Linux Audio

Check our new training course

Loading...
v3.5.6
 
 
 
  1#include <linux/module.h>
  2#include <linux/sched.h>
 
  3#include <linux/mutex.h>
  4#include <linux/list.h>
  5#include <linux/stringify.h>
  6#include <linux/kprobes.h>
  7#include <linux/mm.h>
  8#include <linux/vmalloc.h>
  9#include <linux/memory.h>
 10#include <linux/stop_machine.h>
 11#include <linux/slab.h>
 
 
 
 
 
 
 12#include <asm/alternative.h>
 13#include <asm/sections.h>
 14#include <asm/pgtable.h>
 15#include <asm/mce.h>
 16#include <asm/nmi.h>
 17#include <asm/cacheflush.h>
 18#include <asm/tlbflush.h>
 
 19#include <asm/io.h>
 20#include <asm/fixmap.h>
 
 21
 22#define MAX_PATCH_LEN (255-1)
 23
 24#ifdef CONFIG_HOTPLUG_CPU
 25static int smp_alt_once;
 26
 27static int __init bootonly(char *str)
 28{
 29	smp_alt_once = 1;
 30	return 1;
 31}
 32__setup("smp-alt-boot", bootonly);
 33#else
 34#define smp_alt_once 1
 35#endif
 36
 37static int __initdata_or_module debug_alternative;
 38
 39static int __init debug_alt(char *str)
 40{
 41	debug_alternative = 1;
 42	return 1;
 43}
 44__setup("debug-alternative", debug_alt);
 45
 46static int noreplace_smp;
 47
 48static int __init setup_noreplace_smp(char *str)
 49{
 50	noreplace_smp = 1;
 51	return 1;
 52}
 53__setup("noreplace-smp", setup_noreplace_smp);
 54
 55#ifdef CONFIG_PARAVIRT
 56static int __initdata_or_module noreplace_paravirt = 0;
 57
 58static int __init setup_noreplace_paravirt(char *str)
 59{
 60	noreplace_paravirt = 1;
 61	return 1;
 62}
 63__setup("noreplace-paravirt", setup_noreplace_paravirt);
 64#endif
 65
 66#define DPRINTK(fmt, args...) if (debug_alternative) \
 67	printk(KERN_DEBUG fmt, args)
 68
 69/*
 70 * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
 71 * that correspond to that nop. Getting from one nop to the next, we
 72 * add to the array the offset that is equal to the sum of all sizes of
 73 * nops preceding the one we are after.
 74 *
 75 * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
 76 * nice symmetry of sizes of the previous nops.
 77 */
 78#if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
 79static const unsigned char intelnops[] =
 80{
 81	GENERIC_NOP1,
 82	GENERIC_NOP2,
 83	GENERIC_NOP3,
 84	GENERIC_NOP4,
 85	GENERIC_NOP5,
 86	GENERIC_NOP6,
 87	GENERIC_NOP7,
 88	GENERIC_NOP8,
 89	GENERIC_NOP5_ATOMIC
 90};
 91static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
 92{
 93	NULL,
 94	intelnops,
 95	intelnops + 1,
 96	intelnops + 1 + 2,
 97	intelnops + 1 + 2 + 3,
 98	intelnops + 1 + 2 + 3 + 4,
 99	intelnops + 1 + 2 + 3 + 4 + 5,
100	intelnops + 1 + 2 + 3 + 4 + 5 + 6,
101	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
102	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
103};
104#endif
105
106#ifdef K8_NOP1
107static const unsigned char k8nops[] =
108{
109	K8_NOP1,
110	K8_NOP2,
111	K8_NOP3,
112	K8_NOP4,
113	K8_NOP5,
114	K8_NOP6,
115	K8_NOP7,
116	K8_NOP8,
117	K8_NOP5_ATOMIC
118};
119static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
120{
121	NULL,
122	k8nops,
123	k8nops + 1,
124	k8nops + 1 + 2,
125	k8nops + 1 + 2 + 3,
126	k8nops + 1 + 2 + 3 + 4,
127	k8nops + 1 + 2 + 3 + 4 + 5,
128	k8nops + 1 + 2 + 3 + 4 + 5 + 6,
129	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
130	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
131};
132#endif
133
134#if defined(K7_NOP1) && !defined(CONFIG_X86_64)
135static const unsigned char k7nops[] =
136{
137	K7_NOP1,
138	K7_NOP2,
139	K7_NOP3,
140	K7_NOP4,
141	K7_NOP5,
142	K7_NOP6,
143	K7_NOP7,
144	K7_NOP8,
145	K7_NOP5_ATOMIC
146};
147static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
148{
149	NULL,
150	k7nops,
151	k7nops + 1,
152	k7nops + 1 + 2,
153	k7nops + 1 + 2 + 3,
154	k7nops + 1 + 2 + 3 + 4,
155	k7nops + 1 + 2 + 3 + 4 + 5,
156	k7nops + 1 + 2 + 3 + 4 + 5 + 6,
157	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
158	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
159};
160#endif
161
162#ifdef P6_NOP1
163static const unsigned char p6nops[] =
164{
165	P6_NOP1,
166	P6_NOP2,
167	P6_NOP3,
168	P6_NOP4,
169	P6_NOP5,
170	P6_NOP6,
171	P6_NOP7,
172	P6_NOP8,
173	P6_NOP5_ATOMIC
174};
175static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
176{
177	NULL,
178	p6nops,
179	p6nops + 1,
180	p6nops + 1 + 2,
181	p6nops + 1 + 2 + 3,
182	p6nops + 1 + 2 + 3 + 4,
183	p6nops + 1 + 2 + 3 + 4 + 5,
184	p6nops + 1 + 2 + 3 + 4 + 5 + 6,
185	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
186	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
187};
188#endif
189
190/* Initialize these to a safe default */
191#ifdef CONFIG_X86_64
192const unsigned char * const *ideal_nops = p6_nops;
193#else
194const unsigned char * const *ideal_nops = intel_nops;
195#endif
196
197void __init arch_init_ideal_nops(void)
198{
199	switch (boot_cpu_data.x86_vendor) {
200	case X86_VENDOR_INTEL:
201		/*
202		 * Due to a decoder implementation quirk, some
203		 * specific Intel CPUs actually perform better with
204		 * the "k8_nops" than with the SDM-recommended NOPs.
205		 */
206		if (boot_cpu_data.x86 == 6 &&
207		    boot_cpu_data.x86_model >= 0x0f &&
208		    boot_cpu_data.x86_model != 0x1c &&
209		    boot_cpu_data.x86_model != 0x26 &&
210		    boot_cpu_data.x86_model != 0x27 &&
211		    boot_cpu_data.x86_model < 0x30) {
212			ideal_nops = k8_nops;
213		} else if (boot_cpu_has(X86_FEATURE_NOPL)) {
214			   ideal_nops = p6_nops;
215		} else {
216#ifdef CONFIG_X86_64
217			ideal_nops = k8_nops;
218#else
219			ideal_nops = intel_nops;
220#endif
221		}
222		break;
223	default:
224#ifdef CONFIG_X86_64
225		ideal_nops = k8_nops;
226#else
227		if (boot_cpu_has(X86_FEATURE_K8))
228			ideal_nops = k8_nops;
229		else if (boot_cpu_has(X86_FEATURE_K7))
230			ideal_nops = k7_nops;
231		else
232			ideal_nops = intel_nops;
233#endif
234	}
235}
236
237/* Use this to add nops to a buffer, then text_poke the whole buffer. */
238static void __init_or_module add_nops(void *insns, unsigned int len)
239{
240	while (len > 0) {
241		unsigned int noplen = len;
242		if (noplen > ASM_NOP_MAX)
243			noplen = ASM_NOP_MAX;
244		memcpy(insns, ideal_nops[noplen], noplen);
245		insns += noplen;
246		len -= noplen;
247	}
248}
249
250extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
251extern s32 __smp_locks[], __smp_locks_end[];
252void *text_poke_early(void *addr, const void *opcode, size_t len);
253
254/* Replace instructions with better alternatives for this CPU type.
255   This runs before SMP is initialized to avoid SMP problems with
256   self modifying code. This implies that asymmetric systems where
257   APs have less capabilities than the boot processor are not handled.
258   Tough. Make sure you disable such features by hand. */
 
 
259
260void __init_or_module apply_alternatives(struct alt_instr *start,
261					 struct alt_instr *end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
262{
263	struct alt_instr *a;
264	u8 *instr, *replacement;
265	u8 insnbuf[MAX_PATCH_LEN];
266
267	DPRINTK("%s: alt table %p -> %p\n", __func__, start, end);
268	/*
269	 * The scan order should be from start to end. A later scanned
270	 * alternative code can overwrite a previous scanned alternative code.
271	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
272	 * patch code.
273	 *
274	 * So be careful if you want to change the scan order to any other
275	 * order.
276	 */
277	for (a = start; a < end; a++) {
 
