Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v3.5.6
 
  1/*
  2 * Copyright (C) 2008 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 
 18#include <linux/sched.h>
 19#include <linux/pagemap.h>
 20#include <linux/spinlock.h>
 21#include <linux/page-flags.h>
 22#include <asm/bug.h>
 
 23#include "ctree.h"
 24#include "extent_io.h"
 25#include "locking.h"
 26
 27void btrfs_assert_tree_read_locked(struct extent_buffer *eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 28
 29/*
 30 * if we currently have a spinning reader or writer lock
 31 * (indicated by the rw flag) this will bump the count
 32 * of blocking holders and drop the spinlock.
 
 
 
 33 */
 34void btrfs_set_lock_blocking_rw(struct extent_buffer *eb, int rw)
 35{
 36	if (eb->lock_nested) {
 37		read_lock(&eb->lock);
 38		if (eb->lock_nested && current->pid == eb->lock_owner) {
 39			read_unlock(&eb->lock);
 40			return;
 41		}
 42		read_unlock(&eb->lock);
 43	}
 44	if (rw == BTRFS_WRITE_LOCK) {
 45		if (atomic_read(&eb->blocking_writers) == 0) {
 46			WARN_ON(atomic_read(&eb->spinning_writers) != 1);
 47			atomic_dec(&eb->spinning_writers);
 48			btrfs_assert_tree_locked(eb);
 49			atomic_inc(&eb->blocking_writers);
 50			write_unlock(&eb->lock);
 51		}
 52	} else if (rw == BTRFS_READ_LOCK) {
 53		btrfs_assert_tree_read_locked(eb);
 54		atomic_inc(&eb->blocking_readers);
 55		WARN_ON(atomic_read(&eb->spinning_readers) == 0);
 56		atomic_dec(&eb->spinning_readers);
 57		read_unlock(&eb->lock);
 58	}
 59	return;
 60}
 61
 62/*
 63 * if we currently have a blocking lock, take the spinlock
 64 * and drop our blocking count
 
 65 */
 66void btrfs_clear_lock_blocking_rw(struct extent_buffer *eb, int rw)
 67{
 68	if (eb->lock_nested) {
 69		read_lock(&eb->lock);
 70		if (&eb->lock_nested && current->pid == eb->lock_owner) {
 71			read_unlock(&eb->lock);
 72			return;
 73		}
 74		read_unlock(&eb->lock);
 75	}
 76	if (rw == BTRFS_WRITE_LOCK_BLOCKING) {
 77		BUG_ON(atomic_read(&eb->blocking_writers) != 1);
 78		write_lock(&eb->lock);
 79		WARN_ON(atomic_read(&eb->spinning_writers));
 80		atomic_inc(&eb->spinning_writers);
 81		if (atomic_dec_and_test(&eb->blocking_writers))
 82			wake_up(&eb->write_lock_wq);
 83	} else if (rw == BTRFS_READ_LOCK_BLOCKING) {
 84		BUG_ON(atomic_read(&eb->blocking_readers) == 0);
 85		read_lock(&eb->lock);
 86		atomic_inc(&eb->spinning_readers);
 87		if (atomic_dec_and_test(&eb->blocking_readers))
 88			wake_up(&eb->read_lock_wq);
 89	}
 90	return;
 91}
 92
 93/*
 94 * take a spinning read lock.  This will wait for any blocking
 95 * writers
 
 96 */
 97void btrfs_tree_read_lock(struct extent_buffer *eb)
 98{
 99again:
100	read_lock(&eb->lock);
101	if (atomic_read(&eb->blocking_writers) &&
102	    current->pid == eb->lock_owner) {
103		/*
104		 * This extent is already write-locked by our thread. We allow
105		 * an additional read lock to be added because it's for the same
106		 * thread. btrfs_find_all_roots() depends on this as it may be
107		 * called on a partly (write-)locked tree.
108		 */
109		BUG_ON(eb->lock_nested);
110		eb->lock_nested = 1;
111		read_unlock(&eb->lock);
112		return;
113	}
114	read_unlock(&eb->lock);
115	wait_event(eb->write_lock_wq, atomic_read(&eb->blocking_writers) == 0);
116	read_lock(&eb->lock);
117	if (atomic_read(&eb->blocking_writers)) {
118		read_unlock(&eb->lock);
119		goto again;
120	}
121	atomic_inc(&eb->read_locks);
122	atomic_inc(&eb->spinning_readers);
123}
124
125/*
126 * returns 1 if we get the read lock and 0 if we don't
127 * this won't wait for blocking writers
128 */
129int btrfs_try_tree_read_lock(struct extent_buffer *eb)
130{
131	if (atomic_read(&eb->blocking_writers))
132		return 0;
133
134	read_lock(&eb->lock);
135	if (atomic_read(&eb->blocking_writers)) {
136		read_unlock(&eb->lock);
137		return 0;
138	}
139	atomic_inc(&eb->read_locks);
140	atomic_inc(&eb->spinning_readers);
141	return 1;
142}
143
144/*
145 * returns 1 if we get the read lock and 0 if we don't
146 * this won't wait for blocking writers or readers
 
