Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *		Jorge Cwik, <jorge@laser.satlink.net>
  19 */
  20
  21/*
  22 * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
  23 *				:	Fragmentation on mtu decrease
  24 *				:	Segment collapse on retransmit
  25 *				:	AF independence
  26 *
  27 *		Linus Torvalds	:	send_delayed_ack
  28 *		David S. Miller	:	Charge memory using the right skb
  29 *					during syn/ack processing.
  30 *		David S. Miller :	Output engine completely rewritten.
  31 *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
  32 *		Cacophonix Gaul :	draft-minshall-nagle-01
  33 *		J Hadi Salim	:	ECN support
  34 *
  35 */
  36
  37#define pr_fmt(fmt) "TCP: " fmt
  38
  39#include <net/tcp.h>
  40
  41#include <linux/compiler.h>
  42#include <linux/gfp.h>
  43#include <linux/module.h>
  44
  45/* People can turn this off for buggy TCP's found in printers etc. */
  46int sysctl_tcp_retrans_collapse __read_mostly = 1;
  47
  48/* People can turn this on to work with those rare, broken TCPs that
  49 * interpret the window field as a signed quantity.
  50 */
  51int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
  52
 
 
 
  53/* This limits the percentage of the congestion window which we
  54 * will allow a single TSO frame to consume.  Building TSO frames
  55 * which are too large can cause TCP streams to be bursty.
  56 */
  57int sysctl_tcp_tso_win_divisor __read_mostly = 3;
  58
  59int sysctl_tcp_mtu_probing __read_mostly = 0;
  60int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
  61
  62/* By default, RFC2861 behavior.  */
  63int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
  64
  65int sysctl_tcp_cookie_size __read_mostly = 0; /* TCP_COOKIE_MAX */
  66EXPORT_SYMBOL_GPL(sysctl_tcp_cookie_size);
  67
  68
  69/* Account for new data that has been sent to the network. */
  70static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
  71{
 
  72	struct tcp_sock *tp = tcp_sk(sk);
  73	unsigned int prior_packets = tp->packets_out;
  74
  75	tcp_advance_send_head(sk, skb);
  76	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
  77
  78	/* Don't override Nagle indefinitely with F-RTO */
  79	if (tp->frto_counter == 2)
  80		tp->frto_counter = 3;
  81
  82	tp->packets_out += tcp_skb_pcount(skb);
  83	if (!prior_packets || tp->early_retrans_delayed)
 
  84		tcp_rearm_rto(sk);
 
 
 
 
  85}
  86
  87/* SND.NXT, if window was not shrunk.
  88 * If window has been shrunk, what should we make? It is not clear at all.
  89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
  90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
  91 * invalid. OK, let's make this for now:
  92 */
  93static inline __u32 tcp_acceptable_seq(const struct sock *sk)
  94{
  95	const struct tcp_sock *tp = tcp_sk(sk);
  96
  97	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
  98		return tp->snd_nxt;
  99	else
 100		return tcp_wnd_end(tp);
 101}
 102
 103/* Calculate mss to advertise in SYN segment.
 104 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
 105 *
 106 * 1. It is independent of path mtu.
 107 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
 108 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
 109 *    attached devices, because some buggy hosts are confused by
 110 *    large MSS.
 111 * 4. We do not make 3, we advertise MSS, calculated from first
 112 *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
 113 *    This may be overridden via information stored in routing table.
 114 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
 115 *    probably even Jumbo".
 116 */
 117static __u16 tcp_advertise_mss(struct sock *sk)
 118{
 119	struct tcp_sock *tp = tcp_sk(sk);
 120	const struct dst_entry *dst = __sk_dst_get(sk);
 121	int mss = tp->advmss;
 122
 123	if (dst) {
 124		unsigned int metric = dst_metric_advmss(dst);
 125
 126		if (metric < mss) {
 127			mss = metric;
 128			tp->advmss = mss;
 129		}
 130	}
 131
 132	return (__u16)mss;
 133}
 134
 135/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
 136 * This is the first part of cwnd validation mechanism. */
 137static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
 
 138{
 139	struct tcp_sock *tp = tcp_sk(sk);
 140	s32 delta = tcp_time_stamp - tp->lsndtime;
 141	u32 restart_cwnd = tcp_init_cwnd(tp, dst);
 142	u32 cwnd = tp->snd_cwnd;
 143
 144	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
 145
 146	tp->snd_ssthresh = tcp_current_ssthresh(sk);
 147	restart_cwnd = min(restart_cwnd, cwnd);
 148
 149	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
 150		cwnd >>= 1;
 151	tp->snd_cwnd = max(cwnd, restart_cwnd);
 152	tp->snd_cwnd_stamp = tcp_time_stamp;
 153	tp->snd_cwnd_used = 0;
 154}
 155
 156/* Congestion state accounting after a packet has been sent. */
 157static void tcp_event_data_sent(struct tcp_sock *tp,
 158				struct sock *sk)
 159{
 160	struct inet_connection_sock *icsk = inet_csk(sk);
 161	const u32 now = tcp_time_stamp;
 162
 163	if (sysctl_tcp_slow_start_after_idle &&
 164	    (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
 165		tcp_cwnd_restart(sk, __sk_dst_get(sk));
 166
 167	tp->lsndtime = now;
 168
 169	/* If it is a reply for ato after last received
 170	 * packet, enter pingpong mode.
 171	 */
 172	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
 173		icsk->icsk_ack.pingpong = 1;
 174}
 175
 176/* Account for an ACK we sent. */
 177static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
 178{
 179	tcp_dec_quickack_mode(sk, pkts);
 180	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
 181}
 182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 183/* Determine a window scaling and initial window to offer.
 184 * Based on the assumption that the given amount of space
 185 * will be offered. Store the results in the tp structure.
 186 * NOTE: for smooth operation initial space offering should
 187 * be a multiple of mss if possible. We assume here that mss >= 1.
 188 * This MUST be enforced by all callers.
 189 */
 190void tcp_select_initial_window(int __space, __u32 mss,
 191			       __u32 *rcv_wnd, __u32 *window_clamp,
 192			       int wscale_ok, __u8 *rcv_wscale,
 193			       __u32 init_rcv_wnd)
 194{
 195	unsigned int space = (__space < 0 ? 0 : __space);
 196
 197	/* If no clamp set the clamp to the max possible scaled window */
 198	if (*window_clamp == 0)
 199		(*window_clamp) = (65535 << 14);
 200	space = min(*window_clamp, space);
 201
 202	/* Quantize space offering to a multiple of mss if possible. */
 203	if (space > mss)
 204		space = (space / mss) * mss;
 205
 206	/* NOTE: offering an initial window larger than 32767
 207	 * will break some buggy TCP stacks. If the admin tells us
 208	 * it is likely we could be speaking with such a buggy stack
 209	 * we will truncate our initial window offering to 32K-1
 210	 * unless the remote has sent us a window scaling option,
 211	 * which we interpret as a sign the remote TCP is not
 212	 * misinterpreting the window field as a signed quantity.
 213	 */
 214	if (sysctl_tcp_workaround_signed_windows)
 215		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
 216	else
 217		(*rcv_wnd) = space;
 218
 219	(*rcv_wscale) = 0;
 220	if (wscale_ok) {
 221		/* Set window scaling on max possible window
 222		 * See RFC1323 for an explanation of the limit to 14
 223		 */
 224		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
 225		space = min_t(u32, space, *window_clamp);
 226		while (space > 65535 && (*rcv_wscale) < 14) {
 227			space >>= 1;
 228			(*rcv_wscale)++;
 229		}
 230	}
 231
 232	/* Set initial window to a value enough for senders starting with
 233	 * initial congestion window of TCP_DEFAULT_INIT_RCVWND. Place
 234	 * a limit on the initial window when mss is larger than 1460.
 235	 */
 236	if (mss > (1 << *rcv_wscale)) {
 237		int init_cwnd = TCP_DEFAULT_INIT_RCVWND;
 238		if (mss > 1460)
 239			init_cwnd =
 240			max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
 241		/* when initializing use the value from init_rcv_wnd
 242		 * rather than the default from above
 243		 */
 244		if (init_rcv_wnd)
 245			*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
 246		else
 247			*rcv_wnd = min(*rcv_wnd, init_cwnd * mss);
 248	}
 249
 250	/* Set the clamp no higher than max representable value */
 251	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
 252}
 253EXPORT_SYMBOL(tcp_select_initial_window);
 254
 255/* Chose a new window to advertise, update state in tcp_sock for the
 256 * socket, and return result with RFC1323 scaling applied.  The return
 257 * value can be stuffed directly into th->window for an outgoing
 258 * frame.
 259 */
 260static u16 tcp_select_window(struct sock *sk)
 261{
 262	struct tcp_sock *tp = tcp_sk(sk);
 
 263	u32 cur_win = tcp_receive_window(tp);
 264	u32 new_win = __tcp_select_window(sk);
 265
 266	/* Never shrink the offered window */
 267	if (new_win < cur_win) {
 268		/* Danger Will Robinson!
 269		 * Don't update rcv_wup/rcv_wnd here or else
 270		 * we will not be able to advertise a zero
 271		 * window in time.  --DaveM
 272		 *
 273		 * Relax Will Robinson.
 274		 */
 
 
 
