Linux Audio

Check our new training course

Loading...
v3.5.6
   1#include "builtin.h"
   2#include "perf.h"
   3
   4#include "util/util.h"
   5#include "util/evlist.h"
   6#include "util/cache.h"
   7#include "util/evsel.h"
   8#include "util/symbol.h"
   9#include "util/thread.h"
  10#include "util/header.h"
  11#include "util/session.h"
  12#include "util/tool.h"
 
  13
  14#include "util/parse-options.h"
  15#include "util/trace-event.h"
  16
  17#include "util/debug.h"
  18
  19#include <sys/prctl.h>
  20#include <sys/resource.h>
  21
  22#include <semaphore.h>
  23#include <pthread.h>
  24#include <math.h>
  25
  26static const char		*input_name;
  27
  28static char			default_sort_order[] = "avg, max, switch, runtime";
  29static const char		*sort_order = default_sort_order;
  30
  31static int			profile_cpu = -1;
  32
  33#define PR_SET_NAME		15               /* Set process name */
  34#define MAX_CPUS		4096
  35
  36static u64			run_measurement_overhead;
  37static u64			sleep_measurement_overhead;
  38
  39#define COMM_LEN		20
  40#define SYM_LEN			129
  41
  42#define MAX_PID			65536
  43
  44static unsigned long		nr_tasks;
  45
  46struct sched_atom;
  47
  48struct task_desc {
  49	unsigned long		nr;
  50	unsigned long		pid;
  51	char			comm[COMM_LEN];
  52
  53	unsigned long		nr_events;
  54	unsigned long		curr_event;
  55	struct sched_atom	**atoms;
  56
  57	pthread_t		thread;
  58	sem_t			sleep_sem;
  59
  60	sem_t			ready_for_work;
  61	sem_t			work_done_sem;
  62
  63	u64			cpu_usage;
  64};
  65
  66enum sched_event_type {
  67	SCHED_EVENT_RUN,
  68	SCHED_EVENT_SLEEP,
  69	SCHED_EVENT_WAKEUP,
  70	SCHED_EVENT_MIGRATION,
  71};
  72
  73struct sched_atom {
  74	enum sched_event_type	type;
  75	int			specific_wait;
  76	u64			timestamp;
  77	u64			duration;
  78	unsigned long		nr;
  79	sem_t			*wait_sem;
  80	struct task_desc	*wakee;
  81};
  82
  83static struct task_desc		*pid_to_task[MAX_PID];
  84
  85static struct task_desc		**tasks;
  86
  87static pthread_mutex_t		start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
  88static u64			start_time;
  89
  90static pthread_mutex_t		work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
  91
  92static unsigned long		nr_run_events;
  93static unsigned long		nr_sleep_events;
  94static unsigned long		nr_wakeup_events;
  95
  96static unsigned long		nr_sleep_corrections;
  97static unsigned long		nr_run_events_optimized;
  98
  99static unsigned long		targetless_wakeups;
 100static unsigned long		multitarget_wakeups;
 101
 102static u64			cpu_usage;
 103static u64			runavg_cpu_usage;
 104static u64			parent_cpu_usage;
 105static u64			runavg_parent_cpu_usage;
 106
 107static unsigned long		nr_runs;
 108static u64			sum_runtime;
 109static u64			sum_fluct;
 110static u64			run_avg;
 111
 112static unsigned int		replay_repeat = 10;
 113static unsigned long		nr_timestamps;
 114static unsigned long		nr_unordered_timestamps;
 115static unsigned long		nr_state_machine_bugs;
 116static unsigned long		nr_context_switch_bugs;
 117static unsigned long		nr_events;
 118static unsigned long		nr_lost_chunks;
 119static unsigned long		nr_lost_events;
 120
 121#define TASK_STATE_TO_CHAR_STR "RSDTtZX"
 122
 123enum thread_state {
 124	THREAD_SLEEPING = 0,
 125	THREAD_WAIT_CPU,
 126	THREAD_SCHED_IN,
 127	THREAD_IGNORE
 128};
 129
 130struct work_atom {
 131	struct list_head	list;
 132	enum thread_state	state;
 133	u64			sched_out_time;
 134	u64			wake_up_time;
 135	u64			sched_in_time;
 136	u64			runtime;
 137};
 138
 139struct work_atoms {
 140	struct list_head	work_list;
 141	struct thread		*thread;
 142	struct rb_node		node;
 143	u64			max_lat;
 144	u64			max_lat_at;
 145	u64			total_lat;
 146	u64			nb_atoms;
 147	u64			total_runtime;
 
 148};
 149
 150typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 151
 152static struct rb_root		atom_root, sorted_atom_root;
 
 
 
 
 153
 154static u64			all_runtime;
 155static u64			all_count;
 156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 157
 158static u64 get_nsecs(void)
 159{
 160	struct timespec ts;
 161
 162	clock_gettime(CLOCK_MONOTONIC, &ts);
 163
 164	return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
 165}
 166
 167static void burn_nsecs(u64 nsecs)
 168{
 169	u64 T0 = get_nsecs(), T1;
 170
 171	do {
 172		T1 = get_nsecs();
 173	} while (T1 + run_measurement_overhead < T0 + nsecs);
 174}
 175
 176static void sleep_nsecs(u64 nsecs)
 177{
 178	struct timespec ts;
 179
 180	ts.tv_nsec = nsecs % 999999999;
 181	ts.tv_sec = nsecs / 999999999;
 182
 183	nanosleep(&ts, NULL);
 184}
 185
 186static void calibrate_run_measurement_overhead(void)
 187{
 188	u64 T0, T1, delta, min_delta = 1000000000ULL;
 189	int i;
 190
 191	for (i = 0; i < 10; i++) {
 192		T0 = get_nsecs();
 193		burn_nsecs(0);
 194		T1 = get_nsecs();
 195		delta = T1-T0;
 196		min_delta = min(min_delta, delta);
 197	}
 198	run_measurement_overhead = min_delta;
 199
 200	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 201}
 202
 203static void calibrate_sleep_measurement_overhead(void)
 204{
 205	u64 T0, T1, delta, min_delta = 1000000000ULL;
 206	int i;
 207
 208	for (i = 0; i < 10; i++) {
 209		T0 = get_nsecs();
 210		sleep_nsecs(10000);
 211		T1 = get_nsecs();
 212		delta = T1-T0;
 213		min_delta = min(min_delta, delta);
 214	}
 215	min_delta -= 10000;
 216	sleep_measurement_overhead = min_delta;
 217
 218	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 219}
 220
 221static struct sched_atom *
 222get_new_event(struct task_desc *task, u64 timestamp)
 223{
 224	struct sched_atom *event = zalloc(sizeof(*event));
 225	unsigned long idx = task->nr_events;
 226	size_t size;
 227
 228	event->timestamp = timestamp;
 229	event->nr = idx;
 230
 231	task->nr_events++;
 232	size = sizeof(struct sched_atom *) * task->nr_events;
 233	task->atoms = realloc(task->atoms, size);
 234	BUG_ON(!task->atoms);
 235
 236	task->atoms[idx] = event;
 237
 238	return event;
 239}
 240
 241static struct sched_atom *last_event(struct task_desc *task)
 242{
 243	if (!task->nr_events)
 244		return NULL;
 245
 246	return task->atoms[task->nr_events - 1];
 247}
 248
 249static void
 250add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
 251{
 252	struct sched_atom *event, *curr_event = last_event(task);
 253
 254	/*
 255	 * optimize an existing RUN event by merging this one
 256	 * to it:
 257	 */
 258	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 259		nr_run_events_optimized++;
 260		curr_event->duration += duration;
 261		return;
 262	}
 263
 264	event = get_new_event(task, timestamp);
 265
 266	event->type = SCHED_EVENT_RUN;
 267	event->duration = duration;
 268
 269	nr_run_events++;
 270}
 271
 272static void
 273add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
 274		       struct task_desc *wakee)
 275{
 276	struct sched_atom *event, *wakee_event;
 277
 278	event = get_new_event(task, timestamp);
 279	event->type = SCHED_EVENT_WAKEUP;
 280	event->wakee = wakee;
 281
 282	wakee_event = last_event(wakee);
 283	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 284		targetless_wakeups++;
 285		return;
 286	}
 287	if (wakee_event->wait_sem) {
 288		multitarget_wakeups++;
 289		return;
 290	}
 291
 292	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 293	sem_init(wakee_event->wait_sem, 0, 0);
 294	wakee_event->specific_wait = 1;
 295	event->wait_sem = wakee_event->wait_sem;
 296
 297	nr_wakeup_events++;
 298}
 299
 300static void
 301add_sched_event_sleep(struct task_desc *task, u64 timestamp,
 302		      u64 task_state __used)
 303{
 304	struct sched_atom *event = get_new_event(task, timestamp);
 305
 306	event->type = SCHED_EVENT_SLEEP;
 307
 308	nr_sleep_events++;
 309}
 310
 311static struct task_desc *register_pid(unsigned long pid, const char *comm)
 
 312{
 313	struct task_desc *task;
 
 314
 315	BUG_ON(pid >= MAX_PID);
 
 
 
 
 
 
 
 
 
 
 316
 317	task = pid_to_task[pid];
 318
 319	if (task)
 320		return task;
 321
 322	task = zalloc(sizeof(*task));
 323	task->pid = pid;
 324	task->nr = nr_tasks;
 325	strcpy(task->comm, comm);
 326	/*
 327	 * every task starts in sleeping state - this gets ignored
 328	 * if there's no wakeup pointing to this sleep state:
 329	 */
 330	add_sched_event_sleep(task, 0, 0);
 331
 332	pid_to_task[pid] = task;
 333	nr_tasks++;
 334	tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
 335	BUG_ON(!tasks);
 336	tasks[task->nr] = task;
 337
 338	if (verbose)
 339		printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
 340
 341	return task;
 342}
 343
 344
 345static void print_task_traces(void)
 346{
 347	struct task_desc *task;
 348	unsigned long i;
 349
 350	for (i = 0; i < nr_tasks; i++) {
 351		task = tasks[i];
 352		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 353			task->nr, task->comm, task->pid, task->nr_events);
 354	}
 355}
 356
 357static void add_cross_task_wakeups(void)
 358{
 359	struct task_desc *task1, *task2;
 360	unsigned long i, j;
 361
 362	for (i = 0; i < nr_tasks; i++) {
 363		task1 = tasks[i];
 364		j = i + 1;
 365		if (j == nr_tasks)
 366			j = 0;
 367		task2 = tasks[j];
 368		add_sched_event_wakeup(task1, 0, task2);
 369	}
 370}
 371
 372static void
 373process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
 374{
 375	int ret = 0;
 376
 377	switch (atom->type) {
 378		case SCHED_EVENT_RUN:
 379			burn_nsecs(atom->duration);
 380			break;
 381		case SCHED_EVENT_SLEEP:
 382			if (atom->wait_sem)
 383				ret = sem_wait(atom->wait_sem);
 384			BUG_ON(ret);
 385			break;
 386		case SCHED_EVENT_WAKEUP:
 387			if (atom->wait_sem)
 388				ret = sem_post(atom->wait_sem);
 389			BUG_ON(ret);
 390			break;
 391		case SCHED_EVENT_MIGRATION:
 392			break;
 393		default:
 394			BUG_ON(1);
 395	}
 396}
 397
 398static u64 get_cpu_usage_nsec_parent(void)
 399{
 400	struct rusage ru;
 401	u64 sum;
 402	int err;
 403
 404	err = getrusage(RUSAGE_SELF, &ru);
 405	BUG_ON(err);
 406
 407	sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
 408	sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
 409
 410	return sum;
 411}
 412
 413static int self_open_counters(void)
 414{
 415	struct perf_event_attr attr;
 
 416	int fd;
 
 
 417
 418	memset(&attr, 0, sizeof(attr));
 419
 420	attr.type = PERF_TYPE_SOFTWARE;
 421	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 422
 423	fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
 424
 425	if (fd < 0)
 426		die("Error: sys_perf_event_open() syscall returned"
 427		    "with %d (%s)\n", fd, strerror(errno));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428	return fd;
 429}
 430
 431static u64 get_cpu_usage_nsec_self(int fd)
 432{
 433	u64 runtime;
 434	int ret;
 435
 436	ret = read(fd, &runtime, sizeof(runtime));
 437	BUG_ON(ret != sizeof(runtime));
 438
 439	return runtime;
 440}
 441
 
 
 
 
 
 
 442static void *thread_func(void *ctx)
 443{
 444	struct task_desc *this_task = ctx;
 
 
 445	u64 cpu_usage_0, cpu_usage_1;
 446	unsigned long i, ret;
 447	char comm2[22];
 448	int fd;
 
 
 449
 450	sprintf(comm2, ":%s", this_task->comm);
 451	prctl(PR_SET_NAME, comm2);
 452	fd = self_open_counters();
 453
 454again:
 455	ret = sem_post(&this_task->ready_for_work);
 456	BUG_ON(ret);
 457	ret = pthread_mutex_lock(&start_work_mutex);
 458	BUG_ON(ret);
 459	ret = pthread_mutex_unlock(&start_work_mutex);
 460	BUG_ON(ret);
 461
 462	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 463
 464	for (i = 0; i < this_task->nr_events; i++) {
 465		this_task->curr_event = i;
 466		process_sched_event(this_task, this_task->atoms[i]);
 467	}
 468
 469	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 470	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 471	ret = sem_post(&this_task->work_done_sem);
 472	BUG_ON(ret);
 473
 474	ret = pthread_mutex_lock(&work_done_wait_mutex);
 475	BUG_ON(ret);
 476	ret = pthread_mutex_unlock(&work_done_wait_mutex);
 477	BUG_ON(ret);
 478
 479	goto again;
 480}
 481
 482static void create_tasks(void)
 483{
 484	struct task_desc *task;
 485	pthread_attr_t attr;
 486	unsigned long i;
 487	int err;
 488
 489	err = pthread_attr_init(&attr);
 490	BUG_ON(err);
 491	err = pthread_attr_setstacksize(&attr,
 492			(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
 493	BUG_ON(err);
 494	err = pthread_mutex_lock(&start_work_mutex);
 495	BUG_ON(err);
 496	err = pthread_mutex_lock(&work_done_wait_mutex);
 497	BUG_ON(err);
 498	for (i = 0; i < nr_tasks; i++) {
 499		task = tasks[i];
 
 
 