 
 
 
278		instr = (u8 *)&a->instr_offset + a->instr_offset;
279		replacement = (u8 *)&a->repl_offset + a->repl_offset;
280		BUG_ON(a->replacementlen > a->instrlen);
281		BUG_ON(a->instrlen > sizeof(insnbuf));
282		BUG_ON(a->cpuid >= NCAPINTS*32);
283		if (!boot_cpu_has(a->cpuid))
284			continue;
285
286		memcpy(insnbuf, replacement, a->replacementlen);
 
 
 
 
 
 
 
287
288		/* 0xe8 is a relative jump; fix the offset. */
289		if (*insnbuf == 0xe8 && a->replacementlen == 5)
290		    *(s32 *)(insnbuf + 1) += replacement - instr;
 
 
 
291
292		add_nops(insnbuf + a->replacementlen,
293			 a->instrlen - a->replacementlen);
294
295		text_poke_early(instr, insnbuf, a->instrlen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
296	}
297}
298
299#ifdef CONFIG_SMP
300
301static void alternatives_smp_lock(const s32 *start, const s32 *end,
302				  u8 *text, u8 *text_end)
303{
304	const s32 *poff;
305
306	mutex_lock(&text_mutex);
307	for (poff = start; poff < end; poff++) {
308		u8 *ptr = (u8 *)poff + *poff;
309
310		if (!*poff || ptr < text || ptr >= text_end)
311			continue;
312		/* turn DS segment override prefix into lock prefix */
313		if (*ptr == 0x3e)
314			text_poke(ptr, ((unsigned char []){0xf0}), 1);
315	};
316	mutex_unlock(&text_mutex);
317}
318
319static void alternatives_smp_unlock(const s32 *start, const s32 *end,
320				    u8 *text, u8 *text_end)
321{
322	const s32 *poff;
323
324	if (noreplace_smp)
325		return;
326
327	mutex_lock(&text_mutex);
328	for (poff = start; poff < end; poff++) {
329		u8 *ptr = (u8 *)poff + *poff;
330
331		if (!*poff || ptr < text || ptr >= text_end)
332			continue;
333		/* turn lock prefix into DS segment override prefix */
334		if (*ptr == 0xf0)
335			text_poke(ptr, ((unsigned char []){0x3E}), 1);
336	};
337	mutex_unlock(&text_mutex);
338}
339
340struct smp_alt_module {
341	/* what is this ??? */
342	struct module	*mod;
343	char		*name;
344
345	/* ptrs to lock prefixes */
346	const s32	*locks;
347	const s32	*locks_end;
348
349	/* .text segment, needed to avoid patching init code ;) */
350	u8		*text;
351	u8		*text_end;
352
353	struct list_head next;
354};
355static LIST_HEAD(smp_alt_modules);
356static DEFINE_MUTEX(smp_alt);
357static int smp_mode = 1;	/* protected by smp_alt */
358
359void __init_or_module alternatives_smp_module_add(struct module *mod,
360						  char *name,
361						  void *locks, void *locks_end,
362						  void *text,  void *text_end)
363{
364	struct smp_alt_module *smp;
365
366	if (noreplace_smp)
367		return;
 
368
369	if (smp_alt_once) {
370		if (boot_cpu_has(X86_FEATURE_UP))
371			alternatives_smp_unlock(locks, locks_end,
372						text, text_end);
373		return;
374	}
375
376	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
377	if (NULL == smp)
378		return; /* we'll run the (safe but slow) SMP code then ... */
 
379
380	smp->mod	= mod;
381	smp->name	= name;
382	smp->locks	= locks;
383	smp->locks_end	= locks_end;
384	smp->text	= text;
385	smp->text_end	= text_end;
386	DPRINTK("%s: locks %p -> %p, text %p -> %p, name %s\n",
387		__func__, smp->locks, smp->locks_end,
388		smp->text, smp->text_end, smp->name);
389
390	mutex_lock(&smp_alt);
391	list_add_tail(&smp->next, &smp_alt_modules);
392	if (boot_cpu_has(X86_FEATURE_UP))
393		alternatives_smp_unlock(smp->locks, smp->locks_end,
394					smp->text, smp->text_end);
395	mutex_unlock(&smp_alt);
396}
397
398void __init_or_module alternatives_smp_module_del(struct module *mod)
399{
400	struct smp_alt_module *item;
401
402	if (smp_alt_once || noreplace_smp)
403		return;
404
405	mutex_lock(&smp_alt);
406	list_for_each_entry(item, &smp_alt_modules, next) {
407		if (mod != item->mod)
408			continue;
409		list_del(&item->next);
410		mutex_unlock(&smp_alt);
411		DPRINTK("%s: %s\n", __func__, item->name);
412		kfree(item);
413		return;
414	}
415	mutex_unlock(&smp_alt);
416}
417
418bool skip_smp_alternatives;
419void alternatives_smp_switch(int smp)
420{
421	struct smp_alt_module *mod;
422
423#ifdef CONFIG_LOCKDEP
424	/*
425	 * Older binutils section handling bug prevented
426	 * alternatives-replacement from working reliably.
427	 *
428	 * If this still occurs then you should see a hang
429	 * or crash shortly after this line:
430	 */
431	printk("lockdep: fixing up alternatives.\n");
432#endif
433
434	if (noreplace_smp || smp_alt_once || skip_smp_alternatives)
435		return;
436	BUG_ON(!smp && (num_online_cpus() > 1));
437
438	mutex_lock(&smp_alt);
439
440	/*
441	 * Avoid unnecessary switches because it forces JIT based VMs to
442	 * throw away all cached translations, which can be quite costly.
443	 */
444	if (smp == smp_mode) {
445		/* nothing */
446	} else if (smp) {
447		printk(KERN_INFO "SMP alternatives: switching to SMP code\n");
448		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
449		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
450		list_for_each_entry(mod, &smp_alt_modules, next)
451			alternatives_smp_lock(mod->locks, mod->locks_end,
452					      mod->text, mod->text_end);
453	} else {
454		printk(KERN_INFO "SMP alternatives: switching to UP code\n");
455		set_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
456		set_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
457		list_for_each_entry(mod, &smp_alt_modules, next)
458			alternatives_smp_unlock(mod->locks, mod->locks_end,
459						mod->text, mod->text_end);
460	}
461	smp_mode = smp;
462	mutex_unlock(&smp_alt);
463}
464
465/* Return 1 if the address range is reserved for smp-alternatives */
 
 
 
466int alternatives_text_reserved(void *start, void *end)
467{
468	struct smp_alt_module *mod;
469	const s32 *poff;
470	u8 *text_start = start;
471	u8 *text_end = end;
472
 
 
473	list_for_each_entry(mod, &smp_alt_modules, next) {
474		if (mod->text > text_end || mod->text_end < text_start)
475			continue;
476		for (poff = mod->locks; poff < mod->locks_end; poff++) {
477			const u8 *ptr = (const u8 *)poff + *poff;
478
479			if (text_start <= ptr && text_end > ptr)
480				return 1;
481		}
482	}
483
484	return 0;
485}
486#endif
487
488#ifdef CONFIG_PARAVIRT
489void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
490				     struct paravirt_patch_site *end)
491{
492	struct paravirt_patch_site *p;
493	char insnbuf[MAX_PATCH_LEN];
494
495	if (noreplace_paravirt)
496		return;
497
498	for (p = start; p < end; p++) {
499		unsigned int used;
500
501		BUG_ON(p->len > MAX_PATCH_LEN);
502		/* prep the buffer with the original instructions */
503		memcpy(insnbuf, p->instr, p->len);
504		used = pv_init_ops.patch(p->instrtype, p->clobbers, insnbuf,
505					 (unsigned long)p->instr, p->len);
506
507		BUG_ON(used > p->len);
508
509		/* Pad the rest with nops */
510		add_nops(insnbuf + used, p->len - used);
511		text_poke_early(p->instr, insnbuf, p->len);
512	}
513}
514extern struct paravirt_patch_site __start_parainstructions[],
515	__stop_parainstructions[];
516#endif	/* CONFIG_PARAVIRT */
517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
518void __init alternative_instructions(void)
519{
520	/* The patching is not fully atomic, so try to avoid local interruptions
521	   that might execute the to be patched code.
522	   Other CPUs are not running. */
 
 
 