 275		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
 276	}
 277	tp->rcv_wnd = new_win;
 278	tp->rcv_wup = tp->rcv_nxt;
 279
 280	/* Make sure we do not exceed the maximum possible
 281	 * scaled window.
 282	 */
 283	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
 284		new_win = min(new_win, MAX_TCP_WINDOW);
 285	else
 286		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
 287
 288	/* RFC1323 scaling applied */
 289	new_win >>= tp->rx_opt.rcv_wscale;
 290
 291	/* If we advertise zero window, disable fast path. */
 292	if (new_win == 0)
 293		tp->pred_flags = 0;
 
 
 
 
 
 
 294
 295	return new_win;
 296}
 297
 298/* Packet ECN state for a SYN-ACK */
 299static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
 300{
 
 
 301	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
 302	if (!(tp->ecn_flags & TCP_ECN_OK))
 303		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
 
 
 304}
 305
 306/* Packet ECN state for a SYN.  */
 307static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
 308{
 309	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
 
 
 
 
 310
 311	tp->ecn_flags = 0;
 312	if (sysctl_tcp_ecn == 1) {
 
 313		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
 314		tp->ecn_flags = TCP_ECN_OK;
 
 
 315	}
 316}
 317
 318static __inline__ void
 319TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
 
 
 
 
 
 
 
 
 
 320{
 321	if (inet_rsk(req)->ecn_ok)
 322		th->ece = 1;
 323}
 324
 325/* Set up ECN state for a packet on a ESTABLISHED socket that is about to
 326 * be sent.
 327 */
 328static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
 329				int tcp_header_len)
 330{
 331	struct tcp_sock *tp = tcp_sk(sk);
 332
 333	if (tp->ecn_flags & TCP_ECN_OK) {
 334		/* Not-retransmitted data segment: set ECT and inject CWR. */
 335		if (skb->len != tcp_header_len &&
 336		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
 337			INET_ECN_xmit(sk);
 338			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
 339				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
 340				tcp_hdr(skb)->cwr = 1;
 341				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
 342			}
 343		} else {
 344			/* ACK or retransmitted segment: clear ECT|CE */
 345			INET_ECN_dontxmit(sk);
 346		}
 347		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
 348			tcp_hdr(skb)->ece = 1;
 349	}
 350}
 351
 352/* Constructs common control bits of non-data skb. If SYN/FIN is present,
 353 * auto increment end seqno.
 354 */
 355static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
 356{
 357	skb->ip_summed = CHECKSUM_PARTIAL;
 358	skb->csum = 0;
 359
 360	TCP_SKB_CB(skb)->tcp_flags = flags;
 361	TCP_SKB_CB(skb)->sacked = 0;
 362
 363	skb_shinfo(skb)->gso_segs = 1;
 364	skb_shinfo(skb)->gso_size = 0;
 365	skb_shinfo(skb)->gso_type = 0;
 366
 367	TCP_SKB_CB(skb)->seq = seq;
 368	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
 369		seq++;
 370	TCP_SKB_CB(skb)->end_seq = seq;
 371}
 372
 373static inline bool tcp_urg_mode(const struct tcp_sock *tp)
 374{
 375	return tp->snd_una != tp->snd_up;
 376}
 377
 378#define OPTION_SACK_ADVERTISE	(1 << 0)
 379#define OPTION_TS		(1 << 1)
 380#define OPTION_MD5		(1 << 2)
 381#define OPTION_WSCALE		(1 << 3)
 382#define OPTION_COOKIE_EXTENSION	(1 << 4)
 383
 384struct tcp_out_options {
 385	u8 options;		/* bit field of OPTION_* */
 
 386	u8 ws;			/* window scale, 0 to disable */
 387	u8 num_sack_blocks;	/* number of SACK blocks to include */
 388	u8 hash_size;		/* bytes in hash_location */
 389	u16 mss;		/* 0 to disable */
 390	__u32 tsval, tsecr;	/* need to include OPTION_TS */
 391	__u8 *hash_location;	/* temporary pointer, overloaded */
 
 
 392};
 393
 394/* The sysctl int routines are generic, so check consistency here.
 395 */
 396static u8 tcp_cookie_size_check(u8 desired)
 397{
 398	int cookie_size;
 399
 400	if (desired > 0)
 401		/* previously specified */
 402		return desired;
 403
 404	cookie_size = ACCESS_ONCE(sysctl_tcp_cookie_size);
 405	if (cookie_size <= 0)
 406		/* no default specified */
 407		return 0;
 408
 409	if (cookie_size <= TCP_COOKIE_MIN)
 410		/* value too small, specify minimum */
 411		return TCP_COOKIE_MIN;
 412
 413	if (cookie_size >= TCP_COOKIE_MAX)
 414		/* value too large, specify maximum */
 415		return TCP_COOKIE_MAX;
 416
 417	if (cookie_size & 1)
 418		/* 8-bit multiple, illegal, fix it */
 419		cookie_size++;
 420
 421	return (u8)cookie_size;
 422}
 423
 424/* Write previously computed TCP options to the packet.
 425 *
 426 * Beware: Something in the Internet is very sensitive to the ordering of
 427 * TCP options, we learned this through the hard way, so be careful here.
 428 * Luckily we can at least blame others for their non-compliance but from
 429 * inter-operatibility perspective it seems that we're somewhat stuck with
 430 * the ordering which we have been using if we want to keep working with
 431 * those broken things (not that it currently hurts anybody as there isn't
 432 * particular reason why the ordering would need to be changed).
 433 *
 434 * At least SACK_PERM as the first option is known to lead to a disaster
 435 * (but it may well be that other scenarios fail similarly).
 436 */
 437static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
 438			      struct tcp_out_options *opts)
 439{
 440	u8 options = opts->options;	/* mungable copy */
 441
 442	/* Having both authentication and cookies for security is redundant,
 443	 * and there's certainly not enough room.  Instead, the cookie-less
 444	 * extension variant is proposed.
 445	 *
 446	 * Consider the pessimal case with authentication.  The options
 447	 * could look like:
 448	 *   COOKIE|MD5(20) + MSS(4) + SACK|TS(12) + WSCALE(4) == 40
 449	 */
 450	if (unlikely(OPTION_MD5 & options)) {
 451		if (unlikely(OPTION_COOKIE_EXTENSION & options)) {
 452			*ptr++ = htonl((TCPOPT_COOKIE << 24) |
 453				       (TCPOLEN_COOKIE_BASE << 16) |
 454				       (TCPOPT_MD5SIG << 8) |
 455				       TCPOLEN_MD5SIG);
 456		} else {
 457			*ptr++ = htonl((TCPOPT_NOP << 24) |
 458				       (TCPOPT_NOP << 16) |
 459				       (TCPOPT_MD5SIG << 8) |
 460				       TCPOLEN_MD5SIG);
 461		}
 462		options &= ~OPTION_COOKIE_EXTENSION;
 463		/* overload cookie hash location */
 464		opts->hash_location = (__u8 *)ptr;
 465		ptr += 4;
 466	}
 467
 468	if (unlikely(opts->mss)) {
 469		*ptr++ = htonl((TCPOPT_MSS << 24) |
 470			       (TCPOLEN_MSS << 16) |
 471			       opts->mss);
 472	}
 473
 474	if (likely(OPTION_TS & options)) {
 475		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 476			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
 477				       (TCPOLEN_SACK_PERM << 16) |
 478				       (TCPOPT_TIMESTAMP << 8) |
 479				       TCPOLEN_TIMESTAMP);
 480			options &= ~OPTION_SACK_ADVERTISE;
 481		} else {
 482			*ptr++ = htonl((TCPOPT_NOP << 24) |
 483				       (TCPOPT_NOP << 16) |
 484				       (TCPOPT_TIMESTAMP << 8) |
 485				       TCPOLEN_TIMESTAMP);
 486		}
 487		*ptr++ = htonl(opts->tsval);
 488		*ptr++ = htonl(opts->tsecr);
 489	}
 490
 491	/* Specification requires after timestamp, so do it now.
 492	 *
 493	 * Consider the pessimal case without authentication.  The options
 494	 * could look like:
 495	 *   MSS(4) + SACK|TS(12) + COOKIE(20) + WSCALE(4) == 40
 496	 */
 497	if (unlikely(OPTION_COOKIE_EXTENSION & options)) {
 498		__u8 *cookie_copy = opts->hash_location;
 499		u8 cookie_size = opts->hash_size;
 500
 501		/* 8-bit multiple handled in tcp_cookie_size_check() above,
 502		 * and elsewhere.
 503		 */
 504		if (0x2 & cookie_size) {
 505			__u8 *p = (__u8 *)ptr;
 506
 507			/* 16-bit multiple */
 508			*p++ = TCPOPT_COOKIE;
 509			*p++ = TCPOLEN_COOKIE_BASE + cookie_size;
 510			*p++ = *cookie_copy++;
 511			*p++ = *cookie_copy++;
 512			ptr++;
 513			cookie_size -= 2;
 514		} else {
 515			/* 32-bit multiple */
 516			*ptr++ = htonl(((TCPOPT_NOP << 24) |
 517					(TCPOPT_NOP << 16) |
 518					(TCPOPT_COOKIE << 8) |
 519					TCPOLEN_COOKIE_BASE) +
 520				       cookie_size);
 521		}
 522
 523		if (cookie_size > 0) {
 524			memcpy(ptr, cookie_copy, cookie_size);
 525			ptr += (cookie_size / 4);
 526		}
 527	}
 528
 529	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 530		*ptr++ = htonl((TCPOPT_NOP << 24) |
 531			       (TCPOPT_NOP << 16) |
 532			       (TCPOPT_SACK_PERM << 8) |
 533			       TCPOLEN_SACK_PERM);
 534	}
 535
 536	if (unlikely(OPTION_WSCALE & options)) {
 537		*ptr++ = htonl((TCPOPT_NOP << 24) |
 538			       (TCPOPT_WINDOW << 16) |
 539			       (TCPOLEN_WINDOW << 8) |
 540			       opts->ws);
 541	}
 542
 543	if (unlikely(opts->num_sack_blocks)) {
 544		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
 545			tp->duplicate_sack : tp->selective_acks;
 546		int this_sack;
 547
 548		*ptr++ = htonl((TCPOPT_NOP  << 24) |
 549			       (TCPOPT_NOP  << 16) |
 550			       (TCPOPT_SACK <<  8) |
 551			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
 552						     TCPOLEN_SACK_PERBLOCK)));
 553
 554		for (this_sack = 0; this_sack < opts->num_sack_blocks;
 555		     ++this_sack) {
 556			*ptr++ = htonl(sp[this_sack].start_seq);
 557			*ptr++ = htonl(sp[this_sack].end_seq);
 558		}
 559
 560		tp->rx_opt.dsack = 0;
 561	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 562}
 563
 564/* Compute TCP options for SYN packets. This is not the final
 565 * network wire format yet.
 566 */
 567static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
 568				struct tcp_out_options *opts,
 569				struct tcp_md5sig_key **md5)
 570{
 571	struct tcp_sock *tp = tcp_sk(sk);
 572	struct tcp_cookie_values *cvp = tp->cookie_values;
 573	unsigned int remaining = MAX_TCP_OPTION_SPACE;
 574	u8 cookie_size = (!tp->rx_opt.cookie_out_never && cvp != NULL) ?
 575			 tcp_cookie_size_check(cvp->cookie_desired) :
 576			 0;
 577
 578#ifdef CONFIG_TCP_MD5SIG
 579	*md5 = tp->af_specific->md5_lookup(sk, sk);
 580	if (*md5) {
 581		opts->options |= OPTION_MD5;
 582		remaining -= TCPOLEN_MD5SIG_ALIGNED;
 583	}
 584#else
 585	*md5 = NULL;
 586#endif
 587
 588	/* We always get an MSS option.  The option bytes which will be seen in
 589	 * normal data packets should timestamps be used, must be in the MSS
 590	 * advertised.  But we subtract them from tp->mss_cache so that
 591	 * calculations in tcp_sendmsg are simpler etc.  So account for this
 592	 * fact here if necessary.  If we don't do this correctly, as a
 593	 * receiver we won't recognize data packets as being full sized when we
 594	 * should, and thus we won't abide by the delayed ACK rules correctly.
 595	 * SACKs don't matter, we never delay an ACK when we have any of those
 596	 * going out.  */
 597	opts->mss = tcp_advertise_mss(sk);
 598	remaining -= TCPOLEN_MSS_ALIGNED;
 599
 600	if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
 601		opts->options |= OPTION_TS;
 602		opts->tsval = TCP_SKB_CB(skb)->when;
 603		opts->tsecr = tp->rx_opt.ts_recent;
 604		remaining -= TCPOLEN_TSTAMP_ALIGNED;
 605	}
 606	if (likely(sysctl_tcp_window_scaling)) {
 607		opts->ws = tp->rx_opt.rcv_wscale;
 608		opts->options |= OPTION_WSCALE;
 609		remaining -= TCPOLEN_WSCALE_ALIGNED;
 610	}
 611	if (likely(sysctl_tcp_sack)) {
 612		opts->options |= OPTION_SACK_ADVERTISE;
 613		if (unlikely(!(OPTION_TS & opts->options)))
 614			remaining -= TCPOLEN_SACKPERM_ALIGNED;
 615	}
 616
 617	/* Note that timestamps are required by the specification.
 618	 *
 619	 * Odd numbers of bytes are prohibited by the specification, ensuring
 620	 * that the cookie is 16-bit aligned, and the resulting cookie pair is
 621	 * 32-bit aligned.
 622	 */
 623	if (*md5 == NULL &&
 624	    (OPTION_TS & opts->options) &&
 625	    cookie_size > 0) {
 626		int need = TCPOLEN_COOKIE_BASE + cookie_size;
 627
 628		if (0x2 & need) {
 629			/* 32-bit multiple */
 630			need += 2; /* NOPs */
 631
 632			if (need > remaining) {
 633				/* try shrinking cookie to fit */
 634				cookie_size -= 2;
 635				need -= 4;
 636			}
 637		}
 638		while (need > remaining && TCP_COOKIE_MIN <= cookie_size) {
 639			cookie_size -= 4;
 640			need -= 4;
 641		}
 642		if (TCP_COOKIE_MIN <= cookie_size) {
 643			opts->options |= OPTION_COOKIE_EXTENSION;
 644			opts->hash_location = (__u8 *)&cvp->cookie_pair[0];
 645			opts->hash_size = cookie_size;
 646
 647			/* Remember for future incarnations. */
 648			cvp->cookie_desired = cookie_size;
 649
 650			if (cvp->cookie_desired != cvp->cookie_pair_size) {
 651				/* Currently use random bytes as a nonce,
 652				 * assuming these are completely unpredictable
 653				 * by hostile users of the same system.
 654				 */
 655				get_random_bytes(&cvp->cookie_pair[0],
 656						 cookie_size);
 657				cvp->cookie_pair_size = cookie_size;
 658			}
 659
 
