Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
  3 */
  4
  5#include <linux/string.h>
  6#include <linux/random.h>
  7#include <linux/time.h>
 
  8#include "reiserfs.h"
  9
 10// find where objectid map starts
 11#define objectid_map(s,rs) (old_format_only (s) ? \
 12                         (__le32 *)((struct reiserfs_super_block_v1 *)(rs) + 1) :\
 13			 (__le32 *)((rs) + 1))
 14
 15#ifdef CONFIG_REISERFS_CHECK
 16
 17static void check_objectid_map(struct super_block *s, __le32 * map)
 18{
 19	if (le32_to_cpu(map[0]) != 1)
 20		reiserfs_panic(s, "vs-15010", "map corrupted: %lx",
 21			       (long unsigned int)le32_to_cpu(map[0]));
 22
 23	// FIXME: add something else here
 24}
 25
 26#else
 27static void check_objectid_map(struct super_block *s, __le32 * map)
 28{;
 29}
 30#endif
 31
 32/* When we allocate objectids we allocate the first unused objectid.
 33   Each sequence of objectids in use (the odd sequences) is followed
 34   by a sequence of objectids not in use (the even sequences).  We
 35   only need to record the last objectid in each of these sequences
 36   (both the odd and even sequences) in order to fully define the
 37   boundaries of the sequences.  A consequence of allocating the first
 38   objectid not in use is that under most conditions this scheme is
 39   extremely compact.  The exception is immediately after a sequence
 40   of operations which deletes a large number of objects of
 41   non-sequential objectids, and even then it will become compact
 42   again as soon as more objects are created.  Note that many
 43   interesting optimizations of layout could result from complicating
 44   objectid assignment, but we have deferred making them for now. */
 
 
 45
 46/* get unique object identifier */
 47__u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th)
 48{
 49	struct super_block *s = th->t_super;
 50	struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s);
 51	__le32 *map = objectid_map(s, rs);
 52	__u32 unused_objectid;
 53
 54	BUG_ON(!th->t_trans_id);
 55
 56	check_objectid_map(s, map);
 57
 58	reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1);
 59	/* comment needed -Hans */
 60	unused_objectid = le32_to_cpu(map[1]);
 61	if (unused_objectid == U32_MAX) {
 62		reiserfs_warning(s, "reiserfs-15100", "no more object ids");
 63		reiserfs_restore_prepared_buffer(s, SB_BUFFER_WITH_SB(s));
 64		return 0;
 65	}
 66
 67	/* This incrementation allocates the first unused objectid. That
 68	   is to say, the first entry on the objectid map is the first
 69	   unused objectid, and by incrementing it we use it.  See below
 70	   where we check to see if we eliminated a sequence of unused
 71	   objectids.... */
 
 
 72	map[1] = cpu_to_le32(unused_objectid + 1);
 73
 74	/* Now we check to see if we eliminated the last remaining member of
 75	   the first even sequence (and can eliminate the sequence by
 76	   eliminating its last objectid from oids), and can collapse the
 77	   first two odd sequences into one sequence.  If so, then the net
 78	   result is to eliminate a pair of objectids from oids.  We do this
 79	   by shifting the entire map to the left. */
 
 
 80	if (sb_oid_cursize(rs) > 2 && map[1] == map[2]) {
 81		memmove(map + 1, map + 3,
 82			(sb_oid_cursize(rs) - 3) * sizeof(__u32));
 83		set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2);
 84	}
 85
 86	journal_mark_dirty(th, s, SB_BUFFER_WITH_SB(s));
 87	return unused_objectid;
 88}
 89
 90/* makes object identifier unused */
 91void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
 92			       __u32 objectid_to_release)
 93{
 94	struct super_block *s = th->t_super;
 95	struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s);
 96	__le32 *map = objectid_map(s, rs);
 97	int i = 0;
 98
 99	BUG_ON(!th->t_trans_id);
100	//return;
101	check_objectid_map(s, map);
102
103	reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1);
104	journal_mark_dirty(th, s, SB_BUFFER_WITH_SB(s));
105
106	/* start at the beginning of the objectid map (i = 0) and go to
107	   the end of it (i = disk_sb->s_oid_cursize).  Linear search is
108	   what we use, though it is possible that binary search would be
109	   more efficient after performing lots of deletions (which is
110	   when oids is large.)  We only check even i's. */
 