 
 
147 */
148int btrfs_try_tree_write_lock(struct extent_buffer *eb)
 
149{
150	if (atomic_read(&eb->blocking_writers) ||
151	    atomic_read(&eb->blocking_readers))
152		return 0;
153	write_lock(&eb->lock);
154	if (atomic_read(&eb->blocking_writers) ||
155	    atomic_read(&eb->blocking_readers)) {
156		write_unlock(&eb->lock);
157		return 0;
158	}
159	atomic_inc(&eb->write_locks);
160	atomic_inc(&eb->spinning_writers);
161	eb->lock_owner = current->pid;
162	return 1;
 
 
 
 
 
163}
164
165/*
166 * drop a spinning read lock
167 */
168void btrfs_tree_read_unlock(struct extent_buffer *eb)
169{
170	if (eb->lock_nested) {
171		read_lock(&eb->lock);
172		if (eb->lock_nested && current->pid == eb->lock_owner) {
173			eb->lock_nested = 0;
174			read_unlock(&eb->lock);
175			return;
176		}
177		read_unlock(&eb->lock);
178	}
179	btrfs_assert_tree_read_locked(eb);
180	WARN_ON(atomic_read(&eb->spinning_readers) == 0);
181	atomic_dec(&eb->spinning_readers);
182	atomic_dec(&eb->read_locks);
183	read_unlock(&eb->lock);
184}
185
186/*
187 * drop a blocking read lock
 
 
 
 
 
 
188 */
189void btrfs_tree_read_unlock_blocking(struct extent_buffer *eb)
190{
191	if (eb->lock_nested) {
192		read_lock(&eb->lock);
193		if (eb->lock_nested && current->pid == eb->lock_owner) {
194			eb->lock_nested = 0;
195			read_unlock(&eb->lock);
196			return;
197		}
198		read_unlock(&eb->lock);
 
 
 
 
199	}
200	btrfs_assert_tree_read_locked(eb);
201	WARN_ON(atomic_read(&eb->blocking_readers) == 0);
202	if (atomic_dec_and_test(&eb->blocking_readers))
203		wake_up(&eb->read_lock_wq);
204	atomic_dec(&eb->read_locks);
205}
206
207/*
208 * take a spinning write lock.  This will wait for both
209 * blocking readers or writers
 
 
210 */
211void btrfs_tree_lock(struct extent_buffer *eb)
212{
213again:
214	wait_event(eb->read_lock_wq, atomic_read(&eb->blocking_readers) == 0);
215	wait_event(eb->write_lock_wq, atomic_read(&eb->blocking_writers) == 0);
216	write_lock(&eb->lock);
217	if (atomic_read(&eb->blocking_readers)) {
218		write_unlock(&eb->lock);
219		wait_event(eb->read_lock_wq,
220			   atomic_read(&eb->blocking_readers) == 0);
221		goto again;
222	}
223	if (atomic_read(&eb->blocking_writers)) {
224		write_unlock(&eb->lock);
225		wait_event(eb->write_lock_wq,
226			   atomic_read(&eb->blocking_writers) == 0);
227		goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
228	}
229	WARN_ON(atomic_read(&eb->spinning_writers));
230	atomic_inc(&eb->spinning_writers);
231	atomic_inc(&eb->write_locks);
232	eb->lock_owner = current->pid;
233}
234
235/*
236 * drop a spinning or a blocking write lock.
 
