Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 *  Generic process-grouping system.
   3 *
   4 *  Based originally on the cpuset system, extracted by Paul Menage
   5 *  Copyright (C) 2006 Google, Inc
   6 *
   7 *  Notifications support
   8 *  Copyright (C) 2009 Nokia Corporation
   9 *  Author: Kirill A. Shutemov
  10 *
  11 *  Copyright notices from the original cpuset code:
  12 *  --------------------------------------------------
  13 *  Copyright (C) 2003 BULL SA.
  14 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
  15 *
  16 *  Portions derived from Patrick Mochel's sysfs code.
  17 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  18 *
  19 *  2003-10-10 Written by Simon Derr.
  20 *  2003-10-22 Updates by Stephen Hemminger.
  21 *  2004 May-July Rework by Paul Jackson.
  22 *  ---------------------------------------------------
  23 *
  24 *  This file is subject to the terms and conditions of the GNU General Public
  25 *  License.  See the file COPYING in the main directory of the Linux
  26 *  distribution for more details.
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include "cgroup-internal.h"
  32
  33#include <linux/cred.h>
  34#include <linux/errno.h>
  35#include <linux/init_task.h>
  36#include <linux/kernel.h>
  37#include <linux/magic.h>
  38#include <linux/mutex.h>
  39#include <linux/mount.h>
  40#include <linux/pagemap.h>
  41#include <linux/proc_fs.h>
  42#include <linux/rcupdate.h>
  43#include <linux/sched.h>
  44#include <linux/sched/task.h>
  45#include <linux/slab.h>
  46#include <linux/spinlock.h>
  47#include <linux/percpu-rwsem.h>
  48#include <linux/string.h>
  49#include <linux/hashtable.h>
  50#include <linux/idr.h>
  51#include <linux/kthread.h>
  52#include <linux/atomic.h>
  53#include <linux/cpuset.h>
  54#include <linux/proc_ns.h>
  55#include <linux/nsproxy.h>
  56#include <linux/file.h>
  57#include <linux/fs_parser.h>
  58#include <linux/sched/cputime.h>
  59#include <linux/psi.h>
  60#include <net/sock.h>
  61
  62#define CREATE_TRACE_POINTS
  63#include <trace/events/cgroup.h>
  64
  65#define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
  66					 MAX_CFTYPE_NAME + 2)
  67/* let's not notify more than 100 times per second */
  68#define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
  69
  70/*
  71 * cgroup_mutex is the master lock.  Any modification to cgroup or its
  72 * hierarchy must be performed while holding it.
  73 *
  74 * css_set_lock protects task->cgroups pointer, the list of css_set
  75 * objects, and the chain of tasks off each css_set.
  76 *
  77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
  78 * cgroup.h can use them for lockdep annotations.
  79 */
  80DEFINE_MUTEX(cgroup_mutex);
  81DEFINE_SPINLOCK(css_set_lock);
  82
  83#ifdef CONFIG_PROVE_RCU
  84EXPORT_SYMBOL_GPL(cgroup_mutex);
  85EXPORT_SYMBOL_GPL(css_set_lock);
  86#endif
  87
  88DEFINE_SPINLOCK(trace_cgroup_path_lock);
  89char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
  90bool cgroup_debug __read_mostly;
  91
  92/*
  93 * Protects cgroup_idr and css_idr so that IDs can be released without
  94 * grabbing cgroup_mutex.
  95 */
  96static DEFINE_SPINLOCK(cgroup_idr_lock);
  97
  98/*
  99 * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
 100 * against file removal/re-creation across css hiding.
 101 */
 102static DEFINE_SPINLOCK(cgroup_file_kn_lock);
 103
 104DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
 105
 106#define cgroup_assert_mutex_or_rcu_locked()				\
 107	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
 108			   !lockdep_is_held(&cgroup_mutex),		\
 109			   "cgroup_mutex or RCU read lock required");
 110
 111/*
 112 * cgroup destruction makes heavy use of work items and there can be a lot
 113 * of concurrent destructions.  Use a separate workqueue so that cgroup
 114 * destruction work items don't end up filling up max_active of system_wq
 115 * which may lead to deadlock.
 116 */
 117static struct workqueue_struct *cgroup_destroy_wq;
 118
 119/* generate an array of cgroup subsystem pointers */
 120#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
 121struct cgroup_subsys *cgroup_subsys[] = {
 122#include <linux/cgroup_subsys.h>
 123};
 124#undef SUBSYS
 125
 126/* array of cgroup subsystem names */
 127#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
 128static const char *cgroup_subsys_name[] = {
 129#include <linux/cgroup_subsys.h>
 130};
 131#undef SUBSYS
 132
 133/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
 134#define SUBSYS(_x)								\
 135	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
 136	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
 137	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
 138	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
 139#include <linux/cgroup_subsys.h>
 140#undef SUBSYS
 141
 142#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
 143static struct static_key_true *cgroup_subsys_enabled_key[] = {
 144#include <linux/cgroup_subsys.h>
 145};
 146#undef SUBSYS
 147
 148#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
 149static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
 150#include <linux/cgroup_subsys.h>
 151};
 152#undef SUBSYS
 153
 154static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
 155
 156/* the default hierarchy */
 157struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
 158EXPORT_SYMBOL_GPL(cgrp_dfl_root);
 159
 160/*
 161 * The default hierarchy always exists but is hidden until mounted for the
 162 * first time.  This is for backward compatibility.
 163 */
 164static bool cgrp_dfl_visible;
 165
 166/* some controllers are not supported in the default hierarchy */
 167static u16 cgrp_dfl_inhibit_ss_mask;
 168
 169/* some controllers are implicitly enabled on the default hierarchy */
 170static u16 cgrp_dfl_implicit_ss_mask;
 171
 172/* some controllers can be threaded on the default hierarchy */
 173static u16 cgrp_dfl_threaded_ss_mask;
 174
 175/* The list of hierarchy roots */
 176LIST_HEAD(cgroup_roots);
 177static int cgroup_root_count;
 178
 179/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
 180static DEFINE_IDR(cgroup_hierarchy_idr);
 181
 182/*
 183 * Assign a monotonically increasing serial number to csses.  It guarantees
 184 * cgroups with bigger numbers are newer than those with smaller numbers.
 185 * Also, as csses are always appended to the parent's ->children list, it
 186 * guarantees that sibling csses are always sorted in the ascending serial
 187 * number order on the list.  Protected by cgroup_mutex.
 188 */
 189static u64 css_serial_nr_next = 1;
 190
 191/*
 192 * These bitmasks identify subsystems with specific features to avoid
 193 * having to do iterative checks repeatedly.
 194 */
 195static u16 have_fork_callback __read_mostly;
 196static u16 have_exit_callback __read_mostly;
 197static u16 have_release_callback __read_mostly;
 198static u16 have_canfork_callback __read_mostly;
 199
 200/* cgroup namespace for init task */
 201struct cgroup_namespace init_cgroup_ns = {
 202	.ns.count	= REFCOUNT_INIT(2),
 203	.user_ns	= &init_user_ns,
 204	.ns.ops		= &cgroupns_operations,
 205	.ns.inum	= PROC_CGROUP_INIT_INO,
 206	.root_cset	= &init_css_set,
 207};
 208
 209static struct file_system_type cgroup2_fs_type;
 210static struct cftype cgroup_base_files[];
 211
 212/* cgroup optional features */
 213enum cgroup_opt_features {
 214#ifdef CONFIG_PSI
 215	OPT_FEATURE_PRESSURE,
 216#endif
 217	OPT_FEATURE_COUNT
 218};
 219
 220static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
 221#ifdef CONFIG_PSI
 222	"pressure",
 223#endif
 224};
 225
 226static u16 cgroup_feature_disable_mask __read_mostly;
 227
 228static int cgroup_apply_control(struct cgroup *cgrp);
 229static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
 230static void css_task_iter_skip(struct css_task_iter *it,
 231			       struct task_struct *task);
 232static int cgroup_destroy_locked(struct cgroup *cgrp);
 233static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
 234					      struct cgroup_subsys *ss);
 235static void css_release(struct percpu_ref *ref);
 236static void kill_css(struct cgroup_subsys_state *css);
 237static int cgroup_addrm_files(struct cgroup_subsys_state *css,
 238			      struct cgroup *cgrp, struct cftype cfts[],
 239			      bool is_add);
 240
 241/**
 242 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
 243 * @ssid: subsys ID of interest
 244 *
 245 * cgroup_subsys_enabled() can only be used with literal subsys names which
 246 * is fine for individual subsystems but unsuitable for cgroup core.  This
 247 * is slower static_key_enabled() based test indexed by @ssid.
 248 */
 249bool cgroup_ssid_enabled(int ssid)
 250{
 251	if (CGROUP_SUBSYS_COUNT == 0)
 252		return false;
 253
 254	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
 255}
 256
 257/**
 258 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
 259 * @cgrp: the cgroup of interest
 260 *
 261 * The default hierarchy is the v2 interface of cgroup and this function
 262 * can be used to test whether a cgroup is on the default hierarchy for
 263 * cases where a subsystem should behave differently depending on the
 264 * interface version.
 265 *
 266 * List of changed behaviors:
 267 *
 268 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
 269 *   and "name" are disallowed.
 270 *
 271 * - When mounting an existing superblock, mount options should match.
 272 *
 273 * - Remount is disallowed.
 274 *
 275 * - rename(2) is disallowed.
 276 *
 277 * - "tasks" is removed.  Everything should be at process granularity.  Use
 278 *   "cgroup.procs" instead.
 279 *
 280 * - "cgroup.procs" is not sorted.  pids will be unique unless they got
 281 *   recycled in-between reads.
 282 *
 283 * - "release_agent" and "notify_on_release" are removed.  Replacement
 284 *   notification mechanism will be implemented.
 285 *
 286 * - "cgroup.clone_children" is removed.
 287 *
 288 * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
 289 *   and its descendants contain no task; otherwise, 1.  The file also
 290 *   generates kernfs notification which can be monitored through poll and
 291 *   [di]notify when the value of the file changes.
 292 *
 293 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
 294 *   take masks of ancestors with non-empty cpus/mems, instead of being
 295 *   moved to an ancestor.
 296 *
 297 * - cpuset: a task can be moved into an empty cpuset, and again it takes
 298 *   masks of ancestors.
 299 *
 300 * - blkcg: blk-throttle becomes properly hierarchical.
 301 *
 302 * - debug: disallowed on the default hierarchy.
 303 */
 304bool cgroup_on_dfl(const struct cgroup *cgrp)
 305{
 306	return cgrp->root == &cgrp_dfl_root;
 307}
 308
 309/* IDR wrappers which synchronize using cgroup_idr_lock */
 310static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
 311			    gfp_t gfp_mask)
 312{
 313	int ret;
 314
 315	idr_preload(gfp_mask);
 316	spin_lock_bh(&cgroup_idr_lock);
 317	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
 318	spin_unlock_bh(&cgroup_idr_lock);
 319	idr_preload_end();
 320	return ret;
 321}
 322
 323static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
 324{
 325	void *ret;
 326
 327	spin_lock_bh(&cgroup_idr_lock);
 328	ret = idr_replace(idr, ptr, id);
 329	spin_unlock_bh(&cgroup_idr_lock);
 330	return ret;
 331}
 332
 333static void cgroup_idr_remove(struct idr *idr, int id)
 334{
 335	spin_lock_bh(&cgroup_idr_lock);
 336	idr_remove(idr, id);
 337	spin_unlock_bh(&cgroup_idr_lock);
 338}
 339
 340static bool cgroup_has_tasks(struct cgroup *cgrp)
 341{
 342	return cgrp->nr_populated_csets;
 343}
 344
 345bool cgroup_is_threaded(struct cgroup *cgrp)
 346{
 347	return cgrp->dom_cgrp != cgrp;
 348}
 349
 350/* can @cgrp host both domain and threaded children? */
 351static bool cgroup_is_mixable(struct cgroup *cgrp)
 352{
 353	/*
 354	 * Root isn't under domain level resource control exempting it from
 355	 * the no-internal-process constraint, so it can serve as a thread
 356	 * root and a parent of resource domains at the same time.
 357	 */
 358	return !cgroup_parent(cgrp);
 359}
 360
 361/* can @cgrp become a thread root? Should always be true for a thread root */
 362static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
 363{
 364	/* mixables don't care */
 365	if (cgroup_is_mixable(cgrp))
 366		return true;
 367
 368	/* domain roots can't be nested under threaded */
 369	if (cgroup_is_threaded(cgrp))
 370		return false;
 371
 372	/* can only have either domain or threaded children */
 373	if (cgrp->nr_populated_domain_children)
 374		return false;
 375
 376	/* and no domain controllers can be enabled */
 377	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
 378		return false;
 379
 380	return true;
 381}
 382
 383/* is @cgrp root of a threaded subtree? */
 384bool cgroup_is_thread_root(struct cgroup *cgrp)
 385{
 386	/* thread root should be a domain */
 387	if (cgroup_is_threaded(cgrp))
 388		return false;
 389
 390	/* a domain w/ threaded children is a thread root */
 391	if (cgrp->nr_threaded_children)
 392		return true;
 393
 394	/*
 395	 * A domain which has tasks and explicit threaded controllers
 396	 * enabled is a thread root.
 397	 */
 398	if (cgroup_has_tasks(cgrp) &&
 399	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
 400		return true;
 401
 402	return false;
 403}
 404
 405/* a domain which isn't connected to the root w/o brekage can't be used */
 406static bool cgroup_is_valid_domain(struct cgroup *cgrp)
 407{
 408	/* the cgroup itself can be a thread root */
 409	if (cgroup_is_threaded(cgrp))
 410		return false;
 411
 412	/* but the ancestors can't be unless mixable */
 413	while ((cgrp = cgroup_parent(cgrp))) {
 414		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
 415			return false;
 416		if (cgroup_is_threaded(cgrp))
 417			return false;
 418	}
 419
 420	return true;
 421}
 422
 423/* subsystems visibly enabled on a cgroup */
 424static u16 cgroup_control(struct cgroup *cgrp)
 425{
 426	struct cgroup *parent = cgroup_parent(cgrp);
 427	u16 root_ss_mask = cgrp->root->subsys_mask;
 428
 429	if (parent) {
 430		u16 ss_mask = parent->subtree_control;
 431
 432		/* threaded cgroups can only have threaded controllers */
 433		if (cgroup_is_threaded(cgrp))
 434			ss_mask &= cgrp_dfl_threaded_ss_mask;
 435		return ss_mask;
 436	}
 437
 438	if (cgroup_on_dfl(cgrp))
 439		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
 440				  cgrp_dfl_implicit_ss_mask);
 441	return root_ss_mask;
 442}
 443
 444/* subsystems enabled on a cgroup */
 445static u16 cgroup_ss_mask(struct cgroup *cgrp)
 446{
 447	struct cgroup *parent = cgroup_parent(cgrp);
 448
 449	if (parent) {
 450		u16 ss_mask = parent->subtree_ss_mask;
 451
 452		/* threaded cgroups can only have threaded controllers */
 453		if (cgroup_is_threaded(cgrp))
 454			ss_mask &= cgrp_dfl_threaded_ss_mask;
 455		return ss_mask;
 456	}
 457
 458	return cgrp->root->subsys_mask;
 459}
 460
 461/**
 462 * cgroup_css - obtain a cgroup's css for the specified subsystem
 463 * @cgrp: the cgroup of interest
 464 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 465 *
 466 * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
 467 * function must be called either under cgroup_mutex or rcu_read_lock() and
 468 * the caller is responsible for pinning the returned css if it wants to
 469 * keep accessing it outside the said locks.  This function may return
 470 * %NULL if @cgrp doesn't have @subsys_id enabled.
 471 */
 472static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
 473					      struct cgroup_subsys *ss)
 474{
 475	if (ss)
 476		return rcu_dereference_check(cgrp->subsys[ss->id],
 477					lockdep_is_held(&cgroup_mutex));
 478	else
 479		return &cgrp->self;
 480}
 481
 482/**
 483 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
 484 * @cgrp: the cgroup of interest
 485 * @ss: the subsystem of interest
 486 *
 487 * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
 488 * or is offline, %NULL is returned.
 489 */
 490static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
 491						     struct cgroup_subsys *ss)
 492{
 493	struct cgroup_subsys_state *css;
 494
 495	rcu_read_lock();
 496	css = cgroup_css(cgrp, ss);
 497	if (css && !css_tryget_online(css))
 498		css = NULL;
 499	rcu_read_unlock();
 500
 501	return css;
 502}
 503
 504/**
 505 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
 506 * @cgrp: the cgroup of interest
 507 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 508 *
 509 * Similar to cgroup_css() but returns the effective css, which is defined
 510 * as the matching css of the nearest ancestor including self which has @ss
 511 * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
 512 * function is guaranteed to return non-NULL css.
 513 */
 514static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
 515							struct cgroup_subsys *ss)
 516{
 517	lockdep_assert_held(&cgroup_mutex);
 518
 519	if (!ss)
 520		return &cgrp->self;
 521
 522	/*
 523	 * This function is used while updating css associations and thus
 524	 * can't test the csses directly.  Test ss_mask.
 525	 */
 526	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
 527		cgrp = cgroup_parent(cgrp);
 528		if (!cgrp)
 529			return NULL;
 530	}
 531
 532	return cgroup_css(cgrp, ss);
 533}
 534
 535/**
 536 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
 537 * @cgrp: the cgroup of interest
 538 * @ss: the subsystem of interest
 539 *
 540 * Find and get the effective css of @cgrp for @ss.  The effective css is
 541 * defined as the matching css of the nearest ancestor including self which
 542 * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
 543 * the root css is returned, so this function always returns a valid css.
 544 *
 545 * The returned css is not guaranteed to be online, and therefore it is the
 546 * callers responsibility to try get a reference for it.
 547 */
 548struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
 549					 struct cgroup_subsys *ss)
 550{
 551	struct cgroup_subsys_state *css;
 552
 553	do {
 554		css = cgroup_css(cgrp, ss);
 555
 556		if (css)
 557			return css;
 558		cgrp = cgroup_parent(cgrp);
 559	} while (cgrp);
 560
 561	return init_css_set.subsys[ss->id];
 562}
 563
 564/**
 565 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
 566 * @cgrp: the cgroup of interest
 567 * @ss: the subsystem of interest
 568 *
 569 * Find and get the effective css of @cgrp for @ss.  The effective css is
 570 * defined as the matching css of the nearest ancestor including self which
 571 * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
 572 * the root css is returned, so this function always returns a valid css.
 573 * The returned css must be put using css_put().
 574 */
 575struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
 576					     struct cgroup_subsys *ss)
 577{
 578	struct cgroup_subsys_state *css;
 579
 580	rcu_read_lock();
 581
 582	do {
 583		css = cgroup_css(cgrp, ss);
 584
 585		if (css && css_tryget_online(css))
 586			goto out_unlock;
 587		cgrp = cgroup_parent(cgrp);
 588	} while (cgrp);
 589
 590	css = init_css_set.subsys[ss->id];
 591	css_get(css);
 592out_unlock:
 593	rcu_read_unlock();
 594	return css;
 595}
 596EXPORT_SYMBOL_GPL(cgroup_get_e_css);
 597
 598static void cgroup_get_live(struct cgroup *cgrp)
 599{
 600	WARN_ON_ONCE(cgroup_is_dead(cgrp));
 601	css_get(&cgrp->self);
 602}
 603
 604/**
 605 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
 606 * is responsible for taking the css_set_lock.
 607 * @cgrp: the cgroup in question
 608 */
 609int __cgroup_task_count(const struct cgroup *cgrp)
 610{
 611	int count = 0;
 612	struct cgrp_cset_link *link;
 613
 614	lockdep_assert_held(&css_set_lock);
 615
 616	list_for_each_entry(link, &cgrp->cset_links, cset_link)
 617		count += link->cset->nr_tasks;
 618
 619	return count;
 620}
 621
 622/**
 623 * cgroup_task_count - count the number of tasks in a cgroup.
 624 * @cgrp: the cgroup in question
 625 */
 626int cgroup_task_count(const struct cgroup *cgrp)
 627{
 628	int count;
 629
 630	spin_lock_irq(&css_set_lock);
 631	count = __cgroup_task_count(cgrp);
 632	spin_unlock_irq(&css_set_lock);
 633
 634	return count;
 635}
 636
 637struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
 638{
 639	struct cgroup *cgrp = of->kn->parent->priv;
 640	struct cftype *cft = of_cft(of);
 641
 642	/*
 643	 * This is open and unprotected implementation of cgroup_css().
 644	 * seq_css() is only called from a kernfs file operation which has
 645	 * an active reference on the file.  Because all the subsystem
 646	 * files are drained before a css is disassociated with a cgroup,
 647	 * the matching css from the cgroup's subsys table is guaranteed to
 648	 * be and stay valid until the enclosing operation is complete.
 649	 */
 650	if (cft->ss)
 651		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
 652	else
 653		return &cgrp->self;
 654}
 655EXPORT_SYMBOL_GPL(of_css);
 656
 657/**
 658 * for_each_css - iterate all css's of a cgroup
 659 * @css: the iteration cursor
 660 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 661 * @cgrp: the target cgroup to iterate css's of
 662 *
 663 * Should be called under cgroup_[tree_]mutex.
 664 */
 665#define for_each_css(css, ssid, cgrp)					\
 666	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
 667		if (!((css) = rcu_dereference_check(			\
 668				(cgrp)->subsys[(ssid)],			\
 669				lockdep_is_held(&cgroup_mutex)))) { }	\
 670		else
 671
 672/**
 673 * for_each_e_css - iterate all effective css's of a cgroup
 674 * @css: the iteration cursor
 675 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 676 * @cgrp: the target cgroup to iterate css's of
 677 *
 678 * Should be called under cgroup_[tree_]mutex.
 679 */
 680#define for_each_e_css(css, ssid, cgrp)					    \
 681	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
 682		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
 683						   cgroup_subsys[(ssid)]))) \
 684			;						    \
 685		else
 686
 687/**
 688 * do_each_subsys_mask - filter for_each_subsys with a bitmask
 689 * @ss: the iteration cursor
 690 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
 691 * @ss_mask: the bitmask
 692 *
 693 * The block will only run for cases where the ssid-th bit (1 << ssid) of
 694 * @ss_mask is set.
 695 */
 696#define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
 697	unsigned long __ss_mask = (ss_mask);				\
 698	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
 699		(ssid) = 0;						\
 700		break;							\
 701	}								\
 702	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
 703		(ss) = cgroup_subsys[ssid];				\
 704		{
 705
 706#define while_each_subsys_mask()					\
 707		}							\
 708	}								\
 709} while (false)
 710
 711/* iterate over child cgrps, lock should be held throughout iteration */
 712#define cgroup_for_each_live_child(child, cgrp)				\
 713	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
 714		if (({ lockdep_assert_held(&cgroup_mutex);		\
 715		       cgroup_is_dead(child); }))			\
 716			;						\
 717		else
 718
 719/* walk live descendants in pre order */
 720#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
 721	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
 722		if (({ lockdep_assert_held(&cgroup_mutex);		\
 723		       (dsct) = (d_css)->cgroup;			\
 724		       cgroup_is_dead(dsct); }))			\
 725			;						\
 726		else
 727
 728/* walk live descendants in postorder */
 729#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
 730	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
 731		if (({ lockdep_assert_held(&cgroup_mutex);		\
 732		       (dsct) = (d_css)->cgroup;			\
 733		       cgroup_is_dead(dsct); }))			\
 734			;						\
 735		else
 736
 737/*
 738 * The default css_set - used by init and its children prior to any
 739 * hierarchies being mounted. It contains a pointer to the root state
 740 * for each subsystem. Also used to anchor the list of css_sets. Not
 741 * reference-counted, to improve performance when child cgroups
 742 * haven't been created.
 743 */
 744struct css_set init_css_set = {
 745	.refcount		= REFCOUNT_INIT(1),
 746	.dom_cset		= &init_css_set,
 747	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
 748	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
 749	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
 750	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
 751	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
 752	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
 753	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
 754	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
 755
 756	/*
 757	 * The following field is re-initialized when this cset gets linked
 758	 * in cgroup_init().  However, let's initialize the field
 759	 * statically too so that the default cgroup can be accessed safely
 760	 * early during boot.
 761	 */
 762	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
 763};
 764
 765static int css_set_count	= 1;	/* 1 for init_css_set */
 766
 767static bool css_set_threaded(struct css_set *cset)
 768{
 769	return cset->dom_cset != cset;
 770}
 771
 772/**
 773 * css_set_populated - does a css_set contain any tasks?
 774 * @cset: target css_set
 775 *
 776 * css_set_populated() should be the same as !!cset->nr_tasks at steady
 777 * state. However, css_set_populated() can be called while a task is being
 778 * added to or removed from the linked list before the nr_tasks is
 779 * properly updated. Hence, we can't just look at ->nr_tasks here.
 780 */
 781static bool css_set_populated(struct css_set *cset)
 782{
 783	lockdep_assert_held(&css_set_lock);
 784
 785	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
 786}
 787
 788/**
 789 * cgroup_update_populated - update the populated count of a cgroup
 790 * @cgrp: the target cgroup
 791 * @populated: inc or dec populated count
 792 *
 793 * One of the css_sets associated with @cgrp is either getting its first
 794 * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
 795 * count is propagated towards root so that a given cgroup's
 796 * nr_populated_children is zero iff none of its descendants contain any
 797 * tasks.
 798 *
 799 * @cgrp's interface file "cgroup.populated" is zero if both
 800 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
 801 * 1 otherwise.  When the sum changes from or to zero, userland is notified
 802 * that the content of the interface file has changed.  This can be used to
 803 * detect when @cgrp and its descendants become populated or empty.
