Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  fs/ext4/extents_status.c
   4 *
   5 * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
   6 * Modified by
   7 *	Allison Henderson <achender@linux.vnet.ibm.com>
   8 *	Hugh Dickins <hughd@google.com>
   9 *	Zheng Liu <wenqing.lz@taobao.com>
  10 *
  11 * Ext4 extents status tree core functions.
  12 */
  13#include <linux/list_sort.h>
  14#include <linux/proc_fs.h>
  15#include <linux/seq_file.h>
  16#include "ext4.h"
  17
  18#include <trace/events/ext4.h>
  19
  20/*
  21 * According to previous discussion in Ext4 Developer Workshop, we
  22 * will introduce a new structure called io tree to track all extent
  23 * status in order to solve some problems that we have met
  24 * (e.g. Reservation space warning), and provide extent-level locking.
  25 * Delay extent tree is the first step to achieve this goal.  It is
  26 * original built by Yongqiang Yang.  At that time it is called delay
  27 * extent tree, whose goal is only track delayed extents in memory to
  28 * simplify the implementation of fiemap and bigalloc, and introduce
  29 * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
  30 * delay extent tree at the first commit.  But for better understand
  31 * what it does, it has been rename to extent status tree.
  32 *
  33 * Step1:
  34 * Currently the first step has been done.  All delayed extents are
  35 * tracked in the tree.  It maintains the delayed extent when a delayed
  36 * allocation is issued, and the delayed extent is written out or
  37 * invalidated.  Therefore the implementation of fiemap and bigalloc
  38 * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
  39 *
  40 * The following comment describes the implemenmtation of extent
  41 * status tree and future works.
  42 *
  43 * Step2:
  44 * In this step all extent status are tracked by extent status tree.
  45 * Thus, we can first try to lookup a block mapping in this tree before
  46 * finding it in extent tree.  Hence, single extent cache can be removed
  47 * because extent status tree can do a better job.  Extents in status
  48 * tree are loaded on-demand.  Therefore, the extent status tree may not
  49 * contain all of the extents in a file.  Meanwhile we define a shrinker
  50 * to reclaim memory from extent status tree because fragmented extent
  51 * tree will make status tree cost too much memory.  written/unwritten/-
  52 * hole extents in the tree will be reclaimed by this shrinker when we
  53 * are under high memory pressure.  Delayed extents will not be
  54 * reclimed because fiemap, bigalloc, and seek_data/hole need it.
  55 */
  56
  57/*
  58 * Extent status tree implementation for ext4.
  59 *
  60 *
  61 * ==========================================================================
  62 * Extent status tree tracks all extent status.
  63 *
  64 * 1. Why we need to implement extent status tree?
  65 *
  66 * Without extent status tree, ext4 identifies a delayed extent by looking
  67 * up page cache, this has several deficiencies - complicated, buggy,
  68 * and inefficient code.
  69 *
  70 * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
  71 * block or a range of blocks are belonged to a delayed extent.
  72 *
  73 * Let us have a look at how they do without extent status tree.
  74 *   --	FIEMAP
  75 *	FIEMAP looks up page cache to identify delayed allocations from holes.
  76 *
  77 *   --	SEEK_HOLE/DATA
  78 *	SEEK_HOLE/DATA has the same problem as FIEMAP.
  79 *
  80 *   --	bigalloc
  81 *	bigalloc looks up page cache to figure out if a block is
  82 *	already under delayed allocation or not to determine whether
  83 *	quota reserving is needed for the cluster.
  84 *
  85 *   --	writeout
  86 *	Writeout looks up whole page cache to see if a buffer is
  87 *	mapped, If there are not very many delayed buffers, then it is
  88 *	time consuming.
  89 *
  90 * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
  91 * bigalloc and writeout can figure out if a block or a range of
  92 * blocks is under delayed allocation(belonged to a delayed extent) or
  93 * not by searching the extent tree.
  94 *
  95 *
  96 * ==========================================================================
  97 * 2. Ext4 extent status tree impelmentation
  98 *
  99 *   --	extent
 100 *	A extent is a range of blocks which are contiguous logically and
 101 *	physically.  Unlike extent in extent tree, this extent in ext4 is
 102 *	a in-memory struct, there is no corresponding on-disk data.  There
 103 *	is no limit on length of extent, so an extent can contain as many
 104 *	blocks as they are contiguous logically and physically.
 105 *
 106 *   --	extent status tree
 107 *	Every inode has an extent status tree and all allocation blocks
 108 *	are added to the tree with different status.  The extent in the
 109 *	tree are ordered by logical block no.
 110 *
 111 *   --	operations on a extent status tree
 112 *	There are three important operations on a delayed extent tree: find
 113 *	next extent, adding a extent(a range of blocks) and removing a extent.
 114 *
 115 *   --	race on a extent status tree
 116 *	Extent status tree is protected by inode->i_es_lock.
 117 *
 118 *   --	memory consumption
 119 *      Fragmented extent tree will make extent status tree cost too much
 120 *      memory.  Hence, we will reclaim written/unwritten/hole extents from
 121 *      the tree under a heavy memory pressure.
 122 *
 123 *
 124 * ==========================================================================
 125 * 3. Performance analysis
 126 *
 127 *   --	overhead
 128 *	1. There is a cache extent for write access, so if writes are
 129 *	not very random, adding space operaions are in O(1) time.
 130 *
 131 *   --	gain
 132 *	2. Code is much simpler, more readable, more maintainable and
 133 *	more efficient.
 134 *
 135 *
 136 * ==========================================================================
 137 * 4. TODO list
 138 *
 139 *   -- Refactor delayed space reservation
 140 *
 141 *   -- Extent-level locking
 142 */
 143
 144static struct kmem_cache *ext4_es_cachep;
 145static struct kmem_cache *ext4_pending_cachep;
 146
 147static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
 148static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
 149			      ext4_lblk_t end, int *reserved);
 150static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan);
 151static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
 152		       struct ext4_inode_info *locked_ei);
 153static void __revise_pending(struct inode *inode, ext4_lblk_t lblk,
 154			     ext4_lblk_t len);
 155
 156int __init ext4_init_es(void)
 157{
 158	ext4_es_cachep = kmem_cache_create("ext4_extent_status",
 159					   sizeof(struct extent_status),
 160					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
 161	if (ext4_es_cachep == NULL)
 162		return -ENOMEM;
 163	return 0;
 164}
 165
 166void ext4_exit_es(void)
 167{
 168	kmem_cache_destroy(ext4_es_cachep);
 169}
 170
 171void ext4_es_init_tree(struct ext4_es_tree *tree)
 172{
 173	tree->root = RB_ROOT;
 174	tree->cache_es = NULL;
 175}
 176
 177#ifdef ES_DEBUG__
 178static void ext4_es_print_tree(struct inode *inode)
 179{
 180	struct ext4_es_tree *tree;
 181	struct rb_node *node;
 182
 183	printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
 184	tree = &EXT4_I(inode)->i_es_tree;
 185	node = rb_first(&tree->root);
 186	while (node) {
 187		struct extent_status *es;
 188		es = rb_entry(node, struct extent_status, rb_node);
 189		printk(KERN_DEBUG " [%u/%u) %llu %x",
 190		       es->es_lblk, es->es_len,
 191		       ext4_es_pblock(es), ext4_es_status(es));
 192		node = rb_next(node);
 193	}
 194	printk(KERN_DEBUG "\n");
 195}
 196#else
 197#define ext4_es_print_tree(inode)
 198#endif
 199
 200static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
 201{
 202	BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
 203	return es->es_lblk + es->es_len - 1;
 204}
 205
 206/*
 207 * search through the tree for an delayed extent with a given offset.  If
 208 * it can't be found, try to find next extent.
 209 */
 210static struct extent_status *__es_tree_search(struct rb_root *root,
 211					      ext4_lblk_t lblk)
 212{
 213	struct rb_node *node = root->rb_node;
 214	struct extent_status *es = NULL;
 215
 216	while (node) {
 217		es = rb_entry(node, struct extent_status, rb_node);
 218		if (lblk < es->es_lblk)
 219			node = node->rb_left;
 220		else if (lblk > ext4_es_end(es))
 221			node = node->rb_right;
 222		else
 223			return es;
 224	}
 225
 226	if (es && lblk < es->es_lblk)
 227		return es;
 228
 229	if (es && lblk > ext4_es_end(es)) {
 230		node = rb_next(&es->rb_node);
 231		return node ? rb_entry(node, struct extent_status, rb_node) :
 232			      NULL;
 233	}
 234
 235	return NULL;
 236}
 237
 238/*
 239 * ext4_es_find_extent_range - find extent with specified status within block
 240 *                             range or next extent following block range in
 241 *                             extents status tree
 242 *
 243 * @inode - file containing the range
 244 * @matching_fn - pointer to function that matches extents with desired status
 245 * @lblk - logical block defining start of range
 246 * @end - logical block defining end of range
 247 * @es - extent found, if any
 248 *
 249 * Find the first extent within the block range specified by @lblk and @end
 250 * in the extents status tree that satisfies @matching_fn.  If a match
 251 * is found, it's returned in @es.  If not, and a matching extent is found
 252 * beyond the block range, it's returned in @es.  If no match is found, an
 253 * extent is returned in @es whose es_lblk, es_len, and es_pblk components
 254 * are 0.