 
 
 
 
 
 660			remaining -= need;
 
 
 661		}
 662	}
 
 663	return MAX_TCP_OPTION_SPACE - remaining;
 664}
 665
 666/* Set up TCP options for SYN-ACKs. */
 667static unsigned int tcp_synack_options(struct sock *sk,
 668				   struct request_sock *req,
 669				   unsigned int mss, struct sk_buff *skb,
 670				   struct tcp_out_options *opts,
 671				   struct tcp_md5sig_key **md5,
 672				   struct tcp_extend_values *xvp)
 673{
 674	struct inet_request_sock *ireq = inet_rsk(req);
 675	unsigned int remaining = MAX_TCP_OPTION_SPACE;
 676	u8 cookie_plus = (xvp != NULL && !xvp->cookie_out_never) ?
 677			 xvp->cookie_plus :
 678			 0;
 679
 680#ifdef CONFIG_TCP_MD5SIG
 681	*md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
 682	if (*md5) {
 683		opts->options |= OPTION_MD5;
 684		remaining -= TCPOLEN_MD5SIG_ALIGNED;
 685
 686		/* We can't fit any SACK blocks in a packet with MD5 + TS
 687		 * options. There was discussion about disabling SACK
 688		 * rather than TS in order to fit in better with old,
 689		 * buggy kernels, but that was deemed to be unnecessary.
 690		 */
 691		ireq->tstamp_ok &= !ireq->sack_ok;
 692	}
 693#else
 694	*md5 = NULL;
 695#endif
 696
 697	/* We always send an MSS option. */
 698	opts->mss = mss;
 699	remaining -= TCPOLEN_MSS_ALIGNED;
 700
 701	if (likely(ireq->wscale_ok)) {
 702		opts->ws = ireq->rcv_wscale;
 703		opts->options |= OPTION_WSCALE;
 704		remaining -= TCPOLEN_WSCALE_ALIGNED;
 705	}
 706	if (likely(ireq->tstamp_ok)) {
 707		opts->options |= OPTION_TS;
 708		opts->tsval = TCP_SKB_CB(skb)->when;
 709		opts->tsecr = req->ts_recent;
 710		remaining -= TCPOLEN_TSTAMP_ALIGNED;
 711	}
 712	if (likely(ireq->sack_ok)) {
 713		opts->options |= OPTION_SACK_ADVERTISE;
 714		if (unlikely(!ireq->tstamp_ok))
 715			remaining -= TCPOLEN_SACKPERM_ALIGNED;
 716	}
 
 
 717
 718	/* Similar rationale to tcp_syn_options() applies here, too.
 719	 * If the <SYN> options fit, the same options should fit now!
 720	 */
 721	if (*md5 == NULL &&
 722	    ireq->tstamp_ok &&
 723	    cookie_plus > TCPOLEN_COOKIE_BASE) {
 724		int need = cookie_plus; /* has TCPOLEN_COOKIE_BASE */
 725
 726		if (0x2 & need) {
 727			/* 32-bit multiple */
 728			need += 2; /* NOPs */
 729		}
 730		if (need <= remaining) {
 731			opts->options |= OPTION_COOKIE_EXTENSION;
 732			opts->hash_size = cookie_plus - TCPOLEN_COOKIE_BASE;
 733			remaining -= need;
 734		} else {
 735			/* There's no error return, so flag it. */
 736			xvp->cookie_out_never = 1; /* true */
 737			opts->hash_size = 0;
 738		}
 739	}
 
 740	return MAX_TCP_OPTION_SPACE - remaining;
 741}
 742
 743/* Compute TCP options for ESTABLISHED sockets. This is not the
 744 * final wire format yet.
 745 */
 746static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
 747					struct tcp_out_options *opts,
 748					struct tcp_md5sig_key **md5)
 749{
 750	struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
 751	struct tcp_sock *tp = tcp_sk(sk);
 752	unsigned int size = 0;
 753	unsigned int eff_sacks;
 754
 