 
111	while (i < sb_oid_cursize(rs)) {
112		if (objectid_to_release == le32_to_cpu(map[i])) {
113			/* This incrementation unallocates the objectid. */
114			//map[i]++;
115			le32_add_cpu(&map[i], 1);
116
117			/* Did we unallocate the last member of an odd sequence, and can shrink oids? */
 
 
 
118			if (map[i] == map[i + 1]) {
119				/* shrink objectid map */
120				memmove(map + i, map + i + 2,
121					(sb_oid_cursize(rs) - i -
122					 2) * sizeof(__u32));
123				//disk_sb->s_oid_cursize -= 2;
124				set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2);
125
126				RFALSE(sb_oid_cursize(rs) < 2 ||
127				       sb_oid_cursize(rs) > sb_oid_maxsize(rs),
128				       "vs-15005: objectid map corrupted cur_size == %d (max == %d)",
129				       sb_oid_cursize(rs), sb_oid_maxsize(rs));
130			}
131			return;
132		}
133
134		if (objectid_to_release > le32_to_cpu(map[i]) &&
135		    objectid_to_release < le32_to_cpu(map[i + 1])) {
136			/* size of objectid map is not changed */
137			if (objectid_to_release + 1 == le32_to_cpu(map[i + 1])) {
138				//objectid_map[i+1]--;
139				le32_add_cpu(&map[i + 1], -1);
140				return;
141			}
142
143			/* JDM comparing two little-endian values for equality -- safe */
 
 
 
 
 
 
 
144			if (sb_oid_cursize(rs) == sb_oid_maxsize(rs)) {
145				/* objectid map must be expanded, but there is no space */
146				PROC_INFO_INC(s, leaked_oid);
147				return;
148			}
149
150			/* expand the objectid map */
151			memmove(map + i + 3, map + i + 1,
152				(sb_oid_cursize(rs) - i - 1) * sizeof(__u32));
153			map[i + 1] = cpu_to_le32(objectid_to_release);
154			map[i + 2] = cpu_to_le32(objectid_to_release + 1);
155			set_sb_oid_cursize(rs, sb_oid_cursize(rs) + 2);
156			return;
157		}
158		i += 2;
159	}
160
161	reiserfs_error(s, "vs-15011", "tried to free free object id (%lu)",
162		       (long unsigned)objectid_to_release);
163}
164
165int reiserfs_convert_objectid_map_v1(struct super_block *s)
166{
167	struct reiserfs_super_block *disk_sb = SB_DISK_SUPER_BLOCK(s);
168	int cur_size = sb_oid_cursize(disk_sb);
169	int new_size = (s->s_blocksize - SB_SIZE) / sizeof(__u32) / 2 * 2;
170	int old_max = sb_oid_maxsize(disk_sb);
171	struct reiserfs_super_block_v1 *disk_sb_v1;
172	__le32 *objectid_map, *new_objectid_map;
173	int i;
174
175	disk_sb_v1 =
176	    (struct reiserfs_super_block_v1 *)(SB_BUFFER_WITH_SB(s)->b_data);
177	objectid_map = (__le32 *) (disk_sb_v1 + 1);
178	new_objectid_map = (__le32 *) (disk_sb + 1);
179
180	if (cur_size > new_size) {
181		/* mark everyone used that was listed as free at the end of the objectid
182		 ** map
 
183		 */
184		objectid_map[new_size - 1] = objectid_map[cur_size - 1];
185		set_sb_oid_cursize(disk_sb, new_size);
186	}
187	/* move the smaller objectid map past the end of the new super */
188	for (i = new_size - 1; i >= 0; i--) {
189		objectid_map[i + (old_max - new_size)] = objectid_map[i];
190	}
191
192	/* set the max size so we don't overflow later */
193	set_sb_oid_maxsize(disk_sb, new_size);
194
195	/* Zero out label and generate random UUID */
196	memset(disk_sb->s_label, 0, sizeof(disk_sb->s_label));
197	generate_random_uuid(disk_sb->s_uuid);
198
199	/* finally, zero out the unused chunk of the new super */
200	memset(disk_sb->s_unused, 0, sizeof(disk_sb->s_unused));
201	return 0;
202}
v5.14.15
  1/*
  2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
  3 */
  4
  5#include <linux/string.h>
 