 804 */
 805static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
 806{
 807	struct cgroup *child = NULL;
 808	int adj = populated ? 1 : -1;
 809
 810	lockdep_assert_held(&css_set_lock);
 811
 812	do {
 813		bool was_populated = cgroup_is_populated(cgrp);
 814
 815		if (!child) {
 816			cgrp->nr_populated_csets += adj;
 817		} else {
 818			if (cgroup_is_threaded(child))
 819				cgrp->nr_populated_threaded_children += adj;
 820			else
 821				cgrp->nr_populated_domain_children += adj;
 822		}
 823
 824		if (was_populated == cgroup_is_populated(cgrp))
 825			break;
 826
 827		cgroup1_check_for_release(cgrp);
 828		TRACE_CGROUP_PATH(notify_populated, cgrp,
 829				  cgroup_is_populated(cgrp));
 830		cgroup_file_notify(&cgrp->events_file);
 831
 832		child = cgrp;
 833		cgrp = cgroup_parent(cgrp);
 834	} while (cgrp);
 835}
 836
 837/**
 838 * css_set_update_populated - update populated state of a css_set
 839 * @cset: target css_set
 840 * @populated: whether @cset is populated or depopulated
 841 *
 842 * @cset is either getting the first task or losing the last.  Update the
 843 * populated counters of all associated cgroups accordingly.
 844 */
 845static void css_set_update_populated(struct css_set *cset, bool populated)
 846{
 847	struct cgrp_cset_link *link;
 848
 849	lockdep_assert_held(&css_set_lock);
 850
 851	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
 852		cgroup_update_populated(link->cgrp, populated);
 853}
 854
 855/*
 856 * @task is leaving, advance task iterators which are pointing to it so
 857 * that they can resume at the next position.  Advancing an iterator might
 858 * remove it from the list, use safe walk.  See css_task_iter_skip() for
 859 * details.
 860 */
 861static void css_set_skip_task_iters(struct css_set *cset,
 862				    struct task_struct *task)
 863{
 864	struct css_task_iter *it, *pos;
 865
 866	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
 867		css_task_iter_skip(it, task);
 868}
 869
 870/**
 871 * css_set_move_task - move a task from one css_set to another
 872 * @task: task being moved
 873 * @from_cset: css_set @task currently belongs to (may be NULL)
 874 * @to_cset: new css_set @task is being moved to (may be NULL)
 875 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
 876 *
 877 * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
 878 * css_set, @from_cset can be NULL.  If @task is being disassociated
 879 * instead of moved, @to_cset can be NULL.
 880 *
 881 * This function automatically handles populated counter updates and
 882 * css_task_iter adjustments but the caller is responsible for managing
 883 * @from_cset and @to_cset's reference counts.
 884 */
 885static void css_set_move_task(struct task_struct *task,
 886			      struct css_set *from_cset, struct css_set *to_cset,
 887			      bool use_mg_tasks)
 888{
 889	lockdep_assert_held(&css_set_lock);
 890
 891	if (to_cset && !css_set_populated(to_cset))
 892		css_set_update_populated(to_cset, true);
 893
 894	if (from_cset) {
 895		WARN_ON_ONCE(list_empty(&task->cg_list));
 896
 897		css_set_skip_task_iters(from_cset, task);
 898		list_del_init(&task->cg_list);
 899		if (!css_set_populated(from_cset))
 900			css_set_update_populated(from_cset, false);
 901	} else {
 902		WARN_ON_ONCE(!list_empty(&task->cg_list));
 903	}
 904
 905	if (to_cset) {
 906		/*
 907		 * We are synchronized through cgroup_threadgroup_rwsem
 908		 * against PF_EXITING setting such that we can't race
 909		 * against cgroup_exit()/cgroup_free() dropping the css_set.
 910		 */
 911		WARN_ON_ONCE(task->flags & PF_EXITING);
 912
 913		cgroup_move_task(task, to_cset);
 914		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
 915							     &to_cset->tasks);
 916	}
 917}
 918
 919/*
 920 * hash table for cgroup groups. This improves the performance to find
 921 * an existing css_set. This hash doesn't (currently) take into
 922 * account cgroups in empty hierarchies.
 923 */
 924#define CSS_SET_HASH_BITS	7
 925static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
 926
 927static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
 928{
 929	unsigned long key = 0UL;
 930	struct cgroup_subsys *ss;
 931	int i;
 932
 933	for_each_subsys(ss, i)
 934		key += (unsigned long)css[i];
 935	key = (key >> 16) ^ key;
 936
 937	return key;
 938}
 939
 940void put_css_set_locked(struct css_set *cset)
 941{
 942	struct cgrp_cset_link *link, *tmp_link;
 943	struct cgroup_subsys *ss;
 944	int ssid;
 945
 946	lockdep_assert_held(&css_set_lock);
 947
 948	if (!refcount_dec_and_test(&cset->refcount))
 949		return;
 950
 951	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
 952
 953	/* This css_set is dead. Unlink it and release cgroup and css refs */
 954	for_each_subsys(ss, ssid) {
 955		list_del(&cset->e_cset_node[ssid]);
 956		css_put(cset->subsys[ssid]);
 957	}
 958	hash_del(&cset->hlist);
 959	css_set_count--;
 960
 961	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
 962		list_del(&link->cset_link);
 963		list_del(&link->cgrp_link);
 964		if (cgroup_parent(link->cgrp))
 965			cgroup_put(link->cgrp);
 966		kfree(link);
 967	}
 968
 969	if (css_set_threaded(cset)) {
 970		list_del(&cset->threaded_csets_node);
 971		put_css_set_locked(cset->dom_cset);
 972	}
 973
 974	kfree_rcu(cset, rcu_head);
 975}
 976
 977/**
 978 * compare_css_sets - helper function for find_existing_css_set().
 979 * @cset: candidate css_set being tested
 980 * @old_cset: existing css_set for a task
 981 * @new_cgrp: cgroup that's being entered by the task
 982 * @template: desired set of css pointers in css_set (pre-calculated)
 983 *
 984 * Returns true if "cset" matches "old_cset" except for the hierarchy
 985 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 986 */
 987static bool compare_css_sets(struct css_set *cset,
 988			     struct css_set *old_cset,
 989			     struct cgroup *new_cgrp,
 990			     struct cgroup_subsys_state *template[])
 991{
 992	struct cgroup *new_dfl_cgrp;
 993	struct list_head *l1, *l2;
 994
 995	/*
 996	 * On the default hierarchy, there can be csets which are
 997	 * associated with the same set of cgroups but different csses.
 998	 * Let's first ensure that csses match.
 999	 */
1000	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1001		return false;
1002
1003
1004	/* @cset's domain should match the default cgroup's */
1005	if (cgroup_on_dfl(new_cgrp))
1006		new_dfl_cgrp = new_cgrp;
1007	else
1008		new_dfl_cgrp = old_cset->dfl_cgrp;
1009
1010	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1011		return false;
1012
1013	/*
1014	 * Compare cgroup pointers in order to distinguish between
1015	 * different cgroups in hierarchies.  As different cgroups may
1016	 * share the same effective css, this comparison is always
1017	 * necessary.
1018	 */
1019	l1 = &cset->cgrp_links;
1020	l2 = &old_cset->cgrp_links;
1021	while (1) {
1022		struct cgrp_cset_link *link1, *link2;
1023		struct cgroup *cgrp1, *cgrp2;
1024
1025		l1 = l1->next;
1026		l2 = l2->next;
1027		/* See if we reached the end - both lists are equal length. */
1028		if (l1 == &cset->cgrp_links) {
1029			BUG_ON(l2 != &old_cset->cgrp_links);
1030			break;
1031		} else {
1032			BUG_ON(l2 == &old_cset->cgrp_links);
1033		}
1034		/* Locate the cgroups associated with these links. */
1035		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1036		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1037		cgrp1 = link1->cgrp;
1038		cgrp2 = link2->cgrp;
1039		/* Hierarchies should be linked in the same order. */
1040		BUG_ON(cgrp1->root != cgrp2->root);
1041
1042		/*
1043		 * If this hierarchy is the hierarchy of the cgroup
1044		 * that's changing, then we need to check that this
1045		 * css_set points to the new cgroup; if it's any other
1046		 * hierarchy, then this css_set should point to the
1047		 * same cgroup as the old css_set.
1048		 */
1049		if (cgrp1->root == new_cgrp->root) {
1050			if (cgrp1 != new_cgrp)
1051				return false;
1052		} else {
1053			if (cgrp1 != cgrp2)
1054				return false;
1055		}
1056	}
1057	return true;
1058}
1059
1060/**
1061 * find_existing_css_set - init css array and find the matching css_set
1062 * @old_cset: the css_set that we're using before the cgroup transition
1063 * @cgrp: the cgroup that we're moving into
1064 * @template: out param for the new set of csses, should be clear on entry
1065 */
1066static struct css_set *find_existing_css_set(struct css_set *old_cset,
1067					struct cgroup *cgrp,
1068					struct cgroup_subsys_state *template[])
1069{
1070	struct cgroup_root *root = cgrp->root;
1071	struct cgroup_subsys *ss;
1072	struct css_set *cset;
1073	unsigned long key;
1074	int i;
1075
1076	/*
1077	 * Build the set of subsystem state objects that we want to see in the
1078	 * new css_set. While subsystems can change globally, the entries here
1079	 * won't change, so no need for locking.
1080	 */
1081	for_each_subsys(ss, i) {
1082		if (root->subsys_mask & (1UL << i)) {
1083			/*
1084			 * @ss is in this hierarchy, so we want the
1085			 * effective css from @cgrp.
1086			 */
1087			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1088		} else {
1089			/*
1090			 * @ss is not in this hierarchy, so we don't want
1091			 * to change the css.
1092			 */
1093			template[i] = old_cset->subsys[i];
1094		}
1095	}
1096
1097	key = css_set_hash(template);
1098	hash_for_each_possible(css_set_table, cset, hlist, key) {
1099		if (!compare_css_sets(cset, old_cset, cgrp, template))
1100			continue;
1101
1102		/* This css_set matches what we need */
1103		return cset;
1104	}
1105
1106	/* No existing cgroup group matched */
1107	return NULL;
1108}
1109
1110static void free_cgrp_cset_links(struct list_head *links_to_free)
1111{
1112	struct cgrp_cset_link *link, *tmp_link;
1113
1114	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1115		list_del(&link->cset_link);
1116		kfree(link);
1117	}
1118}
1119
1120/**
1121 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1122 * @count: the number of links to allocate
1123 * @tmp_links: list_head the allocated links are put on
1124 *
1125 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1126 * through ->cset_link.  Returns 0 on success or -errno.
1127 */
1128static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1129{
1130	struct cgrp_cset_link *link;
1131	int i;
1132
1133	INIT_LIST_HEAD(tmp_links);
1134
1135	for (i = 0; i < count; i++) {
1136		link = kzalloc(sizeof(*link), GFP_KERNEL);
1137		if (!link) {
1138			free_cgrp_cset_links(tmp_links);
1139			return -ENOMEM;
1140		}
1141		list_add(&link->cset_link, tmp_links);
1142	}
1143	return 0;
1144}
1145
1146/**
1147 * link_css_set - a helper function to link a css_set to a cgroup
1148 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1149 * @cset: the css_set to be linked
1150 * @cgrp: the destination cgroup
1151 */
1152static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1153			 struct cgroup *cgrp)
1154{
1155	struct cgrp_cset_link *link;
1156
1157	BUG_ON(list_empty(tmp_links));
1158
1159	if (cgroup_on_dfl(cgrp))
1160		cset->dfl_cgrp = cgrp;
1161
1162	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1163	link->cset = cset;
1164	link->cgrp = cgrp;
1165
1166	/*
1167	 * Always add links to the tail of the lists so that the lists are
1168	 * in chronological order.
1169	 */
1170	list_move_tail(&link->cset_link, &cgrp->cset_links);
1171	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1172
1173	if (cgroup_parent(cgrp))
1174		cgroup_get_live(cgrp);
1175}
1176
1177/**
1178 * find_css_set - return a new css_set with one cgroup updated
1179 * @old_cset: the baseline css_set
1180 * @cgrp: the cgroup to be updated
1181 *
1182 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1183 * substituted into the appropriate hierarchy.
1184 */
1185static struct css_set *find_css_set(struct css_set *old_cset,
1186				    struct cgroup *cgrp)
1187{
1188	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1189	struct css_set *cset;
1190	struct list_head tmp_links;
1191	struct cgrp_cset_link *link;
1192	struct cgroup_subsys *ss;
1193	unsigned long key;
1194	int ssid;
1195
1196	lockdep_assert_held(&cgroup_mutex);
1197
1198	/* First see if we already have a cgroup group that matches
1199	 * the desired set */
1200	spin_lock_irq(&css_set_lock);
1201	cset = find_existing_css_set(old_cset, cgrp, template);
1202	if (cset)
1203		get_css_set(cset);
1204	spin_unlock_irq(&css_set_lock);
1205
1206	if (cset)
1207		return cset;
1208
1209	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1210	if (!cset)
1211		return NULL;
1212
1213	/* Allocate all the cgrp_cset_link objects that we'll need */
1214	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1215		kfree(cset);
1216		return NULL;
1217	}
1218
1219	refcount_set(&cset->refcount, 1);
1220	cset->dom_cset = cset;
1221	INIT_LIST_HEAD(&cset->tasks);
1222	INIT_LIST_HEAD(&cset->mg_tasks);
1223	INIT_LIST_HEAD(&cset->dying_tasks);
1224	INIT_LIST_HEAD(&cset->task_iters);
1225	INIT_LIST_HEAD(&cset->threaded_csets);
1226	INIT_HLIST_NODE(&cset->hlist);
1227	INIT_LIST_HEAD(&cset->cgrp_links);
1228	INIT_LIST_HEAD(&cset->mg_preload_node);
1229	INIT_LIST_HEAD(&cset->mg_node);
1230
1231	/* Copy the set of subsystem state objects generated in
1232	 * find_existing_css_set() */
1233	memcpy(cset->subsys, template, sizeof(cset->subsys));
1234
1235	spin_lock_irq(&css_set_lock);
1236	/* Add reference counts and links from the new css_set. */
1237	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1238		struct cgroup *c = link->cgrp;
1239
1240		if (c->root == cgrp->root)
1241			c = cgrp;
1242		link_css_set(&tmp_links, cset, c);
1243	}
1244
1245	BUG_ON(!list_empty(&tmp_links));
1246
1247	css_set_count++;
1248
1249	/* Add @cset to the hash table */
1250	key = css_set_hash(cset->subsys);
1251	hash_add(css_set_table, &cset->hlist, key);
1252
1253	for_each_subsys(ss, ssid) {
1254		struct cgroup_subsys_state *css = cset->subsys[ssid];
1255
1256		list_add_tail(&cset->e_cset_node[ssid],
1257			      &css->cgroup->e_csets[ssid]);
1258		css_get(css);
1259	}
1260
1261	spin_unlock_irq(&css_set_lock);
1262
1263	/*
1264	 * If @cset should be threaded, look up the matching dom_cset and
1265	 * link them up.  We first fully initialize @cset then look for the
1266	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1267	 * to stay empty until we return.
1268	 */
1269	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1270		struct css_set *dcset;
1271
1272		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1273		if (!dcset) {
1274			put_css_set(cset);
1275			return NULL;
1276		}
1277
1278		spin_lock_irq(&css_set_lock);
1279		cset->dom_cset = dcset;
1280		list_add_tail(&cset->threaded_csets_node,
1281			      &dcset->threaded_csets);
1282		spin_unlock_irq(&css_set_lock);
1283	}
1284
1285	return cset;
1286}
1287
1288struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1289{
1290	struct cgroup *root_cgrp = kf_root->kn->priv;
1291
1292	return root_cgrp->root;
1293}
1294
1295static int cgroup_init_root_id(struct cgroup_root *root)
1296{
1297	int id;
1298
1299	lockdep_assert_held(&cgroup_mutex);
1300
1301	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1302	if (id < 0)
1303		return id;
1304
1305	root->hierarchy_id = id;
1306	return 0;
1307}
1308
1309static void cgroup_exit_root_id(struct cgroup_root *root)
1310{
1311	lockdep_assert_held(&cgroup_mutex);
1312
1313	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1314}
1315
1316void cgroup_free_root(struct cgroup_root *root)
1317{
1318	kfree(root);
1319}
1320
1321static void cgroup_destroy_root(struct cgroup_root *root)
1322{
1323	struct cgroup *cgrp = &root->cgrp;
1324	struct cgrp_cset_link *link, *tmp_link;
1325
1326	trace_cgroup_destroy_root(root);
1327
1328	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1329
1330	BUG_ON(atomic_read(&root->nr_cgrps));
1331	BUG_ON(!list_empty(&cgrp->self.children));
1332
1333	/* Rebind all subsystems back to the default hierarchy */
1334	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1335
1336	/*
1337	 * Release all the links from cset_links to this hierarchy's
1338	 * root cgroup
1339	 */
1340	spin_lock_irq(&css_set_lock);
1341
1342	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1343		list_del(&link->cset_link);
1344		list_del(&link->cgrp_link);
1345		kfree(link);
1346	}
1347
1348	spin_unlock_irq(&css_set_lock);
1349
1350	if (!list_empty(&root->root_list)) {
1351		list_del(&root->root_list);
1352		cgroup_root_count--;
1353	}
1354
1355	cgroup_exit_root_id(root);
1356
1357	mutex_unlock(&cgroup_mutex);
1358
1359	cgroup_rstat_exit(cgrp);
1360	kernfs_destroy_root(root->kf_root);
1361	cgroup_free_root(root);
1362}
1363
1364/*
1365 * look up cgroup associated with current task's cgroup namespace on the
1366 * specified hierarchy
1367 */
1368static struct cgroup *
1369current_cgns_cgroup_from_root(struct cgroup_root *root)
1370{
1371	struct cgroup *res = NULL;
1372	struct css_set *cset;
1373
1374	lockdep_assert_held(&css_set_lock);
1375
1376	rcu_read_lock();
1377
1378	cset = current->nsproxy->cgroup_ns->root_cset;
1379	if (cset == &init_css_set) {
1380		res = &root->cgrp;
1381	} else if (root == &cgrp_dfl_root) {
1382		res = cset->dfl_cgrp;
1383	} else {
1384		struct cgrp_cset_link *link;
1385
1386		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1387			struct cgroup *c = link->cgrp;
1388
1389			if (c->root == root) {
1390				res = c;
1391				break;
1392			}
1393		}
1394	}
1395	rcu_read_unlock();
1396
1397	BUG_ON(!res);
1398	return res;
1399}
1400
1401/* look up cgroup associated with given css_set on the specified hierarchy */
1402static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1403					    struct cgroup_root *root)
1404{
1405	struct cgroup *res = NULL;
1406
1407	lockdep_assert_held(&cgroup_mutex);
1408	lockdep_assert_held(&css_set_lock);
1409
1410	if (cset == &init_css_set) {
1411		res = &root->cgrp;
1412	} else if (root == &cgrp_dfl_root) {
1413		res = cset->dfl_cgrp;
1414	} else {
1415		struct cgrp_cset_link *link;
1416
1417		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1418			struct cgroup *c = link->cgrp;
1419
1420			if (c->root == root) {
1421				res = c;
1422				break;
1423			}
1424		}
1425	}
1426
1427	BUG_ON(!res);
1428	return res;
1429}
1430
1431/*
1432 * Return the cgroup for "task" from the given hierarchy. Must be
1433 * called with cgroup_mutex and css_set_lock held.
1434 */
1435struct cgroup *task_cgroup_from_root(struct task_struct *task,
1436				     struct cgroup_root *root)
1437{
1438	/*
1439	 * No need to lock the task - since we hold css_set_lock the
1440	 * task can't change groups.
1441	 */
1442	return cset_cgroup_from_root(task_css_set(task), root);
1443}
1444
1445/*
1446 * A task must hold cgroup_mutex to modify cgroups.
1447 *
1448 * Any task can increment and decrement the count field without lock.
1449 * So in general, code holding cgroup_mutex can't rely on the count
1450 * field not changing.  However, if the count goes to zero, then only
1451 * cgroup_attach_task() can increment it again.  Because a count of zero
1452 * means that no tasks are currently attached, therefore there is no
1453 * way a task attached to that cgroup can fork (the other way to
1454 * increment the count).  So code holding cgroup_mutex can safely
1455 * assume that if the count is zero, it will stay zero. Similarly, if
1456 * a task holds cgroup_mutex on a cgroup with zero count, it
1457 * knows that the cgroup won't be removed, as cgroup_rmdir()
1458 * needs that mutex.
1459 *
1460 * A cgroup can only be deleted if both its 'count' of using tasks
1461 * is zero, and its list of 'children' cgroups is empty.  Since all
1462 * tasks in the system use _some_ cgroup, and since there is always at
1463 * least one task in the system (init, pid == 1), therefore, root cgroup
1464 * always has either children cgroups and/or using tasks.  So we don't
1465 * need a special hack to ensure that root cgroup cannot be deleted.
1466 *
1467 * P.S.  One more locking exception.  RCU is used to guard the
1468 * update of a tasks cgroup pointer by cgroup_attach_task()
1469 */
1470
1471static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1472
1473static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1474			      char *buf)
1475{
1476	struct cgroup_subsys *ss = cft->ss;
1477
1478	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1479	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1480		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1481
1482		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1483			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1484			 cft->name);
1485	} else {
1486		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1487	}
1488	return buf;
1489}
1490
1491/**
1492 * cgroup_file_mode - deduce file mode of a control file
1493 * @cft: the control file in question
1494 *
1495 * S_IRUGO for read, S_IWUSR for write.
1496 */
1497static umode_t cgroup_file_mode(const struct cftype *cft)
1498{
1499	umode_t mode = 0;
1500
1501	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1502		mode |= S_IRUGO;
1503
1504	if (cft->write_u64 || cft->write_s64 || cft->write) {
1505		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1506			mode |= S_IWUGO;
1507		else
1508			mode |= S_IWUSR;
1509	}
1510
1511	return mode;
1512}
1513
1514/**
1515 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1516 * @subtree_control: the new subtree_control mask to consider
1517 * @this_ss_mask: available subsystems
1518 *
1519 * On the default hierarchy, a subsystem may request other subsystems to be
1520 * enabled together through its ->depends_on mask.  In such cases, more
1521 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1522 *
1523 * This function calculates which subsystems need to be enabled if
1524 * @subtree_control is to be applied while restricted to @this_ss_mask.
1525 */
1526static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1527{
1528	u16 cur_ss_mask = subtree_control;
1529	struct cgroup_subsys *ss;
1530	int ssid;
1531
1532	lockdep_assert_held(&cgroup_mutex);
1533
1534	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1535
1536	while (true) {
1537		u16 new_ss_mask = cur_ss_mask;
1538
1539		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1540			new_ss_mask |= ss->depends_on;
1541		} while_each_subsys_mask();
1542
1543		/*
1544		 * Mask out subsystems which aren't available.  This can
1545		 * happen only if some depended-upon subsystems were bound
1546		 * to non-default hierarchies.
1547		 */
1548		new_ss_mask &= this_ss_mask;
1549
1550		if (new_ss_mask == cur_ss_mask)
1551			break;
1552		cur_ss_mask = new_ss_mask;
1553	}
1554
1555	return cur_ss_mask;
1556}
1557
1558/**
1559 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1560 * @kn: the kernfs_node being serviced
1561 *
1562 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1563 * the method finishes if locking succeeded.  Note that once this function
1564 * returns the cgroup returned by cgroup_kn_lock_live() may become
1565 * inaccessible any time.  If the caller intends to continue to access the
1566 * cgroup, it should pin it before invoking this function.
1567 */
1568void cgroup_kn_unlock(struct kernfs_node *kn)
1569{
1570	struct cgroup *cgrp;
1571
1572	if (kernfs_type(kn) == KERNFS_DIR)
1573		cgrp = kn->priv;
1574	else
1575		cgrp = kn->parent->priv;
1576
1577	mutex_unlock(&cgroup_mutex);
1578
1579	kernfs_unbreak_active_protection(kn);
1580	cgroup_put(cgrp);
1581}
1582
1583/**
1584 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1585 * @kn: the kernfs_node being serviced
1586 * @drain_offline: perform offline draining on the cgroup
1587 *
1588 * This helper is to be used by a cgroup kernfs method currently servicing
1589 * @kn.  It breaks the active protection, performs cgroup locking and
1590 * verifies that the associated cgroup is alive.  Returns the cgroup if
1591 * alive; otherwise, %NULL.  A successful return should be undone by a
1592 * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1593 * cgroup is drained of offlining csses before return.
1594 *
1595 * Any cgroup kernfs method implementation which requires locking the
1596 * associated cgroup should use this helper.  It avoids nesting cgroup
1597 * locking under kernfs active protection and allows all kernfs operations
1598 * including self-removal.
1599 */
1600struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1601{
1602	struct cgroup *cgrp;
1603
1604	if (kernfs_type(kn) == KERNFS_DIR)
1605		cgrp = kn->priv;
1606	else
1607		cgrp = kn->parent->priv;
1608
1609	/*
1610	 * We're gonna grab cgroup_mutex which nests outside kernfs
1611	 * active_ref.  cgroup liveliness check alone provides enough
1612	 * protection against removal.  Ensure @cgrp stays accessible and
1613	 * break the active_ref protection.
