Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * OMAP Voltage Controller (VC) interface
  3 *
  4 * Copyright (C) 2011 Texas Instruments, Inc.
  5 *
  6 * This file is licensed under the terms of the GNU General Public
  7 * License version 2. This program is licensed "as is" without any
  8 * warranty of any kind, whether express or implied.
  9 */
 10#include <linux/kernel.h>
 11#include <linux/delay.h>
 12#include <linux/init.h>
 13#include <linux/bug.h>
 
 14
 15#include <plat/cpu.h>
 16
 
 
 17#include "voltage.h"
 18#include "vc.h"
 19#include "prm-regbits-34xx.h"
 20#include "prm-regbits-44xx.h"
 21#include "prm44xx.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 22
 23/**
 24 * struct omap_vc_channel_cfg - describe the cfg_channel bitfield
 25 * @sa: bit for slave address
 26 * @rav: bit for voltage configuration register
 27 * @rac: bit for command configuration register
 28 * @racen: enable bit for RAC
 29 * @cmd: bit for command value set selection
 30 *
 31 * Channel configuration bits, common for OMAP3+
 32 * OMAP3 register: PRM_VC_CH_CONF
 33 * OMAP4 register: PRM_VC_CFG_CHANNEL
 34 * OMAP5 register: PRM_VC_SMPS_<voltdm>_CONFIG
 35 */
 36struct omap_vc_channel_cfg {
 37	u8 sa;
 38	u8 rav;
 39	u8 rac;
 40	u8 racen;
 41	u8 cmd;
 42};
 43
 44static struct omap_vc_channel_cfg vc_default_channel_cfg = {
 45	.sa    = BIT(0),
 46	.rav   = BIT(1),
 47	.rac   = BIT(2),
 48	.racen = BIT(3),
 49	.cmd   = BIT(4),
 50};
 51
 52/*
 53 * On OMAP3+, all VC channels have the above default bitfield
 54 * configuration, except the OMAP4 MPU channel.  This appears
 55 * to be a freak accident as every other VC channel has the
 56 * default configuration, thus creating a mutant channel config.
 57 */
 58static struct omap_vc_channel_cfg vc_mutant_channel_cfg = {
 59	.sa    = BIT(0),
 60	.rav   = BIT(2),
 61	.rac   = BIT(3),
 62	.racen = BIT(4),
 63	.cmd   = BIT(1),
 64};
 65
 66static struct omap_vc_channel_cfg *vc_cfg_bits;
 
 
 
 67#define CFG_CHANNEL_MASK 0x1f
 68
 69/**
 70 * omap_vc_config_channel - configure VC channel to PMIC mappings
 71 * @voltdm: pointer to voltagdomain defining the desired VC channel
 72 *
 73 * Configures the VC channel to PMIC mappings for the following
 74 * PMIC settings
 75 * - i2c slave address (SA)
 76 * - voltage configuration address (RAV)
 77 * - command configuration address (RAC) and enable bit (RACEN)
 78 * - command values for ON, ONLP, RET and OFF (CMD)
 79 *
 80 * This function currently only allows flexible configuration of the
 81 * non-default channel.  Starting with OMAP4, there are more than 2
 82 * channels, with one defined as the default (on OMAP4, it's MPU.)
 83 * Only the non-default channel can be configured.
 84 */
 85static int omap_vc_config_channel(struct voltagedomain *voltdm)
 86{
 87	struct omap_vc_channel *vc = voltdm->vc;
 88
 89	/*
 90	 * For default channel, the only configurable bit is RACEN.
 91	 * All others must stay at zero (see function comment above.)
 92	 */
 93	if (vc->flags & OMAP_VC_CHANNEL_DEFAULT)
 94		vc->cfg_channel &= vc_cfg_bits->racen;
 95
 96	voltdm->rmw(CFG_CHANNEL_MASK << vc->cfg_channel_sa_shift,
 97		    vc->cfg_channel << vc->cfg_channel_sa_shift,
 98		    vc->cfg_channel_reg);
 99
100	return 0;
101}
102
103/* Voltage scale and accessory APIs */
104int omap_vc_pre_scale(struct voltagedomain *voltdm,
105		      unsigned long target_volt,
106		      u8 *target_vsel, u8 *current_vsel)
107{
108	struct omap_vc_channel *vc = voltdm->vc;
109	u32 vc_cmdval;
110
111	/* Check if sufficient pmic info is available for this vdd */
112	if (!voltdm->pmic) {
113		pr_err("%s: Insufficient pmic info to scale the vdd_%s\n",
114			__func__, voltdm->name);
115		return -EINVAL;
116	}
117
118	if (!voltdm->pmic->uv_to_vsel) {
119		pr_err("%s: PMIC function to convert voltage in uV to"
120			"vsel not registered. Hence unable to scale voltage"
121			"for vdd_%s\n", __func__, voltdm->name);
122		return -ENODATA;
123	}
124
125	if (!voltdm->read || !voltdm->write) {
126		pr_err("%s: No read/write API for accessing vdd_%s regs\n",
127			__func__, voltdm->name);
128		return -EINVAL;
129	}
130
131	*target_vsel = voltdm->pmic->uv_to_vsel(target_volt);
132	*current_vsel = voltdm->pmic->uv_to_vsel(voltdm->nominal_volt);
133
134	/* Setting the ON voltage to the new target voltage */
135	vc_cmdval = voltdm->read(vc->cmdval_reg);
136	vc_cmdval &= ~vc->common->cmd_on_mask;
137	vc_cmdval |= (*target_vsel << vc->common->cmd_on_shift);
138	voltdm->write(vc_cmdval, vc->cmdval_reg);
139
 
