Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.14.15.
  1/*
  2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3 *
  4 *   This program is free software; you can redistribute it and/or
  5 *   modify it under the terms of the GNU General Public License
  6 *   as published by the Free Software Foundation, version 2.
  7 *
  8 *   This program is distributed in the hope that it will be useful, but
  9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 11 *   NON INFRINGEMENT.  See the GNU General Public License for
 12 *   more details.
 13 */
 14
 15#include <linux/cache.h>
 16#include <linux/delay.h>
 17#include <linux/uaccess.h>
 18#include <linux/module.h>
 19#include <linux/mm.h>
 20#include <linux/atomic.h>
 21#include <arch/chip.h>
 22
 23/* See <asm/atomic_32.h> */
 24#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
 25
 26/*
 27 * A block of memory containing locks for atomic ops. Each instance of this
 28 * struct will be homed on a different CPU.
 29 */
 30struct atomic_locks_on_cpu {
 31	int lock[ATOMIC_HASH_L2_SIZE];
 32} __attribute__((aligned(ATOMIC_HASH_L2_SIZE * 4)));
 33
 34static DEFINE_PER_CPU(struct atomic_locks_on_cpu, atomic_lock_pool);
 35
 36/* The locks we'll use until __init_atomic_per_cpu is called. */
 37static struct atomic_locks_on_cpu __initdata initial_atomic_locks;
 38
 39/* Hash into this vector to get a pointer to lock for the given atomic. */
 40struct atomic_locks_on_cpu *atomic_lock_ptr[ATOMIC_HASH_L1_SIZE]
 41	__write_once = {
 42	[0 ... ATOMIC_HASH_L1_SIZE-1] (&initial_atomic_locks)
 43};
 44
 45#else /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
 46
 47/* This page is remapped on startup to be hash-for-home. */
 48int atomic_locks[PAGE_SIZE / sizeof(int)] __page_aligned_bss;
 49
 50#endif /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
 51
 52int *__atomic_hashed_lock(volatile void *v)
 53{
 54	/* NOTE: this code must match "sys_cmpxchg" in kernel/intvec_32.S */
 55#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
 56	unsigned long i =
 57		(unsigned long) v & ((PAGE_SIZE-1) & -sizeof(long long));
 58	unsigned long n = __insn_crc32_32(0, i);
 59
 60	/* Grab high bits for L1 index. */
 61	unsigned long l1_index = n >> ((sizeof(n) * 8) - ATOMIC_HASH_L1_SHIFT);
 62	/* Grab low bits for L2 index. */
 63	unsigned long l2_index = n & (ATOMIC_HASH_L2_SIZE - 1);
 64
 65	return &atomic_lock_ptr[l1_index]->lock[l2_index];
 66#else
 67	/*
 68	 * Use bits [3, 3 + ATOMIC_HASH_SHIFT) as the lock index.
 69	 * Using mm works here because atomic_locks is page aligned.
 70	 */
 71	unsigned long ptr = __insn_mm((unsigned long)v >> 1,
 72				      (unsigned long)atomic_locks,
 73				      2, (ATOMIC_HASH_SHIFT + 2) - 1);
 74	return (int *)ptr;
 75#endif
 76}
 77
 78#ifdef CONFIG_SMP
 79/* Return whether the passed pointer is a valid atomic lock pointer. */
 80static int is_atomic_lock(int *p)
 81{
 82#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
 83	int i;
 84	for (i = 0; i < ATOMIC_HASH_L1_SIZE; ++i) {
 85
 86		if (p >= &atomic_lock_ptr[i]->lock[0] &&
 87		    p < &atomic_lock_ptr[i]->lock[ATOMIC_HASH_L2_SIZE]) {
 88			return 1;
 89		}
 90	}
 91	return 0;
 92#else
 93	return p >= &atomic_locks[0] && p < &atomic_locks[ATOMIC_HASH_SIZE];
 94#endif
 95}
 96
 97void __atomic_fault_unlock(int *irqlock_word)
 98{
 99	BUG_ON(!is_atomic_lock(irqlock_word));
100	BUG_ON(*irqlock_word != 1);
101	*irqlock_word = 0;
102}
103
104#endif /* CONFIG_SMP */
105
106static inline int *__atomic_setup(volatile void *v)
107{
108	/* Issue a load to the target to bring it into cache. */
109	*(volatile int *)v;
110	return __atomic_hashed_lock(v);
111}
112
113int _atomic_xchg(atomic_t *v, int n)
114{
115	return __atomic_xchg(&v->counter, __atomic_setup(v), n).val;
116}
117EXPORT_SYMBOL(_atomic_xchg);
118
119int _atomic_xchg_add(atomic_t *v, int i)
120{
121	return __atomic_xchg_add(&v->counter, __atomic_setup(v), i).val;
122}
123EXPORT_SYMBOL(_atomic_xchg_add);
124
125int _atomic_xchg_add_unless(atomic_t *v, int a, int u)
126{
127	/*
128	 * Note: argument order is switched here since it is easier
129	 * to use the first argument consistently as the "old value"
130	 * in the assembly, as is done for _atomic_cmpxchg().
