Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/***************************************************************************
  2*   Copyright (C) 2006 by Joachim Fritschi, <jfritschi@freenet.de>        *
  3*                                                                         *
  4*   This program is free software; you can redistribute it and/or modify  *
  5*   it under the terms of the GNU General Public License as published by  *
  6*   the Free Software Foundation; either version 2 of the License, or     *
  7*   (at your option) any later version.                                   *
  8*                                                                         *
  9*   This program is distributed in the hope that it will be useful,       *
 10*   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 11*   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 12*   GNU General Public License for more details.                          *
 13*                                                                         *
 14*   You should have received a copy of the GNU General Public License     *
 15*   along with this program; if not, write to the                         *
 16*   Free Software Foundation, Inc.,                                       *
 17*   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
 18***************************************************************************/
 19
 20.file "twofish-x86_64-asm.S"
 21.text
 22
 
 23#include <asm/asm-offsets.h>
 24
 25#define a_offset	0
 26#define b_offset	4
 27#define c_offset	8
 28#define d_offset	12
 29
 30/* Structure of the crypto context struct*/
 31
 32#define s0	0	/* S0 Array 256 Words each */
 33#define s1	1024	/* S1 Array */
 34#define s2	2048	/* S2 Array */
 35#define s3	3072	/* S3 Array */
 36#define w	4096	/* 8 whitening keys (word) */
 37#define k	4128	/* key 1-32 ( word ) */
 38
 39/* define a few register aliases to allow macro substitution */
 40
 41#define R0     %rax
 42#define R0D    %eax
 43#define R0B    %al
 44#define R0H    %ah
 45
 46#define R1     %rbx
 47#define R1D    %ebx
 48#define R1B    %bl
 49#define R1H    %bh
 50
 51#define R2     %rcx
 52#define R2D    %ecx
 53#define R2B    %cl
 54#define R2H    %ch
 55
 56#define R3     %rdx
 57#define R3D    %edx
 58#define R3B    %dl
 59#define R3H    %dh
 60
 61
 62/* performs input whitening */
 63#define input_whitening(src,context,offset)\
 64	xor	w+offset(context),	src;
 65
 66/* performs input whitening */
 67#define output_whitening(src,context,offset)\
 68	xor	w+16+offset(context),	src;
 69
 70
 71/*
 72 * a input register containing a (rotated 16)
 73 * b input register containing b
 74 * c input register containing c
 75 * d input register containing d (already rol $1)
 76 * operations on a and b are interleaved to increase performance
 77 */
 78#define encrypt_round(a,b,c,d,round)\
 79	movzx	b ## B,		%edi;\
 80	mov	s1(%r11,%rdi,4),%r8d;\
 81	movzx	a ## B,		%edi;\
 82	mov	s2(%r11,%rdi,4),%r9d;\