 255 */
 256static void __es_find_extent_range(struct inode *inode,
 257				   int (*matching_fn)(struct extent_status *es),
 258				   ext4_lblk_t lblk, ext4_lblk_t end,
 259				   struct extent_status *es)
 260{
 261	struct ext4_es_tree *tree = NULL;
 262	struct extent_status *es1 = NULL;
 263	struct rb_node *node;
 264
 265	WARN_ON(es == NULL);
 266	WARN_ON(end < lblk);
 267
 268	tree = &EXT4_I(inode)->i_es_tree;
 269
 270	/* see if the extent has been cached */
 271	es->es_lblk = es->es_len = es->es_pblk = 0;
 272	if (tree->cache_es) {
 273		es1 = tree->cache_es;
 274		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
 275			es_debug("%u cached by [%u/%u) %llu %x\n",
 276				 lblk, es1->es_lblk, es1->es_len,
 277				 ext4_es_pblock(es1), ext4_es_status(es1));
 278			goto out;
 279		}
 280	}
 281
 282	es1 = __es_tree_search(&tree->root, lblk);
 283
 284out:
 285	if (es1 && !matching_fn(es1)) {
 286		while ((node = rb_next(&es1->rb_node)) != NULL) {
 287			es1 = rb_entry(node, struct extent_status, rb_node);
 288			if (es1->es_lblk > end) {
 289				es1 = NULL;
 290				break;
 291			}
 292			if (matching_fn(es1))
 293				break;
 294		}
 295	}
 296
 297	if (es1 && matching_fn(es1)) {
 298		tree->cache_es = es1;
 299		es->es_lblk = es1->es_lblk;
 300		es->es_len = es1->es_len;
 301		es->es_pblk = es1->es_pblk;
 302	}
 303
 304}
 305
 306/*
 307 * Locking for __es_find_extent_range() for external use
 308 */
 309void ext4_es_find_extent_range(struct inode *inode,
 310			       int (*matching_fn)(struct extent_status *es),
 311			       ext4_lblk_t lblk, ext4_lblk_t end,
 312			       struct extent_status *es)
 313{
 314	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 315		return;
 316
 317	trace_ext4_es_find_extent_range_enter(inode, lblk);
 318
 319	read_lock(&EXT4_I(inode)->i_es_lock);
 320	__es_find_extent_range(inode, matching_fn, lblk, end, es);
 321	read_unlock(&EXT4_I(inode)->i_es_lock);
 322
 323	trace_ext4_es_find_extent_range_exit(inode, es);
 324}
 325
 326/*
 327 * __es_scan_range - search block range for block with specified status
 328 *                   in extents status tree
 329 *
 330 * @inode - file containing the range
 331 * @matching_fn - pointer to function that matches extents with desired status
 332 * @lblk - logical block defining start of range
 333 * @end - logical block defining end of range
 334 *
 335 * Returns true if at least one block in the specified block range satisfies
 336 * the criterion specified by @matching_fn, and false if not.  If at least
 337 * one extent has the specified status, then there is at least one block
 338 * in the cluster with that status.  Should only be called by code that has
 339 * taken i_es_lock.
 340 */
 341static bool __es_scan_range(struct inode *inode,
 342			    int (*matching_fn)(struct extent_status *es),
 343			    ext4_lblk_t start, ext4_lblk_t end)
 344{
 345	struct extent_status es;
 346
 347	__es_find_extent_range(inode, matching_fn, start, end, &es);
 348	if (es.es_len == 0)
 349		return false;   /* no matching extent in the tree */
 350	else if (es.es_lblk <= start &&
 351		 start < es.es_lblk + es.es_len)
 352		return true;
 353	else if (start <= es.es_lblk && es.es_lblk <= end)
 354		return true;
 355	else
 356		return false;
 357}
 358/*
 359 * Locking for __es_scan_range() for external use
 360 */
 361bool ext4_es_scan_range(struct inode *inode,
 362			int (*matching_fn)(struct extent_status *es),
 363			ext4_lblk_t lblk, ext4_lblk_t end)
 364{
 365	bool ret;
 366
 367	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 368		return false;
 369
 370	read_lock(&EXT4_I(inode)->i_es_lock);
 371	ret = __es_scan_range(inode, matching_fn, lblk, end);
 372	read_unlock(&EXT4_I(inode)->i_es_lock);
 373
 374	return ret;
 375}
 376
 377/*
 378 * __es_scan_clu - search cluster for block with specified status in
 379 *                 extents status tree
 380 *
 381 * @inode - file containing the cluster
 382 * @matching_fn - pointer to function that matches extents with desired status
 383 * @lblk - logical block in cluster to be searched
 384 *
 385 * Returns true if at least one extent in the cluster containing @lblk
 386 * satisfies the criterion specified by @matching_fn, and false if not.  If at
 387 * least one extent has the specified status, then there is at least one block
 388 * in the cluster with that status.  Should only be called by code that has
 389 * taken i_es_lock.
 390 */
 391static bool __es_scan_clu(struct inode *inode,
 392			  int (*matching_fn)(struct extent_status *es),
 393			  ext4_lblk_t lblk)
 394{
 395	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 396	ext4_lblk_t lblk_start, lblk_end;
 397
 398	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
 399	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
 400
 401	return __es_scan_range(inode, matching_fn, lblk_start, lblk_end);
 402}
 403
 404/*
 405 * Locking for __es_scan_clu() for external use
 406 */
 407bool ext4_es_scan_clu(struct inode *inode,
 408		      int (*matching_fn)(struct extent_status *es),
 409		      ext4_lblk_t lblk)
 410{
 411	bool ret;
 412
 413	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 414		return false;
 415
 416	read_lock(&EXT4_I(inode)->i_es_lock);
 417	ret = __es_scan_clu(inode, matching_fn, lblk);
 418	read_unlock(&EXT4_I(inode)->i_es_lock);
 419
 420	return ret;
 421}
 422
 423static void ext4_es_list_add(struct inode *inode)
 424{
 425	struct ext4_inode_info *ei = EXT4_I(inode);
 426	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 427
 428	if (!list_empty(&ei->i_es_list))
 429		return;
 430
 431	spin_lock(&sbi->s_es_lock);
 432	if (list_empty(&ei->i_es_list)) {
 433		list_add_tail(&ei->i_es_list, &sbi->s_es_list);
 434		sbi->s_es_nr_inode++;
 435	}
 436	spin_unlock(&sbi->s_es_lock);
 437}
 438
 439static void ext4_es_list_del(struct inode *inode)
 440{
 441	struct ext4_inode_info *ei = EXT4_I(inode);
 442	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 443
 444	spin_lock(&sbi->s_es_lock);
 445	if (!list_empty(&ei->i_es_list)) {
 446		list_del_init(&ei->i_es_list);
 447		sbi->s_es_nr_inode--;
 448		WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
 449	}
 450	spin_unlock(&sbi->s_es_lock);
 451}
 452
 453static struct extent_status *
 454ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
 455		     ext4_fsblk_t pblk)
 456{
 457	struct extent_status *es;
 458	es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
 459	if (es == NULL)
 460		return NULL;
 461	es->es_lblk = lblk;
 462	es->es_len = len;
 463	es->es_pblk = pblk;
 464
 465	/*
 466	 * We don't count delayed extent because we never try to reclaim them
 467	 */
 468	if (!ext4_es_is_delayed(es)) {
 469		if (!EXT4_I(inode)->i_es_shk_nr++)
 470			ext4_es_list_add(inode);
 471		percpu_counter_inc(&EXT4_SB(inode->i_sb)->
 472					s_es_stats.es_stats_shk_cnt);
 473	}
 474
 475	EXT4_I(inode)->i_es_all_nr++;
 476	percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
 477
 478	return es;
 479}
 480
 481static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
 482{
 483	EXT4_I(inode)->i_es_all_nr--;
 484	percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
 485
 486	/* Decrease the shrink counter when this es is not delayed */
 487	if (!ext4_es_is_delayed(es)) {
 488		BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
 489		if (!--EXT4_I(inode)->i_es_shk_nr)
 490			ext4_es_list_del(inode);
 491		percpu_counter_dec(&EXT4_SB(inode->i_sb)->
 492					s_es_stats.es_stats_shk_cnt);
 493	}
 494
 495	kmem_cache_free(ext4_es_cachep, es);
 496}
 497
 498/*
 499 * Check whether or not two extents can be merged
 500 * Condition:
 501 *  - logical block number is contiguous
 502 *  - physical block number is contiguous
 503 *  - status is equal
 504 */
 505static int ext4_es_can_be_merged(struct extent_status *es1,
 506				 struct extent_status *es2)
 507{
 508	if (ext4_es_type(es1) != ext4_es_type(es2))
 509		return 0;
 510
 511	if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
 512		pr_warn("ES assertion failed when merging extents. "
 513			"The sum of lengths of es1 (%d) and es2 (%d) "
 514			"is bigger than allowed file size (%d)\n",
 515			es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
 516		WARN_ON(1);
 517		return 0;
 518	}
 519
 520	if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
 521		return 0;
 522
 523	if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
 524	    (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
 525		return 1;
 526
 527	if (ext4_es_is_hole(es1))
 528		return 1;
 529
 530	/* we need to check delayed extent is without unwritten status */
 531	if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
 532		return 1;
 533
 534	return 0;
 535}
 536
 537static struct extent_status *
 538ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
 539{
 540	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
 541	struct extent_status *es1;
 542	struct rb_node *node;
 543
 544	node = rb_prev(&es->rb_node);
 545	if (!node)
 546		return es;
 547
 548	es1 = rb_entry(node, struct extent_status, rb_node);
 549	if (ext4_es_can_be_merged(es1, es)) {
 550		es1->es_len += es->es_len;
 551		if (ext4_es_is_referenced(es))
 552			ext4_es_set_referenced(es1);
 553		rb_erase(&es->rb_node, &tree->root);
 554		ext4_es_free_extent(inode, es);
 555		es = es1;
 556	}
 557
 558	return es;
 559}
 560
 561static struct extent_status *
 562ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
 563{
 564	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
 565	struct extent_status *es1;
 566	struct rb_node *node;
 567
 568	node = rb_next(&es->rb_node);
 569	if (!node)
 570		return es;
 571
 572	es1 = rb_entry(node, struct extent_status, rb_node);
 573	if (ext4_es_can_be_merged(es, es1)) {
 574		es->es_len += es1->es_len;
 575		if (ext4_es_is_referenced(es1))
 576			ext4_es_set_referenced(es);
 577		rb_erase(node, &tree->root);
 578		ext4_es_free_extent(inode, es1);
 579	}
 580
 581	return es;
 582}
 583
 584#ifdef ES_AGGRESSIVE_TEST
 585#include "ext4_extents.h"	/* Needed when ES_AGGRESSIVE_TEST is defined */
 586
 587static void ext4_es_insert_extent_ext_check(struct inode *inode,
 588					    struct extent_status *es)
 589{
 590	struct ext4_ext_path *path = NULL;
 591	struct ext4_extent *ex;
 592	ext4_lblk_t ee_block;
 593	ext4_fsblk_t ee_start;
 594	unsigned short ee_len;
 595	int depth, ee_status, es_status;
 596
 597	path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
 598	if (IS_ERR(path))
 599		return;
 600
 601	depth = ext_depth(inode);
 602	ex = path[depth].p_ext;
 603
 604	if (ex) {
 605
 606		ee_block = le32_to_cpu(ex->ee_block);
 607		ee_start = ext4_ext_pblock(ex);
 608		ee_len = ext4_ext_get_actual_len(ex);
 609
 610		ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
 611		es_status = ext4_es_is_unwritten(es) ? 1 : 0;
 612
 613		/*
 614		 * Make sure ex and es are not overlap when we try to insert
 615		 * a delayed/hole extent.