 
140	omap_vp_update_errorgain(voltdm, target_volt);
141
142	return 0;
143}
144
145void omap_vc_post_scale(struct voltagedomain *voltdm,
146			unsigned long target_volt,
147			u8 target_vsel, u8 current_vsel)
148{
149	u32 smps_steps = 0, smps_delay = 0;
150
151	smps_steps = abs(target_vsel - current_vsel);
152	/* SMPS slew rate / step size. 2us added as buffer. */
153	smps_delay = ((smps_steps * voltdm->pmic->step_size) /
154			voltdm->pmic->slew_rate) + 2;
155	udelay(smps_delay);
156}
157
158/* vc_bypass_scale - VC bypass method of voltage scaling */
159int omap_vc_bypass_scale(struct voltagedomain *voltdm,
160			 unsigned long target_volt)
161{
162	struct omap_vc_channel *vc = voltdm->vc;
163	u32 loop_cnt = 0, retries_cnt = 0;
164	u32 vc_valid, vc_bypass_val_reg, vc_bypass_value;
165	u8 target_vsel, current_vsel;
166	int ret;
167
168	ret = omap_vc_pre_scale(voltdm, target_volt, &target_vsel, &current_vsel);
169	if (ret)
170		return ret;
171
172	vc_valid = vc->common->valid;
173	vc_bypass_val_reg = vc->common->bypass_val_reg;
174	vc_bypass_value = (target_vsel << vc->common->data_shift) |
175		(vc->volt_reg_addr << vc->common->regaddr_shift) |
176		(vc->i2c_slave_addr << vc->common->slaveaddr_shift);
177
178	voltdm->write(vc_bypass_value, vc_bypass_val_reg);
179	voltdm->write(vc_bypass_value | vc_valid, vc_bypass_val_reg);
180
181	vc_bypass_value = voltdm->read(vc_bypass_val_reg);
182	/*
183	 * Loop till the bypass command is acknowledged from the SMPS.
184	 * NOTE: This is legacy code. The loop count and retry count needs
185	 * to be revisited.
186	 */
187	while (!(vc_bypass_value & vc_valid)) {
188		loop_cnt++;
189
190		if (retries_cnt > 10) {
191			pr_warning("%s: Retry count exceeded\n", __func__);
192			return -ETIMEDOUT;
193		}
194
195		if (loop_cnt > 50) {
196			retries_cnt++;
197			loop_cnt = 0;
198			udelay(10);
199		}
200		vc_bypass_value = voltdm->read(vc_bypass_val_reg);
201	}
202
203	omap_vc_post_scale(voltdm, target_volt, target_vsel, current_vsel);
204	return 0;
205}
206
207static void __init omap3_vfsm_init(struct voltagedomain *voltdm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
209	/*
210	 * Voltage Manager FSM parameters init
211	 * XXX This data should be passed in from the board file
 
 
 
212	 */
213	voltdm->write(OMAP3_CLKSETUP, OMAP3_PRM_CLKSETUP_OFFSET);
214	voltdm->write(OMAP3_VOLTOFFSET, OMAP3_PRM_VOLTOFFSET_OFFSET);
215	voltdm->write(OMAP3_VOLTSETUP2, OMAP3_PRM_VOLTSETUP2_OFFSET);
 
216}
217
218static void __init omap3_vc_init_channel(struct voltagedomain *voltdm)
219{
220	static bool is_initialized;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221
222	if (is_initialized)
223		return;
224
225	omap3_vfsm_init(voltdm);
 
 
 
 
 
 
226
227	is_initialized = true;
 
 
 
 
 
 
 
228}
229
 
 
 
 
 
 
 
 
230
231/* OMAP4 specific voltage init functions */
232static void __init omap4_vc_init_channel(struct voltagedomain *voltdm)
233{
234	static bool is_initialized;
235	u32 vc_val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236
237	if (is_initialized)
 
238		return;
 
 
 
 
239
240	/* XXX These are magic numbers and do not belong! */
241	vc_val = (0x60 << OMAP4430_SCLL_SHIFT | 0x26 << OMAP4430_SCLH_SHIFT);
242	voltdm->write(vc_val, OMAP4_PRM_VC_CFG_I2C_CLK_OFFSET);
243
244	is_initialized = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245}
246
 
 
247/**
248 * omap_vc_i2c_init - initialize I2C interface to PMIC
249 * @voltdm: voltage domain containing VC data
250 *
251 * Use PMIC supplied settings for I2C high-speed mode and
252 * master code (if set) and program the VC I2C configuration
253 * register.
254 *
255 * The VC I2C configuration is common to all VC channels,
256 * so this function only configures I2C for the first VC
257 * channel registers.  All other VC channels will use the
258 * same configuration.
259 */
260static void __init omap_vc_i2c_init(struct voltagedomain *voltdm)
261{
262	struct omap_vc_channel *vc = voltdm->vc;
263	static bool initialized;
264	static bool i2c_high_speed;
265	u8 mcode;
266
267	if (initialized) {
268		if (voltdm->pmic->i2c_high_speed != i2c_high_speed)
269			pr_warn("%s: I2C config for vdd_%s does not match other channels (%u).",
270				__func__, voltdm->name, i2c_high_speed);
271		return;
272	}
273
 
 
 
 
 
 
 
274	i2c_high_speed = voltdm->pmic->i2c_high_speed;
275	if (i2c_high_speed)
276		voltdm->rmw(vc->common->i2c_cfg_hsen_mask,
277			    vc->common->i2c_cfg_hsen_mask,
278			    vc->common->i2c_cfg_reg);
279
280	mcode = voltdm->pmic->i2c_mcode;
281	if (mcode)
282		voltdm->rmw(vc->common->i2c_mcode_mask,
283			    mcode << __ffs(vc->common->i2c_mcode_mask),
284			    vc->common->i2c_cfg_reg);
285
 
 
 
286	initialized = true;
287}
288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
289void __init omap_vc_init_channel(struct voltagedomain *voltdm)
290{
291	struct omap_vc_channel *vc = voltdm->vc;
292	u8 on_vsel, onlp_vsel, ret_vsel, off_vsel;
293	u32 val;
294
295	if (!voltdm->pmic || !voltdm->pmic->uv_to_vsel) {
296		pr_err("%s: No PMIC info for vdd_%s\n", __func__, voltdm->name);
297		return;
298	}
299
300	if (!voltdm->read || !voltdm->write) {
301		pr_err("%s: No read/write API for accessing vdd_%s regs\n",
302			__func__, voltdm->name);
303		return;
304	}
305
306	vc->cfg_channel = 0;
307	if (vc->flags & OMAP_VC_CHANNEL_CFG_MUTANT)
308		vc_cfg_bits = &vc_mutant_channel_cfg;
309	else
310		vc_cfg_bits = &vc_default_channel_cfg;
311
312	/* get PMIC/board specific settings */
313	vc->i2c_slave_addr = voltdm->pmic->i2c_slave_addr;
314	vc->volt_reg_addr = voltdm->pmic->volt_reg_addr;
315	vc->cmd_reg_addr = voltdm->pmic->cmd_reg_addr;
316	vc->setup_time = voltdm->pmic->volt_setup_time;
317
318	/* Configure the i2c slave address for this VC */
319	voltdm->rmw(vc->smps_sa_mask,
320		    vc->i2c_slave_addr << __ffs(vc->smps_sa_mask),
321		    vc->smps_sa_reg);
322	vc->cfg_channel |= vc_cfg_bits->sa;
323
324	/*
325	 * Configure the PMIC register addresses.
326	 */
327	voltdm->rmw(vc->smps_volra_mask,
328		    vc->volt_reg_addr << __ffs(vc->smps_volra_mask),
329		    vc->smps_volra_reg);
330	vc->cfg_channel |= vc_cfg_bits->rav;
331
332	if (vc->cmd_reg_addr) {
333		voltdm->rmw(vc->smps_cmdra_mask,
334			    vc->cmd_reg_addr << __ffs(vc->smps_cmdra_mask),
335			    vc->smps_cmdra_reg);
336		vc->cfg_channel |= vc_cfg_bits->rac | vc_cfg_bits->racen;
337	}
338
 