 83	movzx	b ## H,		%edi;\
 84	ror	$16,		b ## D;\
 85	xor	s2(%r11,%rdi,4),%r8d;\
 86	movzx	a ## H,		%edi;\
 87	ror	$16,		a ## D;\
 88	xor	s3(%r11,%rdi,4),%r9d;\
 89	movzx	b ## B,		%edi;\
 90	xor	s3(%r11,%rdi,4),%r8d;\
 91	movzx	a ## B,		%edi;\
 92	xor	(%r11,%rdi,4),	%r9d;\
 93	movzx	b ## H,		%edi;\
 94	ror	$15,		b ## D;\
 95	xor	(%r11,%rdi,4),	%r8d;\
 96	movzx	a ## H,		%edi;\
 97	xor	s1(%r11,%rdi,4),%r9d;\
 98	add	%r8d,		%r9d;\
 99	add	%r9d,		%r8d;\
100	add	k+round(%r11),	%r9d;\
101	xor	%r9d,		c ## D;\
102	rol	$15,		c ## D;\
103	add	k+4+round(%r11),%r8d;\
104	xor	%r8d,		d ## D;
105
106/*
107 * a input register containing a(rotated 16)
108 * b input register containing b
109 * c input register containing c
110 * d input register containing d (already rol $1)
111 * operations on a and b are interleaved to increase performance
112 * during the round a and b are prepared for the output whitening
113 */
114#define encrypt_last_round(a,b,c,d,round)\
115	mov	b ## D,		%r10d;\
116	shl	$32,		%r10;\
117	movzx	b ## B,		%edi;\
118	mov	s1(%r11,%rdi,4),%r8d;\
119	movzx	a ## B,		%edi;\
120	mov	s2(%r11,%rdi,4),%r9d;\
121	movzx	b ## H,		%edi;\
122	ror	$16,		b ## D;\
123	xor	s2(%r11,%rdi,4),%r8d;\
124	movzx	a ## H,		%edi;\
125	ror	$16,		a ## D;\
126	xor	s3(%r11,%rdi,4),%r9d;\
127	movzx	b ## B,		%edi;\
128	xor	s3(%r11,%rdi,4),%r8d;\
129	movzx	a ## B,		%edi;\
130	xor	(%r11,%rdi,4),	%r9d;\
131	xor	a,		%r10;\
132	movzx	b ## H,		%edi;\
133	xor	(%r11,%rdi,4),	%r8d;\
134	movzx	a ## H,		%edi;\
135	xor	s1(%r11,%rdi,4),%r9d;\
136	add	%r8d,		%r9d;\
137	add	%r9d,		%r8d;\
138	add	k+round(%r11),	%r9d;\
139	xor	%r9d,		c ## D;\
140	ror	$1,		c ## D;\
141	add	k+4+round(%r11),%r8d;\
142	xor	%r8d,		d ## D
143
144/*
145 * a input register containing a
146 * b input register containing b (rotated 16)
147 * c input register containing c (already rol $1)
148 * d input register containing d
149 * operations on a and b are interleaved to increase performance
150 */
151#define decrypt_round(a,b,c,d,round)\
152	movzx	a ## B,		%edi;\
153	mov	(%r11,%rdi,4),	%r9d;\
154	movzx	b ## B,		%edi;\
155	mov	s3(%r11,%rdi,4),%r8d;\
156	movzx	a ## H,		%edi;\
157	ror	$16,		a ## D;\
158	xor	s1(%r11,%rdi,4),%r9d;\
159	movzx	b ## H,		%edi;\
160	ror	$16,		b ## D;\
161	xor	(%r11,%rdi,4),	%r8d;\
162	movzx	a ## B,		%edi;\
163	xor	s2(%r11,%rdi,4),%r9d;\
164	movzx	b ## B,		%edi;\
165	xor	s1(%r11,%rdi,4),%r8d;\
166	movzx	a ## H,		%edi;\
167	ror	$15,		a ## D;\
168	xor	s3(%r11,%rdi,4),%r9d;\
169	movzx	b ## H,		%edi;\
170	xor	s2(%r11,%rdi,4),%r8d;\
171	add	%r8d,		%r9d;\
172	add	%r9d,		%r8d;\
173	add	k+round(%r11),	%r9d;\
174	xor	%r9d,		c ## D;\
175	add	k+4+round(%r11),%r8d;\
176	xor	%r8d,		d ## D;\
177	rol	$15,		d ## D;
178
179/*
180 * a input register containing a
181 * b input register containing b
182 * c input register containing c (already rol $1)
183 * d input register containing d
184 * operations on a and b are interleaved to increase performance
185 * during the round a and b are prepared for the output whitening
186 */