 616		 */
 617		if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
 618			if (in_range(es->es_lblk, ee_block, ee_len)) {
 619				pr_warn("ES insert assertion failed for "
 620					"inode: %lu we can find an extent "
 621					"at block [%d/%d/%llu/%c], but we "
 622					"want to add a delayed/hole extent "
 623					"[%d/%d/%llu/%x]\n",
 624					inode->i_ino, ee_block, ee_len,
 625					ee_start, ee_status ? 'u' : 'w',
 626					es->es_lblk, es->es_len,
 627					ext4_es_pblock(es), ext4_es_status(es));
 628			}
 629			goto out;
 630		}
 631
 632		/*
 633		 * We don't check ee_block == es->es_lblk, etc. because es
 634		 * might be a part of whole extent, vice versa.
 635		 */
 636		if (es->es_lblk < ee_block ||
 637		    ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
 638			pr_warn("ES insert assertion failed for inode: %lu "
 639				"ex_status [%d/%d/%llu/%c] != "
 640				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
 641				ee_block, ee_len, ee_start,
 642				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
 643				ext4_es_pblock(es), es_status ? 'u' : 'w');
 644			goto out;
 645		}
 646
 647		if (ee_status ^ es_status) {
 648			pr_warn("ES insert assertion failed for inode: %lu "
 649				"ex_status [%d/%d/%llu/%c] != "
 650				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
 651				ee_block, ee_len, ee_start,
 652				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
 653				ext4_es_pblock(es), es_status ? 'u' : 'w');
 654		}
 655	} else {
 656		/*
 657		 * We can't find an extent on disk.  So we need to make sure
 658		 * that we don't want to add an written/unwritten extent.
 659		 */
 660		if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
 661			pr_warn("ES insert assertion failed for inode: %lu "
 662				"can't find an extent at block %d but we want "
 663				"to add a written/unwritten extent "
 664				"[%d/%d/%llu/%x]\n", inode->i_ino,
 665				es->es_lblk, es->es_lblk, es->es_len,
 666				ext4_es_pblock(es), ext4_es_status(es));
 667		}
 668	}
 669out:
 670	ext4_ext_drop_refs(path);
 671	kfree(path);
 672}
 673
 674static void ext4_es_insert_extent_ind_check(struct inode *inode,
 675					    struct extent_status *es)
 676{
 677	struct ext4_map_blocks map;
 678	int retval;
 679
 680	/*
 681	 * Here we call ext4_ind_map_blocks to lookup a block mapping because
 682	 * 'Indirect' structure is defined in indirect.c.  So we couldn't
 683	 * access direct/indirect tree from outside.  It is too dirty to define
 684	 * this function in indirect.c file.
 685	 */
 686
 687	map.m_lblk = es->es_lblk;
 688	map.m_len = es->es_len;
 689
 690	retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
 691	if (retval > 0) {
 692		if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
 693			/*
 694			 * We want to add a delayed/hole extent but this
 695			 * block has been allocated.
 696			 */
 697			pr_warn("ES insert assertion failed for inode: %lu "
 698				"We can find blocks but we want to add a "
 699				"delayed/hole extent [%d/%d/%llu/%x]\n",
 700				inode->i_ino, es->es_lblk, es->es_len,
 701				ext4_es_pblock(es), ext4_es_status(es));
 702			return;
 703		} else if (ext4_es_is_written(es)) {
 704			if (retval != es->es_len) {
 705				pr_warn("ES insert assertion failed for "
 706					"inode: %lu retval %d != es_len %d\n",
 707					inode->i_ino, retval, es->es_len);
 708				return;
 709			}
 710			if (map.m_pblk != ext4_es_pblock(es)) {
 711				pr_warn("ES insert assertion failed for "
 712					"inode: %lu m_pblk %llu != "
 713					"es_pblk %llu\n",
 714					inode->i_ino, map.m_pblk,
 715					ext4_es_pblock(es));
 716				return;
 717			}
 718		} else {
 719			/*
 720			 * We don't need to check unwritten extent because
 721			 * indirect-based file doesn't have it.
 722			 */
 723			BUG();
 724		}
 725	} else if (retval == 0) {
 726		if (ext4_es_is_written(es)) {
 727			pr_warn("ES insert assertion failed for inode: %lu "
 728				"We can't find the block but we want to add "
 729				"a written extent [%d/%d/%llu/%x]\n",
 730				inode->i_ino, es->es_lblk, es->es_len,
 731				ext4_es_pblock(es), ext4_es_status(es));
 732			return;
 733		}
 734	}
 735}
 736
 737static inline void ext4_es_insert_extent_check(struct inode *inode,
 738					       struct extent_status *es)
 739{
 740	/*
 741	 * We don't need to worry about the race condition because
 742	 * caller takes i_data_sem locking.
 743	 */
 744	BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
 745	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 746		ext4_es_insert_extent_ext_check(inode, es);
 747	else
 748		ext4_es_insert_extent_ind_check(inode, es);
 749}
 750#else
 751static inline void ext4_es_insert_extent_check(struct inode *inode,
 752					       struct extent_status *es)
 753{
 754}
 755#endif
 756
 757static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
 758{
 759	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
 760	struct rb_node **p = &tree->root.rb_node;
 761	struct rb_node *parent = NULL;
 762	struct extent_status *es;
 763
 764	while (*p) {
 765		parent = *p;
 766		es = rb_entry(parent, struct extent_status, rb_node);
 767
 768		if (newes->es_lblk < es->es_lblk) {
 769			if (ext4_es_can_be_merged(newes, es)) {
 770				/*
 771				 * Here we can modify es_lblk directly
 772				 * because it isn't overlapped.
 773				 */
 774				es->es_lblk = newes->es_lblk;
 775				es->es_len += newes->es_len;
 776				if (ext4_es_is_written(es) ||
 777				    ext4_es_is_unwritten(es))
 778					ext4_es_store_pblock(es,
 779							     newes->es_pblk);
 780				es = ext4_es_try_to_merge_left(inode, es);
 781				goto out;
 782			}
 783			p = &(*p)->rb_left;
 784		} else if (newes->es_lblk > ext4_es_end(es)) {
 785			if (ext4_es_can_be_merged(es, newes)) {
 786				es->es_len += newes->es_len;
 787				es = ext4_es_try_to_merge_right(inode, es);
 788				goto out;
 789			}
 790			p = &(*p)->rb_right;
 791		} else {
 792			BUG();
 793			return -EINVAL;
 794		}
 795	}
 796
 797	es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
 798				  newes->es_pblk);
 799	if (!es)
 800		return -ENOMEM;
 801	rb_link_node(&es->rb_node, parent, p);
 802	rb_insert_color(&es->rb_node, &tree->root);
 803
 804out:
 805	tree->cache_es = es;
 806	return 0;
 807}
 808
 809/*
 810 * ext4_es_insert_extent() adds information to an inode's extent
 811 * status tree.