 
 500		sem_init(&task->sleep_sem, 0, 0);
 501		sem_init(&task->ready_for_work, 0, 0);
 502		sem_init(&task->work_done_sem, 0, 0);
 503		task->curr_event = 0;
 504		err = pthread_create(&task->thread, &attr, thread_func, task);
 505		BUG_ON(err);
 506	}
 507}
 508
 509static void wait_for_tasks(void)
 510{
 511	u64 cpu_usage_0, cpu_usage_1;
 512	struct task_desc *task;
 513	unsigned long i, ret;
 514
 515	start_time = get_nsecs();
 516	cpu_usage = 0;
 517	pthread_mutex_unlock(&work_done_wait_mutex);
 518
 519	for (i = 0; i < nr_tasks; i++) {
 520		task = tasks[i];
 521		ret = sem_wait(&task->ready_for_work);
 522		BUG_ON(ret);
 523		sem_init(&task->ready_for_work, 0, 0);
 524	}
 525	ret = pthread_mutex_lock(&work_done_wait_mutex);
 526	BUG_ON(ret);
 527
 528	cpu_usage_0 = get_cpu_usage_nsec_parent();
 529
 530	pthread_mutex_unlock(&start_work_mutex);
 531
 532	for (i = 0; i < nr_tasks; i++) {
 533		task = tasks[i];
 534		ret = sem_wait(&task->work_done_sem);
 535		BUG_ON(ret);
 536		sem_init(&task->work_done_sem, 0, 0);
 537		cpu_usage += task->cpu_usage;
 538		task->cpu_usage = 0;
 539	}
 540
 541	cpu_usage_1 = get_cpu_usage_nsec_parent();
 542	if (!runavg_cpu_usage)
 543		runavg_cpu_usage = cpu_usage;
 544	runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
 545
 546	parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 547	if (!runavg_parent_cpu_usage)
 548		runavg_parent_cpu_usage = parent_cpu_usage;
 549	runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
 550				   parent_cpu_usage)/10;
 551
 552	ret = pthread_mutex_lock(&start_work_mutex);
 553	BUG_ON(ret);
 554
 555	for (i = 0; i < nr_tasks; i++) {
 556		task = tasks[i];
 557		sem_init(&task->sleep_sem, 0, 0);
 558		task->curr_event = 0;
 559	}
 560}
 561
 562static void run_one_test(void)
 563{
 564	u64 T0, T1, delta, avg_delta, fluct;
 565
 566	T0 = get_nsecs();
 567	wait_for_tasks();
 568	T1 = get_nsecs();
 569
 570	delta = T1 - T0;
 571	sum_runtime += delta;
 572	nr_runs++;
 573
 574	avg_delta = sum_runtime / nr_runs;
 575	if (delta < avg_delta)
 576		fluct = avg_delta - delta;
 577	else
 578		fluct = delta - avg_delta;
 579	sum_fluct += fluct;
 580	if (!run_avg)
 581		run_avg = delta;
 582	run_avg = (run_avg*9 + delta)/10;
 583
 584	printf("#%-3ld: %0.3f, ",
 585		nr_runs, (double)delta/1000000.0);
 586
 587	printf("ravg: %0.2f, ",
 588		(double)run_avg/1e6);
 589
 590	printf("cpu: %0.2f / %0.2f",
 591		(double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
 592
 593#if 0
 594	/*
 595	 * rusage statistics done by the parent, these are less
 596	 * accurate than the sum_exec_runtime based statistics:
 597	 */
 598	printf(" [%0.2f / %0.2f]",
 599		(double)parent_cpu_usage/1e6,
 600		(double)runavg_parent_cpu_usage/1e6);
 601#endif
 602
 603	printf("\n");
 604
 605	if (nr_sleep_corrections)
 606		printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
 607	nr_sleep_corrections = 0;
 608}
 609
 610static void test_calibrations(void)
 611{
 612	u64 T0, T1;
 613
 614	T0 = get_nsecs();
 615	burn_nsecs(1e6);
 616	T1 = get_nsecs();
 617
 618	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 619
 620	T0 = get_nsecs();
 621	sleep_nsecs(1e6);
 622	T1 = get_nsecs();
 623
 624	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 625}
 626
 627#define FILL_FIELD(ptr, field, event, data)	\
 628	ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
 629
 630#define FILL_ARRAY(ptr, array, event, data)			\
 631do {								\
 632	void *__array = raw_field_ptr(event, #array, data);	\
 633	memcpy(ptr.array, __array, sizeof(ptr.array));	\
 634} while(0)
 635
 636#define FILL_COMMON_FIELDS(ptr, event, data)			\
 637do {								\
 638	FILL_FIELD(ptr, common_type, event, data);		\
 639	FILL_FIELD(ptr, common_flags, event, data);		\
 640	FILL_FIELD(ptr, common_preempt_count, event, data);	\
 641	FILL_FIELD(ptr, common_pid, event, data);		\
 642	FILL_FIELD(ptr, common_tgid, event, data);		\
 643} while (0)
 644
 645
 646
 647struct trace_switch_event {
 648	u32 size;
 649
 650	u16 common_type;
 651	u8 common_flags;
 652	u8 common_preempt_count;
 653	u32 common_pid;
 654	u32 common_tgid;
 655
 656	char prev_comm[16];
 657	u32 prev_pid;
 658	u32 prev_prio;
 659	u64 prev_state;
 660	char next_comm[16];
 661	u32 next_pid;
 662	u32 next_prio;
 663};
 664
 665struct trace_runtime_event {
 666	u32 size;
 667
 668	u16 common_type;
 669	u8 common_flags;
 670	u8 common_preempt_count;
 671	u32 common_pid;
 672	u32 common_tgid;
 673
 674	char comm[16];
 675	u32 pid;
 676	u64 runtime;
 677	u64 vruntime;
 678};
 679
 680struct trace_wakeup_event {
 681	u32 size;
 682
 683	u16 common_type;
 684	u8 common_flags;
 685	u8 common_preempt_count;
 686	u32 common_pid;
 687	u32 common_tgid;
 688
 689	char comm[16];
 690	u32 pid;
 691
 692	u32 prio;
 693	u32 success;
 694	u32 cpu;
 695};
 696
 697struct trace_fork_event {
 698	u32 size;
 699
 700	u16 common_type;
 701	u8 common_flags;
 702	u8 common_preempt_count;
 703	u32 common_pid;
 704	u32 common_tgid;
 705
 706	char parent_comm[16];
 707	u32 parent_pid;
 708	char child_comm[16];
 709	u32 child_pid;
 710};
 711
 712struct trace_migrate_task_event {
 713	u32 size;
 714
 715	u16 common_type;
 716	u8 common_flags;
 717	u8 common_preempt_count;
 718	u32 common_pid;
 719	u32 common_tgid;
 720
 721	char comm[16];
 722	u32 pid;
 723
 724	u32 prio;
 725	u32 cpu;
 726};
 727
 728struct trace_sched_handler {
 729	void (*switch_event)(struct trace_switch_event *,
 730			     struct machine *,
 731			     struct event_format *,
 732			     int cpu,
 733			     u64 timestamp,
 734			     struct thread *thread);
 735
 736	void (*runtime_event)(struct trace_runtime_event *,
 737			      struct machine *,
 738			      struct event_format *,
 739			      int cpu,
 740			      u64 timestamp,
 741			      struct thread *thread);
 742
 743	void (*wakeup_event)(struct trace_wakeup_event *,
 744			     struct machine *,
 745			     struct event_format *,
 746			     int cpu,
 747			     u64 timestamp,
 748			     struct thread *thread);
 749
 750	void (*fork_event)(struct trace_fork_event *,
 751			   struct event_format *,
 752			   int cpu,
 753			   u64 timestamp,
 754			   struct thread *thread);
 755
 756	void (*migrate_task_event)(struct trace_migrate_task_event *,
 757			   struct machine *machine,
 758			   struct event_format *,
 759			   int cpu,
 760			   u64 timestamp,
 761			   struct thread *thread);
 762};
 763
 764
 765static void
 766replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
 767		    struct machine *machine __used,
 768		    struct event_format *event,
 769		    int cpu __used,
 770		    u64 timestamp __used,
 771		    struct thread *thread __used)
 772{
 
 
 773	struct task_desc *waker, *wakee;
 774
 775	if (verbose) {
 776		printf("sched_wakeup event %p\n", event);
 777
 778		printf(" ... pid %d woke up %s/%d\n",
 779			wakeup_event->common_pid,
 780			wakeup_event->comm,
 781			wakeup_event->pid);
 782	}
 783
 784	waker = register_pid(wakeup_event->common_pid, "<unknown>");
 785	wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
 786
 787	add_sched_event_wakeup(waker, timestamp, wakee);
 
 788}
 789
 790static u64 cpu_last_switched[MAX_CPUS];
 791
 792static void
 793replay_switch_event(struct trace_switch_event *switch_event,
 794		    struct machine *machine __used,
 795		    struct event_format *event,
 796		    int cpu,
 797		    u64 timestamp,
 798		    struct thread *thread __used)
 799{
 800	struct task_desc *prev, __used *next;
 801	u64 timestamp0;
 
 802	s64 delta;
 803
 804	if (verbose)
 805		printf("sched_switch event %p\n", event);
 806
 807	if (cpu >= MAX_CPUS || cpu < 0)
 808		return;
 809
 810	timestamp0 = cpu_last_switched[cpu];
 811	if (timestamp0)
 812		delta = timestamp - timestamp0;
 813	else
 814		delta = 0;
 815
 816	if (delta < 0)
 817		die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 818
 819	if (verbose) {
 820		printf(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 821			switch_event->prev_comm, switch_event->prev_pid,
 822			switch_event->next_comm, switch_event->next_pid,
 823			delta);
 824	}
 825
 826	prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
 827	next = register_pid(switch_event->next_pid, switch_event->next_comm);
 
 
 
 828
 829	cpu_last_switched[cpu] = timestamp;
 830
 831	add_sched_event_run(prev, timestamp, delta);
 832	add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
 
 
 833}
 834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835
 836static void
 837replay_fork_event(struct trace_fork_event *fork_event,
 838		  struct event_format *event,
 839		  int cpu __used,
 840		  u64 timestamp __used,
 841		  struct thread *thread __used)
 842{
 843	if (verbose) {
 844		printf("sched_fork event %p\n", event);
 845		printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
 846		printf("...  child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
 847	}
 848	register_pid(fork_event->parent_pid, fork_event->parent_comm);
 849	register_pid(fork_event->child_pid, fork_event->child_comm);
 850}
 851
 852static struct trace_sched_handler replay_ops  = {
 853	.wakeup_event		= replay_wakeup_event,
 854	.switch_event		= replay_switch_event,
 855	.fork_event		= replay_fork_event,
 856};
 
 
 857
 858struct sort_dimension {
 859	const char		*name;
 860	sort_fn_t		cmp;
 861	struct list_head	list;
 862};
 863
 864static LIST_HEAD(cmp_pid);
 865
 866static int
 867thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 868{
 869	struct sort_dimension *sort;
 870	int ret = 0;
 871
 872	BUG_ON(list_empty(list));
 873
 874	list_for_each_entry(sort, list, list) {
 875		ret = sort->cmp(l, r);
 876		if (ret)
 877			return ret;
 878	}
 879
 880	return ret;
 881}
 882
 883static struct work_atoms *
 884thread_atoms_search(struct rb_root *root, struct thread *thread,
 885			 struct list_head *sort_list)
 886{
 887	struct rb_node *node = root->rb_node;
 888	struct work_atoms key = { .thread = thread };
 889
 890	while (node) {
 891		struct work_atoms *atoms;
 892		int cmp;
 893
 894		atoms = container_of(node, struct work_atoms, node);
 895
 896		cmp = thread_lat_cmp(sort_list, &key, atoms);
 897		if (cmp > 0)
 898			node = node->rb_left;
 899		else if (cmp < 0)
 900			node = node->rb_right;
 901		else {
 902			BUG_ON(thread != atoms->thread);
 903			return atoms;
 904		}
 905	}
 906	return NULL;
 907}
 908
 909static void
 910__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
 911			 struct list_head *sort_list)
 912{
 913	struct rb_node **new = &(root->rb_node), *parent = NULL;
 914
 915	while (*new) {
 916		struct work_atoms *this;
 917		int cmp;
 918
 919		this = container_of(*new, struct work_atoms, node);
 920		parent = *new;
 921
 922		cmp = thread_lat_cmp(sort_list, data, this);
 923
 924		if (cmp > 0)
 925			new = &((*new)->rb_left);
 926		else
 927			new = &((*new)->rb_right);
 928	}
 929
 930	rb_link_node(&data->node, parent, new);
 931	rb_insert_color(&data->node, root);
 932}
 933
 934static void thread_atoms_insert(struct thread *thread)
 935{
 936	struct work_atoms *atoms = zalloc(sizeof(*atoms));
 937	if (!atoms)
 938		die("No memory");
 
 
 939
 940	atoms->thread = thread;
 941	INIT_LIST_HEAD(&atoms->work_list);
 942	__thread_latency_insert(&atom_root, atoms, &cmp_pid);
 943}
 944
 945static void
 946latency_fork_event(struct trace_fork_event *fork_event __used,
 947		   struct event_format *event __used,
 948		   int cpu __used,
 949		   u64 timestamp __used,
 950		   struct thread *thread __used)
 951{
 952	/* should insert the newcomer */
 953}
 954
 955__used
 956static char sched_out_state(struct trace_switch_event *switch_event)
 957{
 958	const char *str = TASK_STATE_TO_CHAR_STR;
 959
 960	return str[switch_event->prev_state];
 961}
 962
 963static void
 964add_sched_out_event(struct work_atoms *atoms,
 965		    char run_state,
 966		    u64 timestamp)
 967{
 968	struct work_atom *atom = zalloc(sizeof(*atom));
 969	if (!atom)
 970		die("Non memory");
 
 
 971
 972	atom->sched_out_time = timestamp;
 973
 974	if (run_state == 'R') {
 975		atom->state = THREAD_WAIT_CPU;
 976		atom->wake_up_time = atom->sched_out_time;
 977	}
 978
 979	list_add_tail(&atom->list, &atoms->work_list);
 
 980}
 981
 982static void
 983add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
 
