Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v3.5.6
 
   1/*
   2 * Driver for Atmel AT32 and AT91 SPI Controllers
   3 *
   4 * Copyright (C) 2006 Atmel Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/init.h>
  13#include <linux/clk.h>
  14#include <linux/module.h>
  15#include <linux/platform_device.h>
  16#include <linux/delay.h>
  17#include <linux/dma-mapping.h>
 
  18#include <linux/err.h>
  19#include <linux/interrupt.h>
  20#include <linux/spi/spi.h>
  21#include <linux/slab.h>
 
  22
  23#include <asm/io.h>
  24#include <mach/board.h>
  25#include <asm/gpio.h>
  26#include <mach/cpu.h>
 
  27
  28/* SPI register offsets */
  29#define SPI_CR					0x0000
  30#define SPI_MR					0x0004
  31#define SPI_RDR					0x0008
  32#define SPI_TDR					0x000c
  33#define SPI_SR					0x0010
  34#define SPI_IER					0x0014
  35#define SPI_IDR					0x0018
  36#define SPI_IMR					0x001c
  37#define SPI_CSR0				0x0030
  38#define SPI_CSR1				0x0034
  39#define SPI_CSR2				0x0038
  40#define SPI_CSR3				0x003c
 
 
 
  41#define SPI_RPR					0x0100
  42#define SPI_RCR					0x0104
  43#define SPI_TPR					0x0108
  44#define SPI_TCR					0x010c
  45#define SPI_RNPR				0x0110
  46#define SPI_RNCR				0x0114
  47#define SPI_TNPR				0x0118
  48#define SPI_TNCR				0x011c
  49#define SPI_PTCR				0x0120
  50#define SPI_PTSR				0x0124
  51
  52/* Bitfields in CR */
  53#define SPI_SPIEN_OFFSET			0
  54#define SPI_SPIEN_SIZE				1
  55#define SPI_SPIDIS_OFFSET			1
  56#define SPI_SPIDIS_SIZE				1
  57#define SPI_SWRST_OFFSET			7
  58#define SPI_SWRST_SIZE				1
  59#define SPI_LASTXFER_OFFSET			24
  60#define SPI_LASTXFER_SIZE			1
 
 
 
 
 
 
 
 
  61
  62/* Bitfields in MR */
  63#define SPI_MSTR_OFFSET				0
  64#define SPI_MSTR_SIZE				1
  65#define SPI_PS_OFFSET				1
  66#define SPI_PS_SIZE				1
  67#define SPI_PCSDEC_OFFSET			2
  68#define SPI_PCSDEC_SIZE				1
  69#define SPI_FDIV_OFFSET				3
  70#define SPI_FDIV_SIZE				1
  71#define SPI_MODFDIS_OFFSET			4
  72#define SPI_MODFDIS_SIZE			1
 
 
  73#define SPI_LLB_OFFSET				7
  74#define SPI_LLB_SIZE				1
  75#define SPI_PCS_OFFSET				16
  76#define SPI_PCS_SIZE				4
  77#define SPI_DLYBCS_OFFSET			24
  78#define SPI_DLYBCS_SIZE				8
  79
  80/* Bitfields in RDR */
  81#define SPI_RD_OFFSET				0
  82#define SPI_RD_SIZE				16
  83
  84/* Bitfields in TDR */
  85#define SPI_TD_OFFSET				0
  86#define SPI_TD_SIZE				16
  87
  88/* Bitfields in SR */
  89#define SPI_RDRF_OFFSET				0
  90#define SPI_RDRF_SIZE				1
  91#define SPI_TDRE_OFFSET				1
  92#define SPI_TDRE_SIZE				1
  93#define SPI_MODF_OFFSET				2
  94#define SPI_MODF_SIZE				1
  95#define SPI_OVRES_OFFSET			3
  96#define SPI_OVRES_SIZE				1
  97#define SPI_ENDRX_OFFSET			4
  98#define SPI_ENDRX_SIZE				1
  99#define SPI_ENDTX_OFFSET			5
 100#define SPI_ENDTX_SIZE				1
 101#define SPI_RXBUFF_OFFSET			6
 102#define SPI_RXBUFF_SIZE				1
 103#define SPI_TXBUFE_OFFSET			7
 104#define SPI_TXBUFE_SIZE				1
 105#define SPI_NSSR_OFFSET				8
 106#define SPI_NSSR_SIZE				1
 107#define SPI_TXEMPTY_OFFSET			9
 108#define SPI_TXEMPTY_SIZE			1
 109#define SPI_SPIENS_OFFSET			16
 110#define SPI_SPIENS_SIZE				1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111
 112/* Bitfields in CSR0 */
 113#define SPI_CPOL_OFFSET				0
 114#define SPI_CPOL_SIZE				1
 115#define SPI_NCPHA_OFFSET			1
 116#define SPI_NCPHA_SIZE				1
 117#define SPI_CSAAT_OFFSET			3
 118#define SPI_CSAAT_SIZE				1
 119#define SPI_BITS_OFFSET				4
 120#define SPI_BITS_SIZE				4
 121#define SPI_SCBR_OFFSET				8
 122#define SPI_SCBR_SIZE				8
 123#define SPI_DLYBS_OFFSET			16
 124#define SPI_DLYBS_SIZE				8
 125#define SPI_DLYBCT_OFFSET			24
 126#define SPI_DLYBCT_SIZE				8
 127
 128/* Bitfields in RCR */
 129#define SPI_RXCTR_OFFSET			0
 130#define SPI_RXCTR_SIZE				16
 131
 132/* Bitfields in TCR */
 133#define SPI_TXCTR_OFFSET			0
 134#define SPI_TXCTR_SIZE				16
 135
 136/* Bitfields in RNCR */
 137#define SPI_RXNCR_OFFSET			0
 138#define SPI_RXNCR_SIZE				16
 139
 140/* Bitfields in TNCR */
 141#define SPI_TXNCR_OFFSET			0
 142#define SPI_TXNCR_SIZE				16
 143
 144/* Bitfields in PTCR */
 145#define SPI_RXTEN_OFFSET			0
 146#define SPI_RXTEN_SIZE				1
 147#define SPI_RXTDIS_OFFSET			1
 148#define SPI_RXTDIS_SIZE				1
 149#define SPI_TXTEN_OFFSET			8
 150#define SPI_TXTEN_SIZE				1
 151#define SPI_TXTDIS_OFFSET			9
 152#define SPI_TXTDIS_SIZE				1
 153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154/* Constants for BITS */
 155#define SPI_BITS_8_BPT				0
 156#define SPI_BITS_9_BPT				1
 157#define SPI_BITS_10_BPT				2
 158#define SPI_BITS_11_BPT				3
 159#define SPI_BITS_12_BPT				4
 160#define SPI_BITS_13_BPT				5
 161#define SPI_BITS_14_BPT				6
 162#define SPI_BITS_15_BPT				7
 163#define SPI_BITS_16_BPT				8
 
 
 
 164
 165/* Bit manipulation macros */
 166#define SPI_BIT(name) \
 167	(1 << SPI_##name##_OFFSET)
 168#define SPI_BF(name,value) \
 169	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 170#define SPI_BFEXT(name,value) \
 171	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 172#define SPI_BFINS(name,value,old) \
 173	( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 174	  | SPI_BF(name,value))
 175
 176/* Register access macros */
 177#define spi_readl(port,reg) \
 178	__raw_readl((port)->regs + SPI_##reg)
 179#define spi_writel(port,reg,value) \
 180	__raw_writel((value), (port)->regs + SPI_##reg)
 
 
 
 
 
 
 
 181
 
 
 
 
 
 
 
 
 
 
 182
 183/*
 184 * The core SPI transfer engine just talks to a register bank to set up
 185 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 186 * framework provides the base clock, subdivided for each spi_device.
 187 */
 188struct atmel_spi {
 189	spinlock_t		lock;
 
 190
 
 191	void __iomem		*regs;
 192	int			irq;
 193	struct clk		*clk;
 194	struct platform_device	*pdev;
 195	struct spi_device	*stay;
 196
 197	u8			stopping;
 198	struct list_head	queue;
 199	struct spi_transfer	*current_transfer;
 200	unsigned long		current_remaining_bytes;
 201	struct spi_transfer	*next_transfer;
 202	unsigned long		next_remaining_bytes;
 
 
 
 
 
 
 
 
 
 
 203
 204	void			*buffer;
 205	dma_addr_t		buffer_dma;
 
 
 
 206};
 207
 208/* Controller-specific per-slave state */
 209struct atmel_spi_device {
 210	unsigned int		npcs_pin;
 211	u32			csr;
 212};
 213
 214#define BUFFER_SIZE		PAGE_SIZE
 215#define INVALID_DMA_ADDRESS	0xffffffff
 216
 217/*
 218 * Version 2 of the SPI controller has
 219 *  - CR.LASTXFER
 220 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 221 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 222 *  - SPI_CSRx.CSAAT
 223 *  - SPI_CSRx.SBCR allows faster clocking
 224 *
 225 * We can determine the controller version by reading the VERSION
 226 * register, but I haven't checked that it exists on all chips, and
 227 * this is cheaper anyway.
 228 */
 229static bool atmel_spi_is_v2(void)
 230{
 231	return !cpu_is_at91rm9200();
 232}
 233
 234/*
 235 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 236 * they assume that spi slave device state will not change on deselect, so
 237 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 238 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 239 * controllers have CSAAT and friends.
 240 *
 241 * Since the CSAAT functionality is a bit weird on newer controllers as
 242 * well, we use GPIO to control nCSx pins on all controllers, updating
 243 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
 244 * support active-high chipselects despite the controller's belief that
 245 * only active-low devices/systems exists.
 246 *
 247 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 248 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 249 * Master on Chip Select 0.")  No workaround exists for that ... so for
 250 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 251 * and (c) will trigger that first erratum in some cases.
 252 *
 253 * TODO: Test if the atmel_spi_is_v2() branch below works on
 254 * AT91RM9200 if we use some other register than CSR0. However, don't
 255 * do this unconditionally since AP7000 has an errata where the BITS
 256 * field in CSR0 overrides all other CSRs.
 257 */
 258
 259static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 260{
 261	struct atmel_spi_device *asd = spi->controller_state;
 262	unsigned active = spi->mode & SPI_CS_HIGH;
 263	u32 mr;
 264
 265	if (atmel_spi_is_v2()) {
 266		/*
 267		 * Always use CSR0. This ensures that the clock
 268		 * switches to the correct idle polarity before we
 269		 * toggle the CS.
 