 
523	stop_nmi();
524
525	/*
526	 * Don't stop machine check exceptions while patching.
527	 * MCEs only happen when something got corrupted and in this
528	 * case we must do something about the corruption.
529	 * Ignoring it is worse than a unlikely patching race.
530	 * Also machine checks tend to be broadcast and if one CPU
531	 * goes into machine check the others follow quickly, so we don't
532	 * expect a machine check to cause undue problems during to code
533	 * patching.
534	 */
535
536	apply_alternatives(__alt_instructions, __alt_instructions_end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
537
538	/* switch to patch-once-at-boottime-only mode and free the
539	 * tables in case we know the number of CPUs will never ever
540	 * change */
541#ifdef CONFIG_HOTPLUG_CPU
542	if (num_possible_cpus() < 2)
543		smp_alt_once = 1;
544#endif
545
546#ifdef CONFIG_SMP
547	if (smp_alt_once) {
548		if (1 == num_possible_cpus()) {
549			printk(KERN_INFO "SMP alternatives: switching to UP code\n");
550			set_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
551			set_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
552
553			alternatives_smp_unlock(__smp_locks, __smp_locks_end,
554						_text, _etext);
555		}
556	} else {
557		alternatives_smp_module_add(NULL, "core kernel",
558					    __smp_locks, __smp_locks_end,
559					    _text, _etext);
560
561		/* Only switch to UP mode if we don't immediately boot others */
562		if (num_present_cpus() == 1 || setup_max_cpus <= 1)
563			alternatives_smp_switch(0);
564	}
565#endif
566 	apply_paravirt(__parainstructions, __parainstructions_end);
567
568	if (smp_alt_once)
569		free_init_pages("SMP alternatives",
570				(unsigned long)__smp_locks,
571				(unsigned long)__smp_locks_end);
 
 
572
573	restart_nmi();
 
574}
575
576/**
577 * text_poke_early - Update instructions on a live kernel at boot time
578 * @addr: address to modify
579 * @opcode: source of the copy
580 * @len: length to copy
581 *
582 * When you use this code to patch more than one byte of an instruction
583 * you need to make sure that other CPUs cannot execute this code in parallel.
584 * Also no thread must be currently preempted in the middle of these
585 * instructions. And on the local CPU you need to be protected again NMI or MCE
586 * handlers seeing an inconsistent instruction while you patch.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
587 */
588void *__init_or_module text_poke_early(void *addr, const void *opcode,
589					      size_t len)
590{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
591	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
592	local_irq_save(flags);
593	memcpy(addr, opcode, len);
594	sync_core();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595	local_irq_restore(flags);
596	/* Could also do a CLFLUSH here to speed up CPU recovery; but
597	   that causes hangs on some VIA CPUs. */
598	return addr;
599}
600
601/**
602 * text_poke - Update instructions on a live kernel
603 * @addr: address to modify
604 * @opcode: source of the copy
605 * @len: length to copy
606 *
607 * Only atomic text poke/set should be allowed when not doing early patching.
608 * It means the size must be writable atomically and the address must be aligned
609 * in a way that permits an atomic write. It also makes sure we fit on a single
610 * page.
611 *
612 * Note: Must be called under text_mutex.
 
 
 
613 */
614void *__kprobes text_poke(void *addr, const void *opcode, size_t len)
615{
616	unsigned long flags;
617	char *vaddr;
618	struct page *pages[2];
619	int i;
620
621	if (!core_kernel_text((unsigned long)addr)) {
622		pages[0] = vmalloc_to_page(addr);
623		pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
624	} else {
625		pages[0] = virt_to_page(addr);
626		WARN_ON(!PageReserved(pages[0]));
627		pages[1] = virt_to_page(addr + PAGE_SIZE);
628	}
629	BUG_ON(!pages[0]);
630	local_irq_save(flags);
631	set_fixmap(FIX_TEXT_POKE0, page_to_phys(pages[0]));
632	if (pages[1])
633		set_fixmap(FIX_TEXT_POKE1, page_to_phys(pages[1]));
634	vaddr = (char *)fix_to_virt(FIX_TEXT_POKE0);
635	memcpy(&vaddr[(unsigned long)addr & ~PAGE_MASK], opcode, len);
636	clear_fixmap(FIX_TEXT_POKE0);
637	if (pages[1])
638		clear_fixmap(FIX_TEXT_POKE1);
639	local_flush_tlb();
640	sync_core();
641	/* Could also do a CLFLUSH here to speed up CPU recovery; but
642	   that causes hangs on some VIA CPUs. */
643	for (i = 0; i < len; i++)
644		BUG_ON(((char *)addr)[i] != ((char *)opcode)[i]);
645	local_irq_restore(flags);
646	return addr;
647}
648
649/*
650 * Cross-modifying kernel text with stop_machine().
651 * This code originally comes from immediate value.
 
 
 
 
 
 
 
 
 
 
652 */
653static atomic_t stop_machine_first;
654static int wrote_text;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
655
656struct text_poke_params {
657	struct text_poke_param *params;
658	int nparams;
 
659};
660
661static int __kprobes stop_machine_text_poke(void *data)
 
 
 
662{
663	struct text_poke_params *tpp = data;
664	struct text_poke_param *p;
665	int i;
666
667	if (atomic_dec_and_test(&stop_machine_first)) {
668		for (i = 0; i < tpp->nparams; i++) {
669			p = &tpp->params[i];
670			text_poke(p->addr, p->opcode, p->len);
671		}
672		smp_wmb();	/* Make sure other cpus see that this has run */
673		wrote_text = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
674	} else {
675		while (!wrote_text)
676			cpu_relax();
677		smp_mb();	/* Load wrote_text before following execution */
678	}
679
680	for (i = 0; i < tpp->nparams; i++) {
681		p = &tpp->params[i];
682		flush_icache_range((unsigned long)p->addr,
683				   (unsigned long)p->addr + p->len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
684	}
685	/*
686	 * Intel Archiecture Software Developer's Manual section 7.1.3 specifies
687	 * that a core serializing instruction such as "cpuid" should be
688	 * executed on _each_ core before the new instruction is made visible.
689	 */
690	sync_core();
691	return 0;
692}
693
 
 
 
 
694/**
695 * text_poke_smp - Update instructions on a live kernel on SMP
696 * @addr: address to modify
697 * @opcode: source of the copy
698 * @len: length to copy
699 *
700 * Modify multi-byte instruction by using stop_machine() on SMP. This allows
701 * user to poke/set multi-byte text on SMP. Only non-NMI/MCE code modifying
702 * should be allowed, since stop_machine() does _not_ protect code against
703 * NMI and MCE.
704 *
705 * Note: Must be called under get_online_cpus() and text_mutex.
706 */
707void *__kprobes text_poke_smp(void *addr, const void *opcode, size_t len)
708{
709	struct text_poke_params tpp;
710	struct text_poke_param p;
711
712	p.addr = addr;
713	p.opcode = opcode;
714	p.len = len;
715	tpp.params = &p;
716	tpp.nparams = 1;
717	atomic_set(&stop_machine_first, 1);
718	wrote_text = 0;
719	/* Use __stop_machine() because the caller already got online_cpus. */
720	__stop_machine(stop_machine_text_poke, (void *)&tpp, cpu_online_mask);
721	return addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
722}
723
724/**
725 * text_poke_smp_batch - Update instructions on a live kernel on SMP
726 * @params: an array of text_poke parameters
727 * @n: the number of elements in params.
728 *
729 * Modify multi-byte instruction by using stop_machine() on SMP. Since the
730 * stop_machine() is heavy task, it is better to aggregate text_poke requests
731 * and do it once if possible.
732 *
733 * Note: Must be called under get_online_cpus() and text_mutex.
 
 
734 */
735void __kprobes text_poke_smp_batch(struct text_poke_param *params, int n)
736{
737	struct text_poke_params tpp = {.params = params, .nparams = n};
 
 
 
 
 
738
739	atomic_set(&stop_machine_first, 1);
740	wrote_text = 0;
741	__stop_machine(stop_machine_text_poke, (void *)&tpp, cpu_online_mask);
742}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2#define pr_fmt(fmt) "SMP alternatives: " fmt
   3
   4#include <linux/module.h>
   5#include <linux/sched.h>
   6#include <linux/perf_event.h>
   7#include <linux/mutex.h>
   8#include <linux/list.h>
   9#include <linux/stringify.h>
  10#include <linux/highmem.h>
  11#include <linux/mm.h>
  12#include <linux/vmalloc.h>
  13#include <linux/memory.h>
  14#include <linux/stop_machine.h>
  15#include <linux/slab.h>
  16#include <linux/kdebug.h>
  17#include <linux/kprobes.h>
  18#include <linux/mmu_context.h>
  19#include <linux/bsearch.h>
  20#include <linux/sync_core.h>
  21#include <asm/text-patching.h>
  22#include <asm/alternative.h>
  23#include <asm/sections.h>
 
