 /* cyrix could have cpuid enabled via c_identify()*/
1430 if (!have_cpuid_p())
1431 return;
1432
1433 cpu_detect(c);
1434
1435 get_cpu_vendor(c);
1436
1437 get_cpu_cap(c);
1438
1439 get_cpu_address_sizes(c);
1440
1441 if (c->cpuid_level >= 0x00000001) {
1442 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1443#ifdef CONFIG_X86_32
1444# ifdef CONFIG_SMP
1445 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1446# else
1447 c->apicid = c->initial_apicid;
1448# endif
1449#endif
1450 c->phys_proc_id = c->initial_apicid;
1451 }
1452
1453 get_model_name(c); /* Default name */
1454
1455 detect_null_seg_behavior(c);
1456
1457 /*
1458 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1459 * systems that run Linux at CPL > 0 may or may not have the
1460 * issue, but, even if they have the issue, there's absolutely
1461 * nothing we can do about it because we can't use the real IRET
1462 * instruction.
1463 *
1464 * NB: For the time being, only 32-bit kernels support
1465 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1466 * whether to apply espfix using paravirt hooks. If any
1467 * non-paravirt system ever shows up that does *not* have the
1468 * ESPFIX issue, we can change this.
1469 */
1470#ifdef CONFIG_X86_32
1471 set_cpu_bug(c, X86_BUG_ESPFIX);
1472#endif
1473}
1474
1475/*
1476 * Validate that ACPI/mptables have the same information about the
1477 * effective APIC id and update the package map.
1478 */
1479static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1480{
1481#ifdef CONFIG_SMP
1482 unsigned int apicid, cpu = smp_processor_id();
1483
1484 apicid = apic->cpu_present_to_apicid(cpu);
1485
1486 if (apicid != c->apicid) {
1487 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1488 cpu, apicid, c->initial_apicid);
1489 }
1490 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1491 BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1492#else
1493 c->logical_proc_id = 0;
1494#endif
1495}
1496
1497/*
1498 * This does the hard work of actually picking apart the CPU stuff...
1499 */
1500static void identify_cpu(struct cpuinfo_x86 *c)
1501{
1502 int i;
1503
1504 c->loops_per_jiffy = loops_per_jiffy;
1505 c->x86_cache_size = 0;
1506 c->x86_vendor = X86_VENDOR_UNKNOWN;
1507 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1508 c->x86_vendor_id[0] = '\0'; /* Unset */
1509 c->x86_model_id[0] = '\0'; /* Unset */
1510 c->x86_max_cores = 1;
1511 c->x86_coreid_bits = 0;
1512 c->cu_id = 0xff;
1513#ifdef CONFIG_X86_64
1514 c->x86_clflush_size = 64;
1515 c->x86_phys_bits = 36;
1516 c->x86_virt_bits = 48;
1517#else
1518 c->cpuid_level = -1; /* CPUID not detected */
1519 c->x86_clflush_size = 32;
1520 c->x86_phys_bits = 32;
1521 c->x86_virt_bits = 32;
1522#endif
1523 c->x86_cache_alignment = c->x86_clflush_size;
1524 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1525#ifdef CONFIG_X86_VMX_FEATURE_NAMES
1526 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1527#endif
1528
1529 generic_identify(c);
1530
1531 if (this_cpu->c_identify)
1532 this_cpu->c_identify(c);
1533
1534 /* Clear/Set all flags overridden by options, after probe */
1535 apply_forced_caps(c);
1536
1537#ifdef CONFIG_X86_64
1538 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1539#endif
1540
1541 /*
1542 * Vendor-specific initialization. In this section we
1543 * canonicalize the feature flags, meaning if there are
1544 * features a certain CPU supports which CPUID doesn't
1545 * tell us, CPUID claiming incorrect flags, or other bugs,
1546 * we handle them here.
1547 *
1548 * At the end of this section, c->x86_capability better
1549 * indicate the features this CPU genuinely supports!
1550 */
1551 if (this_cpu->c_init)
1552 this_cpu->c_init(c);
1553
1554 /* Disable the PN if appropriate */
1555 squash_the_stupid_serial_number(c);
1556
1557 /* Set up SMEP/SMAP/UMIP */
1558 setup_smep(c);
1559 setup_smap(c);
1560 setup_umip(c);
1561
1562 /* Enable FSGSBASE instructions if available. */
1563 if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1564 cr4_set_bits(X86_CR4_FSGSBASE);
1565 elf_hwcap2 |= HWCAP2_FSGSBASE;
1566 }
1567
1568 /*
1569 * The vendor-specific functions might have changed features.
1570 * Now we do "generic changes."