 984{
 985	struct work_atom *atom;
 986
 987	BUG_ON(list_empty(&atoms->work_list));
 988
 989	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
 990
 991	atom->runtime += delta;
 992	atoms->total_runtime += delta;
 993}
 994
 995static void
 996add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
 997{
 998	struct work_atom *atom;
 999	u64 delta;
1000
1001	if (list_empty(&atoms->work_list))
1002		return;
1003
1004	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1005
1006	if (atom->state != THREAD_WAIT_CPU)
1007		return;
1008
1009	if (timestamp < atom->wake_up_time) {
1010		atom->state = THREAD_IGNORE;
1011		return;
1012	}
1013
1014	atom->state = THREAD_SCHED_IN;
1015	atom->sched_in_time = timestamp;
1016
1017	delta = atom->sched_in_time - atom->wake_up_time;
1018	atoms->total_lat += delta;
1019	if (delta > atoms->max_lat) {
1020		atoms->max_lat = delta;
1021		atoms->max_lat_at = timestamp;
1022	}
1023	atoms->nb_atoms++;
1024}
1025
1026static void
1027latency_switch_event(struct trace_switch_event *switch_event,
1028		     struct machine *machine,
1029		     struct event_format *event __used,
1030		     int cpu,
1031		     u64 timestamp,
1032		     struct thread *thread __used)
1033{
1034	struct work_atoms *out_events, *in_events;
1035	struct thread *sched_out, *sched_in;
1036	u64 timestamp0;
 
1037	s64 delta;
1038
1039	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1040
1041	timestamp0 = cpu_last_switched[cpu];
1042	cpu_last_switched[cpu] = timestamp;
1043	if (timestamp0)
1044		delta = timestamp - timestamp0;
1045	else
1046		delta = 0;
1047
1048	if (delta < 0)
1049		die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1050
 
1051
1052	sched_out = machine__findnew_thread(machine, switch_event->prev_pid);
1053	sched_in = machine__findnew_thread(machine, switch_event->next_pid);
 
 
1054
1055	out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1056	if (!out_events) {
1057		thread_atoms_insert(sched_out);
1058		out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1059		if (!out_events)
1060			die("out-event: Internal tree error");
 
 
 
1061	}
1062	add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
 
1063
1064	in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1065	if (!in_events) {
1066		thread_atoms_insert(sched_in);
1067		in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1068		if (!in_events)
1069			die("in-event: Internal tree error");
 
 
 
1070		/*
1071		 * Take came in we have not heard about yet,
1072		 * add in an initial atom in runnable state:
1073		 */
1074		add_sched_out_event(in_events, 'R', timestamp);
 
1075	}
1076	add_sched_in_event(in_events, timestamp);
 
 
 
 
 
1077}
1078
1079static void
1080latency_runtime_event(struct trace_runtime_event *runtime_event,
1081		     struct machine *machine,
1082		     struct event_format *event __used,
1083		     int cpu,
1084		     u64 timestamp,
1085		     struct thread *this_thread __used)
1086{
1087	struct thread *thread = machine__findnew_thread(machine, runtime_event->pid);
1088	struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
 
 
 
 
 
 
 
1089
1090	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1091	if (!atoms) {
1092		thread_atoms_insert(thread);
1093		atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1094		if (!atoms)
1095			die("in-event: Internal tree error");
1096		add_sched_out_event(atoms, 'R', timestamp);
 
 
 
 
1097	}
1098
1099	add_runtime_event(atoms, runtime_event->runtime, timestamp);
 
 
 
 
1100}
1101
1102static void
1103latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1104		     struct machine *machine,
1105		     struct event_format *__event __used,
1106		     int cpu __used,
1107		     u64 timestamp,
1108		     struct thread *thread __used)
1109{
 
1110	struct work_atoms *atoms;
1111	struct work_atom *atom;
1112	struct thread *wakee;
 
 
1113
1114	/* Note for later, it may be interesting to observe the failing cases */
1115	if (!wakeup_event->success)
1116		return;
1117
1118	wakee = machine__findnew_thread(machine, wakeup_event->pid);
1119	atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1120	if (!atoms) {
1121		thread_atoms_insert(wakee);
1122		atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1123		if (!atoms)
1124			die("wakeup-event: Internal tree error");
1125		add_sched_out_event(atoms, 'S', timestamp);
 
 
 
 
1126	}
1127
1128	BUG_ON(list_empty(&atoms->work_list));
1129
1130	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1131
1132	/*
 
 
 
 
 
 
1133	 * You WILL be missing events if you've recorded only
1134	 * one CPU, or are only looking at only one, so don't
1135	 * make useless noise.
1136	 */
1137	if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1138		nr_state_machine_bugs++;
1139
1140	nr_timestamps++;
1141	if (atom->sched_out_time > timestamp) {
1142		nr_unordered_timestamps++;
1143		return;
1144	}
1145
1146	atom->state = THREAD_WAIT_CPU;
1147	atom->wake_up_time = timestamp;
 
 
 
 
 
1148}
1149
1150static void
1151latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
1152		     struct machine *machine,
1153		     struct event_format *__event __used,
1154		     int cpu __used,
1155		     u64 timestamp,
1156		     struct thread *thread __used)
1157{
 
 
1158	struct work_atoms *atoms;
1159	struct work_atom *atom;
1160	struct thread *migrant;
 
1161
1162	/*
1163	 * Only need to worry about migration when profiling one CPU.
1164	 */
1165	if (profile_cpu == -1)
1166		return;
1167
1168	migrant = machine__findnew_thread(machine, migrate_task_event->pid);
1169	atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
 
 
1170	if (!atoms) {
1171		thread_atoms_insert(migrant);
1172		register_pid(migrant->pid, migrant->comm);
1173		atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1174		if (!atoms)
1175			die("migration-event: Internal tree error");
1176		add_sched_out_event(atoms, 'R', timestamp);
 
 
 
 
1177	}
1178
1179	BUG_ON(list_empty(&atoms->work_list));
1180
1181	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1182	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1183
1184	nr_timestamps++;
1185
1186	if (atom->sched_out_time > timestamp)
1187		nr_unordered_timestamps++;
 
 
 
 
1188}
1189
1190static struct trace_sched_handler lat_ops  = {
1191	.wakeup_event		= latency_wakeup_event,
1192	.switch_event		= latency_switch_event,
1193	.runtime_event		= latency_runtime_event,
1194	.fork_event		= latency_fork_event,
1195	.migrate_task_event	= latency_migrate_task_event,
1196};
1197
1198static void output_lat_thread(struct work_atoms *work_list)
1199{
1200	int i;
1201	int ret;
1202	u64 avg;
1203
1204	if (!work_list->nb_atoms)
1205		return;
1206	/*
1207	 * Ignore idle threads:
1208	 */
1209	if (!strcmp(work_list->thread->comm, "swapper"))
1210		return;
1211
1212	all_runtime += work_list->total_runtime;
1213	all_count += work_list->nb_atoms;
1214
1215	ret = printf("  %s:%d ", work_list->thread->comm, work_list->thread->pid);
 
 
 
1216
1217	for (i = 0; i < 24 - ret; i++)
1218		printf(" ");
1219
1220	avg = work_list->total_lat / work_list->nb_atoms;
1221
1222	printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1223	      (double)work_list->total_runtime / 1e6,
1224		 work_list->nb_atoms, (double)avg / 1e6,
1225		 (double)work_list->max_lat / 1e6,
1226		 (double)work_list->max_lat_at / 1e9);
1227}
1228
1229static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1230{
1231	if (l->thread->pid < r->thread->pid)
 
 
1232		return -1;
1233	if (l->thread->pid > r->thread->pid)
1234		return 1;
1235
1236	return 0;
1237}
1238
1239static struct sort_dimension pid_sort_dimension = {
1240	.name			= "pid",
1241	.cmp			= pid_cmp,
1242};
1243
1244static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1245{
1246	u64 avgl, avgr;
1247
1248	if (!l->nb_atoms)
1249		return -1;
1250
1251	if (!r->nb_atoms)
1252		return 1;
1253
1254	avgl = l->total_lat / l->nb_atoms;
1255	avgr = r->total_lat / r->nb_atoms;
1256
1257	if (avgl < avgr)
1258		return -1;
1259	if (avgl > avgr)
1260		return 1;
1261
1262	return 0;
1263}
1264
1265static struct sort_dimension avg_sort_dimension = {
1266	.name			= "avg",
1267	.cmp			= avg_cmp,
1268};
1269
1270static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1271{
1272	if (l->max_lat < r->max_lat)
1273		return -1;
1274	if (l->max_lat > r->max_lat)
1275		return 1;
1276
1277	return 0;
1278}
1279
1280static struct sort_dimension max_sort_dimension = {
1281	.name			= "max",
1282	.cmp			= max_cmp,
1283};
1284
1285static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1286{
1287	if (l->nb_atoms < r->nb_atoms)
1288		return -1;
1289	if (l->nb_atoms > r->nb_atoms)
1290		return 1;
1291
1292	return 0;
1293}
1294
1295static struct sort_dimension switch_sort_dimension = {
1296	.name			= "switch",
1297	.cmp			= switch_cmp,
1298};
1299
1300static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1301{
1302	if (l->total_runtime < r->total_runtime)
1303		return -1;
1304	if (l->total_runtime > r->total_runtime)
1305		return 1;
1306
1307	return 0;
1308}
1309
1310static struct sort_dimension runtime_sort_dimension = {
1311	.name			= "runtime",
1312	.cmp			= runtime_cmp,
1313};
1314
1315static struct sort_dimension *available_sorts[] = {
1316	&pid_sort_dimension,
1317	&avg_sort_dimension,
1318	&max_sort_dimension,
1319	&switch_sort_dimension,
1320	&runtime_sort_dimension,
1321};
1322
1323#define NB_AVAILABLE_SORTS	(int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1324
1325static LIST_HEAD(sort_list);
1326
1327static int sort_dimension__add(const char *tok, struct list_head *list)
1328{
1329	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1330
1331	for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1332		if (!strcmp(available_sorts[i]->name, tok)) {
1333			list_add_tail(&available_sorts[i]->list, list);
1334
1335			return 0;
1336		}
1337	}
1338
1339	return -1;
1340}
1341
1342static void setup_sorting(void);
1343
1344static void sort_lat(void)
1345{
1346	struct rb_node *node;
1347
 
1348	for (;;) {
1349		struct work_atoms *data;
1350		node = rb_first(&atom_root);
1351		if (!node)
1352			break;
1353
1354		rb_erase(node, &atom_root);
1355		data = rb_entry(node, struct work_atoms, node);
1356		__thread_latency_insert(&sorted_atom_root, data, &sort_list);
 
 
 
 
1357	}
1358}
1359
1360static struct trace_sched_handler *trace_handler;
1361
1362static void
1363process_sched_wakeup_event(struct perf_tool *tool __used,
1364			   struct event_format *event,
1365			   struct perf_sample *sample,
1366			   struct machine *machine,
1367			   struct thread *thread)
1368{
1369	void *data = sample->raw_data;
1370	struct trace_wakeup_event wakeup_event;
1371
1372	FILL_COMMON_FIELDS(wakeup_event, event, data);
1373
1374	FILL_ARRAY(wakeup_event, comm, event, data);
1375	FILL_FIELD(wakeup_event, pid, event, data);
1376	FILL_FIELD(wakeup_event, prio, event, data);
1377	FILL_FIELD(wakeup_event, success, event, data);
1378	FILL_FIELD(wakeup_event, cpu, event, data);
1379
1380	if (trace_handler->wakeup_event)
1381		trace_handler->wakeup_event(&wakeup_event, machine, event,
1382					    sample->cpu, sample->time, thread);
1383}
1384
1385/*
1386 * Track the current task - that way we can know whether there's any
1387 * weird events, such as a task being switched away that is not current.
1388 */
1389static int max_cpu;
1390
1391static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
1392
1393static struct thread *curr_thread[MAX_CPUS];
 
1394
1395static char next_shortname1 = 'A';
1396static char next_shortname2 = '0';
1397
1398static void
1399map_switch_event(struct trace_switch_event *switch_event,
1400		 struct machine *machine,
1401		 struct event_format *event __used,
1402		 int this_cpu,
1403		 u64 timestamp,
1404		 struct thread *thread __used)
1405{
1406	struct thread *sched_out __used, *sched_in;
 
1407	int new_shortname;
1408	u64 timestamp0;
1409	s64 delta;
1410	int cpu;
1411
1412	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1413
1414	if (this_cpu > max_cpu)
1415		max_cpu = this_cpu;
1416
1417	timestamp0 = cpu_last_switched[this_cpu];
1418	cpu_last_switched[this_cpu] = timestamp;
1419	if (timestamp0)
1420		delta = timestamp - timestamp0;
1421	else
1422		delta = 0;
1423
1424	if (delta < 0)
1425		die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1426
 
1427
1428	sched_out = machine__findnew_thread(machine, switch_event->prev_pid);
1429	sched_in = machine__findnew_thread(machine, switch_event->next_pid);
 
1430
1431	curr_thread[this_cpu] = sched_in;
1432
1433	printf("  ");
1434
1435	new_shortname = 0;
1436	if (!sched_in->shortname[0]) {
1437		sched_in->shortname[0] = next_shortname1;
1438		sched_in->shortname[1] = next_shortname2;
1439
1440		if (next_shortname1 < 'Z') {
1441			next_shortname1++;
 
 
1442		} else {
1443			next_shortname1='A';
1444			if (next_shortname2 < '9') {
1445				next_shortname2++;
 
 
1446			} else {
1447				next_shortname2='0';
 
 
 
 
1448			}
1449		}
1450		new_shortname = 1;
1451	}
1452
1453	for (cpu = 0; cpu <= max_cpu; cpu++) {
1454		if (cpu != this_cpu)
1455			printf(" ");
1456		else
1457			printf("*");
1458
1459		if (curr_thread[cpu]) {
1460			if (curr_thread[cpu]->pid)
1461				printf("%2s ", curr_thread[cpu]->shortname);
1462			else
1463				printf(".  ");
1464		} else
1465			printf("   ");
1466	}
1467
1468	printf("  %12.6f secs ", (double)timestamp/1e9);
1469	if (new_shortname) {
1470		printf("%s => %s:%d\n",
1471			sched_in->shortname, sched_in->comm, sched_in->pid);
1472	} else {
1473		printf("\n");
1474	}
 
 
 
