Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright(C) 2015 Linaro Limited. All rights reserved.
  4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
  5 */
  6
  7#include <linux/coresight.h>
  8#include <linux/coresight-pmu.h>
  9#include <linux/cpumask.h>
 10#include <linux/device.h>
 11#include <linux/list.h>
 12#include <linux/mm.h>
 13#include <linux/init.h>
 14#include <linux/perf_event.h>
 15#include <linux/percpu-defs.h>
 16#include <linux/slab.h>
 17#include <linux/stringhash.h>
 18#include <linux/types.h>
 19#include <linux/workqueue.h>
 20
 21#include "coresight-etm-perf.h"
 22#include "coresight-priv.h"
 23
 24static struct pmu etm_pmu;
 25static bool etm_perf_up;
 26
 27/*
 28 * An ETM context for a running event includes the perf aux handle
 29 * and aux_data. For ETM, the aux_data (etm_event_data), consists of
 30 * the trace path and the sink configuration. The event data is accessible
 31 * via perf_get_aux(handle). However, a sink could "end" a perf output
 32 * handle via the IRQ handler. And if the "sink" encounters a failure
 33 * to "begin" another session (e.g due to lack of space in the buffer),
 34 * the handle will be cleared. Thus, the event_data may not be accessible
 35 * from the handle when we get to the etm_event_stop(), which is required
 36 * for stopping the trace path. The event_data is guaranteed to stay alive
 37 * until "free_aux()", which cannot happen as long as the event is active on
 38 * the ETM. Thus the event_data for the session must be part of the ETM context
 39 * to make sure we can disable the trace path.
 40 */
 41struct etm_ctxt {
 42	struct perf_output_handle handle;
 43	struct etm_event_data *event_data;
 44};
 45
 46static DEFINE_PER_CPU(struct etm_ctxt, etm_ctxt);
 47static DEFINE_PER_CPU(struct coresight_device *, csdev_src);
 48
 49/*
 50 * The PMU formats were orignally for ETMv3.5/PTM's ETMCR 'config';
 51 * now take them as general formats and apply on all ETMs.
 52 */
 53PMU_FORMAT_ATTR(cycacc,		"config:" __stringify(ETM_OPT_CYCACC));
 54/* contextid1 enables tracing CONTEXTIDR_EL1 for ETMv4 */
 55PMU_FORMAT_ATTR(contextid1,	"config:" __stringify(ETM_OPT_CTXTID));
 56/* contextid2 enables tracing CONTEXTIDR_EL2 for ETMv4 */
 57PMU_FORMAT_ATTR(contextid2,	"config:" __stringify(ETM_OPT_CTXTID2));
 58PMU_FORMAT_ATTR(timestamp,	"config:" __stringify(ETM_OPT_TS));
 59PMU_FORMAT_ATTR(retstack,	"config:" __stringify(ETM_OPT_RETSTK));
 60/* Sink ID - same for all ETMs */
 61PMU_FORMAT_ATTR(sinkid,		"config2:0-31");
 62
 63/*
 64 * contextid always traces the "PID".  The PID is in CONTEXTIDR_EL1
 65 * when the kernel is running at EL1; when the kernel is at EL2,
 66 * the PID is in CONTEXTIDR_EL2.