  24#include <asm/mce.h>
  25#include <asm/nmi.h>
  26#include <asm/cacheflush.h>
  27#include <asm/tlbflush.h>
  28#include <asm/insn.h>
  29#include <asm/io.h>
  30#include <asm/fixmap.h>
  31#include <asm/paravirt.h>
  32
  33int __read_mostly alternatives_patched;
  34
  35EXPORT_SYMBOL_GPL(alternatives_patched);
 
  36
  37#define MAX_PATCH_LEN (255-1)
 
 
 
 
 
 
 
 
  38
  39static int __initdata_or_module debug_alternative;
  40
  41static int __init debug_alt(char *str)
  42{
  43	debug_alternative = 1;
  44	return 1;
  45}
  46__setup("debug-alternative", debug_alt);
  47
  48static int noreplace_smp;
  49
  50static int __init setup_noreplace_smp(char *str)
  51{
  52	noreplace_smp = 1;
  53	return 1;
  54}
  55__setup("noreplace-smp", setup_noreplace_smp);
  56
  57#define DPRINTK(fmt, args...)						\
  58do {									\
  59	if (debug_alternative)						\
  60		printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args);		\
  61} while (0)
  62
  63#define DUMP_BYTES(buf, len, fmt, args...)				\
  64do {									\
  65	if (unlikely(debug_alternative)) {				\
  66		int j;							\
  67									\
  68		if (!(len))						\
  69			break;						\
  70									\
  71		printk(KERN_DEBUG pr_fmt(fmt), ##args);			\
  72		for (j = 0; j < (len) - 1; j++)				\
  73			printk(KERN_CONT "%02hhx ", buf[j]);		\
  74		printk(KERN_CONT "%02hhx\n", buf[j]);			\
  75	}								\
  76} while (0)
  77
  78static const unsigned char x86nops[] =
  79{
  80	BYTES_NOP1,
  81	BYTES_NOP2,
  82	BYTES_NOP3,
  83	BYTES_NOP4,
  84	BYTES_NOP5,
  85	BYTES_NOP6,
  86	BYTES_NOP7,
  87	BYTES_NOP8,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  88};
 
  89
  90const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
 
 
 
 
 
 
 
 
 
 
 
 
 
  91{
  92	NULL,
  93	x86nops,
  94	x86nops + 1,
  95	x86nops + 1 + 2,
  96	x86nops + 1 + 2 + 3,
  97	x86nops + 1 + 2 + 3 + 4,
  98	x86nops + 1 + 2 + 3 + 4 + 5,
  99	x86nops + 1 + 2 + 3 + 4 + 5 + 6,
 100	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
 
 101};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 102
 103/* Use this to add nops to a buffer, then text_poke the whole buffer. */
 104static void __init_or_module add_nops(void *insns, unsigned int len)
 105{
 106	while (len > 0) {
 107		unsigned int noplen = len;
 108		if (noplen > ASM_NOP_MAX)
 109			noplen = ASM_NOP_MAX;
 110		memcpy(insns, x86_nops[noplen], noplen);
 111		insns += noplen;
 112		len -= noplen;
 113	}
 114}
 115
 116extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
 117extern s32 __smp_locks[], __smp_locks_end[];
 118void text_poke_early(void *addr, const void *opcode, size_t len);
 119
 120/*
 121 * Are we looking at a near JMP with a 1 or 4-byte displacement.
 122 */
 123static inline bool is_jmp(const u8 opcode)
 124{
 125	return opcode == 0xeb || opcode == 0xe9;
 126}
 127
 128static void __init_or_module
 129recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insn_buff)
 130{
 131	u8 *next_rip, *tgt_rip;
 132	s32 n_dspl, o_dspl;
 133	int repl_len;
 134
 135	if (a->replacementlen != 5)
 136		return;
 137
 138	o_dspl = *(s32 *)(insn_buff + 1);
 139
 140	/* next_rip of the replacement JMP */
 141	next_rip = repl_insn + a->replacementlen;
 142	/* target rip of the replacement JMP */
 143	tgt_rip  = next_rip + o_dspl;
 144	n_dspl = tgt_rip - orig_insn;
 145
 146	DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
 147
 148	if (tgt_rip - orig_insn >= 0) {
 149		if (n_dspl - 2 <= 127)
 150			goto two_byte_jmp;
 151		else
 152			goto five_byte_jmp;
 153	/* negative offset */
 154	} else {
 155		if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
 156			goto two_byte_jmp;
 157		else
 158			goto five_byte_jmp;
 159	}
 160
 161two_byte_jmp:
 162	n_dspl -= 2;
 163
 164	insn_buff[0] = 0xeb;
 165	insn_buff[1] = (s8)n_dspl;
 166	add_nops(insn_buff + 2, 3);
 167
 168	repl_len = 2;
 169	goto done;
 170
 171five_byte_jmp:
 172	n_dspl -= 5;
 173
 174	insn_buff[0] = 0xe9;
 175	*(s32 *)&insn_buff[1] = n_dspl;
 176
 177	repl_len = 5;
 178
 179done:
 180
 181	DPRINTK("final displ: 0x%08x, JMP 0x%lx",
 182		n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
 183}
 184
 185/*
 186 * optimize_nops_range() - Optimize a sequence of single byte NOPs (0x90)
 187 *
 188 * @instr: instruction byte stream
 189 * @instrlen: length of the above
 190 * @off: offset within @instr where the first NOP has been detected
 191 *
 192 * Return: number of NOPs found (and replaced).
 193 */
 194static __always_inline int optimize_nops_range(u8 *instr, u8 instrlen, int off)
 195{
 196	unsigned long flags;
 197	int i = off, nnops;
 198
 199	while (i < instrlen) {
 200		if (instr[i] != 0x90)
 201			break;
 202
 203		i++;
 204	}
 205
 206	nnops = i - off;
 207
 208	if (nnops <= 1)
 209		return nnops;
 210
 211	local_irq_save(flags);
 212	add_nops(instr + off, nnops);
 213	local_irq_restore(flags);
 214
 215	DUMP_BYTES(instr, instrlen, "%px: [%d:%d) optimized NOPs: ", instr, off, i);
 216
 217	return nnops;
 218}
 219
 220/*
 221 * "noinline" to cause control flow change and thus invalidate I$ and
 222 * cause refetch after modification.
 223 */
 224static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr)
 225{
 226	struct insn insn;
 227	int i = 0;
 228
 229	/*
 230	 * Jump over the non-NOP insns and optimize single-byte NOPs into bigger
 231	 * ones.
 232	 */
 233	for (;;) {
 234		if (insn_decode_kernel(&insn, &instr[i]))
 235			return;
 236
 237		/*
 238		 * See if this and any potentially following NOPs can be
 239		 * optimized.
 240		 */
 241		if (insn.length == 1 && insn.opcode.bytes[0] == 0x90)
 242			i += optimize_nops_range(instr, a->instrlen, i);
 243		else
 244			i += insn.length;
 245
 246		if (i >= a->instrlen)
 247			return;
 248	}
 249}
 250
 251/*
 252 * Replace instructions with better alternatives for this CPU type. This runs
 253 * before SMP is initialized to avoid SMP problems with self modifying code.
 254 * This implies that asymmetric systems where APs have less capabilities than
 255 * the boot processor are not handled. Tough. Make sure you disable such
 256 * features by hand.
 257 *
 258 * Marked "noinline" to cause control flow change and thus insn cache
 259 * to refetch changed I$ lines.
 260 */
 261void __init_or_module noinline apply_alternatives(struct alt_instr *start,
 262						  struct alt_instr *end)
 263{
 264	struct alt_instr *a;
 265	u8 *instr, *replacement;
 266	u8 insn_buff[MAX_PATCH_LEN];
 267
 268	DPRINTK("alt table %px, -> %px", start, end);
 269	/*
 270	 * The scan order should be from start to end. A later scanned
 271	 * alternative code can overwrite previously scanned alternative code.
 272	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
 273	 * patch code.
 274	 *
 275	 * So be careful if you want to change the scan order to any other
 276	 * order.
 277	 */
 278	for (a = start; a < end; a++) {
 279		int insn_buff_sz = 0;
 280		/* Mask away "NOT" flag bit for feature to test. */
 281		u16 feature = a->cpuid & ~ALTINSTR_FLAG_INV;
 282
 283		instr = (u8 *)&a->instr_offset + a->instr_offset;
 284		replacement = (u8 *)&a->repl_offset + a->repl_offset;
 285		BUG_ON(a->instrlen > sizeof(insn_buff));
 286		BUG_ON(feature >= (NCAPINTS + NBUGINTS) * 32);
 
 
 