1614	 */
1615	if (!cgroup_tryget(cgrp))
1616		return NULL;
1617	kernfs_break_active_protection(kn);
1618
1619	if (drain_offline)
1620		cgroup_lock_and_drain_offline(cgrp);
1621	else
1622		mutex_lock(&cgroup_mutex);
1623
1624	if (!cgroup_is_dead(cgrp))
1625		return cgrp;
1626
1627	cgroup_kn_unlock(kn);
1628	return NULL;
1629}
1630
1631static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1632{
1633	char name[CGROUP_FILE_NAME_MAX];
1634
1635	lockdep_assert_held(&cgroup_mutex);
1636
1637	if (cft->file_offset) {
1638		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1639		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1640
1641		spin_lock_irq(&cgroup_file_kn_lock);
1642		cfile->kn = NULL;
1643		spin_unlock_irq(&cgroup_file_kn_lock);
1644
1645		del_timer_sync(&cfile->notify_timer);
1646	}
1647
1648	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1649}
1650
1651/**
1652 * css_clear_dir - remove subsys files in a cgroup directory
1653 * @css: target css
1654 */
1655static void css_clear_dir(struct cgroup_subsys_state *css)
1656{
1657	struct cgroup *cgrp = css->cgroup;
1658	struct cftype *cfts;
1659
1660	if (!(css->flags & CSS_VISIBLE))
1661		return;
1662
1663	css->flags &= ~CSS_VISIBLE;
1664
1665	if (!css->ss) {
1666		if (cgroup_on_dfl(cgrp))
1667			cfts = cgroup_base_files;
1668		else
1669			cfts = cgroup1_base_files;
1670
1671		cgroup_addrm_files(css, cgrp, cfts, false);
1672	} else {
1673		list_for_each_entry(cfts, &css->ss->cfts, node)
1674			cgroup_addrm_files(css, cgrp, cfts, false);
1675	}
1676}
1677
1678/**
1679 * css_populate_dir - create subsys files in a cgroup directory
1680 * @css: target css
1681 *
1682 * On failure, no file is added.
1683 */
1684static int css_populate_dir(struct cgroup_subsys_state *css)
1685{
1686	struct cgroup *cgrp = css->cgroup;
1687	struct cftype *cfts, *failed_cfts;
1688	int ret;
1689
1690	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1691		return 0;
1692
1693	if (!css->ss) {
1694		if (cgroup_on_dfl(cgrp))
1695			cfts = cgroup_base_files;
1696		else
1697			cfts = cgroup1_base_files;
1698
1699		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1700		if (ret < 0)
1701			return ret;
1702	} else {
1703		list_for_each_entry(cfts, &css->ss->cfts, node) {
1704			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1705			if (ret < 0) {
1706				failed_cfts = cfts;
1707				goto err;
1708			}
1709		}
1710	}
1711
1712	css->flags |= CSS_VISIBLE;
1713
1714	return 0;
1715err:
1716	list_for_each_entry(cfts, &css->ss->cfts, node) {
1717		if (cfts == failed_cfts)
1718			break;
1719		cgroup_addrm_files(css, cgrp, cfts, false);
1720	}
1721	return ret;
1722}
1723
1724int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1725{
1726	struct cgroup *dcgrp = &dst_root->cgrp;
1727	struct cgroup_subsys *ss;
1728	int ssid, i, ret;
1729
1730	lockdep_assert_held(&cgroup_mutex);
1731
1732	do_each_subsys_mask(ss, ssid, ss_mask) {
1733		/*
1734		 * If @ss has non-root csses attached to it, can't move.
1735		 * If @ss is an implicit controller, it is exempt from this
1736		 * rule and can be stolen.
1737		 */
1738		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1739		    !ss->implicit_on_dfl)
1740			return -EBUSY;
1741
1742		/* can't move between two non-dummy roots either */
1743		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1744			return -EBUSY;
1745	} while_each_subsys_mask();
1746
1747	do_each_subsys_mask(ss, ssid, ss_mask) {
1748		struct cgroup_root *src_root = ss->root;
1749		struct cgroup *scgrp = &src_root->cgrp;
1750		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1751		struct css_set *cset;
1752
1753		WARN_ON(!css || cgroup_css(dcgrp, ss));
1754
1755		/* disable from the source */
1756		src_root->subsys_mask &= ~(1 << ssid);
1757		WARN_ON(cgroup_apply_control(scgrp));
1758		cgroup_finalize_control(scgrp, 0);
1759
1760		/* rebind */
1761		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1762		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1763		ss->root = dst_root;
1764		css->cgroup = dcgrp;
1765
1766		spin_lock_irq(&css_set_lock);
1767		hash_for_each(css_set_table, i, cset, hlist)
1768			list_move_tail(&cset->e_cset_node[ss->id],
1769				       &dcgrp->e_csets[ss->id]);
1770		spin_unlock_irq(&css_set_lock);
1771
1772		if (ss->css_rstat_flush) {
1773			list_del_rcu(&css->rstat_css_node);
1774			list_add_rcu(&css->rstat_css_node,
1775				     &dcgrp->rstat_css_list);
1776		}
1777
1778		/* default hierarchy doesn't enable controllers by default */
1779		dst_root->subsys_mask |= 1 << ssid;
1780		if (dst_root == &cgrp_dfl_root) {
1781			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1782		} else {
1783			dcgrp->subtree_control |= 1 << ssid;
1784			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1785		}
1786
1787		ret = cgroup_apply_control(dcgrp);
1788		if (ret)
1789			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1790				ss->name, ret);
1791
1792		if (ss->bind)
1793			ss->bind(css);
1794	} while_each_subsys_mask();
1795
1796	kernfs_activate(dcgrp->kn);
1797	return 0;
1798}
1799
1800int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1801		     struct kernfs_root *kf_root)
1802{
1803	int len = 0;
1804	char *buf = NULL;
1805	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1806	struct cgroup *ns_cgroup;
1807
1808	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1809	if (!buf)
1810		return -ENOMEM;
1811
1812	spin_lock_irq(&css_set_lock);
1813	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1814	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1815	spin_unlock_irq(&css_set_lock);
1816
1817	if (len >= PATH_MAX)
1818		len = -ERANGE;
1819	else if (len > 0) {
1820		seq_escape(sf, buf, " \t\n\\");
1821		len = 0;
1822	}
1823	kfree(buf);
1824	return len;
1825}
1826
1827enum cgroup2_param {
1828	Opt_nsdelegate,
1829	Opt_memory_localevents,
1830	Opt_memory_recursiveprot,
1831	nr__cgroup2_params
1832};
1833
1834static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1835	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1836	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1837	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1838	{}
1839};
1840
1841static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1842{
1843	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1844	struct fs_parse_result result;
1845	int opt;
1846
1847	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1848	if (opt < 0)
1849		return opt;
1850
1851	switch (opt) {
1852	case Opt_nsdelegate:
1853		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1854		return 0;
1855	case Opt_memory_localevents:
1856		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1857		return 0;
1858	case Opt_memory_recursiveprot:
1859		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1860		return 0;
1861	}
1862	return -EINVAL;
1863}
1864
1865static void apply_cgroup_root_flags(unsigned int root_flags)
1866{
1867	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1868		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1869			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1870		else
1871			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1872
1873		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1874			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1875		else
1876			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1877
1878		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1879			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1880		else
1881			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1882	}
1883}
1884
1885static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1886{
1887	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1888		seq_puts(seq, ",nsdelegate");
1889	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1890		seq_puts(seq, ",memory_localevents");
1891	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1892		seq_puts(seq, ",memory_recursiveprot");
1893	return 0;
1894}
1895
1896static int cgroup_reconfigure(struct fs_context *fc)
1897{
1898	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1899
1900	apply_cgroup_root_flags(ctx->flags);
1901	return 0;
1902}
1903
1904static void init_cgroup_housekeeping(struct cgroup *cgrp)
1905{
1906	struct cgroup_subsys *ss;
1907	int ssid;
1908
1909	INIT_LIST_HEAD(&cgrp->self.sibling);
1910	INIT_LIST_HEAD(&cgrp->self.children);
1911	INIT_LIST_HEAD(&cgrp->cset_links);
1912	INIT_LIST_HEAD(&cgrp->pidlists);
1913	mutex_init(&cgrp->pidlist_mutex);
1914	cgrp->self.cgroup = cgrp;
1915	cgrp->self.flags |= CSS_ONLINE;
1916	cgrp->dom_cgrp = cgrp;
1917	cgrp->max_descendants = INT_MAX;
1918	cgrp->max_depth = INT_MAX;
1919	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1920	prev_cputime_init(&cgrp->prev_cputime);
1921
1922	for_each_subsys(ss, ssid)
1923		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1924
1925	init_waitqueue_head(&cgrp->offline_waitq);
1926	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1927}
1928
1929void init_cgroup_root(struct cgroup_fs_context *ctx)
1930{
1931	struct cgroup_root *root = ctx->root;
1932	struct cgroup *cgrp = &root->cgrp;
1933
1934	INIT_LIST_HEAD(&root->root_list);
1935	atomic_set(&root->nr_cgrps, 1);
1936	cgrp->root = root;
1937	init_cgroup_housekeeping(cgrp);
1938
1939	root->flags = ctx->flags;
1940	if (ctx->release_agent)
1941		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1942	if (ctx->name)
1943		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1944	if (ctx->cpuset_clone_children)
1945		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1946}
1947
1948int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1949{
1950	LIST_HEAD(tmp_links);
1951	struct cgroup *root_cgrp = &root->cgrp;
1952	struct kernfs_syscall_ops *kf_sops;
1953	struct css_set *cset;
1954	int i, ret;
1955
1956	lockdep_assert_held(&cgroup_mutex);
1957
1958	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1959			      0, GFP_KERNEL);
1960	if (ret)
1961		goto out;
1962
1963	/*
1964	 * We're accessing css_set_count without locking css_set_lock here,
1965	 * but that's OK - it can only be increased by someone holding
1966	 * cgroup_lock, and that's us.  Later rebinding may disable
1967	 * controllers on the default hierarchy and thus create new csets,
1968	 * which can't be more than the existing ones.  Allocate 2x.
1969	 */
1970	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1971	if (ret)
1972		goto cancel_ref;
1973
1974	ret = cgroup_init_root_id(root);
1975	if (ret)
1976		goto cancel_ref;
1977
1978	kf_sops = root == &cgrp_dfl_root ?
1979		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1980
1981	root->kf_root = kernfs_create_root(kf_sops,
1982					   KERNFS_ROOT_CREATE_DEACTIVATED |
1983					   KERNFS_ROOT_SUPPORT_EXPORTOP |
1984					   KERNFS_ROOT_SUPPORT_USER_XATTR,
1985					   root_cgrp);
1986	if (IS_ERR(root->kf_root)) {
1987		ret = PTR_ERR(root->kf_root);
1988		goto exit_root_id;
1989	}
1990	root_cgrp->kn = root->kf_root->kn;
1991	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
1992	root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
1993
1994	ret = css_populate_dir(&root_cgrp->self);
1995	if (ret)
1996		goto destroy_root;
1997
1998	ret = cgroup_rstat_init(root_cgrp);
1999	if (ret)
2000		goto destroy_root;
2001
2002	ret = rebind_subsystems(root, ss_mask);
2003	if (ret)
2004		goto exit_stats;
2005
2006	ret = cgroup_bpf_inherit(root_cgrp);
2007	WARN_ON_ONCE(ret);
2008
2009	trace_cgroup_setup_root(root);
2010
2011	/*
2012	 * There must be no failure case after here, since rebinding takes
2013	 * care of subsystems' refcounts, which are explicitly dropped in
2014	 * the failure exit path.
2015	 */
2016	list_add(&root->root_list, &cgroup_roots);
2017	cgroup_root_count++;
2018
2019	/*
2020	 * Link the root cgroup in this hierarchy into all the css_set
2021	 * objects.
2022	 */
2023	spin_lock_irq(&css_set_lock);
2024	hash_for_each(css_set_table, i, cset, hlist) {
2025		link_css_set(&tmp_links, cset, root_cgrp);
2026		if (css_set_populated(cset))
2027			cgroup_update_populated(root_cgrp, true);
2028	}
2029	spin_unlock_irq(&css_set_lock);
2030
2031	BUG_ON(!list_empty(&root_cgrp->self.children));
2032	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2033
2034	ret = 0;
2035	goto out;
2036
2037exit_stats:
2038	cgroup_rstat_exit(root_cgrp);
2039destroy_root:
2040	kernfs_destroy_root(root->kf_root);
2041	root->kf_root = NULL;
2042exit_root_id:
2043	cgroup_exit_root_id(root);
2044cancel_ref:
2045	percpu_ref_exit(&root_cgrp->self.refcnt);
2046out:
2047	free_cgrp_cset_links(&tmp_links);
2048	return ret;
2049}
2050
2051int cgroup_do_get_tree(struct fs_context *fc)
2052{
2053	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2054	int ret;
2055
2056	ctx->kfc.root = ctx->root->kf_root;
2057	if (fc->fs_type == &cgroup2_fs_type)
2058		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2059	else
2060		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2061	ret = kernfs_get_tree(fc);
2062
2063	/*
2064	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2065	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2066	 */
2067	if (!ret && ctx->ns != &init_cgroup_ns) {
2068		struct dentry *nsdentry;
2069		struct super_block *sb = fc->root->d_sb;
2070		struct cgroup *cgrp;
2071
2072		mutex_lock(&cgroup_mutex);
2073		spin_lock_irq(&css_set_lock);
2074
2075		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2076
2077		spin_unlock_irq(&css_set_lock);
2078		mutex_unlock(&cgroup_mutex);
2079
2080		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2081		dput(fc->root);
2082		if (IS_ERR(nsdentry)) {
2083			deactivate_locked_super(sb);
2084			ret = PTR_ERR(nsdentry);
2085			nsdentry = NULL;
2086		}
2087		fc->root = nsdentry;
2088	}
2089
2090	if (!ctx->kfc.new_sb_created)
2091		cgroup_put(&ctx->root->cgrp);
2092
2093	return ret;
2094}
2095
2096/*
2097 * Destroy a cgroup filesystem context.
2098 */
2099static void cgroup_fs_context_free(struct fs_context *fc)
2100{
2101	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2102
2103	kfree(ctx->name);
2104	kfree(ctx->release_agent);
2105	put_cgroup_ns(ctx->ns);
2106	kernfs_free_fs_context(fc);
2107	kfree(ctx);
2108}
2109
2110static int cgroup_get_tree(struct fs_context *fc)
2111{
2112	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2113	int ret;
2114
2115	cgrp_dfl_visible = true;
2116	cgroup_get_live(&cgrp_dfl_root.cgrp);
2117	ctx->root = &cgrp_dfl_root;
2118
2119	ret = cgroup_do_get_tree(fc);
2120	if (!ret)
2121		apply_cgroup_root_flags(ctx->flags);
2122	return ret;
2123}
2124
2125static const struct fs_context_operations cgroup_fs_context_ops = {
2126	.free		= cgroup_fs_context_free,
2127	.parse_param	= cgroup2_parse_param,
2128	.get_tree	= cgroup_get_tree,
2129	.reconfigure	= cgroup_reconfigure,
2130};
2131
2132static const struct fs_context_operations cgroup1_fs_context_ops = {
2133	.free		= cgroup_fs_context_free,
2134	.parse_param	= cgroup1_parse_param,
2135	.get_tree	= cgroup1_get_tree,
2136	.reconfigure	= cgroup1_reconfigure,
2137};
2138
2139/*
2140 * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2141 * we select the namespace we're going to use.
2142 */
2143static int cgroup_init_fs_context(struct fs_context *fc)
2144{
2145	struct cgroup_fs_context *ctx;
2146
2147	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2148	if (!ctx)
2149		return -ENOMEM;
2150
2151	ctx->ns = current->nsproxy->cgroup_ns;
2152	get_cgroup_ns(ctx->ns);
2153	fc->fs_private = &ctx->kfc;
2154	if (fc->fs_type == &cgroup2_fs_type)
2155		fc->ops = &cgroup_fs_context_ops;
2156	else
2157		fc->ops = &cgroup1_fs_context_ops;
2158	put_user_ns(fc->user_ns);
2159	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2160	fc->global = true;
2161	return 0;
2162}
2163
2164static void cgroup_kill_sb(struct super_block *sb)
2165{
2166	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2167	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2168
2169	/*
2170	 * If @root doesn't have any children, start killing it.
2171	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2172	 * cgroup_mount() may wait for @root's release.
2173	 *
2174	 * And don't kill the default root.
2175	 */
2176	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2177	    !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2178		percpu_ref_kill(&root->cgrp.self.refcnt);
2179	cgroup_put(&root->cgrp);
2180	kernfs_kill_sb(sb);
2181}
2182
2183struct file_system_type cgroup_fs_type = {
2184	.name			= "cgroup",
2185	.init_fs_context	= cgroup_init_fs_context,
2186	.parameters		= cgroup1_fs_parameters,
2187	.kill_sb		= cgroup_kill_sb,
2188	.fs_flags		= FS_USERNS_MOUNT,
2189};
2190
2191static struct file_system_type cgroup2_fs_type = {
2192	.name			= "cgroup2",
2193	.init_fs_context	= cgroup_init_fs_context,
2194	.parameters		= cgroup2_fs_parameters,
2195	.kill_sb		= cgroup_kill_sb,
2196	.fs_flags		= FS_USERNS_MOUNT,
2197};
2198
2199#ifdef CONFIG_CPUSETS
2200static const struct fs_context_operations cpuset_fs_context_ops = {
2201	.get_tree	= cgroup1_get_tree,
2202	.free		= cgroup_fs_context_free,
2203};
2204
2205/*
2206 * This is ugly, but preserves the userspace API for existing cpuset
2207 * users. If someone tries to mount the "cpuset" filesystem, we
2208 * silently switch it to mount "cgroup" instead
2209 */
2210static int cpuset_init_fs_context(struct fs_context *fc)
2211{
2212	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2213	struct cgroup_fs_context *ctx;
2214	int err;
2215
2216	err = cgroup_init_fs_context(fc);
2217	if (err) {
2218		kfree(agent);
2219		return err;
2220	}
2221
2222	fc->ops = &cpuset_fs_context_ops;
2223
2224	ctx = cgroup_fc2context(fc);
2225	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2226	ctx->flags |= CGRP_ROOT_NOPREFIX;
2227	ctx->release_agent = agent;
2228
2229	get_filesystem(&cgroup_fs_type);
2230	put_filesystem(fc->fs_type);
2231	fc->fs_type = &cgroup_fs_type;
2232
2233	return 0;
2234}
2235
2236static struct file_system_type cpuset_fs_type = {
2237	.name			= "cpuset",
2238	.init_fs_context	= cpuset_init_fs_context,
2239	.fs_flags		= FS_USERNS_MOUNT,
2240};
2241#endif
2242
2243int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2244			  struct cgroup_namespace *ns)
2245{
2246	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2247
2248	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2249}
2250
2251int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2252		   struct cgroup_namespace *ns)
2253{
2254	int ret;
2255
2256	mutex_lock(&cgroup_mutex);
2257	spin_lock_irq(&css_set_lock);
2258
2259	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2260
2261	spin_unlock_irq(&css_set_lock);
2262	mutex_unlock(&cgroup_mutex);
2263
2264	return ret;
2265}
2266EXPORT_SYMBOL_GPL(cgroup_path_ns);
2267
2268/**
2269 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2270 * @task: target task
2271 * @buf: the buffer to write the path into
2272 * @buflen: the length of the buffer
2273 *
2274 * Determine @task's cgroup on the first (the one with the lowest non-zero
2275 * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2276 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2277 * cgroup controller callbacks.
2278 *
2279 * Return value is the same as kernfs_path().
2280 */
2281int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2282{
2283	struct cgroup_root *root;
2284	struct cgroup *cgrp;
2285	int hierarchy_id = 1;
2286	int ret;
2287
2288	mutex_lock(&cgroup_mutex);
2289	spin_lock_irq(&css_set_lock);
2290
2291	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2292
2293	if (root) {
2294		cgrp = task_cgroup_from_root(task, root);
2295		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2296	} else {
2297		/* if no hierarchy exists, everyone is in "/" */
2298		ret = strlcpy(buf, "/", buflen);
2299	}
2300
2301	spin_unlock_irq(&css_set_lock);
2302	mutex_unlock(&cgroup_mutex);
2303	return ret;
2304}
2305EXPORT_SYMBOL_GPL(task_cgroup_path);
2306
2307/**
2308 * cgroup_migrate_add_task - add a migration target task to a migration context
2309 * @task: target task
2310 * @mgctx: target migration context
2311 *
2312 * Add @task, which is a migration target, to @mgctx->tset.  This function
2313 * becomes noop if @task doesn't need to be migrated.  @task's css_set
2314 * should have been added as a migration source and @task->cg_list will be
2315 * moved from the css_set's tasks list to mg_tasks one.
2316 */
2317static void cgroup_migrate_add_task(struct task_struct *task,
2318				    struct cgroup_mgctx *mgctx)
2319{
2320	struct css_set *cset;
2321
2322	lockdep_assert_held(&css_set_lock);
2323
2324	/* @task either already exited or can't exit until the end */
2325	if (task->flags & PF_EXITING)
2326		return;
2327
2328	/* cgroup_threadgroup_rwsem protects racing against forks */
2329	WARN_ON_ONCE(list_empty(&task->cg_list));
2330
2331	cset = task_css_set(task);
2332	if (!cset->mg_src_cgrp)
2333		return;
2334
2335	mgctx->tset.nr_tasks++;
2336
2337	list_move_tail(&task->cg_list, &cset->mg_tasks);
2338	if (list_empty(&cset->mg_node))
2339		list_add_tail(&cset->mg_node,
2340			      &mgctx->tset.src_csets);
2341	if (list_empty(&cset->mg_dst_cset->mg_node))
2342		list_add_tail(&cset->mg_dst_cset->mg_node,
2343			      &mgctx->tset.dst_csets);
2344}
2345
2346/**
2347 * cgroup_taskset_first - reset taskset and return the first task
2348 * @tset: taskset of interest
2349 * @dst_cssp: output variable for the destination css
2350 *
2351 * @tset iteration is initialized and the first task is returned.
2352 */
2353struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2354					 struct cgroup_subsys_state **dst_cssp)
2355{
2356	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2357	tset->cur_task = NULL;
2358
2359	return cgroup_taskset_next(tset, dst_cssp);
2360}
2361
2362/**
2363 * cgroup_taskset_next - iterate to the next task in taskset
2364 * @tset: taskset of interest
2365 * @dst_cssp: output variable for the destination css
2366 *
2367 * Return the next task in @tset.  Iteration must have been initialized
2368 * with cgroup_taskset_first().
2369 */
2370struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2371					struct cgroup_subsys_state **dst_cssp)
2372{
2373	struct css_set *cset = tset->cur_cset;
2374	struct task_struct *task = tset->cur_task;
2375
2376	while (&cset->mg_node != tset->csets) {
2377		if (!task)
2378			task = list_first_entry(&cset->mg_tasks,
2379						struct task_struct, cg_list);
2380		else
2381			task = list_next_entry(task, cg_list);
2382
2383		if (&task->cg_list != &cset->mg_tasks) {
2384			tset->cur_cset = cset;
2385			tset->cur_task = task;
2386
2387			/*
2388			 * This function may be called both before and
2389			 * after cgroup_taskset_migrate().  The two cases
2390			 * can be distinguished by looking at whether @cset
2391			 * has its ->mg_dst_cset set.
2392			 */
2393			if (cset->mg_dst_cset)
2394				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2395			else
2396				*dst_cssp = cset->subsys[tset->ssid];
2397
2398			return task;
2399		}
2400
2401		cset = list_next_entry(cset, mg_node);
2402		task = NULL;
2403	}
2404
2405	return NULL;
2406}
2407
2408/**
2409 * cgroup_migrate_execute - migrate a taskset
2410 * @mgctx: migration context
2411 *
2412 * Migrate tasks in @mgctx as setup by migration preparation functions.
2413 * This function fails iff one of the ->can_attach callbacks fails and
2414 * guarantees that either all or none of the tasks in @mgctx are migrated.
2415 * @mgctx is consumed regardless of success.
2416 */
2417static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2418{
2419	struct cgroup_taskset *tset = &mgctx->tset;
2420	struct cgroup_subsys *ss;
2421	struct task_struct *task, *tmp_task;
2422	struct css_set *cset, *tmp_cset;
2423	int ssid, failed_ssid, ret;
2424
2425	/* check that we can legitimately attach to the cgroup */
2426	if (tset->nr_tasks) {
2427		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2428			if (ss->can_attach) {
2429				tset->ssid = ssid;
2430				ret = ss->can_attach(tset);
2431				if (ret) {
2432					failed_ssid = ssid;
2433					goto out_cancel_attach;
2434				}
2435			}
2436		} while_each_subsys_mask();
2437	}
2438
2439	/*
2440	 * Now that we're guaranteed success, proceed to move all tasks to
2441	 * the new cgroup.  There are no failure cases after here, so this
2442	 * is the commit point.
2443	 */
2444	spin_lock_irq(&css_set_lock);
2445	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2446		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2447			struct css_set *from_cset = task_css_set(task);
2448			struct css_set *to_cset = cset->mg_dst_cset;
2449
2450			get_css_set(to_cset);
2451			to_cset->nr_tasks++;
2452			css_set_move_task(task, from_cset, to_cset, true);
2453			from_cset->nr_tasks--;
2454			/*
2455			 * If the source or destination cgroup is frozen,
2456			 * the task might require to change its state.
2457			 */
2458			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2459						    to_cset->dfl_cgrp);
2460			put_css_set_locked(from_cset);
2461
2462		}
2463	}
2464	spin_unlock_irq(&css_set_lock);
2465
2466	/*
2467	 * Migration is committed, all target tasks are now on dst_csets.
2468	 * Nothing is sensitive to fork() after this point.  Notify
2469	 * controllers that migration is complete.