  6#include <linux/time.h>
  7#include <linux/uuid.h>
  8#include "reiserfs.h"
  9
 10/* find where objectid map starts */
 11#define objectid_map(s,rs) (old_format_only (s) ? \
 12                         (__le32 *)((struct reiserfs_super_block_v1 *)(rs) + 1) :\
 13			 (__le32 *)((rs) + 1))
 14
 15#ifdef CONFIG_REISERFS_CHECK
 16
 17static void check_objectid_map(struct super_block *s, __le32 * map)
 18{
 19	if (le32_to_cpu(map[0]) != 1)
 20		reiserfs_panic(s, "vs-15010", "map corrupted: %lx",
 21			       (long unsigned int)le32_to_cpu(map[0]));
 22
 23	/* FIXME: add something else here */
 24}
 25
 26#else
 27static void check_objectid_map(struct super_block *s, __le32 * map)
 28{;
 29}
 30#endif
 31
 32/*
 33 * When we allocate objectids we allocate the first unused objectid.
 34 * Each sequence of objectids in use (the odd sequences) is followed
 35 * by a sequence of objectids not in use (the even sequences).  We
 36 * only need to record the last objectid in each of these sequences
 37 * (both the odd and even sequences) in order to fully define the
 38 * boundaries of the sequences.  A consequence of allocating the first
 39 * objectid not in use is that under most conditions this scheme is
 40 * extremely compact.  The exception is immediately after a sequence
 41 * of operations which deletes a large number of objects of
 42 * non-sequential objectids, and even then it will become compact
 43 * again as soon as more objects are created.  Note that many
 44 * interesting optimizations of layout could result from complicating
 45 * objectid assignment, but we have deferred making them for now.
 46 */
 47
 48/* get unique object identifier */
 49__u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th)
 50{
 51	struct super_block *s = th->t_super;
 52	struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s);
 53	__le32 *map = objectid_map(s, rs);
 54	__u32 unused_objectid;
 55
 56	BUG_ON(!th->t_trans_id);
 57
 58	check_objectid_map(s, map);
 59
 60	reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1);
 61	/* comment needed -Hans */
 62	unused_objectid = le32_to_cpu(map[1]);
 63	if (unused_objectid == U32_MAX) {
 64		reiserfs_warning(s, "reiserfs-15100", "no more object ids");
 65		reiserfs_restore_prepared_buffer(s, SB_BUFFER_WITH_SB(s));
 66		return 0;
 67	}
 68
 69	/*
 70	 * This incrementation allocates the first unused objectid. That
 71	 * is to say, the first entry on the objectid map is the first
 72	 * unused objectid, and by incrementing it we use it.  See below
 73	 * where we check to see if we eliminated a sequence of unused
 74	 * objectids....
 75	 */
 76	map[1] = cpu_to_le32(unused_objectid + 1);
 77
 78	/*
 79	 * Now we check to see if we eliminated the last remaining member of
 80	 * the first even sequence (and can eliminate the sequence by
 81	 * eliminating its last objectid from oids), and can collapse the
 82	 * first two odd sequences into one sequence.  If so, then the net
 83	 * result is to eliminate a pair of objectids from oids.  We do this
 84	 * by shifting the entire map to the left.
 85	 */
 86	if (sb_oid_cursize(rs) > 2 && map[1] == map[2]) {
 87		memmove(map + 1, map + 3,
 88			(sb_oid_cursize(rs) - 3) * sizeof(__u32));
 89		set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2);
 90	}
 91
 92	journal_mark_dirty(th, SB_BUFFER_WITH_SB(s));
 93	return unused_objectid;
 94}
 95
 96/* makes object identifier unused */
 97void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
 98			       __u32 objectid_to_release)
 99{
100	struct super_block *s = th->t_super;
101	struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s);
102	__le32 *map = objectid_map(s, rs);
103	int i = 0;
104
105	BUG_ON(!th->t_trans_id);
106	/*return; */
107	check_objectid_map(s, map);
108
109	reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1);
110	journal_mark_dirty(th, SB_BUFFER_WITH_SB(s));
111
112	/*
113	 * start at the beginning of the objectid map (i = 0) and go to
114	 * the end of it (i = disk_sb->s_oid_cursize).  Linear search is
115	 * what we use, though it is possible that binary search would be
116	 * more efficient after performing lots of deletions (which is
117	 * when oids is large.)  We only check even i's.
118	 */
119	while (i < sb_oid_cursize(rs)) {
120		if (objectid_to_release == le32_to_cpu(map[i])) {
121			/* This incrementation unallocates the objectid. */
 