 287
 288		/*
 289		 * Patch if either:
 290		 * - feature is present
 291		 * - feature not present but ALTINSTR_FLAG_INV is set to mean,
 292		 *   patch if feature is *NOT* present.
 293		 */
 294		if (!boot_cpu_has(feature) == !(a->cpuid & ALTINSTR_FLAG_INV))
 295			goto next;
 296
 297		DPRINTK("feat: %s%d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d)",
 298			(a->cpuid & ALTINSTR_FLAG_INV) ? "!" : "",
 299			feature >> 5,
 300			feature & 0x1f,
 301			instr, instr, a->instrlen,
 302			replacement, a->replacementlen);
 303
 304		DUMP_BYTES(instr, a->instrlen, "%px:   old_insn: ", instr);
 305		DUMP_BYTES(replacement, a->replacementlen, "%px:   rpl_insn: ", replacement);
 306
 307		memcpy(insn_buff, replacement, a->replacementlen);
 308		insn_buff_sz = a->replacementlen;
 309
 310		/*
 311		 * 0xe8 is a relative jump; fix the offset.
 312		 *
 313		 * Instruction length is checked before the opcode to avoid
 314		 * accessing uninitialized bytes for zero-length replacements.
 315		 */
 316		if (a->replacementlen == 5 && *insn_buff == 0xe8) {
 317			*(s32 *)(insn_buff + 1) += replacement - instr;
 318			DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
 319				*(s32 *)(insn_buff + 1),
 320				(unsigned long)instr + *(s32 *)(insn_buff + 1) + 5);
 321		}
 322
 323		if (a->replacementlen && is_jmp(replacement[0]))
 324			recompute_jump(a, instr, replacement, insn_buff);
 325
 326		for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
 327			insn_buff[insn_buff_sz] = 0x90;
 328
 329		DUMP_BYTES(insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
 330
 331		text_poke_early(instr, insn_buff, insn_buff_sz);
 332
 333next:
 334		optimize_nops(a, instr);
 335	}
 336}
 337
 338#ifdef CONFIG_SMP
 
 339static void alternatives_smp_lock(const s32 *start, const s32 *end,
 340				  u8 *text, u8 *text_end)
 341{
 342	const s32 *poff;
 343
 
 344	for (poff = start; poff < end; poff++) {
 345		u8 *ptr = (u8 *)poff + *poff;
 346
 347		if (!*poff || ptr < text || ptr >= text_end)
 348			continue;
 349		/* turn DS segment override prefix into lock prefix */
 350		if (*ptr == 0x3e)
 351			text_poke(ptr, ((unsigned char []){0xf0}), 1);
 352	}
 
 353}
 354
 355static void alternatives_smp_unlock(const s32 *start, const s32 *end,
 356				    u8 *text, u8 *text_end)
 357{
 358	const s32 *poff;
 359
 
 
 
 
 360	for (poff = start; poff < end; poff++) {
 361		u8 *ptr = (u8 *)poff + *poff;
 362
 363		if (!*poff || ptr < text || ptr >= text_end)
 364			continue;
 365		/* turn lock prefix into DS segment override prefix */
 366		if (*ptr == 0xf0)
 367			text_poke(ptr, ((unsigned char []){0x3E}), 1);
 368	}
 
 369}
 370
 371struct smp_alt_module {
 372	/* what is this ??? */
 373	struct module	*mod;
 374	char		*name;
 375
 376	/* ptrs to lock prefixes */
 377	const s32	*locks;
 378	const s32	*locks_end;
 379
 380	/* .text segment, needed to avoid patching init code ;) */
 381	u8		*text;
 382	u8		*text_end;
 383
 384	struct list_head next;
 385};
 386static LIST_HEAD(smp_alt_modules);
 387static bool uniproc_patched = false;	/* protected by text_mutex */
 
 388
 389void __init_or_module alternatives_smp_module_add(struct module *mod,
 390						  char *name,
 391						  void *locks, void *locks_end,
 392						  void *text,  void *text_end)
 393{
 394	struct smp_alt_module *smp;
 395
 396	mutex_lock(&text_mutex);
 397	if (!uniproc_patched)
 398		goto unlock;
 399
 400	if (num_possible_cpus() == 1)
 401		/* Don't bother remembering, we'll never have to undo it. */
 402		goto smp_unlock;
 
 
 
 403
 404	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
 405	if (NULL == smp)
 406		/* we'll run the (safe but slow) SMP code then ... */
 407		goto unlock;
 408
 409	smp->mod	= mod;
 410	smp->name	= name;
 411	smp->locks	= locks;
 412	smp->locks_end	= locks_end;
 413	smp->text	= text;
 414	smp->text_end	= text_end;
 415	DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
 416		smp->locks, smp->locks_end,
 417		smp->text, smp->text_end, smp->name);
 418
 
 419	list_add_tail(&smp->next, &smp_alt_modules);
 420smp_unlock:
 421	alternatives_smp_unlock(locks, locks_end, text, text_end);
 422unlock:
 423	mutex_unlock(&text_mutex);
 424}
 425
 426void __init_or_module alternatives_smp_module_del(struct module *mod)
 427{
 428	struct smp_alt_module *item;
 429
 430	mutex_lock(&text_mutex);
 
 
 
 431	list_for_each_entry(item, &smp_alt_modules, next) {
 432		if (mod != item->mod)
 433			continue;
 434		list_del(&item->next);
 
 
 435		kfree(item);
 436		break;
 437	}
 438	mutex_unlock(&text_mutex);
 439}
 440
 441void alternatives_enable_smp(void)
 
 442{
 443	struct smp_alt_module *mod;
 444
 445	/* Why bother if there are no other CPUs? */
 446	BUG_ON(num_possible_cpus() == 1);
 
 
 
 
 
 
 
 
 
 
 
 
 447
 448	mutex_lock(&text_mutex);
 449
 450	if (uniproc_patched) {
 451		pr_info("switching to SMP code\n");
 452		BUG_ON(num_online_cpus() != 1);
 
 
 
 
 
 453		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
 454		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
 455		list_for_each_entry(mod, &smp_alt_modules, next)
 456			alternatives_smp_lock(mod->locks, mod->locks_end,
 457					      mod->text, mod->text_end);
 458		uniproc_patched = false;
 
 
 
 
 
 
 459	}
 460	mutex_unlock(&text_mutex);
 
 461}
 462
 463/*
 464 * Return 1 if the address range is reserved for SMP-alternatives.
 465 * Must hold text_mutex.
 466 */
 467int alternatives_text_reserved(void *start, void *end)
 468{
 469	struct smp_alt_module *mod;
 470	const s32 *poff;
 471	u8 *text_start = start;
 472	u8 *text_end = end;
 473
 474	lockdep_assert_held(&text_mutex);
 475
 476	list_for_each_entry(mod, &smp_alt_modules, next) {
 477		if (mod->text > text_end || mod->text_end < text_start)
 478			continue;
 479		for (poff = mod->locks; poff < mod->locks_end; poff++) {
 480			const u8 *ptr = (const u8 *)poff + *poff;
 481
 482			if (text_start <= ptr && text_end > ptr)
 483				return 1;
 484		}
 485	}
 486
 487	return 0;
 488}
 489#endif /* CONFIG_SMP */
 490
 491#ifdef CONFIG_PARAVIRT
 492void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
 493				     struct paravirt_patch_site *end)
 494{
 495	struct paravirt_patch_site *p;
 496	char insn_buff[MAX_PATCH_LEN];
 
 
 
 497
 498	for (p = start; p < end; p++) {
 499		unsigned int used;
 500
 501		BUG_ON(p->len > MAX_PATCH_LEN);
 502		/* prep the buffer with the original instructions */
 503		memcpy(insn_buff, p->instr, p->len);
 504		used = paravirt_patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
 