2470	 */
2471	tset->csets = &tset->dst_csets;
2472
2473	if (tset->nr_tasks) {
2474		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2475			if (ss->attach) {
2476				tset->ssid = ssid;
2477				ss->attach(tset);
2478			}
2479		} while_each_subsys_mask();
2480	}
2481
2482	ret = 0;
2483	goto out_release_tset;
2484
2485out_cancel_attach:
2486	if (tset->nr_tasks) {
2487		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2488			if (ssid == failed_ssid)
2489				break;
2490			if (ss->cancel_attach) {
2491				tset->ssid = ssid;
2492				ss->cancel_attach(tset);
2493			}
2494		} while_each_subsys_mask();
2495	}
2496out_release_tset:
2497	spin_lock_irq(&css_set_lock);
2498	list_splice_init(&tset->dst_csets, &tset->src_csets);
2499	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2500		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2501		list_del_init(&cset->mg_node);
2502	}
2503	spin_unlock_irq(&css_set_lock);
2504
2505	/*
2506	 * Re-initialize the cgroup_taskset structure in case it is reused
2507	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2508	 * iteration.
2509	 */
2510	tset->nr_tasks = 0;
2511	tset->csets    = &tset->src_csets;
2512	return ret;
2513}
2514
2515/**
2516 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2517 * @dst_cgrp: destination cgroup to test
2518 *
2519 * On the default hierarchy, except for the mixable, (possible) thread root
2520 * and threaded cgroups, subtree_control must be zero for migration
2521 * destination cgroups with tasks so that child cgroups don't compete
2522 * against tasks.
2523 */
2524int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2525{
2526	/* v1 doesn't have any restriction */
2527	if (!cgroup_on_dfl(dst_cgrp))
2528		return 0;
2529
2530	/* verify @dst_cgrp can host resources */
2531	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2532		return -EOPNOTSUPP;
2533
2534	/* mixables don't care */
2535	if (cgroup_is_mixable(dst_cgrp))
2536		return 0;
2537
2538	/*
2539	 * If @dst_cgrp is already or can become a thread root or is
2540	 * threaded, it doesn't matter.
2541	 */
2542	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2543		return 0;
2544
2545	/* apply no-internal-process constraint */
2546	if (dst_cgrp->subtree_control)
2547		return -EBUSY;
2548
2549	return 0;
2550}
2551
2552/**
2553 * cgroup_migrate_finish - cleanup after attach
2554 * @mgctx: migration context
2555 *
2556 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2557 * those functions for details.
2558 */
2559void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2560{
2561	LIST_HEAD(preloaded);
2562	struct css_set *cset, *tmp_cset;
2563
2564	lockdep_assert_held(&cgroup_mutex);
2565
2566	spin_lock_irq(&css_set_lock);
2567
2568	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2569	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2570
2571	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2572		cset->mg_src_cgrp = NULL;
2573		cset->mg_dst_cgrp = NULL;
2574		cset->mg_dst_cset = NULL;
2575		list_del_init(&cset->mg_preload_node);
2576		put_css_set_locked(cset);
2577	}
2578
2579	spin_unlock_irq(&css_set_lock);
2580}
2581
2582/**
2583 * cgroup_migrate_add_src - add a migration source css_set
2584 * @src_cset: the source css_set to add
2585 * @dst_cgrp: the destination cgroup
2586 * @mgctx: migration context
2587 *
2588 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2589 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2590 * up by cgroup_migrate_finish().
2591 *
2592 * This function may be called without holding cgroup_threadgroup_rwsem
2593 * even if the target is a process.  Threads may be created and destroyed
2594 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2595 * into play and the preloaded css_sets are guaranteed to cover all
2596 * migrations.
2597 */
2598void cgroup_migrate_add_src(struct css_set *src_cset,
2599			    struct cgroup *dst_cgrp,
2600			    struct cgroup_mgctx *mgctx)
2601{
2602	struct cgroup *src_cgrp;
2603
2604	lockdep_assert_held(&cgroup_mutex);
2605	lockdep_assert_held(&css_set_lock);
2606
2607	/*
2608	 * If ->dead, @src_set is associated with one or more dead cgroups
2609	 * and doesn't contain any migratable tasks.  Ignore it early so
2610	 * that the rest of migration path doesn't get confused by it.
2611	 */
2612	if (src_cset->dead)
2613		return;
2614
2615	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2616
2617	if (!list_empty(&src_cset->mg_preload_node))
2618		return;
2619
2620	WARN_ON(src_cset->mg_src_cgrp);
2621	WARN_ON(src_cset->mg_dst_cgrp);
2622	WARN_ON(!list_empty(&src_cset->mg_tasks));
2623	WARN_ON(!list_empty(&src_cset->mg_node));
2624
2625	src_cset->mg_src_cgrp = src_cgrp;
2626	src_cset->mg_dst_cgrp = dst_cgrp;
2627	get_css_set(src_cset);
2628	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2629}
2630
2631/**
2632 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2633 * @mgctx: migration context
2634 *
2635 * Tasks are about to be moved and all the source css_sets have been
2636 * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2637 * pins all destination css_sets, links each to its source, and append them
2638 * to @mgctx->preloaded_dst_csets.
2639 *
2640 * This function must be called after cgroup_migrate_add_src() has been
2641 * called on each migration source css_set.  After migration is performed
2642 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2643 * @mgctx.
2644 */
2645int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2646{
2647	struct css_set *src_cset, *tmp_cset;
2648
2649	lockdep_assert_held(&cgroup_mutex);
2650
2651	/* look up the dst cset for each src cset and link it to src */
2652	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2653				 mg_preload_node) {
2654		struct css_set *dst_cset;
2655		struct cgroup_subsys *ss;
2656		int ssid;
2657
2658		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2659		if (!dst_cset)
2660			return -ENOMEM;
2661
2662		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2663
2664		/*
2665		 * If src cset equals dst, it's noop.  Drop the src.
2666		 * cgroup_migrate() will skip the cset too.  Note that we
2667		 * can't handle src == dst as some nodes are used by both.
2668		 */
2669		if (src_cset == dst_cset) {
2670			src_cset->mg_src_cgrp = NULL;
2671			src_cset->mg_dst_cgrp = NULL;
2672			list_del_init(&src_cset->mg_preload_node);
2673			put_css_set(src_cset);
2674			put_css_set(dst_cset);
2675			continue;
2676		}
2677
2678		src_cset->mg_dst_cset = dst_cset;
2679
2680		if (list_empty(&dst_cset->mg_preload_node))
2681			list_add_tail(&dst_cset->mg_preload_node,
2682				      &mgctx->preloaded_dst_csets);
2683		else
2684			put_css_set(dst_cset);
2685
2686		for_each_subsys(ss, ssid)
2687			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2688				mgctx->ss_mask |= 1 << ssid;
2689	}
2690
2691	return 0;
2692}
2693
2694/**
2695 * cgroup_migrate - migrate a process or task to a cgroup
2696 * @leader: the leader of the process or the task to migrate
2697 * @threadgroup: whether @leader points to the whole process or a single task
2698 * @mgctx: migration context
2699 *
2700 * Migrate a process or task denoted by @leader.  If migrating a process,
2701 * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2702 * responsible for invoking cgroup_migrate_add_src() and
2703 * cgroup_migrate_prepare_dst() on the targets before invoking this
2704 * function and following up with cgroup_migrate_finish().
2705 *
2706 * As long as a controller's ->can_attach() doesn't fail, this function is
2707 * guaranteed to succeed.  This means that, excluding ->can_attach()
2708 * failure, when migrating multiple targets, the success or failure can be
2709 * decided for all targets by invoking group_migrate_prepare_dst() before
2710 * actually starting migrating.
2711 */
2712int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2713		   struct cgroup_mgctx *mgctx)
2714{
2715	struct task_struct *task;
2716
2717	/*
2718	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2719	 * already PF_EXITING could be freed from underneath us unless we
2720	 * take an rcu_read_lock.
2721	 */
2722	spin_lock_irq(&css_set_lock);
2723	rcu_read_lock();
2724	task = leader;
2725	do {
2726		cgroup_migrate_add_task(task, mgctx);
2727		if (!threadgroup)
2728			break;
2729	} while_each_thread(leader, task);
2730	rcu_read_unlock();
2731	spin_unlock_irq(&css_set_lock);
2732
2733	return cgroup_migrate_execute(mgctx);
2734}
2735
2736/**
2737 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2738 * @dst_cgrp: the cgroup to attach to
2739 * @leader: the task or the leader of the threadgroup to be attached
2740 * @threadgroup: attach the whole threadgroup?
2741 *
2742 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2743 */
2744int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2745		       bool threadgroup)
2746{
2747	DEFINE_CGROUP_MGCTX(mgctx);
2748	struct task_struct *task;
2749	int ret = 0;
2750
2751	/* look up all src csets */
2752	spin_lock_irq(&css_set_lock);
2753	rcu_read_lock();
2754	task = leader;
2755	do {
2756		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2757		if (!threadgroup)
2758			break;
2759	} while_each_thread(leader, task);
2760	rcu_read_unlock();
2761	spin_unlock_irq(&css_set_lock);
2762
2763	/* prepare dst csets and commit */
2764	ret = cgroup_migrate_prepare_dst(&mgctx);
2765	if (!ret)
2766		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2767
2768	cgroup_migrate_finish(&mgctx);
2769
2770	if (!ret)
2771		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2772
2773	return ret;
2774}
2775
2776struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2777					     bool *locked)
2778	__acquires(&cgroup_threadgroup_rwsem)
2779{
2780	struct task_struct *tsk;
2781	pid_t pid;
2782
2783	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2784		return ERR_PTR(-EINVAL);
2785
2786	/*
2787	 * If we migrate a single thread, we don't care about threadgroup
2788	 * stability. If the thread is `current`, it won't exit(2) under our
2789	 * hands or change PID through exec(2). We exclude
2790	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2791	 * callers by cgroup_mutex.
2792	 * Therefore, we can skip the global lock.
2793	 */
2794	lockdep_assert_held(&cgroup_mutex);
2795	if (pid || threadgroup) {
2796		percpu_down_write(&cgroup_threadgroup_rwsem);
2797		*locked = true;
2798	} else {
2799		*locked = false;
2800	}
2801
2802	rcu_read_lock();
2803	if (pid) {
2804		tsk = find_task_by_vpid(pid);
2805		if (!tsk) {
2806			tsk = ERR_PTR(-ESRCH);
2807			goto out_unlock_threadgroup;
2808		}
2809	} else {
2810		tsk = current;
2811	}
2812
2813	if (threadgroup)
2814		tsk = tsk->group_leader;
2815
2816	/*
2817	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2818	 * If userland migrates such a kthread to a non-root cgroup, it can
2819	 * become trapped in a cpuset, or RT kthread may be born in a
2820	 * cgroup with no rt_runtime allocated.  Just say no.
2821	 */
2822	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2823		tsk = ERR_PTR(-EINVAL);
2824		goto out_unlock_threadgroup;
2825	}
2826
2827	get_task_struct(tsk);
2828	goto out_unlock_rcu;
2829
2830out_unlock_threadgroup:
2831	if (*locked) {
2832		percpu_up_write(&cgroup_threadgroup_rwsem);
2833		*locked = false;
2834	}
2835out_unlock_rcu:
2836	rcu_read_unlock();
2837	return tsk;
2838}
2839
2840void cgroup_procs_write_finish(struct task_struct *task, bool locked)
2841	__releases(&cgroup_threadgroup_rwsem)
2842{
2843	struct cgroup_subsys *ss;
2844	int ssid;
2845
2846	/* release reference from cgroup_procs_write_start() */
2847	put_task_struct(task);
2848
2849	if (locked)
2850		percpu_up_write(&cgroup_threadgroup_rwsem);
2851	for_each_subsys(ss, ssid)
2852		if (ss->post_attach)
2853			ss->post_attach();
2854}
2855
2856static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2857{
2858	struct cgroup_subsys *ss;
2859	bool printed = false;
2860	int ssid;
2861
2862	do_each_subsys_mask(ss, ssid, ss_mask) {
2863		if (printed)
2864			seq_putc(seq, ' ');
2865		seq_puts(seq, ss->name);
2866		printed = true;
2867	} while_each_subsys_mask();
2868	if (printed)
2869		seq_putc(seq, '\n');
2870}
2871
2872/* show controllers which are enabled from the parent */
2873static int cgroup_controllers_show(struct seq_file *seq, void *v)
2874{
2875	struct cgroup *cgrp = seq_css(seq)->cgroup;
2876
2877	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2878	return 0;
2879}
2880
2881/* show controllers which are enabled for a given cgroup's children */
2882static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2883{
2884	struct cgroup *cgrp = seq_css(seq)->cgroup;
2885
2886	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2887	return 0;
2888}
2889
2890/**
2891 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2892 * @cgrp: root of the subtree to update csses for
2893 *
2894 * @cgrp's control masks have changed and its subtree's css associations
2895 * need to be updated accordingly.  This function looks up all css_sets
2896 * which are attached to the subtree, creates the matching updated css_sets
2897 * and migrates the tasks to the new ones.
2898 */
2899static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2900{
2901	DEFINE_CGROUP_MGCTX(mgctx);
2902	struct cgroup_subsys_state *d_css;
2903	struct cgroup *dsct;
2904	struct css_set *src_cset;
2905	int ret;
2906
2907	lockdep_assert_held(&cgroup_mutex);
2908
2909	percpu_down_write(&cgroup_threadgroup_rwsem);
2910
2911	/* look up all csses currently attached to @cgrp's subtree */
2912	spin_lock_irq(&css_set_lock);
2913	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2914		struct cgrp_cset_link *link;
2915
2916		list_for_each_entry(link, &dsct->cset_links, cset_link)
2917			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2918	}
2919	spin_unlock_irq(&css_set_lock);
2920
2921	/* NULL dst indicates self on default hierarchy */
2922	ret = cgroup_migrate_prepare_dst(&mgctx);
2923	if (ret)
2924		goto out_finish;
2925
2926	spin_lock_irq(&css_set_lock);
2927	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2928		struct task_struct *task, *ntask;
2929
2930		/* all tasks in src_csets need to be migrated */
2931		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2932			cgroup_migrate_add_task(task, &mgctx);
2933	}
2934	spin_unlock_irq(&css_set_lock);
2935
2936	ret = cgroup_migrate_execute(&mgctx);
2937out_finish:
2938	cgroup_migrate_finish(&mgctx);
2939	percpu_up_write(&cgroup_threadgroup_rwsem);
2940	return ret;
2941}
2942
2943/**
2944 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2945 * @cgrp: root of the target subtree
2946 *
2947 * Because css offlining is asynchronous, userland may try to re-enable a
2948 * controller while the previous css is still around.  This function grabs
2949 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2950 */
2951void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2952	__acquires(&cgroup_mutex)
2953{
2954	struct cgroup *dsct;
2955	struct cgroup_subsys_state *d_css;
2956	struct cgroup_subsys *ss;
2957	int ssid;
2958
2959restart:
2960	mutex_lock(&cgroup_mutex);
2961
2962	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2963		for_each_subsys(ss, ssid) {
2964			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2965			DEFINE_WAIT(wait);
2966
2967			if (!css || !percpu_ref_is_dying(&css->refcnt))
2968				continue;
2969
2970			cgroup_get_live(dsct);
2971			prepare_to_wait(&dsct->offline_waitq, &wait,
2972					TASK_UNINTERRUPTIBLE);
2973
2974			mutex_unlock(&cgroup_mutex);
2975			schedule();
2976			finish_wait(&dsct->offline_waitq, &wait);
2977
2978			cgroup_put(dsct);
2979			goto restart;
2980		}
2981	}
2982}
2983
2984/**
2985 * cgroup_save_control - save control masks and dom_cgrp of a subtree
2986 * @cgrp: root of the target subtree
2987 *
2988 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2989 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2990 * itself.
2991 */
2992static void cgroup_save_control(struct cgroup *cgrp)
2993{
2994	struct cgroup *dsct;
2995	struct cgroup_subsys_state *d_css;
2996
2997	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2998		dsct->old_subtree_control = dsct->subtree_control;
2999		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3000		dsct->old_dom_cgrp = dsct->dom_cgrp;
3001	}
3002}
3003
3004/**
3005 * cgroup_propagate_control - refresh control masks of a subtree
3006 * @cgrp: root of the target subtree
3007 *
3008 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3009 * ->subtree_control and propagate controller availability through the
3010 * subtree so that descendants don't have unavailable controllers enabled.
3011 */
3012static void cgroup_propagate_control(struct cgroup *cgrp)
3013{
3014	struct cgroup *dsct;
3015	struct cgroup_subsys_state *d_css;
3016
3017	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3018		dsct->subtree_control &= cgroup_control(dsct);
3019		dsct->subtree_ss_mask =
3020			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3021						    cgroup_ss_mask(dsct));
3022	}
3023}
3024
3025/**
3026 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3027 * @cgrp: root of the target subtree
3028 *
3029 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3030 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3031 * itself.
3032 */
3033static void cgroup_restore_control(struct cgroup *cgrp)
3034{
3035	struct cgroup *dsct;
3036	struct cgroup_subsys_state *d_css;
3037
3038	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3039		dsct->subtree_control = dsct->old_subtree_control;
3040		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3041		dsct->dom_cgrp = dsct->old_dom_cgrp;
3042	}
3043}
3044
3045static bool css_visible(struct cgroup_subsys_state *css)
3046{
3047	struct cgroup_subsys *ss = css->ss;
3048	struct cgroup *cgrp = css->cgroup;
3049
3050	if (cgroup_control(cgrp) & (1 << ss->id))
3051		return true;
3052	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3053		return false;
3054	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3055}
3056
3057/**
3058 * cgroup_apply_control_enable - enable or show csses according to control
3059 * @cgrp: root of the target subtree
3060 *
3061 * Walk @cgrp's subtree and create new csses or make the existing ones
3062 * visible.  A css is created invisible if it's being implicitly enabled
3063 * through dependency.  An invisible css is made visible when the userland
3064 * explicitly enables it.
3065 *
3066 * Returns 0 on success, -errno on failure.  On failure, csses which have
3067 * been processed already aren't cleaned up.  The caller is responsible for
3068 * cleaning up with cgroup_apply_control_disable().
3069 */
3070static int cgroup_apply_control_enable(struct cgroup *cgrp)
3071{
3072	struct cgroup *dsct;
3073	struct cgroup_subsys_state *d_css;
3074	struct cgroup_subsys *ss;
3075	int ssid, ret;
3076
3077	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3078		for_each_subsys(ss, ssid) {
3079			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3080
3081			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3082				continue;
3083
3084			if (!css) {
3085				css = css_create(dsct, ss);
3086				if (IS_ERR(css))
3087					return PTR_ERR(css);
3088			}
3089
3090			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3091
3092			if (css_visible(css)) {
3093				ret = css_populate_dir(css);
3094				if (ret)
3095					return ret;
3096			}
3097		}
3098	}
3099
3100	return 0;
3101}
3102
3103/**
3104 * cgroup_apply_control_disable - kill or hide csses according to control
3105 * @cgrp: root of the target subtree
3106 *
3107 * Walk @cgrp's subtree and kill and hide csses so that they match
3108 * cgroup_ss_mask() and cgroup_visible_mask().
3109 *
3110 * A css is hidden when the userland requests it to be disabled while other
3111 * subsystems are still depending on it.  The css must not actively control
3112 * resources and be in the vanilla state if it's made visible again later.
3113 * Controllers which may be depended upon should provide ->css_reset() for
3114 * this purpose.
3115 */
3116static void cgroup_apply_control_disable(struct cgroup *cgrp)
3117{
3118	struct cgroup *dsct;
3119	struct cgroup_subsys_state *d_css;
3120	struct cgroup_subsys *ss;
3121	int ssid;
3122
3123	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3124		for_each_subsys(ss, ssid) {
3125			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3126
3127			if (!css)
3128				continue;
3129
3130			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3131
3132			if (css->parent &&
3133			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3134				kill_css(css);
3135			} else if (!css_visible(css)) {
3136				css_clear_dir(css);
3137				if (ss->css_reset)
3138					ss->css_reset(css);
3139			}
3140		}
3141	}
3142}
3143
3144/**
3145 * cgroup_apply_control - apply control mask updates to the subtree
3146 * @cgrp: root of the target subtree
3147 *
3148 * subsystems can be enabled and disabled in a subtree using the following
3149 * steps.
3150 *
3151 * 1. Call cgroup_save_control() to stash the current state.
3152 * 2. Update ->subtree_control masks in the subtree as desired.
3153 * 3. Call cgroup_apply_control() to apply the changes.
3154 * 4. Optionally perform other related operations.
3155 * 5. Call cgroup_finalize_control() to finish up.
3156 *
3157 * This function implements step 3 and propagates the mask changes
3158 * throughout @cgrp's subtree, updates csses accordingly and perform
3159 * process migrations.
3160 */
3161static int cgroup_apply_control(struct cgroup *cgrp)
3162{
3163	int ret;
3164
3165	cgroup_propagate_control(cgrp);
3166
3167	ret = cgroup_apply_control_enable(cgrp);
3168	if (ret)
3169		return ret;
3170
3171	/*
3172	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3173	 * making the following cgroup_update_dfl_csses() properly update
3174	 * css associations of all tasks in the subtree.
3175	 */
3176	ret = cgroup_update_dfl_csses(cgrp);
3177	if (ret)
3178		return ret;
3179
3180	return 0;
3181}
3182
3183/**
3184 * cgroup_finalize_control - finalize control mask update
3185 * @cgrp: root of the target subtree
3186 * @ret: the result of the update
3187 *
3188 * Finalize control mask update.  See cgroup_apply_control() for more info.
3189 */
3190static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3191{
3192	if (ret) {
3193		cgroup_restore_control(cgrp);
3194		cgroup_propagate_control(cgrp);
3195	}
3196
3197	cgroup_apply_control_disable(cgrp);
3198}
3199
3200static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3201{
3202	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3203
3204	/* if nothing is getting enabled, nothing to worry about */
3205	if (!enable)
3206		return 0;
3207
3208	/* can @cgrp host any resources? */
3209	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3210		return -EOPNOTSUPP;
3211
3212	/* mixables don't care */
3213	if (cgroup_is_mixable(cgrp))
3214		return 0;
3215
3216	if (domain_enable) {
3217		/* can't enable domain controllers inside a thread subtree */
3218		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3219			return -EOPNOTSUPP;
3220	} else {
3221		/*
3222		 * Threaded controllers can handle internal competitions
3223		 * and are always allowed inside a (prospective) thread
3224		 * subtree.
3225		 */
3226		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3227			return 0;
3228	}
3229
3230	/*
3231	 * Controllers can't be enabled for a cgroup with tasks to avoid
3232	 * child cgroups competing against tasks.
3233	 */
3234	if (cgroup_has_tasks(cgrp))
3235		return -EBUSY;
3236
3237	return 0;
3238}
3239
3240/* change the enabled child controllers for a cgroup in the default hierarchy */
3241static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3242					    char *buf, size_t nbytes,
3243					    loff_t off)
3244{
3245	u16 enable = 0, disable = 0;
3246	struct cgroup *cgrp, *child;
3247	struct cgroup_subsys *ss;
3248	char *tok;
3249	int ssid, ret;
3250
3251	/*
3252	 * Parse input - space separated list of subsystem names prefixed
3253	 * with either + or -.
3254	 */
3255	buf = strstrip(buf);
3256	while ((tok = strsep(&buf, " "))) {
3257		if (tok[0] == '\0')
3258			continue;
3259		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3260			if (!cgroup_ssid_enabled(ssid) ||
3261			    strcmp(tok + 1, ss->name))
3262				continue;
3263
3264			if (*tok == '+') {
3265				enable |= 1 << ssid;
3266				disable &= ~(1 << ssid);
3267			} else if (*tok == '-') {
3268				disable |= 1 << ssid;
3269				enable &= ~(1 << ssid);
3270			} else {
3271				return -EINVAL;
3272			}
3273			break;
3274		} while_each_subsys_mask();
3275		if (ssid == CGROUP_SUBSYS_COUNT)
3276			return -EINVAL;
3277	}
3278
3279	cgrp = cgroup_kn_lock_live(of->kn, true);
3280	if (!cgrp)
3281		return -ENODEV;
3282
3283	for_each_subsys(ss, ssid) {
3284		if (enable & (1 << ssid)) {
3285			if (cgrp->subtree_control & (1 << ssid)) {
3286				enable &= ~(1 << ssid);
3287				continue;
3288			}
3289
3290			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3291				ret = -ENOENT;
3292				goto out_unlock;
3293			}
3294		} else if (disable & (1 << ssid)) {
3295			if (!(cgrp->subtree_control & (1 << ssid))) {
3296				disable &= ~(1 << ssid);
3297				continue;
3298			}
3299
3300			/* a child has it enabled? */
3301			cgroup_for_each_live_child(child, cgrp) {
3302				if (child->subtree_control & (1 << ssid)) {
3303					ret = -EBUSY;
3304					goto out_unlock;
3305				}
3306			}
3307		}
3308	}
3309
3310	if (!enable && !disable) {
3311		ret = 0;
3312		goto out_unlock;
3313	}
3314
3315	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3316	if (ret)
3317		goto out_unlock;
3318
3319	/* save and update control masks and prepare csses */
3320	cgroup_save_control(cgrp);
3321
3322	cgrp->subtree_control |= enable;
3323	cgrp->subtree_control &= ~disable;
3324
3325	ret = cgroup_apply_control(cgrp);
3326	cgroup_finalize_control(cgrp, ret);
3327	if (ret)
3328		goto out_unlock;
3329
3330	kernfs_activate(cgrp->kn);
3331out_unlock:
3332	cgroup_kn_unlock(of->kn);
3333	return ret ?: nbytes;
3334}
3335
3336/**
3337 * cgroup_enable_threaded - make @cgrp threaded
3338 * @cgrp: the target cgroup
3339 *
3340 * Called when "threaded" is written to the cgroup.type interface file and
3341 * tries to make @cgrp threaded and join the parent's resource domain.