 
 
339	/* Set up the on, inactive, retention and off voltage */
340	on_vsel = voltdm->pmic->uv_to_vsel(voltdm->pmic->on_volt);
341	onlp_vsel = voltdm->pmic->uv_to_vsel(voltdm->pmic->onlp_volt);
342	ret_vsel = voltdm->pmic->uv_to_vsel(voltdm->pmic->ret_volt);
343	off_vsel = voltdm->pmic->uv_to_vsel(voltdm->pmic->off_volt);
 
344	val = ((on_vsel << vc->common->cmd_on_shift) |
345	       (onlp_vsel << vc->common->cmd_onlp_shift) |
346	       (ret_vsel << vc->common->cmd_ret_shift) |
347	       (off_vsel << vc->common->cmd_off_shift));
348	voltdm->write(val, vc->cmdval_reg);
349	vc->cfg_channel |= vc_cfg_bits->cmd;
350
351	/* Channel configuration */
352	omap_vc_config_channel(voltdm);
353
354	/* Configure the setup times */
355	voltdm->rmw(voltdm->vfsm->voltsetup_mask,
356		    vc->setup_time << __ffs(voltdm->vfsm->voltsetup_mask),
357		    voltdm->vfsm->voltsetup_reg);
358
359	omap_vc_i2c_init(voltdm);
360
361	if (cpu_is_omap34xx())
362		omap3_vc_init_channel(voltdm);
363	else if (cpu_is_omap44xx())
364		omap4_vc_init_channel(voltdm);
365}
366
v5.14.15
  1/*
  2 * OMAP Voltage Controller (VC) interface
  3 *
  4 * Copyright (C) 2011 Texas Instruments, Inc.
  5 *
  6 * This file is licensed under the terms of the GNU General Public
  7 * License version 2. This program is licensed "as is" without any
  8 * warranty of any kind, whether express or implied.
  9 */
 10#include <linux/kernel.h>
 11#include <linux/delay.h>
 12#include <linux/init.h>
 13#include <linux/bug.h>
 14#include <linux/io.h>
 15
 16#include <asm/div64.h>
 17
 18#include "iomap.h"
 19#include "soc.h"
 20#include "voltage.h"
 21#include "vc.h"
 22#include "prm-regbits-34xx.h"
 23#include "prm-regbits-44xx.h"
 24#include "prm44xx.h"
 25#include "pm.h"
 26#include "scrm44xx.h"
 27#include "control.h"
 28
 29#define OMAP4430_VDD_IVA_I2C_DISABLE		BIT(14)
 30#define OMAP4430_VDD_MPU_I2C_DISABLE		BIT(13)
 31#define OMAP4430_VDD_CORE_I2C_DISABLE		BIT(12)
 32#define OMAP4430_VDD_IVA_PRESENCE		BIT(9)
 33#define OMAP4430_VDD_MPU_PRESENCE		BIT(8)
 34#define OMAP4430_AUTO_CTRL_VDD_IVA(x)		((x) << 4)
 35#define OMAP4430_AUTO_CTRL_VDD_MPU(x)		((x) << 2)
 36#define OMAP4430_AUTO_CTRL_VDD_CORE(x)		((x) << 0)
 37#define OMAP4430_AUTO_CTRL_VDD_RET		2
 38
 39#define OMAP4430_VDD_I2C_DISABLE_MASK	\
 40	(OMAP4430_VDD_IVA_I2C_DISABLE | \
 41	 OMAP4430_VDD_MPU_I2C_DISABLE | \
 42	 OMAP4430_VDD_CORE_I2C_DISABLE)
 43
 44#define OMAP4_VDD_DEFAULT_VAL	\
 45	(OMAP4430_VDD_I2C_DISABLE_MASK | \
 46	 OMAP4430_VDD_IVA_PRESENCE | OMAP4430_VDD_MPU_PRESENCE | \
 47	 OMAP4430_AUTO_CTRL_VDD_IVA(OMAP4430_AUTO_CTRL_VDD_RET) | \
 48	 OMAP4430_AUTO_CTRL_VDD_MPU(OMAP4430_AUTO_CTRL_VDD_RET) | \
 49	 OMAP4430_AUTO_CTRL_VDD_CORE(OMAP4430_AUTO_CTRL_VDD_RET))
 50
 51#define OMAP4_VDD_RET_VAL	\
 52	(OMAP4_VDD_DEFAULT_VAL & ~OMAP4430_VDD_I2C_DISABLE_MASK)
 53
 54/**
 55 * struct omap_vc_channel_cfg - describe the cfg_channel bitfield
 56 * @sa: bit for slave address
 57 * @rav: bit for voltage configuration register
 58 * @rac: bit for command configuration register
 59 * @racen: enable bit for RAC
 60 * @cmd: bit for command value set selection
 61 *
 62 * Channel configuration bits, common for OMAP3+
 63 * OMAP3 register: PRM_VC_CH_CONF
 64 * OMAP4 register: PRM_VC_CFG_CHANNEL
 65 * OMAP5 register: PRM_VC_SMPS_<voltdm>_CONFIG
 66 */
 67struct omap_vc_channel_cfg {
 68	u8 sa;
 69	u8 rav;
 70	u8 rac;
 71	u8 racen;
 72	u8 cmd;
 73};
 74
 75static struct omap_vc_channel_cfg vc_default_channel_cfg = {
 76	.sa    = BIT(0),
 77	.rav   = BIT(1),
 78	.rac   = BIT(2),
 79	.racen = BIT(3),
 80	.cmd   = BIT(4),
 81};
 82
 83/*
 84 * On OMAP3+, all VC channels have the above default bitfield
 85 * configuration, except the OMAP4 MPU channel.  This appears
 86 * to be a freak accident as every other VC channel has the
 87 * default configuration, thus creating a mutant channel config.
 88 */
 89static struct omap_vc_channel_cfg vc_mutant_channel_cfg = {
 90	.sa    = BIT(0),
 91	.rav   = BIT(2),
 92	.rac   = BIT(3),
 93	.racen = BIT(4),
 94	.cmd   = BIT(1),
 95};
 96
 97static struct omap_vc_channel_cfg *vc_cfg_bits;
 98
 99/* Default I2C trace length on pcb, 6.3cm. Used for capacitance calculations. */
100static u32 sr_i2c_pcb_length = 63;
101#define CFG_CHANNEL_MASK 0x1f
102
103/**
104 * omap_vc_config_channel - configure VC channel to PMIC mappings
105 * @voltdm: pointer to voltagdomain defining the desired VC channel
106 *
107 * Configures the VC channel to PMIC mappings for the following
108 * PMIC settings
109 * - i2c slave address (SA)
110 * - voltage configuration address (RAV)
111 * - command configuration address (RAC) and enable bit (RACEN)
112 * - command values for ON, ONLP, RET and OFF (CMD)
113 *
114 * This function currently only allows flexible configuration of the
115 * non-default channel.  Starting with OMAP4, there are more than 2
116 * channels, with one defined as the default (on OMAP4, it's MPU.)
117 * Only the non-default channel can be configured.
118 */
119static int omap_vc_config_channel(struct voltagedomain *voltdm)
120{
121	struct omap_vc_channel *vc = voltdm->vc;
122
123	/*
124	 * For default channel, the only configurable bit is RACEN.
125	 * All others must stay at zero (see function comment above.)
126	 */
127	if (vc->flags & OMAP_VC_CHANNEL_DEFAULT)
128		vc->cfg_channel &= vc_cfg_bits->racen;
129
130	voltdm->rmw(CFG_CHANNEL_MASK << vc->cfg_channel_sa_shift,
131		    vc->cfg_channel << vc->cfg_channel_sa_shift,
132		    vc->cfg_channel_reg);
133
134	return 0;
135}
136
137/* Voltage scale and accessory APIs */
138int omap_vc_pre_scale(struct voltagedomain *voltdm,
139		      unsigned long target_volt,
140		      u8 *target_vsel, u8 *current_vsel)
141{
142	struct omap_vc_channel *vc = voltdm->vc;
143	u32 vc_cmdval;
144
145	/* Check if sufficient pmic info is available for this vdd */
146	if (!voltdm->pmic) {
147		pr_err("%s: Insufficient pmic info to scale the vdd_%s\n",
148			__func__, voltdm->name);
149		return -EINVAL;
150	}
151
152	if (!voltdm->pmic->uv_to_vsel) {
153		pr_err("%s: PMIC function to convert voltage in uV to vsel not registered. Hence unable to scale voltage for vdd_%s\n",
154		       __func__, voltdm->name);
 