 812 *
 813 * Return 0 on success, error code on failure.
 814 */
 815int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
 816			  ext4_lblk_t len, ext4_fsblk_t pblk,
 817			  unsigned int status)
 818{
 819	struct extent_status newes;
 820	ext4_lblk_t end = lblk + len - 1;
 821	int err = 0;
 822	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 823
 824	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 825		return 0;
 826
 827	es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
 828		 lblk, len, pblk, status, inode->i_ino);
 829
 830	if (!len)
 831		return 0;
 832
 833	BUG_ON(end < lblk);
 834
 835	if ((status & EXTENT_STATUS_DELAYED) &&
 836	    (status & EXTENT_STATUS_WRITTEN)) {
 837		ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as "
 838				" delayed and written which can potentially "
 839				" cause data loss.", lblk, len);
 840		WARN_ON(1);
 841	}
 842
 843	newes.es_lblk = lblk;
 844	newes.es_len = len;
 845	ext4_es_store_pblock_status(&newes, pblk, status);
 846	trace_ext4_es_insert_extent(inode, &newes);
 847
 848	ext4_es_insert_extent_check(inode, &newes);
 849
 850	write_lock(&EXT4_I(inode)->i_es_lock);
 851	err = __es_remove_extent(inode, lblk, end, NULL);
 852	if (err != 0)
 853		goto error;
 854retry:
 855	err = __es_insert_extent(inode, &newes);
 856	if (err == -ENOMEM && __es_shrink(EXT4_SB(inode->i_sb),
 857					  128, EXT4_I(inode)))
 858		goto retry;
 859	if (err == -ENOMEM && !ext4_es_is_delayed(&newes))
 860		err = 0;
 861
 862	if (sbi->s_cluster_ratio > 1 && test_opt(inode->i_sb, DELALLOC) &&
 863	    (status & EXTENT_STATUS_WRITTEN ||
 864	     status & EXTENT_STATUS_UNWRITTEN))
 865		__revise_pending(inode, lblk, len);
 866
 867error:
 868	write_unlock(&EXT4_I(inode)->i_es_lock);
 869
 870	ext4_es_print_tree(inode);
 871
 872	return err;
 873}
 874
 875/*
 876 * ext4_es_cache_extent() inserts information into the extent status
 877 * tree if and only if there isn't information about the range in
 878 * question already.
 879 */
 880void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
 881			  ext4_lblk_t len, ext4_fsblk_t pblk,
 882			  unsigned int status)
 883{
 884	struct extent_status *es;
 885	struct extent_status newes;
 886	ext4_lblk_t end = lblk + len - 1;
 887
 888	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 889		return;
 890
 891	newes.es_lblk = lblk;
 892	newes.es_len = len;
 893	ext4_es_store_pblock_status(&newes, pblk, status);
 894	trace_ext4_es_cache_extent(inode, &newes);
 895
 896	if (!len)
 897		return;
 898
 899	BUG_ON(end < lblk);
 900
 901	write_lock(&EXT4_I(inode)->i_es_lock);
 902
 903	es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
 904	if (!es || es->es_lblk > end)
 905		__es_insert_extent(inode, &newes);
 906	write_unlock(&EXT4_I(inode)->i_es_lock);
 907}
 908
 909/*
 910 * ext4_es_lookup_extent() looks up an extent in extent status tree.
 911 *
 912 * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
 913 *
 914 * Return: 1 on found, 0 on not
 915 */
 916int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
 917			  ext4_lblk_t *next_lblk,
 918			  struct extent_status *es)
 919{
 920	struct ext4_es_tree *tree;
 921	struct ext4_es_stats *stats;
 922	struct extent_status *es1 = NULL;
 923	struct rb_node *node;
 924	int found = 0;
 925
 926	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 927		return 0;
 928
 929	trace_ext4_es_lookup_extent_enter(inode, lblk);
 930	es_debug("lookup extent in block %u\n", lblk);
 931
 932	tree = &EXT4_I(inode)->i_es_tree;
 933	read_lock(&EXT4_I(inode)->i_es_lock);
 934
 935	/* find extent in cache firstly */
 936	es->es_lblk = es->es_len = es->es_pblk = 0;
 937	if (tree->cache_es) {
 938		es1 = tree->cache_es;
 939		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
 940			es_debug("%u cached by [%u/%u)\n",
 941				 lblk, es1->es_lblk, es1->es_len);
 942			found = 1;
 943			goto out;
 944		}
 945	}
 946
 947	node = tree->root.rb_node;
 948	while (node) {
 949		es1 = rb_entry(node, struct extent_status, rb_node);
 950		if (lblk < es1->es_lblk)
 951			node = node->rb_left;
 952		else if (lblk > ext4_es_end(es1))
 953			node = node->rb_right;
 954		else {
 955			found = 1;
 956			break;
 957		}
 958	}
 959
 960out:
 961	stats = &EXT4_SB(inode->i_sb)->s_es_stats;
 962	if (found) {
 963		BUG_ON(!es1);
 964		es->es_lblk = es1->es_lblk;
 965		es->es_len = es1->es_len;
 966		es->es_pblk = es1->es_pblk;
 967		if (!ext4_es_is_referenced(es1))
 968			ext4_es_set_referenced(es1);
 969		percpu_counter_inc(&stats->es_stats_cache_hits);
 970		if (next_lblk) {
 971			node = rb_next(&es1->rb_node);
 972			if (node) {
 973				es1 = rb_entry(node, struct extent_status,
 974					       rb_node);
 975				*next_lblk = es1->es_lblk;
 976			} else
 977				*next_lblk = 0;
 978		}
 979	} else {
 980		percpu_counter_inc(&stats->es_stats_cache_misses);
 981	}
 982
 983	read_unlock(&EXT4_I(inode)->i_es_lock);
 984
 985	trace_ext4_es_lookup_extent_exit(inode, es, found);
 986	return found;
 987}
 988
 989struct rsvd_count {
 990	int ndelonly;
 991	bool first_do_lblk_found;
 992	ext4_lblk_t first_do_lblk;
 993	ext4_lblk_t last_do_lblk;
 994	struct extent_status *left_es;
 995	bool partial;
 996	ext4_lblk_t lclu;
 997};
 998
 999/*
1000 * init_rsvd - initialize reserved count data before removing block range
1001 *	       in file from extent status tree
1002 *
1003 * @inode - file containing range
1004 * @lblk - first block in range
1005 * @es - pointer to first extent in range
1006 * @rc - pointer to reserved count data
1007 *
1008 * Assumes es is not NULL
1009 */
1010static void init_rsvd(struct inode *inode, ext4_lblk_t lblk,
1011		      struct extent_status *es, struct rsvd_count *rc)
1012{
1013	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1014	struct rb_node *node;
1015
1016	rc->ndelonly = 0;
1017
1018	/*
1019	 * for bigalloc, note the first delonly block in the range has not
1020	 * been found, record the extent containing the block to the left of
1021	 * the region to be removed, if any, and note that there's no partial
1022	 * cluster to track
1023	 */
1024	if (sbi->s_cluster_ratio > 1) {
1025		rc->first_do_lblk_found = false;
1026		if (lblk > es->es_lblk) {
1027			rc->left_es = es;
1028		} else {
1029			node = rb_prev(&es->rb_node);
1030			rc->left_es = node ? rb_entry(node,
1031						      struct extent_status,
1032						      rb_node) : NULL;
1033		}
1034		rc->partial = false;
1035	}
1036}
1037
1038/*
1039 * count_rsvd - count the clusters containing delayed and not unwritten
1040 *		(delonly) blocks in a range within an extent and add to
1041 *	        the running tally in rsvd_count
1042 *
1043 * @inode - file containing extent
1044 * @lblk - first block in range
1045 * @len - length of range in blocks
1046 * @es - pointer to extent containing clusters to be counted
1047 * @rc - pointer to reserved count data
1048 *
1049 * Tracks partial clusters found at the beginning and end of extents so
1050 * they aren't overcounted when they span adjacent extents
1051 */
1052static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len,
1053		       struct extent_status *es, struct rsvd_count *rc)
1054{
1055	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1056	ext4_lblk_t i, end, nclu;
1057
1058	if (!ext4_es_is_delonly(es))
1059		return;
1060
1061	WARN_ON(len <= 0);
1062
1063	if (sbi->s_cluster_ratio == 1) {
1064		rc->ndelonly += (int) len;
1065		return;
1066	}
1067
1068	/* bigalloc */
1069
1070	i = (lblk < es->es_lblk) ? es->es_lblk : lblk;
1071	end = lblk + (ext4_lblk_t) len - 1;
1072	end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end;
1073
1074	/* record the first block of the first delonly extent seen */
1075	if (!rc->first_do_lblk_found) {
1076		rc->first_do_lblk = i;
1077		rc->first_do_lblk_found = true;
1078	}
1079
1080	/* update the last lblk in the region seen so far */
1081	rc->last_do_lblk = end;
1082
1083	/*
1084	 * if we're tracking a partial cluster and the current extent
1085	 * doesn't start with it, count it and stop tracking
1086	 */
1087	if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) {
1088		rc->ndelonly++;
1089		rc->partial = false;
1090	}
1091
1092	/*
1093	 * if the first cluster doesn't start on a cluster boundary but
1094	 * ends on one, count it
1095	 */
1096	if (EXT4_LBLK_COFF(sbi, i) != 0) {
1097		if (end >= EXT4_LBLK_CFILL(sbi, i)) {
1098			rc->ndelonly++;
1099			rc->partial = false;
1100			i = EXT4_LBLK_CFILL(sbi, i) + 1;
1101		}
1102	}
1103
1104	/*
1105	 * if the current cluster starts on a cluster boundary, count the
1106	 * number of whole delonly clusters in the extent
1107	 */
1108	if ((i + sbi->s_cluster_ratio - 1) <= end) {
1109		nclu = (end - i + 1) >> sbi->s_cluster_bits;
1110		rc->ndelonly += nclu;
1111		i += nclu << sbi->s_cluster_bits;
1112	}
1113
1114	/*
1115	 * start tracking a partial cluster if there's a partial at the end
1116	 * of the current extent and we're not already tracking one
1117	 */
1118	if (!rc->partial && i <= end) {
1119		rc->partial = true;
1120		rc->lclu = EXT4_B2C(sbi, i);
1121	}
1122}
1123
1124/*
1125 * __pr_tree_search - search for a pending cluster reservation
1126 *
1127 * @root - root of pending reservation tree
1128 * @lclu - logical cluster to search for
1129 *
1130 * Returns the pending reservation for the cluster identified by @lclu
1131 * if found.  If not, returns a reservation for the next cluster if any,
1132 * and if not, returns NULL.