3342 * This function is never called on the root cgroup as cgroup.type doesn't
3343 * exist on it.
3344 */
3345static int cgroup_enable_threaded(struct cgroup *cgrp)
3346{
3347	struct cgroup *parent = cgroup_parent(cgrp);
3348	struct cgroup *dom_cgrp = parent->dom_cgrp;
3349	struct cgroup *dsct;
3350	struct cgroup_subsys_state *d_css;
3351	int ret;
3352
3353	lockdep_assert_held(&cgroup_mutex);
3354
3355	/* noop if already threaded */
3356	if (cgroup_is_threaded(cgrp))
3357		return 0;
3358
3359	/*
3360	 * If @cgroup is populated or has domain controllers enabled, it
3361	 * can't be switched.  While the below cgroup_can_be_thread_root()
3362	 * test can catch the same conditions, that's only when @parent is
3363	 * not mixable, so let's check it explicitly.
3364	 */
3365	if (cgroup_is_populated(cgrp) ||
3366	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3367		return -EOPNOTSUPP;
3368
3369	/* we're joining the parent's domain, ensure its validity */
3370	if (!cgroup_is_valid_domain(dom_cgrp) ||
3371	    !cgroup_can_be_thread_root(dom_cgrp))
3372		return -EOPNOTSUPP;
3373
3374	/*
3375	 * The following shouldn't cause actual migrations and should
3376	 * always succeed.
3377	 */
3378	cgroup_save_control(cgrp);
3379
3380	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3381		if (dsct == cgrp || cgroup_is_threaded(dsct))
3382			dsct->dom_cgrp = dom_cgrp;
3383
3384	ret = cgroup_apply_control(cgrp);
3385	if (!ret)
3386		parent->nr_threaded_children++;
3387
3388	cgroup_finalize_control(cgrp, ret);
3389	return ret;
3390}
3391
3392static int cgroup_type_show(struct seq_file *seq, void *v)
3393{
3394	struct cgroup *cgrp = seq_css(seq)->cgroup;
3395
3396	if (cgroup_is_threaded(cgrp))
3397		seq_puts(seq, "threaded\n");
3398	else if (!cgroup_is_valid_domain(cgrp))
3399		seq_puts(seq, "domain invalid\n");
3400	else if (cgroup_is_thread_root(cgrp))
3401		seq_puts(seq, "domain threaded\n");
3402	else
3403		seq_puts(seq, "domain\n");
3404
3405	return 0;
3406}
3407
3408static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3409				 size_t nbytes, loff_t off)
3410{
3411	struct cgroup *cgrp;
3412	int ret;
3413
3414	/* only switching to threaded mode is supported */
3415	if (strcmp(strstrip(buf), "threaded"))
3416		return -EINVAL;
3417
3418	/* drain dying csses before we re-apply (threaded) subtree control */
3419	cgrp = cgroup_kn_lock_live(of->kn, true);
3420	if (!cgrp)
3421		return -ENOENT;
3422
3423	/* threaded can only be enabled */
3424	ret = cgroup_enable_threaded(cgrp);
3425
3426	cgroup_kn_unlock(of->kn);
3427	return ret ?: nbytes;
3428}
3429
3430static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3431{
3432	struct cgroup *cgrp = seq_css(seq)->cgroup;
3433	int descendants = READ_ONCE(cgrp->max_descendants);
3434
3435	if (descendants == INT_MAX)
3436		seq_puts(seq, "max\n");
3437	else
3438		seq_printf(seq, "%d\n", descendants);
3439
3440	return 0;
3441}
3442
3443static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3444					   char *buf, size_t nbytes, loff_t off)
3445{
3446	struct cgroup *cgrp;
3447	int descendants;
3448	ssize_t ret;
3449
3450	buf = strstrip(buf);
3451	if (!strcmp(buf, "max")) {
3452		descendants = INT_MAX;
3453	} else {
3454		ret = kstrtoint(buf, 0, &descendants);
3455		if (ret)
3456			return ret;
3457	}
3458
3459	if (descendants < 0)
3460		return -ERANGE;
3461
3462	cgrp = cgroup_kn_lock_live(of->kn, false);
3463	if (!cgrp)
3464		return -ENOENT;
3465
3466	cgrp->max_descendants = descendants;
3467
3468	cgroup_kn_unlock(of->kn);
3469
3470	return nbytes;
3471}
3472
3473static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3474{
3475	struct cgroup *cgrp = seq_css(seq)->cgroup;
3476	int depth = READ_ONCE(cgrp->max_depth);
3477
3478	if (depth == INT_MAX)
3479		seq_puts(seq, "max\n");
3480	else
3481		seq_printf(seq, "%d\n", depth);
3482
3483	return 0;
3484}
3485
3486static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3487				      char *buf, size_t nbytes, loff_t off)
3488{
3489	struct cgroup *cgrp;
3490	ssize_t ret;
3491	int depth;
3492
3493	buf = strstrip(buf);
3494	if (!strcmp(buf, "max")) {
3495		depth = INT_MAX;
3496	} else {
3497		ret = kstrtoint(buf, 0, &depth);
3498		if (ret)
3499			return ret;
3500	}
3501
3502	if (depth < 0)
3503		return -ERANGE;
3504
3505	cgrp = cgroup_kn_lock_live(of->kn, false);
3506	if (!cgrp)
3507		return -ENOENT;
3508
3509	cgrp->max_depth = depth;
3510
3511	cgroup_kn_unlock(of->kn);
3512
3513	return nbytes;
3514}
3515
3516static int cgroup_events_show(struct seq_file *seq, void *v)
3517{
3518	struct cgroup *cgrp = seq_css(seq)->cgroup;
3519
3520	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3521	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3522
3523	return 0;
3524}
3525
3526static int cgroup_stat_show(struct seq_file *seq, void *v)
3527{
3528	struct cgroup *cgroup = seq_css(seq)->cgroup;
3529
3530	seq_printf(seq, "nr_descendants %d\n",
3531		   cgroup->nr_descendants);
3532	seq_printf(seq, "nr_dying_descendants %d\n",
3533		   cgroup->nr_dying_descendants);
3534
3535	return 0;
3536}
3537
3538static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3539						 struct cgroup *cgrp, int ssid)
3540{
3541	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3542	struct cgroup_subsys_state *css;
3543	int ret;
3544
3545	if (!ss->css_extra_stat_show)
3546		return 0;
3547
3548	css = cgroup_tryget_css(cgrp, ss);
3549	if (!css)
3550		return 0;
3551
3552	ret = ss->css_extra_stat_show(seq, css);
3553	css_put(css);
3554	return ret;
3555}
3556
3557static int cpu_stat_show(struct seq_file *seq, void *v)
3558{
3559	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3560	int ret = 0;
3561
3562	cgroup_base_stat_cputime_show(seq);
3563#ifdef CONFIG_CGROUP_SCHED
3564	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3565#endif
3566	return ret;
3567}
3568
3569#ifdef CONFIG_PSI
3570static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3571{
3572	struct cgroup *cgrp = seq_css(seq)->cgroup;
3573	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3574
3575	return psi_show(seq, psi, PSI_IO);
3576}
3577static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3578{
3579	struct cgroup *cgrp = seq_css(seq)->cgroup;
3580	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3581
3582	return psi_show(seq, psi, PSI_MEM);
3583}
3584static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3585{
3586	struct cgroup *cgrp = seq_css(seq)->cgroup;
3587	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3588
3589	return psi_show(seq, psi, PSI_CPU);
3590}
3591
3592static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3593					  size_t nbytes, enum psi_res res)
3594{
3595	struct psi_trigger *new;
3596	struct cgroup *cgrp;
3597	struct psi_group *psi;
3598
3599	cgrp = cgroup_kn_lock_live(of->kn, false);
3600	if (!cgrp)
3601		return -ENODEV;
3602
3603	cgroup_get(cgrp);
3604	cgroup_kn_unlock(of->kn);
3605
3606	psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3607	new = psi_trigger_create(psi, buf, nbytes, res);
3608	if (IS_ERR(new)) {
3609		cgroup_put(cgrp);
3610		return PTR_ERR(new);
3611	}
3612
3613	psi_trigger_replace(&of->priv, new);
3614
3615	cgroup_put(cgrp);
3616
3617	return nbytes;
3618}
3619
3620static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3621					  char *buf, size_t nbytes,
3622					  loff_t off)
3623{
3624	return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3625}
3626
3627static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3628					  char *buf, size_t nbytes,
3629					  loff_t off)
3630{
3631	return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3632}
3633
3634static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3635					  char *buf, size_t nbytes,
3636					  loff_t off)
3637{
3638	return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3639}
3640
3641static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3642					  poll_table *pt)
3643{
3644	return psi_trigger_poll(&of->priv, of->file, pt);
3645}
3646
3647static void cgroup_pressure_release(struct kernfs_open_file *of)
3648{
3649	psi_trigger_replace(&of->priv, NULL);
3650}
3651
3652bool cgroup_psi_enabled(void)
3653{
3654	return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3655}
3656
3657#else /* CONFIG_PSI */
3658bool cgroup_psi_enabled(void)
3659{
3660	return false;
3661}
3662
3663#endif /* CONFIG_PSI */
3664
3665static int cgroup_freeze_show(struct seq_file *seq, void *v)
3666{
3667	struct cgroup *cgrp = seq_css(seq)->cgroup;
3668
3669	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3670
3671	return 0;
3672}
3673
3674static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3675				   char *buf, size_t nbytes, loff_t off)
3676{
3677	struct cgroup *cgrp;
3678	ssize_t ret;
3679	int freeze;
3680
3681	ret = kstrtoint(strstrip(buf), 0, &freeze);
3682	if (ret)
3683		return ret;
3684
3685	if (freeze < 0 || freeze > 1)
3686		return -ERANGE;
3687
3688	cgrp = cgroup_kn_lock_live(of->kn, false);
3689	if (!cgrp)
3690		return -ENOENT;
3691
3692	cgroup_freeze(cgrp, freeze);
3693
3694	cgroup_kn_unlock(of->kn);
3695
3696	return nbytes;
3697}
3698
3699static void __cgroup_kill(struct cgroup *cgrp)
3700{
3701	struct css_task_iter it;
3702	struct task_struct *task;
3703
3704	lockdep_assert_held(&cgroup_mutex);
3705
3706	spin_lock_irq(&css_set_lock);
3707	set_bit(CGRP_KILL, &cgrp->flags);
3708	spin_unlock_irq(&css_set_lock);
3709
3710	css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
3711	while ((task = css_task_iter_next(&it))) {
3712		/* Ignore kernel threads here. */
3713		if (task->flags & PF_KTHREAD)
3714			continue;
3715
3716		/* Skip tasks that are already dying. */
3717		if (__fatal_signal_pending(task))
3718			continue;
3719
3720		send_sig(SIGKILL, task, 0);
3721	}
3722	css_task_iter_end(&it);
3723
3724	spin_lock_irq(&css_set_lock);
3725	clear_bit(CGRP_KILL, &cgrp->flags);
3726	spin_unlock_irq(&css_set_lock);
3727}
3728
3729static void cgroup_kill(struct cgroup *cgrp)
3730{
3731	struct cgroup_subsys_state *css;
3732	struct cgroup *dsct;
3733
3734	lockdep_assert_held(&cgroup_mutex);
3735
3736	cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
3737		__cgroup_kill(dsct);
3738}
3739
3740static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
3741				 size_t nbytes, loff_t off)
3742{
3743	ssize_t ret = 0;
3744	int kill;
3745	struct cgroup *cgrp;
3746
3747	ret = kstrtoint(strstrip(buf), 0, &kill);
3748	if (ret)
3749		return ret;
3750
3751	if (kill != 1)
3752		return -ERANGE;
3753
3754	cgrp = cgroup_kn_lock_live(of->kn, false);
3755	if (!cgrp)
3756		return -ENOENT;
3757
3758	/*
3759	 * Killing is a process directed operation, i.e. the whole thread-group
3760	 * is taken down so act like we do for cgroup.procs and only make this
3761	 * writable in non-threaded cgroups.
3762	 */
3763	if (cgroup_is_threaded(cgrp))
3764		ret = -EOPNOTSUPP;
3765	else
3766		cgroup_kill(cgrp);
3767
3768	cgroup_kn_unlock(of->kn);
3769
3770	return ret ?: nbytes;
3771}
3772
3773static int cgroup_file_open(struct kernfs_open_file *of)
3774{
3775	struct cftype *cft = of_cft(of);
3776
3777	if (cft->open)
3778		return cft->open(of);
3779	return 0;
3780}
3781
3782static void cgroup_file_release(struct kernfs_open_file *of)
3783{
3784	struct cftype *cft = of_cft(of);
3785
3786	if (cft->release)
3787		cft->release(of);
3788}
3789
3790static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3791				 size_t nbytes, loff_t off)
3792{
3793	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3794	struct cgroup *cgrp = of->kn->parent->priv;
3795	struct cftype *cft = of_cft(of);
3796	struct cgroup_subsys_state *css;
3797	int ret;
3798
3799	if (!nbytes)
3800		return 0;
3801
3802	/*
3803	 * If namespaces are delegation boundaries, disallow writes to
3804	 * files in an non-init namespace root from inside the namespace
3805	 * except for the files explicitly marked delegatable -
3806	 * cgroup.procs and cgroup.subtree_control.
3807	 */
3808	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3809	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3810	    ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3811		return -EPERM;
3812
3813	if (cft->write)
3814		return cft->write(of, buf, nbytes, off);
3815
3816	/*
3817	 * kernfs guarantees that a file isn't deleted with operations in
3818	 * flight, which means that the matching css is and stays alive and
3819	 * doesn't need to be pinned.  The RCU locking is not necessary
3820	 * either.  It's just for the convenience of using cgroup_css().
3821	 */
3822	rcu_read_lock();
3823	css = cgroup_css(cgrp, cft->ss);
3824	rcu_read_unlock();
3825
3826	if (cft->write_u64) {
3827		unsigned long long v;
3828		ret = kstrtoull(buf, 0, &v);
3829		if (!ret)
3830			ret = cft->write_u64(css, cft, v);
3831	} else if (cft->write_s64) {
3832		long long v;
3833		ret = kstrtoll(buf, 0, &v);
3834		if (!ret)
3835			ret = cft->write_s64(css, cft, v);
3836	} else {
3837		ret = -EINVAL;
3838	}
3839
3840	return ret ?: nbytes;
3841}
3842
3843static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3844{
3845	struct cftype *cft = of_cft(of);
3846
3847	if (cft->poll)
3848		return cft->poll(of, pt);
3849
3850	return kernfs_generic_poll(of, pt);
3851}
3852
3853static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3854{
3855	return seq_cft(seq)->seq_start(seq, ppos);
3856}
3857
3858static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3859{
3860	return seq_cft(seq)->seq_next(seq, v, ppos);
3861}
3862
3863static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3864{
3865	if (seq_cft(seq)->seq_stop)
3866		seq_cft(seq)->seq_stop(seq, v);
3867}
3868
3869static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3870{
3871	struct cftype *cft = seq_cft(m);
3872	struct cgroup_subsys_state *css = seq_css(m);
3873
3874	if (cft->seq_show)
3875		return cft->seq_show(m, arg);
3876
3877	if (cft->read_u64)
3878		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3879	else if (cft->read_s64)
3880		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3881	else
3882		return -EINVAL;
3883	return 0;
3884}
3885
3886static struct kernfs_ops cgroup_kf_single_ops = {
3887	.atomic_write_len	= PAGE_SIZE,
3888	.open			= cgroup_file_open,
3889	.release		= cgroup_file_release,
3890	.write			= cgroup_file_write,
3891	.poll			= cgroup_file_poll,
3892	.seq_show		= cgroup_seqfile_show,
3893};
3894
3895static struct kernfs_ops cgroup_kf_ops = {
3896	.atomic_write_len	= PAGE_SIZE,
3897	.open			= cgroup_file_open,
3898	.release		= cgroup_file_release,
3899	.write			= cgroup_file_write,
3900	.poll			= cgroup_file_poll,
3901	.seq_start		= cgroup_seqfile_start,
3902	.seq_next		= cgroup_seqfile_next,
3903	.seq_stop		= cgroup_seqfile_stop,
3904	.seq_show		= cgroup_seqfile_show,
3905};
3906
3907/* set uid and gid of cgroup dirs and files to that of the creator */
3908static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3909{
3910	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3911			       .ia_uid = current_fsuid(),
3912			       .ia_gid = current_fsgid(), };
3913
3914	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3915	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3916		return 0;
3917
3918	return kernfs_setattr(kn, &iattr);
3919}
3920
3921static void cgroup_file_notify_timer(struct timer_list *timer)
3922{
3923	cgroup_file_notify(container_of(timer, struct cgroup_file,
3924					notify_timer));
3925}
3926
3927static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3928			   struct cftype *cft)
3929{
3930	char name[CGROUP_FILE_NAME_MAX];
3931	struct kernfs_node *kn;
3932	struct lock_class_key *key = NULL;
3933	int ret;
3934
3935#ifdef CONFIG_DEBUG_LOCK_ALLOC
3936	key = &cft->lockdep_key;
3937#endif
3938	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3939				  cgroup_file_mode(cft),
3940				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3941				  0, cft->kf_ops, cft,
3942				  NULL, key);
3943	if (IS_ERR(kn))
3944		return PTR_ERR(kn);
3945
3946	ret = cgroup_kn_set_ugid(kn);
3947	if (ret) {
3948		kernfs_remove(kn);
3949		return ret;
3950	}
3951
3952	if (cft->file_offset) {
3953		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3954
3955		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3956
3957		spin_lock_irq(&cgroup_file_kn_lock);
3958		cfile->kn = kn;
3959		spin_unlock_irq(&cgroup_file_kn_lock);
3960	}
3961
3962	return 0;
3963}
3964
3965/**
3966 * cgroup_addrm_files - add or remove files to a cgroup directory
3967 * @css: the target css
3968 * @cgrp: the target cgroup (usually css->cgroup)
3969 * @cfts: array of cftypes to be added
3970 * @is_add: whether to add or remove
3971 *
3972 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3973 * For removals, this function never fails.
3974 */
3975static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3976			      struct cgroup *cgrp, struct cftype cfts[],
3977			      bool is_add)
3978{
3979	struct cftype *cft, *cft_end = NULL;
3980	int ret = 0;
3981
3982	lockdep_assert_held(&cgroup_mutex);
3983
3984restart:
3985	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3986		/* does cft->flags tell us to skip this file on @cgrp? */
3987		if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
3988			continue;
3989		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3990			continue;
3991		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3992			continue;
3993		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3994			continue;
3995		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3996			continue;
3997		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3998			continue;
3999		if (is_add) {
4000			ret = cgroup_add_file(css, cgrp, cft);
4001			if (ret) {
4002				pr_warn("%s: failed to add %s, err=%d\n",
4003					__func__, cft->name, ret);
4004				cft_end = cft;
4005				is_add = false;
4006				goto restart;
4007			}
4008		} else {
4009			cgroup_rm_file(cgrp, cft);
4010		}
4011	}
4012	return ret;
4013}
4014
4015static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4016{
4017	struct cgroup_subsys *ss = cfts[0].ss;
4018	struct cgroup *root = &ss->root->cgrp;
4019	struct cgroup_subsys_state *css;
4020	int ret = 0;
4021
4022	lockdep_assert_held(&cgroup_mutex);
4023
4024	/* add/rm files for all cgroups created before */
4025	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4026		struct cgroup *cgrp = css->cgroup;
4027
4028		if (!(css->flags & CSS_VISIBLE))
4029			continue;
4030
4031		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4032		if (ret)
4033			break;
4034	}
4035
4036	if (is_add && !ret)
4037		kernfs_activate(root->kn);
4038	return ret;
4039}
4040
4041static void cgroup_exit_cftypes(struct cftype *cfts)
4042{
4043	struct cftype *cft;
4044
4045	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4046		/* free copy for custom atomic_write_len, see init_cftypes() */
4047		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4048			kfree(cft->kf_ops);
4049		cft->kf_ops = NULL;
4050		cft->ss = NULL;
4051
4052		/* revert flags set by cgroup core while adding @cfts */
4053		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
4054	}
4055}
4056
4057static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4058{
4059	struct cftype *cft;
4060
4061	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4062		struct kernfs_ops *kf_ops;
4063
4064		WARN_ON(cft->ss || cft->kf_ops);
4065
4066		if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4067			continue;
4068
4069		if (cft->seq_start)
4070			kf_ops = &cgroup_kf_ops;
4071		else
4072			kf_ops = &cgroup_kf_single_ops;
4073
4074		/*
4075		 * Ugh... if @cft wants a custom max_write_len, we need to
4076		 * make a copy of kf_ops to set its atomic_write_len.
4077		 */
4078		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4079			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4080			if (!kf_ops) {
4081				cgroup_exit_cftypes(cfts);
4082				return -ENOMEM;
4083			}
4084			kf_ops->atomic_write_len = cft->max_write_len;
4085		}
4086
4087		cft->kf_ops = kf_ops;
4088		cft->ss = ss;
4089	}
4090
4091	return 0;
4092}
4093
4094static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4095{
4096	lockdep_assert_held(&cgroup_mutex);
4097
4098	if (!cfts || !cfts[0].ss)
4099		return -ENOENT;
4100
4101	list_del(&cfts->node);
4102	cgroup_apply_cftypes(cfts, false);
4103	cgroup_exit_cftypes(cfts);
4104	return 0;
4105}
4106
4107/**
4108 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4109 * @cfts: zero-length name terminated array of cftypes
4110 *
4111 * Unregister @cfts.  Files described by @cfts are removed from all
4112 * existing cgroups and all future cgroups won't have them either.  This
4113 * function can be called anytime whether @cfts' subsys is attached or not.
4114 *
4115 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4116 * registered.
4117 */
4118int cgroup_rm_cftypes(struct cftype *cfts)
4119{
4120	int ret;
4121
4122	mutex_lock(&cgroup_mutex);
4123	ret = cgroup_rm_cftypes_locked(cfts);
4124	mutex_unlock(&cgroup_mutex);
4125	return ret;
4126}
4127
4128/**
4129 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4130 * @ss: target cgroup subsystem
4131 * @cfts: zero-length name terminated array of cftypes
4132 *
4133 * Register @cfts to @ss.  Files described by @cfts are created for all
4134 * existing cgroups to which @ss is attached and all future cgroups will
4135 * have them too.  This function can be called anytime whether @ss is
4136 * attached or not.
4137 *
4138 * Returns 0 on successful registration, -errno on failure.  Note that this
4139 * function currently returns 0 as long as @cfts registration is successful
4140 * even if some file creation attempts on existing cgroups fail.
4141 */
4142static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4143{
4144	int ret;
4145
4146	if (!cgroup_ssid_enabled(ss->id))
4147		return 0;
4148
4149	if (!cfts || cfts[0].name[0] == '\0')
4150		return 0;
4151
4152	ret = cgroup_init_cftypes(ss, cfts);
4153	if (ret)
4154		return ret;
4155
4156	mutex_lock(&cgroup_mutex);
4157
4158	list_add_tail(&cfts->node, &ss->cfts);
4159	ret = cgroup_apply_cftypes(cfts, true);
4160	if (ret)
4161		cgroup_rm_cftypes_locked(cfts);
4162
4163	mutex_unlock(&cgroup_mutex);
4164	return ret;
4165}
4166
4167/**
4168 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4169 * @ss: target cgroup subsystem
4170 * @cfts: zero-length name terminated array of cftypes
4171 *
4172 * Similar to cgroup_add_cftypes() but the added files are only used for
4173 * the default hierarchy.
4174 */
4175int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4176{
4177	struct cftype *cft;
4178
4179	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4180		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4181	return cgroup_add_cftypes(ss, cfts);
4182}
4183
4184/**
4185 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4186 * @ss: target cgroup subsystem
4187 * @cfts: zero-length name terminated array of cftypes
4188 *
4189 * Similar to cgroup_add_cftypes() but the added files are only used for
4190 * the legacy hierarchies.
4191 */
4192int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4193{
4194	struct cftype *cft;
4195
4196	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4197		cft->flags |= __CFTYPE_NOT_ON_DFL;
4198	return cgroup_add_cftypes(ss, cfts);
4199}
4200
4201/**
4202 * cgroup_file_notify - generate a file modified event for a cgroup_file
4203 * @cfile: target cgroup_file
4204 *
4205 * @cfile must have been obtained by setting cftype->file_offset.
4206 */
4207void cgroup_file_notify(struct cgroup_file *cfile)
4208{
4209	unsigned long flags;
4210
4211	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4212	if (cfile->kn) {
4213		unsigned long last = cfile->notified_at;
4214		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4215
4216		if (time_in_range(jiffies, last, next)) {
4217			timer_reduce(&cfile->notify_timer, next);
4218		} else {
4219			kernfs_notify(cfile->kn);
4220			cfile->notified_at = jiffies;
4221		}
4222	}
4223	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4224}
4225
4226/**
4227 * css_next_child - find the next child of a given css
4228 * @pos: the current position (%NULL to initiate traversal)
4229 * @parent: css whose children to walk
4230 *
4231 * This function returns the next child of @parent and should be called
4232 * under either cgroup_mutex or RCU read lock.  The only requirement is
4233 * that @parent and @pos are accessible.  The next sibling is guaranteed to
4234 * be returned regardless of their states.
4235 *
4236 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4237 * css which finished ->css_online() is guaranteed to be visible in the
4238 * future iterations and will stay visible until the last reference is put.