155		return -ENODATA;
156	}
157
158	if (!voltdm->read || !voltdm->write) {
159		pr_err("%s: No read/write API for accessing vdd_%s regs\n",
160			__func__, voltdm->name);
161		return -EINVAL;
162	}
163
164	*target_vsel = voltdm->pmic->uv_to_vsel(target_volt);
165	*current_vsel = voltdm->pmic->uv_to_vsel(voltdm->nominal_volt);
166
167	/* Setting the ON voltage to the new target voltage */
168	vc_cmdval = voltdm->read(vc->cmdval_reg);
169	vc_cmdval &= ~vc->common->cmd_on_mask;
170	vc_cmdval |= (*target_vsel << vc->common->cmd_on_shift);
171	voltdm->write(vc_cmdval, vc->cmdval_reg);
172
173	voltdm->vc_param->on = target_volt;
174
175	omap_vp_update_errorgain(voltdm, target_volt);
176
177	return 0;
178}
179
180void omap_vc_post_scale(struct voltagedomain *voltdm,
181			unsigned long target_volt,
182			u8 target_vsel, u8 current_vsel)
183{
184	u32 smps_steps = 0, smps_delay = 0;
185
186	smps_steps = abs(target_vsel - current_vsel);
187	/* SMPS slew rate / step size. 2us added as buffer. */
188	smps_delay = ((smps_steps * voltdm->pmic->step_size) /
189			voltdm->pmic->slew_rate) + 2;
190	udelay(smps_delay);
191}
192
193/* vc_bypass_scale - VC bypass method of voltage scaling */
194int omap_vc_bypass_scale(struct voltagedomain *voltdm,
195			 unsigned long target_volt)
196{
197	struct omap_vc_channel *vc = voltdm->vc;
198	u32 loop_cnt = 0, retries_cnt = 0;
199	u32 vc_valid, vc_bypass_val_reg, vc_bypass_value;
200	u8 target_vsel, current_vsel;
201	int ret;
202
203	ret = omap_vc_pre_scale(voltdm, target_volt, &target_vsel, &current_vsel);
204	if (ret)
205		return ret;
206
207	vc_valid = vc->common->valid;
208	vc_bypass_val_reg = vc->common->bypass_val_reg;
209	vc_bypass_value = (target_vsel << vc->common->data_shift) |
210		(vc->volt_reg_addr << vc->common->regaddr_shift) |
211		(vc->i2c_slave_addr << vc->common->slaveaddr_shift);
212
213	voltdm->write(vc_bypass_value, vc_bypass_val_reg);
214	voltdm->write(vc_bypass_value | vc_valid, vc_bypass_val_reg);
215
216	vc_bypass_value = voltdm->read(vc_bypass_val_reg);
217	/*
218	 * Loop till the bypass command is acknowledged from the SMPS.
219	 * NOTE: This is legacy code. The loop count and retry count needs
220	 * to be revisited.
221	 */
222	while (!(vc_bypass_value & vc_valid)) {
223		loop_cnt++;
224
225		if (retries_cnt > 10) {
226			pr_warn("%s: Retry count exceeded\n", __func__);
227			return -ETIMEDOUT;
228		}
229
230		if (loop_cnt > 50) {
231			retries_cnt++;
232			loop_cnt = 0;
233			udelay(10);
234		}
235		vc_bypass_value = voltdm->read(vc_bypass_val_reg);
236	}
237
238	omap_vc_post_scale(voltdm, target_volt, target_vsel, current_vsel);
239	return 0;
240}
241
242/* Convert microsecond value to number of 32kHz clock cycles */
243static inline u32 omap_usec_to_32k(u32 usec)
244{
245	return DIV_ROUND_UP_ULL(32768ULL * (u64)usec, 1000000ULL);
246}
247
248struct omap3_vc_timings {
249	u32 voltsetup1;
250	u32 voltsetup2;
251};
252
253struct omap3_vc {
254	struct voltagedomain *vd;
255	u32 voltctrl;
256	u32 voltsetup1;
257	u32 voltsetup2;
258	struct omap3_vc_timings timings[2];
259};
260static struct omap3_vc vc;
261
262void omap3_vc_set_pmic_signaling(int core_next_state)
263{
264	struct voltagedomain *vd = vc.vd;
265	struct omap3_vc_timings *c = vc.timings;
266	u32 voltctrl, voltsetup1, voltsetup2;
267
268	voltctrl = vc.voltctrl;
269	voltsetup1 = vc.voltsetup1;
270	voltsetup2 = vc.voltsetup2;
271
272	switch (core_next_state) {
273	case PWRDM_POWER_OFF:
274		voltctrl &= ~(OMAP3430_PRM_VOLTCTRL_AUTO_RET |
275			      OMAP3430_PRM_VOLTCTRL_AUTO_SLEEP);
276		voltctrl |= OMAP3430_PRM_VOLTCTRL_AUTO_OFF;
277		if (voltctrl & OMAP3430_PRM_VOLTCTRL_SEL_OFF)
278			voltsetup2 = c->voltsetup2;
279		else
280			voltsetup1 = c->voltsetup1;
281		break;
282	case PWRDM_POWER_RET:
283	default:
284		c++;
285		voltctrl &= ~(OMAP3430_PRM_VOLTCTRL_AUTO_OFF |
286			      OMAP3430_PRM_VOLTCTRL_AUTO_SLEEP);
287		voltctrl |= OMAP3430_PRM_VOLTCTRL_AUTO_RET;
288		voltsetup1 = c->voltsetup1;
289		break;
290	}
291
292	if (voltctrl != vc.voltctrl) {
293		vd->write(voltctrl, OMAP3_PRM_VOLTCTRL_OFFSET);
294		vc.voltctrl = voltctrl;
295	}
296	if (voltsetup1 != vc.voltsetup1) {
297		vd->write(c->voltsetup1,
298			  OMAP3_PRM_VOLTSETUP1_OFFSET);
299		vc.voltsetup1 = voltsetup1;
300	}
301	if (voltsetup2 != vc.voltsetup2) {
302		vd->write(c->voltsetup2,
303			  OMAP3_PRM_VOLTSETUP2_OFFSET);
304		vc.voltsetup2 = voltsetup2;
305	}
306}
307
308void omap4_vc_set_pmic_signaling(int core_next_state)
309{
310	struct voltagedomain *vd = vc.vd;
311	u32 val;
312
313	if (!vd)
314		return;
315
316	switch (core_next_state) {
317	case PWRDM_POWER_RET:
318		val = OMAP4_VDD_RET_VAL;
319		break;
320	default:
321		val = OMAP4_VDD_DEFAULT_VAL;
322		break;
323	}
324
325	vd->write(val, OMAP4_PRM_VOLTCTRL_OFFSET);
326}
327
328/*
329 * Configure signal polarity for sys_clkreq and sys_off_mode pins
330 * as the default values are wrong and can cause the system to hang
331 * if any twl4030 scripts are loaded.
332 */
333static void __init omap3_vc_init_pmic_signaling(struct voltagedomain *voltdm)
334{
335	u32 val;
336
337	if (vc.vd)
338		return;
339
340	vc.vd = voltdm;
341