 505
 506		BUG_ON(used > p->len);
 507
 508		/* Pad the rest with nops */
 509		add_nops(insn_buff + used, p->len - used);
 510		text_poke_early(p->instr, insn_buff, p->len);
 511	}
 512}
 513extern struct paravirt_patch_site __start_parainstructions[],
 514	__stop_parainstructions[];
 515#endif	/* CONFIG_PARAVIRT */
 516
 517/*
 518 * Self-test for the INT3 based CALL emulation code.
 519 *
 520 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
 521 * properly and that there is a stack gap between the INT3 frame and the
 522 * previous context. Without this gap doing a virtual PUSH on the interrupted
 523 * stack would corrupt the INT3 IRET frame.
 524 *
 525 * See entry_{32,64}.S for more details.
 526 */
 527
 528/*
 529 * We define the int3_magic() function in assembly to control the calling
 530 * convention such that we can 'call' it from assembly.
 531 */
 532
 533extern void int3_magic(unsigned int *ptr); /* defined in asm */
 534
 535asm (
 536"	.pushsection	.init.text, \"ax\", @progbits\n"
 537"	.type		int3_magic, @function\n"
 538"int3_magic:\n"
 539"	movl	$1, (%" _ASM_ARG1 ")\n"
 540"	ret\n"
 541"	.size		int3_magic, .-int3_magic\n"
 542"	.popsection\n"
 543);
 544
 545extern __initdata unsigned long int3_selftest_ip; /* defined in asm below */
 546
 547static int __init
 548int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
 549{
 550	struct die_args *args = data;
 551	struct pt_regs *regs = args->regs;
 552
 553	if (!regs || user_mode(regs))
 554		return NOTIFY_DONE;
 555
 556	if (val != DIE_INT3)
 557		return NOTIFY_DONE;
 558
 559	if (regs->ip - INT3_INSN_SIZE != int3_selftest_ip)
 560		return NOTIFY_DONE;
 561
 562	int3_emulate_call(regs, (unsigned long)&int3_magic);
 563	return NOTIFY_STOP;
 564}
 565
 566static void __init int3_selftest(void)
 567{
 568	static __initdata struct notifier_block int3_exception_nb = {
 569		.notifier_call	= int3_exception_notify,
 570		.priority	= INT_MAX-1, /* last */
 571	};
 572	unsigned int val = 0;
 573
 574	BUG_ON(register_die_notifier(&int3_exception_nb));
 575
 576	/*
 577	 * Basically: int3_magic(&val); but really complicated :-)
 578	 *
 579	 * Stick the address of the INT3 instruction into int3_selftest_ip,
 580	 * then trigger the INT3, padded with NOPs to match a CALL instruction
 581	 * length.
 582	 */
 583	asm volatile ("1: int3; nop; nop; nop; nop\n\t"
 584		      ".pushsection .init.data,\"aw\"\n\t"
 585		      ".align " __ASM_SEL(4, 8) "\n\t"
 586		      ".type int3_selftest_ip, @object\n\t"
 587		      ".size int3_selftest_ip, " __ASM_SEL(4, 8) "\n\t"
 588		      "int3_selftest_ip:\n\t"
 589		      __ASM_SEL(.long, .quad) " 1b\n\t"
 590		      ".popsection\n\t"
 591		      : ASM_CALL_CONSTRAINT
 592		      : __ASM_SEL_RAW(a, D) (&val)
 593		      : "memory");
 594
 595	BUG_ON(val != 1);
 596
 597	unregister_die_notifier(&int3_exception_nb);
 598}
 599
 600void __init alternative_instructions(void)
 601{
 602	int3_selftest();
 603
 604	/*
 605	 * The patching is not fully atomic, so try to avoid local
 606	 * interruptions that might execute the to be patched code.
 607	 * Other CPUs are not running.
 608	 */
 609	stop_nmi();
 610
 611	/*
 612	 * Don't stop machine check exceptions while patching.
 613	 * MCEs only happen when something got corrupted and in this
 614	 * case we must do something about the corruption.
 615	 * Ignoring it is worse than an unlikely patching race.
 616	 * Also machine checks tend to be broadcast and if one CPU
 617	 * goes into machine check the others follow quickly, so we don't
 618	 * expect a machine check to cause undue problems during to code
 619	 * patching.
 620	 */
 621
 622	/*
 623	 * Paravirt patching and alternative patching can be combined to
 624	 * replace a function call with a short direct code sequence (e.g.
 625	 * by setting a constant return value instead of doing that in an
 626	 * external function).
 627	 * In order to make this work the following sequence is required:
 628	 * 1. set (artificial) features depending on used paravirt
 629	 *    functions which can later influence alternative patching
 630	 * 2. apply paravirt patching (generally replacing an indirect
 631	 *    function call with a direct one)
 632	 * 3. apply alternative patching (e.g. replacing a direct function
 633	 *    call with a custom code sequence)
 634	 * Doing paravirt patching after alternative patching would clobber
 635	 * the optimization of the custom code with a function call again.
 636	 */
 637	paravirt_set_cap();
 638
 639	/*
 640	 * First patch paravirt functions, such that we overwrite the indirect
 641	 * call with the direct call.
 642	 */
 643	apply_paravirt(__parainstructions, __parainstructions_end);
 
 
 644
 645	/*
 646	 * Then patch alternatives, such that those paravirt calls that are in
 647	 * alternatives can be overwritten by their immediate fragments.
 648	 */
 649	apply_alternatives(__alt_instructions, __alt_instructions_end);
 
 650
 651#ifdef CONFIG_SMP
 652	/* Patch to UP if other cpus not imminent. */
 653	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
 654		uniproc_patched = true;
 655		alternatives_smp_module_add(NULL, "core kernel",
 656					    __smp_locks, __smp_locks_end,
 657					    _text, _etext);
 
 
 
 
 658	}
 
 
 659
 660	if (!uniproc_patched || num_possible_cpus() == 1) {
 661		free_init_pages("SMP alternatives",
 662				(unsigned long)__smp_locks,
 663				(unsigned long)__smp_locks_end);
 664	}
 665#endif
 666
 667	restart_nmi();
 668	alternatives_patched = 1;
 669}
 670
 671/**
 672 * text_poke_early - Update instructions on a live kernel at boot time
 673 * @addr: address to modify
 674 * @opcode: source of the copy
 675 * @len: length to copy
 676 *
 677 * When you use this code to patch more than one byte of an instruction
 678 * you need to make sure that other CPUs cannot execute this code in parallel.
 679 * Also no thread must be currently preempted in the middle of these
 680 * instructions. And on the local CPU you need to be protected against NMI or
 681 * MCE handlers seeing an inconsistent instruction while you patch.
 682 */
 683void __init_or_module text_poke_early(void *addr, const void *opcode,
 684				      size_t len)
 685{
 686	unsigned long flags;
 687
 688	if (boot_cpu_has(X86_FEATURE_NX) &&
 689	    is_module_text_address((unsigned long)addr)) {
 690		/*
 691		 * Modules text is marked initially as non-executable, so the
 692		 * code cannot be running and speculative code-fetches are
 693		 * prevented. Just change the code.
 694		 */
 695		memcpy(addr, opcode, len);
 696	} else {
 697		local_irq_save(flags);
 698		memcpy(addr, opcode, len);
 699		local_irq_restore(flags);
 700		sync_core();
 701
 702		/*
 703		 * Could also do a CLFLUSH here to speed up CPU recovery; but
 704		 * that causes hangs on some VIA CPUs.
 705		 */
 706	}
 707}
 708
 709typedef struct {
 710	struct mm_struct *mm;
 711} temp_mm_state_t;
 712
 713/*
 714 * Using a temporary mm allows to set temporary mappings that are not accessible
 715 * by other CPUs. Such mappings are needed to perform sensitive memory writes
 716 * that override the kernel memory protections (e.g., W^X), without exposing the
 717 * temporary page-table mappings that are required for these write operations to
 718 * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
 719 * mapping is torn down.
 720 *
 721 * Context: The temporary mm needs to be used exclusively by a single core. To
 722 *          harden security IRQs must be disabled while the temporary mm is
 723 *          loaded, thereby preventing interrupt handler bugs from overriding
 724 *          the kernel memory protection.
 725 */
 726static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
 