4239 * A css which hasn't finished ->css_online() or already finished
4240 * ->css_offline() may show up during traversal.  It's each subsystem's
4241 * responsibility to synchronize against on/offlining.
4242 */
4243struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4244					   struct cgroup_subsys_state *parent)
4245{
4246	struct cgroup_subsys_state *next;
4247
4248	cgroup_assert_mutex_or_rcu_locked();
4249
4250	/*
4251	 * @pos could already have been unlinked from the sibling list.
4252	 * Once a cgroup is removed, its ->sibling.next is no longer
4253	 * updated when its next sibling changes.  CSS_RELEASED is set when
4254	 * @pos is taken off list, at which time its next pointer is valid,
4255	 * and, as releases are serialized, the one pointed to by the next
4256	 * pointer is guaranteed to not have started release yet.  This
4257	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4258	 * critical section, the one pointed to by its next pointer is
4259	 * guaranteed to not have finished its RCU grace period even if we
4260	 * have dropped rcu_read_lock() in-between iterations.
4261	 *
4262	 * If @pos has CSS_RELEASED set, its next pointer can't be
4263	 * dereferenced; however, as each css is given a monotonically
4264	 * increasing unique serial number and always appended to the
4265	 * sibling list, the next one can be found by walking the parent's
4266	 * children until the first css with higher serial number than
4267	 * @pos's.  While this path can be slower, it happens iff iteration
4268	 * races against release and the race window is very small.
4269	 */
4270	if (!pos) {
4271		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4272	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4273		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4274	} else {
4275		list_for_each_entry_rcu(next, &parent->children, sibling,
4276					lockdep_is_held(&cgroup_mutex))
4277			if (next->serial_nr > pos->serial_nr)
4278				break;
4279	}
4280
4281	/*
4282	 * @next, if not pointing to the head, can be dereferenced and is
4283	 * the next sibling.
4284	 */
4285	if (&next->sibling != &parent->children)
4286		return next;
4287	return NULL;
4288}
4289
4290/**
4291 * css_next_descendant_pre - find the next descendant for pre-order walk
4292 * @pos: the current position (%NULL to initiate traversal)
4293 * @root: css whose descendants to walk
4294 *
4295 * To be used by css_for_each_descendant_pre().  Find the next descendant
4296 * to visit for pre-order traversal of @root's descendants.  @root is
4297 * included in the iteration and the first node to be visited.
4298 *
4299 * While this function requires cgroup_mutex or RCU read locking, it
4300 * doesn't require the whole traversal to be contained in a single critical
4301 * section.  This function will return the correct next descendant as long
4302 * as both @pos and @root are accessible and @pos is a descendant of @root.
4303 *
4304 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4305 * css which finished ->css_online() is guaranteed to be visible in the
4306 * future iterations and will stay visible until the last reference is put.
4307 * A css which hasn't finished ->css_online() or already finished
4308 * ->css_offline() may show up during traversal.  It's each subsystem's
4309 * responsibility to synchronize against on/offlining.
4310 */
4311struct cgroup_subsys_state *
4312css_next_descendant_pre(struct cgroup_subsys_state *pos,
4313			struct cgroup_subsys_state *root)
4314{
4315	struct cgroup_subsys_state *next;
4316
4317	cgroup_assert_mutex_or_rcu_locked();
4318
4319	/* if first iteration, visit @root */
4320	if (!pos)
4321		return root;
4322
4323	/* visit the first child if exists */
4324	next = css_next_child(NULL, pos);
4325	if (next)
4326		return next;
4327
4328	/* no child, visit my or the closest ancestor's next sibling */
4329	while (pos != root) {
4330		next = css_next_child(pos, pos->parent);
4331		if (next)
4332			return next;
4333		pos = pos->parent;
4334	}
4335
4336	return NULL;
4337}
4338EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4339
4340/**
4341 * css_rightmost_descendant - return the rightmost descendant of a css
4342 * @pos: css of interest
4343 *
4344 * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4345 * is returned.  This can be used during pre-order traversal to skip
4346 * subtree of @pos.
4347 *
4348 * While this function requires cgroup_mutex or RCU read locking, it
4349 * doesn't require the whole traversal to be contained in a single critical
4350 * section.  This function will return the correct rightmost descendant as
4351 * long as @pos is accessible.
4352 */
4353struct cgroup_subsys_state *
4354css_rightmost_descendant(struct cgroup_subsys_state *pos)
4355{
4356	struct cgroup_subsys_state *last, *tmp;
4357
4358	cgroup_assert_mutex_or_rcu_locked();
4359
4360	do {
4361		last = pos;
4362		/* ->prev isn't RCU safe, walk ->next till the end */
4363		pos = NULL;
4364		css_for_each_child(tmp, last)
4365			pos = tmp;
4366	} while (pos);
4367
4368	return last;
4369}
4370
4371static struct cgroup_subsys_state *
4372css_leftmost_descendant(struct cgroup_subsys_state *pos)
4373{
4374	struct cgroup_subsys_state *last;
4375
4376	do {
4377		last = pos;
4378		pos = css_next_child(NULL, pos);
4379	} while (pos);
4380
4381	return last;
4382}
4383
4384/**
4385 * css_next_descendant_post - find the next descendant for post-order walk
4386 * @pos: the current position (%NULL to initiate traversal)
4387 * @root: css whose descendants to walk
4388 *
4389 * To be used by css_for_each_descendant_post().  Find the next descendant
4390 * to visit for post-order traversal of @root's descendants.  @root is
4391 * included in the iteration and the last node to be visited.
4392 *
4393 * While this function requires cgroup_mutex or RCU read locking, it
4394 * doesn't require the whole traversal to be contained in a single critical
4395 * section.  This function will return the correct next descendant as long
4396 * as both @pos and @cgroup are accessible and @pos is a descendant of
4397 * @cgroup.
4398 *
4399 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4400 * css which finished ->css_online() is guaranteed to be visible in the
4401 * future iterations and will stay visible until the last reference is put.
4402 * A css which hasn't finished ->css_online() or already finished
4403 * ->css_offline() may show up during traversal.  It's each subsystem's
4404 * responsibility to synchronize against on/offlining.
4405 */
4406struct cgroup_subsys_state *
4407css_next_descendant_post(struct cgroup_subsys_state *pos,
4408			 struct cgroup_subsys_state *root)
4409{
4410	struct cgroup_subsys_state *next;
4411
4412	cgroup_assert_mutex_or_rcu_locked();
4413
4414	/* if first iteration, visit leftmost descendant which may be @root */
4415	if (!pos)
4416		return css_leftmost_descendant(root);
4417
4418	/* if we visited @root, we're done */
4419	if (pos == root)
4420		return NULL;
4421
4422	/* if there's an unvisited sibling, visit its leftmost descendant */
4423	next = css_next_child(pos, pos->parent);
4424	if (next)
4425		return css_leftmost_descendant(next);
4426
4427	/* no sibling left, visit parent */
4428	return pos->parent;
4429}
4430
4431/**
4432 * css_has_online_children - does a css have online children
4433 * @css: the target css
4434 *
4435 * Returns %true if @css has any online children; otherwise, %false.  This
4436 * function can be called from any context but the caller is responsible
4437 * for synchronizing against on/offlining as necessary.
4438 */
4439bool css_has_online_children(struct cgroup_subsys_state *css)
4440{
4441	struct cgroup_subsys_state *child;
4442	bool ret = false;
4443
4444	rcu_read_lock();
4445	css_for_each_child(child, css) {
4446		if (child->flags & CSS_ONLINE) {
4447			ret = true;
4448			break;
4449		}
4450	}
4451	rcu_read_unlock();
4452	return ret;
4453}
4454
4455static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4456{
4457	struct list_head *l;
4458	struct cgrp_cset_link *link;
4459	struct css_set *cset;
4460
4461	lockdep_assert_held(&css_set_lock);
4462
4463	/* find the next threaded cset */
4464	if (it->tcset_pos) {
4465		l = it->tcset_pos->next;
4466
4467		if (l != it->tcset_head) {
4468			it->tcset_pos = l;
4469			return container_of(l, struct css_set,
4470					    threaded_csets_node);
4471		}
4472
4473		it->tcset_pos = NULL;
4474	}
4475
4476	/* find the next cset */
4477	l = it->cset_pos;
4478	l = l->next;
4479	if (l == it->cset_head) {
4480		it->cset_pos = NULL;
4481		return NULL;
4482	}
4483
4484	if (it->ss) {
4485		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4486	} else {
4487		link = list_entry(l, struct cgrp_cset_link, cset_link);
4488		cset = link->cset;
4489	}
4490
4491	it->cset_pos = l;
4492
4493	/* initialize threaded css_set walking */
4494	if (it->flags & CSS_TASK_ITER_THREADED) {
4495		if (it->cur_dcset)
4496			put_css_set_locked(it->cur_dcset);
4497		it->cur_dcset = cset;
4498		get_css_set(cset);
4499
4500		it->tcset_head = &cset->threaded_csets;
4501		it->tcset_pos = &cset->threaded_csets;
4502	}
4503
4504	return cset;
4505}
4506
4507/**
4508 * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4509 * @it: the iterator to advance
4510 *
4511 * Advance @it to the next css_set to walk.
4512 */
4513static void css_task_iter_advance_css_set(struct css_task_iter *it)
4514{
4515	struct css_set *cset;
4516
4517	lockdep_assert_held(&css_set_lock);
4518
4519	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4520	while ((cset = css_task_iter_next_css_set(it))) {
4521		if (!list_empty(&cset->tasks)) {
4522			it->cur_tasks_head = &cset->tasks;
4523			break;
4524		} else if (!list_empty(&cset->mg_tasks)) {
4525			it->cur_tasks_head = &cset->mg_tasks;
4526			break;
4527		} else if (!list_empty(&cset->dying_tasks)) {
4528			it->cur_tasks_head = &cset->dying_tasks;
4529			break;
4530		}
4531	}
4532	if (!cset) {
4533		it->task_pos = NULL;
4534		return;
4535	}
4536	it->task_pos = it->cur_tasks_head->next;
4537
4538	/*
4539	 * We don't keep css_sets locked across iteration steps and thus
4540	 * need to take steps to ensure that iteration can be resumed after
4541	 * the lock is re-acquired.  Iteration is performed at two levels -
4542	 * css_sets and tasks in them.
4543	 *
4544	 * Once created, a css_set never leaves its cgroup lists, so a
4545	 * pinned css_set is guaranteed to stay put and we can resume
4546	 * iteration afterwards.
4547	 *
4548	 * Tasks may leave @cset across iteration steps.  This is resolved
4549	 * by registering each iterator with the css_set currently being
4550	 * walked and making css_set_move_task() advance iterators whose
4551	 * next task is leaving.
4552	 */
4553	if (it->cur_cset) {
4554		list_del(&it->iters_node);
4555		put_css_set_locked(it->cur_cset);
4556	}
4557	get_css_set(cset);
4558	it->cur_cset = cset;
4559	list_add(&it->iters_node, &cset->task_iters);
4560}
4561
4562static void css_task_iter_skip(struct css_task_iter *it,
4563			       struct task_struct *task)
4564{
4565	lockdep_assert_held(&css_set_lock);
4566
4567	if (it->task_pos == &task->cg_list) {
4568		it->task_pos = it->task_pos->next;
4569		it->flags |= CSS_TASK_ITER_SKIPPED;
4570	}
4571}
4572
4573static void css_task_iter_advance(struct css_task_iter *it)
4574{
4575	struct task_struct *task;
4576
4577	lockdep_assert_held(&css_set_lock);
4578repeat:
4579	if (it->task_pos) {
4580		/*
4581		 * Advance iterator to find next entry. We go through cset
4582		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4583		 * the next cset.
4584		 */
4585		if (it->flags & CSS_TASK_ITER_SKIPPED)
4586			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4587		else
4588			it->task_pos = it->task_pos->next;
4589
4590		if (it->task_pos == &it->cur_cset->tasks) {
4591			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4592			it->task_pos = it->cur_tasks_head->next;
4593		}
4594		if (it->task_pos == &it->cur_cset->mg_tasks) {
4595			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4596			it->task_pos = it->cur_tasks_head->next;
4597		}
4598		if (it->task_pos == &it->cur_cset->dying_tasks)
4599			css_task_iter_advance_css_set(it);
4600	} else {
4601		/* called from start, proceed to the first cset */
4602		css_task_iter_advance_css_set(it);
4603	}
4604
4605	if (!it->task_pos)
4606		return;
4607
4608	task = list_entry(it->task_pos, struct task_struct, cg_list);
4609
4610	if (it->flags & CSS_TASK_ITER_PROCS) {
4611		/* if PROCS, skip over tasks which aren't group leaders */
4612		if (!thread_group_leader(task))
4613			goto repeat;
4614
4615		/* and dying leaders w/o live member threads */
4616		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4617		    !atomic_read(&task->signal->live))
4618			goto repeat;
4619	} else {
4620		/* skip all dying ones */
4621		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4622			goto repeat;
4623	}
4624}
4625
4626/**
4627 * css_task_iter_start - initiate task iteration
4628 * @css: the css to walk tasks of
4629 * @flags: CSS_TASK_ITER_* flags
4630 * @it: the task iterator to use
4631 *
4632 * Initiate iteration through the tasks of @css.  The caller can call
4633 * css_task_iter_next() to walk through the tasks until the function
4634 * returns NULL.  On completion of iteration, css_task_iter_end() must be
4635 * called.
4636 */
4637void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4638			 struct css_task_iter *it)
4639{
4640	memset(it, 0, sizeof(*it));
4641
4642	spin_lock_irq(&css_set_lock);
4643
4644	it->ss = css->ss;
4645	it->flags = flags;
4646
4647	if (it->ss)
4648		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4649	else
4650		it->cset_pos = &css->cgroup->cset_links;
4651
4652	it->cset_head = it->cset_pos;
4653
4654	css_task_iter_advance(it);
4655
4656	spin_unlock_irq(&css_set_lock);
4657}
4658
4659/**
4660 * css_task_iter_next - return the next task for the iterator
4661 * @it: the task iterator being iterated
4662 *
4663 * The "next" function for task iteration.  @it should have been
4664 * initialized via css_task_iter_start().  Returns NULL when the iteration
4665 * reaches the end.
4666 */
4667struct task_struct *css_task_iter_next(struct css_task_iter *it)
4668{
4669	if (it->cur_task) {
4670		put_task_struct(it->cur_task);
4671		it->cur_task = NULL;
4672	}
4673
4674	spin_lock_irq(&css_set_lock);
4675
4676	/* @it may be half-advanced by skips, finish advancing */
4677	if (it->flags & CSS_TASK_ITER_SKIPPED)
4678		css_task_iter_advance(it);
4679
4680	if (it->task_pos) {
4681		it->cur_task = list_entry(it->task_pos, struct task_struct,
4682					  cg_list);
4683		get_task_struct(it->cur_task);
4684		css_task_iter_advance(it);
4685	}
4686
4687	spin_unlock_irq(&css_set_lock);
4688
4689	return it->cur_task;
4690}
4691
4692/**
4693 * css_task_iter_end - finish task iteration
4694 * @it: the task iterator to finish
4695 *
4696 * Finish task iteration started by css_task_iter_start().
4697 */
4698void css_task_iter_end(struct css_task_iter *it)
4699{
4700	if (it->cur_cset) {
4701		spin_lock_irq(&css_set_lock);
4702		list_del(&it->iters_node);
4703		put_css_set_locked(it->cur_cset);
4704		spin_unlock_irq(&css_set_lock);
4705	}
4706
4707	if (it->cur_dcset)
4708		put_css_set(it->cur_dcset);
4709
4710	if (it->cur_task)
4711		put_task_struct(it->cur_task);
4712}
4713
4714static void cgroup_procs_release(struct kernfs_open_file *of)
4715{
4716	if (of->priv) {
4717		css_task_iter_end(of->priv);
4718		kfree(of->priv);
4719	}
4720}
4721
4722static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4723{
4724	struct kernfs_open_file *of = s->private;
4725	struct css_task_iter *it = of->priv;
4726
4727	if (pos)
4728		(*pos)++;
4729
4730	return css_task_iter_next(it);
4731}
4732
4733static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4734				  unsigned int iter_flags)
4735{
4736	struct kernfs_open_file *of = s->private;
4737	struct cgroup *cgrp = seq_css(s)->cgroup;
4738	struct css_task_iter *it = of->priv;
4739
4740	/*
4741	 * When a seq_file is seeked, it's always traversed sequentially
4742	 * from position 0, so we can simply keep iterating on !0 *pos.
4743	 */
4744	if (!it) {
4745		if (WARN_ON_ONCE((*pos)))
4746			return ERR_PTR(-EINVAL);
4747
4748		it = kzalloc(sizeof(*it), GFP_KERNEL);
4749		if (!it)
4750			return ERR_PTR(-ENOMEM);
4751		of->priv = it;
4752		css_task_iter_start(&cgrp->self, iter_flags, it);
4753	} else if (!(*pos)) {
4754		css_task_iter_end(it);
4755		css_task_iter_start(&cgrp->self, iter_flags, it);
4756	} else
4757		return it->cur_task;
4758
4759	return cgroup_procs_next(s, NULL, NULL);
4760}
4761
4762static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4763{
4764	struct cgroup *cgrp = seq_css(s)->cgroup;
4765
4766	/*
4767	 * All processes of a threaded subtree belong to the domain cgroup
4768	 * of the subtree.  Only threads can be distributed across the
4769	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4770	 * They're always empty anyway.
4771	 */
4772	if (cgroup_is_threaded(cgrp))
4773		return ERR_PTR(-EOPNOTSUPP);
4774
4775	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4776					    CSS_TASK_ITER_THREADED);
4777}
4778
4779static int cgroup_procs_show(struct seq_file *s, void *v)
4780{
4781	seq_printf(s, "%d\n", task_pid_vnr(v));
4782	return 0;
4783}
4784
4785static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4786{
4787	int ret;
4788	struct inode *inode;
4789
4790	lockdep_assert_held(&cgroup_mutex);
4791
4792	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4793	if (!inode)
4794		return -ENOMEM;
4795
4796	ret = inode_permission(&init_user_ns, inode, MAY_WRITE);
4797	iput(inode);
4798	return ret;
4799}
4800
4801static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4802					 struct cgroup *dst_cgrp,
4803					 struct super_block *sb)
4804{
4805	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4806	struct cgroup *com_cgrp = src_cgrp;
4807	int ret;
4808
4809	lockdep_assert_held(&cgroup_mutex);
4810
4811	/* find the common ancestor */
4812	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4813		com_cgrp = cgroup_parent(com_cgrp);
4814
4815	/* %current should be authorized to migrate to the common ancestor */
4816	ret = cgroup_may_write(com_cgrp, sb);
4817	if (ret)
4818		return ret;
4819
4820	/*
4821	 * If namespaces are delegation boundaries, %current must be able
4822	 * to see both source and destination cgroups from its namespace.
4823	 */
4824	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4825	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4826	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4827		return -ENOENT;
4828
4829	return 0;
4830}
4831
4832static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4833				     struct cgroup *dst_cgrp,
4834				     struct super_block *sb, bool threadgroup)
4835{
4836	int ret = 0;
4837
4838	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb);
4839	if (ret)
4840		return ret;
4841
4842	ret = cgroup_migrate_vet_dst(dst_cgrp);
4843	if (ret)
4844		return ret;
4845
4846	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4847		ret = -EOPNOTSUPP;
4848
4849	return ret;
4850}
4851
4852static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
4853				    bool threadgroup)
4854{
4855	struct cgroup *src_cgrp, *dst_cgrp;
4856	struct task_struct *task;
4857	ssize_t ret;
4858	bool locked;
4859
4860	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4861	if (!dst_cgrp)
4862		return -ENODEV;
4863
4864	task = cgroup_procs_write_start(buf, threadgroup, &locked);
4865	ret = PTR_ERR_OR_ZERO(task);
4866	if (ret)
4867		goto out_unlock;
4868
4869	/* find the source cgroup */
4870	spin_lock_irq(&css_set_lock);
4871	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4872	spin_unlock_irq(&css_set_lock);
4873
4874	/* process and thread migrations follow same delegation rule */
4875	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4876					of->file->f_path.dentry->d_sb, threadgroup);
4877	if (ret)
4878		goto out_finish;
4879
4880	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
4881
4882out_finish:
4883	cgroup_procs_write_finish(task, locked);
4884out_unlock:
4885	cgroup_kn_unlock(of->kn);
4886
4887	return ret;
4888}
4889
4890static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4891				  char *buf, size_t nbytes, loff_t off)
4892{
4893	return __cgroup_procs_write(of, buf, true) ?: nbytes;
4894}
4895
4896static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4897{
4898	return __cgroup_procs_start(s, pos, 0);
4899}
4900
4901static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4902				    char *buf, size_t nbytes, loff_t off)
4903{
4904	return __cgroup_procs_write(of, buf, false) ?: nbytes;
4905}
4906
4907/* cgroup core interface files for the default hierarchy */
4908static struct cftype cgroup_base_files[] = {
4909	{
4910		.name = "cgroup.type",
4911		.flags = CFTYPE_NOT_ON_ROOT,
4912		.seq_show = cgroup_type_show,
4913		.write = cgroup_type_write,
4914	},
4915	{
4916		.name = "cgroup.procs",
4917		.flags = CFTYPE_NS_DELEGATABLE,
4918		.file_offset = offsetof(struct cgroup, procs_file),
4919		.release = cgroup_procs_release,
4920		.seq_start = cgroup_procs_start,
4921		.seq_next = cgroup_procs_next,
4922		.seq_show = cgroup_procs_show,
4923		.write = cgroup_procs_write,
4924	},
4925	{
4926		.name = "cgroup.threads",
4927		.flags = CFTYPE_NS_DELEGATABLE,
4928		.release = cgroup_procs_release,
4929		.seq_start = cgroup_threads_start,
4930		.seq_next = cgroup_procs_next,
4931		.seq_show = cgroup_procs_show,
4932		.write = cgroup_threads_write,
4933	},
4934	{
4935		.name = "cgroup.controllers",
4936		.seq_show = cgroup_controllers_show,
4937	},
4938	{
4939		.name = "cgroup.subtree_control",
4940		.flags = CFTYPE_NS_DELEGATABLE,
4941		.seq_show = cgroup_subtree_control_show,
4942		.write = cgroup_subtree_control_write,
4943	},
4944	{
4945		.name = "cgroup.events",
4946		.flags = CFTYPE_NOT_ON_ROOT,
4947		.file_offset = offsetof(struct cgroup, events_file),
4948		.seq_show = cgroup_events_show,
4949	},
4950	{
4951		.name = "cgroup.max.descendants",
4952		.seq_show = cgroup_max_descendants_show,
4953		.write = cgroup_max_descendants_write,
4954	},
4955	{
4956		.name = "cgroup.max.depth",
4957		.seq_show = cgroup_max_depth_show,
4958		.write = cgroup_max_depth_write,
4959	},
4960	{
4961		.name = "cgroup.stat",
4962		.seq_show = cgroup_stat_show,
4963	},
4964	{
4965		.name = "cgroup.freeze",
4966		.flags = CFTYPE_NOT_ON_ROOT,
4967		.seq_show = cgroup_freeze_show,
4968		.write = cgroup_freeze_write,
4969	},
4970	{
4971		.name = "cgroup.kill",
4972		.flags = CFTYPE_NOT_ON_ROOT,
4973		.write = cgroup_kill_write,
4974	},
4975	{
4976		.name = "cpu.stat",
4977		.seq_show = cpu_stat_show,
4978	},
4979#ifdef CONFIG_PSI
4980	{
4981		.name = "io.pressure",
4982		.flags = CFTYPE_PRESSURE,
4983		.seq_show = cgroup_io_pressure_show,
4984		.write = cgroup_io_pressure_write,
4985		.poll = cgroup_pressure_poll,
4986		.release = cgroup_pressure_release,
4987	},
4988	{
4989		.name = "memory.pressure",
4990		.flags = CFTYPE_PRESSURE,
4991		.seq_show = cgroup_memory_pressure_show,
4992		.write = cgroup_memory_pressure_write,
4993		.poll = cgroup_pressure_poll,
4994		.release = cgroup_pressure_release,
4995	},
4996	{
4997		.name = "cpu.pressure",
4998		.flags = CFTYPE_PRESSURE,
4999		.seq_show = cgroup_cpu_pressure_show,
5000		.write = cgroup_cpu_pressure_write,
5001		.poll = cgroup_pressure_poll,
5002		.release = cgroup_pressure_release,
5003	},
5004#endif /* CONFIG_PSI */
5005	{ }	/* terminate */
5006};
5007
5008/*
5009 * css destruction is four-stage process.
5010 *
5011 * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5012 *    Implemented in kill_css().
5013 *
5014 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5015 *    and thus css_tryget_online() is guaranteed to fail, the css can be
5016 *    offlined by invoking offline_css().  After offlining, the base ref is
5017 *    put.  Implemented in css_killed_work_fn().
5018 *
5019 * 3. When the percpu_ref reaches zero, the only possible remaining
5020 *    accessors are inside RCU read sections.  css_release() schedules the
5021 *    RCU callback.
5022 *
5023 * 4. After the grace period, the css can be freed.  Implemented in
5024 *    css_free_work_fn().
5025 *
5026 * It is actually hairier because both step 2 and 4 require process context
5027 * and thus involve punting to css->destroy_work adding two additional
5028 * steps to the already complex sequence.