 
 755#ifdef CONFIG_TCP_MD5SIG
 756	*md5 = tp->af_specific->md5_lookup(sk, sk);
 757	if (unlikely(*md5)) {
 758		opts->options |= OPTION_MD5;
 759		size += TCPOLEN_MD5SIG_ALIGNED;
 760	}
 761#else
 762	*md5 = NULL;
 763#endif
 764
 765	if (likely(tp->rx_opt.tstamp_ok)) {
 766		opts->options |= OPTION_TS;
 767		opts->tsval = tcb ? tcb->when : 0;
 768		opts->tsecr = tp->rx_opt.ts_recent;
 769		size += TCPOLEN_TSTAMP_ALIGNED;
 770	}
 771
 772	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
 773	if (unlikely(eff_sacks)) {
 774		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
 775		opts->num_sack_blocks =
 776			min_t(unsigned int, eff_sacks,
 777			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
 778			      TCPOLEN_SACK_PERBLOCK);
 779		size += TCPOLEN_SACK_BASE_ALIGNED +
 780			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
 781	}
 782
 783	return size;
 784}
 785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786/* This routine actually transmits TCP packets queued in by
 787 * tcp_do_sendmsg().  This is used by both the initial
 788 * transmission and possible later retransmissions.
 789 * All SKB's seen here are completely headerless.  It is our
 790 * job to build the TCP header, and pass the packet down to
 791 * IP so it can do the same plus pass the packet off to the
 792 * device.
 793 *
 794 * We are working here with either a clone of the original
 795 * SKB, or a fresh unique copy made by the retransmit engine.
 796 */
 797static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
 798			    gfp_t gfp_mask)
 799{
 800	const struct inet_connection_sock *icsk = inet_csk(sk);
 801	struct inet_sock *inet;
 802	struct tcp_sock *tp;
 803	struct tcp_skb_cb *tcb;
 804	struct tcp_out_options opts;
 805	unsigned int tcp_options_size, tcp_header_size;
 806	struct tcp_md5sig_key *md5;
 807	struct tcphdr *th;
 808	int err;
 809
 810	BUG_ON(!skb || !tcp_skb_pcount(skb));
 811
 812	/* If congestion control is doing timestamping, we must
 813	 * take such a timestamp before we potentially clone/copy.
 814	 */
 815	if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
 816		__net_timestamp(skb);
 817
 818	if (likely(clone_it)) {
 819		if (unlikely(skb_cloned(skb)))
 820			skb = pskb_copy(skb, gfp_mask);
 821		else
 822			skb = skb_clone(skb, gfp_mask);
 823		if (unlikely(!skb))
 824			return -ENOBUFS;
 825	}
 826
 827	inet = inet_sk(sk);
 828	tp = tcp_sk(sk);
 829	tcb = TCP_SKB_CB(skb);
 830	memset(&opts, 0, sizeof(opts));
 831
 832	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
 833		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
 834	else
 835		tcp_options_size = tcp_established_options(sk, skb, &opts,
 836							   &md5);
 837	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
 838
 839	if (tcp_packets_in_flight(tp) == 0) {
 840		tcp_ca_event(sk, CA_EVENT_TX_START);
 841		skb->ooo_okay = 1;
 842	} else
 843		skb->ooo_okay = 0;
 
 
 
 844
 845	skb_push(skb, tcp_header_size);
 846	skb_reset_transport_header(skb);
 847	skb_set_owner_w(skb, sk);
 
 
 
 
 
 848
 849	/* Build TCP header and checksum it. */
 850	th = tcp_hdr(skb);
 851	th->source		= inet->inet_sport;
 852	th->dest		= inet->inet_dport;
 853	th->seq			= htonl(tcb->seq);
 854	th->ack_seq		= htonl(tp->rcv_nxt);
 855	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
 856					tcb->tcp_flags);
 857
 858	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
 859		/* RFC1323: The window in SYN & SYN/ACK segments
 860		 * is never scaled.
 861		 */
 862		th->window	= htons(min(tp->rcv_wnd, 65535U));
 863	} else {
 864		th->window	= htons(tcp_select_window(sk));
 865	}
 866	th->check		= 0;
 867	th->urg_ptr		= 0;
 868
 869	/* The urg_mode check is necessary during a below snd_una win probe */
 870	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
 871		if (before(tp->snd_up, tcb->seq + 0x10000)) {
 872			th->urg_ptr = htons(tp->snd_up - tcb->seq);
 873			th->urg = 1;
 874		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
 875			th->urg_ptr = htons(0xFFFF);
 876			th->urg = 1;
 877		}
 878	}
 879
 880	tcp_options_write((__be32 *)(th + 1), tp, &opts);
 
 881	if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
 882		TCP_ECN_send(sk, skb, tcp_header_size);
 883
 884#ifdef CONFIG_TCP_MD5SIG
 885	/* Calculate the MD5 hash, as we have all we need now */
 886	if (md5) {
 887		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
 888		tp->af_specific->calc_md5_hash(opts.hash_location,
 889					       md5, sk, NULL, skb);
 890	}
 891#endif
 892
 893	icsk->icsk_af_ops->send_check(sk, skb);
 894
 895	if (likely(tcb->tcp_flags & TCPHDR_ACK))
 896		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
 897
 898	if (skb->len != tcp_header_size)
 899		tcp_event_data_sent(tp, sk);
 
 
 900
 901	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
 902		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
 903			      tcp_skb_pcount(skb));
 904
 905	err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 906	if (likely(err <= 0))
 907		return err;
 908
 909	tcp_enter_cwr(sk, 1);
 910
 911	return net_xmit_eval(err);
 912}
 913
 914/* This routine just queues the buffer for sending.
 915 *
 916 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
 917 * otherwise socket can stall.
 918 */
 919static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
 920{
 921	struct tcp_sock *tp = tcp_sk(sk);
 922
 923	/* Advance write_seq and place onto the write_queue. */
 924	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
 925	skb_header_release(skb);
 926	tcp_add_write_queue_tail(sk, skb);
 927	sk->sk_wmem_queued += skb->truesize;
 928	sk_mem_charge(sk, skb->truesize);
 929}
 930
 931/* Initialize TSO segments for a packet. */
 932static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
 933				 unsigned int mss_now)
 934{
 935	if (skb->len <= mss_now || !sk_can_gso(sk) ||
 936	    skb->ip_summed == CHECKSUM_NONE) {
 937		/* Avoid the costly divide in the normal
 938		 * non-TSO case.
 939		 */
 940		skb_shinfo(skb)->gso_segs = 1;
 941		skb_shinfo(skb)->gso_size = 0;
 942		skb_shinfo(skb)->gso_type = 0;
 943	} else {
 944		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
 945		skb_shinfo(skb)->gso_size = mss_now;
 946		skb_shinfo(skb)->gso_type = sk->sk_gso_type;
 947	}
 948}
 949
 950/* When a modification to fackets out becomes necessary, we need to check
 951 * skb is counted to fackets_out or not.
 952 */
 953static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
 954				   int decr)
 955{
 956	struct tcp_sock *tp = tcp_sk(sk);
 957
 958	if (!tp->sacked_out || tcp_is_reno(tp))
 959		return;
 960
 961	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
 962		tp->fackets_out -= decr;
 963}
 964
 965/* Pcount in the middle of the write queue got changed, we need to do various
 966 * tweaks to fix counters
 967 */
 968static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
 969{
 970	struct tcp_sock *tp = tcp_sk(sk);
 971
 972	tp->packets_out -= decr;
 973
 974	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
 975		tp->sacked_out -= decr;
 976	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
 977		tp->retrans_out -= decr;
 978	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
 979		tp->lost_out -= decr;
 980
 981	/* Reno case is special. Sigh... */
 982	if (tcp_is_reno(tp) && decr > 0)
 983		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
 984
 985	tcp_adjust_fackets_out(sk, skb, decr);
 986
 987	if (tp->lost_skb_hint &&
 988	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
 989	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
 990		tp->lost_cnt_hint -= decr;
 991
 992	tcp_verify_left_out(tp);
 993}
 994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 995/* Function to create two new TCP segments.  Shrinks the given segment
 996 * to the specified size and appends a new segment with the rest of the
 997 * packet to the list.  This won't be called frequently, I hope.
 998 * Remember, these are still headerless SKBs at this point.
 999 */
1000int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1001		 unsigned int mss_now)
1002{
1003	struct tcp_sock *tp = tcp_sk(sk);
1004	struct sk_buff *buff;
1005	int nsize, old_factor;
1006	int nlen;
1007	u8 flags;
1008
1009	if (WARN_ON(len > skb->len))
1010		return -EINVAL;
1011
1012	nsize = skb_headlen(skb) - len;
1013	if (nsize < 0)
1014		nsize = 0;
1015
1016	if (skb_cloned(skb) &&
1017	    skb_is_nonlinear(skb) &&
1018	    pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1019		return -ENOMEM;
1020
1021	/* Get a new skb... force flag on. */
1022	buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
1023	if (buff == NULL)
1024		return -ENOMEM; /* We'll just try again later. */
1025
1026	sk->sk_wmem_queued += buff->truesize;
1027	sk_mem_charge(sk, buff->truesize);
1028	nlen = skb->len - len - nsize;
1029	buff->truesize += nlen;
1030	skb->truesize -= nlen;
1031
1032	/* Correct the sequence numbers. */
1033	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1034	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1035	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1036
1037	/* PSH and FIN should only be set in the second packet. */
1038	flags = TCP_SKB_CB(skb)->tcp_flags;
1039	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1040	TCP_SKB_CB(buff)->tcp_flags = flags;
1041	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1042
1043	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1044		/* Copy and checksum data tail into the new buffer. */
1045		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1046						       skb_put(buff, nsize),
1047						       nsize, 0);
1048
1049		skb_trim(skb, len);
1050
1051		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1052	} else {
1053		skb->ip_summed = CHECKSUM_PARTIAL;
1054		skb_split(skb, buff, len);
1055	}
1056
1057	buff->ip_summed = skb->ip_summed;
1058
1059	/* Looks stupid, but our code really uses when of
1060	 * skbs, which it never sent before. --ANK
1061	 */
1062	TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1063	buff->tstamp = skb->tstamp;
 