 
1475}
1476
1477static void
1478process_sched_switch_event(struct perf_tool *tool __used,
1479			   struct event_format *event,
1480			   struct perf_sample *sample,
1481			   struct machine *machine,
1482			   struct thread *thread)
1483{
1484	int this_cpu = sample->cpu;
1485	void *data = sample->raw_data;
1486	struct trace_switch_event switch_event;
1487
1488	FILL_COMMON_FIELDS(switch_event, event, data);
1489
1490	FILL_ARRAY(switch_event, prev_comm, event, data);
1491	FILL_FIELD(switch_event, prev_pid, event, data);
1492	FILL_FIELD(switch_event, prev_prio, event, data);
1493	FILL_FIELD(switch_event, prev_state, event, data);
1494	FILL_ARRAY(switch_event, next_comm, event, data);
1495	FILL_FIELD(switch_event, next_pid, event, data);
1496	FILL_FIELD(switch_event, next_prio, event, data);
1497
1498	if (curr_pid[this_cpu] != (u32)-1) {
1499		/*
1500		 * Are we trying to switch away a PID that is
1501		 * not current?
1502		 */
1503		if (curr_pid[this_cpu] != switch_event.prev_pid)
1504			nr_context_switch_bugs++;
1505	}
1506	if (trace_handler->switch_event)
1507		trace_handler->switch_event(&switch_event, machine, event,
1508					    this_cpu, sample->time, thread);
1509
1510	curr_pid[this_cpu] = switch_event.next_pid;
1511}
1512
1513static void
1514process_sched_runtime_event(struct perf_tool *tool __used,
1515			    struct event_format *event,
1516			    struct perf_sample *sample,
1517			    struct machine *machine,
1518			    struct thread *thread)
1519{
1520	void *data = sample->raw_data;
1521	struct trace_runtime_event runtime_event;
1522
1523	FILL_ARRAY(runtime_event, comm, event, data);
1524	FILL_FIELD(runtime_event, pid, event, data);
1525	FILL_FIELD(runtime_event, runtime, event, data);
1526	FILL_FIELD(runtime_event, vruntime, event, data);
1527
1528	if (trace_handler->runtime_event)
1529		trace_handler->runtime_event(&runtime_event, machine, event,
1530					     sample->cpu, sample->time, thread);
1531}
1532
1533static void
1534process_sched_fork_event(struct perf_tool *tool __used,
1535			 struct event_format *event,
1536			 struct perf_sample *sample,
1537			 struct machine *machine __used,
1538			 struct thread *thread)
1539{
1540	void *data = sample->raw_data;
1541	struct trace_fork_event fork_event;
1542
1543	FILL_COMMON_FIELDS(fork_event, event, data);
1544
1545	FILL_ARRAY(fork_event, parent_comm, event, data);
1546	FILL_FIELD(fork_event, parent_pid, event, data);
1547	FILL_ARRAY(fork_event, child_comm, event, data);
1548	FILL_FIELD(fork_event, child_pid, event, data);
1549
1550	if (trace_handler->fork_event)
1551		trace_handler->fork_event(&fork_event, event,
1552					  sample->cpu, sample->time, thread);
1553}
1554
1555static void
1556process_sched_exit_event(struct perf_tool *tool __used,
1557			 struct event_format *event,
1558			 struct perf_sample *sample __used,
1559			 struct machine *machine __used,
1560			 struct thread *thread __used)
1561{
1562	if (verbose)
1563		printf("sched_exit event %p\n", event);
 
 
 
 
 
 
1564}
1565
1566static void
1567process_sched_migrate_task_event(struct perf_tool *tool __used,
1568				 struct event_format *event,
1569				 struct perf_sample *sample,
1570				 struct machine *machine,
1571				 struct thread *thread)
1572{
1573	void *data = sample->raw_data;
1574	struct trace_migrate_task_event migrate_task_event;
1575
1576	FILL_COMMON_FIELDS(migrate_task_event, event, data);
 
1577
1578	FILL_ARRAY(migrate_task_event, comm, event, data);
1579	FILL_FIELD(migrate_task_event, pid, event, data);
1580	FILL_FIELD(migrate_task_event, prio, event, data);
1581	FILL_FIELD(migrate_task_event, cpu, event, data);
1582
1583	if (trace_handler->migrate_task_event)
1584		trace_handler->migrate_task_event(&migrate_task_event, machine,
1585						  event, sample->cpu,
1586						  sample->time, thread);
1587}
1588
1589typedef void (*tracepoint_handler)(struct perf_tool *tool, struct event_format *event,
1590				   struct perf_sample *sample,
1591				   struct machine *machine,
1592				   struct thread *thread);
1593
1594static int perf_sched__process_tracepoint_sample(struct perf_tool *tool,
1595						 union perf_event *event __used,
1596						 struct perf_sample *sample,
1597						 struct perf_evsel *evsel,
1598						 struct machine *machine)
1599{
1600	struct thread *thread = machine__findnew_thread(machine, sample->pid);
1601
1602	if (thread == NULL) {
1603		pr_debug("problem processing %s event, skipping it.\n",
1604			 evsel->name);
1605		return -1;
1606	}
1607
1608	evsel->hists.stats.total_period += sample->period;
1609	hists__inc_nr_events(&evsel->hists, PERF_RECORD_SAMPLE);
1610
1611	if (evsel->handler.func != NULL) {
1612		tracepoint_handler f = evsel->handler.func;
1613
1614		if (evsel->handler.data == NULL)
1615			evsel->handler.data = trace_find_event(evsel->attr.config);
1616
1617		f(tool, evsel->handler.data, sample, machine, thread);
1618	}
1619
1620	return 0;
1621}
1622
1623static struct perf_tool perf_sched = {
1624	.sample			= perf_sched__process_tracepoint_sample,
1625	.comm			= perf_event__process_comm,
1626	.lost			= perf_event__process_lost,
1627	.fork			= perf_event__process_task,
1628	.ordered_samples	= true,
1629};
1630
1631static void read_events(bool destroy, struct perf_session **psession)
1632{
1633	int err = -EINVAL;
1634	const struct perf_evsel_str_handler handlers[] = {
1635		{ "sched:sched_switch",	      process_sched_switch_event, },
1636		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1637		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1638		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1639		{ "sched:sched_process_fork", process_sched_fork_event, },
1640		{ "sched:sched_process_exit", process_sched_exit_event, },
1641		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1642	};
1643	struct perf_session *session = perf_session__new(input_name, O_RDONLY,
1644							 0, false, &perf_sched);
1645	if (session == NULL)
1646		die("No Memory");
 
 
 
 
 
 
 
 
 
1647
1648	err = perf_evlist__set_tracepoints_handlers_array(session->evlist, handlers);
1649	assert(err == 0);
 
 
1650
1651	if (perf_session__has_traces(session, "record -R")) {
1652		err = perf_session__process_events(session, &perf_sched);
1653		if (err)
1654			die("Failed to process events, error %d", err);
 
 
1655
1656		nr_events      = session->hists.stats.nr_events[0];
1657		nr_lost_events = session->hists.stats.total_lost;
1658		nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
1659	}
1660
1661	if (destroy)
1662		perf_session__delete(session);
1663
1664	if (psession)
1665		*psession = session;
1666}
1667
1668static void print_bad_events(void)
1669{
1670	if (nr_unordered_timestamps && nr_timestamps) {
1671		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1672			(double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
1673			nr_unordered_timestamps, nr_timestamps);
1674	}
1675	if (nr_lost_events && nr_events) {
1676		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1677			(double)nr_lost_events/(double)nr_events*100.0,
1678			nr_lost_events, nr_events, nr_lost_chunks);
1679	}
1680	if (nr_state_machine_bugs && nr_timestamps) {
1681		printf("  INFO: %.3f%% state machine bugs (%ld out of %ld)",
1682			(double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
1683			nr_state_machine_bugs, nr_timestamps);
1684		if (nr_lost_events)
1685			printf(" (due to lost events?)");
1686		printf("\n");
1687	}
1688	if (nr_context_switch_bugs && nr_timestamps) {
1689		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1690			(double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
1691			nr_context_switch_bugs, nr_timestamps);
1692		if (nr_lost_events)
1693			printf(" (due to lost events?)");
1694		printf("\n");
1695	}
1696}
1697
1698static void __cmd_lat(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1699{
1700	struct rb_node *next;
1701	struct perf_session *session;
1702
1703	setup_pager();
1704	read_events(false, &session);
1705	sort_lat();
1706
1707	printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1708	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at     |\n");
1709	printf(" ---------------------------------------------------------------------------------------------------------------\n");
 
 
 
 
 
 
1710
1711	next = rb_first(&sorted_atom_root);
1712
1713	while (next) {
1714		struct work_atoms *work_list;
1715
1716		work_list = rb_entry(next, struct work_atoms, node);
1717		output_lat_thread(work_list);
1718		next = rb_next(next);
 
1719	}
1720
1721	printf(" -----------------------------------------------------------------------------------------\n");
1722	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
1723		(double)all_runtime/1e6, all_count);
1724
1725	printf(" ---------------------------------------------------\n");
1726
1727	print_bad_events();
1728	printf("\n");
1729
1730	perf_session__delete(session);
1731}
1732
1733static struct trace_sched_handler map_ops  = {
1734	.wakeup_event		= NULL,
1735	.switch_event		= map_switch_event,
1736	.runtime_event		= NULL,
1737	.fork_event		= NULL,
1738};
1739
1740static void __cmd_map(void)
1741{
1742	max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1743
1744	setup_pager();
1745	read_events(true, NULL);
1746	print_bad_events();
 
 
1747}
1748
1749static void __cmd_replay(void)
1750{
1751	unsigned long i;
1752
1753	calibrate_run_measurement_overhead();
1754	calibrate_sleep_measurement_overhead();
1755
1756	test_calibrations();
1757
1758	read_events(true, NULL);
 
1759
1760	printf("nr_run_events:        %ld\n", nr_run_events);
1761	printf("nr_sleep_events:      %ld\n", nr_sleep_events);
1762	printf("nr_wakeup_events:     %ld\n", nr_wakeup_events);
1763
1764	if (targetless_wakeups)
1765		printf("target-less wakeups:  %ld\n", targetless_wakeups);
1766	if (multitarget_wakeups)
1767		printf("multi-target wakeups: %ld\n", multitarget_wakeups);
1768	if (nr_run_events_optimized)
1769		printf("run atoms optimized: %ld\n",
1770			nr_run_events_optimized);
1771
1772	print_task_traces();
1773	add_cross_task_wakeups();
1774
1775	create_tasks();
1776	printf("------------------------------------------------------------\n");
1777	for (i = 0; i < replay_repeat; i++)
1778		run_one_test();
1779}
1780
1781
1782static const char * const sched_usage[] = {
1783	"perf sched [<options>] {record|latency|map|replay|script}",
1784	NULL
1785};
1786
1787static const struct option sched_options[] = {
1788	OPT_STRING('i', "input", &input_name, "file",
1789		    "input file name"),
1790	OPT_INCR('v', "verbose", &verbose,
1791		    "be more verbose (show symbol address, etc)"),
1792	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1793		    "dump raw trace in ASCII"),
1794	OPT_END()
1795};
1796
1797static const char * const latency_usage[] = {
1798	"perf sched latency [<options>]",
1799	NULL
1800};
1801
1802static const struct option latency_options[] = {
1803	OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1804		   "sort by key(s): runtime, switch, avg, max"),
1805	OPT_INCR('v', "verbose", &verbose,
1806		    "be more verbose (show symbol address, etc)"),
1807	OPT_INTEGER('C', "CPU", &profile_cpu,
1808		    "CPU to profile on"),
1809	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1810		    "dump raw trace in ASCII"),
1811	OPT_END()
1812};
1813
1814static const char * const replay_usage[] = {
1815	"perf sched replay [<options>]",
1816	NULL
1817};
1818
1819static const struct option replay_options[] = {
1820	OPT_UINTEGER('r', "repeat", &replay_repeat,
1821		     "repeat the workload replay N times (-1: infinite)"),
1822	OPT_INCR('v', "verbose", &verbose,
1823		    "be more verbose (show symbol address, etc)"),
1824	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1825		    "dump raw trace in ASCII"),
1826	OPT_END()
1827};
1828
1829static void setup_sorting(void)
 
1830{
1831	char *tmp, *tok, *str = strdup(sort_order);
1832
1833	for (tok = strtok_r(str, ", ", &tmp);
1834			tok; tok = strtok_r(NULL, ", ", &tmp)) {
1835		if (sort_dimension__add(tok, &sort_list) < 0) {
1836			error("Unknown --sort key: `%s'", tok);
1837			usage_with_options(latency_usage, latency_options);
1838		}
1839	}
1840
1841	free(str);
1842
1843	sort_dimension__add("pid", &cmp_pid);
1844}
1845
1846static const char *record_args[] = {
1847	"record",
1848	"-a",
1849	"-R",
1850	"-f",
1851	"-m", "1024",
1852	"-c", "1",
1853	"-e", "sched:sched_switch",
1854	"-e", "sched:sched_stat_wait",
1855	"-e", "sched:sched_stat_sleep",
1856	"-e", "sched:sched_stat_iowait",
1857	"-e", "sched:sched_stat_runtime",
1858	"-e", "sched:sched_process_exit",
1859	"-e", "sched:sched_process_fork",
1860	"-e", "sched:sched_wakeup",
1861	"-e", "sched:sched_migrate_task",
1862};
1863
1864static int __cmd_record(int argc, const char **argv)
1865{
1866	unsigned int rec_argc, i, j;
1867	const char **rec_argv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1868
1869	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1870	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1871
1872	if (rec_argv == NULL)
1873		return -ENOMEM;
1874
1875	for (i = 0; i < ARRAY_SIZE(record_args); i++)
1876		rec_argv[i] = strdup(record_args[i]);
1877
1878	for (j = 1; j < (unsigned int)argc; j++, i++)
1879		rec_argv[i] = argv[j];
1880
1881	BUG_ON(i != rec_argc);
1882
1883	return cmd_record(i, rec_argv, NULL);
1884}
1885
1886int cmd_sched(int argc, const char **argv, const char *prefix __used)
1887{
1888	argc = parse_options(argc, argv, sched_options, sched_usage,
1889			     PARSE_OPT_STOP_AT_NON_OPTION);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1890	if (!argc)
1891		usage_with_options(sched_usage, sched_options);
1892
1893	/*
1894	 * Aliased to 'perf script' for now:
1895	 */
1896	if (!strcmp(argv[0], "script"))
1897		return cmd_script(argc, argv, prefix);
1898
1899	symbol__init();
1900	if (!strncmp(argv[0], "rec", 3)) {
1901		return __cmd_record(argc, argv);
1902	} else if (!strncmp(argv[0], "lat", 3)) {
1903		trace_handler = &lat_ops;
1904		if (argc > 1) {
1905			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1906			if (argc)
1907				usage_with_options(latency_usage, latency_options);
1908		}
1909		setup_sorting();
1910		__cmd_lat();
1911	} else if (!strcmp(argv[0], "map")) {
1912		trace_handler = &map_ops;
1913		setup_sorting();
1914		__cmd_map();
1915	} else if (!strncmp(argv[0], "rep", 3)) {
1916		trace_handler = &replay_ops;
1917		if (argc) {
1918			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1919			if (argc)
1920				usage_with_options(replay_usage, replay_options);
1921		}
1922		__cmd_replay();
1923	} else {
1924		usage_with_options(sched_usage, sched_options);
1925	}
1926
1927	return 0;
1928}
v4.6
   1#include "builtin.h"
   2#include "perf.h"
   3
   4#include "util/util.h"
   5#include "util/evlist.h"
   6#include "util/cache.h"
   7#include "util/evsel.h"
   8#include "util/symbol.h"
   9#include "util/thread.h"
  10#include "util/header.h"
  11#include "util/session.h"
  12#include "util/tool.h"
  13#include "util/cloexec.h"
  14
  15#include <subcmd/parse-options.h>
  16#include "util/trace-event.h"
  17
  18#include "util/debug.h"
  19
  20#include <sys/prctl.h>
  21#include <sys/resource.h>
  22
  23#include <semaphore.h>
  24#include <pthread.h>
  25#include <math.h>
  26#include <api/fs/fs.h>
 