1133 */
1134static struct pending_reservation *__pr_tree_search(struct rb_root *root,
1135						    ext4_lblk_t lclu)
1136{
1137	struct rb_node *node = root->rb_node;
1138	struct pending_reservation *pr = NULL;
1139
1140	while (node) {
1141		pr = rb_entry(node, struct pending_reservation, rb_node);
1142		if (lclu < pr->lclu)
1143			node = node->rb_left;
1144		else if (lclu > pr->lclu)
1145			node = node->rb_right;
1146		else
1147			return pr;
1148	}
1149	if (pr && lclu < pr->lclu)
1150		return pr;
1151	if (pr && lclu > pr->lclu) {
1152		node = rb_next(&pr->rb_node);
1153		return node ? rb_entry(node, struct pending_reservation,
1154				       rb_node) : NULL;
1155	}
1156	return NULL;
1157}
1158
1159/*
1160 * get_rsvd - calculates and returns the number of cluster reservations to be
1161 *	      released when removing a block range from the extent status tree
1162 *	      and releases any pending reservations within the range
1163 *
1164 * @inode - file containing block range
1165 * @end - last block in range
1166 * @right_es - pointer to extent containing next block beyond end or NULL
1167 * @rc - pointer to reserved count data
1168 *
1169 * The number of reservations to be released is equal to the number of
1170 * clusters containing delayed and not unwritten (delonly) blocks within
1171 * the range, minus the number of clusters still containing delonly blocks
1172 * at the ends of the range, and minus the number of pending reservations
1173 * within the range.
1174 */
1175static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end,
1176			     struct extent_status *right_es,
1177			     struct rsvd_count *rc)
1178{
1179	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1180	struct pending_reservation *pr;
1181	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1182	struct rb_node *node;
1183	ext4_lblk_t first_lclu, last_lclu;
1184	bool left_delonly, right_delonly, count_pending;
1185	struct extent_status *es;
1186
1187	if (sbi->s_cluster_ratio > 1) {
1188		/* count any remaining partial cluster */
1189		if (rc->partial)
1190			rc->ndelonly++;
1191
1192		if (rc->ndelonly == 0)
1193			return 0;
1194
1195		first_lclu = EXT4_B2C(sbi, rc->first_do_lblk);
1196		last_lclu = EXT4_B2C(sbi, rc->last_do_lblk);
1197
1198		/*
1199		 * decrease the delonly count by the number of clusters at the
1200		 * ends of the range that still contain delonly blocks -
1201		 * these clusters still need to be reserved
1202		 */
1203		left_delonly = right_delonly = false;
1204
1205		es = rc->left_es;
1206		while (es && ext4_es_end(es) >=
1207		       EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) {
1208			if (ext4_es_is_delonly(es)) {
1209				rc->ndelonly--;
1210				left_delonly = true;
1211				break;
1212			}
1213			node = rb_prev(&es->rb_node);
1214			if (!node)
1215				break;
1216			es = rb_entry(node, struct extent_status, rb_node);
1217		}
1218		if (right_es && (!left_delonly || first_lclu != last_lclu)) {
1219			if (end < ext4_es_end(right_es)) {
1220				es = right_es;
1221			} else {
1222				node = rb_next(&right_es->rb_node);
1223				es = node ? rb_entry(node, struct extent_status,
1224						     rb_node) : NULL;
1225			}
1226			while (es && es->es_lblk <=
1227			       EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) {
1228				if (ext4_es_is_delonly(es)) {
1229					rc->ndelonly--;
1230					right_delonly = true;
1231					break;
1232				}
1233				node = rb_next(&es->rb_node);
1234				if (!node)
1235					break;
1236				es = rb_entry(node, struct extent_status,
1237					      rb_node);
1238			}
1239		}
1240
1241		/*
1242		 * Determine the block range that should be searched for
1243		 * pending reservations, if any.  Clusters on the ends of the
1244		 * original removed range containing delonly blocks are
1245		 * excluded.  They've already been accounted for and it's not
1246		 * possible to determine if an associated pending reservation
1247		 * should be released with the information available in the
1248		 * extents status tree.
1249		 */
1250		if (first_lclu == last_lclu) {
1251			if (left_delonly | right_delonly)
1252				count_pending = false;
1253			else
1254				count_pending = true;
1255		} else {
1256			if (left_delonly)
1257				first_lclu++;
1258			if (right_delonly)
1259				last_lclu--;
1260			if (first_lclu <= last_lclu)
1261				count_pending = true;
1262			else
1263				count_pending = false;
1264		}
1265
1266		/*
1267		 * a pending reservation found between first_lclu and last_lclu
1268		 * represents an allocated cluster that contained at least one
1269		 * delonly block, so the delonly total must be reduced by one
1270		 * for each pending reservation found and released
1271		 */
1272		if (count_pending) {
1273			pr = __pr_tree_search(&tree->root, first_lclu);
1274			while (pr && pr->lclu <= last_lclu) {
1275				rc->ndelonly--;
1276				node = rb_next(&pr->rb_node);
1277				rb_erase(&pr->rb_node, &tree->root);
1278				kmem_cache_free(ext4_pending_cachep, pr);
1279				if (!node)
1280					break;
1281				pr = rb_entry(node, struct pending_reservation,
1282					      rb_node);
1283			}
1284		}
1285	}
1286	return rc->ndelonly;
1287}
1288
1289
1290/*
1291 * __es_remove_extent - removes block range from extent status tree
1292 *
1293 * @inode - file containing range
1294 * @lblk - first block in range
1295 * @end - last block in range
1296 * @reserved - number of cluster reservations released
1297 *
1298 * If @reserved is not NULL and delayed allocation is enabled, counts
1299 * block/cluster reservations freed by removing range and if bigalloc
1300 * enabled cancels pending reservations as needed. Returns 0 on success,
1301 * error code on failure.