342	val = voltdm->read(OMAP3_PRM_POLCTRL_OFFSET);
343	if (!(val & OMAP3430_PRM_POLCTRL_CLKREQ_POL) ||
344	    (val & OMAP3430_PRM_POLCTRL_OFFMODE_POL)) {
345		val |= OMAP3430_PRM_POLCTRL_CLKREQ_POL;
346		val &= ~OMAP3430_PRM_POLCTRL_OFFMODE_POL;
347		pr_debug("PM: fixing sys_clkreq and sys_off_mode polarity to 0x%x\n",
348			 val);
349		voltdm->write(val, OMAP3_PRM_POLCTRL_OFFSET);
350	}
351
352	/*
353	 * By default let's use I2C4 signaling for retention idle
354	 * and sys_off_mode pin signaling for off idle. This way we
355	 * have sys_clk_req pin go down for retention and both
356	 * sys_clk_req and sys_off_mode pins will go down for off
357	 * idle. And we can also scale voltages to zero for off-idle.
358	 * Note that no actual voltage scaling during off-idle will
359	 * happen unless the board specific twl4030 PMIC scripts are
360	 * loaded. See also omap_vc_i2c_init for comments regarding
361	 * erratum i531.
362	 */
363	val = voltdm->read(OMAP3_PRM_VOLTCTRL_OFFSET);
364	if (!(val & OMAP3430_PRM_VOLTCTRL_SEL_OFF)) {
365		val |= OMAP3430_PRM_VOLTCTRL_SEL_OFF;
366		pr_debug("PM: setting voltctrl sys_off_mode signaling to 0x%x\n",
367			 val);
368		voltdm->write(val, OMAP3_PRM_VOLTCTRL_OFFSET);
369	}
370	vc.voltctrl = val;
371
372	omap3_vc_set_pmic_signaling(PWRDM_POWER_ON);
373}
374
375static void omap3_init_voltsetup1(struct voltagedomain *voltdm,
376				  struct omap3_vc_timings *c, u32 idle)
377{
378	unsigned long val;
379
380	val = (voltdm->vc_param->on - idle) / voltdm->pmic->slew_rate;
381	val *= voltdm->sys_clk.rate / 8 / 1000000 + 1;
382	val <<= __ffs(voltdm->vfsm->voltsetup_mask);
383	c->voltsetup1 &= ~voltdm->vfsm->voltsetup_mask;
384	c->voltsetup1 |= val;
385}
386
387/**
388 * omap3_set_i2c_timings - sets i2c sleep timings for a channel
389 * @voltdm: channel to configure
390 * @off_mode: select whether retention or off mode values used
391 *
392 * Calculates and sets up voltage controller to use I2C based
393 * voltage scaling for sleep modes. This can be used for either off mode
394 * or retention. Off mode has additionally an option to use sys_off_mode
395 * pad, which uses a global signal to program the whole power IC to
396 * off-mode.
397 *
398 * Note that pmic is not controlling the voltage scaling during
399 * retention signaled over I2C4, so we can keep voltsetup2 as 0.
400 * And the oscillator is not shut off over I2C4, so no need to
401 * set clksetup.
402 */
403static void omap3_set_i2c_timings(struct voltagedomain *voltdm)
404{
405	struct omap3_vc_timings *c = vc.timings;
406
407	/* Configure PRWDM_POWER_OFF over I2C4 */
408	omap3_init_voltsetup1(voltdm, c, voltdm->vc_param->off);
409	c++;
410	/* Configure PRWDM_POWER_RET over I2C4 */
411	omap3_init_voltsetup1(voltdm, c, voltdm->vc_param->ret);
412}
413
414/**
415 * omap3_set_off_timings - sets off-mode timings for a channel
416 * @voltdm: channel to configure
417 *
418 * Calculates and sets up off-mode timings for a channel. Off-mode
419 * can use either I2C based voltage scaling, or alternatively
420 * sys_off_mode pad can be used to send a global command to power IC.n,
421 * sys_off_mode has the additional benefit that voltages can be
422 * scaled to zero volt level with TWL4030 / TWL5030, I2C can only
423 * scale to 600mV.
424 *
425 * Note that omap is not controlling the voltage scaling during
426 * off idle signaled by sys_off_mode, so we can keep voltsetup1
427 * as 0.
428 */
429static void omap3_set_off_timings(struct voltagedomain *voltdm)
430{
431	struct omap3_vc_timings *c = vc.timings;
432	u32 tstart, tshut, clksetup, voltoffset;
433
434	if (c->voltsetup2)
435		return;
436
437	omap_pm_get_oscillator(&tstart, &tshut);
438	if (tstart == ULONG_MAX) {
439		pr_debug("PM: oscillator start-up time not initialized, using 10ms\n");
440		clksetup = omap_usec_to_32k(10000);
441	} else {
442		clksetup = omap_usec_to_32k(tstart);
443	}
444
445	/*
446	 * For twl4030 errata 27, we need to allow minimum ~488.32 us wait to
447	 * switch from HFCLKIN to internal oscillator. That means timings
448	 * have voltoffset fixed to 0xa in rounded up 32 KiHz cycles. And
449	 * that means we can calculate the value based on the oscillator
450	 * start-up time since voltoffset2 = clksetup - voltoffset.
451	 */
452	voltoffset = omap_usec_to_32k(488);
453	c->voltsetup2 = clksetup - voltoffset;
454	voltdm->write(clksetup, OMAP3_PRM_CLKSETUP_OFFSET);
455	voltdm->write(voltoffset, OMAP3_PRM_VOLTOFFSET_OFFSET);
456}
457
458static void __init omap3_vc_init_channel(struct voltagedomain *voltdm)
459{
460	omap3_vc_init_pmic_signaling(voltdm);
461	omap3_set_off_timings(voltdm);
462	omap3_set_i2c_timings(voltdm);
463}
464
465/**
466 * omap4_calc_volt_ramp - calculates voltage ramping delays on omap4
467 * @voltdm: channel to calculate values for
468 * @voltage_diff: voltage difference in microvolts
469 *
470 * Calculates voltage ramp prescaler + counter values for a voltage
471 * difference on omap4. Returns a field value suitable for writing to
472 * VOLTSETUP register for a channel in following format:
473 * bits[8:9] prescaler ... bits[0:5] counter. See OMAP4 TRM for reference.
474 */