 
 
 
 
 
  27
  28#define PR_SET_NAME		15               /* Set process name */
  29#define MAX_CPUS		4096
 
 
 
 
  30#define COMM_LEN		20
  31#define SYM_LEN			129
  32#define MAX_PID			1024000
 
 
 
  33
  34struct sched_atom;
  35
  36struct task_desc {
  37	unsigned long		nr;
  38	unsigned long		pid;
  39	char			comm[COMM_LEN];
  40
  41	unsigned long		nr_events;
  42	unsigned long		curr_event;
  43	struct sched_atom	**atoms;
  44
  45	pthread_t		thread;
  46	sem_t			sleep_sem;
  47
  48	sem_t			ready_for_work;
  49	sem_t			work_done_sem;
  50
  51	u64			cpu_usage;
  52};
  53
  54enum sched_event_type {
  55	SCHED_EVENT_RUN,
  56	SCHED_EVENT_SLEEP,
  57	SCHED_EVENT_WAKEUP,
  58	SCHED_EVENT_MIGRATION,
  59};
  60
  61struct sched_atom {
  62	enum sched_event_type	type;
  63	int			specific_wait;
  64	u64			timestamp;
  65	u64			duration;
  66	unsigned long		nr;
  67	sem_t			*wait_sem;
  68	struct task_desc	*wakee;
  69};
  70
  71#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  72
  73enum thread_state {
  74	THREAD_SLEEPING = 0,
  75	THREAD_WAIT_CPU,
  76	THREAD_SCHED_IN,
  77	THREAD_IGNORE
  78};
  79
  80struct work_atom {
  81	struct list_head	list;
  82	enum thread_state	state;
  83	u64			sched_out_time;
  84	u64			wake_up_time;
  85	u64			sched_in_time;
  86	u64			runtime;
  87};
  88
  89struct work_atoms {
  90	struct list_head	work_list;
  91	struct thread		*thread;
  92	struct rb_node		node;
  93	u64			max_lat;
  94	u64			max_lat_at;
  95	u64			total_lat;
  96	u64			nb_atoms;
  97	u64			total_runtime;
  98	int			num_merged;
  99};
 100
 101typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 102
 103struct perf_sched;
 104
 105struct trace_sched_handler {
 106	int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 107			    struct perf_sample *sample, struct machine *machine);
 108
 109	int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 110			     struct perf_sample *sample, struct machine *machine);
 111
 112	int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 113			    struct perf_sample *sample, struct machine *machine);
 114
 115	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 116	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 117			  struct machine *machine);
 118
 119	int (*migrate_task_event)(struct perf_sched *sched,
 120				  struct perf_evsel *evsel,
 121				  struct perf_sample *sample,
 122				  struct machine *machine);
 123};
 124
 125struct perf_sched {
 126	struct perf_tool tool;
 127	const char	 *sort_order;
 128	unsigned long	 nr_tasks;
 129	struct task_desc **pid_to_task;
 130	struct task_desc **tasks;
 131	const struct trace_sched_handler *tp_handler;
 132	pthread_mutex_t	 start_work_mutex;
 133	pthread_mutex_t	 work_done_wait_mutex;
 134	int		 profile_cpu;
 135/*
 136 * Track the current task - that way we can know whether there's any
 137 * weird events, such as a task being switched away that is not current.
 138 */
 139	int		 max_cpu;
 140	u32		 curr_pid[MAX_CPUS];
 141	struct thread	 *curr_thread[MAX_CPUS];
 142	char		 next_shortname1;
 143	char		 next_shortname2;
 144	unsigned int	 replay_repeat;
 145	unsigned long	 nr_run_events;
 146	unsigned long	 nr_sleep_events;
 147	unsigned long	 nr_wakeup_events;
 148	unsigned long	 nr_sleep_corrections;
 149	unsigned long	 nr_run_events_optimized;
 150	unsigned long	 targetless_wakeups;
 151	unsigned long	 multitarget_wakeups;
 152	unsigned long	 nr_runs;
 153	unsigned long	 nr_timestamps;
 154	unsigned long	 nr_unordered_timestamps;
 155	unsigned long	 nr_context_switch_bugs;
 156	unsigned long	 nr_events;
 157	unsigned long	 nr_lost_chunks;
 158	unsigned long	 nr_lost_events;
 159	u64		 run_measurement_overhead;
 160	u64		 sleep_measurement_overhead;
 161	u64		 start_time;
 162	u64		 cpu_usage;
 163	u64		 runavg_cpu_usage;
 164	u64		 parent_cpu_usage;
 165	u64		 runavg_parent_cpu_usage;
 166	u64		 sum_runtime;
 167	u64		 sum_fluct;
 168	u64		 run_avg;
 169	u64		 all_runtime;
 170	u64		 all_count;
 171	u64		 cpu_last_switched[MAX_CPUS];
 172	struct rb_root	 atom_root, sorted_atom_root, merged_atom_root;
 173	struct list_head sort_list, cmp_pid;
 174	bool force;
 175	bool skip_merge;
 176};
 177
 178static u64 get_nsecs(void)
 179{
 180	struct timespec ts;
 181
 182	clock_gettime(CLOCK_MONOTONIC, &ts);
 183
 184	return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
 185}
 186
 187static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 188{
 189	u64 T0 = get_nsecs(), T1;
 190
 191	do {
 192		T1 = get_nsecs();
 193	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 194}
 195
 196static void sleep_nsecs(u64 nsecs)
 197{
 198	struct timespec ts;
 199
 200	ts.tv_nsec = nsecs % 999999999;
 201	ts.tv_sec = nsecs / 999999999;
 202
 203	nanosleep(&ts, NULL);
 204}
 205
 206static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 207{
 208	u64 T0, T1, delta, min_delta = 1000000000ULL;
 209	int i;
 210
 211	for (i = 0; i < 10; i++) {
 212		T0 = get_nsecs();
 213		burn_nsecs(sched, 0);
 214		T1 = get_nsecs();
 215		delta = T1-T0;
 216		min_delta = min(min_delta, delta);
 217	}
 218	sched->run_measurement_overhead = min_delta;
 219
 220	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 221}
 222
 223static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 224{
 225	u64 T0, T1, delta, min_delta = 1000000000ULL;
 226	int i;
 227
 228	for (i = 0; i < 10; i++) {
 229		T0 = get_nsecs();
 230		sleep_nsecs(10000);
 231		T1 = get_nsecs();
 232		delta = T1-T0;
 233		min_delta = min(min_delta, delta);
 234	}
 235	min_delta -= 10000;
 236	sched->sleep_measurement_overhead = min_delta;
 237
 238	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 239}
 240
 241static struct sched_atom *
 242get_new_event(struct task_desc *task, u64 timestamp)
 243{
 244	struct sched_atom *event = zalloc(sizeof(*event));
 245	unsigned long idx = task->nr_events;
 246	size_t size;
 247
 248	event->timestamp = timestamp;
 249	event->nr = idx;
 250
 251	task->nr_events++;
 252	size = sizeof(struct sched_atom *) * task->nr_events;
 253	task->atoms = realloc(task->atoms, size);
 254	BUG_ON(!task->atoms);
 255
 256	task->atoms[idx] = event;
 257
 258	return event;
 259}
 260
 261static struct sched_atom *last_event(struct task_desc *task)
 262{
 263	if (!task->nr_events)
 264		return NULL;
 265
 266	return task->atoms[task->nr_events - 1];
 267}
 268
 269static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 270				u64 timestamp, u64 duration)
 271{
 272	struct sched_atom *event, *curr_event = last_event(task);
 273
 274	/*
 275	 * optimize an existing RUN event by merging this one
 276	 * to it:
 277	 */
 278	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 279		sched->nr_run_events_optimized++;
 280		curr_event->duration += duration;
 281		return;
 282	}
 283
 284	event = get_new_event(task, timestamp);
 285
 286	event->type = SCHED_EVENT_RUN;
 287	event->duration = duration;
 288
 289	sched->nr_run_events++;
 290}
 291
 292static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 293				   u64 timestamp, struct task_desc *wakee)
 
 294{
 295	struct sched_atom *event, *wakee_event;
 296
 297	event = get_new_event(task, timestamp);
 298	event->type = SCHED_EVENT_WAKEUP;
 299	event->wakee = wakee;
 300
 301	wakee_event = last_event(wakee);
 302	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 303		sched->targetless_wakeups++;
 304		return;
 305	}
 306	if (wakee_event->wait_sem) {
 307		sched->multitarget_wakeups++;
 308		return;
 309	}
 310
 311	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 312	sem_init(wakee_event->wait_sem, 0, 0);
 313	wakee_event->specific_wait = 1;
 314	event->wait_sem = wakee_event->wait_sem;
 315
 316	sched->nr_wakeup_events++;
 317}
 318
 319static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 320				  u64 timestamp, u64 task_state __maybe_unused)
 