 
 
 
 270		 */
 271		spi_writel(as, CSR0, asd->csr);
 272		spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS)
 273				| SPI_BIT(MSTR));
 
 
 
 
 
 
 
 
 
 
 
 274		mr = spi_readl(as, MR);
 275		gpio_set_value(asd->npcs_pin, active);
 276	} else {
 277		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 278		int i;
 279		u32 csr;
 280
 281		/* Make sure clock polarity is correct */
 282		for (i = 0; i < spi->master->num_chipselect; i++) {
 283			csr = spi_readl(as, CSR0 + 4 * i);
 284			if ((csr ^ cpol) & SPI_BIT(CPOL))
 285				spi_writel(as, CSR0 + 4 * i,
 286						csr ^ SPI_BIT(CPOL));
 287		}
 288
 289		mr = spi_readl(as, MR);
 290		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
 291		if (spi->chip_select != 0)
 292			gpio_set_value(asd->npcs_pin, active);
 293		spi_writel(as, MR, mr);
 294	}
 295
 296	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
 297			asd->npcs_pin, active ? " (high)" : "",
 298			mr);
 299}
 300
 301static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 302{
 303	struct atmel_spi_device *asd = spi->controller_state;
 304	unsigned active = spi->mode & SPI_CS_HIGH;
 305	u32 mr;
 306
 
 
 
 
 
 307	/* only deactivate *this* device; sometimes transfers to
 308	 * another device may be active when this routine is called.
 309	 */
 310	mr = spi_readl(as, MR);
 311	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
 312		mr = SPI_BFINS(PCS, 0xf, mr);
 313		spi_writel(as, MR, mr);
 314	}
 315
 316	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
 317			asd->npcs_pin, active ? " (low)" : "",
 318			mr);
 319
 320	if (atmel_spi_is_v2() || spi->chip_select != 0)
 321		gpio_set_value(asd->npcs_pin, !active);
 322}
 323
 324static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
 325					struct spi_transfer *xfer)
 326{
 327	return msg->transfers.prev == &xfer->transfer_list;
 328}
 329
 330static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
 331{
 332	return xfer->delay_usecs == 0 && !xfer->cs_change;
 333}
 334
 335static void atmel_spi_next_xfer_data(struct spi_master *master,
 336				struct spi_transfer *xfer,
 337				dma_addr_t *tx_dma,
 338				dma_addr_t *rx_dma,
 339				u32 *plen)
 340{
 341	struct atmel_spi	*as = spi_master_get_devdata(master);
 342	u32			len = *plen;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 343
 344	/* use scratch buffer only when rx or tx data is unspecified */
 345	if (xfer->rx_buf)
 346		*rx_dma = xfer->rx_dma + xfer->len - *plen;
 347	else {
 348		*rx_dma = as->buffer_dma;
 349		if (len > BUFFER_SIZE)
 350			len = BUFFER_SIZE;
 351	}
 352	if (xfer->tx_buf)
 353		*tx_dma = xfer->tx_dma + xfer->len - *plen;
 354	else {
 355		*tx_dma = as->buffer_dma;
 356		if (len > BUFFER_SIZE)
 357			len = BUFFER_SIZE;
 358		memset(as->buffer, 0, len);
 359		dma_sync_single_for_device(&as->pdev->dev,
 360				as->buffer_dma, len, DMA_TO_DEVICE);
 361	}
 362
 363	*plen = len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 364}
 365
 366/*
 367 * Submit next transfer for DMA.
 368 * lock is held, spi irq is blocked
 369 */
 370static void atmel_spi_next_xfer(struct spi_master *master,
 371				struct spi_message *msg)
 372{
 373	struct atmel_spi	*as = spi_master_get_devdata(master);
 374	struct spi_transfer	*xfer;
 375	u32			len, remaining;
 376	u32			ieval;
 377	dma_addr_t		tx_dma, rx_dma;
 378
 379	if (!as->current_transfer)
 380		xfer = list_entry(msg->transfers.next,
 381				struct spi_transfer, transfer_list);
 382	else if (!as->next_transfer)
 383		xfer = list_entry(as->current_transfer->transfer_list.next,
 384				struct spi_transfer, transfer_list);
 
 
 
 385	else
 386		xfer = NULL;
 387
 388	if (xfer) {
 389		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 
 
 390
 391		len = xfer->len;
 392		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 393		remaining = xfer->len - len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 394
 395		spi_writel(as, RPR, rx_dma);
 396		spi_writel(as, TPR, tx_dma);
 
 397
 398		if (msg->spi->bits_per_word > 8)
 399			len >>= 1;
 400		spi_writel(as, RCR, len);
 401		spi_writel(as, TCR, len);
 
 402
 403		dev_dbg(&msg->spi->dev,
 404			"  start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 405			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
 406			xfer->rx_buf, xfer->rx_dma);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 407	} else {
 408		xfer = as->next_transfer;
 409		remaining = as->next_remaining_bytes;
 
 
 
 
 410	}
 
 
 411
 412	as->current_transfer = xfer;
 413	as->current_remaining_bytes = remaining;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 414
 415	if (remaining > 0)
 416		len = remaining;
 417	else if (!atmel_spi_xfer_is_last(msg, xfer)
 418			&& atmel_spi_xfer_can_be_chained(xfer)) {
 419		xfer = list_entry(xfer->transfer_list.next,
 420				struct spi_transfer, transfer_list);
 421		len = xfer->len;
 422	} else
 423		xfer = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424
 425	as->next_transfer = xfer;
 426
 427	if (xfer) {
 428		u32	total;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 429
 430		total = len;
 
 431		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 432		as->next_remaining_bytes = total - len;
 433
 434		spi_writel(as, RNPR, rx_dma);
 435		spi_writel(as, TNPR, tx_dma);
 436
 437		if (msg->spi->bits_per_word > 8)
 438			len >>= 1;
 439		spi_writel(as, RNCR, len);
 440		spi_writel(as, TNCR, len);
 441
 442		dev_dbg(&msg->spi->dev,
 443			"  next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 444			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
 445			xfer->rx_buf, xfer->rx_dma);
 446		ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
 447	} else {
 448		spi_writel(as, RNCR, 0);
 449		spi_writel(as, TNCR, 0);
 450		ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
 451	}
 452
 453	/* REVISIT: We're waiting for ENDRX before we start the next
 454	 * transfer because we need to handle some difficult timing
 455	 * issues otherwise. If we wait for ENDTX in one transfer and
 456	 * then starts waiting for ENDRX in the next, it's difficult
 457	 * to tell the difference between the ENDRX interrupt we're
 458	 * actually waiting for and the ENDRX interrupt of the
 459	 * previous transfer.
 460	 *
 461	 * It should be doable, though. Just not now...
 462	 */
 463	spi_writel(as, IER, ieval);
 464	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 465}
 466
 467static void atmel_spi_next_message(struct spi_master *master)
 468{
 469	struct atmel_spi	*as = spi_master_get_devdata(master);
 470	struct spi_message	*msg;
 471	struct spi_device	*spi;
 472
 473	BUG_ON(as->current_transfer);
 474
 475	msg = list_entry(as->queue.next, struct spi_message, queue);
 476	spi = msg->spi;
 477
 478	dev_dbg(master->dev.parent, "start message %p for %s\n",
 479			msg, dev_name(&spi->dev));
 480
 481	/* select chip if it's not still active */
 482	if (as->stay) {
 483		if (as->stay != spi) {
 484			cs_deactivate(as, as->stay);
 485			cs_activate(as, spi);
 486		}
 487		as->stay = NULL;
 488	} else
 489		cs_activate(as, spi);
 490
 491	atmel_spi_next_xfer(master, msg);
 492}
 493
 494/*
 495 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 496 *  - The buffer is either valid for CPU access, else NULL
 497 *  - If the buffer is valid, so is its DMA address
 498 *
 499 * This driver manages the dma address unless message->is_dma_mapped.
 500 */
 501static int
 502atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 503{
 504	struct device	*dev = &as->pdev->dev;
 505
 506	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 507	if (xfer->tx_buf) {
 508		/* tx_buf is a const void* where we need a void * for the dma
 509		 * mapping */
 510		void *nonconst_tx = (void *)xfer->tx_buf;
 511
 512		xfer->tx_dma = dma_map_single(dev,
 513				nonconst_tx, xfer->len,
 514				DMA_TO_DEVICE);
 515		if (dma_mapping_error(dev, xfer->tx_dma))
 516			return -ENOMEM;
 517	}
 518	if (xfer->rx_buf) {
 519		xfer->rx_dma = dma_map_single(dev,
 520				xfer->rx_buf, xfer->len,
 521				DMA_FROM_DEVICE);
 522		if (dma_mapping_error(dev, xfer->rx_dma)) {
 523			if (xfer->tx_buf)
 524				dma_unmap_single(dev,
 525						xfer->tx_dma, xfer->len,
 526						DMA_TO_DEVICE);
 527			return -ENOMEM;
 528		}
 529	}
 530	return 0;
 531}
 532
 533static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
 534				     struct spi_transfer *xfer)
 535{
 536	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
 537		dma_unmap_single(master->dev.parent, xfer->tx_dma,
 538				 xfer->len, DMA_TO_DEVICE);
 539	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
 540		dma_unmap_single(master->dev.parent, xfer->rx_dma,
 541				 xfer->len, DMA_FROM_DEVICE);
 542}
 543
 544static void
 545atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
 546		struct spi_message *msg, int status, int stay)
 547{
 548	if (!stay || status < 0)
 549		cs_deactivate(as, msg->spi);
 550	else
 551		as->stay = msg->spi;
 552
 553	list_del(&msg->queue);
 554	msg->status = status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555
 556	dev_dbg(master->dev.parent,
 557		"xfer complete: %u bytes transferred\n",
 558		msg->actual_length);
 
 
 
 
 
 
 
 
 
 
 
 559
 560	spin_unlock(&as->lock);
 561	msg->complete(msg->context);
 562	spin_lock(&as->lock);
 
 563
 564	as->current_transfer = NULL;
 565	as->next_transfer = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 566
 567	/* continue if needed */
 568	if (list_empty(&as->queue) || as->stopping)
 569		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 
 
 
 
 
 
 
 570	else
 571		atmel_spi_next_message(master);
 572}
 573
 
 
 
 574static irqreturn_t
 575atmel_spi_interrupt(int irq, void *dev_id)
 576{
 577	struct spi_master	*master = dev_id;
 578	struct atmel_spi	*as = spi_master_get_devdata(master);
 579	struct spi_message	*msg;
 580	struct spi_transfer	*xfer;
 581	u32			status, pending, imr;
 
 582	int			ret = IRQ_NONE;
 583
 584	spin_lock(&as->lock);
 585
 586	xfer = as->current_transfer;
 587	msg = list_entry(as->queue.next, struct spi_message, queue);
 588
 589	imr = spi_readl(as, IMR);
 590	status = spi_readl(as, SR);
 591	pending = status & imr;
 592
 593	if (pending & SPI_BIT(OVRES)) {
 594		int timeout;
 595
 596		ret = IRQ_HANDLED;
 597
 598		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
 599				     | SPI_BIT(OVRES)));
 600
 601		/*
 602		 * When we get an overrun, we disregard the current
 603		 * transfer. Data will not be copied back from any
 604		 * bounce buffer and msg->actual_len will not be
 605		 * updated with the last xfer.
 606		 *
 607		 * We will also not process any remaning transfers in
 608		 * the message.
 609		 *
 610		 * First, stop the transfer and unmap the DMA buffers.
 611		 */
 612		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 613		if (!msg->is_dma_mapped)
 614			atmel_spi_dma_unmap_xfer(master, xfer);
 615
 616		/* REVISIT: udelay in irq is unfriendly */
 617		if (xfer->delay_usecs)
 618			udelay(xfer->delay_usecs);
 619
 620		dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
 621			 spi_readl(as, TCR), spi_readl(as, RCR));
 622
 623		/*
 624		 * Clean up DMA registers and make sure the data
 625		 * registers are empty.
 626		 */
 627		spi_writel(as, RNCR, 0);
 628		spi_writel(as, TNCR, 0);
 629		spi_writel(as, RCR, 0);
 630		spi_writel(as, TCR, 0);
 631		for (timeout = 1000; timeout; timeout--)
 632			if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
 633				break;
 634		if (!timeout)
 635			dev_warn(master->dev.parent,
 636				 "timeout waiting for TXEMPTY");
 637		while (spi_readl(as, SR) & SPI_BIT(RDRF))
 638			spi_readl(as, RDR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639
 640		/* Clear any overrun happening while cleaning up */
 641		spi_readl(as, SR);
 642
 643		atmel_spi_msg_done(master, as, msg, -EIO, 0);
 
 
 
 644	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
 645		ret = IRQ_HANDLED;
 646
 647		spi_writel(as, IDR, pending);
 648
 649		if (as->current_remaining_bytes == 0) {
 650			msg->actual_length += xfer->len;
 651
 652			if (!msg->is_dma_mapped)
 653				atmel_spi_dma_unmap_xfer(master, xfer);
 654
 655			/* REVISIT: udelay in irq is unfriendly */
 656			if (xfer->delay_usecs)
 657				udelay(xfer->delay_usecs);
 658
 659			if (atmel_spi_xfer_is_last(msg, xfer)) {
 660				/* report completed message */
 661				atmel_spi_msg_done(master, as, msg, 0,
 662						xfer->cs_change);
 663			} else {
 664				if (xfer->cs_change) {
 665					cs_deactivate(as, msg->spi);
 666					udelay(1);
 667					cs_activate(as, msg->spi);
 668				}
 669
 670				/*
 671				 * Not done yet. Submit the next transfer.
 672				 *
 673				 * FIXME handle protocol options for xfer
 674				 */
 675				atmel_spi_next_xfer(master, msg);
 676			}
 677		} else {
 678			/*
 679			 * Keep going, we still have data to send in
 680			 * the current transfer.
 681			 */
 682			atmel_spi_next_xfer(master, msg);
 683		}
 684	}
 685
 686	spin_unlock(&as->lock);
 