 67 */
 68static ssize_t format_attr_contextid_show(struct device *dev,
 69					  struct device_attribute *attr,
 70					  char *page)
 71{
 72	int pid_fmt = ETM_OPT_CTXTID;
 73
 74#if IS_ENABLED(CONFIG_CORESIGHT_SOURCE_ETM4X)
 75	pid_fmt = is_kernel_in_hyp_mode() ? ETM_OPT_CTXTID2 : ETM_OPT_CTXTID;
 76#endif
 77	return sprintf(page, "config:%d\n", pid_fmt);
 78}
 79
 80static struct device_attribute format_attr_contextid =
 81	__ATTR(contextid, 0444, format_attr_contextid_show, NULL);
 82
 83static struct attribute *etm_config_formats_attr[] = {
 84	&format_attr_cycacc.attr,
 85	&format_attr_contextid.attr,
 86	&format_attr_contextid1.attr,
 87	&format_attr_contextid2.attr,
 88	&format_attr_timestamp.attr,
 89	&format_attr_retstack.attr,
 90	&format_attr_sinkid.attr,
 91	NULL,
 92};
 93
 94static const struct attribute_group etm_pmu_format_group = {
 95	.name   = "format",
 96	.attrs  = etm_config_formats_attr,
 97};
 98
 99static struct attribute *etm_config_sinks_attr[] = {
100	NULL,
101};
102
103static const struct attribute_group etm_pmu_sinks_group = {
104	.name   = "sinks",
105	.attrs  = etm_config_sinks_attr,
106};
107
108static const struct attribute_group *etm_pmu_attr_groups[] = {
109	&etm_pmu_format_group,
110	&etm_pmu_sinks_group,
111	NULL,
112};
113
114static inline struct list_head **
115etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu)
116{
117	return per_cpu_ptr(data->path, cpu);
118}
119
120static inline struct list_head *
121etm_event_cpu_path(struct etm_event_data *data, int cpu)
122{
123	return *etm_event_cpu_path_ptr(data, cpu);
124}
125
126static void etm_event_read(struct perf_event *event) {}
127
128static int etm_addr_filters_alloc(struct perf_event *event)
129{
130	struct etm_filters *filters;
131	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
132
133	filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node);
134	if (!filters)
135		return -ENOMEM;
136
137	if (event->parent)
138		memcpy(filters, event->parent->hw.addr_filters,
139		       sizeof(*filters));
140
141	event->hw.addr_filters = filters;
142
143	return 0;
144}
145
146static void etm_event_destroy(struct perf_event *event)
147{
148	kfree(event->hw.addr_filters);
149	event->hw.addr_filters = NULL;
150}
151
152static int etm_event_init(struct perf_event *event)
153{
154	int ret = 0;
155
156	if (event->attr.type != etm_pmu.type) {
157		ret = -ENOENT;
158		goto out;
159	}
160
161	ret = etm_addr_filters_alloc(event);
162	if (ret)
163		goto out;
164
165	event->destroy = etm_event_destroy;
166out:
167	return ret;
168}
169
170static void free_sink_buffer(struct etm_event_data *event_data)
171{
172	int cpu;
173	cpumask_t *mask = &event_data->mask;
174	struct coresight_device *sink;
175
176	if (!event_data->snk_config)
177		return;
178
179	if (WARN_ON(cpumask_empty(mask)))
180		return;
181
182	cpu = cpumask_first(mask);
183	sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu));
184	sink_ops(sink)->free_buffer(event_data->snk_config);
185}
186
187static void free_event_data(struct work_struct *work)
188{
189	int cpu;
190	cpumask_t *mask;
191	struct etm_event_data *event_data;
192
193	event_data = container_of(work, struct etm_event_data, work);
194	mask = &event_data->mask;
195
196	/* Free the sink buffers, if there are any */
197	free_sink_buffer(event_data);
198
199	for_each_cpu(cpu, mask) {
200		struct list_head **ppath;
201
202		ppath = etm_event_cpu_path_ptr(event_data, cpu);
203		if (!(IS_ERR_OR_NULL(*ppath)))
204			coresight_release_path(*ppath);
205		*ppath = NULL;
206	}
207
208	free_percpu(event_data->path);
209	kfree(event_data);
210}
211
212static void *alloc_event_data(int cpu)
213{
214	cpumask_t *mask;
215	struct etm_event_data *event_data;
216
217	/* First get memory for the session's data */
218	event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL);
219	if (!event_data)
220		return NULL;
221
222
223	mask = &event_data->mask;
224	if (cpu != -1)
225		cpumask_set_cpu(cpu, mask);
226	else
227		cpumask_copy(mask, cpu_present_mask);
228
229	/*
230	 * Each CPU has a single path between source and destination.  As such
231	 * allocate an array using CPU numbers as indexes.  That way a path
232	 * for any CPU can easily be accessed at any given time.  We proceed
233	 * the same way for sessions involving a single CPU.  The cost of
234	 * unused memory when dealing with single CPU trace scenarios is small
235	 * compared to the cost of searching through an optimized array.