1064
1065	old_factor = tcp_skb_pcount(skb);
1066
1067	/* Fix up tso_factor for both original and new SKB.  */
1068	tcp_set_skb_tso_segs(sk, skb, mss_now);
1069	tcp_set_skb_tso_segs(sk, buff, mss_now);
1070
1071	/* If this packet has been sent out already, we must
1072	 * adjust the various packet counters.
1073	 */
1074	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1075		int diff = old_factor - tcp_skb_pcount(skb) -
1076			tcp_skb_pcount(buff);
1077
1078		if (diff)
1079			tcp_adjust_pcount(sk, skb, diff);
1080	}
1081
1082	/* Link BUFF into the send queue. */
1083	skb_header_release(buff);
1084	tcp_insert_write_queue_after(skb, buff, sk);
1085
1086	return 0;
1087}
1088
1089/* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1090 * eventually). The difference is that pulled data not copied, but
1091 * immediately discarded.
1092 */
1093static void __pskb_trim_head(struct sk_buff *skb, int len)
1094{
 
1095	int i, k, eat;
1096
1097	eat = min_t(int, len, skb_headlen(skb));
1098	if (eat) {
1099		__skb_pull(skb, eat);
1100		skb->avail_size -= eat;
1101		len -= eat;
1102		if (!len)
1103			return;
1104	}
1105	eat = len;
1106	k = 0;
1107	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1108		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
 
1109
1110		if (size <= eat) {
1111			skb_frag_unref(skb, i);
1112			eat -= size;
1113		} else {
1114			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1115			if (eat) {
1116				skb_shinfo(skb)->frags[k].page_offset += eat;
1117				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1118				eat = 0;
1119			}
1120			k++;
1121		}
1122	}
1123	skb_shinfo(skb)->nr_frags = k;
1124
1125	skb_reset_tail_pointer(skb);
1126	skb->data_len -= len;
1127	skb->len = skb->data_len;
1128}
1129
1130/* Remove acked data from a packet in the transmit queue. */
1131int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1132{
1133	if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1134		return -ENOMEM;
1135
1136	__pskb_trim_head(skb, len);
1137
1138	TCP_SKB_CB(skb)->seq += len;
1139	skb->ip_summed = CHECKSUM_PARTIAL;
1140
1141	skb->truesize	     -= len;
1142	sk->sk_wmem_queued   -= len;
1143	sk_mem_uncharge(sk, len);
1144	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1145
1146	/* Any change of skb->len requires recalculation of tso factor. */
1147	if (tcp_skb_pcount(skb) > 1)
1148		tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1149
1150	return 0;
1151}
1152
1153/* Calculate MSS. Not accounting for SACKs here.  */
1154int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1155{
1156	const struct tcp_sock *tp = tcp_sk(sk);
1157	const struct inet_connection_sock *icsk = inet_csk(sk);
1158	int mss_now;
1159
1160	/* Calculate base mss without TCP options:
1161	   It is MMS_S - sizeof(tcphdr) of rfc1122
1162	 */
1163	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1164
1165	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1166	if (icsk->icsk_af_ops->net_frag_header_len) {
1167		const struct dst_entry *dst = __sk_dst_get(sk);
1168
1169		if (dst && dst_allfrag(dst))
1170			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1171	}
1172
1173	/* Clamp it (mss_clamp does not include tcp options) */
1174	if (mss_now > tp->rx_opt.mss_clamp)
1175		mss_now = tp->rx_opt.mss_clamp;
1176
1177	/* Now subtract optional transport overhead */
1178	mss_now -= icsk->icsk_ext_hdr_len;
1179
1180	/* Then reserve room for full set of TCP options and 8 bytes of data */
1181	if (mss_now < 48)
1182		mss_now = 48;
1183
1184	/* Now subtract TCP options size, not including SACKs */
1185	mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
1186
1187	return mss_now;
1188}
1189
 
 
 
 
 
 
 
 
1190/* Inverse of above */
1191int tcp_mss_to_mtu(struct sock *sk, int mss)
1192{
1193	const struct tcp_sock *tp = tcp_sk(sk);
1194	const struct inet_connection_sock *icsk = inet_csk(sk);
1195	int mtu;
1196
1197	mtu = mss +
1198	      tp->tcp_header_len +
1199	      icsk->icsk_ext_hdr_len +
1200	      icsk->icsk_af_ops->net_header_len;
1201
1202	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1203	if (icsk->icsk_af_ops->net_frag_header_len) {
1204		const struct dst_entry *dst = __sk_dst_get(sk);
1205
1206		if (dst && dst_allfrag(dst))
1207			mtu += icsk->icsk_af_ops->net_frag_header_len;
1208	}
1209	return mtu;
1210}
1211
1212/* MTU probing init per socket */
1213void tcp_mtup_init(struct sock *sk)
1214{
1215	struct tcp_sock *tp = tcp_sk(sk);
1216	struct inet_connection_sock *icsk = inet_csk(sk);
 
1217
1218	icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1219	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1220			       icsk->icsk_af_ops->net_header_len;
1221	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1222	icsk->icsk_mtup.probe_size = 0;
 
 
1223}
1224EXPORT_SYMBOL(tcp_mtup_init);
1225
1226/* This function synchronize snd mss to current pmtu/exthdr set.
1227
1228   tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1229   for TCP options, but includes only bare TCP header.
1230
1231   tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1232   It is minimum of user_mss and mss received with SYN.
1233   It also does not include TCP options.
1234
1235   inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1236
1237   tp->mss_cache is current effective sending mss, including
1238   all tcp options except for SACKs. It is evaluated,
1239   taking into account current pmtu, but never exceeds
1240   tp->rx_opt.mss_clamp.
1241
1242   NOTE1. rfc1122 clearly states that advertised MSS
1243   DOES NOT include either tcp or ip options.
1244
1245   NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1246   are READ ONLY outside this function.		--ANK (980731)
1247 */
1248unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1249{
1250	struct tcp_sock *tp = tcp_sk(sk);
1251	struct inet_connection_sock *icsk = inet_csk(sk);
1252	int mss_now;
1253
1254	if (icsk->icsk_mtup.search_high > pmtu)
1255		icsk->icsk_mtup.search_high = pmtu;
1256
1257	mss_now = tcp_mtu_to_mss(sk, pmtu);
1258	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1259
1260	/* And store cached results */
1261	icsk->icsk_pmtu_cookie = pmtu;
1262	if (icsk->icsk_mtup.enabled)
1263		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1264	tp->mss_cache = mss_now;
1265
1266	return mss_now;
1267}
1268EXPORT_SYMBOL(tcp_sync_mss);
1269
1270/* Compute the current effective MSS, taking SACKs and IP options,
1271 * and even PMTU discovery events into account.
1272 */
1273unsigned int tcp_current_mss(struct sock *sk)
1274{
1275	const struct tcp_sock *tp = tcp_sk(sk);
1276	const struct dst_entry *dst = __sk_dst_get(sk);
1277	u32 mss_now;
1278	unsigned int header_len;
1279	struct tcp_out_options opts;
1280	struct tcp_md5sig_key *md5;
1281
1282	mss_now = tp->mss_cache;
1283
1284	if (dst) {
1285		u32 mtu = dst_mtu(dst);
1286		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1287			mss_now = tcp_sync_mss(sk, mtu);
1288	}
1289
1290	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1291		     sizeof(struct tcphdr);
1292	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1293	 * some common options. If this is an odd packet (because we have SACK
1294	 * blocks etc) then our calculated header_len will be different, and
1295	 * we have to adjust mss_now correspondingly */
1296	if (header_len != tp->tcp_header_len) {
1297		int delta = (int) header_len - tp->tcp_header_len;
1298		mss_now -= delta;
1299	}
1300
1301	return mss_now;
1302}
1303
1304/* Congestion window validation. (RFC2861) */
1305static void tcp_cwnd_validate(struct sock *sk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1306{
1307	struct tcp_sock *tp = tcp_sk(sk);
1308
1309	if (tp->packets_out >= tp->snd_cwnd) {
 
 
 
 
 
 
 
 
 