187#define decrypt_last_round(a,b,c,d,round)\
188	movzx	a ## B,		%edi;\
189	mov	(%r11,%rdi,4),	%r9d;\
190	movzx	b ## B,		%edi;\
191	mov	s3(%r11,%rdi,4),%r8d;\
192	movzx	b ## H,		%edi;\
193	ror	$16,		b ## D;\
194	xor	(%r11,%rdi,4),	%r8d;\
195	movzx	a ## H,		%edi;\
196	mov	b ## D,		%r10d;\
197	shl	$32,		%r10;\
198	xor	a,		%r10;\
199	ror	$16,		a ## D;\
200	xor	s1(%r11,%rdi,4),%r9d;\
201	movzx	b ## B,		%edi;\
202	xor	s1(%r11,%rdi,4),%r8d;\
203	movzx	a ## B,		%edi;\
204	xor	s2(%r11,%rdi,4),%r9d;\
205	movzx	b ## H,		%edi;\
206	xor	s2(%r11,%rdi,4),%r8d;\
207	movzx	a ## H,		%edi;\
208	xor	s3(%r11,%rdi,4),%r9d;\
209	add	%r8d,		%r9d;\
210	add	%r9d,		%r8d;\
211	add	k+round(%r11),	%r9d;\
212	xor	%r9d,		c ## D;\
213	add	k+4+round(%r11),%r8d;\
214	xor	%r8d,		d ## D;\
215	ror	$1,		d ## D;
216
217.align 8
218.global twofish_enc_blk
219.global twofish_dec_blk
220
221twofish_enc_blk:
222	pushq    R1
223
224	/* %rdi contains the ctx address */
225	/* %rsi contains the output address */
226	/* %rdx contains the input address */
227	/* ctx address is moved to free one non-rex register
228	as target for the 8bit high operations */
229	mov	%rdi,		%r11
230
231	movq	(R3),	R1
232	movq	8(R3),	R3
233	input_whitening(R1,%r11,a_offset)
234	input_whitening(R3,%r11,c_offset)
235	mov	R1D,	R0D
236	rol	$16,	R0D
237	shr	$32,	R1
238	mov	R3D,	R2D
239	shr	$32,	R3
240	rol	$1,	R3D
241
242	encrypt_round(R0,R1,R2,R3,0);
243	encrypt_round(R2,R3,R0,R1,8);
244	encrypt_round(R0,R1,R2,R3,2*8);
245	encrypt_round(R2,R3,R0,R1,3*8);
246	encrypt_round(R0,R1,R2,R3,4*8);
247	encrypt_round(R2,R3,R0,R1,5*8);
248	encrypt_round(R0,R1,R2,R3,6*8);
249	encrypt_round(R2,R3,R0,R1,7*8);
250	encrypt_round(R0,R1,R2,R3,8*8);
251	encrypt_round(R2,R3,R0,R1,9*8);
252	encrypt_round(R0,R1,R2,R3,10*8);
253	encrypt_round(R2,R3,R0,R1,11*8);
254	encrypt_round(R0,R1,R2,R3,12*8);
255	encrypt_round(R2,R3,R0,R1,13*8);
256	encrypt_round(R0,R1,R2,R3,14*8);
257	encrypt_last_round(R2,R3,R0,R1,15*8);
258
259
260	output_whitening(%r10,%r11,a_offset)
261	movq	%r10,	(%rsi)
262
263	shl	$32,	R1
264	xor	R0,	R1
265
266	output_whitening(R1,%r11,c_offset)
267	movq	R1,	8(%rsi)
268
269	popq	R1
270	movq	$1,%rax
271	ret
 
272
273twofish_dec_blk:
274	pushq    R1
275
276	/* %rdi contains the ctx address */
277	/* %rsi contains the output address */
278	/* %rdx contains the input address */
279	/* ctx address is moved to free one non-rex register
280	as target for the 8bit high operations */
281	mov	%rdi,		%r11
282
283	movq	(R3),	R1
284	movq	8(R3),	R3
285	output_whitening(R1,%r11,a_offset)
286	output_whitening(R3,%r11,c_offset)
287	mov	R1D,	R0D
288	shr	$32,	R1
289	rol	$16,	R1D
290	mov	R3D,	R2D
291	shr	$32,	R3
292	rol	$1,	R2D
293
294	decrypt_round(R0,R1,R2,R3,15*8);
295	decrypt_round(R2,R3,R0,R1,14*8);
296	decrypt_round(R0,R1,R2,R3,13*8);
297	decrypt_round(R2,R3,R0,R1,12*8);
298	decrypt_round(R0,R1,R2,R3,11*8);
299	decrypt_round(R2,R3,R0,R1,10*8);
300	decrypt_round(R0,R1,R2,R3,9*8);
301	decrypt_round(R2,R3,R0,R1,8*8);
302	decrypt_round(R0,R1,R2,R3,7*8);