 321{
 322	struct sched_atom *event = get_new_event(task, timestamp);
 323
 324	event->type = SCHED_EVENT_SLEEP;
 325
 326	sched->nr_sleep_events++;
 327}
 328
 329static struct task_desc *register_pid(struct perf_sched *sched,
 330				      unsigned long pid, const char *comm)
 331{
 332	struct task_desc *task;
 333	static int pid_max;
 334
 335	if (sched->pid_to_task == NULL) {
 336		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 337			pid_max = MAX_PID;
 338		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 339	}
 340	if (pid >= (unsigned long)pid_max) {
 341		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 342			sizeof(struct task_desc *))) == NULL);
 343		while (pid >= (unsigned long)pid_max)
 344			sched->pid_to_task[pid_max++] = NULL;
 345	}
 346
 347	task = sched->pid_to_task[pid];
 348
 349	if (task)
 350		return task;
 351
 352	task = zalloc(sizeof(*task));
 353	task->pid = pid;
 354	task->nr = sched->nr_tasks;
 355	strcpy(task->comm, comm);
 356	/*
 357	 * every task starts in sleeping state - this gets ignored
 358	 * if there's no wakeup pointing to this sleep state:
 359	 */
 360	add_sched_event_sleep(sched, task, 0, 0);
 361
 362	sched->pid_to_task[pid] = task;
 363	sched->nr_tasks++;
 364	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 365	BUG_ON(!sched->tasks);
 366	sched->tasks[task->nr] = task;
 367
 368	if (verbose)
 369		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 370
 371	return task;
 372}
 373
 374
 375static void print_task_traces(struct perf_sched *sched)
 376{
 377	struct task_desc *task;
 378	unsigned long i;
 379
 380	for (i = 0; i < sched->nr_tasks; i++) {
 381		task = sched->tasks[i];
 382		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 383			task->nr, task->comm, task->pid, task->nr_events);
 384	}
 385}
 386
 387static void add_cross_task_wakeups(struct perf_sched *sched)
 388{
 389	struct task_desc *task1, *task2;
 390	unsigned long i, j;
 391
 392	for (i = 0; i < sched->nr_tasks; i++) {
 393		task1 = sched->tasks[i];
 394		j = i + 1;
 395		if (j == sched->nr_tasks)
 396			j = 0;
 397		task2 = sched->tasks[j];
 398		add_sched_event_wakeup(sched, task1, 0, task2);
 399	}
 400}
 401
 402static void perf_sched__process_event(struct perf_sched *sched,
 403				      struct sched_atom *atom)
 404{
 405	int ret = 0;
 406
 407	switch (atom->type) {
 408		case SCHED_EVENT_RUN:
 409			burn_nsecs(sched, atom->duration);
 410			break;
 411		case SCHED_EVENT_SLEEP:
 412			if (atom->wait_sem)
 413				ret = sem_wait(atom->wait_sem);
 414			BUG_ON(ret);
 415			break;
 416		case SCHED_EVENT_WAKEUP:
 417			if (atom->wait_sem)
 418				ret = sem_post(atom->wait_sem);
 419			BUG_ON(ret);
 420			break;
 421		case SCHED_EVENT_MIGRATION:
 422			break;
 423		default:
 424			BUG_ON(1);
 425	}
 426}
 427
 428static u64 get_cpu_usage_nsec_parent(void)
 429{
 430	struct rusage ru;
 431	u64 sum;
 432	int err;
 433
 434	err = getrusage(RUSAGE_SELF, &ru);
 435	BUG_ON(err);
 436
 437	sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
 438	sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
 439
 440	return sum;
 441}
 442
 443static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 444{
 445	struct perf_event_attr attr;
 446	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 447	int fd;
 448	struct rlimit limit;
 449	bool need_privilege = false;
 450
 451	memset(&attr, 0, sizeof(attr));
 452
 453	attr.type = PERF_TYPE_SOFTWARE;
 454	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 455
 456force_again:
 457	fd = sys_perf_event_open(&attr, 0, -1, -1,
 458				 perf_event_open_cloexec_flag());
 459
 460	if (fd < 0) {
 461		if (errno == EMFILE) {
 462			if (sched->force) {
 463				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 464				limit.rlim_cur += sched->nr_tasks - cur_task;
 465				if (limit.rlim_cur > limit.rlim_max) {
 466					limit.rlim_max = limit.rlim_cur;
 467					need_privilege = true;
 468				}
 469				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 470					if (need_privilege && errno == EPERM)
 471						strcpy(info, "Need privilege\n");
 472				} else
 473					goto force_again;
 474			} else
 475				strcpy(info, "Have a try with -f option\n");
 476		}
 477		pr_err("Error: sys_perf_event_open() syscall returned "
 478		       "with %d (%s)\n%s", fd,
 479		       strerror_r(errno, sbuf, sizeof(sbuf)), info);
 480		exit(EXIT_FAILURE);
 481	}
 482	return fd;
 483}
 484
 485static u64 get_cpu_usage_nsec_self(int fd)
 486{
 487	u64 runtime;
 488	int ret;
 489
 490	ret = read(fd, &runtime, sizeof(runtime));
 491	BUG_ON(ret != sizeof(runtime));
 492
 493	return runtime;
 494}
 495
 496struct sched_thread_parms {
 497	struct task_desc  *task;
 498	struct perf_sched *sched;
 499	int fd;
 500};
 501
 502static void *thread_func(void *ctx)
 503{
 504	struct sched_thread_parms *parms = ctx;
 505	struct task_desc *this_task = parms->task;
 506	struct perf_sched *sched = parms->sched;
 507	u64 cpu_usage_0, cpu_usage_1;
 508	unsigned long i, ret;
 509	char comm2[22];
 510	int fd = parms->fd;
 511
 512	zfree(&parms);
 513
 514	sprintf(comm2, ":%s", this_task->comm);
 515	prctl(PR_SET_NAME, comm2);
 516	if (fd < 0)
 517		return NULL;
 518again:
 519	ret = sem_post(&this_task->ready_for_work);
 520	BUG_ON(ret);
 521	ret = pthread_mutex_lock(&sched->start_work_mutex);
 522	BUG_ON(ret);
 523	ret = pthread_mutex_unlock(&sched->start_work_mutex);
 524	BUG_ON(ret);
 525
 526	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 527
 528	for (i = 0; i < this_task->nr_events; i++) {
 529		this_task->curr_event = i;
 530		perf_sched__process_event(sched, this_task->atoms[i]);
 531	}
 532
 533	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 534	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 535	ret = sem_post(&this_task->work_done_sem);
 536	BUG_ON(ret);
 537
 538	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 539	BUG_ON(ret);
 540	ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
 541	BUG_ON(ret);
 542
 543	goto again;
 544}
 545
 546static void create_tasks(struct perf_sched *sched)
 547{
 548	struct task_desc *task;
 549	pthread_attr_t attr;
 550	unsigned long i;
 551	int err;
 552
 553	err = pthread_attr_init(&attr);
 554	BUG_ON(err);
 555	err = pthread_attr_setstacksize(&attr,
 556			(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
 557	BUG_ON(err);
 558	err = pthread_mutex_lock(&sched->start_work_mutex);
 559	BUG_ON(err);
 560	err = pthread_mutex_lock(&sched->work_done_wait_mutex);
 561	BUG_ON(err);
 562	for (i = 0; i < sched->nr_tasks; i++) {
 563		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 564		BUG_ON(parms == NULL);
 565		parms->task = task = sched->tasks[i];
 566		parms->sched = sched;
 567		parms->fd = self_open_counters(sched, i);
 568		sem_init(&task->sleep_sem, 0, 0);
 569		sem_init(&task->ready_for_work, 0, 0);
 570		sem_init(&task->work_done_sem, 0, 0);
 571		task->curr_event = 0;
 572		err = pthread_create(&task->thread, &attr, thread_func, parms);
 573		BUG_ON(err);
 574	}
 575}
 576
 577static void wait_for_tasks(struct perf_sched *sched)
 578{
 579	u64 cpu_usage_0, cpu_usage_1;
 580	struct task_desc *task;
 581	unsigned long i, ret;
 582
 583	sched->start_time = get_nsecs();
 584	sched->cpu_usage = 0;
 585	pthread_mutex_unlock(&sched->work_done_wait_mutex);
 586
 587	for (i = 0; i < sched->nr_tasks; i++) {
 588		task = sched->tasks[i];
 589		ret = sem_wait(&task->ready_for_work);
 590		BUG_ON(ret);
 591		sem_init(&task->ready_for_work, 0, 0);
 592	}
 593	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 594	BUG_ON(ret);
 595
 596	cpu_usage_0 = get_cpu_usage_nsec_parent();
 597
 598	pthread_mutex_unlock(&sched->start_work_mutex);
 599
 600	for (i = 0; i < sched->nr_tasks; i++) {
 601		task = sched->tasks[i];
 602		ret = sem_wait(&task->work_done_sem);
 603		BUG_ON(ret);
 604		sem_init(&task->work_done_sem, 0, 0);
 605		sched->cpu_usage += task->cpu_usage;
 606		task->cpu_usage = 0;
 607	}
 608
 609	cpu_usage_1 = get_cpu_usage_nsec_parent();
 610	if (!sched->runavg_cpu_usage)
 611		sched->runavg_cpu_usage = sched->cpu_usage;
 612	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 613
 614	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 615	if (!sched->runavg_parent_cpu_usage)
 616		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 617	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 618					 sched->parent_cpu_usage)/sched->replay_repeat;
 619
 620	ret = pthread_mutex_lock(&sched->start_work_mutex);
 621	BUG_ON(ret);
 622
 623	for (i = 0; i < sched->nr_tasks; i++) {
 624		task = sched->tasks[i];
 625		sem_init(&task->sleep_sem, 0, 0);
 626		task->curr_event = 0;
 627	}
 628}
 629
 630static void run_one_test(struct perf_sched *sched)
 631{
 632	u64 T0, T1, delta, avg_delta, fluct;
 633
 634	T0 = get_nsecs();
 635	wait_for_tasks(sched);
 636	T1 = get_nsecs();
 637
 638	delta = T1 - T0;
 639	sched->sum_runtime += delta;
 640	sched->nr_runs++;
 641
 642	avg_delta = sched->sum_runtime / sched->nr_runs;
 643	if (delta < avg_delta)
 644		fluct = avg_delta - delta;
 645	else
 646		fluct = delta - avg_delta;
 647	sched->sum_fluct += fluct;
 648	if (!sched->run_avg)
 649		sched->run_avg = delta;
 650	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 651
 652	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
 
 653
 654	printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
 
 655
 656	printf("cpu: %0.2f / %0.2f",
 657		(double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
 658
 659#if 0
 660	/*
 661	 * rusage statistics done by the parent, these are less
 662	 * accurate than the sched->sum_exec_runtime based statistics:
 663	 */
 664	printf(" [%0.2f / %0.2f]",
 665		(double)sched->parent_cpu_usage/1e6,
 666		(double)sched->runavg_parent_cpu_usage/1e6);
 667#endif
 668
 669	printf("\n");
 670
 671	if (sched->nr_sleep_corrections)
 672		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 673	sched->nr_sleep_corrections = 0;
 674}
 675
 676static void test_calibrations(struct perf_sched *sched)
 677{
 678	u64 T0, T1;
 679
 680	T0 = get_nsecs();
 681	burn_nsecs(sched, 1e6);
 682	T1 = get_nsecs();
 683
 684	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 685
 686	T0 = get_nsecs();
 687	sleep_nsecs(1e6);
 688	T1 = get_nsecs();
 689
 690	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 691}
 692
 693static int
 694replay_wakeup_event(struct perf_sched *sched,
 695		    struct perf_evsel *evsel, struct perf_sample *sample,
 696		    struct machine *machine __maybe_unused)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 697{
 698	const char *comm = perf_evsel__strval(evsel, sample, "comm");
 699	const u32 pid	 = perf_evsel__intval(evsel, sample, "pid");
 700	struct task_desc *waker, *wakee;
 701
 702	if (verbose) {
 703		printf("sched_wakeup event %p\n", evsel);
 704
 705		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 
 
 
 706	}
 707
 708	waker = register_pid(sched, sample->tid, "<unknown>");
 709	wakee = register_pid(sched, pid, comm);
 710
 711	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 712	return 0;
 713}
 714
 715static int replay_switch_event(struct perf_sched *sched,
 716			       struct perf_evsel *evsel,
 717			       struct perf_sample *sample,
 718			       struct machine *machine __maybe_unused)
 719{
 720	const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
 721		   *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
 722	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 723		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 724	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 725	struct task_desc *prev, __maybe_unused *next;
 726	u64 timestamp0, timestamp = sample->time;
 727	int cpu = sample->cpu;
 728	s64 delta;
 729
 730	if (verbose)
 731		printf("sched_switch event %p\n", evsel);
 732
 733	if (cpu >= MAX_CPUS || cpu < 0)
 734		return 0;
 735
 736	timestamp0 = sched->cpu_last_switched[cpu];
 737	if (timestamp0)
 738		delta = timestamp - timestamp0;
 739	else
 740		delta = 0;
 741
 742	if (delta < 0) {
 743		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 744		return -1;
 
 
 
 
 
 745	}
 746
 747	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 748		 prev_comm, prev_pid, next_comm, next_pid, delta);
 749
 750	prev = register_pid(sched, prev_pid, prev_comm);
 751	next = register_pid(sched, next_pid, next_comm);
 752
 753	sched->cpu_last_switched[cpu] = timestamp;
 754
 755	add_sched_event_run(sched, prev, timestamp, delta);
 756	add_sched_event_sleep(sched, prev, timestamp, prev_state);
 757
 758	return 0;
 759}
 760
 761static int replay_fork_event(struct perf_sched *sched,
 762			     union perf_event *event,
 763			     struct machine *machine)
 764{
 765	struct thread *child, *parent;
 766
 767	child = machine__findnew_thread(machine, event->fork.pid,
 768					event->fork.tid);
 769	parent = machine__findnew_thread(machine, event->fork.ppid,
 770					 event->fork.ptid);
 771
 772	if (child == NULL || parent == NULL) {
 773		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 774				 child, parent);
 775		goto out_put;
 776	}
 777
 
 
 
 
 
 
 
 778	if (verbose) {
 779		printf("fork event\n");
 780		printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 781		printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 782	}
 
 
 
 783
 784	register_pid(sched, parent->tid, thread__comm_str(parent));
 785	register_pid(sched, child->tid, thread__comm_str(child));
 786out_put:
 787	thread__put(child);
 788	thread__put(parent);
 789	return 0;
 790}
 791
 792struct sort_dimension {
 793	const char		*name;
 794	sort_fn_t		cmp;
 795	struct list_head	list;
 796};
 797
 
 
 798static int
 799thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 800{
 801	struct sort_dimension *sort;
 802	int ret = 0;
 803
 804	BUG_ON(list_empty(list));
 805
 806	list_for_each_entry(sort, list, list) {
 807		ret = sort->cmp(l, r);
 808		if (ret)
 809			return ret;
 810	}
 811
 812	return ret;
 813}
 814
 815static struct work_atoms *
 816thread_atoms_search(struct rb_root *root, struct thread *thread,
 817			 struct list_head *sort_list)
 818{
 819	struct rb_node *node = root->rb_node;
 820	struct work_atoms key = { .thread = thread };
 821
 822	while (node) {
 823		struct work_atoms *atoms;
 824		int cmp;
 825
 826		atoms = container_of(node, struct work_atoms, node);
 827
 828		cmp = thread_lat_cmp(sort_list, &key, atoms);
 829		if (cmp > 0)
 830			node = node->rb_left;
 831		else if (cmp < 0)
 832			node = node->rb_right;
 833		else {
 834			BUG_ON(thread != atoms->thread);
 835			return atoms;
 836		}
 837	}
 838	return NULL;
 839}
 840
 841static void
 842__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
 843			 struct list_head *sort_list)
 844{
 845	struct rb_node **new = &(root->rb_node), *parent = NULL;
 846
 847	while (*new) {
 848		struct work_atoms *this;
 849		int cmp;
 850
 851		this = container_of(*new, struct work_atoms, node);
 852		parent = *new;
 853
 854		cmp = thread_lat_cmp(sort_list, data, this);
 855
 856		if (cmp > 0)
 857			new = &((*new)->rb_left);
 858		else
 859			new = &((*new)->rb_right);
 860	}
 861
 862	rb_link_node(&data->node, parent, new);
 863	rb_insert_color(&data->node, root);
 864}
 865
 866static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
 867{
 868	struct work_atoms *atoms = zalloc(sizeof(*atoms));
 869	if (!atoms) {
 870		pr_err("No memory at %s\n", __func__);
 871		return -1;
 872	}
 873
 874	atoms->thread = thread__get(thread);
 875	INIT_LIST_HEAD(&atoms->work_list);
 876	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
 877	return 0;
 
 
 
 
 
 
 
 
 
 878}
 879
 880static char sched_out_state(u64 prev_state)
 