 
 
 
 
 
 
 
 
 
237 */
238void btrfs_tree_unlock(struct extent_buffer *eb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
239{
240	int blockers = atomic_read(&eb->blocking_writers);
 
241
242	BUG_ON(blockers > 1);
243
244	btrfs_assert_tree_locked(eb);
245	atomic_dec(&eb->write_locks);
 
 
 
 
 
 
 
246
247	if (blockers) {
248		WARN_ON(atomic_read(&eb->spinning_writers));
249		atomic_dec(&eb->blocking_writers);
250		smp_wmb();
251		wake_up(&eb->write_lock_wq);
252	} else {
253		WARN_ON(atomic_read(&eb->spinning_writers) != 1);
254		atomic_dec(&eb->spinning_writers);
255		write_unlock(&eb->lock);
256	}
257}
258
259void btrfs_assert_tree_locked(struct extent_buffer *eb)
260{
261	BUG_ON(!atomic_read(&eb->write_locks));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
262}
263
264void btrfs_assert_tree_read_locked(struct extent_buffer *eb)
265{
266	BUG_ON(!atomic_read(&eb->read_locks));
 
 
 
 
 
267}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2008 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#include <linux/sched.h>
  7#include <linux/pagemap.h>
  8#include <linux/spinlock.h>
  9#include <linux/page-flags.h>
 10#include <asm/bug.h>
 11#include "misc.h"
 12#include "ctree.h"
 13#include "extent_io.h"
 14#include "locking.h"
 15
 16/*
 17 * Extent buffer locking
 18 * =====================
 19 *
 20 * We use a rw_semaphore for tree locking, and the semantics are exactly the
 21 * same:
 22 *
 23 * - reader/writer exclusion
 24 * - writer/writer exclusion
 25 * - reader/reader sharing
 26 * - try-lock semantics for readers and writers
 27 *
 28 * The rwsem implementation does opportunistic spinning which reduces number of
 29 * times the locking task needs to sleep.
 30 */
 31
 32/*
 33 * __btrfs_tree_read_lock - lock extent buffer for read
 34 * @eb:		the eb to be locked
 35 * @nest:	the nesting level to be used for lockdep
 36 *
 37 * This takes the read lock on the extent buffer, using the specified nesting
 38 * level for lockdep purposes.
 39 */
 40void __btrfs_tree_read_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
 41{
 42	u64 start_ns = 0;
 43
 44	if (trace_btrfs_tree_read_lock_enabled())
 45		start_ns = ktime_get_ns();
 46
 47	down_read_nested(&eb->lock, nest);
 48	eb->lock_owner = current->pid;
 49	trace_btrfs_tree_read_lock(eb, start_ns);
 50}
 51
 52void btrfs_tree_read_lock(struct extent_buffer *eb)
 53{
 54	__btrfs_tree_read_lock(eb, BTRFS_NESTING_NORMAL);
 
 
 
 
 
 
 
 
 
 
 
 55}
 56
 57/*
 58 * Try-lock for read.
 59 *
 60 * Return 1 if the rwlock has been taken, 0 otherwise
 61 */
 62int btrfs_try_tree_read_lock(struct extent_buffer *eb)
 63{
 64	if (down_read_trylock(&eb->lock)) {
 65		eb->lock_owner = current->pid;
 66		trace_btrfs_try_tree_read_lock(eb);
 67		return 1;
 
 
 
 68	}
 69	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 70}
 71
 72/*
 73 * Try-lock for write.
 74 *
 75 * Return 1 if the rwlock has been taken, 0 otherwise
 76 */
 77int btrfs_try_tree_write_lock(struct extent_buffer *eb)
 78{
 79	if (down_write_trylock(&eb->lock)) {
 80		eb->lock_owner = current->pid;
 81		trace_btrfs_try_tree_write_lock(eb);
 82		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 83	}
 84	return 0;
 
 85}
 86
 87/*
 88 * Release read lock.
 
 89 */
 90void btrfs_tree_read_unlock(struct extent_buffer *eb)
 91{
 92	trace_btrfs_tree_read_unlock(eb);
 93	eb->lock_owner = 0;
 94	up_read(&eb->lock);
 
 
 
 
 
 
 
 
 95}
 96
 97/*
 98 * __btrfs_tree_lock - lock eb for write
 99 * @eb:		the eb to lock
100 * @nest:	the nesting to use for the lock
101 *
102 * Returns with the eb->lock write locked.
103 */
104void __btrfs_tree_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
105	__acquires(&eb->lock)
106{
107	u64 start_ns = 0;
108
109	if (trace_btrfs_tree_lock_enabled())
110		start_ns = ktime_get_ns();
111
112	down_write_nested(&eb->lock, nest);
 
 
 
 
 
113	eb->lock_owner = current->pid;
114	trace_btrfs_tree_lock(eb, start_ns);
115}
116
117void btrfs_tree_lock(struct extent_buffer *eb)
118{
119	__btrfs_tree_lock(eb, BTRFS_NESTING_NORMAL);
120}
121
122/*
123 * Release the write lock.
124 */
125void btrfs_tree_unlock(struct extent_buffer *eb)
126{
127	trace_btrfs_tree_unlock(eb);
128	eb->lock_owner = 0;
129	up_write(&eb->lock);
 