1302 */
1303static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1304			      ext4_lblk_t end, int *reserved)
1305{
1306	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
1307	struct rb_node *node;
1308	struct extent_status *es;
1309	struct extent_status orig_es;
1310	ext4_lblk_t len1, len2;
1311	ext4_fsblk_t block;
1312	int err;
1313	bool count_reserved = true;
1314	struct rsvd_count rc;
1315
1316	if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC))
1317		count_reserved = false;
1318retry:
1319	err = 0;
1320
1321	es = __es_tree_search(&tree->root, lblk);
1322	if (!es)
1323		goto out;
1324	if (es->es_lblk > end)
1325		goto out;
1326
1327	/* Simply invalidate cache_es. */
1328	tree->cache_es = NULL;
1329	if (count_reserved)
1330		init_rsvd(inode, lblk, es, &rc);
1331
1332	orig_es.es_lblk = es->es_lblk;
1333	orig_es.es_len = es->es_len;
1334	orig_es.es_pblk = es->es_pblk;
1335
1336	len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
1337	len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
1338	if (len1 > 0)
1339		es->es_len = len1;
1340	if (len2 > 0) {
1341		if (len1 > 0) {
1342			struct extent_status newes;
1343
1344			newes.es_lblk = end + 1;
1345			newes.es_len = len2;
1346			block = 0x7FDEADBEEFULL;
1347			if (ext4_es_is_written(&orig_es) ||
1348			    ext4_es_is_unwritten(&orig_es))
1349				block = ext4_es_pblock(&orig_es) +
1350					orig_es.es_len - len2;
1351			ext4_es_store_pblock_status(&newes, block,
1352						    ext4_es_status(&orig_es));
1353			err = __es_insert_extent(inode, &newes);
1354			if (err) {
1355				es->es_lblk = orig_es.es_lblk;
1356				es->es_len = orig_es.es_len;
1357				if ((err == -ENOMEM) &&
1358				    __es_shrink(EXT4_SB(inode->i_sb),
1359							128, EXT4_I(inode)))
1360					goto retry;
1361				goto out;
1362			}
1363		} else {
1364			es->es_lblk = end + 1;
1365			es->es_len = len2;
1366			if (ext4_es_is_written(es) ||
1367			    ext4_es_is_unwritten(es)) {
1368				block = orig_es.es_pblk + orig_es.es_len - len2;
1369				ext4_es_store_pblock(es, block);
1370			}
1371		}
1372		if (count_reserved)
1373			count_rsvd(inode, lblk, orig_es.es_len - len1 - len2,
1374				   &orig_es, &rc);
1375		goto out;
1376	}
1377
1378	if (len1 > 0) {
1379		if (count_reserved)
1380			count_rsvd(inode, lblk, orig_es.es_len - len1,
1381				   &orig_es, &rc);
1382		node = rb_next(&es->rb_node);
1383		if (node)
1384			es = rb_entry(node, struct extent_status, rb_node);
1385		else
1386			es = NULL;
1387	}
1388
1389	while (es && ext4_es_end(es) <= end) {
1390		if (count_reserved)
1391			count_rsvd(inode, es->es_lblk, es->es_len, es, &rc);
1392		node = rb_next(&es->rb_node);
1393		rb_erase(&es->rb_node, &tree->root);
1394		ext4_es_free_extent(inode, es);
1395		if (!node) {
1396			es = NULL;
1397			break;
1398		}
1399		es = rb_entry(node, struct extent_status, rb_node);
1400	}
1401
1402	if (es && es->es_lblk < end + 1) {
1403		ext4_lblk_t orig_len = es->es_len;
1404
1405		len1 = ext4_es_end(es) - end;
1406		if (count_reserved)
1407			count_rsvd(inode, es->es_lblk, orig_len - len1,
1408				   es, &rc);
1409		es->es_lblk = end + 1;
1410		es->es_len = len1;
1411		if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
1412			block = es->es_pblk + orig_len - len1;
1413			ext4_es_store_pblock(es, block);
1414		}
1415	}
1416
1417	if (count_reserved)
1418		*reserved = get_rsvd(inode, end, es, &rc);
1419out:
1420	return err;
1421}
1422
1423/*
1424 * ext4_es_remove_extent - removes block range from extent status tree
1425 *
1426 * @inode - file containing range
1427 * @lblk - first block in range
1428 * @len - number of blocks to remove
1429 *
1430 * Reduces block/cluster reservation count and for bigalloc cancels pending
1431 * reservations as needed. Returns 0 on success, error code on failure.
1432 */
1433int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1434			  ext4_lblk_t len)
1435{
1436	ext4_lblk_t end;
1437	int err = 0;
1438	int reserved = 0;
1439
1440	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
1441		return 0;
1442
1443	trace_ext4_es_remove_extent(inode, lblk, len);
1444	es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
1445		 lblk, len, inode->i_ino);
1446
1447	if (!len)
1448		return err;
1449
1450	end = lblk + len - 1;
1451	BUG_ON(end < lblk);
1452
1453	/*
1454	 * ext4_clear_inode() depends on us taking i_es_lock unconditionally
1455	 * so that we are sure __es_shrink() is done with the inode before it
1456	 * is reclaimed.
1457	 */
1458	write_lock(&EXT4_I(inode)->i_es_lock);
1459	err = __es_remove_extent(inode, lblk, end, &reserved);
1460	write_unlock(&EXT4_I(inode)->i_es_lock);
1461	ext4_es_print_tree(inode);
1462	ext4_da_release_space(inode, reserved);
1463	return err;
1464}
1465
1466static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
1467		       struct ext4_inode_info *locked_ei)
1468{
1469	struct ext4_inode_info *ei;
1470	struct ext4_es_stats *es_stats;
1471	ktime_t start_time;
1472	u64 scan_time;
1473	int nr_to_walk;
1474	int nr_shrunk = 0;
1475	int retried = 0, nr_skipped = 0;
1476
1477	es_stats = &sbi->s_es_stats;
1478	start_time = ktime_get();
1479
1480retry:
1481	spin_lock(&sbi->s_es_lock);
1482	nr_to_walk = sbi->s_es_nr_inode;
1483	while (nr_to_walk-- > 0) {
1484		if (list_empty(&sbi->s_es_list)) {
1485			spin_unlock(&sbi->s_es_lock);
1486			goto out;
1487		}
1488		ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
1489				      i_es_list);
1490		/* Move the inode to the tail */
1491		list_move_tail(&ei->i_es_list, &sbi->s_es_list);
1492
1493		/*
1494		 * Normally we try hard to avoid shrinking precached inodes,
1495		 * but we will as a last resort.
1496		 */
1497		if (!retried && ext4_test_inode_state(&ei->vfs_inode,
1498						EXT4_STATE_EXT_PRECACHED)) {
1499			nr_skipped++;
1500			continue;
1501		}
1502
1503		if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
1504			nr_skipped++;
1505			continue;
1506		}
1507		/*
1508		 * Now we hold i_es_lock which protects us from inode reclaim
1509		 * freeing inode under us
1510		 */
1511		spin_unlock(&sbi->s_es_lock);
1512
1513		nr_shrunk += es_reclaim_extents(ei, &nr_to_scan);
1514		write_unlock(&ei->i_es_lock);
1515
1516		if (nr_to_scan <= 0)
1517			goto out;
1518		spin_lock(&sbi->s_es_lock);
1519	}
1520	spin_unlock(&sbi->s_es_lock);
1521
1522	/*
1523	 * If we skipped any inodes, and we weren't able to make any
1524	 * forward progress, try again to scan precached inodes.
1525	 */
1526	if ((nr_shrunk == 0) && nr_skipped && !retried) {
1527		retried++;
1528		goto retry;
1529	}
1530
1531	if (locked_ei && nr_shrunk == 0)
1532		nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan);
1533
1534out:
1535	scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1536	if (likely(es_stats->es_stats_scan_time))
1537		es_stats->es_stats_scan_time = (scan_time +
1538				es_stats->es_stats_scan_time*3) / 4;
1539	else
1540		es_stats->es_stats_scan_time = scan_time;
1541	if (scan_time > es_stats->es_stats_max_scan_time)
1542		es_stats->es_stats_max_scan_time = scan_time;
1543	if (likely(es_stats->es_stats_shrunk))
1544		es_stats->es_stats_shrunk = (nr_shrunk +
1545				es_stats->es_stats_shrunk*3) / 4;
1546	else
1547		es_stats->es_stats_shrunk = nr_shrunk;
1548
1549	trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
1550			     nr_skipped, retried);
1551	return nr_shrunk;
1552}
1553
1554static unsigned long ext4_es_count(struct shrinker *shrink,
1555				   struct shrink_control *sc)
1556{
1557	unsigned long nr;
1558	struct ext4_sb_info *sbi;
1559
1560	sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1561	nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1562	trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1563	return nr;
1564}
1565
1566static unsigned long ext4_es_scan(struct shrinker *shrink,
1567				  struct shrink_control *sc)
1568{
1569	struct ext4_sb_info *sbi = container_of(shrink,
1570					struct ext4_sb_info, s_es_shrinker);
1571	int nr_to_scan = sc->nr_to_scan;
1572	int ret, nr_shrunk;
1573
1574	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1575	trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1576
1577	nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
1578
1579	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1580	trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1581	return nr_shrunk;
1582}
1583
1584int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v)
1585{
1586	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private);
1587	struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1588	struct ext4_inode_info *ei, *max = NULL;
1589	unsigned int inode_cnt = 0;
1590
1591	if (v != SEQ_START_TOKEN)
1592		return 0;
1593
1594	/* here we just find an inode that has the max nr. of objects */
1595	spin_lock(&sbi->s_es_lock);
1596	list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
1597		inode_cnt++;
1598		if (max && max->i_es_all_nr < ei->i_es_all_nr)
1599			max = ei;
1600		else if (!max)
1601			max = ei;
1602	}
1603	spin_unlock(&sbi->s_es_lock);
1604
1605	seq_printf(seq, "stats:\n  %lld objects\n  %lld reclaimable objects\n",
1606		   percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1607		   percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
1608	seq_printf(seq, "  %lld/%lld cache hits/misses\n",
1609		   percpu_counter_sum_positive(&es_stats->es_stats_cache_hits),
1610		   percpu_counter_sum_positive(&es_stats->es_stats_cache_misses));
1611	if (inode_cnt)
1612		seq_printf(seq, "  %d inodes on list\n", inode_cnt);
1613
1614	seq_printf(seq, "average:\n  %llu us scan time\n",
1615	    div_u64(es_stats->es_stats_scan_time, 1000));
1616	seq_printf(seq, "  %lu shrunk objects\n", es_stats->es_stats_shrunk);
1617	if (inode_cnt)
1618		seq_printf(seq,
1619		    "maximum:\n  %lu inode (%u objects, %u reclaimable)\n"
1620		    "  %llu us max scan time\n",
1621		    max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
1622		    div_u64(es_stats->es_stats_max_scan_time, 1000));
1623
1624	return 0;
1625}
1626
1627int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1628{
1629	int err;
1630
1631	/* Make sure we have enough bits for physical block number */
1632	BUILD_BUG_ON(ES_SHIFT < 48);
1633	INIT_LIST_HEAD(&sbi->s_es_list);
1634	sbi->s_es_nr_inode = 0;
1635	spin_lock_init(&sbi->s_es_lock);
1636	sbi->s_es_stats.es_stats_shrunk = 0;
1637	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0,
1638				  GFP_KERNEL);
1639	if (err)
1640		return err;
1641	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0,
1642				  GFP_KERNEL);
1643	if (err)
1644		goto err1;
1645	sbi->s_es_stats.es_stats_scan_time = 0;
1646	sbi->s_es_stats.es_stats_max_scan_time = 0;
1647	err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1648	if (err)
1649		goto err2;
1650	err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
1651	if (err)
1652		goto err3;
1653
1654	sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1655	sbi->s_es_shrinker.count_objects = ext4_es_count;
1656	sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1657	err = register_shrinker(&sbi->s_es_shrinker);
1658	if (err)
1659		goto err4;
1660
1661	return 0;
1662err4:
1663	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1664err3:
1665	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1666err2:
1667	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1668err1:
1669	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1670	return err;
1671}
1672
1673void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1674{
1675	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1676	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1677	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1678	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1679	unregister_shrinker(&sbi->s_es_shrinker);
1680}
1681
1682/*
1683 * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
1684 * most *nr_to_scan extents, update *nr_to_scan accordingly.