 687
 688	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 689}
 690
 691static int atmel_spi_setup(struct spi_device *spi)
 692{
 693	struct atmel_spi	*as;
 694	struct atmel_spi_device	*asd;
 695	u32			scbr, csr;
 696	unsigned int		bits = spi->bits_per_word;
 697	unsigned long		bus_hz;
 698	unsigned int		npcs_pin;
 699	int			ret;
 700
 701	as = spi_master_get_devdata(spi->master);
 702
 703	if (as->stopping)
 704		return -ESHUTDOWN;
 705
 706	if (spi->chip_select > spi->master->num_chipselect) {
 707		dev_dbg(&spi->dev,
 708				"setup: invalid chipselect %u (%u defined)\n",
 709				spi->chip_select, spi->master->num_chipselect);
 710		return -EINVAL;
 711	}
 712
 713	if (bits < 8 || bits > 16) {
 714		dev_dbg(&spi->dev,
 715				"setup: invalid bits_per_word %u (8 to 16)\n",
 716				bits);
 717		return -EINVAL;
 718	}
 719
 720	/* see notes above re chipselect */
 721	if (!atmel_spi_is_v2()
 722			&& spi->chip_select == 0
 723			&& (spi->mode & SPI_CS_HIGH)) {
 724		dev_dbg(&spi->dev, "setup: can't be active-high\n");
 725		return -EINVAL;
 726	}
 727
 728	/* v1 chips start out at half the peripheral bus speed. */
 729	bus_hz = clk_get_rate(as->clk);
 730	if (!atmel_spi_is_v2())
 731		bus_hz /= 2;
 
 
 732
 733	if (spi->max_speed_hz) {
 734		/*
 735		 * Calculate the lowest divider that satisfies the
 736		 * constraint, assuming div32/fdiv/mbz == 0.
 737		 */
 738		scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
 739
 740		/*
 741		 * If the resulting divider doesn't fit into the
 742		 * register bitfield, we can't satisfy the constraint.
 743		 */
 744		if (scbr >= (1 << SPI_SCBR_SIZE)) {
 745			dev_dbg(&spi->dev,
 746				"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 747				spi->max_speed_hz, scbr, bus_hz/255);
 748			return -EINVAL;
 749		}
 750	} else
 751		/* speed zero means "as slow as possible" */
 752		scbr = 0xff;
 753
 754	csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
 755	if (spi->mode & SPI_CPOL)
 756		csr |= SPI_BIT(CPOL);
 757	if (!(spi->mode & SPI_CPHA))
 758		csr |= SPI_BIT(NCPHA);
 759
 760	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
 761	 *
 762	 * DLYBCT would add delays between words, slowing down transfers.
 763	 * It could potentially be useful to cope with DMA bottlenecks, but
 764	 * in those cases it's probably best to just use a lower bitrate.
 765	 */
 766	csr |= SPI_BF(DLYBS, 0);
 767	csr |= SPI_BF(DLYBCT, 0);
 768
 769	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
 770	npcs_pin = (unsigned int)spi->controller_data;
 
 
 
 
 
 
 
 771	asd = spi->controller_state;
 772	if (!asd) {
 773		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
 774		if (!asd)
 775			return -ENOMEM;
 776
 777		ret = gpio_request(npcs_pin, dev_name(&spi->dev));
 778		if (ret) {
 779			kfree(asd);
 780			return ret;
 781		}
 782
 783		asd->npcs_pin = npcs_pin;
 784		spi->controller_state = asd;
 785		gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
 786	} else {
 787		unsigned long		flags;
 788
 789		spin_lock_irqsave(&as->lock, flags);
 790		if (as->stay == spi)
 791			as->stay = NULL;
 792		cs_deactivate(as, spi);
 793		spin_unlock_irqrestore(&as->lock, flags);
 794	}
 795
 796	asd->csr = csr;
 797
 798	dev_dbg(&spi->dev,
 799		"setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
 800		bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
 801
 802	if (!atmel_spi_is_v2())
 803		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
 804
 805	return 0;
 806}
 807
 808static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809{
 810	struct atmel_spi	*as;
 811	struct spi_transfer	*xfer;
 812	unsigned long		flags;
 813	struct device		*controller = spi->master->dev.parent;
 814	u8			bits;
 
 815	struct atmel_spi_device	*asd;
 
 
 
 816
 817	as = spi_master_get_devdata(spi->master);
 818
 819	dev_dbg(controller, "new message %p submitted for %s\n",
 820			msg, dev_name(&spi->dev));
 821
 822	if (unlikely(list_empty(&msg->transfers)))
 823		return -EINVAL;
 
 
 
 
 
 824
 825	if (as->stopping)
 826		return -ESHUTDOWN;
 
 
 
 
 
 
 
 827
 828	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 829		if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
 830			dev_dbg(&spi->dev, "missing rx or tx buf\n");
 831			return -EINVAL;
 832		}
 833
 834		if (xfer->bits_per_word) {
 835			asd = spi->controller_state;
 836			bits = (asd->csr >> 4) & 0xf;
 837			if (bits != xfer->bits_per_word - 8) {
 838				dev_dbg(&spi->dev, "you can't yet change "
 839					 "bits_per_word in transfers\n");
 840				return -ENOPROTOOPT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 841			}
 
 
 
 
 842		}
 843
 844		/* FIXME implement these protocol options!! */
 845		if (xfer->speed_hz) {
 846			dev_dbg(&spi->dev, "no protocol options yet\n");
 847			return -ENOPROTOOPT;
 
 848		}
 849
 850		/*
 851		 * DMA map early, for performance (empties dcache ASAP) and
 852		 * better fault reporting.  This is a DMA-only driver.
 853		 *
 854		 * NOTE that if dma_unmap_single() ever starts to do work on
 855		 * platforms supported by this driver, we would need to clean
 856		 * up mappings for previously-mapped transfers.
 857		 */
 858		if (!msg->is_dma_mapped) {
 859			if (atmel_spi_dma_map_xfer(as, xfer) < 0)
 860				return -ENOMEM;
 861		}
 862	}
 863
 864#ifdef VERBOSE
 865	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 866		dev_dbg(controller,
 867			"  xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 868			xfer, xfer->len,
 869			xfer->tx_buf, xfer->tx_dma,
 870			xfer->rx_buf, xfer->rx_dma);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 871	}
 872#endif
 873
 874	msg->status = -EINPROGRESS;
 875	msg->actual_length = 0;
 
 876
 877	spin_lock_irqsave(&as->lock, flags);
 878	list_add_tail(&msg->queue, &as->queue);
 879	if (!as->current_transfer)
 880		atmel_spi_next_message(spi->master);
 881	spin_unlock_irqrestore(&as->lock, flags);
 882
 883	return 0;
 884}
 885
 886static void atmel_spi_cleanup(struct spi_device *spi)
 887{
 888	struct atmel_spi	*as = spi_master_get_devdata(spi->master);
 889	struct atmel_spi_device	*asd = spi->controller_state;
 890	unsigned		gpio = (unsigned) spi->controller_data;
 891	unsigned long		flags;
 892
 893	if (!asd)
 894		return;
 895
 896	spin_lock_irqsave(&as->lock, flags);
 897	if (as->stay == spi) {
 898		as->stay = NULL;
 899		cs_deactivate(as, spi);
 900	}
 901	spin_unlock_irqrestore(&as->lock, flags);
 902
 903	spi->controller_state = NULL;
 904	gpio_free(gpio);
 905	kfree(asd);
 906}
 907
 908/*-------------------------------------------------------------------------*/
 
 
 
 909
 910static int __devinit atmel_spi_probe(struct platform_device *pdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 911{
 912	struct resource		*regs;
 913	int			irq;
 914	struct clk		*clk;
 915	int			ret;
 916	struct spi_master	*master;
 917	struct atmel_spi	*as;
 918
 
 
 
 919	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 920	if (!regs)
 921		return -ENXIO;
 922
 923	irq = platform_get_irq(pdev, 0);
 924	if (irq < 0)
 925		return irq;
 926
 927	clk = clk_get(&pdev->dev, "spi_clk");
 928	if (IS_ERR(clk))
 929		return PTR_ERR(clk);
 930
 931	/* setup spi core then atmel-specific driver state */
 932	ret = -ENOMEM;
 933	master = spi_alloc_master(&pdev->dev, sizeof *as);
 934	if (!master)
 935		goto out_free;
 936
 937	/* the spi->mode bits understood by this driver: */
 
 938	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
 939
 
 940	master->bus_num = pdev->id;
 941	master->num_chipselect = 4;
 942	master->setup = atmel_spi_setup;
 943	master->transfer = atmel_spi_transfer;
 
 
 
 944	master->cleanup = atmel_spi_cleanup;
 
 
 
 945	platform_set_drvdata(pdev, master);
 946
 947	as = spi_master_get_devdata(master);
 948
 949	/*
 950	 * Scratch buffer is used for throwaway rx and tx data.
 951	 * It's coherent to minimize dcache pollution.
 952	 */
 953	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
 954					&as->buffer_dma, GFP_KERNEL);
 955	if (!as->buffer)
 956		goto out_free;
 957
 958	spin_lock_init(&as->lock);
 959	INIT_LIST_HEAD(&as->queue);
 960	as->pdev = pdev;
 961	as->regs = ioremap(regs->start, resource_size(regs));
 962	if (!as->regs)
 963		goto out_free_buffer;
 
 
 
 964	as->irq = irq;
 965	as->clk = clk;
 966
 967	ret = request_irq(irq, atmel_spi_interrupt, 0,
 968			dev_name(&pdev->dev), master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 969	if (ret)
 970		goto out_unmap_regs;
 971
 972	/* Initialize the hardware */
 973	clk_enable(clk);
 974	spi_writel(as, CR, SPI_BIT(SWRST));
 975	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
 976	spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
 977	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 978	spi_writel(as, CR, SPI_BIT(SPIEN));
 979
 980	/* go! */
 981	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
 982			(unsigned long)regs->start, irq);
 983
 984	ret = spi_register_master(master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 985	if (ret)
 986		goto out_reset_hw;
 
 
 
 
 
 987
 988	return 0;
 989
 990out_reset_hw:
 
 
 
 
 
 
 991	spi_writel(as, CR, SPI_BIT(SWRST));
 992	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
 993	clk_disable(clk);
 994	free_irq(irq, master);
 995out_unmap_regs:
 996	iounmap(as->regs);
 997out_free_buffer:
 998	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
 999			as->buffer_dma);
1000out_free:
1001	clk_put(clk);
1002	spi_master_put(master);
1003	return ret;
1004}
1005
1006static int __devexit atmel_spi_remove(struct platform_device *pdev)
1007{
1008	struct spi_master	*master = platform_get_drvdata(pdev);
1009	struct atmel_spi	*as = spi_master_get_devdata(master);
1010	struct spi_message	*msg;
 
1011
1012	/* reset the hardware and block queue progress */
 
 
 
 
 
 
 
 
 
 
 
 
 
1013	spin_lock_irq(&as->lock);
1014	as->stopping = 1;
1015	spi_writel(as, CR, SPI_BIT(SWRST));
1016	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1017	spi_readl(as, SR);
1018	spin_unlock_irq(&as->lock);
1019
1020	/* Terminate remaining queued transfers */
1021	list_for_each_entry(msg, &as->queue, queue) {
1022		/* REVISIT unmapping the dma is a NOP on ARM and AVR32
1023		 * but we shouldn't depend on that...
1024		 */
1025		msg->status = -ESHUTDOWN;
1026		msg->complete(msg->context);
1027	}
1028
1029	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1030			as->buffer_dma);
1031
1032	clk_disable(as->clk);
1033	clk_put(as->clk);
1034	free_irq(as->irq, master);
1035	iounmap(as->regs);
 