 727{
 728	temp_mm_state_t temp_state;
 729
 730	lockdep_assert_irqs_disabled();
 731
 732	/*
 733	 * Make sure not to be in TLB lazy mode, as otherwise we'll end up
 734	 * with a stale address space WITHOUT being in lazy mode after
 735	 * restoring the previous mm.
 736	 */
 737	if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
 738		leave_mm(smp_processor_id());
 739
 740	temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 741	switch_mm_irqs_off(NULL, mm, current);
 742
 743	/*
 744	 * If breakpoints are enabled, disable them while the temporary mm is
 745	 * used. Userspace might set up watchpoints on addresses that are used
 746	 * in the temporary mm, which would lead to wrong signals being sent or
 747	 * crashes.
 748	 *
 749	 * Note that breakpoints are not disabled selectively, which also causes
 750	 * kernel breakpoints (e.g., perf's) to be disabled. This might be
 751	 * undesirable, but still seems reasonable as the code that runs in the
 752	 * temporary mm should be short.
 753	 */
 754	if (hw_breakpoint_active())
 755		hw_breakpoint_disable();
 756
 757	return temp_state;
 758}
 759
 760static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
 761{
 762	lockdep_assert_irqs_disabled();
 763	switch_mm_irqs_off(NULL, prev_state.mm, current);
 764
 765	/*
 766	 * Restore the breakpoints if they were disabled before the temporary mm
 767	 * was loaded.
 768	 */
 769	if (hw_breakpoint_active())
 770		hw_breakpoint_restore();
 771}
 772
 773__ro_after_init struct mm_struct *poking_mm;
 774__ro_after_init unsigned long poking_addr;
 775
 776static void *__text_poke(void *addr, const void *opcode, size_t len)
 777{
 778	bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
 779	struct page *pages[2] = {NULL};
 780	temp_mm_state_t prev;
 781	unsigned long flags;
 782	pte_t pte, *ptep;
 783	spinlock_t *ptl;
 784	pgprot_t pgprot;
 785
 786	/*
 787	 * While boot memory allocator is running we cannot use struct pages as
 788	 * they are not yet initialized. There is no way to recover.
 789	 */
 790	BUG_ON(!after_bootmem);
 791
 792	if (!core_kernel_text((unsigned long)addr)) {
 793		pages[0] = vmalloc_to_page(addr);
 794		if (cross_page_boundary)
 795			pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
 796	} else {
 797		pages[0] = virt_to_page(addr);
 798		WARN_ON(!PageReserved(pages[0]));
 799		if (cross_page_boundary)
 800			pages[1] = virt_to_page(addr + PAGE_SIZE);
 801	}
 802	/*
 803	 * If something went wrong, crash and burn since recovery paths are not
 804	 * implemented.
 805	 */
 806	BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
 807
 808	/*
 809	 * Map the page without the global bit, as TLB flushing is done with
 810	 * flush_tlb_mm_range(), which is intended for non-global PTEs.
 811	 */
 812	pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
 813
 814	/*
 815	 * The lock is not really needed, but this allows to avoid open-coding.
 816	 */
 817	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
 818
 819	/*
 820	 * This must not fail; preallocated in poking_init().
 821	 */
 822	VM_BUG_ON(!ptep);
 823
 824	local_irq_save(flags);
 825
 826	pte = mk_pte(pages[0], pgprot);
 827	set_pte_at(poking_mm, poking_addr, ptep, pte);
 828
 829	if (cross_page_boundary) {
 830		pte = mk_pte(pages[1], pgprot);
 831		set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
 832	}
 833
 834	/*
 835	 * Loading the temporary mm behaves as a compiler barrier, which
 836	 * guarantees that the PTE will be set at the time memcpy() is done.
 837	 */
 838	prev = use_temporary_mm(poking_mm);
 839
 840	kasan_disable_current();
 841	memcpy((u8 *)poking_addr + offset_in_page(addr), opcode, len);
 842	kasan_enable_current();
 843
 844	/*
 845	 * Ensure that the PTE is only cleared after the instructions of memcpy
 846	 * were issued by using a compiler barrier.
 847	 */
 848	barrier();
 849
 850	pte_clear(poking_mm, poking_addr, ptep);
 851	if (cross_page_boundary)
 852		pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
 853
 854	/*
 855	 * Loading the previous page-table hierarchy requires a serializing
 856	 * instruction that already allows the core to see the updated version.
 857	 * Xen-PV is assumed to serialize execution in a similar manner.
 858	 */
 859	unuse_temporary_mm(prev);
 860
 861	/*
 862	 * Flushing the TLB might involve IPIs, which would require enabled
 863	 * IRQs, but not if the mm is not used, as it is in this point.
 864	 */
 865	flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
 866			   (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
 867			   PAGE_SHIFT, false);
 868
 869	/*
 870	 * If the text does not match what we just wrote then something is
 871	 * fundamentally screwy; there's nothing we can really do about that.
 872	 */
 873	BUG_ON(memcmp(addr, opcode, len));
 874
 875	local_irq_restore(flags);
 876	pte_unmap_unlock(ptep, ptl);
 
 877	return addr;
 878}
 879
 880/**
 881 * text_poke - Update instructions on a live kernel
 882 * @addr: address to modify
 883 * @opcode: source of the copy
 884 * @len: length to copy
 885 *
 886 * Only atomic text poke/set should be allowed when not doing early patching.
 887 * It means the size must be writable atomically and the address must be aligned
 888 * in a way that permits an atomic write. It also makes sure we fit on a single
 889 * page.
 890 *
 891 * Note that the caller must ensure that if the modified code is part of a
 892 * module, the module would not be removed during poking. This can be achieved
 893 * by registering a module notifier, and ordering module removal and patching
 894 * trough a mutex.
 895 */
 896void *text_poke(void *addr, const void *opcode, size_t len)
 897{
 898	lockdep_assert_held(&text_mutex);
 
 
 
 899
 900	return __text_poke(addr, opcode, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 901}
 902
 903/**
 904 * text_poke_kgdb - Update instructions on a live kernel by kgdb
 905 * @addr: address to modify
 906 * @opcode: source of the copy
 907 * @len: length to copy
 908 *
 909 * Only atomic text poke/set should be allowed when not doing early patching.
 910 * It means the size must be writable atomically and the address must be aligned
 911 * in a way that permits an atomic write. It also makes sure we fit on a single
 912 * page.
 913 *
 914 * Context: should only be used by kgdb, which ensures no other core is running,
 915 *	    despite the fact it does not hold the text_mutex.
 916 */
 917void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
 918{
 919	return __text_poke(addr, opcode, len);
 920}
 921
 922static void do_sync_core(void *info)
 923{
 924	sync_core();
 925}
 926
 927void text_poke_sync(void)
 928{
 929	on_each_cpu(do_sync_core, NULL, 1);
 930}
 931
 932struct text_poke_loc {
 933	s32 rel_addr; /* addr := _stext + rel_addr */
 934	s32 rel32;
 935	u8 opcode;
 936	const u8 text[POKE_MAX_OPCODE_SIZE];
 937	u8 old;
 938};
 939
 940struct bp_patching_desc {
 941	struct text_poke_loc *vec;
 942	int nr_entries;
 943	atomic_t refs;
 944};
 945
 946static struct bp_patching_desc *bp_desc;
 947
 948static __always_inline
 949struct bp_patching_desc *try_get_desc(struct bp_patching_desc **descp)
 950{
 951	struct bp_patching_desc *desc = __READ_ONCE(*descp); /* rcu_dereference */
 952
 953	if (!desc || !arch_atomic_inc_not_zero(&desc->refs))
 954		return NULL;
 955
 956	return desc;
 957}
 958
 959static __always_inline void put_desc(struct bp_patching_desc *desc)
 960{
 961	smp_mb__before_atomic();
 962	arch_atomic_dec(&desc->refs);
 963}
 964
 965static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
 966{
 967	return _stext + tp->rel_addr;
 968}
 969
 970static __always_inline int patch_cmp(const void *key, const void *elt)
 971{
 972	struct text_poke_loc *tp = (struct text_poke_loc *) elt;
 973
 974	if (key < text_poke_addr(tp))
 975		return -1;
 976	if (key > text_poke_addr(tp))
 977		return 1;
 978	return 0;
 979}
 980
 981noinstr int poke_int3_handler(struct pt_regs *regs)
 982{
 983	struct bp_patching_desc *desc;
 984	struct text_poke_loc *tp;
 985	int len, ret = 0;
 986	void *ip;
 987
 988	if (user_mode(regs))
 989		return 0;
 990
 991	/*
 992	 * Having observed our INT3 instruction, we now must observe
 993	 * bp_desc:
 994	 *
 995	 *	bp_desc = desc			INT3
 996	 *	WMB				RMB
 997	 *	write INT3			if (desc)
 998	 */
 999	smp_rmb();
1000
1001	desc = try_get_desc(&bp_desc);
1002	if (!desc)
1003		return 0;
1004
1005	/*
1006	 * Discount the INT3. See text_poke_bp_batch().
1007	 */
1008	ip = (void *) regs->ip - INT3_INSN_SIZE;
1009
1010	/*
1011	 * Skip the binary search if there is a single member in the vector.
1012	 */
1013	if (unlikely(desc->nr_entries > 1)) {
1014		tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
1015				      sizeof(struct text_poke_loc),
1016				      patch_cmp);
1017		if (!tp)
1018			goto out_put;
1019	} else {
1020		tp = desc->vec;
1021		if (text_poke_addr(tp) != ip)
1022			goto out_put;
1023	}
1024
1025	len = text_opcode_size(tp->opcode);
1026	ip += len;
1027
1028	switch (tp->opcode) {
1029	case INT3_INSN_OPCODE:
1030		/*
1031		 * Someone poked an explicit INT3, they'll want to handle it,
1032		 * do not consume.
1033		 */
1034		goto out_put;
1035
1036	case RET_INSN_OPCODE:
1037		int3_emulate_ret(regs);
1038		break;
1039
1040	case CALL_INSN_OPCODE:
1041		int3_emulate_call(regs, (long)ip + tp->rel32);
1042		break;
1043
1044	case JMP32_INSN_OPCODE:
1045	case JMP8_INSN_OPCODE:
1046		int3_emulate_jmp(regs, (long)ip + tp->rel32);
1047		break;
1048
1049	default:
1050		BUG();
1051	}
1052
1053	ret = 1;
1054
1055out_put:
1056	put_desc(desc);
1057	return ret;
 