475static u32 omap4_calc_volt_ramp(struct voltagedomain *voltdm, u32 voltage_diff)
476{
477	u32 prescaler;
478	u32 cycles;
479	u32 time;
480
481	time = voltage_diff / voltdm->pmic->slew_rate;
482
483	cycles = voltdm->sys_clk.rate / 1000 * time / 1000;
484
485	cycles /= 64;
486	prescaler = 0;
487
488	/* shift to next prescaler until no overflow */
489
490	/* scale for div 256 = 64 * 4 */
491	if (cycles > 63) {
492		cycles /= 4;
493		prescaler++;
494	}
495
496	/* scale for div 512 = 256 * 2 */
497	if (cycles > 63) {
498		cycles /= 2;
499		prescaler++;
500	}
501
502	/* scale for div 2048 = 512 * 4 */
503	if (cycles > 63) {
504		cycles /= 4;
505		prescaler++;
506	}
507
508	/* check for overflow => invalid ramp time */
509	if (cycles > 63) {
510		pr_warn("%s: invalid setuptime for vdd_%s\n", __func__,
511			voltdm->name);
512		return 0;
513	}
514
515	cycles++;
516
517	return (prescaler << OMAP4430_RAMP_UP_PRESCAL_SHIFT) |
518		(cycles << OMAP4430_RAMP_UP_COUNT_SHIFT);
519}
520
521/**
522 * omap4_usec_to_val_scrm - convert microsecond value to SCRM module bitfield
523 * @usec: microseconds
524 * @shift: number of bits to shift left
525 * @mask: bitfield mask
526 *
527 * Converts microsecond value to OMAP4 SCRM bitfield. Bitfield is
528 * shifted to requested position, and checked agains the mask value.
529 * If larger, forced to the max value of the field (i.e. the mask itself.)
530 * Returns the SCRM bitfield value.
531 */
532static u32 omap4_usec_to_val_scrm(u32 usec, int shift, u32 mask)
533{
534	u32 val;
535
536	val = omap_usec_to_32k(usec) << shift;
537
538	/* Check for overflow, if yes, force to max value */
539	if (val > mask)
540		val = mask;
541
542	return val;
543}
544
545/**
546 * omap4_set_timings - set voltage ramp timings for a channel
547 * @voltdm: channel to configure
548 * @off_mode: whether off-mode values are used
549 *
550 * Calculates and sets the voltage ramp up / down values for a channel.
551 */
552static void omap4_set_timings(struct voltagedomain *voltdm, bool off_mode)
553{
554	u32 val;
555	u32 ramp;
556	int offset;
557	u32 tstart, tshut;
558
559	if (off_mode) {
560		ramp = omap4_calc_volt_ramp(voltdm,
561			voltdm->vc_param->on - voltdm->vc_param->off);
562		offset = voltdm->vfsm->voltsetup_off_reg;
563	} else {
564		ramp = omap4_calc_volt_ramp(voltdm,
565			voltdm->vc_param->on - voltdm->vc_param->ret);
566		offset = voltdm->vfsm->voltsetup_reg;
567	}
568
569	if (!ramp)
570		return;
571
572	val = voltdm->read(offset);
573
574	val |= ramp << OMAP4430_RAMP_DOWN_COUNT_SHIFT;
575
576	val |= ramp << OMAP4430_RAMP_UP_COUNT_SHIFT;
577
578	voltdm->write(val, offset);
579
580	omap_pm_get_oscillator(&tstart, &tshut);
581
582	val = omap4_usec_to_val_scrm(tstart, OMAP4_SETUPTIME_SHIFT,
583		OMAP4_SETUPTIME_MASK);
584	val |= omap4_usec_to_val_scrm(tshut, OMAP4_DOWNTIME_SHIFT,
585		OMAP4_DOWNTIME_MASK);
586
587	writel_relaxed(val, OMAP4_SCRM_CLKSETUPTIME);
588}
589
590static void __init omap4_vc_init_pmic_signaling(struct voltagedomain *voltdm)
591{
592	if (vc.vd)
593		return;
594
595	vc.vd = voltdm;
596	voltdm->write(OMAP4_VDD_DEFAULT_VAL, OMAP4_PRM_VOLTCTRL_OFFSET);
597}
598
599/* OMAP4 specific voltage init functions */
600static void __init omap4_vc_init_channel(struct voltagedomain *voltdm)
601{
602	omap4_vc_init_pmic_signaling(voltdm);
603	omap4_set_timings(voltdm, true);
604	omap4_set_timings(voltdm, false);
605}
606
607struct i2c_init_data {
608	u8 loadbits;
609	u8 load;
610	u8 hsscll_38_4;
611	u8 hsscll_26;
612	u8 hsscll_19_2;
613	u8 hsscll_16_8;
614	u8 hsscll_12;
615};
616
617static const struct i2c_init_data omap4_i2c_timing_data[] __initconst = {
618	{
619		.load = 50,
620		.loadbits = 0x3,
621		.hsscll_38_4 = 13,
622		.hsscll_26 = 11,
623		.hsscll_19_2 = 9,
624		.hsscll_16_8 = 9,
625		.hsscll_12 = 8,
626	},
627	{
628		.load = 25,
629		.loadbits = 0x2,
630		.hsscll_38_4 = 13,
631		.hsscll_26 = 11,
632		.hsscll_19_2 = 9,
633		.hsscll_16_8 = 9,
634		.hsscll_12 = 8,
635	},
636	{
637		.load = 12,
638		.loadbits = 0x1,
639		.hsscll_38_4 = 11,
640		.hsscll_26 = 10,
641		.hsscll_19_2 = 9,
642		.hsscll_16_8 = 9,
643		.hsscll_12 = 8,
644	},
645	{
646		.load = 0,
647		.loadbits = 0x0,
648		.hsscll_38_4 = 12,
649		.hsscll_26 = 10,
650		.hsscll_19_2 = 9,
651		.hsscll_16_8 = 8,
652		.hsscll_12 = 8,
653	},
654};
655
656/**
657 * omap4_vc_i2c_timing_init - sets up board I2C timing parameters
658 * @voltdm: voltagedomain pointer to get data from
659 *
660 * Use PMIC + board supplied settings for calculating the total I2C
661 * channel capacitance and set the timing parameters based on this.
662 * Pre-calculated values are provided in data tables, as it is not
663 * too straightforward to calculate these runtime.
664 */
665static void __init omap4_vc_i2c_timing_init(struct voltagedomain *voltdm)
666{
667	u32 capacitance;
668	u32 val;
669	u16 hsscll;
670	const struct i2c_init_data *i2c_data;
671
672	if (!voltdm->pmic->i2c_high_speed) {
673		pr_info("%s: using bootloader low-speed timings\n", __func__);
674		return;
675	}
676
677	/* PCB trace capacitance, 0.125pF / mm => mm / 8 */
678	capacitance = DIV_ROUND_UP(sr_i2c_pcb_length, 8);
679
680	/* OMAP pad capacitance */
681	capacitance += 4;
 