236	 */
237	event_data->path = alloc_percpu(struct list_head *);
238
239	if (!event_data->path) {
240		kfree(event_data);
241		return NULL;
242	}
243
244	return event_data;
245}
246
247static void etm_free_aux(void *data)
248{
249	struct etm_event_data *event_data = data;
250
251	schedule_work(&event_data->work);
252}
253
254/*
255 * Check if two given sinks are compatible with each other,
256 * so that they can use the same sink buffers, when an event
257 * moves around.
258 */
259static bool sinks_compatible(struct coresight_device *a,
260			     struct coresight_device *b)
261{
262	if (!a || !b)
263		return false;
264	/*
265	 * If the sinks are of the same subtype and driven
266	 * by the same driver, we can use the same buffer
267	 * on these sinks.
268	 */
269	return (a->subtype.sink_subtype == b->subtype.sink_subtype) &&
270	       (sink_ops(a) == sink_ops(b));
271}
272
273static void *etm_setup_aux(struct perf_event *event, void **pages,
274			   int nr_pages, bool overwrite)
275{
276	u32 id;
277	int cpu = event->cpu;
278	cpumask_t *mask;
279	struct coresight_device *sink = NULL;
280	struct coresight_device *user_sink = NULL, *last_sink = NULL;
281	struct etm_event_data *event_data = NULL;
282
283	event_data = alloc_event_data(cpu);
284	if (!event_data)
285		return NULL;
286	INIT_WORK(&event_data->work, free_event_data);
287
288	/* First get the selected sink from user space. */
289	if (event->attr.config2) {
290		id = (u32)event->attr.config2;
291		sink = user_sink = coresight_get_sink_by_id(id);
292	}
293
294	mask = &event_data->mask;
295
296	/*
297	 * Setup the path for each CPU in a trace session. We try to build
298	 * trace path for each CPU in the mask. If we don't find an ETM
299	 * for the CPU or fail to build a path, we clear the CPU from the
300	 * mask and continue with the rest. If ever we try to trace on those
301	 * CPUs, we can handle it and fail the session.
302	 */
303	for_each_cpu(cpu, mask) {
304		struct list_head *path;
305		struct coresight_device *csdev;
306
307		csdev = per_cpu(csdev_src, cpu);
308		/*
309		 * If there is no ETM associated with this CPU clear it from
310		 * the mask and continue with the rest. If ever we try to trace
311		 * on this CPU, we handle it accordingly.
312		 */
313		if (!csdev) {
314			cpumask_clear_cpu(cpu, mask);
315			continue;
316		}
317
318		/*
319		 * No sink provided - look for a default sink for all the ETMs,
320		 * where this event can be scheduled.
321		 * We allocate the sink specific buffers only once for this
322		 * event. If the ETMs have different default sink devices, we
323		 * can only use a single "type" of sink as the event can carry
324		 * only one sink specific buffer. Thus we have to make sure
325		 * that the sinks are of the same type and driven by the same
326		 * driver, as the one we allocate the buffer for. As such
327		 * we choose the first sink and check if the remaining ETMs
328		 * have a compatible default sink. We don't trace on a CPU
329		 * if the sink is not compatible.
330		 */
331		if (!user_sink) {
332			/* Find the default sink for this ETM */
333			sink = coresight_find_default_sink(csdev);
334			if (!sink) {
335				cpumask_clear_cpu(cpu, mask);
336				continue;
337			}
338
339			/* Check if this sink compatible with the last sink */
340			if (last_sink && !sinks_compatible(last_sink, sink)) {
341				cpumask_clear_cpu(cpu, mask);
342				continue;
343			}
344			last_sink = sink;
345		}
346
347		/*
348		 * Building a path doesn't enable it, it simply builds a
349		 * list of devices from source to sink that can be
350		 * referenced later when the path is actually needed.