303	decrypt_round(R2,R3,R0,R1,6*8);
304	decrypt_round(R0,R1,R2,R3,5*8);
305	decrypt_round(R2,R3,R0,R1,4*8);
306	decrypt_round(R0,R1,R2,R3,3*8);
307	decrypt_round(R2,R3,R0,R1,2*8);
308	decrypt_round(R0,R1,R2,R3,1*8);
309	decrypt_last_round(R2,R3,R0,R1,0);
310
311	input_whitening(%r10,%r11,a_offset)
312	movq	%r10,	(%rsi)
313
314	shl	$32,	R1
315	xor	R0,	R1
316
317	input_whitening(R1,%r11,c_offset)
318	movq	R1,	8(%rsi)
319
320	popq	R1
321	movq	$1,%rax
322	ret
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/***************************************************************************
  3*   Copyright (C) 2006 by Joachim Fritschi, <jfritschi@freenet.de>        *
  4*                                                                         *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  5***************************************************************************/
  6
  7.file "twofish-x86_64-asm.S"
  8.text
  9
 10#include <linux/linkage.h>
 11#include <asm/asm-offsets.h>
 12
 13#define a_offset	0
 14#define b_offset	4
 15#define c_offset	8
 16#define d_offset	12
 17
 18/* Structure of the crypto context struct*/
 19
 20#define s0	0	/* S0 Array 256 Words each */
 21#define s1	1024	/* S1 Array */
 22#define s2	2048	/* S2 Array */
 23#define s3	3072	/* S3 Array */
 24#define w	4096	/* 8 whitening keys (word) */
 25#define k	4128	/* key 1-32 ( word ) */
 26
 27/* define a few register aliases to allow macro substitution */
 28
 29#define R0     %rax
 30#define R0D    %eax
 31#define R0B    %al
 32#define R0H    %ah
 33
 34#define R1     %rbx
 35#define R1D    %ebx
 36#define R1B    %bl
 37#define R1H    %bh
 38
 39#define R2     %rcx
 40#define R2D    %ecx
 41#define R2B    %cl
 42#define R2H    %ch
 43
 44#define R3     %rdx
 45#define R3D    %edx
 46#define R3B    %dl
 47#define R3H    %dh
 48
 49
 50/* performs input whitening */
 51#define input_whitening(src,context,offset)\
 52	xor	w+offset(context),	src;
 53
 54/* performs input whitening */
 55#define output_whitening(src,context,offset)\
 56	xor	w+16+offset(context),	src;
 57
 58
 59/*
 60 * a input register containing a (rotated 16)
 61 * b input register containing b
 62 * c input register containing c
 63 * d input register containing d (already rol $1)
 64 * operations on a and b are interleaved to increase performance
 65 */
 66#define encrypt_round(a,b,c,d,round)\
 67	movzx	b ## B,		%edi;\
 68	mov	s1(%r11,%rdi,4),%r8d;\
 69	movzx	a ## B,		%edi;\
 70	mov	s2(%r11,%rdi,4),%r9d;\
 71	movzx	b ## H,		%edi;\
 72	ror	$16,		b ## D;\
 73	xor	s2(%r11,%rdi,4),%r8d;\
 74	movzx	a ## H,		%edi;\
 75	ror	$16,		a ## D;\
 76	xor	s3(%r11,%rdi,4),%r9d;\
 77	movzx	b ## B,		%edi;\
 78	xor	s3(%r11,%rdi,4),%r8d;\
 79	movzx	a ## B,		%edi;\
 80	xor	(%r11,%rdi,4),	%r9d;\
 81	movzx	b ## H,		%edi;\
 82	ror	$15,		b ## D;\
 83	xor	(%r11,%rdi,4),	%r8d;\
 84	movzx	a ## H,		%edi;\
 85	xor	s1(%r11,%rdi,4),%r9d;\
 86	add	%r8d,		%r9d;\
 87	add	%r9d,		%r8d;\
 88	add	k+round(%r11),	%r9d;\
 89	xor	%r9d,		c ## D;\