 
 
 
1036
1037	spi_unregister_master(master);
 
1038
1039	return 0;
1040}
1041
1042#ifdef	CONFIG_PM
 
 
 
 
 
 
 
 
1043
1044static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
 
1045{
1046	struct spi_master	*master = platform_get_drvdata(pdev);
1047	struct atmel_spi	*as = spi_master_get_devdata(master);
 
 
 
 
 
 
 
 
1048
1049	clk_disable(as->clk);
1050	return 0;
1051}
1052
1053static int atmel_spi_resume(struct platform_device *pdev)
1054{
1055	struct spi_master	*master = platform_get_drvdata(pdev);
1056	struct atmel_spi	*as = spi_master_get_devdata(master);
 
1057
1058	clk_enable(as->clk);
1059	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1060}
 
1061
 
 
 
 
 
 
1062#else
1063#define	atmel_spi_suspend	NULL
1064#define	atmel_spi_resume	NULL
1065#endif
1066
 
 
 
 
 
 
1067
1068static struct platform_driver atmel_spi_driver = {
1069	.driver		= {
1070		.name	= "atmel_spi",
1071		.owner	= THIS_MODULE,
 
1072	},
1073	.suspend	= atmel_spi_suspend,
1074	.resume		= atmel_spi_resume,
1075	.probe		= atmel_spi_probe,
1076	.remove		= __exit_p(atmel_spi_remove),
1077};
1078module_platform_driver(atmel_spi_driver);
1079
1080MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1081MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1082MODULE_LICENSE("GPL");
1083MODULE_ALIAS("platform:atmel_spi");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for Atmel AT32 and AT91 SPI Controllers
   4 *
   5 * Copyright (C) 2006 Atmel Corporation
 
 
 
 
   6 */
   7
   8#include <linux/kernel.h>
 
   9#include <linux/clk.h>
  10#include <linux/module.h>
  11#include <linux/platform_device.h>
  12#include <linux/delay.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/dmaengine.h>
  15#include <linux/err.h>
  16#include <linux/interrupt.h>
  17#include <linux/spi/spi.h>
  18#include <linux/slab.h>
  19#include <linux/of.h>
  20
  21#include <linux/io.h>
  22#include <linux/gpio/consumer.h>
  23#include <linux/pinctrl/consumer.h>
  24#include <linux/pm_runtime.h>
  25#include <trace/events/spi.h>
  26
  27/* SPI register offsets */
  28#define SPI_CR					0x0000
  29#define SPI_MR					0x0004
  30#define SPI_RDR					0x0008
  31#define SPI_TDR					0x000c
  32#define SPI_SR					0x0010
  33#define SPI_IER					0x0014
  34#define SPI_IDR					0x0018
  35#define SPI_IMR					0x001c
  36#define SPI_CSR0				0x0030
  37#define SPI_CSR1				0x0034
  38#define SPI_CSR2				0x0038
  39#define SPI_CSR3				0x003c
  40#define SPI_FMR					0x0040
  41#define SPI_FLR					0x0044
  42#define SPI_VERSION				0x00fc
  43#define SPI_RPR					0x0100
  44#define SPI_RCR					0x0104
  45#define SPI_TPR					0x0108
  46#define SPI_TCR					0x010c
  47#define SPI_RNPR				0x0110
  48#define SPI_RNCR				0x0114
  49#define SPI_TNPR				0x0118
  50#define SPI_TNCR				0x011c
  51#define SPI_PTCR				0x0120
  52#define SPI_PTSR				0x0124
  53
  54/* Bitfields in CR */
  55#define SPI_SPIEN_OFFSET			0
  56#define SPI_SPIEN_SIZE				1
  57#define SPI_SPIDIS_OFFSET			1
  58#define SPI_SPIDIS_SIZE				1
  59#define SPI_SWRST_OFFSET			7
  60#define SPI_SWRST_SIZE				1
  61#define SPI_LASTXFER_OFFSET			24
  62#define SPI_LASTXFER_SIZE			1
  63#define SPI_TXFCLR_OFFSET			16
  64#define SPI_TXFCLR_SIZE				1
  65#define SPI_RXFCLR_OFFSET			17
  66#define SPI_RXFCLR_SIZE				1
  67#define SPI_FIFOEN_OFFSET			30
  68#define SPI_FIFOEN_SIZE				1
  69#define SPI_FIFODIS_OFFSET			31
  70#define SPI_FIFODIS_SIZE			1
  71
  72/* Bitfields in MR */
  73#define SPI_MSTR_OFFSET				0
  74#define SPI_MSTR_SIZE				1
  75#define SPI_PS_OFFSET				1
  76#define SPI_PS_SIZE				1
  77#define SPI_PCSDEC_OFFSET			2
  78#define SPI_PCSDEC_SIZE				1
  79#define SPI_FDIV_OFFSET				3
  80#define SPI_FDIV_SIZE				1
  81#define SPI_MODFDIS_OFFSET			4
  82#define SPI_MODFDIS_SIZE			1
  83#define SPI_WDRBT_OFFSET			5
  84#define SPI_WDRBT_SIZE				1
  85#define SPI_LLB_OFFSET				7
  86#define SPI_LLB_SIZE				1
  87#define SPI_PCS_OFFSET				16
  88#define SPI_PCS_SIZE				4
  89#define SPI_DLYBCS_OFFSET			24
  90#define SPI_DLYBCS_SIZE				8
  91
  92/* Bitfields in RDR */
  93#define SPI_RD_OFFSET				0
  94#define SPI_RD_SIZE				16
  95
  96/* Bitfields in TDR */
  97#define SPI_TD_OFFSET				0
  98#define SPI_TD_SIZE				16
  99
 100/* Bitfields in SR */
 101#define SPI_RDRF_OFFSET				0
 102#define SPI_RDRF_SIZE				1
 103#define SPI_TDRE_OFFSET				1
 104#define SPI_TDRE_SIZE				1
 105#define SPI_MODF_OFFSET				2
 106#define SPI_MODF_SIZE				1
 107#define SPI_OVRES_OFFSET			3
 108#define SPI_OVRES_SIZE				1
 109#define SPI_ENDRX_OFFSET			4
 110#define SPI_ENDRX_SIZE				1
 111#define SPI_ENDTX_OFFSET			5
 112#define SPI_ENDTX_SIZE				1
 113#define SPI_RXBUFF_OFFSET			6
 114#define SPI_RXBUFF_SIZE				1
 115#define SPI_TXBUFE_OFFSET			7
 116#define SPI_TXBUFE_SIZE				1
 117#define SPI_NSSR_OFFSET				8
 118#define SPI_NSSR_SIZE				1
 119#define SPI_TXEMPTY_OFFSET			9
 120#define SPI_TXEMPTY_SIZE			1
 121#define SPI_SPIENS_OFFSET			16
 122#define SPI_SPIENS_SIZE				1
 123#define SPI_TXFEF_OFFSET			24
 124#define SPI_TXFEF_SIZE				1
 125#define SPI_TXFFF_OFFSET			25
 126#define SPI_TXFFF_SIZE				1
 127#define SPI_TXFTHF_OFFSET			26
 128#define SPI_TXFTHF_SIZE				1
 129#define SPI_RXFEF_OFFSET			27
 130#define SPI_RXFEF_SIZE				1
 131#define SPI_RXFFF_OFFSET			28
 132#define SPI_RXFFF_SIZE				1
 133#define SPI_RXFTHF_OFFSET			29
 134#define SPI_RXFTHF_SIZE				1
 135#define SPI_TXFPTEF_OFFSET			30
 136#define SPI_TXFPTEF_SIZE			1
 137#define SPI_RXFPTEF_OFFSET			31
 138#define SPI_RXFPTEF_SIZE			1
 139
 140/* Bitfields in CSR0 */
 141#define SPI_CPOL_OFFSET				0
 142#define SPI_CPOL_SIZE				1
 143#define SPI_NCPHA_OFFSET			1
 144#define SPI_NCPHA_SIZE				1
 145#define SPI_CSAAT_OFFSET			3
 146#define SPI_CSAAT_SIZE				1
 147#define SPI_BITS_OFFSET				4
 148#define SPI_BITS_SIZE				4
 149#define SPI_SCBR_OFFSET				8
 150#define SPI_SCBR_SIZE				8
 151#define SPI_DLYBS_OFFSET			16
 152#define SPI_DLYBS_SIZE				8
 153#define SPI_DLYBCT_OFFSET			24
 154#define SPI_DLYBCT_SIZE				8
 155
 156/* Bitfields in RCR */
 157#define SPI_RXCTR_OFFSET			0
 158#define SPI_RXCTR_SIZE				16
 159
 160/* Bitfields in TCR */
 161#define SPI_TXCTR_OFFSET			0
 162#define SPI_TXCTR_SIZE				16
 163
 164/* Bitfields in RNCR */
 165#define SPI_RXNCR_OFFSET			0
 166#define SPI_RXNCR_SIZE				16
 167
 168/* Bitfields in TNCR */
 169#define SPI_TXNCR_OFFSET			0
 170#define SPI_TXNCR_SIZE				16
 171
 172/* Bitfields in PTCR */
 173#define SPI_RXTEN_OFFSET			0
 174#define SPI_RXTEN_SIZE				1
 175#define SPI_RXTDIS_OFFSET			1
 176#define SPI_RXTDIS_SIZE				1
 177#define SPI_TXTEN_OFFSET			8
 178#define SPI_TXTEN_SIZE				1
 179#define SPI_TXTDIS_OFFSET			9
 180#define SPI_TXTDIS_SIZE				1
 181
 182/* Bitfields in FMR */
 183#define SPI_TXRDYM_OFFSET			0
 184#define SPI_TXRDYM_SIZE				2
 185#define SPI_RXRDYM_OFFSET			4
 186#define SPI_RXRDYM_SIZE				2
 187#define SPI_TXFTHRES_OFFSET			16
 188#define SPI_TXFTHRES_SIZE			6
 189#define SPI_RXFTHRES_OFFSET			24
 190#define SPI_RXFTHRES_SIZE			6
 191
 192/* Bitfields in FLR */
 193#define SPI_TXFL_OFFSET				0
 194#define SPI_TXFL_SIZE				6
 195#define SPI_RXFL_OFFSET				16
 196#define SPI_RXFL_SIZE				6
 197
 198/* Constants for BITS */
 199#define SPI_BITS_8_BPT				0
 200#define SPI_BITS_9_BPT				1
 201#define SPI_BITS_10_BPT				2
 202#define SPI_BITS_11_BPT				3
 203#define SPI_BITS_12_BPT				4
 204#define SPI_BITS_13_BPT				5
 205#define SPI_BITS_14_BPT				6
 206#define SPI_BITS_15_BPT				7
 207#define SPI_BITS_16_BPT				8
 208#define SPI_ONE_DATA				0
 209#define SPI_TWO_DATA				1
 210#define SPI_FOUR_DATA				2
 211
 212/* Bit manipulation macros */
 213#define SPI_BIT(name) \
 214	(1 << SPI_##name##_OFFSET)
 215#define SPI_BF(name, value) \
 216	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 217#define SPI_BFEXT(name, value) \
 218	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 219#define SPI_BFINS(name, value, old) \
 220	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 221	  | SPI_BF(name, value))
 222
 223/* Register access macros */
 224#define spi_readl(port, reg) \
 225	readl_relaxed((port)->regs + SPI_##reg)
 226#define spi_writel(port, reg, value) \
 227	writel_relaxed((value), (port)->regs + SPI_##reg)
 228#define spi_writew(port, reg, value) \
 229	writew_relaxed((value), (port)->regs + SPI_##reg)
 230
 231/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 232 * cache operations; better heuristics consider wordsize and bitrate.
 233 */
 234#define DMA_MIN_BYTES	16
 235
 236#define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
 237
 238#define AUTOSUSPEND_TIMEOUT	2000
 239
 240struct atmel_spi_caps {
 241	bool	is_spi2;
 242	bool	has_wdrbt;
 243	bool	has_dma_support;
 244	bool	has_pdc_support;
 245};
 246
 247/*
 248 * The core SPI transfer engine just talks to a register bank to set up
 249 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 250 * framework provides the base clock, subdivided for each spi_device.
 251 */
 252struct atmel_spi {
 253	spinlock_t		lock;
 254	unsigned long		flags;
 255
 256	phys_addr_t		phybase;
 257	void __iomem		*regs;
 258	int			irq;
 259	struct clk		*clk;
 260	struct platform_device	*pdev;
 261	unsigned long		spi_clk;
 262
 