351		 */
352		path = coresight_build_path(csdev, sink);
353		if (IS_ERR(path)) {
354			cpumask_clear_cpu(cpu, mask);
355			continue;
356		}
357
358		*etm_event_cpu_path_ptr(event_data, cpu) = path;
359	}
360
361	/* no sink found for any CPU - cannot trace */
362	if (!sink)
363		goto err;
364
365	/* If we don't have any CPUs ready for tracing, abort */
366	cpu = cpumask_first(mask);
367	if (cpu >= nr_cpu_ids)
368		goto err;
369
370	if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer)
371		goto err;
372
373	/*
374	 * Allocate the sink buffer for this session. All the sinks
375	 * where this event can be scheduled are ensured to be of the
376	 * same type. Thus the same sink configuration is used by the
377	 * sinks.
378	 */
379	event_data->snk_config =
380			sink_ops(sink)->alloc_buffer(sink, event, pages,
381						     nr_pages, overwrite);
382	if (!event_data->snk_config)
383		goto err;
384
385out:
386	return event_data;
387
388err:
389	etm_free_aux(event_data);
390	event_data = NULL;
391	goto out;
392}
393
394static void etm_event_start(struct perf_event *event, int flags)
395{
396	int cpu = smp_processor_id();
397	struct etm_event_data *event_data;
398	struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
399	struct perf_output_handle *handle = &ctxt->handle;
400	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
401	struct list_head *path;
402
403	if (!csdev)
404		goto fail;
405
406	/* Have we messed up our tracking ? */
407	if (WARN_ON(ctxt->event_data))
408		goto fail;
409
410	/*
411	 * Deal with the ring buffer API and get a handle on the
412	 * session's information.
413	 */
414	event_data = perf_aux_output_begin(handle, event);
415	if (!event_data)
416		goto fail;
417
418	/*
419	 * Check if this ETM is allowed to trace, as decided
420	 * at etm_setup_aux(). This could be due to an unreachable
421	 * sink from this ETM. We can't do much in this case if
422	 * the sink was specified or hinted to the driver. For
423	 * now, simply don't record anything on this ETM.
424	 */
425	if (!cpumask_test_cpu(cpu, &event_data->mask))
426		goto fail_end_stop;
427
428	path = etm_event_cpu_path(event_data, cpu);
429	/* We need a sink, no need to continue without one */
430	sink = coresight_get_sink(path);
431	if (WARN_ON_ONCE(!sink))
432		goto fail_end_stop;
433
434	/* Nothing will happen without a path */
435	if (coresight_enable_path(path, CS_MODE_PERF, handle))
436		goto fail_end_stop;
437
438	/* Tell the perf core the event is alive */
439	event->hw.state = 0;
440
441	/* Finally enable the tracer */
442	if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF))
443		goto fail_disable_path;
444
445	/* Save the event_data for this ETM */
446	ctxt->event_data = event_data;
447out:
448	return;
449
450fail_disable_path:
451	coresight_disable_path(path);
452fail_end_stop:
453	perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
454	perf_aux_output_end(handle, 0);
455fail:
456	event->hw.state = PERF_HES_STOPPED;
457	goto out;
458}
459
460static void etm_event_stop(struct perf_event *event, int mode)
461{
462	int cpu = smp_processor_id();
463	unsigned long size;
464	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
465	struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
466	struct perf_output_handle *handle = &ctxt->handle;
467	struct etm_event_data *event_data;
468	struct list_head *path;
469
470	/*
471	 * If we still have access to the event_data via handle,
472	 * confirm that we haven't messed up the tracking.
473	 */
474	if (handle->event &&
475	    WARN_ON(perf_get_aux(handle) != ctxt->event_data))
476		return;
477
478	event_data = ctxt->event_data;
479	/* Clear the event_data as this ETM is stopping the trace. */
480	ctxt->event_data = NULL;
481
482	if (event->hw.state == PERF_HES_STOPPED)
483		return;
484
485	/* We must have a valid event_data for a running event */
486	if (WARN_ON(!event_data))
487		return;
488
489	if (!csdev)
490		return;
491
492	path = etm_event_cpu_path(event_data, cpu);
493	if (!path)
494		return;
495
496	sink = coresight_get_sink(path);
497	if (!sink)
498		return;
499
500	/* stop tracer */
501	source_ops(csdev)->disable(csdev, event);
502
503	/* tell the core */
504	event->hw.state = PERF_HES_STOPPED;
505
506	/*
507	 * If the handle is not bound to an event anymore
508	 * (e.g, the sink driver was unable to restart the
509	 * handle due to lack of buffer space), we don't
510	 * have to do anything here.