1685 *
1686 * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
1687 * Increment *nr_shrunk by the number of reclaimed extents. Also update
1688 * ei->i_es_shrink_lblk to where we should continue scanning.
1689 */
1690static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end,
1691				 int *nr_to_scan, int *nr_shrunk)
1692{
1693	struct inode *inode = &ei->vfs_inode;
1694	struct ext4_es_tree *tree = &ei->i_es_tree;
1695	struct extent_status *es;
1696	struct rb_node *node;
1697
1698	es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk);
1699	if (!es)
1700		goto out_wrap;
1701
1702	while (*nr_to_scan > 0) {
1703		if (es->es_lblk > end) {
1704			ei->i_es_shrink_lblk = end + 1;
1705			return 0;
1706		}
1707
1708		(*nr_to_scan)--;
1709		node = rb_next(&es->rb_node);
1710		/*
1711		 * We can't reclaim delayed extent from status tree because
1712		 * fiemap, bigallic, and seek_data/hole need to use it.
1713		 */
1714		if (ext4_es_is_delayed(es))
1715			goto next;
1716		if (ext4_es_is_referenced(es)) {
1717			ext4_es_clear_referenced(es);
1718			goto next;
1719		}
1720
1721		rb_erase(&es->rb_node, &tree->root);
1722		ext4_es_free_extent(inode, es);
1723		(*nr_shrunk)++;
1724next:
1725		if (!node)
1726			goto out_wrap;
1727		es = rb_entry(node, struct extent_status, rb_node);
1728	}
1729	ei->i_es_shrink_lblk = es->es_lblk;
1730	return 1;
1731out_wrap:
1732	ei->i_es_shrink_lblk = 0;
1733	return 0;
1734}
1735
1736static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan)
1737{
1738	struct inode *inode = &ei->vfs_inode;
1739	int nr_shrunk = 0;
1740	ext4_lblk_t start = ei->i_es_shrink_lblk;
1741	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1742				      DEFAULT_RATELIMIT_BURST);
1743
1744	if (ei->i_es_shk_nr == 0)
1745		return 0;
1746
1747	if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1748	    __ratelimit(&_rs))
1749		ext4_warning(inode->i_sb, "forced shrink of precached extents");
1750
1751	if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) &&
1752	    start != 0)
1753		es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk);
1754
1755	ei->i_es_tree.cache_es = NULL;
1756	return nr_shrunk;
1757}
1758
1759/*
1760 * Called to support EXT4_IOC_CLEAR_ES_CACHE.  We can only remove
1761 * discretionary entries from the extent status cache.  (Some entries
1762 * must be present for proper operations.)
1763 */
1764void ext4_clear_inode_es(struct inode *inode)
1765{
1766	struct ext4_inode_info *ei = EXT4_I(inode);
1767	struct extent_status *es;
1768	struct ext4_es_tree *tree;
1769	struct rb_node *node;
1770
1771	write_lock(&ei->i_es_lock);
1772	tree = &EXT4_I(inode)->i_es_tree;
1773	tree->cache_es = NULL;
1774	node = rb_first(&tree->root);
1775	while (node) {
1776		es = rb_entry(node, struct extent_status, rb_node);
1777		node = rb_next(node);
1778		if (!ext4_es_is_delayed(es)) {
1779			rb_erase(&es->rb_node, &tree->root);
1780			ext4_es_free_extent(inode, es);
1781		}
1782	}
1783	ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
1784	write_unlock(&ei->i_es_lock);
1785}
1786
1787#ifdef ES_DEBUG__
1788static void ext4_print_pending_tree(struct inode *inode)
1789{
1790	struct ext4_pending_tree *tree;
1791	struct rb_node *node;
1792	struct pending_reservation *pr;
1793
1794	printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino);
1795	tree = &EXT4_I(inode)->i_pending_tree;
1796	node = rb_first(&tree->root);
1797	while (node) {
1798		pr = rb_entry(node, struct pending_reservation, rb_node);
1799		printk(KERN_DEBUG " %u", pr->lclu);
1800		node = rb_next(node);
1801	}
1802	printk(KERN_DEBUG "\n");
1803}
1804#else
1805#define ext4_print_pending_tree(inode)
1806#endif
1807
1808int __init ext4_init_pending(void)
1809{
1810	ext4_pending_cachep = kmem_cache_create("ext4_pending_reservation",
1811					   sizeof(struct pending_reservation),
1812					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
1813	if (ext4_pending_cachep == NULL)
1814		return -ENOMEM;
1815	return 0;
1816}
1817
1818void ext4_exit_pending(void)
1819{
1820	kmem_cache_destroy(ext4_pending_cachep);
1821}
1822
1823void ext4_init_pending_tree(struct ext4_pending_tree *tree)
1824{
1825	tree->root = RB_ROOT;
1826}
1827
1828/*
1829 * __get_pending - retrieve a pointer to a pending reservation
1830 *
1831 * @inode - file containing the pending cluster reservation
1832 * @lclu - logical cluster of interest
1833 *
1834 * Returns a pointer to a pending reservation if it's a member of
1835 * the set, and NULL if not.  Must be called holding i_es_lock.
1836 */
1837static struct pending_reservation *__get_pending(struct inode *inode,
1838						 ext4_lblk_t lclu)
1839{
1840	struct ext4_pending_tree *tree;
1841	struct rb_node *node;
1842	struct pending_reservation *pr = NULL;
1843
1844	tree = &EXT4_I(inode)->i_pending_tree;
1845	node = (&tree->root)->rb_node;
1846
1847	while (node) {
1848		pr = rb_entry(node, struct pending_reservation, rb_node);
1849		if (lclu < pr->lclu)
1850			node = node->rb_left;
1851		else if (lclu > pr->lclu)
1852			node = node->rb_right;
1853		else if (lclu == pr->lclu)
1854			return pr;
1855	}
1856	return NULL;
1857}
1858
1859/*
1860 * __insert_pending - adds a pending cluster reservation to the set of
1861 *                    pending reservations
1862 *
1863 * @inode - file containing the cluster
1864 * @lblk - logical block in the cluster to be added
1865 *
1866 * Returns 0 on successful insertion and -ENOMEM on failure.  If the
1867 * pending reservation is already in the set, returns successfully.
1868 */
1869static int __insert_pending(struct inode *inode, ext4_lblk_t lblk)
1870{
1871	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1872	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1873	struct rb_node **p = &tree->root.rb_node;
1874	struct rb_node *parent = NULL;
1875	struct pending_reservation *pr;
1876	ext4_lblk_t lclu;
1877	int ret = 0;
1878
1879	lclu = EXT4_B2C(sbi, lblk);
1880	/* search to find parent for insertion */
1881	while (*p) {
1882		parent = *p;
1883		pr = rb_entry(parent, struct pending_reservation, rb_node);
1884
1885		if (lclu < pr->lclu) {
1886			p = &(*p)->rb_left;
1887		} else if (lclu > pr->lclu) {
1888			p = &(*p)->rb_right;
1889		} else {
1890			/* pending reservation already inserted */
1891			goto out;
1892		}
1893	}
1894
1895	pr = kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC);
1896	if (pr == NULL) {
1897		ret = -ENOMEM;
1898		goto out;
1899	}
1900	pr->lclu = lclu;
1901
1902	rb_link_node(&pr->rb_node, parent, p);
1903	rb_insert_color(&pr->rb_node, &tree->root);
1904
1905out:
1906	return ret;
1907}
1908
1909/*
1910 * __remove_pending - removes a pending cluster reservation from the set
1911 *                    of pending reservations
1912 *
1913 * @inode - file containing the cluster
1914 * @lblk - logical block in the pending cluster reservation to be removed
1915 *
1916 * Returns successfully if pending reservation is not a member of the set.