 
 263	struct spi_transfer	*current_transfer;
 264	int			current_remaining_bytes;
 265	int			done_status;
 266	dma_addr_t		dma_addr_rx_bbuf;
 267	dma_addr_t		dma_addr_tx_bbuf;
 268	void			*addr_rx_bbuf;
 269	void			*addr_tx_bbuf;
 270
 271	struct completion	xfer_completion;
 272
 273	struct atmel_spi_caps	caps;
 274
 275	bool			use_dma;
 276	bool			use_pdc;
 277
 278	bool			keep_cs;
 279
 280	u32			fifo_size;
 281	u8			native_cs_free;
 282	u8			native_cs_for_gpio;
 283};
 284
 285/* Controller-specific per-slave state */
 286struct atmel_spi_device {
 
 287	u32			csr;
 288};
 289
 290#define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
 291#define INVALID_DMA_ADDRESS	0xffffffff
 292
 293/*
 294 * Version 2 of the SPI controller has
 295 *  - CR.LASTXFER
 296 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 297 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 298 *  - SPI_CSRx.CSAAT
 299 *  - SPI_CSRx.SBCR allows faster clocking
 
 
 
 
 300 */
 301static bool atmel_spi_is_v2(struct atmel_spi *as)
 302{
 303	return as->caps.is_spi2;
 304}
 305
 306/*
 307 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 308 * they assume that spi slave device state will not change on deselect, so
 309 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 310 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 311 * controllers have CSAAT and friends.
 312 *
 313 * Even controller newer than ar91rm9200, using GPIOs can make sens as
 314 * it lets us support active-high chipselects despite the controller's
 315 * belief that only active-low devices/systems exists.
 
 
 316 *
 317 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 318 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 319 * Master on Chip Select 0.")  No workaround exists for that ... so for
 320 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 321 * and (c) will trigger that first erratum in some cases.
 
 
 
 
 
 322 */
 323
 324static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 325{
 326	struct atmel_spi_device *asd = spi->controller_state;
 327	int chip_select;
 328	u32 mr;
 329
 330	if (spi->cs_gpiod)
 331		chip_select = as->native_cs_for_gpio;
 332	else
 333		chip_select = spi->chip_select;
 334
 335	if (atmel_spi_is_v2(as)) {
 336		spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
 337		/* For the low SPI version, there is a issue that PDC transfer
 338		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
 339		 */
 340		spi_writel(as, CSR0, asd->csr);
 341		if (as->caps.has_wdrbt) {
 342			spi_writel(as, MR,
 343					SPI_BF(PCS, ~(0x01 << chip_select))
 344					| SPI_BIT(WDRBT)
 345					| SPI_BIT(MODFDIS)
 346					| SPI_BIT(MSTR));
 347		} else {
 348			spi_writel(as, MR,
 349					SPI_BF(PCS, ~(0x01 << chip_select))
 350					| SPI_BIT(MODFDIS)
 351					| SPI_BIT(MSTR));
 352		}
 353
 354		mr = spi_readl(as, MR);
 
 355	} else {
 356		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 357		int i;
 358		u32 csr;
 359
 360		/* Make sure clock polarity is correct */
 361		for (i = 0; i < spi->master->num_chipselect; i++) {
 362			csr = spi_readl(as, CSR0 + 4 * i);
 363			if ((csr ^ cpol) & SPI_BIT(CPOL))
 364				spi_writel(as, CSR0 + 4 * i,
 365						csr ^ SPI_BIT(CPOL));
 366		}
 367
 368		mr = spi_readl(as, MR);
 369		mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
 
 
 370		spi_writel(as, MR, mr);
 371	}
 372
 373	dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
 
 
 374}
 375
 376static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 377{
 378	int chip_select;
 
 379	u32 mr;
 380
 381	if (spi->cs_gpiod)
 382		chip_select = as->native_cs_for_gpio;
 383	else
 384		chip_select = spi->chip_select;
 385
 386	/* only deactivate *this* device; sometimes transfers to
 387	 * another device may be active when this routine is called.
 388	 */
 389	mr = spi_readl(as, MR);
 390	if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
 391		mr = SPI_BFINS(PCS, 0xf, mr);
 392		spi_writel(as, MR, mr);
 393	}
 394
 395	dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
 
 
 396
 397	if (!spi->cs_gpiod)
 398		spi_writel(as, CR, SPI_BIT(LASTXFER));
 399}
 400
 401static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
 
 402{
 403	spin_lock_irqsave(&as->lock, as->flags);
 404}
 405
 406static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
 407{
 408	spin_unlock_irqrestore(&as->lock, as->flags);
 409}
 410
 411static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
 
 
 
 
 412{
 413	return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
 414}
 415
 416static inline bool atmel_spi_use_dma(struct atmel_spi *as,
 417				struct spi_transfer *xfer)
 418{
 419	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
 420}
 421
 422static bool atmel_spi_can_dma(struct spi_master *master,
 423			      struct spi_device *spi,
 424			      struct spi_transfer *xfer)
 425{
 426	struct atmel_spi *as = spi_master_get_devdata(master);
 427
 428	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
 429		return atmel_spi_use_dma(as, xfer) &&
 430			!atmel_spi_is_vmalloc_xfer(xfer);
 431	else
 432		return atmel_spi_use_dma(as, xfer);
 433
 434}
 435
 436static int atmel_spi_dma_slave_config(struct atmel_spi *as,
 437				struct dma_slave_config *slave_config,
 438				u8 bits_per_word)
 439{
 440	struct spi_master *master = platform_get_drvdata(as->pdev);
 441	int err = 0;
 442
 443	if (bits_per_word > 8) {
 444		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 445		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 446	} else {
 447		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 448		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 449	}
 450
 451	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
 452	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
 453	slave_config->src_maxburst = 1;
 454	slave_config->dst_maxburst = 1;
 455	slave_config->device_fc = false;
 456
 457	/*
 458	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
 459	 * the Mode Register).
 460	 * So according to the datasheet, when FIFOs are available (and
 461	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
 462	 * In this mode, up to 2 data, not 4, can be written into the Transmit
 463	 * Data Register in a single access.
 464	 * However, the first data has to be written into the lowest 16 bits and
 465	 * the second data into the highest 16 bits of the Transmit
 466	 * Data Register. For 8bit data (the most frequent case), it would
 467	 * require to rework tx_buf so each data would actualy fit 16 bits.
 468	 * So we'd rather write only one data at the time. Hence the transmit
 469	 * path works the same whether FIFOs are available (and enabled) or not.
 470	 */
 471	slave_config->direction = DMA_MEM_TO_DEV;
 472	if (dmaengine_slave_config(master->dma_tx, slave_config)) {
 473		dev_err(&as->pdev->dev,
 474			"failed to configure tx dma channel\n");
 475		err = -EINVAL;
 476	}
 477
 478	/*
 479	 * This driver configures the spi controller for master mode (MSTR bit
 480	 * set to '1' in the Mode Register).
 481	 * So according to the datasheet, when FIFOs are available (and
 482	 * enabled), the Receive FIFO operates in Single Data Mode.
 483	 * So the receive path works the same whether FIFOs are available (and
 484	 * enabled) or not.
 485	 */
 486	slave_config->direction = DMA_DEV_TO_MEM;
 487	if (dmaengine_slave_config(master->dma_rx, slave_config)) {
 488		dev_err(&as->pdev->dev,
 489			"failed to configure rx dma channel\n");
 490		err = -EINVAL;
 
 
 
 
 491	}
 492
 493	return err;
 494}
 495
 496static int atmel_spi_configure_dma(struct spi_master *master,
 497				   struct atmel_spi *as)
 498{
 499	struct dma_slave_config	slave_config;
 500	struct device *dev = &as->pdev->dev;
 501	int err;
 502
 503	master->dma_tx = dma_request_chan(dev, "tx");
 504	if (IS_ERR(master->dma_tx)) {
 505		err = PTR_ERR(master->dma_tx);
 506		dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
 507		goto error_clear;
 508	}
 509
 510	master->dma_rx = dma_request_chan(dev, "rx");
 511	if (IS_ERR(master->dma_rx)) {
 512		err = PTR_ERR(master->dma_rx);
 513		/*
 514		 * No reason to check EPROBE_DEFER here since we have already
 515		 * requested tx channel.
 516		 */
 517		dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
 518		goto error;
 519	}
 520
 521	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
 522	if (err)
 523		goto error;
 524
 525	dev_info(&as->pdev->dev,
 526			"Using %s (tx) and %s (rx) for DMA transfers\n",
 527			dma_chan_name(master->dma_tx),
 528			dma_chan_name(master->dma_rx));
 529
 530	return 0;
 531error:
 532	if (!IS_ERR(master->dma_rx))
 533		dma_release_channel(master->dma_rx);
 534	if (!IS_ERR(master->dma_tx))
 535		dma_release_channel(master->dma_tx);
 536error_clear:
 537	master->dma_tx = master->dma_rx = NULL;
 538	return err;
 539}
 540
 541static void atmel_spi_stop_dma(struct spi_master *master)
 542{
 543	if (master->dma_rx)
 544		dmaengine_terminate_all(master->dma_rx);
 545	if (master->dma_tx)
 546		dmaengine_terminate_all(master->dma_tx);
 547}
 548
 549static void atmel_spi_release_dma(struct spi_master *master)
 550{
 551	if (master->dma_rx) {
 552		dma_release_channel(master->dma_rx);
 553		master->dma_rx = NULL;
 554	}
 555	if (master->dma_tx) {
 556		dma_release_channel(master->dma_tx);
 557		master->dma_tx = NULL;
 558	}
 559}
 560
 561/* This function is called by the DMA driver from tasklet context */
 562static void dma_callback(void *data)
 563{
 564	struct spi_master	*master = data;
 565	struct atmel_spi	*as = spi_master_get_devdata(master);
 566
 567	if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
 568	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 569		memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
 570		       as->current_transfer->len);
 571	}
 572	complete(&as->xfer_completion);
 573}
 574
 575/*
 576 * Next transfer using PIO without FIFO.
 