511	 */
512	if (handle->event && (mode & PERF_EF_UPDATE)) {
513		if (WARN_ON_ONCE(handle->event != event))
514			return;
515
516		/* update trace information */
517		if (!sink_ops(sink)->update_buffer)
518			return;
519
520		size = sink_ops(sink)->update_buffer(sink, handle,
521					      event_data->snk_config);
522		perf_aux_output_end(handle, size);
523	}
524
525	/* Disabling the path make its elements available to other sessions */
526	coresight_disable_path(path);
527}
528
529static int etm_event_add(struct perf_event *event, int mode)
530{
531	int ret = 0;
532	struct hw_perf_event *hwc = &event->hw;
533
534	if (mode & PERF_EF_START) {
535		etm_event_start(event, 0);
536		if (hwc->state & PERF_HES_STOPPED)
537			ret = -EINVAL;
538	} else {
539		hwc->state = PERF_HES_STOPPED;
540	}
541
542	return ret;
543}
544
545static void etm_event_del(struct perf_event *event, int mode)
546{
547	etm_event_stop(event, PERF_EF_UPDATE);
548}
549
550static int etm_addr_filters_validate(struct list_head *filters)
551{
552	bool range = false, address = false;
553	int index = 0;
554	struct perf_addr_filter *filter;
555
556	list_for_each_entry(filter, filters, entry) {
557		/*
558		 * No need to go further if there's no more
559		 * room for filters.
560		 */
561		if (++index > ETM_ADDR_CMP_MAX)
562			return -EOPNOTSUPP;
563
564		/* filter::size==0 means single address trigger */
565		if (filter->size) {
566			/*
567			 * The existing code relies on START/STOP filters
568			 * being address filters.
569			 */
570			if (filter->action == PERF_ADDR_FILTER_ACTION_START ||
571			    filter->action == PERF_ADDR_FILTER_ACTION_STOP)
572				return -EOPNOTSUPP;
573
574			range = true;
575		} else
576			address = true;
577
578		/*
579		 * At this time we don't allow range and start/stop filtering
580		 * to cohabitate, they have to be mutually exclusive.
581		 */
582		if (range && address)
583			return -EOPNOTSUPP;
584	}
585
586	return 0;
587}
588
589static void etm_addr_filters_sync(struct perf_event *event)
590{
591	struct perf_addr_filters_head *head = perf_event_addr_filters(event);
592	unsigned long start, stop;
593	struct perf_addr_filter_range *fr = event->addr_filter_ranges;
594	struct etm_filters *filters = event->hw.addr_filters;
595	struct etm_filter *etm_filter;
596	struct perf_addr_filter *filter;
597	int i = 0;
598
599	list_for_each_entry(filter, &head->list, entry) {
600		start = fr[i].start;
601		stop = start + fr[i].size;
602		etm_filter = &filters->etm_filter[i];
603
604		switch (filter->action) {
605		case PERF_ADDR_FILTER_ACTION_FILTER:
606			etm_filter->start_addr = start;
607			etm_filter->stop_addr = stop;
608			etm_filter->type = ETM_ADDR_TYPE_RANGE;
609			break;
610		case PERF_ADDR_FILTER_ACTION_START:
611			etm_filter->start_addr = start;
612			etm_filter->type = ETM_ADDR_TYPE_START;
613			break;
614		case PERF_ADDR_FILTER_ACTION_STOP:
615			etm_filter->stop_addr = stop;
616			etm_filter->type = ETM_ADDR_TYPE_STOP;
617			break;
618		}
619		i++;
620	}
621
622	filters->nr_filters = i;
623}
624
625int etm_perf_symlink(struct coresight_device *csdev, bool link)
626{
627	char entry[sizeof("cpu9999999")];
628	int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev);
629	struct device *pmu_dev = etm_pmu.dev;
630	struct device *cs_dev = &csdev->dev;