 
1310		/* Network is feed fully. */
1311		tp->snd_cwnd_used = 0;
1312		tp->snd_cwnd_stamp = tcp_time_stamp;
1313	} else {
1314		/* Network starves. */
1315		if (tp->packets_out > tp->snd_cwnd_used)
1316			tp->snd_cwnd_used = tp->packets_out;
1317
1318		if (sysctl_tcp_slow_start_after_idle &&
1319		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1320			tcp_cwnd_application_limited(sk);
1321	}
1322}
1323
1324/* Returns the portion of skb which can be sent right away without
1325 * introducing MSS oddities to segment boundaries. In rare cases where
1326 * mss_now != mss_cache, we will request caller to create a small skb
1327 * per input skb which could be mostly avoided here (if desired).
1328 *
1329 * We explicitly want to create a request for splitting write queue tail
1330 * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1331 * thus all the complexity (cwnd_len is always MSS multiple which we
1332 * return whenever allowed by the other factors). Basically we need the
1333 * modulo only when the receiver window alone is the limiting factor or
1334 * when we would be allowed to send the split-due-to-Nagle skb fully.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1335 */
1336static unsigned int tcp_mss_split_point(const struct sock *sk, const struct sk_buff *skb,
1337					unsigned int mss_now, unsigned int max_segs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1338{
1339	const struct tcp_sock *tp = tcp_sk(sk);
1340	u32 needed, window, max_len;
1341
1342	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1343	max_len = mss_now * max_segs;
1344
1345	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1346		return max_len;
1347
1348	needed = min(skb->len, window);
1349
1350	if (max_len <= needed)
1351		return max_len;
1352
1353	return needed - needed % mss_now;
 
 
 
 
 
 
 
 
1354}
1355
1356/* Can at least one segment of SKB be sent right now, according to the
1357 * congestion window rules?  If so, return how many segments are allowed.
1358 */
1359static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1360					 const struct sk_buff *skb)
1361{
1362	u32 in_flight, cwnd;
1363
1364	/* Don't be strict about the congestion window for the final FIN.  */
1365	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1366	    tcp_skb_pcount(skb) == 1)
1367		return 1;
1368
1369	in_flight = tcp_packets_in_flight(tp);
1370	cwnd = tp->snd_cwnd;
1371	if (in_flight < cwnd)
1372		return (cwnd - in_flight);
1373
1374	return 0;
 
 
 
 
1375}
1376
1377/* Initialize TSO state of a skb.
1378 * This must be invoked the first time we consider transmitting
1379 * SKB onto the wire.
1380 */
1381static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1382			     unsigned int mss_now)
1383{
1384	int tso_segs = tcp_skb_pcount(skb);
1385
1386	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1387		tcp_set_skb_tso_segs(sk, skb, mss_now);
1388		tso_segs = tcp_skb_pcount(skb);
1389	}
1390	return tso_segs;
1391}
1392
1393/* Minshall's variant of the Nagle send check. */
1394static inline bool tcp_minshall_check(const struct tcp_sock *tp)
1395{
1396	return after(tp->snd_sml, tp->snd_una) &&
1397		!after(tp->snd_sml, tp->snd_nxt);
1398}
1399
1400/* Return false, if packet can be sent now without violation Nagle's rules:
1401 * 1. It is full sized.
1402 * 2. Or it contains FIN. (already checked by caller)
1403 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1404 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1405 *    With Minshall's modification: all sent small packets are ACKed.
1406 */
1407static inline bool tcp_nagle_check(const struct tcp_sock *tp,
1408				  const struct sk_buff *skb,
1409				  unsigned int mss_now, int nonagle)
1410{
1411	return skb->len < mss_now &&
1412		((nonagle & TCP_NAGLE_CORK) ||
1413		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1414}
1415
1416/* Return true if the Nagle test allows this packet to be
1417 * sent now.
1418 */
1419static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1420				  unsigned int cur_mss, int nonagle)
1421{
1422	/* Nagle rule does not apply to frames, which sit in the middle of the
1423	 * write_queue (they have no chances to get new data).
1424	 *
1425	 * This is implemented in the callers, where they modify the 'nonagle'
1426	 * argument based upon the location of SKB in the send queue.
1427	 */
1428	if (nonagle & TCP_NAGLE_PUSH)
1429		return true;
1430
1431	/* Don't use the nagle rule for urgent data (or for the final FIN).
1432	 * Nagle can be ignored during F-RTO too (see RFC4138).
1433	 */
1434	if (tcp_urg_mode(tp) || (tp->frto_counter == 2) ||
1435	    (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1436		return true;
1437
1438	if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
1439		return true;
1440
1441	return false;
1442}
1443
1444/* Does at least the first segment of SKB fit into the send window? */
1445static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1446			     const struct sk_buff *skb,
1447			     unsigned int cur_mss)
1448{
1449	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1450
1451	if (skb->len > cur_mss)
1452		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1453
1454	return !after(end_seq, tcp_wnd_end(tp));
1455}
1456
1457/* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1458 * should be put on the wire right now.  If so, it returns the number of
1459 * packets allowed by the congestion window.
1460 */
1461static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1462				 unsigned int cur_mss, int nonagle)
1463{
1464	const struct tcp_sock *tp = tcp_sk(sk);
1465	unsigned int cwnd_quota;
1466
1467	tcp_init_tso_segs(sk, skb, cur_mss);
1468
1469	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1470		return 0;
1471
1472	cwnd_quota = tcp_cwnd_test(tp, skb);
1473	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1474		cwnd_quota = 0;
1475
1476	return cwnd_quota;
1477}
1478
1479/* Test if sending is allowed right now. */
1480bool tcp_may_send_now(struct sock *sk)
1481{
1482	const struct tcp_sock *tp = tcp_sk(sk);
1483	struct sk_buff *skb = tcp_send_head(sk);
1484
1485	return skb &&
1486		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1487			     (tcp_skb_is_last(sk, skb) ?
1488			      tp->nonagle : TCP_NAGLE_PUSH));
1489}
1490
1491/* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1492 * which is put after SKB on the list.  It is very much like
1493 * tcp_fragment() except that it may make several kinds of assumptions
1494 * in order to speed up the splitting operation.  In particular, we
1495 * know that all the data is in scatter-gather pages, and that the
1496 * packet has never been sent out before (and thus is not cloned).
1497 */
1498static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1499			unsigned int mss_now, gfp_t gfp)
1500{
1501	struct sk_buff *buff;
1502	int nlen = skb->len - len;
1503	u8 flags;
1504
1505	/* All of a TSO frame must be composed of paged data.  */
1506	if (skb->len != skb->data_len)
1507		return tcp_fragment(sk, skb, len, mss_now);
1508
1509	buff = sk_stream_alloc_skb(sk, 0, gfp);
1510	if (unlikely(buff == NULL))
1511		return -ENOMEM;
1512
1513	sk->sk_wmem_queued += buff->truesize;
1514	sk_mem_charge(sk, buff->truesize);
1515	buff->truesize += nlen;
1516	skb->truesize -= nlen;
1517
1518	/* Correct the sequence numbers. */
1519	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1520	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1521	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1522
1523	/* PSH and FIN should only be set in the second packet. */
1524	flags = TCP_SKB_CB(skb)->tcp_flags;
1525	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1526	TCP_SKB_CB(buff)->tcp_flags = flags;
1527
1528	/* This packet was never sent out yet, so no SACK bits. */
1529	TCP_SKB_CB(buff)->sacked = 0;
1530
1531	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1532	skb_split(skb, buff, len);
 
1533
1534	/* Fix up tso_factor for both original and new SKB.  */
1535	tcp_set_skb_tso_segs(sk, skb, mss_now);
1536	tcp_set_skb_tso_segs(sk, buff, mss_now);
1537
1538	/* Link BUFF into the send queue. */
1539	skb_header_release(buff);
1540	tcp_insert_write_queue_after(skb, buff, sk);
1541
1542	return 0;
1543}
1544
1545/* Try to defer sending, if possible, in order to minimize the amount
1546 * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1547 *
1548 * This algorithm is from John Heffner.
1549 */
1550static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
 
1551{
1552	struct tcp_sock *tp = tcp_sk(sk);
1553	const struct inet_connection_sock *icsk = inet_csk(sk);
1554	u32 send_win, cong_win, limit, in_flight;
 
 
 
1555	int win_divisor;
1556
1557	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1558		goto send_now;
1559
1560	if (icsk->icsk_ca_state != TCP_CA_Open)
1561		goto send_now;
1562
1563	/* Defer for less than two clock ticks. */
1564	if (tp->tso_deferred &&
1565	    (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
 
1566		goto send_now;
1567
1568	in_flight = tcp_packets_in_flight(tp);
1569
1570	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1571
1572	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1573
1574	/* From in_flight test above, we know that cwnd > in_flight.  */
1575	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1576
1577	limit = min(send_win, cong_win);
1578
1579	/* If a full-sized TSO skb can be sent, do it. */
1580	if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1581			   sk->sk_gso_max_segs * tp->mss_cache))
1582		goto send_now;
1583
1584	/* Middle in queue won't get any more data, full sendable already? */
1585	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1586		goto send_now;
1587
1588	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1589	if (win_divisor) {
1590		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1591
1592		/* If at least some fraction of a window is available,
1593		 * just use it.
1594		 */
1595		chunk /= win_divisor;
1596		if (limit >= chunk)
1597			goto send_now;
1598	} else {
1599		/* Different approach, try not to defer past a single
1600		 * ACK.  Receiver should ACK every other full sized
1601		 * frame, so if we have space for more than 3 frames
1602		 * then send now.
1603		 */
1604		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1605			goto send_now;
1606	}
1607
1608	/* Ok, it looks like it is advisable to defer.  */
1609	tp->tso_deferred = 1 | (jiffies << 1);
 
 
 
 
 
 
 
 
 