1571 */
1572
1573 /* Filter out anything that depends on CPUID levels we don't have */
1574 filter_cpuid_features(c, true);
1575
1576 /* If the model name is still unset, do table lookup. */
1577 if (!c->x86_model_id[0]) {
1578 const char *p;
1579 p = table_lookup_model(c);
1580 if (p)
1581 strcpy(c->x86_model_id, p);
1582 else
1583 /* Last resort... */
1584 sprintf(c->x86_model_id, "%02x/%02x",
1585 c->x86, c->x86_model);
1586 }
1587
1588#ifdef CONFIG_X86_64
1589 detect_ht(c);
1590#endif
1591
1592 x86_init_rdrand(c);
1593 setup_pku(c);
1594
1595 /*
1596 * Clear/Set all flags overridden by options, need do it
1597 * before following smp all cpus cap AND.
1598 */
1599 apply_forced_caps(c);
1600
1601 /*
1602 * On SMP, boot_cpu_data holds the common feature set between
1603 * all CPUs; so make sure that we indicate which features are
1604 * common between the CPUs. The first time this routine gets
1605 * executed, c == &boot_cpu_data.
1606 */
1607 if (c != &boot_cpu_data) {
1608 /* AND the already accumulated flags with these */
1609 for (i = 0; i < NCAPINTS; i++)
1610 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1611
1612 /* OR, i.e. replicate the bug flags */
1613 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1614 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1615 }
1616
1617 /* Init Machine Check Exception if available. */
1618 mcheck_cpu_init(c);
1619
1620 select_idle_routine(c);
1621
1622#ifdef CONFIG_NUMA
1623 numa_add_cpu(smp_processor_id());
1624#endif
1625}
1626
1627/*
1628 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1629 * on 32-bit kernels:
1630 */
1631#ifdef CONFIG_X86_32
1632void enable_sep_cpu(void)
1633{
1634 struct tss_struct *tss;
1635 int cpu;
1636
1637 if (!boot_cpu_has(X86_FEATURE_SEP))
1638 return;
1639
1640 cpu = get_cpu();
1641 tss = &per_cpu(cpu_tss_rw, cpu);
1642
1643 /*
1644 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1645 * see the big comment in struct x86_hw_tss's definition.
1646 */
1647
1648 tss->x86_tss.ss1 = __KERNEL_CS;
1649 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1650 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1651 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1652
1653 put_cpu();
1654}
1655#endif
1656
1657void __init identify_boot_cpu(void)
1658{
1659 identify_cpu(&boot_cpu_data);
1660#ifdef CONFIG_X86_32
1661 sysenter_setup();
1662 enable_sep_cpu();
1663#endif
1664 cpu_detect_tlb(&boot_cpu_data);
1665 setup_cr_pinning();
1666
1667 tsx_init();
1668}
1669
1670void identify_secondary_cpu(struct cpuinfo_x86 *c)
1671{
1672 BUG_ON(c == &boot_cpu_data);
1673 identify_cpu(c);
1674#ifdef CONFIG_X86_32
1675 enable_sep_cpu();
1676#endif
1677 mtrr_ap_init();
1678 validate_apic_and_package_id(c);
1679 x86_spec_ctrl_setup_ap();
1680 update_srbds_msr();
1681}
1682
1683static __init int setup_noclflush(char *arg)
1684{
1685 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1686 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1687 return 1;
1688}
1689__setup("noclflush", setup_noclflush);
1690
1691void print_cpu_info(struct cpuinfo_x86 *c)
1692{
1693 const char *vendor = NULL;
1694
1695 if (c->x86_vendor < X86_VENDOR_NUM) {
1696 vendor = this_cpu->c_vendor;
1697 } else {
1698 if (c->cpuid_level >= 0)
1699 vendor = c->x86_vendor_id;
1700 }
1701
1702 if (vendor && !strstr(c->x86_model_id, vendor))
1703 pr_cont("%s ", vendor);
1704
1705 if (c->x86_model_id[0])
1706 pr_cont("%s", c->x86_model_id);
1707 else
1708 pr_cont("%d86", c->x86);
1709
1710 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1711
1712 if (c->x86_stepping || c->cpuid_level >= 0)
1713 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1714 else
1715 pr_cont(")\n");
1716}
1717
1718/*
1719 * clearcpuid= was already parsed in cpu_parse_early_param(). This dummy
1720 * function prevents it from becoming an environment variable for init.
1721 */
1722static __init int setup_clearcpuid(char *arg)
1723{
1724 return 1;
1725}
1726__setup("clearcpuid=", setup_clearcpuid);
1727
1728#ifdef CONFIG_X86_64
1729DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1730 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1731EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1732
1733/*
1734 * The following percpu variables are hot. Align current_task to
1735 * cacheline size such that they fall in the same cacheline.