5029 */
5030static void css_free_rwork_fn(struct work_struct *work)
5031{
5032	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5033				struct cgroup_subsys_state, destroy_rwork);
5034	struct cgroup_subsys *ss = css->ss;
5035	struct cgroup *cgrp = css->cgroup;
5036
5037	percpu_ref_exit(&css->refcnt);
5038
5039	if (ss) {
5040		/* css free path */
5041		struct cgroup_subsys_state *parent = css->parent;
5042		int id = css->id;
5043
5044		ss->css_free(css);
5045		cgroup_idr_remove(&ss->css_idr, id);
5046		cgroup_put(cgrp);
5047
5048		if (parent)
5049			css_put(parent);
5050	} else {
5051		/* cgroup free path */
5052		atomic_dec(&cgrp->root->nr_cgrps);
5053		cgroup1_pidlist_destroy_all(cgrp);
5054		cancel_work_sync(&cgrp->release_agent_work);
5055
5056		if (cgroup_parent(cgrp)) {
5057			/*
5058			 * We get a ref to the parent, and put the ref when
5059			 * this cgroup is being freed, so it's guaranteed
5060			 * that the parent won't be destroyed before its
5061			 * children.
5062			 */
5063			cgroup_put(cgroup_parent(cgrp));
5064			kernfs_put(cgrp->kn);
5065			psi_cgroup_free(cgrp);
5066			cgroup_rstat_exit(cgrp);
5067			kfree(cgrp);
5068		} else {
5069			/*
5070			 * This is root cgroup's refcnt reaching zero,
5071			 * which indicates that the root should be
5072			 * released.
5073			 */
5074			cgroup_destroy_root(cgrp->root);
5075		}
5076	}
5077}
5078
5079static void css_release_work_fn(struct work_struct *work)
5080{
5081	struct cgroup_subsys_state *css =
5082		container_of(work, struct cgroup_subsys_state, destroy_work);
5083	struct cgroup_subsys *ss = css->ss;
5084	struct cgroup *cgrp = css->cgroup;
5085
5086	mutex_lock(&cgroup_mutex);
5087
5088	css->flags |= CSS_RELEASED;
5089	list_del_rcu(&css->sibling);
5090
5091	if (ss) {
5092		/* css release path */
5093		if (!list_empty(&css->rstat_css_node)) {
5094			cgroup_rstat_flush(cgrp);
5095			list_del_rcu(&css->rstat_css_node);
5096		}
5097
5098		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5099		if (ss->css_released)
5100			ss->css_released(css);
5101	} else {
5102		struct cgroup *tcgrp;
5103
5104		/* cgroup release path */
5105		TRACE_CGROUP_PATH(release, cgrp);
5106
5107		cgroup_rstat_flush(cgrp);
5108
5109		spin_lock_irq(&css_set_lock);
5110		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5111		     tcgrp = cgroup_parent(tcgrp))
5112			tcgrp->nr_dying_descendants--;
5113		spin_unlock_irq(&css_set_lock);
5114
5115		/*
5116		 * There are two control paths which try to determine
5117		 * cgroup from dentry without going through kernfs -
5118		 * cgroupstats_build() and css_tryget_online_from_dir().
5119		 * Those are supported by RCU protecting clearing of
5120		 * cgrp->kn->priv backpointer.
5121		 */
5122		if (cgrp->kn)
5123			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5124					 NULL);
5125	}
5126
5127	mutex_unlock(&cgroup_mutex);
5128
5129	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5130	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5131}
5132
5133static void css_release(struct percpu_ref *ref)
5134{
5135	struct cgroup_subsys_state *css =
5136		container_of(ref, struct cgroup_subsys_state, refcnt);
5137
5138	INIT_WORK(&css->destroy_work, css_release_work_fn);
5139	queue_work(cgroup_destroy_wq, &css->destroy_work);
5140}
5141
5142static void init_and_link_css(struct cgroup_subsys_state *css,
5143			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5144{
5145	lockdep_assert_held(&cgroup_mutex);
5146
5147	cgroup_get_live(cgrp);
5148
5149	memset(css, 0, sizeof(*css));
5150	css->cgroup = cgrp;
5151	css->ss = ss;
5152	css->id = -1;
5153	INIT_LIST_HEAD(&css->sibling);
5154	INIT_LIST_HEAD(&css->children);
5155	INIT_LIST_HEAD(&css->rstat_css_node);
5156	css->serial_nr = css_serial_nr_next++;
5157	atomic_set(&css->online_cnt, 0);
5158
5159	if (cgroup_parent(cgrp)) {
5160		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5161		css_get(css->parent);
5162	}
5163
5164	if (ss->css_rstat_flush)
5165		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5166
5167	BUG_ON(cgroup_css(cgrp, ss));
5168}
5169
5170/* invoke ->css_online() on a new CSS and mark it online if successful */
5171static int online_css(struct cgroup_subsys_state *css)
5172{
5173	struct cgroup_subsys *ss = css->ss;
5174	int ret = 0;
5175
5176	lockdep_assert_held(&cgroup_mutex);
5177
5178	if (ss->css_online)
5179		ret = ss->css_online(css);
5180	if (!ret) {
5181		css->flags |= CSS_ONLINE;
5182		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5183
5184		atomic_inc(&css->online_cnt);
5185		if (css->parent)
5186			atomic_inc(&css->parent->online_cnt);
5187	}
5188	return ret;
5189}
5190
5191/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5192static void offline_css(struct cgroup_subsys_state *css)
5193{
5194	struct cgroup_subsys *ss = css->ss;
5195
5196	lockdep_assert_held(&cgroup_mutex);
5197
5198	if (!(css->flags & CSS_ONLINE))
5199		return;
5200
5201	if (ss->css_offline)
5202		ss->css_offline(css);
5203
5204	css->flags &= ~CSS_ONLINE;
5205	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5206
5207	wake_up_all(&css->cgroup->offline_waitq);
5208}
5209
5210/**
5211 * css_create - create a cgroup_subsys_state
5212 * @cgrp: the cgroup new css will be associated with
5213 * @ss: the subsys of new css
5214 *
5215 * Create a new css associated with @cgrp - @ss pair.  On success, the new
5216 * css is online and installed in @cgrp.  This function doesn't create the
5217 * interface files.  Returns 0 on success, -errno on failure.
5218 */
5219static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5220					      struct cgroup_subsys *ss)
5221{
5222	struct cgroup *parent = cgroup_parent(cgrp);
5223	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5224	struct cgroup_subsys_state *css;
5225	int err;
5226
5227	lockdep_assert_held(&cgroup_mutex);
5228
5229	css = ss->css_alloc(parent_css);
5230	if (!css)
5231		css = ERR_PTR(-ENOMEM);
5232	if (IS_ERR(css))
5233		return css;
5234
5235	init_and_link_css(css, ss, cgrp);
5236
5237	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5238	if (err)
5239		goto err_free_css;
5240
5241	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5242	if (err < 0)
5243		goto err_free_css;
5244	css->id = err;
5245
5246	/* @css is ready to be brought online now, make it visible */
5247	list_add_tail_rcu(&css->sibling, &parent_css->children);
5248	cgroup_idr_replace(&ss->css_idr, css, css->id);
5249
5250	err = online_css(css);
5251	if (err)
5252		goto err_list_del;
5253
5254	return css;
5255
5256err_list_del:
5257	list_del_rcu(&css->sibling);
5258err_free_css:
5259	list_del_rcu(&css->rstat_css_node);
5260	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5261	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5262	return ERR_PTR(err);
5263}
5264
5265/*
5266 * The returned cgroup is fully initialized including its control mask, but
5267 * it isn't associated with its kernfs_node and doesn't have the control
5268 * mask applied.
5269 */
5270static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5271				    umode_t mode)
5272{
5273	struct cgroup_root *root = parent->root;
5274	struct cgroup *cgrp, *tcgrp;
5275	struct kernfs_node *kn;
5276	int level = parent->level + 1;
5277	int ret;
5278
5279	/* allocate the cgroup and its ID, 0 is reserved for the root */
5280	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5281		       GFP_KERNEL);
5282	if (!cgrp)
5283		return ERR_PTR(-ENOMEM);
5284
5285	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5286	if (ret)
5287		goto out_free_cgrp;
5288
5289	ret = cgroup_rstat_init(cgrp);
5290	if (ret)
5291		goto out_cancel_ref;
5292
5293	/* create the directory */
5294	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5295	if (IS_ERR(kn)) {
5296		ret = PTR_ERR(kn);
5297		goto out_stat_exit;
5298	}
5299	cgrp->kn = kn;
5300
5301	init_cgroup_housekeeping(cgrp);
5302
5303	cgrp->self.parent = &parent->self;
5304	cgrp->root = root;
5305	cgrp->level = level;
5306
5307	ret = psi_cgroup_alloc(cgrp);
5308	if (ret)
5309		goto out_kernfs_remove;
5310
5311	ret = cgroup_bpf_inherit(cgrp);
5312	if (ret)
5313		goto out_psi_free;
5314
5315	/*
5316	 * New cgroup inherits effective freeze counter, and
5317	 * if the parent has to be frozen, the child has too.
5318	 */
5319	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5320	if (cgrp->freezer.e_freeze) {
5321		/*
5322		 * Set the CGRP_FREEZE flag, so when a process will be
5323		 * attached to the child cgroup, it will become frozen.
5324		 * At this point the new cgroup is unpopulated, so we can
5325		 * consider it frozen immediately.
5326		 */
5327		set_bit(CGRP_FREEZE, &cgrp->flags);
5328		set_bit(CGRP_FROZEN, &cgrp->flags);
5329	}
5330
5331	spin_lock_irq(&css_set_lock);
5332	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5333		cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5334
5335		if (tcgrp != cgrp) {
5336			tcgrp->nr_descendants++;
5337
5338			/*
5339			 * If the new cgroup is frozen, all ancestor cgroups
5340			 * get a new frozen descendant, but their state can't
5341			 * change because of this.
5342			 */
5343			if (cgrp->freezer.e_freeze)
5344				tcgrp->freezer.nr_frozen_descendants++;
5345		}
5346	}
5347	spin_unlock_irq(&css_set_lock);
5348
5349	if (notify_on_release(parent))
5350		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5351
5352	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5353		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5354
5355	cgrp->self.serial_nr = css_serial_nr_next++;
5356
5357	/* allocation complete, commit to creation */
5358	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5359	atomic_inc(&root->nr_cgrps);
5360	cgroup_get_live(parent);
5361
5362	/*
5363	 * On the default hierarchy, a child doesn't automatically inherit
5364	 * subtree_control from the parent.  Each is configured manually.
5365	 */
5366	if (!cgroup_on_dfl(cgrp))
5367		cgrp->subtree_control = cgroup_control(cgrp);
5368
5369	cgroup_propagate_control(cgrp);
5370
5371	return cgrp;
5372
5373out_psi_free:
5374	psi_cgroup_free(cgrp);
5375out_kernfs_remove:
5376	kernfs_remove(cgrp->kn);
5377out_stat_exit:
5378	cgroup_rstat_exit(cgrp);
5379out_cancel_ref:
5380	percpu_ref_exit(&cgrp->self.refcnt);
5381out_free_cgrp:
5382	kfree(cgrp);
5383	return ERR_PTR(ret);
5384}
5385
5386static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5387{
5388	struct cgroup *cgroup;
5389	int ret = false;
5390	int level = 1;
5391
5392	lockdep_assert_held(&cgroup_mutex);
5393
5394	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5395		if (cgroup->nr_descendants >= cgroup->max_descendants)
5396			goto fail;
5397
5398		if (level > cgroup->max_depth)
5399			goto fail;
5400
5401		level++;
5402	}
5403
5404	ret = true;
5405fail:
5406	return ret;
5407}
5408
5409int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5410{
5411	struct cgroup *parent, *cgrp;
5412	int ret;
5413
5414	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5415	if (strchr(name, '\n'))
5416		return -EINVAL;
5417
5418	parent = cgroup_kn_lock_live(parent_kn, false);
5419	if (!parent)
5420		return -ENODEV;
5421
5422	if (!cgroup_check_hierarchy_limits(parent)) {
5423		ret = -EAGAIN;
5424		goto out_unlock;
5425	}
5426
5427	cgrp = cgroup_create(parent, name, mode);
5428	if (IS_ERR(cgrp)) {
5429		ret = PTR_ERR(cgrp);
5430		goto out_unlock;
5431	}
5432
5433	/*
5434	 * This extra ref will be put in cgroup_free_fn() and guarantees
5435	 * that @cgrp->kn is always accessible.
5436	 */
5437	kernfs_get(cgrp->kn);
5438
5439	ret = cgroup_kn_set_ugid(cgrp->kn);
5440	if (ret)
5441		goto out_destroy;
5442
5443	ret = css_populate_dir(&cgrp->self);
5444	if (ret)
5445		goto out_destroy;
5446
5447	ret = cgroup_apply_control_enable(cgrp);
5448	if (ret)
5449		goto out_destroy;
5450
5451	TRACE_CGROUP_PATH(mkdir, cgrp);
5452
5453	/* let's create and online css's */
5454	kernfs_activate(cgrp->kn);
5455
5456	ret = 0;
5457	goto out_unlock;
5458
5459out_destroy:
5460	cgroup_destroy_locked(cgrp);
5461out_unlock:
5462	cgroup_kn_unlock(parent_kn);
5463	return ret;
5464}
5465
5466/*
5467 * This is called when the refcnt of a css is confirmed to be killed.
5468 * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5469 * initiate destruction and put the css ref from kill_css().
5470 */
5471static void css_killed_work_fn(struct work_struct *work)
5472{
5473	struct cgroup_subsys_state *css =
5474		container_of(work, struct cgroup_subsys_state, destroy_work);
5475
5476	mutex_lock(&cgroup_mutex);
5477
5478	do {
5479		offline_css(css);
5480		css_put(css);
5481		/* @css can't go away while we're holding cgroup_mutex */
5482		css = css->parent;
5483	} while (css && atomic_dec_and_test(&css->online_cnt));
5484
5485	mutex_unlock(&cgroup_mutex);
5486}
5487
5488/* css kill confirmation processing requires process context, bounce */
5489static void css_killed_ref_fn(struct percpu_ref *ref)
5490{
5491	struct cgroup_subsys_state *css =
5492		container_of(ref, struct cgroup_subsys_state, refcnt);
5493
5494	if (atomic_dec_and_test(&css->online_cnt)) {
5495		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5496		queue_work(cgroup_destroy_wq, &css->destroy_work);
5497	}
5498}
5499
5500/**
5501 * kill_css - destroy a css
5502 * @css: css to destroy
5503 *
5504 * This function initiates destruction of @css by removing cgroup interface
5505 * files and putting its base reference.  ->css_offline() will be invoked
5506 * asynchronously once css_tryget_online() is guaranteed to fail and when
5507 * the reference count reaches zero, @css will be released.
5508 */
5509static void kill_css(struct cgroup_subsys_state *css)
5510{
5511	lockdep_assert_held(&cgroup_mutex);
5512
5513	if (css->flags & CSS_DYING)
5514		return;
5515
5516	css->flags |= CSS_DYING;
5517
5518	/*
5519	 * This must happen before css is disassociated with its cgroup.
5520	 * See seq_css() for details.
5521	 */
5522	css_clear_dir(css);
5523
5524	/*
5525	 * Killing would put the base ref, but we need to keep it alive
5526	 * until after ->css_offline().
5527	 */
5528	css_get(css);
5529
5530	/*
5531	 * cgroup core guarantees that, by the time ->css_offline() is
5532	 * invoked, no new css reference will be given out via
5533	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5534	 * proceed to offlining css's because percpu_ref_kill() doesn't
5535	 * guarantee that the ref is seen as killed on all CPUs on return.
5536	 *
5537	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5538	 * css is confirmed to be seen as killed on all CPUs.
5539	 */
5540	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5541}
5542
5543/**
5544 * cgroup_destroy_locked - the first stage of cgroup destruction
5545 * @cgrp: cgroup to be destroyed
5546 *
5547 * css's make use of percpu refcnts whose killing latency shouldn't be
5548 * exposed to userland and are RCU protected.  Also, cgroup core needs to
5549 * guarantee that css_tryget_online() won't succeed by the time
5550 * ->css_offline() is invoked.  To satisfy all the requirements,
5551 * destruction is implemented in the following two steps.
5552 *
5553 * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5554 *     userland visible parts and start killing the percpu refcnts of
5555 *     css's.  Set up so that the next stage will be kicked off once all
5556 *     the percpu refcnts are confirmed to be killed.
5557 *
5558 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5559 *     rest of destruction.  Once all cgroup references are gone, the
5560 *     cgroup is RCU-freed.
5561 *
5562 * This function implements s1.  After this step, @cgrp is gone as far as
5563 * the userland is concerned and a new cgroup with the same name may be
5564 * created.  As cgroup doesn't care about the names internally, this
5565 * doesn't cause any problem.
5566 */
5567static int cgroup_destroy_locked(struct cgroup *cgrp)
5568	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5569{
5570	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5571	struct cgroup_subsys_state *css;
5572	struct cgrp_cset_link *link;
5573	int ssid;
5574
5575	lockdep_assert_held(&cgroup_mutex);
5576
5577	/*
5578	 * Only migration can raise populated from zero and we're already
5579	 * holding cgroup_mutex.
5580	 */
5581	if (cgroup_is_populated(cgrp))
5582		return -EBUSY;
5583
5584	/*
5585	 * Make sure there's no live children.  We can't test emptiness of
5586	 * ->self.children as dead children linger on it while being
5587	 * drained; otherwise, "rmdir parent/child parent" may fail.
5588	 */
5589	if (css_has_online_children(&cgrp->self))
5590		return -EBUSY;
5591
5592	/*
5593	 * Mark @cgrp and the associated csets dead.  The former prevents
5594	 * further task migration and child creation by disabling
5595	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5596	 * the migration path.
5597	 */
5598	cgrp->self.flags &= ~CSS_ONLINE;
5599
5600	spin_lock_irq(&css_set_lock);
5601	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5602		link->cset->dead = true;
5603	spin_unlock_irq(&css_set_lock);
5604
5605	/* initiate massacre of all css's */
5606	for_each_css(css, ssid, cgrp)
5607		kill_css(css);
5608
5609	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5610	css_clear_dir(&cgrp->self);
5611	kernfs_remove(cgrp->kn);
5612
5613	if (parent && cgroup_is_threaded(cgrp))
5614		parent->nr_threaded_children--;
5615
5616	spin_lock_irq(&css_set_lock);
5617	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5618		tcgrp->nr_descendants--;
5619		tcgrp->nr_dying_descendants++;
5620		/*
5621		 * If the dying cgroup is frozen, decrease frozen descendants
5622		 * counters of ancestor cgroups.
5623		 */
5624		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5625			tcgrp->freezer.nr_frozen_descendants--;
5626	}
5627	spin_unlock_irq(&css_set_lock);
5628
5629	cgroup1_check_for_release(parent);
5630
5631	cgroup_bpf_offline(cgrp);
5632
5633	/* put the base reference */
5634	percpu_ref_kill(&cgrp->self.refcnt);
5635
5636	return 0;
5637};
5638
5639int cgroup_rmdir(struct kernfs_node *kn)
5640{
5641	struct cgroup *cgrp;
5642	int ret = 0;
5643
5644	cgrp = cgroup_kn_lock_live(kn, false);
5645	if (!cgrp)
5646		return 0;
5647
5648	ret = cgroup_destroy_locked(cgrp);
5649	if (!ret)
5650		TRACE_CGROUP_PATH(rmdir, cgrp);
5651
5652	cgroup_kn_unlock(kn);
5653	return ret;
5654}
5655
5656static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5657	.show_options		= cgroup_show_options,
5658	.mkdir			= cgroup_mkdir,
5659	.rmdir			= cgroup_rmdir,
5660	.show_path		= cgroup_show_path,
5661};
5662
5663static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5664{
5665	struct cgroup_subsys_state *css;
5666
5667	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5668
5669	mutex_lock(&cgroup_mutex);
5670
5671	idr_init(&ss->css_idr);
5672	INIT_LIST_HEAD(&ss->cfts);
5673
5674	/* Create the root cgroup state for this subsystem */
5675	ss->root = &cgrp_dfl_root;
5676	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5677	/* We don't handle early failures gracefully */
5678	BUG_ON(IS_ERR(css));
5679	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5680
5681	/*
5682	 * Root csses are never destroyed and we can't initialize
5683	 * percpu_ref during early init.  Disable refcnting.
5684	 */
5685	css->flags |= CSS_NO_REF;
5686
5687	if (early) {
5688		/* allocation can't be done safely during early init */
5689		css->id = 1;
5690	} else {
5691		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5692		BUG_ON(css->id < 0);
5693	}
5694
5695	/* Update the init_css_set to contain a subsys
5696	 * pointer to this state - since the subsystem is
5697	 * newly registered, all tasks and hence the
5698	 * init_css_set is in the subsystem's root cgroup. */
5699	init_css_set.subsys[ss->id] = css;
5700
5701	have_fork_callback |= (bool)ss->fork << ss->id;
5702	have_exit_callback |= (bool)ss->exit << ss->id;
5703	have_release_callback |= (bool)ss->release << ss->id;
5704	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5705
5706	/* At system boot, before all subsystems have been
5707	 * registered, no tasks have been forked, so we don't
5708	 * need to invoke fork callbacks here. */
5709	BUG_ON(!list_empty(&init_task.tasks));
5710
5711	BUG_ON(online_css(css));
5712
5713	mutex_unlock(&cgroup_mutex);
5714}
5715
5716/**
5717 * cgroup_init_early - cgroup initialization at system boot
5718 *
5719 * Initialize cgroups at system boot, and initialize any
5720 * subsystems that request early init.
5721 */
5722int __init cgroup_init_early(void)
5723{
5724	static struct cgroup_fs_context __initdata ctx;
5725	struct cgroup_subsys *ss;
5726	int i;
5727
5728	ctx.root = &cgrp_dfl_root;
5729	init_cgroup_root(&ctx);
5730	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5731
5732	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5733
5734	for_each_subsys(ss, i) {
5735		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5736		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5737		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5738		     ss->id, ss->name);
5739		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5740		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5741
5742		ss->id = i;
5743		ss->name = cgroup_subsys_name[i];
5744		if (!ss->legacy_name)
5745			ss->legacy_name = cgroup_subsys_name[i];
5746
5747		if (ss->early_init)
5748			cgroup_init_subsys(ss, true);
5749	}
5750	return 0;
5751}
5752
5753/**
5754 * cgroup_init - cgroup initialization
5755 *
5756 * Register cgroup filesystem and /proc file, and initialize
5757 * any subsystems that didn't request early init.
5758 */
5759int __init cgroup_init(void)
5760{
5761	struct cgroup_subsys *ss;
5762	int ssid;
5763
5764	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5765	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5766	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5767
5768	cgroup_rstat_boot();
5769
5770	/*
5771	 * The latency of the synchronize_rcu() is too high for cgroups,
5772	 * avoid it at the cost of forcing all readers into the slow path.
5773	 */
5774	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5775
5776	get_user_ns(init_cgroup_ns.user_ns);
5777
5778	mutex_lock(&cgroup_mutex);
5779
5780	/*
5781	 * Add init_css_set to the hash table so that dfl_root can link to
5782	 * it during init.
5783	 */
5784	hash_add(css_set_table, &init_css_set.hlist,
5785		 css_set_hash(init_css_set.subsys));
5786
5787	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5788
5789	mutex_unlock(&cgroup_mutex);
5790
5791	for_each_subsys(ss, ssid) {
5792		if (ss->early_init) {
5793			struct cgroup_subsys_state *css =
5794				init_css_set.subsys[ss->id];
5795
5796			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5797						   GFP_KERNEL);
5798			BUG_ON(css->id < 0);
5799		} else {
5800			cgroup_init_subsys(ss, false);
5801		}
5802
5803		list_add_tail(&init_css_set.e_cset_node[ssid],
5804			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5805
5806		/*
5807		 * Setting dfl_root subsys_mask needs to consider the
5808		 * disabled flag and cftype registration needs kmalloc,
5809		 * both of which aren't available during early_init.
5810		 */
5811		if (!cgroup_ssid_enabled(ssid))
5812			continue;
5813
5814		if (cgroup1_ssid_disabled(ssid))
5815			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5816			       ss->name);
5817
5818		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5819
5820		/* implicit controllers must be threaded too */
5821		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5822
5823		if (ss->implicit_on_dfl)
5824			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5825		else if (!ss->dfl_cftypes)
5826			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5827
5828		if (ss->threaded)
5829			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5830
5831		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5832			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5833		} else {
5834			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5835			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5836		}
5837
5838		if (ss->bind)
5839			ss->bind(init_css_set.subsys[ssid]);
5840
5841		mutex_lock(&cgroup_mutex);
5842		css_populate_dir(init_css_set.subsys[ssid]);
5843		mutex_unlock(&cgroup_mutex);
5844	}
5845
5846	/* init_css_set.subsys[] has been updated, re-hash */
5847	hash_del(&init_css_set.hlist);
5848	hash_add(css_set_table, &init_css_set.hlist,
5849		 css_set_hash(init_css_set.subsys));
5850
5851	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5852	WARN_ON(register_filesystem(&cgroup_fs_type));
5853	WARN_ON(register_filesystem(&cgroup2_fs_type));
5854	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5855#ifdef CONFIG_CPUSETS
5856	WARN_ON(register_filesystem(&cpuset_fs_type));
5857#endif
5858
5859	return 0;
5860}
5861
5862static int __init cgroup_wq_init(void)
5863{
5864	/*
5865	 * There isn't much point in executing destruction path in
5866	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5867	 * Use 1 for @max_active.
5868	 *
5869	 * We would prefer to do this in cgroup_init() above, but that
5870	 * is called before init_workqueues(): so leave this until after.