1610
1611	return true;
1612
1613send_now:
1614	tp->tso_deferred = 0;
1615	return false;
1616}
1617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1618/* Create a new MTU probe if we are ready.
1619 * MTU probe is regularly attempting to increase the path MTU by
1620 * deliberately sending larger packets.  This discovers routing
1621 * changes resulting in larger path MTUs.
1622 *
1623 * Returns 0 if we should wait to probe (no cwnd available),
1624 *         1 if a probe was sent,
1625 *         -1 otherwise
1626 */
1627static int tcp_mtu_probe(struct sock *sk)
1628{
1629	struct tcp_sock *tp = tcp_sk(sk);
1630	struct inet_connection_sock *icsk = inet_csk(sk);
1631	struct sk_buff *skb, *nskb, *next;
 
1632	int len;
1633	int probe_size;
1634	int size_needed;
1635	int copy;
1636	int mss_now;
 
1637
1638	/* Not currently probing/verifying,
1639	 * not in recovery,
1640	 * have enough cwnd, and
1641	 * not SACKing (the variable headers throw things off) */
1642	if (!icsk->icsk_mtup.enabled ||
1643	    icsk->icsk_mtup.probe_size ||
1644	    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1645	    tp->snd_cwnd < 11 ||
1646	    tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1647		return -1;
1648
1649	/* Very simple search strategy: just double the MSS. */
 
 
 
1650	mss_now = tcp_current_mss(sk);
1651	probe_size = 2 * tp->mss_cache;
 
1652	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1653	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1654		/* TODO: set timer for probe_converge_event */
 
 
 
 
 
 
 
 
 
1655		return -1;
1656	}
1657
1658	/* Have enough data in the send queue to probe? */
1659	if (tp->write_seq - tp->snd_nxt < size_needed)
1660		return -1;
1661
1662	if (tp->snd_wnd < size_needed)
1663		return -1;
1664	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1665		return 0;
1666
1667	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1668	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1669		if (!tcp_packets_in_flight(tp))
1670			return -1;
1671		else
1672			return 0;
1673	}
1674
1675	/* We're allowed to probe.  Build it now. */
1676	if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
 
1677		return -1;
1678	sk->sk_wmem_queued += nskb->truesize;
1679	sk_mem_charge(sk, nskb->truesize);
1680
1681	skb = tcp_send_head(sk);
1682
1683	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1684	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1685	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1686	TCP_SKB_CB(nskb)->sacked = 0;
1687	nskb->csum = 0;
1688	nskb->ip_summed = skb->ip_summed;
1689
1690	tcp_insert_write_queue_before(nskb, skb, sk);
1691
1692	len = 0;
1693	tcp_for_write_queue_from_safe(skb, next, sk) {
1694		copy = min_t(int, skb->len, probe_size - len);
1695		if (nskb->ip_summed)
1696			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1697		else
1698			nskb->csum = skb_copy_and_csum_bits(skb, 0,
1699							    skb_put(nskb, copy),
1700							    copy, nskb->csum);
1701
1702		if (skb->len <= copy) {
1703			/* We've eaten all the data from this skb.
1704			 * Throw it away. */
1705			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1706			tcp_unlink_write_queue(skb, sk);
1707			sk_wmem_free_skb(sk, skb);
1708		} else {
1709			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1710						   ~(TCPHDR_FIN|TCPHDR_PSH);
1711			if (!skb_shinfo(skb)->nr_frags) {
1712				skb_pull(skb, copy);
1713				if (skb->ip_summed != CHECKSUM_PARTIAL)
1714					skb->csum = csum_partial(skb->data,
1715								 skb->len, 0);
1716			} else {
1717				__pskb_trim_head(skb, copy);
1718				tcp_set_skb_tso_segs(sk, skb, mss_now);
1719			}
1720			TCP_SKB_CB(skb)->seq += copy;
1721		}
1722
1723		len += copy;
1724
1725		if (len >= probe_size)
1726			break;
1727	}
1728	tcp_init_tso_segs(sk, nskb, nskb->len);
1729
1730	/* We're ready to send.  If this fails, the probe will
1731	 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1732	TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1733	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1734		/* Decrement cwnd here because we are sending
1735		 * effectively two packets. */
1736		tp->snd_cwnd--;
1737		tcp_event_new_data_sent(sk, nskb);
1738
1739		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1740		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1741		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1742
1743		return 1;
1744	}
1745
1746	return -1;
1747}
1748
1749/* This routine writes packets to the network.  It advances the
1750 * send_head.  This happens as incoming acks open up the remote
1751 * window for us.
1752 *
1753 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1754 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1755 * account rare use of URG, this is not a big flaw.
1756 *
 
 
 
1757 * Returns true, if no segments are in flight and we have queued segments,
1758 * but cannot send anything now because of SWS or another problem.
1759 */
1760static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1761			   int push_one, gfp_t gfp)
1762{
1763	struct tcp_sock *tp = tcp_sk(sk);
1764	struct sk_buff *skb;
1765	unsigned int tso_segs, sent_pkts;
1766	int cwnd_quota;
1767	int result;
 
 
1768
1769	sent_pkts = 0;
1770
1771	if (!push_one) {
1772		/* Do MTU probing. */
1773		result = tcp_mtu_probe(sk);
1774		if (!result) {
1775			return false;
1776		} else if (result > 0) {
1777			sent_pkts = 1;
1778		}
1779	}
1780
 
1781	while ((skb = tcp_send_head(sk))) {
1782		unsigned int limit;
1783
1784		tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1785		BUG_ON(!tso_segs);
1786
 
 
 
 
 
 
1787		cwnd_quota = tcp_cwnd_test(tp, skb);
1788		if (!cwnd_quota)
1789			break;
 
 
 
 
 
1790
1791		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1792			break;
1793
1794		if (tso_segs == 1) {
1795			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1796						     (tcp_skb_is_last(sk, skb) ?
1797						      nonagle : TCP_NAGLE_PUSH))))
1798				break;
1799		} else {
1800			if (!push_one && tcp_tso_should_defer(sk, skb))
 
 
1801				break;
1802		}
1803
1804		limit = mss_now;
1805		if (tso_segs > 1 && !tcp_urg_mode(tp))
1806			limit = tcp_mss_split_point(sk, skb, mss_now,
1807						    min_t(unsigned int,
1808							  cwnd_quota,
1809							  sk->sk_gso_max_segs));
 
1810
1811		if (skb->len > limit &&
1812		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
1813			break;
1814
1815		TCP_SKB_CB(skb)->when = tcp_time_stamp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1816
1817		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
1818			break;
1819
 
1820		/* Advance the send_head.  This one is sent out.
1821		 * This call will increment packets_out.
1822		 */
1823		tcp_event_new_data_sent(sk, skb);
1824
1825		tcp_minshall_update(tp, mss_now, skb);
1826		sent_pkts += tcp_skb_pcount(skb);
1827
1828		if (push_one)
1829			break;
1830	}
1831	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Recovery)
1832		tp->prr_out += sent_pkts;
1833
1834	if (likely(sent_pkts)) {
1835		tcp_cwnd_validate(sk);
 
 
 
 
 
 
 
1836		return false;
1837	}
1838	return !tp->packets_out && tcp_send_head(sk);
1839}
1840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1841/* Push out any pending frames which were held back due to
1842 * TCP_CORK or attempt at coalescing tiny packets.
1843 * The socket must be locked by the caller.
1844 */
1845void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
1846			       int nonagle)
1847{
1848	/* If we are closed, the bytes will have to remain here.
1849	 * In time closedown will finish, we empty the write queue and
1850	 * all will be happy.
1851	 */
1852	if (unlikely(sk->sk_state == TCP_CLOSE))
1853		return;
1854
1855	if (tcp_write_xmit(sk, cur_mss, nonagle, 0, GFP_ATOMIC))
 
1856		tcp_check_probe_timer(sk);
1857}
1858
1859/* Send _single_ skb sitting at the send head. This function requires
1860 * true push pending frames to setup probe timer etc.
1861 */
1862void tcp_push_one(struct sock *sk, unsigned int mss_now)
1863{
1864	struct sk_buff *skb = tcp_send_head(sk);
1865
1866	BUG_ON(!skb || skb->len < mss_now);
1867
1868	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
1869}
1870
1871/* This function returns the amount that we can raise the
1872 * usable window based on the following constraints
1873 *
1874 * 1. The window can never be shrunk once it is offered (RFC 793)
1875 * 2. We limit memory per socket
1876 *
1877 * RFC 1122:
1878 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
1879 *  RECV.NEXT + RCV.WIN fixed until:
1880 *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
1881 *
1882 * i.e. don't raise the right edge of the window until you can raise
1883 * it at least MSS bytes.
1884 *
1885 * Unfortunately, the recommended algorithm breaks header prediction,
1886 * since header prediction assumes th->window stays fixed.
1887 *
1888 * Strictly speaking, keeping th->window fixed violates the receiver
1889 * side SWS prevention criteria. The problem is that under this rule
1890 * a stream of single byte packets will cause the right side of the
1891 * window to always advance by a single byte.
1892 *
1893 * Of course, if the sender implements sender side SWS prevention
1894 * then this will not be a problem.
1895 *
1896 * BSD seems to make the following compromise:
1897 *
1898 *	If the free space is less than the 1/4 of the maximum
1899 *	space available and the free space is less than 1/2 mss,
1900 *	then set the window to 0.
1901 *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
1902 *	Otherwise, just prevent the window from shrinking
1903 *	and from being larger than the largest representable value.
1904 *
1905 * This prevents incremental opening of the window in the regime
1906 * where TCP is limited by the speed of the reader side taking
1907 * data out of the TCP receive queue. It does nothing about
1908 * those cases where the window is constrained on the sender side
1909 * because the pipeline is full.
1910 *
1911 * BSD also seems to "accidentally" limit itself to windows that are a
1912 * multiple of MSS, at least until the free space gets quite small.
1913 * This would appear to be a side effect of the mbuf implementation.
1914 * Combining these two algorithms results in the observed behavior
1915 * of having a fixed window size at almost all times.
1916 *
1917 * Below we obtain similar behavior by forcing the offered window to
1918 * a multiple of the mss when it is feasible to do so.
1919 *
1920 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
1921 * Regular options like TIMESTAMP are taken into account.
1922 */
1923u32 __tcp_select_window(struct sock *sk)
1924{
1925	struct inet_connection_sock *icsk = inet_csk(sk);
1926	struct tcp_sock *tp = tcp_sk(sk);
1927	/* MSS for the peer's data.  Previous versions used mss_clamp
1928	 * here.  I don't know if the value based on our guesses
1929	 * of peer's MSS is better for the performance.  It's more correct
1930	 * but may be worse for the performance because of rcv_mss
1931	 * fluctuations.  --SAW  1998/11/1
1932	 */
1933	int mss = icsk->icsk_ack.rcv_mss;
1934	int free_space = tcp_space(sk);
1935	int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
 