1736 */
1737DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1738 &init_task;
1739EXPORT_PER_CPU_SYMBOL(current_task);
1740
1741DEFINE_PER_CPU(void *, hardirq_stack_ptr);
1742DEFINE_PER_CPU(bool, hardirq_stack_inuse);
1743
1744DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1745EXPORT_PER_CPU_SYMBOL(__preempt_count);
1746
1747DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
1748
1749/* May not be marked __init: used by software suspend */
1750void syscall_init(void)
1751{
1752 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1753 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1754
1755#ifdef CONFIG_IA32_EMULATION
1756 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1757 /*
1758 * This only works on Intel CPUs.
1759 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1760 * This does not cause SYSENTER to jump to the wrong location, because
1761 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1762 */
1763 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1764 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1765 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1766 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1767#else
1768 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1769 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1770 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1771 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1772#endif
1773
1774 /*
1775 * Flags to clear on syscall; clear as much as possible
1776 * to minimize user space-kernel interference.
1777 */
1778 wrmsrl(MSR_SYSCALL_MASK,
1779 X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
1780 X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
1781 X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
1782 X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
1783 X86_EFLAGS_AC|X86_EFLAGS_ID);
1784}
1785
1786#else /* CONFIG_X86_64 */
1787
1788DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1789EXPORT_PER_CPU_SYMBOL(current_task);
1790DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1791EXPORT_PER_CPU_SYMBOL(__preempt_count);
1792
1793/*
1794 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1795 * the top of the kernel stack. Use an extra percpu variable to track the
1796 * top of the kernel stack directly.
1797 */
1798DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1799 (unsigned long)&init_thread_union + THREAD_SIZE;
1800EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1801
1802#ifdef CONFIG_STACKPROTECTOR
1803DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
1804EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
1805#endif
1806
1807#endif /* CONFIG_X86_64 */
1808
1809/*
1810 * Clear all 6 debug registers:
1811 */
1812static void clear_all_debug_regs(void)
1813{
1814 int i;
1815
1816 for (i = 0; i < 8; i++) {
1817 /* Ignore db4, db5 */
1818 if ((i == 4) || (i == 5))
1819 continue;
1820
1821 set_debugreg(0, i);
1822 }
1823}
1824
1825#ifdef CONFIG_KGDB
1826/*
1827 * Restore debug regs if using kgdbwait and you have a kernel debugger
1828 * connection established.
1829 */
1830static void dbg_restore_debug_regs(void)
1831{
1832 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1833 arch_kgdb_ops.correct_hw_break();
1834}
1835#else /* ! CONFIG_KGDB */
1836#define dbg_restore_debug_regs()
1837#endif /* ! CONFIG_KGDB */
1838
1839static void wait_for_master_cpu(int cpu)
1840{
1841#ifdef CONFIG_SMP
1842 /*
1843 * wait for ACK from master CPU before continuing
1844 * with AP initialization
1845 */
1846 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1847 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1848 cpu_relax();
1849#endif
1850}
1851
1852#ifdef CONFIG_X86_64
1853static inline void setup_getcpu(int cpu)
1854{
1855 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1856 struct desc_struct d = { };
1857
1858 if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
1859 wrmsr(MSR_TSC_AUX, cpudata, 0);
1860
1861 /* Store CPU and node number in limit. */
1862 d.limit0 = cpudata;
1863 d.limit1 = cpudata >> 16;
1864
1865 d.type = 5; /* RO data, expand down, accessed */
1866 d.dpl = 3; /* Visible to user code */
1867 d.s = 1; /* Not a system segment */
1868 d.p = 1; /* Present */
1869 d.d = 1; /* 32-bit */
1870
1871 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1872}
1873
1874static inline void ucode_cpu_init(int cpu)
1875{
1876 if (cpu)
1877 load_ucode_ap();
1878}
1879
1880static inline void tss_setup_ist(struct tss_struct *tss)
1881{
1882 /* Set up the per-CPU TSS IST stacks */
1883 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1884 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1885 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1886 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1887 /* Only mapped when SEV-ES is active */
1888 tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
1889}
1890
1891#else /* CONFIG_X86_64 */
1892
1893static inline void setup_getcpu(int cpu) { }
1894
1895static inline void ucode_cpu_init(int cpu)
1896{
1897 show_ucode_info_early();
1898}
1899
1900static inline void tss_setup_ist(struct tss_struct *tss) { }
1901
1902#endif /* !CONFIG_X86_64 */
1903
1904static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1905{
1906 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1907
1908#ifdef CONFIG_X86_IOPL_IOPERM
1909 tss->io_bitmap.prev_max = 0;
1910 tss->io_bitmap.prev_sequence = 0;
1911 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1912 /*
1913 * Invalidate the extra array entry past the end of the all
1914 * permission bitmap as required by the hardware.