 577 */
 578static void atmel_spi_next_xfer_single(struct spi_master *master,
 579				       struct spi_transfer *xfer)
 580{
 581	struct atmel_spi	*as = spi_master_get_devdata(master);
 582	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
 583
 584	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
 
 585
 586	/* Make sure data is not remaining in RDR */
 587	spi_readl(as, RDR);
 588	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
 589		spi_readl(as, RDR);
 590		cpu_relax();
 591	}
 592
 593	if (xfer->bits_per_word > 8)
 594		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
 595	else
 596		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
 597
 598	dev_dbg(master->dev.parent,
 599		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
 600		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 601		xfer->bits_per_word);
 602
 603	/* Enable relevant interrupts */
 604	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
 605}
 606
 607/*
 608 * Next transfer using PIO with FIFO.
 609 */
 610static void atmel_spi_next_xfer_fifo(struct spi_master *master,
 611				     struct spi_transfer *xfer)
 612{
 613	struct atmel_spi *as = spi_master_get_devdata(master);
 614	u32 current_remaining_data, num_data;
 615	u32 offset = xfer->len - as->current_remaining_bytes;
 616	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
 617	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
 618	u16 td0, td1;
 619	u32 fifomr;
 620
 621	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
 622
 623	/* Compute the number of data to transfer in the current iteration */
 624	current_remaining_data = ((xfer->bits_per_word > 8) ?
 625				  ((u32)as->current_remaining_bytes >> 1) :
 626				  (u32)as->current_remaining_bytes);
 627	num_data = min(current_remaining_data, as->fifo_size);
 628
 629	/* Flush RX and TX FIFOs */
 630	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
 631	while (spi_readl(as, FLR))
 632		cpu_relax();
 633
 634	/* Set RX FIFO Threshold to the number of data to transfer */
 635	fifomr = spi_readl(as, FMR);
 636	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
 637
 638	/* Clear FIFO flags in the Status Register, especially RXFTHF */
 639	(void)spi_readl(as, SR);
 640
 641	/* Fill TX FIFO */
 642	while (num_data >= 2) {
 643		if (xfer->bits_per_word > 8) {
 644			td0 = *words++;
 645			td1 = *words++;
 646		} else {
 647			td0 = *bytes++;
 648			td1 = *bytes++;
 649		}
 650
 651		spi_writel(as, TDR, (td1 << 16) | td0);
 652		num_data -= 2;
 653	}
 654
 655	if (num_data) {
 656		if (xfer->bits_per_word > 8)
 657			td0 = *words++;
 658		else
 659			td0 = *bytes++;
 660
 661		spi_writew(as, TDR, td0);
 662		num_data--;
 663	}
 664
 665	dev_dbg(master->dev.parent,
 666		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
 667		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 668		xfer->bits_per_word);
 669
 670	/*
 671	 * Enable RX FIFO Threshold Flag interrupt to be notified about
 672	 * transfer completion.
 673	 */
 674	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
 675}
 676
 677/*
 678 * Next transfer using PIO.
 679 */
 680static void atmel_spi_next_xfer_pio(struct spi_master *master,
 681				    struct spi_transfer *xfer)
 682{
 683	struct atmel_spi *as = spi_master_get_devdata(master);
 684
 685	if (as->fifo_size)
 686		atmel_spi_next_xfer_fifo(master, xfer);
 687	else
 688		atmel_spi_next_xfer_single(master, xfer);
 689}
 690
 691/*
 692 * Submit next transfer for DMA.
 693 */
 694static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
 695				struct spi_transfer *xfer,
 696				u32 *plen)
 697{
 698	struct atmel_spi	*as = spi_master_get_devdata(master);
 699	struct dma_chan		*rxchan = master->dma_rx;
 700	struct dma_chan		*txchan = master->dma_tx;
 701	struct dma_async_tx_descriptor *rxdesc;
 702	struct dma_async_tx_descriptor *txdesc;
 703	struct dma_slave_config	slave_config;
 704	dma_cookie_t		cookie;
 705
 706	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
 707
 708	/* Check that the channels are available */
 709	if (!rxchan || !txchan)
 710		return -ENODEV;
 711
 712
 713	*plen = xfer->len;
 714
 715	if (atmel_spi_dma_slave_config(as, &slave_config,
 716				       xfer->bits_per_word))
 717		goto err_exit;
 718
 719	/* Send both scatterlists */
 720	if (atmel_spi_is_vmalloc_xfer(xfer) &&
 721	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 722		rxdesc = dmaengine_prep_slave_single(rxchan,
 723						     as->dma_addr_rx_bbuf,
 724						     xfer->len,
 725						     DMA_DEV_TO_MEM,
 726						     DMA_PREP_INTERRUPT |
 727						     DMA_CTRL_ACK);
 728	} else {
 729		rxdesc = dmaengine_prep_slave_sg(rxchan,
 730						 xfer->rx_sg.sgl,
 731						 xfer->rx_sg.nents,
 732						 DMA_DEV_TO_MEM,
 733						 DMA_PREP_INTERRUPT |
 734						 DMA_CTRL_ACK);
 735	}
 736	if (!rxdesc)
 737		goto err_dma;
 738
 739	if (atmel_spi_is_vmalloc_xfer(xfer) &&
 740	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 741		memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
 742		txdesc = dmaengine_prep_slave_single(txchan,
 743						     as->dma_addr_tx_bbuf,
 744						     xfer->len, DMA_MEM_TO_DEV,
 745						     DMA_PREP_INTERRUPT |
 746						     DMA_CTRL_ACK);
 747	} else {
 748		txdesc = dmaengine_prep_slave_sg(txchan,
 749						 xfer->tx_sg.sgl,
 750						 xfer->tx_sg.nents,
 751						 DMA_MEM_TO_DEV,
 752						 DMA_PREP_INTERRUPT |
 753						 DMA_CTRL_ACK);
 754	}
 755	if (!txdesc)
 756		goto err_dma;
 757
 758	dev_dbg(master->dev.parent,
 759		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 760		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
 761		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
 762
 763	/* Enable relevant interrupts */
 764	spi_writel(as, IER, SPI_BIT(OVRES));
 765
 766	/* Put the callback on the RX transfer only, that should finish last */
 767	rxdesc->callback = dma_callback;
 768	rxdesc->callback_param = master;
 769
 770	/* Submit and fire RX and TX with TX last so we're ready to read! */
 771	cookie = rxdesc->tx_submit(rxdesc);
 772	if (dma_submit_error(cookie))
 773		goto err_dma;
 774	cookie = txdesc->tx_submit(txdesc);
 775	if (dma_submit_error(cookie))
 776		goto err_dma;
 777	rxchan->device->device_issue_pending(rxchan);
 778	txchan->device->device_issue_pending(txchan);
 779
 780	return 0;
 781
 782err_dma:
 783	spi_writel(as, IDR, SPI_BIT(OVRES));
 784	atmel_spi_stop_dma(master);
 785err_exit:
 786	return -ENOMEM;
 787}
 788
 789static void atmel_spi_next_xfer_data(struct spi_master *master,
 790				struct spi_transfer *xfer,
 791				dma_addr_t *tx_dma,
 792				dma_addr_t *rx_dma,
 793				u32 *plen)
 794{
 795	*rx_dma = xfer->rx_dma + xfer->len - *plen;
 796	*tx_dma = xfer->tx_dma + xfer->len - *plen;
 797	if (*plen > master->max_dma_len)
 798		*plen = master->max_dma_len;
 799}
 800
 801static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
 802				    struct spi_device *spi,
 803				    struct spi_transfer *xfer)
 804{
 805	u32			scbr, csr;
 806	unsigned long		bus_hz;
 807	int chip_select;
 808
 809	if (spi->cs_gpiod)
 810		chip_select = as->native_cs_for_gpio;
 811	else
 812		chip_select = spi->chip_select;
 813
 814	/* v1 chips start out at half the peripheral bus speed. */
 815	bus_hz = as->spi_clk;
 816	if (!atmel_spi_is_v2(as))
 817		bus_hz /= 2;
 818
 819	/*
 820	 * Calculate the lowest divider that satisfies the
 821	 * constraint, assuming div32/fdiv/mbz == 0.
 822	 */
 823	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
 824
 825	/*
 826	 * If the resulting divider doesn't fit into the
 827	 * register bitfield, we can't satisfy the constraint.
 828	 */
 829	if (scbr >= (1 << SPI_SCBR_SIZE)) {
 830		dev_err(&spi->dev,
 831			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 832			xfer->speed_hz, scbr, bus_hz/255);
 833		return -EINVAL;
 834	}
 835	if (scbr == 0) {
 836		dev_err(&spi->dev,
 837			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
 838			xfer->speed_hz, scbr, bus_hz);
 839		return -EINVAL;
 840	}
 841	csr = spi_readl(as, CSR0 + 4 * chip_select);
 842	csr = SPI_BFINS(SCBR, scbr, csr);
 843	spi_writel(as, CSR0 + 4 * chip_select, csr);
 844	xfer->effective_speed_hz = bus_hz / scbr;
 845
 846	return 0;
 847}
 848
 849/*
 850 * Submit next transfer for PDC.
 851 * lock is held, spi irq is blocked
 852 */
 853static void atmel_spi_pdc_next_xfer(struct spi_master *master,
 854					struct spi_transfer *xfer)
 855{
 856	struct atmel_spi	*as = spi_master_get_devdata(master);
 857	u32			len;
 858	dma_addr_t		tx_dma, rx_dma;
 859
 860	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 861
 862	len = as->current_remaining_bytes;
 863	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 864	as->current_remaining_bytes -= len;
 865
 866	spi_writel(as, RPR, rx_dma);
 867	spi_writel(as, TPR, tx_dma);
 868
 869	if (xfer->bits_per_word > 8)
 870		len >>= 1;
 871	spi_writel(as, RCR, len);
 872	spi_writel(as, TCR, len);
 873
 874	dev_dbg(&master->dev,
 875		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 876		xfer, xfer->len, xfer->tx_buf,
 877		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 878		(unsigned long long)xfer->rx_dma);
 879
 880	if (as->current_remaining_bytes) {
 881		len = as->current_remaining_bytes;
 882		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 883		as->current_remaining_bytes -= len;
 884
 885		spi_writel(as, RNPR, rx_dma);
 886		spi_writel(as, TNPR, tx_dma);
 887
 888		if (xfer->bits_per_word > 8)
 889			len >>= 1;
 890		spi_writel(as, RNCR, len);
 891		spi_writel(as, TNCR, len);
 892
 893		dev_dbg(&master->dev,
 894			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 895			xfer, xfer->len, xfer->tx_buf,
 896			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 897			(unsigned long long)xfer->rx_dma);
 
 
 
 
 898	}
 899
 900	/* REVISIT: We're waiting for RXBUFF before we start the next
 901	 * transfer because we need to handle some difficult timing
 902	 * issues otherwise. If we wait for TXBUFE in one transfer and
 903	 * then starts waiting for RXBUFF in the next, it's difficult
 904	 * to tell the difference between the RXBUFF interrupt we're
 905	 * actually waiting for and the RXBUFF interrupt of the
 906	 * previous transfer.
 907	 *
 908	 * It should be doable, though. Just not now...
 909	 */
 910	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
 911	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 912}
 913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 914/*
 915 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 916 *  - The buffer is either valid for CPU access, else NULL
 917 *  - If the buffer is valid, so is its DMA address
 918 *
 919 * This driver manages the dma address unless message->is_dma_mapped.
 920 */
 921static int
 922atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 923{
 924	struct device	*dev = &as->pdev->dev;
 925
 926	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 927	if (xfer->tx_buf) {
 928		/* tx_buf is a const void* where we need a void * for the dma
 929		 * mapping */
 930		void *nonconst_tx = (void *)xfer->tx_buf;
 931
 932		xfer->tx_dma = dma_map_single(dev,
 933				nonconst_tx, xfer->len,
 934				DMA_TO_DEVICE);
 935		if (dma_mapping_error(dev, xfer->tx_dma))
 936			return -ENOMEM;
 937	}
 938	if (xfer->rx_buf) {
 939		xfer->rx_dma = dma_map_single(dev,
 940				xfer->rx_buf, xfer->len,
 941				DMA_FROM_DEVICE);
 942		if (dma_mapping_error(dev, xfer->rx_dma)) {
 943			if (xfer->tx_buf)
 944				dma_unmap_single(dev,
 945						xfer->tx_dma, xfer->len,
 946						DMA_TO_DEVICE);
 947			return -ENOMEM;
 948		}
 949	}
 950	return 0;
 951}
 952
 953static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
 954				     struct spi_transfer *xfer)
 955{
 956	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
 957		dma_unmap_single(master->dev.parent, xfer->tx_dma,
 958				 xfer->len, DMA_TO_DEVICE);
 959	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
 960		dma_unmap_single(master->dev.parent, xfer->rx_dma,
 961				 xfer->len, DMA_FROM_DEVICE);
 962}
 963
 964static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
 