682
683	/* PMIC pad capacitance */
684	capacitance += voltdm->pmic->i2c_pad_load;
685
686	/* Search for capacitance match in the table */
687	i2c_data = omap4_i2c_timing_data;
688
689	while (i2c_data->load > capacitance)
690		i2c_data++;
691
692	/* Select proper values based on sysclk frequency */
693	switch (voltdm->sys_clk.rate) {
694	case 38400000:
695		hsscll = i2c_data->hsscll_38_4;
696		break;
697	case 26000000:
698		hsscll = i2c_data->hsscll_26;
699		break;
700	case 19200000:
701		hsscll = i2c_data->hsscll_19_2;
702		break;
703	case 16800000:
704		hsscll = i2c_data->hsscll_16_8;
705		break;
706	case 12000000:
707		hsscll = i2c_data->hsscll_12;
708		break;
709	default:
710		pr_warn("%s: unsupported sysclk rate: %d!\n", __func__,
711			voltdm->sys_clk.rate);
712		return;
713	}
714
715	/* Loadbits define pull setup for the I2C channels */
716	val = i2c_data->loadbits << 25 | i2c_data->loadbits << 29;
717
718	/* Write to SYSCTRL_PADCONF_WKUP_CTRL_I2C_2 to setup I2C pull */
719	writel_relaxed(val, OMAP2_L4_IO_ADDRESS(OMAP4_CTRL_MODULE_PAD_WKUP +
720				OMAP4_CTRL_MODULE_PAD_WKUP_CONTROL_I2C_2));
721
722	/* HSSCLH can always be zero */
723	val = hsscll << OMAP4430_HSSCLL_SHIFT;
724	val |= (0x28 << OMAP4430_SCLL_SHIFT | 0x2c << OMAP4430_SCLH_SHIFT);
725
726	/* Write setup times to I2C config register */
727	voltdm->write(val, OMAP4_PRM_VC_CFG_I2C_CLK_OFFSET);
728}
729
730
731
732/**
733 * omap_vc_i2c_init - initialize I2C interface to PMIC
734 * @voltdm: voltage domain containing VC data
735 *
736 * Use PMIC supplied settings for I2C high-speed mode and
737 * master code (if set) and program the VC I2C configuration
738 * register.
739 *
740 * The VC I2C configuration is common to all VC channels,
741 * so this function only configures I2C for the first VC
742 * channel registers.  All other VC channels will use the
743 * same configuration.
744 */
745static void __init omap_vc_i2c_init(struct voltagedomain *voltdm)
746{
747	struct omap_vc_channel *vc = voltdm->vc;
748	static bool initialized;
749	static bool i2c_high_speed;
750	u8 mcode;
751
752	if (initialized) {
753		if (voltdm->pmic->i2c_high_speed != i2c_high_speed)
754			pr_warn("%s: I2C config for vdd_%s does not match other channels (%u).\n",
755				__func__, voltdm->name, i2c_high_speed);
756		return;
757	}
758
759	/*
760	 * Note that for omap3 OMAP3430_SREN_MASK clears SREN to work around
761	 * erratum i531 "Extra Power Consumed When Repeated Start Operation
762	 * Mode Is Enabled on I2C Interface Dedicated for Smart Reflex (I2C4)".
763	 * Otherwise I2C4 eventually leads into about 23mW extra power being
764	 * consumed even during off idle using VMODE.
765	 */
766	i2c_high_speed = voltdm->pmic->i2c_high_speed;
767	if (i2c_high_speed)
768		voltdm->rmw(vc->common->i2c_cfg_clear_mask,
769			    vc->common->i2c_cfg_hsen_mask,
770			    vc->common->i2c_cfg_reg);
771
772	mcode = voltdm->pmic->i2c_mcode;
773	if (mcode)
774		voltdm->rmw(vc->common->i2c_mcode_mask,
775			    mcode << __ffs(vc->common->i2c_mcode_mask),
776			    vc->common->i2c_cfg_reg);
777
778	if (cpu_is_omap44xx())
779		omap4_vc_i2c_timing_init(voltdm);
780
781	initialized = true;
782}
783
784/**
785 * omap_vc_calc_vsel - calculate vsel value for a channel
786 * @voltdm: channel to calculate value for
787 * @uvolt: microvolt value to convert to vsel
788 *
789 * Converts a microvolt value to vsel value for the used PMIC.
790 * This checks whether the microvolt value is out of bounds, and
791 * adjusts the value accordingly. If unsupported value detected,
792 * warning is thrown.
793 */
794static u8 omap_vc_calc_vsel(struct voltagedomain *voltdm, u32 uvolt)
795{
796	if (voltdm->pmic->vddmin > uvolt)
797		uvolt = voltdm->pmic->vddmin;
798	if (voltdm->pmic->vddmax < uvolt) {
799		WARN(1, "%s: voltage not supported by pmic: %u vs max %u\n",
800			__func__, uvolt, voltdm->pmic->vddmax);
801		/* Lets try maximum value anyway */
802		uvolt = voltdm->pmic->vddmax;
803	}
804
805	return voltdm->pmic->uv_to_vsel(uvolt);
806}
807
808#ifdef CONFIG_PM
809/**
810 * omap_pm_setup_sr_i2c_pcb_length - set length of SR I2C traces on PCB
811 * @mm: length of the PCB trace in millimetres
812 *
813 * Sets the PCB trace length for the I2C channel. By default uses 63mm.
814 * This is needed for properly calculating the capacitance value for
815 * the PCB trace, and for setting the SR I2C channel timing parameters.
816 */
817void __init omap_pm_setup_sr_i2c_pcb_length(u32 mm)
818{
819	sr_i2c_pcb_length = mm;
820}
821#endif
822
823void __init omap_vc_init_channel(struct voltagedomain *voltdm)
824{
825	struct omap_vc_channel *vc = voltdm->vc;
826	u8 on_vsel, onlp_vsel, ret_vsel, off_vsel;
827	u32 val;
828
829	if (!voltdm->pmic || !voltdm->pmic->uv_to_vsel) {
830		pr_err("%s: No PMIC info for vdd_%s\n", __func__, voltdm->name);
831		return;
832	}
833
834	if (!voltdm->read || !voltdm->write) {
835		pr_err("%s: No read/write API for accessing vdd_%s regs\n",
836			__func__, voltdm->name);
837		return;
838	}
839
840	vc->cfg_channel = 0;
841	if (vc->flags & OMAP_VC_CHANNEL_CFG_MUTANT)
842		vc_cfg_bits = &vc_mutant_channel_cfg;
843	else
844		vc_cfg_bits = &vc_default_channel_cfg;
845
846	/* get PMIC/board specific settings */
847	vc->i2c_slave_addr = voltdm->pmic->i2c_slave_addr;
848	vc->volt_reg_addr = voltdm->pmic->volt_reg_addr;
849	vc->cmd_reg_addr = voltdm->pmic->cmd_reg_addr;
 