1058}
1059
1060#define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
1061static struct text_poke_loc tp_vec[TP_VEC_MAX];
1062static int tp_vec_nr;
1063
1064/**
1065 * text_poke_bp_batch() -- update instructions on live kernel on SMP
1066 * @tp:			vector of instructions to patch
1067 * @nr_entries:		number of entries in the vector
 
1068 *
1069 * Modify multi-byte instruction by using int3 breakpoint on SMP.
1070 * We completely avoid stop_machine() here, and achieve the
1071 * synchronization using int3 breakpoint.
1072 *
1073 * The way it is done:
1074 *	- For each entry in the vector:
1075 *		- add a int3 trap to the address that will be patched
1076 *	- sync cores
1077 *	- For each entry in the vector:
1078 *		- update all but the first byte of the patched range
1079 *	- sync cores
1080 *	- For each entry in the vector:
1081 *		- replace the first byte (int3) by the first byte of
1082 *		  replacing opcode
1083 *	- sync cores
1084 */
1085static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
1086{
1087	struct bp_patching_desc desc = {
1088		.vec = tp,
1089		.nr_entries = nr_entries,
1090		.refs = ATOMIC_INIT(1),
1091	};
1092	unsigned char int3 = INT3_INSN_OPCODE;
1093	unsigned int i;
1094	int do_sync;
1095
1096	lockdep_assert_held(&text_mutex);
1097
1098	smp_store_release(&bp_desc, &desc); /* rcu_assign_pointer */
1099
1100	/*
1101	 * Corresponding read barrier in int3 notifier for making sure the
1102	 * nr_entries and handler are correctly ordered wrt. patching.
1103	 */
1104	smp_wmb();
1105
1106	/*
1107	 * First step: add a int3 trap to the address that will be patched.
1108	 */
1109	for (i = 0; i < nr_entries; i++) {
1110		tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
1111		text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
1112	}
1113
1114	text_poke_sync();
1115
1116	/*
1117	 * Second step: update all but the first byte of the patched range.
1118	 */
1119	for (do_sync = 0, i = 0; i < nr_entries; i++) {
1120		u8 old[POKE_MAX_OPCODE_SIZE] = { tp[i].old, };
1121		int len = text_opcode_size(tp[i].opcode);
1122
1123		if (len - INT3_INSN_SIZE > 0) {
1124			memcpy(old + INT3_INSN_SIZE,
1125			       text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1126			       len - INT3_INSN_SIZE);
1127			text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1128				  (const char *)tp[i].text + INT3_INSN_SIZE,
1129				  len - INT3_INSN_SIZE);
1130			do_sync++;
1131		}
1132
1133		/*
1134		 * Emit a perf event to record the text poke, primarily to
1135		 * support Intel PT decoding which must walk the executable code
1136		 * to reconstruct the trace. The flow up to here is:
1137		 *   - write INT3 byte
1138		 *   - IPI-SYNC
1139		 *   - write instruction tail
1140		 * At this point the actual control flow will be through the
1141		 * INT3 and handler and not hit the old or new instruction.
1142		 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
1143		 * can still be decoded. Subsequently:
1144		 *   - emit RECORD_TEXT_POKE with the new instruction
1145		 *   - IPI-SYNC
1146		 *   - write first byte
1147		 *   - IPI-SYNC
1148		 * So before the text poke event timestamp, the decoder will see
1149		 * either the old instruction flow or FUP/TIP of INT3. After the
1150		 * text poke event timestamp, the decoder will see either the
1151		 * new instruction flow or FUP/TIP of INT3. Thus decoders can
1152		 * use the timestamp as the point at which to modify the
1153		 * executable code.
1154		 * The old instruction is recorded so that the event can be
1155		 * processed forwards or backwards.
1156		 */
1157		perf_event_text_poke(text_poke_addr(&tp[i]), old, len,
1158				     tp[i].text, len);
1159	}
1160
1161	if (do_sync) {
1162		/*
1163		 * According to Intel, this core syncing is very likely
1164		 * not necessary and we'd be safe even without it. But
1165		 * better safe than sorry (plus there's not only Intel).
1166		 */
1167		text_poke_sync();
1168	}
1169
1170	/*
1171	 * Third step: replace the first byte (int3) by the first byte of
1172	 * replacing opcode.
1173	 */
1174	for (do_sync = 0, i = 0; i < nr_entries; i++) {
1175		if (tp[i].text[0] == INT3_INSN_OPCODE)
1176			continue;
1177
1178		text_poke(text_poke_addr(&tp[i]), tp[i].text, INT3_INSN_SIZE);
1179		do_sync++;
1180	}
1181
1182	if (do_sync)
1183		text_poke_sync();
1184
1185	/*
1186	 * Remove and synchronize_rcu(), except we have a very primitive
1187	 * refcount based completion.
1188	 */
1189	WRITE_ONCE(bp_desc, NULL); /* RCU_INIT_POINTER */
1190	if (!atomic_dec_and_test(&desc.refs))
1191		atomic_cond_read_acquire(&desc.refs, !VAL);
1192}
1193
1194static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
1195			       const void *opcode, size_t len, const void *emulate)
1196{
1197	struct insn insn;
1198	int ret;
1199
1200	memcpy((void *)tp->text, opcode, len);
1201	if (!emulate)
1202		emulate = opcode;
1203
1204	ret = insn_decode_kernel(&insn, emulate);
1205
1206	BUG_ON(ret < 0);
1207	BUG_ON(len != insn.length);
1208
1209	tp->rel_addr = addr - (void *)_stext;
1210	tp->opcode = insn.opcode.bytes[0];
1211
1212	switch (tp->opcode) {
1213	case INT3_INSN_OPCODE:
1214	case RET_INSN_OPCODE:
1215		break;
1216
1217	case CALL_INSN_OPCODE:
1218	case JMP32_INSN_OPCODE:
1219	case JMP8_INSN_OPCODE:
1220		tp->rel32 = insn.immediate.value;
1221		break;
1222
1223	default: /* assume NOP */
1224		switch (len) {
1225		case 2: /* NOP2 -- emulate as JMP8+0 */
1226			BUG_ON(memcmp(emulate, x86_nops[len], len));
1227			tp->opcode = JMP8_INSN_OPCODE;
1228			tp->rel32 = 0;
1229			break;
1230
1231		case 5: /* NOP5 -- emulate as JMP32+0 */
1232			BUG_ON(memcmp(emulate, x86_nops[len], len));
1233			tp->opcode = JMP32_INSN_OPCODE;
1234			tp->rel32 = 0;
1235			break;
1236
1237		default: /* unknown instruction */
1238			BUG();
1239		}
1240		break;
1241	}
1242}
1243
1244/*
1245 * We hard rely on the tp_vec being ordered; ensure this is so by flushing
1246 * early if needed.
1247 */
1248static bool tp_order_fail(void *addr)
1249{
1250	struct text_poke_loc *tp;
1251
1252	if (!tp_vec_nr)
1253		return false;
1254
1255	if (!addr) /* force */
1256		return true;
1257
1258	tp = &tp_vec[tp_vec_nr - 1];
1259	if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
1260		return true;
1261
1262	return false;
1263}
1264
1265static void text_poke_flush(void *addr)
1266{
1267	if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
1268		text_poke_bp_batch(tp_vec, tp_vec_nr);
1269		tp_vec_nr = 0;
1270	}
1271}
1272
1273void text_poke_finish(void)
1274{
1275	text_poke_flush(NULL);
1276}
1277
1278void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
1279{
1280	struct text_poke_loc *tp;
1281
1282	if (unlikely(system_state == SYSTEM_BOOTING)) {
1283		text_poke_early(addr, opcode, len);
1284		return;
1285	}
1286
1287	text_poke_flush(addr);
1288
1289	tp = &tp_vec[tp_vec_nr++];
1290	text_poke_loc_init(tp, addr, opcode, len, emulate);
1291}
1292
1293/**
1294 * text_poke_bp() -- update instructions on live kernel on SMP
1295 * @addr:	address to patch
1296 * @opcode:	opcode of new instruction
1297 * @len:	length to copy
1298 * @emulate:	instruction to be emulated
 
 
1299 *
1300 * Update a single instruction with the vector in the stack, avoiding
1301 * dynamically allocated memory. This function should be used when it is
1302 * not possible to allocate memory.
1303 */
1304void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
1305{
1306	struct text_poke_loc tp;
1307
1308	if (unlikely(system_state == SYSTEM_BOOTING)) {
1309		text_poke_early(addr, opcode, len);
1310		return;
1311	}
1312
1313	text_poke_loc_init(&tp, addr, opcode, len, emulate);
1314	text_poke_bp_batch(&tp, 1);
 
1315}