631
632	sprintf(entry, "cpu%d", cpu);
633
634	if (!etm_perf_up)
635		return -EPROBE_DEFER;
636
637	if (link) {
638		ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry);
639		if (ret)
640			return ret;
641		per_cpu(csdev_src, cpu) = csdev;
642	} else {
643		sysfs_remove_link(&pmu_dev->kobj, entry);
644		per_cpu(csdev_src, cpu) = NULL;
645	}
646
647	return 0;
648}
649EXPORT_SYMBOL_GPL(etm_perf_symlink);
650
651static ssize_t etm_perf_sink_name_show(struct device *dev,
652				       struct device_attribute *dattr,
653				       char *buf)
654{
655	struct dev_ext_attribute *ea;
656
657	ea = container_of(dattr, struct dev_ext_attribute, attr);
658	return scnprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)(ea->var));
659}
660
661int etm_perf_add_symlink_sink(struct coresight_device *csdev)
662{
663	int ret;
664	unsigned long hash;
665	const char *name;
666	struct device *pmu_dev = etm_pmu.dev;
667	struct device *dev = &csdev->dev;
668	struct dev_ext_attribute *ea;
669
670	if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
671	    csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
672		return -EINVAL;
673
674	if (csdev->ea != NULL)
675		return -EINVAL;
676
677	if (!etm_perf_up)
678		return -EPROBE_DEFER;
679
680	ea = devm_kzalloc(dev, sizeof(*ea), GFP_KERNEL);
681	if (!ea)
682		return -ENOMEM;
683
684	name = dev_name(dev);
685	/* See function coresight_get_sink_by_id() to know where this is used */
686	hash = hashlen_hash(hashlen_string(NULL, name));
687
688	sysfs_attr_init(&ea->attr.attr);
689	ea->attr.attr.name = devm_kstrdup(dev, name, GFP_KERNEL);
690	if (!ea->attr.attr.name)
691		return -ENOMEM;
692
693	ea->attr.attr.mode = 0444;
694	ea->attr.show = etm_perf_sink_name_show;
695	ea->var = (unsigned long *)hash;
696
697	ret = sysfs_add_file_to_group(&pmu_dev->kobj,
698				      &ea->attr.attr, "sinks");
699
700	if (!ret)
701		csdev->ea = ea;
702
703	return ret;
704}
705
706void etm_perf_del_symlink_sink(struct coresight_device *csdev)
707{
708	struct device *pmu_dev = etm_pmu.dev;
709	struct dev_ext_attribute *ea = csdev->ea;
710
711	if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
712	    csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
713		return;
714
715	if (!ea)
716		return;
717
718	sysfs_remove_file_from_group(&pmu_dev->kobj,
719				     &ea->attr.attr, "sinks");
720	csdev->ea = NULL;
721}
722
723int __init etm_perf_init(void)
724{
725	int ret;
726
727	etm_pmu.capabilities		= (PERF_PMU_CAP_EXCLUSIVE |
728					   PERF_PMU_CAP_ITRACE);
729
730	etm_pmu.attr_groups		= etm_pmu_attr_groups;
731	etm_pmu.task_ctx_nr		= perf_sw_context;
732	etm_pmu.read			= etm_event_read;
733	etm_pmu.event_init		= etm_event_init;
734	etm_pmu.setup_aux		= etm_setup_aux;
735	etm_pmu.free_aux		= etm_free_aux;
736	etm_pmu.start			= etm_event_start;
737	etm_pmu.stop			= etm_event_stop;
738	etm_pmu.add			= etm_event_add;
739	etm_pmu.del			= etm_event_del;
740	etm_pmu.addr_filters_sync	= etm_addr_filters_sync;
741	etm_pmu.addr_filters_validate	= etm_addr_filters_validate;
742	etm_pmu.nr_addr_filters		= ETM_ADDR_CMP_MAX;
743
744	ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1);
745	if (ret == 0)
746		etm_perf_up = true;
747
748	return ret;
749}
750
751void __exit etm_perf_exit(void)
752{
753	perf_pmu_unregister(&etm_pmu);
754}