1915 */
1916 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1917#endif
1918}
1919
1920/*
1921 * Setup everything needed to handle exceptions from the IDT, including the IST
1922 * exceptions which use paranoid_entry().
1923 */
1924void cpu_init_exception_handling(void)
1925{
1926 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1927 int cpu = raw_smp_processor_id();
1928
1929 /* paranoid_entry() gets the CPU number from the GDT */
1930 setup_getcpu(cpu);
1931
1932 /* IST vectors need TSS to be set up. */
1933 tss_setup_ist(tss);
1934 tss_setup_io_bitmap(tss);
1935 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1936
1937 load_TR_desc();
1938
1939 /* Finally load the IDT */
1940 load_current_idt();
1941}
1942
1943/*
1944 * cpu_init() initializes state that is per-CPU. Some data is already
1945 * initialized (naturally) in the bootstrap process, such as the GDT. We
1946 * reload it nevertheless, this function acts as a 'CPU state barrier',
1947 * nothing should get across.
1948 */
1949void cpu_init(void)
1950{
1951 struct task_struct *cur = current;
1952 int cpu = raw_smp_processor_id();
1953
1954 wait_for_master_cpu(cpu);
1955
1956 ucode_cpu_init(cpu);
1957
1958#ifdef CONFIG_NUMA
1959 if (this_cpu_read(numa_node) == 0 &&
1960 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1961 set_numa_node(early_cpu_to_node(cpu));
1962#endif
1963 pr_debug("Initializing CPU#%d\n", cpu);
1964
1965 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
1966 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
1967 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1968
1969 /*
1970 * Initialize the per-CPU GDT with the boot GDT,
1971 * and set up the GDT descriptor:
1972 */
1973 switch_to_new_gdt(cpu);
1974
1975 if (IS_ENABLED(CONFIG_X86_64)) {
1976 loadsegment(fs, 0);
1977 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1978 syscall_init();
1979
1980 wrmsrl(MSR_FS_BASE, 0);
1981 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1982 barrier();
1983
1984 x2apic_setup();
1985 }
1986
1987 mmgrab(&init_mm);
1988 cur->active_mm = &init_mm;
1989 BUG_ON(cur->mm);
1990 initialize_tlbstate_and_flush();
1991 enter_lazy_tlb(&init_mm, cur);
1992
1993 /*
1994 * sp0 points to the entry trampoline stack regardless of what task
1995 * is running.
1996 */
1997 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1998
1999 load_mm_ldt(&init_mm);
2000
2001 clear_all_debug_regs();
2002 dbg_restore_debug_regs();
2003
2004 doublefault_init_cpu_tss();
2005
2006 fpu__init_cpu();
2007
2008 if (is_uv_system())
2009 uv_cpu_init();
2010
2011 load_fixmap_gdt(cpu);
2012}
2013
2014#ifdef CONFIG_SMP
2015void cpu_init_secondary(void)
2016{
2017 /*
2018 * Relies on the BP having set-up the IDT tables, which are loaded
2019 * on this CPU in cpu_init_exception_handling().
2020 */
2021 cpu_init_exception_handling();
2022 cpu_init();
2023}
2024#endif
2025
2026/*
2027 * The microcode loader calls this upon late microcode load to recheck features,
2028 * only when microcode has been updated. Caller holds microcode_mutex and CPU
2029 * hotplug lock.
2030 */
2031void microcode_check(void)
2032{
2033 struct cpuinfo_x86 info;
2034
2035 perf_check_microcode();
2036
2037 /* Reload CPUID max function as it might've changed. */
2038 info.cpuid_level = cpuid_eax(0);
2039
2040 /*
2041 * Copy all capability leafs to pick up the synthetic ones so that
2042 * memcmp() below doesn't fail on that. The ones coming from CPUID will
2043 * get overwritten in get_cpu_cap().
2044 */
2045 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2046
2047 get_cpu_cap(&info);
2048
2049 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2050 return;
2051
2052 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2053 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2054}
2055
2056/*
2057 * Invoked from core CPU hotplug code after hotplug operations
2058 */
2059void arch_smt_update(void)
2060{
2061 /* Handle the speculative execution misfeatures */
2062 cpu_bugs_smt_update();
2063 /* Check whether IPI broadcasting can be enabled */
2064 apic_smt_update();
2065}