850
851	/* Configure the i2c slave address for this VC */
852	voltdm->rmw(vc->smps_sa_mask,
853		    vc->i2c_slave_addr << __ffs(vc->smps_sa_mask),
854		    vc->smps_sa_reg);
855	vc->cfg_channel |= vc_cfg_bits->sa;
856
857	/*
858	 * Configure the PMIC register addresses.
859	 */
860	voltdm->rmw(vc->smps_volra_mask,
861		    vc->volt_reg_addr << __ffs(vc->smps_volra_mask),
862		    vc->smps_volra_reg);
863	vc->cfg_channel |= vc_cfg_bits->rav;
864
865	if (vc->cmd_reg_addr) {
866		voltdm->rmw(vc->smps_cmdra_mask,
867			    vc->cmd_reg_addr << __ffs(vc->smps_cmdra_mask),
868			    vc->smps_cmdra_reg);
869		vc->cfg_channel |= vc_cfg_bits->rac;
870	}
871
872	if (vc->cmd_reg_addr == vc->volt_reg_addr)
873		vc->cfg_channel |= vc_cfg_bits->racen;
874
875	/* Set up the on, inactive, retention and off voltage */
876	on_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->on);
877	onlp_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->onlp);
878	ret_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->ret);
879	off_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->off);
880
881	val = ((on_vsel << vc->common->cmd_on_shift) |
882	       (onlp_vsel << vc->common->cmd_onlp_shift) |
883	       (ret_vsel << vc->common->cmd_ret_shift) |
884	       (off_vsel << vc->common->cmd_off_shift));
885	voltdm->write(val, vc->cmdval_reg);
886	vc->cfg_channel |= vc_cfg_bits->cmd;
887
888	/* Channel configuration */
889	omap_vc_config_channel(voltdm);
 
 
 
 
 
890
891	omap_vc_i2c_init(voltdm);
892
893	if (cpu_is_omap34xx())
894		omap3_vc_init_channel(voltdm);
895	else if (cpu_is_omap44xx())
896		omap4_vc_init_channel(voltdm);
897}
898