 90	rol	$15,		c ## D;\
 91	add	k+4+round(%r11),%r8d;\
 92	xor	%r8d,		d ## D;
 93
 94/*
 95 * a input register containing a(rotated 16)
 96 * b input register containing b
 97 * c input register containing c
 98 * d input register containing d (already rol $1)
 99 * operations on a and b are interleaved to increase performance
100 * during the round a and b are prepared for the output whitening
101 */
102#define encrypt_last_round(a,b,c,d,round)\
103	mov	b ## D,		%r10d;\
104	shl	$32,		%r10;\
105	movzx	b ## B,		%edi;\
106	mov	s1(%r11,%rdi,4),%r8d;\
107	movzx	a ## B,		%edi;\
108	mov	s2(%r11,%rdi,4),%r9d;\
109	movzx	b ## H,		%edi;\
110	ror	$16,		b ## D;\
111	xor	s2(%r11,%rdi,4),%r8d;\
112	movzx	a ## H,		%edi;\
113	ror	$16,		a ## D;\
114	xor	s3(%r11,%rdi,4),%r9d;\
115	movzx	b ## B,		%edi;\
116	xor	s3(%r11,%rdi,4),%r8d;\
117	movzx	a ## B,		%edi;\
118	xor	(%r11,%rdi,4),	%r9d;\
119	xor	a,		%r10;\
120	movzx	b ## H,		%edi;\
121	xor	(%r11,%rdi,4),	%r8d;\
122	movzx	a ## H,		%edi;\
123	xor	s1(%r11,%rdi,4),%r9d;\
124	add	%r8d,		%r9d;\
125	add	%r9d,		%r8d;\
126	add	k+round(%r11),	%r9d;\
127	xor	%r9d,		c ## D;\
128	ror	$1,		c ## D;\
129	add	k+4+round(%r11),%r8d;\
130	xor	%r8d,		d ## D
131
132/*
133 * a input register containing a
134 * b input register containing b (rotated 16)
135 * c input register containing c (already rol $1)
136 * d input register containing d
137 * operations on a and b are interleaved to increase performance
138 */
139#define decrypt_round(a,b,c,d,round)\
140	movzx	a ## B,		%edi;\
141	mov	(%r11,%rdi,4),	%r9d;\
142	movzx	b ## B,		%edi;\
143	mov	s3(%r11,%rdi,4),%r8d;\
144	movzx	a ## H,		%edi;\
145	ror	$16,		a ## D;\
146	xor	s1(%r11,%rdi,4),%r9d;\
147	movzx	b ## H,		%edi;\
148	ror	$16,		b ## D;\
149	xor	(%r11,%rdi,4),	%r8d;\
150	movzx	a ## B,		%edi;\
151	xor	s2(%r11,%rdi,4),%r9d;\
152	movzx	b ## B,		%edi;\
153	xor	s1(%r11,%rdi,4),%r8d;\
154	movzx	a ## H,		%edi;\
155	ror	$15,		a ## D;\
156	xor	s3(%r11,%rdi,4),%r9d;\
157	movzx	b ## H,		%edi;\
158	xor	s2(%r11,%rdi,4),%r8d;\
159	add	%r8d,		%r9d;\
160	add	%r9d,		%r8d;\
161	add	k+round(%r11),	%r9d;\
162	xor	%r9d,		c ## D;\
163	add	k+4+round(%r11),%r8d;\
164	xor	%r8d,		d ## D;\
165	rol	$15,		d ## D;
166
167/*
168 * a input register containing a
169 * b input register containing b
170 * c input register containing c (already rol $1)
171 * d input register containing d
172 * operations on a and b are interleaved to increase performance
173 * during the round a and b are prepared for the output whitening
174 */
175#define decrypt_last_round(a,b,c,d,round)\
176	movzx	a ## B,		%edi;\
177	mov	(%r11,%rdi,4),	%r9d;\
178	movzx	b ## B,		%edi;\
179	mov	s3(%r11,%rdi,4),%r8d;\
180	movzx	b ## H,		%edi;\
181	ror	$16,		b ## D;\
182	xor	(%r11,%rdi,4),	%r8d;\
183	movzx	a ## H,		%edi;\
184	mov	b ## D,		%r10d;\
185	shl	$32,		%r10;\
186	xor	a,		%r10;\
187	ror	$16,		a ## D;\
188	xor	s1(%r11,%rdi,4),%r9d;\
189	movzx	b ## B,		%edi;\
190	xor	s1(%r11,%rdi,4),%r8d;\
191	movzx	a ## B,		%edi;\
192	xor	s2(%r11,%rdi,4),%r9d;\