 
 965{
 966	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 967}
 
 
 968
 969static void
 970atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
 971{
 972	u8		*rxp;
 973	u16		*rxp16;
 974	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
 975
 976	if (xfer->bits_per_word > 8) {
 977		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
 978		*rxp16 = spi_readl(as, RDR);
 979	} else {
 980		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
 981		*rxp = spi_readl(as, RDR);
 982	}
 983	if (xfer->bits_per_word > 8) {
 984		if (as->current_remaining_bytes > 2)
 985			as->current_remaining_bytes -= 2;
 986		else
 987			as->current_remaining_bytes = 0;
 988	} else {
 989		as->current_remaining_bytes--;
 990	}
 991}
 992
 993static void
 994atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
 995{
 996	u32 fifolr = spi_readl(as, FLR);
 997	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
 998	u32 offset = xfer->len - as->current_remaining_bytes;
 999	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1000	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1001	u16 rd; /* RD field is the lowest 16 bits of RDR */
1002
1003	/* Update the number of remaining bytes to transfer */
1004	num_bytes = ((xfer->bits_per_word > 8) ?
1005		     (num_data << 1) :
1006		     num_data);
1007
1008	if (as->current_remaining_bytes > num_bytes)
1009		as->current_remaining_bytes -= num_bytes;
1010	else
1011		as->current_remaining_bytes = 0;
1012
1013	/* Handle odd number of bytes when data are more than 8bit width */
1014	if (xfer->bits_per_word > 8)
1015		as->current_remaining_bytes &= ~0x1;
1016
1017	/* Read data */
1018	while (num_data) {
1019		rd = spi_readl(as, RDR);
1020		if (xfer->bits_per_word > 8)
1021			*words++ = rd;
1022		else
1023			*bytes++ = rd;
1024		num_data--;
1025	}
1026}
1027
1028/* Called from IRQ
1029 *
1030 * Must update "current_remaining_bytes" to keep track of data
1031 * to transfer.
1032 */
1033static void
1034atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1035{
1036	if (as->fifo_size)
1037		atmel_spi_pump_fifo_data(as, xfer);
1038	else
1039		atmel_spi_pump_single_data(as, xfer);
1040}
1041
1042/* Interrupt
1043 *
1044 */
1045static irqreturn_t
1046atmel_spi_pio_interrupt(int irq, void *dev_id)
1047{
1048	struct spi_master	*master = dev_id;
1049	struct atmel_spi	*as = spi_master_get_devdata(master);
 
 
1050	u32			status, pending, imr;
1051	struct spi_transfer	*xfer;
1052	int			ret = IRQ_NONE;
1053
 
 
 
 
 
1054	imr = spi_readl(as, IMR);
1055	status = spi_readl(as, SR);
1056	pending = status & imr;
1057
1058	if (pending & SPI_BIT(OVRES)) {
 
 
1059		ret = IRQ_HANDLED;
1060		spi_writel(as, IDR, SPI_BIT(OVRES));
1061		dev_warn(master->dev.parent, "overrun\n");
 
1062
1063		/*
1064		 * When we get an overrun, we disregard the current
1065		 * transfer. Data will not be copied back from any
1066		 * bounce buffer and msg->actual_len will not be
1067		 * updated with the last xfer.
1068		 *
1069		 * We will also not process any remaning transfers in
1070		 * the message.
 
 
1071		 */
1072		as->done_status = -EIO;
1073		smp_wmb();
 
1074
1075		/* Clear any overrun happening while cleaning up */
1076		spi_readl(as, SR);
 
1077
1078		complete(&as->xfer_completion);
 
1079
1080	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1081		atmel_spi_lock(as);
1082
1083		if (as->current_remaining_bytes) {
1084			ret = IRQ_HANDLED;
1085			xfer = as->current_transfer;
1086			atmel_spi_pump_pio_data(as, xfer);
1087			if (!as->current_remaining_bytes)
1088				spi_writel(as, IDR, pending);
1089
1090			complete(&as->xfer_completion);
1091		}
1092
1093		atmel_spi_unlock(as);
1094	} else {
1095		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1096		ret = IRQ_HANDLED;
1097		spi_writel(as, IDR, pending);
1098	}
1099
1100	return ret;
1101}
1102
1103static irqreturn_t
1104atmel_spi_pdc_interrupt(int irq, void *dev_id)
1105{
1106	struct spi_master	*master = dev_id;
1107	struct atmel_spi	*as = spi_master_get_devdata(master);
1108	u32			status, pending, imr;
1109	int			ret = IRQ_NONE;
1110
1111	imr = spi_readl(as, IMR);
1112	status = spi_readl(as, SR);
1113	pending = status & imr;
1114
1115	if (pending & SPI_BIT(OVRES)) {
1116
1117		ret = IRQ_HANDLED;
1118
1119		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1120				     | SPI_BIT(OVRES)));
1121
1122		/* Clear any overrun happening while cleaning up */
1123		spi_readl(as, SR);
1124
1125		as->done_status = -EIO;
1126
1127		complete(&as->xfer_completion);
1128
1129	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1130		ret = IRQ_HANDLED;
1131
1132		spi_writel(as, IDR, pending);
1133
1134		complete(&as->xfer_completion);
1135	}
1136
1137	return ret;
1138}
1139
1140static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1141{
1142	struct spi_delay *delay = &spi->word_delay;
1143	u32 value = delay->value;
1144
1145	switch (delay->unit) {
1146	case SPI_DELAY_UNIT_NSECS:
1147		value /= 1000;
1148		break;
1149	case SPI_DELAY_UNIT_USECS:
1150		break;
1151	default:
1152		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1153	}
1154
1155	return (as->spi_clk / 1000000 * value) >> 5;
1156}
1157
1158static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1159{
1160	int i;
1161	struct spi_master *master = platform_get_drvdata(as->pdev);
1162
1163	if (!as->native_cs_free)
1164		return; /* already initialized */
1165
1166	if (!master->cs_gpiods)
1167		return; /* No CS GPIO */
1168
1169	/*
1170	 * On the first version of the controller (AT91RM9200), CS0
1171	 * can't be used associated with GPIO
1172	 */
1173	if (atmel_spi_is_v2(as))
1174		i = 0;
1175	else
1176		i = 1;
1177
1178	for (; i < 4; i++)
1179		if (master->cs_gpiods[i])
1180			as->native_cs_free |= BIT(i);
1181
1182	if (as->native_cs_free)
1183		as->native_cs_for_gpio = ffs(as->native_cs_free);
1184}
1185
1186static int atmel_spi_setup(struct spi_device *spi)
1187{
1188	struct atmel_spi	*as;
1189	struct atmel_spi_device	*asd;
1190	u32			csr;
1191	unsigned int		bits = spi->bits_per_word;
1192	int chip_select;
1193	int			word_delay_csr;
 
1194
1195	as = spi_master_get_devdata(spi->master);
1196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1197	/* see notes above re chipselect */
1198	if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1199		dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
 
 
1200		return -EINVAL;
1201	}
1202
1203	/* Setup() is called during spi_register_controller(aka
1204	 * spi_register_master) but after all membmers of the cs_gpiod
1205	 * array have been filled, so we can looked for which native
1206	 * CS will be free for using with GPIO
1207	 */
1208	initialize_native_cs_for_gpio(as);
1209
1210	if (spi->cs_gpiod && as->native_cs_free) {
1211		dev_err(&spi->dev,
1212			"No native CS available to support this GPIO CS\n");
1213		return -EBUSY;
1214	}
 
1215
1216	if (spi->cs_gpiod)
1217		chip_select = as->native_cs_for_gpio;
1218	else
1219		chip_select = spi->chip_select;
 
 
 
 
 
 
 
 
 
1220
1221	csr = SPI_BF(BITS, bits - 8);
1222	if (spi->mode & SPI_CPOL)
1223		csr |= SPI_BIT(CPOL);
1224	if (!(spi->mode & SPI_CPHA))
1225		csr |= SPI_BIT(NCPHA);
1226
1227	if (!spi->cs_gpiod)
1228		csr |= SPI_BIT(CSAAT);
 
 
 
 
1229	csr |= SPI_BF(DLYBS, 0);
 
1230
1231	word_delay_csr = atmel_word_delay_csr(spi, as);
1232	if (word_delay_csr < 0)
1233		return word_delay_csr;
1234
1235	/* DLYBCT adds delays between words.  This is useful for slow devices
1236	 * that need a bit of time to setup the next transfer.
1237	 */
1238	csr |= SPI_BF(DLYBCT, word_delay_csr);
1239
1240	asd = spi->controller_state;
1241	if (!asd) {
1242		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1243		if (!asd)
1244			return -ENOMEM;
1245
 
 
 
 
 
 
 
1246		spi->controller_state = asd;
 
 
 
 
 
 
 
 
 
1247	}
1248
1249	asd->csr = csr;
1250
1251	dev_dbg(&spi->dev,
1252		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1253		bits, spi->mode, spi->chip_select, csr);
1254
1255	if (!atmel_spi_is_v2(as))
1256		spi_writel(as, CSR0 + 4 * chip_select, csr);
1257
1258	return 0;
1259}
1260
1261static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
1262{
1263	struct atmel_spi *as = spi_master_get_devdata(spi->master);
1264	/* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1265	 * since we already have routines for activate/deactivate translate
1266	 * high/low to active/inactive
1267	 */
1268	enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
1269
1270	if (enable) {
1271		cs_activate(as, spi);
1272	} else {
1273		cs_deactivate(as, spi);
1274	}
1275
1276}
1277
1278static int atmel_spi_one_transfer(struct spi_master *master,
1279					struct spi_device *spi,
1280					struct spi_transfer *xfer)
1281{
1282	struct atmel_spi	*as;
 
 
 
1283	u8			bits;
1284	u32			len;
1285	struct atmel_spi_device	*asd;
1286	int			timeout;
1287	int			ret;
1288	unsigned long		dma_timeout;
1289
1290	as = spi_master_get_devdata(master);
 
 
 
1291
1292	asd = spi->controller_state;
1293	bits = (asd->csr >> 4) & 0xf;
1294	if (bits != xfer->bits_per_word - 8) {
1295		dev_dbg(&spi->dev,
1296			"you can't yet change bits_per_word in transfers\n");
1297		return -ENOPROTOOPT;
1298	}
1299
1300	/*
1301	 * DMA map early, for performance (empties dcache ASAP) and
1302	 * better fault reporting.
1303	 */
1304	if ((!master->cur_msg->is_dma_mapped)
1305		&& as->use_pdc) {
1306		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1307			return -ENOMEM;
1308	}
1309
1310	atmel_spi_set_xfer_speed(as, spi, xfer);
 
 
 
 
1311
1312	as->done_status = 0;
1313	as->current_transfer = xfer;
1314	as->current_remaining_bytes = xfer->len;
1315	while (as->current_remaining_bytes) {
1316		reinit_completion(&as->xfer_completion);
1317
1318		if (as->use_pdc) {
1319			atmel_spi_lock(as);
1320			atmel_spi_pdc_next_xfer(master, xfer);
1321			atmel_spi_unlock(as);
1322		} else if (atmel_spi_use_dma(as, xfer)) {
1323			len = as->current_remaining_bytes;
1324			ret = atmel_spi_next_xfer_dma_submit(master,
1325								xfer, &len);
1326			if (ret) {
1327				dev_err(&spi->dev,
1328					"unable to use DMA, fallback to PIO\n");
1329				as->done_status = ret;
1330				break;
1331			} else {
1332				as->current_remaining_bytes -= len;
1333				if (as->current_remaining_bytes < 0)
1334					as->current_remaining_bytes = 0;
1335			}
1336		} else {
1337			atmel_spi_lock(as);
1338			atmel_spi_next_xfer_pio(master, xfer);
1339			atmel_spi_unlock(as);
1340		}
1341
1342		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1343							  SPI_DMA_TIMEOUT);
1344		if (WARN_ON(dma_timeout == 0)) {
1345			dev_err(&spi->dev, "spi transfer timeout\n");
1346			as->done_status = -EIO;
1347		}
1348
1349		if (as->done_status)
1350			break;
 
 
 
 
 
 
 
 
 