131	 */
132	return __atomic_xchg_add_unless(&v->counter, __atomic_setup(v), u, a)
133		.val;
134}
135EXPORT_SYMBOL(_atomic_xchg_add_unless);
136
137int _atomic_cmpxchg(atomic_t *v, int o, int n)
138{
139	return __atomic_cmpxchg(&v->counter, __atomic_setup(v), o, n).val;
140}
141EXPORT_SYMBOL(_atomic_cmpxchg);
142
143unsigned long _atomic_or(volatile unsigned long *p, unsigned long mask)
144{
145	return __atomic_or((int *)p, __atomic_setup(p), mask).val;
146}
147EXPORT_SYMBOL(_atomic_or);
148
149unsigned long _atomic_andn(volatile unsigned long *p, unsigned long mask)
150{
151	return __atomic_andn((int *)p, __atomic_setup(p), mask).val;
152}
153EXPORT_SYMBOL(_atomic_andn);
154
155unsigned long _atomic_xor(volatile unsigned long *p, unsigned long mask)
156{
157	return __atomic_xor((int *)p, __atomic_setup(p), mask).val;
158}
159EXPORT_SYMBOL(_atomic_xor);
160
161
162u64 _atomic64_xchg(atomic64_t *v, u64 n)
163{
164	return __atomic64_xchg(&v->counter, __atomic_setup(v), n);
165}
166EXPORT_SYMBOL(_atomic64_xchg);
167
168u64 _atomic64_xchg_add(atomic64_t *v, u64 i)
169{
170	return __atomic64_xchg_add(&v->counter, __atomic_setup(v), i);
171}
172EXPORT_SYMBOL(_atomic64_xchg_add);
173
174u64 _atomic64_xchg_add_unless(atomic64_t *v, u64 a, u64 u)
175{
176	/*
177	 * Note: argument order is switched here since it is easier
178	 * to use the first argument consistently as the "old value"
179	 * in the assembly, as is done for _atomic_cmpxchg().
180	 */
181	return __atomic64_xchg_add_unless(&v->counter, __atomic_setup(v),
182					  u, a);
183}
184EXPORT_SYMBOL(_atomic64_xchg_add_unless);
185
186u64 _atomic64_cmpxchg(atomic64_t *v, u64 o, u64 n)
187{
188	return __atomic64_cmpxchg(&v->counter, __atomic_setup(v), o, n);
189}
190EXPORT_SYMBOL(_atomic64_cmpxchg);
191
192
193/*
194 * If any of the atomic or futex routines hit a bad address (not in
195 * the page tables at kernel PL) this routine is called.  The futex
196 * routines are never used on kernel space, and the normal atomics and
197 * bitops are never used on user space.  So a fault on kernel space
198 * must be fatal, but a fault on userspace is a futex fault and we
199 * need to return -EFAULT.  Note that the context this routine is
200 * invoked in is the context of the "_atomic_xxx()" routines called
201 * by the functions in this file.
202 */
203struct __get_user __atomic_bad_address(int __user *addr)
204{
205	if (unlikely(!access_ok(VERIFY_WRITE, addr, sizeof(int))))
206		panic("Bad address used for kernel atomic op: %p\n", addr);
207	return (struct __get_user) { .err = -EFAULT };
208}
209
210
211#if CHIP_HAS_CBOX_HOME_MAP()
212static int __init noatomichash(char *str)
213{
214	pr_warning("noatomichash is deprecated.\n");
215	return 1;
216}
217__setup("noatomichash", noatomichash);
218#endif
219
220void __init __init_atomic_per_cpu(void)
221{
222#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
223
224	unsigned int i;
225	int actual_cpu;
226
227	/*
228	 * Before this is called from setup, we just have one lock for
229	 * all atomic objects/operations.  Here we replace the
230	 * elements of atomic_lock_ptr so that they point at per_cpu
231	 * integers.  This seemingly over-complex approach stems from
232	 * the fact that DEFINE_PER_CPU defines an entry for each cpu
233	 * in the grid, not each cpu from 0..ATOMIC_HASH_SIZE-1.  But
234	 * for efficient hashing of atomics to their locks we want a
235	 * compile time constant power of 2 for the size of this
236	 * table, so we use ATOMIC_HASH_SIZE.
237	 *
238	 * Here we populate atomic_lock_ptr from the per cpu
239	 * atomic_lock_pool, interspersing by actual cpu so that
240	 * subsequent elements are homed on consecutive cpus.
241	 */
242
243	actual_cpu = cpumask_first(cpu_possible_mask);
244
245	for (i = 0; i < ATOMIC_HASH_L1_SIZE; ++i) {
246		/*
247		 * Preincrement to slightly bias against using cpu 0,
248		 * which has plenty of stuff homed on it already.
249		 */
250		actual_cpu = cpumask_next(actual_cpu, cpu_possible_mask);
251		if (actual_cpu >= nr_cpu_ids)
252			actual_cpu = cpumask_first(cpu_possible_mask);
253
254		atomic_lock_ptr[i] = &per_cpu(atomic_lock_pool, actual_cpu);
255	}
256
257#else /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
258
259	/* Validate power-of-two and "bigger than cpus" assumption */
260	BUILD_BUG_ON(ATOMIC_HASH_SIZE & (ATOMIC_HASH_SIZE-1));
261	BUG_ON(ATOMIC_HASH_SIZE < nr_cpu_ids);
262
263	/*
264	 * On TILEPro we prefer to use a single hash-for-home
265	 * page, since this means atomic operations are less
266	 * likely to encounter a TLB fault and thus should
267	 * in general perform faster.  You may wish to disable
268	 * this in situations where few hash-for-home tiles
269	 * are configured.
270	 */
271	BUG_ON((unsigned long)atomic_locks % PAGE_SIZE != 0);
272
273	/* The locks must all fit on one page. */
274	BUILD_BUG_ON(ATOMIC_HASH_SIZE * sizeof(int) > PAGE_SIZE);
275
276	/*
277	 * We use the page offset of the atomic value's address as
278	 * an index into atomic_locks, excluding the low 3 bits.
279	 * That should not produce more indices than ATOMIC_HASH_SIZE.
280	 */
281	BUILD_BUG_ON((PAGE_SIZE >> 3) > ATOMIC_HASH_SIZE);
282
283#endif /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
284}