193	movzx	b ## H,		%edi;\
194	xor	s2(%r11,%rdi,4),%r8d;\
195	movzx	a ## H,		%edi;\
196	xor	s3(%r11,%rdi,4),%r9d;\
197	add	%r8d,		%r9d;\
198	add	%r9d,		%r8d;\
199	add	k+round(%r11),	%r9d;\
200	xor	%r9d,		c ## D;\
201	add	k+4+round(%r11),%r8d;\
202	xor	%r8d,		d ## D;\
203	ror	$1,		d ## D;
204
205SYM_FUNC_START(twofish_enc_blk)
 
 
 
 
206	pushq    R1
207
208	/* %rdi contains the ctx address */
209	/* %rsi contains the output address */
210	/* %rdx contains the input address */
211	/* ctx address is moved to free one non-rex register
212	as target for the 8bit high operations */
213	mov	%rdi,		%r11
214
215	movq	(R3),	R1
216	movq	8(R3),	R3
217	input_whitening(R1,%r11,a_offset)
218	input_whitening(R3,%r11,c_offset)
219	mov	R1D,	R0D
220	rol	$16,	R0D
221	shr	$32,	R1
222	mov	R3D,	R2D
223	shr	$32,	R3
224	rol	$1,	R3D
225
226	encrypt_round(R0,R1,R2,R3,0);
227	encrypt_round(R2,R3,R0,R1,8);
228	encrypt_round(R0,R1,R2,R3,2*8);
229	encrypt_round(R2,R3,R0,R1,3*8);
230	encrypt_round(R0,R1,R2,R3,4*8);
231	encrypt_round(R2,R3,R0,R1,5*8);
232	encrypt_round(R0,R1,R2,R3,6*8);
233	encrypt_round(R2,R3,R0,R1,7*8);
234	encrypt_round(R0,R1,R2,R3,8*8);
235	encrypt_round(R2,R3,R0,R1,9*8);
236	encrypt_round(R0,R1,R2,R3,10*8);
237	encrypt_round(R2,R3,R0,R1,11*8);
238	encrypt_round(R0,R1,R2,R3,12*8);
239	encrypt_round(R2,R3,R0,R1,13*8);
240	encrypt_round(R0,R1,R2,R3,14*8);
241	encrypt_last_round(R2,R3,R0,R1,15*8);
242
243
244	output_whitening(%r10,%r11,a_offset)
245	movq	%r10,	(%rsi)
246
247	shl	$32,	R1
248	xor	R0,	R1
249
250	output_whitening(R1,%r11,c_offset)
251	movq	R1,	8(%rsi)
252
253	popq	R1
254	movl	$1,%eax
255	ret
256SYM_FUNC_END(twofish_enc_blk)
257
258SYM_FUNC_START(twofish_dec_blk)
259	pushq    R1
260
261	/* %rdi contains the ctx address */
262	/* %rsi contains the output address */
263	/* %rdx contains the input address */
264	/* ctx address is moved to free one non-rex register
265	as target for the 8bit high operations */
266	mov	%rdi,		%r11
267
268	movq	(R3),	R1
269	movq	8(R3),	R3
270	output_whitening(R1,%r11,a_offset)
271	output_whitening(R3,%r11,c_offset)
272	mov	R1D,	R0D
273	shr	$32,	R1
274	rol	$16,	R1D
275	mov	R3D,	R2D
276	shr	$32,	R3
277	rol	$1,	R2D
278
279	decrypt_round(R0,R1,R2,R3,15*8);
280	decrypt_round(R2,R3,R0,R1,14*8);
281	decrypt_round(R0,R1,R2,R3,13*8);
282	decrypt_round(R2,R3,R0,R1,12*8);
283	decrypt_round(R0,R1,R2,R3,11*8);
284	decrypt_round(R2,R3,R0,R1,10*8);
285	decrypt_round(R0,R1,R2,R3,9*8);
286	decrypt_round(R2,R3,R0,R1,8*8);
287	decrypt_round(R0,R1,R2,R3,7*8);
288	decrypt_round(R2,R3,R0,R1,6*8);
289	decrypt_round(R0,R1,R2,R3,5*8);
290	decrypt_round(R2,R3,R0,R1,4*8);
291	decrypt_round(R0,R1,R2,R3,3*8);
292	decrypt_round(R2,R3,R0,R1,2*8);
293	decrypt_round(R0,R1,R2,R3,1*8);
294	decrypt_last_round(R2,R3,R0,R1,0);
295
296	input_whitening(%r10,%r11,a_offset)
297	movq	%r10,	(%rsi)
298
299	shl	$32,	R1
300	xor	R0,	R1
301
302	input_whitening(R1,%r11,c_offset)
303	movq	R1,	8(%rsi)
304
305	popq	R1
306	movl	$1,%eax
307	ret
308SYM_FUNC_END(twofish_dec_blk)