 881{
 882	const char *str = TASK_STATE_TO_CHAR_STR;
 883
 884	return str[prev_state];
 885}
 886
 887static int
 888add_sched_out_event(struct work_atoms *atoms,
 889		    char run_state,
 890		    u64 timestamp)
 891{
 892	struct work_atom *atom = zalloc(sizeof(*atom));
 893	if (!atom) {
 894		pr_err("Non memory at %s", __func__);
 895		return -1;
 896	}
 897
 898	atom->sched_out_time = timestamp;
 899
 900	if (run_state == 'R') {
 901		atom->state = THREAD_WAIT_CPU;
 902		atom->wake_up_time = atom->sched_out_time;
 903	}
 904
 905	list_add_tail(&atom->list, &atoms->work_list);
 906	return 0;
 907}
 908
 909static void
 910add_runtime_event(struct work_atoms *atoms, u64 delta,
 911		  u64 timestamp __maybe_unused)
 912{
 913	struct work_atom *atom;
 914
 915	BUG_ON(list_empty(&atoms->work_list));
 916
 917	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
 918
 919	atom->runtime += delta;
 920	atoms->total_runtime += delta;
 921}
 922
 923static void
 924add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
 925{
 926	struct work_atom *atom;
 927	u64 delta;
 928
 929	if (list_empty(&atoms->work_list))
 930		return;
 931
 932	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
 933
 934	if (atom->state != THREAD_WAIT_CPU)
 935		return;
 936
 937	if (timestamp < atom->wake_up_time) {
 938		atom->state = THREAD_IGNORE;
 939		return;
 940	}
 941
 942	atom->state = THREAD_SCHED_IN;
 943	atom->sched_in_time = timestamp;
 944
 945	delta = atom->sched_in_time - atom->wake_up_time;
 946	atoms->total_lat += delta;
 947	if (delta > atoms->max_lat) {
 948		atoms->max_lat = delta;
 949		atoms->max_lat_at = timestamp;
 950	}
 951	atoms->nb_atoms++;
 952}
 953
 954static int latency_switch_event(struct perf_sched *sched,
 955				struct perf_evsel *evsel,
 956				struct perf_sample *sample,
 957				struct machine *machine)
 958{
 959	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 960		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 961	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 962	struct work_atoms *out_events, *in_events;
 963	struct thread *sched_out, *sched_in;
 964	u64 timestamp0, timestamp = sample->time;
 965	int cpu = sample->cpu, err = -1;
 966	s64 delta;
 967
 968	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
 969
 970	timestamp0 = sched->cpu_last_switched[cpu];
 971	sched->cpu_last_switched[cpu] = timestamp;
 972	if (timestamp0)
 973		delta = timestamp - timestamp0;
 974	else
 975		delta = 0;
 976
 977	if (delta < 0) {
 978		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 979		return -1;
 980	}
 981
 982	sched_out = machine__findnew_thread(machine, -1, prev_pid);
 983	sched_in = machine__findnew_thread(machine, -1, next_pid);
 984	if (sched_out == NULL || sched_in == NULL)
 985		goto out_put;
 986
 987	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
 988	if (!out_events) {
 989		if (thread_atoms_insert(sched, sched_out))
 990			goto out_put;
 991		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
 992		if (!out_events) {
 993			pr_err("out-event: Internal tree error");
 994			goto out_put;
 995		}
 996	}
 997	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
 998		return -1;
 999
1000	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1001	if (!in_events) {
1002		if (thread_atoms_insert(sched, sched_in))
1003			goto out_put;
1004		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1005		if (!in_events) {
1006			pr_err("in-event: Internal tree error");
1007			goto out_put;
1008		}
1009		/*
1010		 * Take came in we have not heard about yet,
1011		 * add in an initial atom in runnable state:
1012		 */
1013		if (add_sched_out_event(in_events, 'R', timestamp))
1014			goto out_put;
1015	}
1016	add_sched_in_event(in_events, timestamp);
1017	err = 0;
1018out_put:
1019	thread__put(sched_out);
1020	thread__put(sched_in);
1021	return err;
1022}
1023
1024static int latency_runtime_event(struct perf_sched *sched,
1025				 struct perf_evsel *evsel,
1026				 struct perf_sample *sample,
1027				 struct machine *machine)
 
 
 
1028{
1029	const u32 pid	   = perf_evsel__intval(evsel, sample, "pid");
1030	const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
1031	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1032	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1033	u64 timestamp = sample->time;
1034	int cpu = sample->cpu, err = -1;
1035
1036	if (thread == NULL)
1037		return -1;
1038
1039	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1040	if (!atoms) {
1041		if (thread_atoms_insert(sched, thread))
1042			goto out_put;
1043		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1044		if (!atoms) {
1045			pr_err("in-event: Internal tree error");
1046			goto out_put;
1047		}
1048		if (add_sched_out_event(atoms, 'R', timestamp))
1049			goto out_put;
1050	}
1051
1052	add_runtime_event(atoms, runtime, timestamp);
1053	err = 0;
1054out_put:
1055	thread__put(thread);
1056	return err;
1057}
1058
1059static int latency_wakeup_event(struct perf_sched *sched,
1060				struct perf_evsel *evsel,
1061				struct perf_sample *sample,
1062				struct machine *machine)
 
 
 
1063{
1064	const u32 pid	  = perf_evsel__intval(evsel, sample, "pid");
1065	struct work_atoms *atoms;
1066	struct work_atom *atom;
1067	struct thread *wakee;
1068	u64 timestamp = sample->time;
1069	int err = -1;
1070
1071	wakee = machine__findnew_thread(machine, -1, pid);
1072	if (wakee == NULL)
1073		return -1;
1074	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
 
 
1075	if (!atoms) {
1076		if (thread_atoms_insert(sched, wakee))
1077			goto out_put;
1078		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1079		if (!atoms) {
1080			pr_err("wakeup-event: Internal tree error");
1081			goto out_put;
1082		}
1083		if (add_sched_out_event(atoms, 'S', timestamp))
1084			goto out_put;
1085	}
1086
1087	BUG_ON(list_empty(&atoms->work_list));
1088
1089	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1090
1091	/*
1092	 * As we do not guarantee the wakeup event happens when
1093	 * task is out of run queue, also may happen when task is
1094	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1095	 * then we should not set the ->wake_up_time when wake up a
1096	 * task which is on run queue.
1097	 *
1098	 * You WILL be missing events if you've recorded only
1099	 * one CPU, or are only looking at only one, so don't
1100	 * skip in this case.
1101	 */
1102	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1103		goto out_ok;
1104
1105	sched->nr_timestamps++;
1106	if (atom->sched_out_time > timestamp) {
1107		sched->nr_unordered_timestamps++;
1108		goto out_ok;
1109	}
1110
1111	atom->state = THREAD_WAIT_CPU;
1112	atom->wake_up_time = timestamp;
1113out_ok:
1114	err = 0;
1115out_put:
1116	thread__put(wakee);
1117	return err;
1118}
1119
1120static int latency_migrate_task_event(struct perf_sched *sched,
1121				      struct perf_evsel *evsel,
1122				      struct perf_sample *sample,
1123				      struct machine *machine)
 
 
 
1124{
1125	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1126	u64 timestamp = sample->time;
1127	struct work_atoms *atoms;
1128	struct work_atom *atom;
1129	struct thread *migrant;
1130	int err = -1;
1131
1132	/*
1133	 * Only need to worry about migration when profiling one CPU.
1134	 */
1135	if (sched->profile_cpu == -1)
1136		return 0;
1137
1138	migrant = machine__findnew_thread(machine, -1, pid);
1139	if (migrant == NULL)
1140		return -1;
1141	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1142	if (!atoms) {
1143		if (thread_atoms_insert(sched, migrant))
1144			goto out_put;
1145		register_pid(sched, migrant->tid, thread__comm_str(migrant));
1146		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1147		if (!atoms) {
1148			pr_err("migration-event: Internal tree error");
1149			goto out_put;
1150		}
1151		if (add_sched_out_event(atoms, 'R', timestamp))
1152			goto out_put;
1153	}
1154
1155	BUG_ON(list_empty(&atoms->work_list));
1156
1157	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1158	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1159
1160	sched->nr_timestamps++;
1161
1162	if (atom->sched_out_time > timestamp)
1163		sched->nr_unordered_timestamps++;
1164	err = 0;
1165out_put:
1166	thread__put(migrant);
1167	return err;
1168}
1169
1170static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
 
 
 
 
 
 
 
 
1171{
1172	int i;
1173	int ret;
1174	u64 avg;
1175
1176	if (!work_list->nb_atoms)
1177		return;
1178	/*
1179	 * Ignore idle threads:
1180	 */
1181	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1182		return;
1183
1184	sched->all_runtime += work_list->total_runtime;
1185	sched->all_count   += work_list->nb_atoms;
1186
1187	if (work_list->num_merged > 1)
1188		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1189	else
1190		ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1191
1192	for (i = 0; i < 24 - ret; i++)
1193		printf(" ");
1194
1195	avg = work_list->total_lat / work_list->nb_atoms;
1196
1197	printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
1198	      (double)work_list->total_runtime / 1e6,
1199		 work_list->nb_atoms, (double)avg / 1e6,
1200		 (double)work_list->max_lat / 1e6,
1201		 (double)work_list->max_lat_at / 1e9);
1202}
1203
1204static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1205{
1206	if (l->thread == r->thread)
1207		return 0;
1208	if (l->thread->tid < r->thread->tid)
1209		return -1;
1210	if (l->thread->tid > r->thread->tid)
1211		return 1;
1212	return (int)(l->thread - r->thread);
 
1213}
1214
 
 
 
 
 
1215static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1216{
1217	u64 avgl, avgr;
1218
1219	if (!l->nb_atoms)
1220		return -1;
1221
1222	if (!r->nb_atoms)
1223		return 1;
1224
1225	avgl = l->total_lat / l->nb_atoms;
1226	avgr = r->total_lat / r->nb_atoms;
1227
1228	if (avgl < avgr)
1229		return -1;
1230	if (avgl > avgr)
1231		return 1;
1232
1233	return 0;
1234}
1235
 
 
 
 
 
1236static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1237{
1238	if (l->max_lat < r->max_lat)
1239		return -1;
1240	if (l->max_lat > r->max_lat)
1241		return 1;
1242
1243	return 0;
1244}
1245
 
 
 
 
 
1246static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1247{
1248	if (l->nb_atoms < r->nb_atoms)
1249		return -1;
1250	if (l->nb_atoms > r->nb_atoms)
1251		return 1;
1252
1253	return 0;
1254}
1255
 
 
 
 
 
1256static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1257{
1258	if (l->total_runtime < r->total_runtime)
1259		return -1;
1260	if (l->total_runtime > r->total_runtime)
1261		return 1;
1262
1263	return 0;
1264}
1265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1266static int sort_dimension__add(const char *tok, struct list_head *list)
1267{
1268	size_t i;
1269	static struct sort_dimension avg_sort_dimension = {
1270		.name = "avg",
1271		.cmp  = avg_cmp,
1272	};
1273	static struct sort_dimension max_sort_dimension = {
1274		.name = "max",
1275		.cmp  = max_cmp,
1276	};
1277	static struct sort_dimension pid_sort_dimension = {
1278		.name = "pid",
1279		.cmp  = pid_cmp,
1280	};
1281	static struct sort_dimension runtime_sort_dimension = {
1282		.name = "runtime",
1283		.cmp  = runtime_cmp,
1284	};
1285	static struct sort_dimension switch_sort_dimension = {
1286		.name = "switch",
1287		.cmp  = switch_cmp,
1288	};
1289	struct sort_dimension *available_sorts[] = {
1290		&pid_sort_dimension,
1291		&avg_sort_dimension,
1292		&max_sort_dimension,
1293		&switch_sort_dimension,
1294		&runtime_sort_dimension,
1295	};
1296
1297	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1298		if (!strcmp(available_sorts[i]->name, tok)) {
1299			list_add_tail(&available_sorts[i]->list, list);
1300
1301			return 0;
1302		}
1303	}
1304
1305	return -1;
1306}
1307
1308static void perf_sched__sort_lat(struct perf_sched *sched)
 
 
1309{
1310	struct rb_node *node;
1311	struct rb_root *root = &sched->atom_root;
1312again:
1313	for (;;) {
1314		struct work_atoms *data;
1315		node = rb_first(root);
1316		if (!node)
1317			break;
1318
1319		rb_erase(node, root);
1320		data = rb_entry(node, struct work_atoms, node);
1321		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1322	}
1323	if (root == &sched->atom_root) {
1324		root = &sched->merged_atom_root;
1325		goto again;
1326	}
1327}
1328
1329static int process_sched_wakeup_event(struct perf_tool *tool,
1330				      struct perf_evsel *evsel,
1331				      struct perf_sample *sample,
1332				      struct machine *machine)
1333{
1334	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1335
1336	if (sched->tp_handler->wakeup_event)
1337		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1338
1339	return 0;
1340}
1341
1342static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1343			    struct perf_sample *sample, struct machine *machine)
 
 
 
 
 
1344{
1345	const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1346	struct thread *sched_in;
1347	int new_shortname;
1348	u64 timestamp0, timestamp = sample->time;
1349	s64 delta;
1350	int cpu, this_cpu = sample->cpu;
1351
1352	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1353
1354	if (this_cpu > sched->max_cpu)
1355		sched->max_cpu = this_cpu;
1356
1357	timestamp0 = sched->cpu_last_switched[this_cpu];
1358	sched->cpu_last_switched[this_cpu] = timestamp;
1359	if (timestamp0)
1360		delta = timestamp - timestamp0;
1361	else
1362		delta = 0;
1363
1364	if (delta < 0) {
1365		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1366		return -1;
1367	}
1368
1369	sched_in = machine__findnew_thread(machine, -1, next_pid);
1370	if (sched_in == NULL)
1371		return -1;
1372
1373	sched->curr_thread[this_cpu] = thread__get(sched_in);
1374
1375	printf("  ");
1376
1377	new_shortname = 0;
1378	if (!sched_in->shortname[0]) {
1379		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1380			/*
1381			 * Don't allocate a letter-number for swapper:0
1382			 * as a shortname. Instead, we use '.' for it.
1383			 */
1384			sched_in->shortname[0] = '.';
1385			sched_in->shortname[1] = ' ';
1386		} else {
1387			sched_in->shortname[0] = sched->next_shortname1;
1388			sched_in->shortname[1] = sched->next_shortname2;
1389
1390			if (sched->next_shortname1 < 'Z') {
1391				sched->next_shortname1++;
1392			} else {
1393				sched->next_shortname1 = 'A';
1394				if (sched->next_shortname2 < '9')
1395					sched->next_shortname2++;
1396				else
1397					sched->next_shortname2 = '0';
1398			}
1399		}
1400		new_shortname = 1;
1401	}
1402
1403	for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1404		if (cpu != this_cpu)
1405			printf(" ");
1406		else
1407			printf("*");
1408
1409		if (sched->curr_thread[cpu])
1410			printf("%2s ", sched->curr_thread[cpu]->shortname);
1411		else
 
 
 
1412			printf("   ");
1413	}
1414
1415	printf("  %12.6f secs ", (double)timestamp/1e9);
1416	if (new_shortname) {
1417		printf("%s => %s:%d\n",
1418		       sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1419	} else {
1420		printf("\n");
1421	}
1422
1423	thread__put(sched_in);
1424
1425	return 0;
1426}
1427
1428static int process_sched_switch_event(struct perf_tool *tool,
1429				      struct perf_evsel *evsel,
1430				      struct perf_sample *sample,
1431				      struct machine *machine)
1432{
1433	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1434	int this_cpu = sample->cpu, err = 0;
1435	u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1436	    next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 
 
 
 
 
 
 
 
 
 
 
1437
1438	if (sched->curr_pid[this_cpu] != (u32)-1) {
1439		/*
1440		 * Are we trying to switch away a PID that is
1441		 * not current?
1442		 */
1443		if (sched->curr_pid[this_cpu] != prev_pid)
1444			sched->nr_context_switch_bugs++;
1445	}
 
 
 