5871	 */
5872	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5873	BUG_ON(!cgroup_destroy_wq);
5874	return 0;
5875}
5876core_initcall(cgroup_wq_init);
5877
5878void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5879{
5880	struct kernfs_node *kn;
5881
5882	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5883	if (!kn)
5884		return;
5885	kernfs_path(kn, buf, buflen);
5886	kernfs_put(kn);
5887}
5888
5889/*
5890 * cgroup_get_from_id : get the cgroup associated with cgroup id
5891 * @id: cgroup id
5892 * On success return the cgrp, on failure return NULL
5893 */
5894struct cgroup *cgroup_get_from_id(u64 id)
5895{
5896	struct kernfs_node *kn;
5897	struct cgroup *cgrp = NULL;
5898
5899	mutex_lock(&cgroup_mutex);
5900	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5901	if (!kn)
5902		goto out_unlock;
5903
5904	cgrp = kn->priv;
5905	if (cgroup_is_dead(cgrp) || !cgroup_tryget(cgrp))
5906		cgrp = NULL;
5907	kernfs_put(kn);
5908out_unlock:
5909	mutex_unlock(&cgroup_mutex);
5910	return cgrp;
5911}
5912EXPORT_SYMBOL_GPL(cgroup_get_from_id);
5913
5914/*
5915 * proc_cgroup_show()
5916 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5917 *  - Used for /proc/<pid>/cgroup.
5918 */
5919int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5920		     struct pid *pid, struct task_struct *tsk)
5921{
5922	char *buf;
5923	int retval;
5924	struct cgroup_root *root;
5925
5926	retval = -ENOMEM;
5927	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5928	if (!buf)
5929		goto out;
5930
5931	mutex_lock(&cgroup_mutex);
5932	spin_lock_irq(&css_set_lock);
5933
5934	for_each_root(root) {
5935		struct cgroup_subsys *ss;
5936		struct cgroup *cgrp;
5937		int ssid, count = 0;
5938
5939		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5940			continue;
5941
5942		seq_printf(m, "%d:", root->hierarchy_id);
5943		if (root != &cgrp_dfl_root)
5944			for_each_subsys(ss, ssid)
5945				if (root->subsys_mask & (1 << ssid))
5946					seq_printf(m, "%s%s", count++ ? "," : "",
5947						   ss->legacy_name);
5948		if (strlen(root->name))
5949			seq_printf(m, "%sname=%s", count ? "," : "",
5950				   root->name);
5951		seq_putc(m, ':');
5952
5953		cgrp = task_cgroup_from_root(tsk, root);
5954
5955		/*
5956		 * On traditional hierarchies, all zombie tasks show up as
5957		 * belonging to the root cgroup.  On the default hierarchy,
5958		 * while a zombie doesn't show up in "cgroup.procs" and
5959		 * thus can't be migrated, its /proc/PID/cgroup keeps
5960		 * reporting the cgroup it belonged to before exiting.  If
5961		 * the cgroup is removed before the zombie is reaped,
5962		 * " (deleted)" is appended to the cgroup path.
5963		 */
5964		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5965			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5966						current->nsproxy->cgroup_ns);
5967			if (retval >= PATH_MAX)
5968				retval = -ENAMETOOLONG;
5969			if (retval < 0)
5970				goto out_unlock;
5971
5972			seq_puts(m, buf);
5973		} else {
5974			seq_puts(m, "/");
5975		}
5976
5977		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5978			seq_puts(m, " (deleted)\n");
5979		else
5980			seq_putc(m, '\n');
5981	}
5982
5983	retval = 0;
5984out_unlock:
5985	spin_unlock_irq(&css_set_lock);
5986	mutex_unlock(&cgroup_mutex);
5987	kfree(buf);
5988out:
5989	return retval;
5990}
5991
5992/**
5993 * cgroup_fork - initialize cgroup related fields during copy_process()
5994 * @child: pointer to task_struct of forking parent process.
5995 *
5996 * A task is associated with the init_css_set until cgroup_post_fork()
5997 * attaches it to the target css_set.
5998 */
5999void cgroup_fork(struct task_struct *child)
6000{
6001	RCU_INIT_POINTER(child->cgroups, &init_css_set);
6002	INIT_LIST_HEAD(&child->cg_list);
6003}
6004
6005static struct cgroup *cgroup_get_from_file(struct file *f)
6006{
6007	struct cgroup_subsys_state *css;
6008	struct cgroup *cgrp;
6009
6010	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6011	if (IS_ERR(css))
6012		return ERR_CAST(css);
6013
6014	cgrp = css->cgroup;
6015	if (!cgroup_on_dfl(cgrp)) {
6016		cgroup_put(cgrp);
6017		return ERR_PTR(-EBADF);
6018	}
6019
6020	return cgrp;
6021}
6022
6023/**
6024 * cgroup_css_set_fork - find or create a css_set for a child process
6025 * @kargs: the arguments passed to create the child process
6026 *
6027 * This functions finds or creates a new css_set which the child
6028 * process will be attached to in cgroup_post_fork(). By default,
6029 * the child process will be given the same css_set as its parent.
6030 *
6031 * If CLONE_INTO_CGROUP is specified this function will try to find an
6032 * existing css_set which includes the requested cgroup and if not create
6033 * a new css_set that the child will be attached to later. If this function
6034 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6035 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6036 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6037 * to the target cgroup.
6038 */
6039static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6040	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6041{
6042	int ret;
6043	struct cgroup *dst_cgrp = NULL;
6044	struct css_set *cset;
6045	struct super_block *sb;
6046	struct file *f;
6047
6048	if (kargs->flags & CLONE_INTO_CGROUP)
6049		mutex_lock(&cgroup_mutex);
6050
6051	cgroup_threadgroup_change_begin(current);
6052
6053	spin_lock_irq(&css_set_lock);
6054	cset = task_css_set(current);
6055	get_css_set(cset);
6056	spin_unlock_irq(&css_set_lock);
6057
6058	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6059		kargs->cset = cset;
6060		return 0;
6061	}
6062
6063	f = fget_raw(kargs->cgroup);
6064	if (!f) {
6065		ret = -EBADF;
6066		goto err;
6067	}
6068	sb = f->f_path.dentry->d_sb;
6069
6070	dst_cgrp = cgroup_get_from_file(f);
6071	if (IS_ERR(dst_cgrp)) {
6072		ret = PTR_ERR(dst_cgrp);
6073		dst_cgrp = NULL;
6074		goto err;
6075	}
6076
6077	if (cgroup_is_dead(dst_cgrp)) {
6078		ret = -ENODEV;
6079		goto err;
6080	}
6081
6082	/*
6083	 * Verify that we the target cgroup is writable for us. This is
6084	 * usually done by the vfs layer but since we're not going through
6085	 * the vfs layer here we need to do it "manually".
6086	 */
6087	ret = cgroup_may_write(dst_cgrp, sb);
6088	if (ret)
6089		goto err;
6090
6091	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6092					!(kargs->flags & CLONE_THREAD));
6093	if (ret)
6094		goto err;
6095
6096	kargs->cset = find_css_set(cset, dst_cgrp);
6097	if (!kargs->cset) {
6098		ret = -ENOMEM;
6099		goto err;
6100	}
6101
6102	put_css_set(cset);
6103	fput(f);
6104	kargs->cgrp = dst_cgrp;
6105	return ret;
6106
6107err:
6108	cgroup_threadgroup_change_end(current);
6109	mutex_unlock(&cgroup_mutex);
6110	if (f)
6111		fput(f);
6112	if (dst_cgrp)
6113		cgroup_put(dst_cgrp);
6114	put_css_set(cset);
6115	if (kargs->cset)
6116		put_css_set(kargs->cset);
6117	return ret;
6118}
6119
6120/**
6121 * cgroup_css_set_put_fork - drop references we took during fork
6122 * @kargs: the arguments passed to create the child process
6123 *
6124 * Drop references to the prepared css_set and target cgroup if
6125 * CLONE_INTO_CGROUP was requested.
6126 */
6127static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6128	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6129{
6130	cgroup_threadgroup_change_end(current);
6131
6132	if (kargs->flags & CLONE_INTO_CGROUP) {
6133		struct cgroup *cgrp = kargs->cgrp;
6134		struct css_set *cset = kargs->cset;
6135
6136		mutex_unlock(&cgroup_mutex);
6137
6138		if (cset) {
6139			put_css_set(cset);
6140			kargs->cset = NULL;
6141		}
6142
6143		if (cgrp) {
6144			cgroup_put(cgrp);
6145			kargs->cgrp = NULL;
6146		}
6147	}
6148}
6149
6150/**
6151 * cgroup_can_fork - called on a new task before the process is exposed
6152 * @child: the child process
6153 *
6154 * This prepares a new css_set for the child process which the child will
6155 * be attached to in cgroup_post_fork().
6156 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6157 * callback returns an error, the fork aborts with that error code. This
6158 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6159 */
6160int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6161{
6162	struct cgroup_subsys *ss;
6163	int i, j, ret;
6164
6165	ret = cgroup_css_set_fork(kargs);
6166	if (ret)
6167		return ret;
6168
6169	do_each_subsys_mask(ss, i, have_canfork_callback) {
6170		ret = ss->can_fork(child, kargs->cset);
6171		if (ret)
6172			goto out_revert;
6173	} while_each_subsys_mask();
6174
6175	return 0;
6176
6177out_revert:
6178	for_each_subsys(ss, j) {
6179		if (j >= i)
6180			break;
6181		if (ss->cancel_fork)
6182			ss->cancel_fork(child, kargs->cset);
6183	}
6184
6185	cgroup_css_set_put_fork(kargs);
6186
6187	return ret;
6188}
6189
6190/**
6191 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6192 * @child: the child process
6193 * @kargs: the arguments passed to create the child process
6194 *
6195 * This calls the cancel_fork() callbacks if a fork failed *after*
6196 * cgroup_can_fork() succeeded and cleans up references we took to
6197 * prepare a new css_set for the child process in cgroup_can_fork().
6198 */
6199void cgroup_cancel_fork(struct task_struct *child,
6200			struct kernel_clone_args *kargs)
6201{
6202	struct cgroup_subsys *ss;
6203	int i;
6204
6205	for_each_subsys(ss, i)
6206		if (ss->cancel_fork)
6207			ss->cancel_fork(child, kargs->cset);
6208
6209	cgroup_css_set_put_fork(kargs);
6210}
6211
6212/**
6213 * cgroup_post_fork - finalize cgroup setup for the child process
6214 * @child: the child process
6215 *
6216 * Attach the child process to its css_set calling the subsystem fork()
6217 * callbacks.
6218 */
6219void cgroup_post_fork(struct task_struct *child,
6220		      struct kernel_clone_args *kargs)
6221	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6222{
6223	unsigned long cgrp_flags = 0;
6224	bool kill = false;
6225	struct cgroup_subsys *ss;
6226	struct css_set *cset;
6227	int i;
6228
6229	cset = kargs->cset;
6230	kargs->cset = NULL;
6231
6232	spin_lock_irq(&css_set_lock);
6233
6234	/* init tasks are special, only link regular threads */
6235	if (likely(child->pid)) {
6236		if (kargs->cgrp)
6237			cgrp_flags = kargs->cgrp->flags;
6238		else
6239			cgrp_flags = cset->dfl_cgrp->flags;
6240
6241		WARN_ON_ONCE(!list_empty(&child->cg_list));
6242		cset->nr_tasks++;
6243		css_set_move_task(child, NULL, cset, false);
6244	} else {
6245		put_css_set(cset);
6246		cset = NULL;
6247	}
6248
6249	if (!(child->flags & PF_KTHREAD)) {
6250		if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6251			/*
6252			 * If the cgroup has to be frozen, the new task has
6253			 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6254			 * get the task into the frozen state.
6255			 */
6256			spin_lock(&child->sighand->siglock);
6257			WARN_ON_ONCE(child->frozen);
6258			child->jobctl |= JOBCTL_TRAP_FREEZE;
6259			spin_unlock(&child->sighand->siglock);
6260
6261			/*
6262			 * Calling cgroup_update_frozen() isn't required here,
6263			 * because it will be called anyway a bit later from
6264			 * do_freezer_trap(). So we avoid cgroup's transient
6265			 * switch from the frozen state and back.
6266			 */
6267		}
6268
6269		/*
6270		 * If the cgroup is to be killed notice it now and take the
6271		 * child down right after we finished preparing it for
6272		 * userspace.
6273		 */
6274		kill = test_bit(CGRP_KILL, &cgrp_flags);
6275	}
6276
6277	spin_unlock_irq(&css_set_lock);
6278
6279	/*
6280	 * Call ss->fork().  This must happen after @child is linked on
6281	 * css_set; otherwise, @child might change state between ->fork()
6282	 * and addition to css_set.
6283	 */
6284	do_each_subsys_mask(ss, i, have_fork_callback) {
6285		ss->fork(child);
6286	} while_each_subsys_mask();
6287
6288	/* Make the new cset the root_cset of the new cgroup namespace. */
6289	if (kargs->flags & CLONE_NEWCGROUP) {
6290		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6291
6292		get_css_set(cset);
6293		child->nsproxy->cgroup_ns->root_cset = cset;
6294		put_css_set(rcset);
6295	}
6296
6297	/* Cgroup has to be killed so take down child immediately. */
6298	if (unlikely(kill))
6299		do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6300
6301	cgroup_css_set_put_fork(kargs);
6302}
6303
6304/**
6305 * cgroup_exit - detach cgroup from exiting task
6306 * @tsk: pointer to task_struct of exiting process
6307 *
6308 * Description: Detach cgroup from @tsk.
6309 *
6310 */
6311void cgroup_exit(struct task_struct *tsk)
6312{
6313	struct cgroup_subsys *ss;
6314	struct css_set *cset;
6315	int i;
6316
6317	spin_lock_irq(&css_set_lock);
6318
6319	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6320	cset = task_css_set(tsk);
6321	css_set_move_task(tsk, cset, NULL, false);
6322	list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6323	cset->nr_tasks--;
6324
6325	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6326	if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6327		     test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6328		cgroup_update_frozen(task_dfl_cgroup(tsk));
6329
6330	spin_unlock_irq(&css_set_lock);
6331
6332	/* see cgroup_post_fork() for details */
6333	do_each_subsys_mask(ss, i, have_exit_callback) {
6334		ss->exit(tsk);
6335	} while_each_subsys_mask();
6336}
6337
6338void cgroup_release(struct task_struct *task)
6339{
6340	struct cgroup_subsys *ss;
6341	int ssid;
6342
6343	do_each_subsys_mask(ss, ssid, have_release_callback) {
6344		ss->release(task);
6345	} while_each_subsys_mask();
6346
6347	spin_lock_irq(&css_set_lock);
6348	css_set_skip_task_iters(task_css_set(task), task);
6349	list_del_init(&task->cg_list);
6350	spin_unlock_irq(&css_set_lock);
6351}
6352
6353void cgroup_free(struct task_struct *task)
6354{
6355	struct css_set *cset = task_css_set(task);
6356	put_css_set(cset);
6357}
6358
6359static int __init cgroup_disable(char *str)
6360{
6361	struct cgroup_subsys *ss;
6362	char *token;
6363	int i;
6364
6365	while ((token = strsep(&str, ",")) != NULL) {
6366		if (!*token)
6367			continue;
6368
6369		for_each_subsys(ss, i) {
6370			if (strcmp(token, ss->name) &&
6371			    strcmp(token, ss->legacy_name))
6372				continue;
6373
6374			static_branch_disable(cgroup_subsys_enabled_key[i]);
6375			pr_info("Disabling %s control group subsystem\n",
6376				ss->name);
6377		}
6378
6379		for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6380			if (strcmp(token, cgroup_opt_feature_names[i]))
6381				continue;
6382			cgroup_feature_disable_mask |= 1 << i;
6383			pr_info("Disabling %s control group feature\n",
6384				cgroup_opt_feature_names[i]);
6385			break;
6386		}
6387	}
6388	return 1;
6389}
6390__setup("cgroup_disable=", cgroup_disable);
6391
6392void __init __weak enable_debug_cgroup(void) { }
6393
6394static int __init enable_cgroup_debug(char *str)
6395{
6396	cgroup_debug = true;
6397	enable_debug_cgroup();
6398	return 1;
6399}
6400__setup("cgroup_debug", enable_cgroup_debug);
6401
6402/**
6403 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6404 * @dentry: directory dentry of interest
6405 * @ss: subsystem of interest
6406 *
6407 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6408 * to get the corresponding css and return it.  If such css doesn't exist
6409 * or can't be pinned, an ERR_PTR value is returned.
6410 */
6411struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6412						       struct cgroup_subsys *ss)
6413{
6414	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6415	struct file_system_type *s_type = dentry->d_sb->s_type;
6416	struct cgroup_subsys_state *css = NULL;
6417	struct cgroup *cgrp;
6418
6419	/* is @dentry a cgroup dir? */
6420	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6421	    !kn || kernfs_type(kn) != KERNFS_DIR)
6422		return ERR_PTR(-EBADF);
6423
6424	rcu_read_lock();
6425
6426	/*
6427	 * This path doesn't originate from kernfs and @kn could already
6428	 * have been or be removed at any point.  @kn->priv is RCU
6429	 * protected for this access.  See css_release_work_fn() for details.
6430	 */
6431	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6432	if (cgrp)
6433		css = cgroup_css(cgrp, ss);
6434
6435	if (!css || !css_tryget_online(css))
6436		css = ERR_PTR(-ENOENT);
6437
6438	rcu_read_unlock();
6439	return css;
6440}
6441
6442/**
6443 * css_from_id - lookup css by id
6444 * @id: the cgroup id
6445 * @ss: cgroup subsys to be looked into
6446 *
6447 * Returns the css if there's valid one with @id, otherwise returns NULL.
6448 * Should be called under rcu_read_lock().
6449 */
6450struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6451{
6452	WARN_ON_ONCE(!rcu_read_lock_held());
6453	return idr_find(&ss->css_idr, id);
6454}
6455
6456/**
6457 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6458 * @path: path on the default hierarchy
6459 *
6460 * Find the cgroup at @path on the default hierarchy, increment its
6461 * reference count and return it.  Returns pointer to the found cgroup on
6462 * success, ERR_PTR(-ENOENT) if @path doesn't exist and ERR_PTR(-ENOTDIR)
6463 * if @path points to a non-directory.
6464 */
6465struct cgroup *cgroup_get_from_path(const char *path)
6466{
6467	struct kernfs_node *kn;
6468	struct cgroup *cgrp;
6469
6470	mutex_lock(&cgroup_mutex);
6471
6472	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6473	if (kn) {
6474		if (kernfs_type(kn) == KERNFS_DIR) {
6475			cgrp = kn->priv;
6476			cgroup_get_live(cgrp);
6477		} else {
6478			cgrp = ERR_PTR(-ENOTDIR);
6479		}
6480		kernfs_put(kn);
6481	} else {
6482		cgrp = ERR_PTR(-ENOENT);
6483	}
6484
6485	mutex_unlock(&cgroup_mutex);
6486	return cgrp;
6487}
6488EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6489
6490/**
6491 * cgroup_get_from_fd - get a cgroup pointer from a fd
6492 * @fd: fd obtained by open(cgroup2_dir)
6493 *
6494 * Find the cgroup from a fd which should be obtained
6495 * by opening a cgroup directory.  Returns a pointer to the
6496 * cgroup on success. ERR_PTR is returned if the cgroup
6497 * cannot be found.
6498 */
6499struct cgroup *cgroup_get_from_fd(int fd)
6500{
6501	struct cgroup *cgrp;
6502	struct file *f;
6503
6504	f = fget_raw(fd);
6505	if (!f)
6506		return ERR_PTR(-EBADF);
6507
6508	cgrp = cgroup_get_from_file(f);
6509	fput(f);
6510	return cgrp;
6511}
6512EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6513
6514static u64 power_of_ten(int power)
6515{
6516	u64 v = 1;
6517	while (power--)
6518		v *= 10;
6519	return v;
6520}
6521
6522/**
6523 * cgroup_parse_float - parse a floating number
6524 * @input: input string
6525 * @dec_shift: number of decimal digits to shift
6526 * @v: output
6527 *
6528 * Parse a decimal floating point number in @input and store the result in
6529 * @v with decimal point right shifted @dec_shift times.  For example, if
6530 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6531 * Returns 0 on success, -errno otherwise.
6532 *
6533 * There's nothing cgroup specific about this function except that it's
6534 * currently the only user.
6535 */
6536int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6537{
6538	s64 whole, frac = 0;
6539	int fstart = 0, fend = 0, flen;
6540
6541	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6542		return -EINVAL;
6543	if (frac < 0)
6544		return -EINVAL;
6545
6546	flen = fend > fstart ? fend - fstart : 0;
6547	if (flen < dec_shift)
6548		frac *= power_of_ten(dec_shift - flen);
6549	else
6550		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6551
6552	*v = whole * power_of_ten(dec_shift) + frac;
6553	return 0;
6554}
6555
6556/*
6557 * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6558 * definition in cgroup-defs.h.
6559 */
6560#ifdef CONFIG_SOCK_CGROUP_DATA
6561
6562#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6563
6564DEFINE_SPINLOCK(cgroup_sk_update_lock);
6565static bool cgroup_sk_alloc_disabled __read_mostly;
6566
6567void cgroup_sk_alloc_disable(void)
6568{
6569	if (cgroup_sk_alloc_disabled)
6570		return;
6571	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6572	cgroup_sk_alloc_disabled = true;
6573}
6574
6575#else
6576
6577#define cgroup_sk_alloc_disabled	false
6578
6579#endif
6580
6581void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6582{
6583	if (cgroup_sk_alloc_disabled) {
6584		skcd->no_refcnt = 1;
6585		return;
6586	}
6587
6588	/* Don't associate the sock with unrelated interrupted task's cgroup. */
6589	if (in_interrupt())
6590		return;
6591
6592	rcu_read_lock();
6593
6594	while (true) {
6595		struct css_set *cset;
6596
6597		cset = task_css_set(current);
6598		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6599			skcd->val = (unsigned long)cset->dfl_cgrp;
6600			cgroup_bpf_get(cset->dfl_cgrp);
6601			break;
6602		}
6603		cpu_relax();
6604	}
6605
6606	rcu_read_unlock();
6607}
6608
6609void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6610{
6611	if (skcd->val) {
6612		if (skcd->no_refcnt)
6613			return;
6614		/*
6615		 * We might be cloning a socket which is left in an empty
6616		 * cgroup and the cgroup might have already been rmdir'd.
6617		 * Don't use cgroup_get_live().
6618		 */
6619		cgroup_get(sock_cgroup_ptr(skcd));
6620		cgroup_bpf_get(sock_cgroup_ptr(skcd));
6621	}
6622}
6623
6624void cgroup_sk_free(struct sock_cgroup_data *skcd)
6625{
6626	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6627
6628	if (skcd->no_refcnt)
6629		return;
6630	cgroup_bpf_put(cgrp);
6631	cgroup_put(cgrp);
6632}
6633
6634#endif	/* CONFIG_SOCK_CGROUP_DATA */
6635
6636#ifdef CONFIG_CGROUP_BPF
6637int cgroup_bpf_attach(struct cgroup *cgrp,
6638		      struct bpf_prog *prog, struct bpf_prog *replace_prog,
6639		      struct bpf_cgroup_link *link,
6640		      enum bpf_attach_type type,
6641		      u32 flags)
6642{
6643	int ret;
6644
6645	mutex_lock(&cgroup_mutex);
6646	ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
6647	mutex_unlock(&cgroup_mutex);
6648	return ret;
6649}
6650
6651int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6652		      enum bpf_attach_type type)
6653{
6654	int ret;
6655
6656	mutex_lock(&cgroup_mutex);
6657	ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
6658	mutex_unlock(&cgroup_mutex);
6659	return ret;
6660}
6661
6662int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6663		     union bpf_attr __user *uattr)
6664{
6665	int ret;
6666
6667	mutex_lock(&cgroup_mutex);
6668	ret = __cgroup_bpf_query(cgrp, attr, uattr);
6669	mutex_unlock(&cgroup_mutex);
6670	return ret;
6671}
6672#endif /* CONFIG_CGROUP_BPF */
6673
6674#ifdef CONFIG_SYSFS
6675static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6676				      ssize_t size, const char *prefix)
6677{
6678	struct cftype *cft;
6679	ssize_t ret = 0;
6680
6681	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6682		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6683			continue;
6684
6685		if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
6686			continue;
6687
6688		if (prefix)
6689			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6690
6691		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6692
6693		if (WARN_ON(ret >= size))
6694			break;
6695	}
6696
6697	return ret;
6698}
6699
6700static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6701			      char *buf)
6702{
6703	struct cgroup_subsys *ss;
6704	int ssid;
6705	ssize_t ret = 0;
6706
6707	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6708				     NULL);
6709
6710	for_each_subsys(ss, ssid)
6711		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6712					      PAGE_SIZE - ret,
6713					      cgroup_subsys_name[ssid]);
6714
6715	return ret;
6716}
6717static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6718
6719static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6720			     char *buf)
6721{
6722	return snprintf(buf, PAGE_SIZE,
6723			"nsdelegate\n"
6724			"memory_localevents\n"
6725			"memory_recursiveprot\n");
6726}
6727static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6728
6729static struct attribute *cgroup_sysfs_attrs[] = {
6730	&cgroup_delegate_attr.attr,
6731	&cgroup_features_attr.attr,
6732	NULL,
6733};
6734
6735static const struct attribute_group cgroup_sysfs_attr_group = {
6736	.attrs = cgroup_sysfs_attrs,
6737	.name = "cgroup",
6738};
6739
6740static int __init cgroup_sysfs_init(void)
6741{
6742	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6743}
6744subsys_initcall(cgroup_sysfs_init);
6745
6746#endif /* CONFIG_SYSFS */