122			le32_add_cpu(&map[i], 1);
123
124			/*
125			 * Did we unallocate the last member of an
126			 * odd sequence, and can shrink oids?
127			 */
128			if (map[i] == map[i + 1]) {
129				/* shrink objectid map */
130				memmove(map + i, map + i + 2,
131					(sb_oid_cursize(rs) - i -
132					 2) * sizeof(__u32));
 
133				set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2);
134
135				RFALSE(sb_oid_cursize(rs) < 2 ||
136				       sb_oid_cursize(rs) > sb_oid_maxsize(rs),
137				       "vs-15005: objectid map corrupted cur_size == %d (max == %d)",
138				       sb_oid_cursize(rs), sb_oid_maxsize(rs));
139			}
140			return;
141		}
142
143		if (objectid_to_release > le32_to_cpu(map[i]) &&
144		    objectid_to_release < le32_to_cpu(map[i + 1])) {
145			/* size of objectid map is not changed */
146			if (objectid_to_release + 1 == le32_to_cpu(map[i + 1])) {
 
147				le32_add_cpu(&map[i + 1], -1);
148				return;
149			}
150
151			/*
152			 * JDM comparing two little-endian values for
153			 * equality -- safe
154			 */
155			/*
156			 * objectid map must be expanded, but
157			 * there is no space
158			 */
159			if (sb_oid_cursize(rs) == sb_oid_maxsize(rs)) {
 
160				PROC_INFO_INC(s, leaked_oid);
161				return;
162			}
163
164			/* expand the objectid map */
165			memmove(map + i + 3, map + i + 1,
166				(sb_oid_cursize(rs) - i - 1) * sizeof(__u32));
167			map[i + 1] = cpu_to_le32(objectid_to_release);
168			map[i + 2] = cpu_to_le32(objectid_to_release + 1);
169			set_sb_oid_cursize(rs, sb_oid_cursize(rs) + 2);
170			return;
171		}
172		i += 2;
173	}
174
175	reiserfs_error(s, "vs-15011", "tried to free free object id (%lu)",
176		       (long unsigned)objectid_to_release);
177}
178
179int reiserfs_convert_objectid_map_v1(struct super_block *s)
180{
181	struct reiserfs_super_block *disk_sb = SB_DISK_SUPER_BLOCK(s);
182	int cur_size = sb_oid_cursize(disk_sb);
183	int new_size = (s->s_blocksize - SB_SIZE) / sizeof(__u32) / 2 * 2;
184	int old_max = sb_oid_maxsize(disk_sb);
185	struct reiserfs_super_block_v1 *disk_sb_v1;
186	__le32 *objectid_map;
187	int i;
188
189	disk_sb_v1 =
190	    (struct reiserfs_super_block_v1 *)(SB_BUFFER_WITH_SB(s)->b_data);
191	objectid_map = (__le32 *) (disk_sb_v1 + 1);
 
192
193	if (cur_size > new_size) {
194		/*
195		 * mark everyone used that was listed as free at
196		 * the end of the objectid map
197		 */
198		objectid_map[new_size - 1] = objectid_map[cur_size - 1];
199		set_sb_oid_cursize(disk_sb, new_size);
200	}
201	/* move the smaller objectid map past the end of the new super */
202	for (i = new_size - 1; i >= 0; i--) {
203		objectid_map[i + (old_max - new_size)] = objectid_map[i];
204	}
205
206	/* set the max size so we don't overflow later */
207	set_sb_oid_maxsize(disk_sb, new_size);
208
209	/* Zero out label and generate random UUID */
210	memset(disk_sb->s_label, 0, sizeof(disk_sb->s_label));
211	generate_random_uuid(disk_sb->s_uuid);
212
213	/* finally, zero out the unused chunk of the new super */
214	memset(disk_sb->s_unused, 0, sizeof(disk_sb->s_unused));
215	return 0;
216}