1446
1447	if (sched->tp_handler->switch_event)
1448		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1449
1450	sched->curr_pid[this_cpu] = next_pid;
1451	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1452}
1453
1454static int process_sched_runtime_event(struct perf_tool *tool,
1455				       struct perf_evsel *evsel,
1456				       struct perf_sample *sample,
1457				       struct machine *machine)
1458{
1459	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1460
1461	if (sched->tp_handler->runtime_event)
1462		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1463
1464	return 0;
 
 
 
 
 
 
 
 
 
1465}
1466
1467static int perf_sched__process_fork_event(struct perf_tool *tool,
1468					  union perf_event *event,
1469					  struct perf_sample *sample,
1470					  struct machine *machine)
1471{
1472	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1473
1474	/* run the fork event through the perf machineruy */
1475	perf_event__process_fork(tool, event, sample, machine);
1476
1477	/* and then run additional processing needed for this command */
1478	if (sched->tp_handler->fork_event)
1479		return sched->tp_handler->fork_event(sched, event, machine);
1480
1481	return 0;
1482}
1483
1484static int process_sched_migrate_task_event(struct perf_tool *tool,
1485					    struct perf_evsel *evsel,
1486					    struct perf_sample *sample,
1487					    struct machine *machine)
 
 
1488{
1489	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
 
1490
1491	if (sched->tp_handler->migrate_task_event)
1492		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1493
1494	return 0;
 
 
 
 
 
 
 
 
1495}
1496
1497typedef int (*tracepoint_handler)(struct perf_tool *tool,
1498				  struct perf_evsel *evsel,
1499				  struct perf_sample *sample,
1500				  struct machine *machine);
1501
1502static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1503						 union perf_event *event __maybe_unused,
1504						 struct perf_sample *sample,
1505						 struct perf_evsel *evsel,
1506						 struct machine *machine)
1507{
1508	int err = 0;
 
 
 
 
 
 
1509
1510	if (evsel->handler != NULL) {
1511		tracepoint_handler f = evsel->handler;
1512		err = f(tool, evsel, sample, machine);
 
 
 
 
 
 
 
1513	}
1514
1515	return err;
1516}
1517
1518static int perf_sched__read_events(struct perf_sched *sched)
 
 
 
 
 
 
 
 
1519{
 
1520	const struct perf_evsel_str_handler handlers[] = {
1521		{ "sched:sched_switch",	      process_sched_switch_event, },
1522		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1523		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1524		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
 
 
1525		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1526	};
1527	struct perf_session *session;
1528	struct perf_data_file file = {
1529		.path = input_name,
1530		.mode = PERF_DATA_MODE_READ,
1531		.force = sched->force,
1532	};
1533	int rc = -1;
1534
1535	session = perf_session__new(&file, false, &sched->tool);
1536	if (session == NULL) {
1537		pr_debug("No Memory for session\n");
1538		return -1;
1539	}
1540
1541	symbol__init(&session->header.env);
1542
1543	if (perf_session__set_tracepoints_handlers(session, handlers))
1544		goto out_delete;
1545
1546	if (perf_session__has_traces(session, "record -R")) {
1547		int err = perf_session__process_events(session);
1548		if (err) {
1549			pr_err("Failed to process events, error %d", err);
1550			goto out_delete;
1551		}
1552
1553		sched->nr_events      = session->evlist->stats.nr_events[0];
1554		sched->nr_lost_events = session->evlist->stats.total_lost;
1555		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1556	}
1557
1558	rc = 0;
1559out_delete:
1560	perf_session__delete(session);
1561	return rc;
 
1562}
1563
1564static void print_bad_events(struct perf_sched *sched)
1565{
1566	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1567		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1568			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1569			sched->nr_unordered_timestamps, sched->nr_timestamps);
1570	}
1571	if (sched->nr_lost_events && sched->nr_events) {
1572		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1573			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1574			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1575	}
1576	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
 
 
 
 
 
 
 
 
1577		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1578			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1579			sched->nr_context_switch_bugs, sched->nr_timestamps);
1580		if (sched->nr_lost_events)
1581			printf(" (due to lost events?)");
1582		printf("\n");
1583	}
1584}
1585
1586static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
1587{
1588	struct rb_node **new = &(root->rb_node), *parent = NULL;
1589	struct work_atoms *this;
1590	const char *comm = thread__comm_str(data->thread), *this_comm;
1591
1592	while (*new) {
1593		int cmp;
1594
1595		this = container_of(*new, struct work_atoms, node);
1596		parent = *new;
1597
1598		this_comm = thread__comm_str(this->thread);
1599		cmp = strcmp(comm, this_comm);
1600		if (cmp > 0) {
1601			new = &((*new)->rb_left);
1602		} else if (cmp < 0) {
1603			new = &((*new)->rb_right);
1604		} else {
1605			this->num_merged++;
1606			this->total_runtime += data->total_runtime;
1607			this->nb_atoms += data->nb_atoms;
1608			this->total_lat += data->total_lat;
1609			list_splice(&data->work_list, &this->work_list);
1610			if (this->max_lat < data->max_lat) {
1611				this->max_lat = data->max_lat;
1612				this->max_lat_at = data->max_lat_at;
1613			}
1614			zfree(&data);
1615			return;
1616		}
1617	}
1618
1619	data->num_merged++;
1620	rb_link_node(&data->node, parent, new);
1621	rb_insert_color(&data->node, root);
1622}
1623
1624static void perf_sched__merge_lat(struct perf_sched *sched)
1625{
1626	struct work_atoms *data;
1627	struct rb_node *node;
1628
1629	if (sched->skip_merge)
1630		return;
1631
1632	while ((node = rb_first(&sched->atom_root))) {
1633		rb_erase(node, &sched->atom_root);
1634		data = rb_entry(node, struct work_atoms, node);
1635		__merge_work_atoms(&sched->merged_atom_root, data);
1636	}
1637}
1638
1639static int perf_sched__lat(struct perf_sched *sched)
1640{
1641	struct rb_node *next;
 
1642
1643	setup_pager();
 
 
1644
1645	if (perf_sched__read_events(sched))
1646		return -1;
1647
1648	perf_sched__merge_lat(sched);
1649	perf_sched__sort_lat(sched);
1650
1651	printf("\n -----------------------------------------------------------------------------------------------------------------\n");
1652	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
1653	printf(" -----------------------------------------------------------------------------------------------------------------\n");
1654
1655	next = rb_first(&sched->sorted_atom_root);
1656
1657	while (next) {
1658		struct work_atoms *work_list;
1659
1660		work_list = rb_entry(next, struct work_atoms, node);
1661		output_lat_thread(sched, work_list);
1662		next = rb_next(next);
1663		thread__zput(work_list->thread);
1664	}
1665
1666	printf(" -----------------------------------------------------------------------------------------------------------------\n");
1667	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
1668		(double)sched->all_runtime / 1e6, sched->all_count);
1669
1670	printf(" ---------------------------------------------------\n");
1671
1672	print_bad_events(sched);
1673	printf("\n");
1674
1675	return 0;
1676}
1677
1678static int perf_sched__map(struct perf_sched *sched)
 
 
 
 
 
 
 
1679{
1680	sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1681
1682	setup_pager();
1683	if (perf_sched__read_events(sched))
1684		return -1;
1685	print_bad_events(sched);
1686	return 0;
1687}
1688
1689static int perf_sched__replay(struct perf_sched *sched)
1690{
1691	unsigned long i;
1692
1693	calibrate_run_measurement_overhead(sched);
1694	calibrate_sleep_measurement_overhead(sched);
1695
1696	test_calibrations(sched);
1697
1698	if (perf_sched__read_events(sched))
1699		return -1;
1700
1701	printf("nr_run_events:        %ld\n", sched->nr_run_events);
1702	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
1703	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
1704
1705	if (sched->targetless_wakeups)
1706		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
1707	if (sched->multitarget_wakeups)
1708		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1709	if (sched->nr_run_events_optimized)
1710		printf("run atoms optimized: %ld\n",
1711			sched->nr_run_events_optimized);
1712
1713	print_task_traces(sched);
1714	add_cross_task_wakeups(sched);
1715
1716	create_tasks(sched);
1717	printf("------------------------------------------------------------\n");
1718	for (i = 0; i < sched->replay_repeat; i++)
1719		run_one_test(sched);
 
 
 
 
 
 
 
1720
1721	return 0;
1722}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1723
1724static void setup_sorting(struct perf_sched *sched, const struct option *options,
1725			  const char * const usage_msg[])
1726{
1727	char *tmp, *tok, *str = strdup(sched->sort_order);
1728
1729	for (tok = strtok_r(str, ", ", &tmp);
1730			tok; tok = strtok_r(NULL, ", ", &tmp)) {
1731		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1732			usage_with_options_msg(usage_msg, options,
1733					"Unknown --sort key: `%s'", tok);
1734		}
1735	}
1736
1737	free(str);
1738
1739	sort_dimension__add("pid", &sched->cmp_pid);
1740}
1741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1742static int __cmd_record(int argc, const char **argv)
1743{
1744	unsigned int rec_argc, i, j;
1745	const char **rec_argv;
1746	const char * const record_args[] = {
1747		"record",
1748		"-a",
1749		"-R",
1750		"-m", "1024",
1751		"-c", "1",
1752		"-e", "sched:sched_switch",
1753		"-e", "sched:sched_stat_wait",
1754		"-e", "sched:sched_stat_sleep",
1755		"-e", "sched:sched_stat_iowait",
1756		"-e", "sched:sched_stat_runtime",
1757		"-e", "sched:sched_process_fork",
1758		"-e", "sched:sched_wakeup",
1759		"-e", "sched:sched_wakeup_new",
1760		"-e", "sched:sched_migrate_task",
1761	};
1762
1763	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1764	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1765
1766	if (rec_argv == NULL)
1767		return -ENOMEM;
1768
1769	for (i = 0; i < ARRAY_SIZE(record_args); i++)
1770		rec_argv[i] = strdup(record_args[i]);
1771
1772	for (j = 1; j < (unsigned int)argc; j++, i++)
1773		rec_argv[i] = argv[j];
1774
1775	BUG_ON(i != rec_argc);
1776
1777	return cmd_record(i, rec_argv, NULL);
1778}
1779
1780int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1781{
1782	const char default_sort_order[] = "avg, max, switch, runtime";
1783	struct perf_sched sched = {
1784		.tool = {
1785			.sample		 = perf_sched__process_tracepoint_sample,
1786			.comm		 = perf_event__process_comm,
1787			.lost		 = perf_event__process_lost,
1788			.fork		 = perf_sched__process_fork_event,
1789			.ordered_events = true,
1790		},
1791		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
1792		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
1793		.start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
1794		.work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1795		.sort_order	      = default_sort_order,
1796		.replay_repeat	      = 10,
1797		.profile_cpu	      = -1,
1798		.next_shortname1      = 'A',
1799		.next_shortname2      = '0',
1800		.skip_merge           = 0,
1801	};
1802	const struct option latency_options[] = {
1803	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1804		   "sort by key(s): runtime, switch, avg, max"),
1805	OPT_INCR('v', "verbose", &verbose,
1806		    "be more verbose (show symbol address, etc)"),
1807	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1808		    "CPU to profile on"),
1809	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1810		    "dump raw trace in ASCII"),
1811	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
1812		    "latency stats per pid instead of per comm"),
1813	OPT_END()
1814	};
1815	const struct option replay_options[] = {
1816	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1817		     "repeat the workload replay N times (-1: infinite)"),
1818	OPT_INCR('v', "verbose", &verbose,
1819		    "be more verbose (show symbol address, etc)"),
1820	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1821		    "dump raw trace in ASCII"),
1822	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
1823	OPT_END()
1824	};
1825	const struct option sched_options[] = {
1826	OPT_STRING('i', "input", &input_name, "file",
1827		    "input file name"),
1828	OPT_INCR('v', "verbose", &verbose,
1829		    "be more verbose (show symbol address, etc)"),
1830	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1831		    "dump raw trace in ASCII"),
1832	OPT_END()
1833	};
1834	const char * const latency_usage[] = {
1835		"perf sched latency [<options>]",
1836		NULL
1837	};
1838	const char * const replay_usage[] = {
1839		"perf sched replay [<options>]",
1840		NULL
1841	};
1842	const char *const sched_subcommands[] = { "record", "latency", "map",
1843						  "replay", "script", NULL };
1844	const char *sched_usage[] = {
1845		NULL,
1846		NULL
1847	};
1848	struct trace_sched_handler lat_ops  = {
1849		.wakeup_event	    = latency_wakeup_event,
1850		.switch_event	    = latency_switch_event,
1851		.runtime_event	    = latency_runtime_event,
1852		.migrate_task_event = latency_migrate_task_event,
1853	};
1854	struct trace_sched_handler map_ops  = {
1855		.switch_event	    = map_switch_event,
1856	};
1857	struct trace_sched_handler replay_ops  = {
1858		.wakeup_event	    = replay_wakeup_event,
1859		.switch_event	    = replay_switch_event,
1860		.fork_event	    = replay_fork_event,
1861	};
1862	unsigned int i;
1863
1864	for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
1865		sched.curr_pid[i] = -1;
1866
1867	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
1868					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1869	if (!argc)
1870		usage_with_options(sched_usage, sched_options);
1871
1872	/*
1873	 * Aliased to 'perf script' for now:
1874	 */
1875	if (!strcmp(argv[0], "script"))
1876		return cmd_script(argc, argv, prefix);
1877
 
1878	if (!strncmp(argv[0], "rec", 3)) {
1879		return __cmd_record(argc, argv);
1880	} else if (!strncmp(argv[0], "lat", 3)) {
1881		sched.tp_handler = &lat_ops;
1882		if (argc > 1) {
1883			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1884			if (argc)
1885				usage_with_options(latency_usage, latency_options);
1886		}
1887		setup_sorting(&sched, latency_options, latency_usage);
1888		return perf_sched__lat(&sched);
1889	} else if (!strcmp(argv[0], "map")) {
1890		sched.tp_handler = &map_ops;
1891		setup_sorting(&sched, latency_options, latency_usage);
1892		return perf_sched__map(&sched);
1893	} else if (!strncmp(argv[0], "rep", 3)) {
1894		sched.tp_handler = &replay_ops;
1895		if (argc) {
1896			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1897			if (argc)
1898				usage_with_options(replay_usage, replay_options);
1899		}
1900		return perf_sched__replay(&sched);
1901	} else {
1902		usage_with_options(sched_usage, sched_options);
1903	}
1904
1905	return 0;
1906}