 
 
 
 
 
 
 
 
 
 
130}
131
132/*
133 * This releases any locks held in the path starting at level and going all the
134 * way up to the root.
135 *
136 * btrfs_search_slot will keep the lock held on higher nodes in a few corner
137 * cases, such as COW of the block at slot zero in the node.  This ignores
138 * those rules, and it should only be called when there are no more updates to
139 * be done higher up in the tree.
140 */
141void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
142{
143	int i;
144
145	if (path->keep_locks)
146		return;
147
148	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
149		if (!path->nodes[i])
150			continue;
151		if (!path->locks[i])
152			continue;
153		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
154		path->locks[i] = 0;
155	}
 
 
 
 
 
156}
157
158/*
159 * Loop around taking references on and locking the root node of the tree until
160 * we end up with a lock on the root node.
161 *
162 * Return: root extent buffer with write lock held
163 */
164struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
165{
166	struct extent_buffer *eb;
167
168	while (1) {
169		eb = btrfs_root_node(root);
170		btrfs_tree_lock(eb);
171		if (eb == root->node)
172			break;
173		btrfs_tree_unlock(eb);
174		free_extent_buffer(eb);
175	}
176	return eb;
177}
178
179/*
180 * Loop around taking references on and locking the root node of the tree until
181 * we end up with a lock on the root node.
182 *
183 * Return: root extent buffer with read lock held
184 */
185struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
186{
187	struct extent_buffer *eb;
188
189	while (1) {
190		eb = btrfs_root_node(root);
191		btrfs_tree_read_lock(eb);
192		if (eb == root->node)
193			break;
194		btrfs_tree_read_unlock(eb);
195		free_extent_buffer(eb);
196	}
197	return eb;
 
 
 
198}
199
200/*
201 * DREW locks
202 * ==========
203 *
204 * DREW stands for double-reader-writer-exclusion lock. It's used in situation
205 * where you want to provide A-B exclusion but not AA or BB.
206 *
207 * Currently implementation gives more priority to reader. If a reader and a
208 * writer both race to acquire their respective sides of the lock the writer
209 * would yield its lock as soon as it detects a concurrent reader. Additionally
210 * if there are pending readers no new writers would be allowed to come in and
211 * acquire the lock.
212 */
213
214int btrfs_drew_lock_init(struct btrfs_drew_lock *lock)
215{
216	int ret;
217
218	ret = percpu_counter_init(&lock->writers, 0, GFP_KERNEL);
219	if (ret)
220		return ret;
221
222	atomic_set(&lock->readers, 0);
223	init_waitqueue_head(&lock->pending_readers);
224	init_waitqueue_head(&lock->pending_writers);
225
226	return 0;
227}
228
229void btrfs_drew_lock_destroy(struct btrfs_drew_lock *lock)
230{
231	percpu_counter_destroy(&lock->writers);
232}
233
234/* Return true if acquisition is successful, false otherwise */
235bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock)
236{
237	if (atomic_read(&lock->readers))
238		return false;
239
240	percpu_counter_inc(&lock->writers);
241
242	/* Ensure writers count is updated before we check for pending readers */
243	smp_mb();
244	if (atomic_read(&lock->readers)) {
245		btrfs_drew_write_unlock(lock);
246		return false;
247	}
248
249	return true;
250}
251
252void btrfs_drew_write_lock(struct btrfs_drew_lock *lock)
253{
254	while (true) {
255		if (btrfs_drew_try_write_lock(lock))
256			return;
257		wait_event(lock->pending_writers, !atomic_read(&lock->readers));
 
 
 
258	}
259}
260
261void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock)
262{
263	percpu_counter_dec(&lock->writers);
264	cond_wake_up(&lock->pending_readers);
265}
266
267void btrfs_drew_read_lock(struct btrfs_drew_lock *lock)
268{
269	atomic_inc(&lock->readers);
270
271	/*
272	 * Ensure the pending reader count is perceieved BEFORE this reader
273	 * goes to sleep in case of active writers. This guarantees new writers
274	 * won't be allowed and that the current reader will be woken up when
275	 * the last active writer finishes its jobs.
276	 */
277	smp_mb__after_atomic();
278
279	wait_event(lock->pending_readers,
280		   percpu_counter_sum(&lock->writers) == 0);
281}
282
283void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock)
284{
285	/*
286	 * atomic_dec_and_test implies a full barrier, so woken up writers
287	 * are guaranteed to see the decrement
288	 */
289	if (atomic_dec_and_test(&lock->readers))
290		wake_up(&lock->pending_writers);
291}