1917 */
1918static void __remove_pending(struct inode *inode, ext4_lblk_t lblk)
1919{
1920	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1921	struct pending_reservation *pr;
1922	struct ext4_pending_tree *tree;
1923
1924	pr = __get_pending(inode, EXT4_B2C(sbi, lblk));
1925	if (pr != NULL) {
1926		tree = &EXT4_I(inode)->i_pending_tree;
1927		rb_erase(&pr->rb_node, &tree->root);
1928		kmem_cache_free(ext4_pending_cachep, pr);
1929	}
1930}
1931
1932/*
1933 * ext4_remove_pending - removes a pending cluster reservation from the set
1934 *                       of pending reservations
1935 *
1936 * @inode - file containing the cluster
1937 * @lblk - logical block in the pending cluster reservation to be removed
1938 *
1939 * Locking for external use of __remove_pending.
1940 */
1941void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk)
1942{
1943	struct ext4_inode_info *ei = EXT4_I(inode);
1944
1945	write_lock(&ei->i_es_lock);
1946	__remove_pending(inode, lblk);
1947	write_unlock(&ei->i_es_lock);
1948}
1949
1950/*
1951 * ext4_is_pending - determine whether a cluster has a pending reservation
1952 *                   on it
1953 *
1954 * @inode - file containing the cluster
1955 * @lblk - logical block in the cluster
1956 *
1957 * Returns true if there's a pending reservation for the cluster in the
1958 * set of pending reservations, and false if not.
1959 */
1960bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk)
1961{
1962	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1963	struct ext4_inode_info *ei = EXT4_I(inode);
1964	bool ret;
1965
1966	read_lock(&ei->i_es_lock);
1967	ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL);
1968	read_unlock(&ei->i_es_lock);
1969
1970	return ret;
1971}
1972
1973/*
1974 * ext4_es_insert_delayed_block - adds a delayed block to the extents status
1975 *                                tree, adding a pending reservation where
1976 *                                needed
1977 *
1978 * @inode - file containing the newly added block
1979 * @lblk - logical block to be added
1980 * @allocated - indicates whether a physical cluster has been allocated for
1981 *              the logical cluster that contains the block
1982 *
1983 * Returns 0 on success, negative error code on failure.
1984 */
1985int ext4_es_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk,
1986				 bool allocated)
1987{
1988	struct extent_status newes;
1989	int err = 0;
1990
1991	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
1992		return 0;
1993
1994	es_debug("add [%u/1) delayed to extent status tree of inode %lu\n",
1995		 lblk, inode->i_ino);
1996
1997	newes.es_lblk = lblk;
1998	newes.es_len = 1;
1999	ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED);
2000	trace_ext4_es_insert_delayed_block(inode, &newes, allocated);
2001
2002	ext4_es_insert_extent_check(inode, &newes);
2003
2004	write_lock(&EXT4_I(inode)->i_es_lock);
2005
2006	err = __es_remove_extent(inode, lblk, lblk, NULL);
2007	if (err != 0)
2008		goto error;
2009retry:
2010	err = __es_insert_extent(inode, &newes);
2011	if (err == -ENOMEM && __es_shrink(EXT4_SB(inode->i_sb),
2012					  128, EXT4_I(inode)))
2013		goto retry;
2014	if (err != 0)
2015		goto error;
2016
2017	if (allocated)
2018		__insert_pending(inode, lblk);
2019
2020error:
2021	write_unlock(&EXT4_I(inode)->i_es_lock);
2022
2023	ext4_es_print_tree(inode);
2024	ext4_print_pending_tree(inode);
2025
2026	return err;
2027}
2028
2029/*
2030 * __es_delayed_clu - count number of clusters containing blocks that
2031 *                    are delayed only
2032 *
2033 * @inode - file containing block range
2034 * @start - logical block defining start of range
2035 * @end - logical block defining end of range
2036 *
2037 * Returns the number of clusters containing only delayed (not delayed
2038 * and unwritten) blocks in the range specified by @start and @end.  Any
2039 * cluster or part of a cluster within the range and containing a delayed
2040 * and not unwritten block within the range is counted as a whole cluster.
2041 */
2042static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start,
2043				     ext4_lblk_t end)
2044{
2045	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
2046	struct extent_status *es;
2047	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2048	struct rb_node *node;
2049	ext4_lblk_t first_lclu, last_lclu;
2050	unsigned long long last_counted_lclu;
2051	unsigned int n = 0;
2052
2053	/* guaranteed to be unequal to any ext4_lblk_t value */
2054	last_counted_lclu = ~0ULL;
2055
2056	es = __es_tree_search(&tree->root, start);
2057
2058	while (es && (es->es_lblk <= end)) {
2059		if (ext4_es_is_delonly(es)) {
2060			if (es->es_lblk <= start)
2061				first_lclu = EXT4_B2C(sbi, start);
2062			else
2063				first_lclu = EXT4_B2C(sbi, es->es_lblk);
2064
2065			if (ext4_es_end(es) >= end)
2066				last_lclu = EXT4_B2C(sbi, end);
2067			else
2068				last_lclu = EXT4_B2C(sbi, ext4_es_end(es));
2069
2070			if (first_lclu == last_counted_lclu)
2071				n += last_lclu - first_lclu;
2072			else
2073				n += last_lclu - first_lclu + 1;
2074			last_counted_lclu = last_lclu;
2075		}
2076		node = rb_next(&es->rb_node);
2077		if (!node)
2078			break;
2079		es = rb_entry(node, struct extent_status, rb_node);
2080	}
2081
2082	return n;
2083}
2084
2085/*
2086 * ext4_es_delayed_clu - count number of clusters containing blocks that
2087 *                       are both delayed and unwritten
2088 *
2089 * @inode - file containing block range
2090 * @lblk - logical block defining start of range
2091 * @len - number of blocks in range
2092 *
2093 * Locking for external use of __es_delayed_clu().
2094 */
2095unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk,
2096				 ext4_lblk_t len)
2097{
2098	struct ext4_inode_info *ei = EXT4_I(inode);
2099	ext4_lblk_t end;
2100	unsigned int n;
2101
2102	if (len == 0)
2103		return 0;
2104
2105	end = lblk + len - 1;
2106	WARN_ON(end < lblk);
2107
2108	read_lock(&ei->i_es_lock);
2109
2110	n = __es_delayed_clu(inode, lblk, end);
2111
2112	read_unlock(&ei->i_es_lock);
2113
2114	return n;
2115}
2116
2117/*
2118 * __revise_pending - makes, cancels, or leaves unchanged pending cluster
2119 *                    reservations for a specified block range depending
2120 *                    upon the presence or absence of delayed blocks
2121 *                    outside the range within clusters at the ends of the
2122 *                    range
2123 *
2124 * @inode - file containing the range
2125 * @lblk - logical block defining the start of range
2126 * @len  - length of range in blocks
2127 *
2128 * Used after a newly allocated extent is added to the extents status tree.
2129 * Requires that the extents in the range have either written or unwritten
2130 * status.  Must be called while holding i_es_lock.
2131 */
2132static void __revise_pending(struct inode *inode, ext4_lblk_t lblk,
2133			     ext4_lblk_t len)
2134{
2135	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2136	ext4_lblk_t end = lblk + len - 1;
2137	ext4_lblk_t first, last;
2138	bool f_del = false, l_del = false;
2139
2140	if (len == 0)
2141		return;
2142
2143	/*
2144	 * Two cases - block range within single cluster and block range
2145	 * spanning two or more clusters.  Note that a cluster belonging
2146	 * to a range starting and/or ending on a cluster boundary is treated
2147	 * as if it does not contain a delayed extent.  The new range may
2148	 * have allocated space for previously delayed blocks out to the
2149	 * cluster boundary, requiring that any pre-existing pending
2150	 * reservation be canceled.  Because this code only looks at blocks
2151	 * outside the range, it should revise pending reservations
2152	 * correctly even if the extent represented by the range can't be
2153	 * inserted in the extents status tree due to ENOSPC.
2154	 */
2155
2156	if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) {
2157		first = EXT4_LBLK_CMASK(sbi, lblk);
2158		if (first != lblk)
2159			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2160						first, lblk - 1);
2161		if (f_del) {
2162			__insert_pending(inode, first);
2163		} else {
2164			last = EXT4_LBLK_CMASK(sbi, end) +
2165			       sbi->s_cluster_ratio - 1;
2166			if (last != end)
2167				l_del = __es_scan_range(inode,
2168							&ext4_es_is_delonly,
2169							end + 1, last);
2170			if (l_del)
2171				__insert_pending(inode, last);
2172			else
2173				__remove_pending(inode, last);
2174		}
2175	} else {
2176		first = EXT4_LBLK_CMASK(sbi, lblk);
2177		if (first != lblk)
2178			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2179						first, lblk - 1);
2180		if (f_del)
2181			__insert_pending(inode, first);
2182		else
2183			__remove_pending(inode, first);
2184
2185		last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1;
2186		if (last != end)
2187			l_del = __es_scan_range(inode, &ext4_es_is_delonly,
2188						end + 1, last);
2189		if (l_del)
2190			__insert_pending(inode, last);
2191		else
2192			__remove_pending(inode, last);
2193	}
2194}