 
1351	}
1352
1353	if (as->done_status) {
1354		if (as->use_pdc) {
1355			dev_warn(master->dev.parent,
1356				"overrun (%u/%u remaining)\n",
1357				spi_readl(as, TCR), spi_readl(as, RCR));
1358
1359			/*
1360			 * Clean up DMA registers and make sure the data
1361			 * registers are empty.
1362			 */
1363			spi_writel(as, RNCR, 0);
1364			spi_writel(as, TNCR, 0);
1365			spi_writel(as, RCR, 0);
1366			spi_writel(as, TCR, 0);
1367			for (timeout = 1000; timeout; timeout--)
1368				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1369					break;
1370			if (!timeout)
1371				dev_warn(master->dev.parent,
1372					 "timeout waiting for TXEMPTY");
1373			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1374				spi_readl(as, RDR);
1375
1376			/* Clear any overrun happening while cleaning up */
1377			spi_readl(as, SR);
1378
1379		} else if (atmel_spi_use_dma(as, xfer)) {
1380			atmel_spi_stop_dma(master);
1381		}
1382	}
 
1383
1384	if (!master->cur_msg->is_dma_mapped
1385		&& as->use_pdc)
1386		atmel_spi_dma_unmap_xfer(master, xfer);
1387
1388	if (as->use_pdc)
1389		atmel_spi_disable_pdc_transfer(as);
 
 
 
1390
1391	return as->done_status;
1392}
1393
1394static void atmel_spi_cleanup(struct spi_device *spi)
1395{
 
1396	struct atmel_spi_device	*asd = spi->controller_state;
 
 
1397
1398	if (!asd)
1399		return;
1400
 
 
 
 
 
 
 
1401	spi->controller_state = NULL;
 
1402	kfree(asd);
1403}
1404
1405static inline unsigned int atmel_get_version(struct atmel_spi *as)
1406{
1407	return spi_readl(as, VERSION) & 0x00000fff;
1408}
1409
1410static void atmel_get_caps(struct atmel_spi *as)
1411{
1412	unsigned int version;
1413
1414	version = atmel_get_version(as);
1415
1416	as->caps.is_spi2 = version > 0x121;
1417	as->caps.has_wdrbt = version >= 0x210;
1418	as->caps.has_dma_support = version >= 0x212;
1419	as->caps.has_pdc_support = version < 0x212;
1420}
1421
1422static void atmel_spi_init(struct atmel_spi *as)
1423{
1424	spi_writel(as, CR, SPI_BIT(SWRST));
1425	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1426
1427	/* It is recommended to enable FIFOs first thing after reset */
1428	if (as->fifo_size)
1429		spi_writel(as, CR, SPI_BIT(FIFOEN));
1430
1431	if (as->caps.has_wdrbt) {
1432		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1433				| SPI_BIT(MSTR));
1434	} else {
1435		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1436	}
1437
1438	if (as->use_pdc)
1439		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1440	spi_writel(as, CR, SPI_BIT(SPIEN));
1441}
1442
1443static int atmel_spi_probe(struct platform_device *pdev)
1444{
1445	struct resource		*regs;
1446	int			irq;
1447	struct clk		*clk;
1448	int			ret;
1449	struct spi_master	*master;
1450	struct atmel_spi	*as;
1451
1452	/* Select default pin state */
1453	pinctrl_pm_select_default_state(&pdev->dev);
1454
1455	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1456	if (!regs)
1457		return -ENXIO;
1458
1459	irq = platform_get_irq(pdev, 0);
1460	if (irq < 0)
1461		return irq;
1462
1463	clk = devm_clk_get(&pdev->dev, "spi_clk");
1464	if (IS_ERR(clk))
1465		return PTR_ERR(clk);
1466
1467	/* setup spi core then atmel-specific driver state */
1468	master = spi_alloc_master(&pdev->dev, sizeof(*as));
 
1469	if (!master)
1470		return -ENOMEM;
1471
1472	/* the spi->mode bits understood by this driver: */
1473	master->use_gpio_descriptors = true;
1474	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1475	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1476	master->dev.of_node = pdev->dev.of_node;
1477	master->bus_num = pdev->id;
1478	master->num_chipselect = 4;
1479	master->setup = atmel_spi_setup;
1480	master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX |
1481			SPI_MASTER_GPIO_SS);
1482	master->transfer_one = atmel_spi_one_transfer;
1483	master->set_cs = atmel_spi_set_cs;
1484	master->cleanup = atmel_spi_cleanup;
1485	master->auto_runtime_pm = true;
1486	master->max_dma_len = SPI_MAX_DMA_XFER;
1487	master->can_dma = atmel_spi_can_dma;
1488	platform_set_drvdata(pdev, master);
1489
1490	as = spi_master_get_devdata(master);
1491
 
 
 
 
 
 
 
 
 
1492	spin_lock_init(&as->lock);
1493
1494	as->pdev = pdev;
1495	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1496	if (IS_ERR(as->regs)) {
1497		ret = PTR_ERR(as->regs);
1498		goto out_unmap_regs;
1499	}
1500	as->phybase = regs->start;
1501	as->irq = irq;
1502	as->clk = clk;
1503
1504	init_completion(&as->xfer_completion);
1505
1506	atmel_get_caps(as);
1507
1508	as->use_dma = false;
1509	as->use_pdc = false;
1510	if (as->caps.has_dma_support) {
1511		ret = atmel_spi_configure_dma(master, as);
1512		if (ret == 0) {
1513			as->use_dma = true;
1514		} else if (ret == -EPROBE_DEFER) {
1515			goto out_unmap_regs;
1516		}
1517	} else if (as->caps.has_pdc_support) {
1518		as->use_pdc = true;
1519	}
1520
1521	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1522		as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1523						      SPI_MAX_DMA_XFER,
1524						      &as->dma_addr_rx_bbuf,
1525						      GFP_KERNEL | GFP_DMA);
1526		if (!as->addr_rx_bbuf) {
1527			as->use_dma = false;
1528		} else {
1529			as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1530					SPI_MAX_DMA_XFER,
1531					&as->dma_addr_tx_bbuf,
1532					GFP_KERNEL | GFP_DMA);
1533			if (!as->addr_tx_bbuf) {
1534				as->use_dma = false;
1535				dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1536						  as->addr_rx_bbuf,
1537						  as->dma_addr_rx_bbuf);
1538			}
1539		}
1540		if (!as->use_dma)
1541			dev_info(master->dev.parent,
1542				 "  can not allocate dma coherent memory\n");
1543	}
1544
1545	if (as->caps.has_dma_support && !as->use_dma)
1546		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1547
1548	if (as->use_pdc) {
1549		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1550					0, dev_name(&pdev->dev), master);
1551	} else {
1552		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1553					0, dev_name(&pdev->dev), master);
1554	}
1555	if (ret)
1556		goto out_unmap_regs;
1557
1558	/* Initialize the hardware */
1559	ret = clk_prepare_enable(clk);
1560	if (ret)
1561		goto out_free_irq;
 
 
 
1562
1563	as->spi_clk = clk_get_rate(clk);
 
 
1564
1565	as->fifo_size = 0;
1566	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1567				  &as->fifo_size)) {
1568		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1569	}
1570
1571	atmel_spi_init(as);
1572
1573	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1574	pm_runtime_use_autosuspend(&pdev->dev);
1575	pm_runtime_set_active(&pdev->dev);
1576	pm_runtime_enable(&pdev->dev);
1577
1578	ret = devm_spi_register_master(&pdev->dev, master);
1579	if (ret)
1580		goto out_free_dma;
1581
1582	/* go! */
1583	dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1584			atmel_get_version(as), (unsigned long)regs->start,
1585			irq);
1586
1587	return 0;
1588
1589out_free_dma:
1590	pm_runtime_disable(&pdev->dev);
1591	pm_runtime_set_suspended(&pdev->dev);
1592
1593	if (as->use_dma)
1594		atmel_spi_release_dma(master);
1595
1596	spi_writel(as, CR, SPI_BIT(SWRST));
1597	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1598	clk_disable_unprepare(clk);
1599out_free_irq:
1600out_unmap_regs:
 
 
 
 
 
 
1601	spi_master_put(master);
1602	return ret;
1603}
1604
1605static int atmel_spi_remove(struct platform_device *pdev)
1606{
1607	struct spi_master	*master = platform_get_drvdata(pdev);
1608	struct atmel_spi	*as = spi_master_get_devdata(master);
1609
1610	pm_runtime_get_sync(&pdev->dev);
1611
1612	/* reset the hardware and block queue progress */
1613	if (as->use_dma) {
1614		atmel_spi_stop_dma(master);
1615		atmel_spi_release_dma(master);
1616		if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1617			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1618					  as->addr_tx_bbuf,
1619					  as->dma_addr_tx_bbuf);
1620			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1621					  as->addr_rx_bbuf,
1622					  as->dma_addr_rx_bbuf);
1623		}
1624	}
1625
1626	spin_lock_irq(&as->lock);
 
1627	spi_writel(as, CR, SPI_BIT(SWRST));
1628	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1629	spi_readl(as, SR);
1630	spin_unlock_irq(&as->lock);
1631
1632	clk_disable_unprepare(as->clk);
 
 
 
 
 
 
 
1633
1634	pm_runtime_put_noidle(&pdev->dev);
1635	pm_runtime_disable(&pdev->dev);
1636
1637	return 0;
1638}
1639
1640#ifdef CONFIG_PM
1641static int atmel_spi_runtime_suspend(struct device *dev)
1642{
1643	struct spi_master *master = dev_get_drvdata(dev);
1644	struct atmel_spi *as = spi_master_get_devdata(master);
1645
1646	clk_disable_unprepare(as->clk);
1647	pinctrl_pm_select_sleep_state(dev);
1648
1649	return 0;
1650}
1651
1652static int atmel_spi_runtime_resume(struct device *dev)
1653{
1654	struct spi_master *master = dev_get_drvdata(dev);
1655	struct atmel_spi *as = spi_master_get_devdata(master);
1656
1657	pinctrl_pm_select_default_state(dev);
1658
1659	return clk_prepare_enable(as->clk);
1660}
1661
1662#ifdef CONFIG_PM_SLEEP
1663static int atmel_spi_suspend(struct device *dev)
1664{
1665	struct spi_master *master = dev_get_drvdata(dev);
1666	int ret;
1667
1668	/* Stop the queue running */
1669	ret = spi_master_suspend(master);
1670	if (ret)
1671		return ret;
1672
1673	if (!pm_runtime_suspended(dev))
1674		atmel_spi_runtime_suspend(dev);
1675
 
1676	return 0;
1677}
1678
1679static int atmel_spi_resume(struct device *dev)
1680{
1681	struct spi_master *master = dev_get_drvdata(dev);
1682	struct atmel_spi *as = spi_master_get_devdata(master);
1683	int ret;
1684
1685	ret = clk_prepare_enable(as->clk);
1686	if (ret)
1687		return ret;
1688
1689	atmel_spi_init(as);
1690
1691	clk_disable_unprepare(as->clk);
1692
1693	if (!pm_runtime_suspended(dev)) {
1694		ret = atmel_spi_runtime_resume(dev);
1695		if (ret)
1696			return ret;
1697	}
1698
1699	/* Start the queue running */
1700	return spi_master_resume(master);
1701}
1702#endif
1703
1704static const struct dev_pm_ops atmel_spi_pm_ops = {
1705	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1706	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1707			   atmel_spi_runtime_resume, NULL)
1708};
1709#define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1710#else
1711#define ATMEL_SPI_PM_OPS	NULL
 
1712#endif
1713
1714static const struct of_device_id atmel_spi_dt_ids[] = {
1715	{ .compatible = "atmel,at91rm9200-spi" },
1716	{ /* sentinel */ }
1717};
1718
1719MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1720
1721static struct platform_driver atmel_spi_driver = {
1722	.driver		= {
1723		.name	= "atmel_spi",
1724		.pm	= ATMEL_SPI_PM_OPS,
1725		.of_match_table	= atmel_spi_dt_ids,
1726	},
 
 
1727	.probe		= atmel_spi_probe,
1728	.remove		= atmel_spi_remove,
1729};
1730module_platform_driver(atmel_spi_driver);
1731
1732MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1733MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1734MODULE_LICENSE("GPL");
1735MODULE_ALIAS("platform:atmel_spi");