1936	int window;
1937
1938	if (mss > full_space)
1939		mss = full_space;
1940
1941	if (free_space < (full_space >> 1)) {
1942		icsk->icsk_ack.quick = 0;
1943
1944		if (sk_under_memory_pressure(sk))
1945			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
1946					       4U * tp->advmss);
1947
1948		if (free_space < mss)
 
 
 
 
 
 
 
 
 
 
 
 
1949			return 0;
1950	}
1951
1952	if (free_space > tp->rcv_ssthresh)
1953		free_space = tp->rcv_ssthresh;
1954
1955	/* Don't do rounding if we are using window scaling, since the
1956	 * scaled window will not line up with the MSS boundary anyway.
1957	 */
1958	window = tp->rcv_wnd;
1959	if (tp->rx_opt.rcv_wscale) {
1960		window = free_space;
1961
1962		/* Advertise enough space so that it won't get scaled away.
1963		 * Import case: prevent zero window announcement if
1964		 * 1<<rcv_wscale > mss.
1965		 */
1966		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
1967			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
1968				  << tp->rx_opt.rcv_wscale);
1969	} else {
1970		/* Get the largest window that is a nice multiple of mss.
1971		 * Window clamp already applied above.
1972		 * If our current window offering is within 1 mss of the
1973		 * free space we just keep it. This prevents the divide
1974		 * and multiply from happening most of the time.
1975		 * We also don't do any window rounding when the free space
1976		 * is too small.
1977		 */
1978		if (window <= free_space - mss || window > free_space)
1979			window = (free_space / mss) * mss;
1980		else if (mss == full_space &&
1981			 free_space > window + (full_space >> 1))
1982			window = free_space;
1983	}
1984
1985	return window;
1986}
1987
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1988/* Collapses two adjacent SKB's during retransmission. */
1989static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
1990{
1991	struct tcp_sock *tp = tcp_sk(sk);
1992	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
1993	int skb_size, next_skb_size;
1994
1995	skb_size = skb->len;
1996	next_skb_size = next_skb->len;
1997
1998	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
1999
2000	tcp_highest_sack_combine(sk, next_skb, skb);
2001
2002	tcp_unlink_write_queue(next_skb, sk);
2003
2004	skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2005				  next_skb_size);
2006
2007	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2008		skb->ip_summed = CHECKSUM_PARTIAL;
2009
2010	if (skb->ip_summed != CHECKSUM_PARTIAL)
2011		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2012
2013	/* Update sequence range on original skb. */
2014	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2015
2016	/* Merge over control information. This moves PSH/FIN etc. over */
2017	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2018
2019	/* All done, get rid of second SKB and account for it so
2020	 * packet counting does not break.
2021	 */
2022	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2023
2024	/* changed transmit queue under us so clear hints */
2025	tcp_clear_retrans_hints_partial(tp);
2026	if (next_skb == tp->retransmit_skb_hint)
2027		tp->retransmit_skb_hint = skb;
2028
2029	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2030
 
 
2031	sk_wmem_free_skb(sk, next_skb);
2032}
2033
2034/* Check if coalescing SKBs is legal. */
2035static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2036{
2037	if (tcp_skb_pcount(skb) > 1)
2038		return false;
2039	/* TODO: SACK collapsing could be used to remove this condition */
2040	if (skb_shinfo(skb)->nr_frags != 0)
2041		return false;
2042	if (skb_cloned(skb))
2043		return false;
2044	if (skb == tcp_send_head(sk))
2045		return false;
2046	/* Some heurestics for collapsing over SACK'd could be invented */
2047	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2048		return false;
2049
2050	return true;
2051}
2052
2053/* Collapse packets in the retransmit queue to make to create
2054 * less packets on the wire. This is only done on retransmission.
2055 */
2056static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2057				     int space)
2058{
2059	struct tcp_sock *tp = tcp_sk(sk);
2060	struct sk_buff *skb = to, *tmp;
2061	bool first = true;
2062
2063	if (!sysctl_tcp_retrans_collapse)
2064		return;
2065	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2066		return;
2067
2068	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2069		if (!tcp_can_collapse(sk, skb))
2070			break;
2071
2072		space -= skb->len;
2073
2074		if (first) {
2075			first = false;
2076			continue;
2077		}
2078
2079		if (space < 0)
2080			break;
2081		/* Punt if not enough space exists in the first SKB for
2082		 * the data in the second
2083		 */
2084		if (skb->len > skb_availroom(to))
2085			break;
2086
2087		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2088			break;
2089
2090		tcp_collapse_retrans(sk, to);
2091	}
2092}
2093
2094/* This retransmits one SKB.  Policy decisions and retransmit queue
2095 * state updates are done by the caller.  Returns non-zero if an
2096 * error occurred which prevented the send.
2097 */
2098int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2099{
2100	struct tcp_sock *tp = tcp_sk(sk);
2101	struct inet_connection_sock *icsk = inet_csk(sk);
2102	unsigned int cur_mss;
2103	int err;
2104
2105	/* Inconslusive MTU probe */
2106	if (icsk->icsk_mtup.probe_size) {
2107		icsk->icsk_mtup.probe_size = 0;
2108	}
2109
2110	/* Do not sent more than we queued. 1/4 is reserved for possible
2111	 * copying overhead: fragmentation, tunneling, mangling etc.
2112	 */
2113	if (atomic_read(&sk->sk_wmem_alloc) >
2114	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2115		return -EAGAIN;
2116
 
 
 
2117	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2118		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2119			BUG();
2120		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2121			return -ENOMEM;
2122	}
2123
2124	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2125		return -EHOSTUNREACH; /* Routing failure or similar. */
2126
2127	cur_mss = tcp_current_mss(sk);
2128
2129	/* If receiver has shrunk his window, and skb is out of
2130	 * new window, do not retransmit it. The exception is the
2131	 * case, when window is shrunk to zero. In this case
2132	 * our retransmit serves as a zero window probe.
2133	 */
2134	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2135	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2136		return -EAGAIN;
2137
2138	if (skb->len > cur_mss) {
2139		if (tcp_fragment(sk, skb, cur_mss, cur_mss))
2140			return -ENOMEM; /* We'll try again later. */
2141	} else {
2142		int oldpcount = tcp_skb_pcount(skb);
2143
2144		if (unlikely(oldpcount > 1)) {
2145			tcp_init_tso_segs(sk, skb, cur_mss);
 
 
2146			tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2147		}
2148	}
2149
2150	tcp_retrans_try_collapse(sk, skb, cur_mss);
 
 
2151
2152	/* Some Solaris stacks overoptimize and ignore the FIN on a
2153	 * retransmit when old data is attached.  So strip it off
2154	 * since it is cheap to do so and saves bytes on the network.
2155	 */
2156	if (skb->len > 0 &&
2157	    (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2158	    tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
2159		if (!pskb_trim(skb, 0)) {
2160			/* Reuse, even though it does some unnecessary work */
2161			tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1,
2162					     TCP_SKB_CB(skb)->tcp_flags);
2163			skb->ip_summed = CHECKSUM_NONE;
2164		}
2165	}
2166
2167	/* Make a copy, if the first transmission SKB clone we made
2168	 * is still in somebody's hands, else make a clone.
2169	 */
2170	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2171
2172	/* make sure skb->data is aligned on arches that require it */
2173	if (unlikely(NET_IP_ALIGN && ((unsigned long)skb->data & 3))) {
2174		struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2175						   GFP_ATOMIC);
 
 
 
 
 
 
2176		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2177			     -ENOBUFS;
2178	} else {
2179		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2180	}
2181
2182	if (err == 0) {
 
2183		/* Update global TCP statistics. */
2184		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2185
 
2186		tp->total_retrans++;
 
 
 
 
 
 
 
 
2187
 
2188#if FASTRETRANS_DEBUG > 0
2189		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2190			net_dbg_ratelimited("retrans_out leaked\n");
2191		}
2192#endif
2193		if (!tp->retrans_out)
2194			tp->lost_retrans_low = tp->snd_nxt;
2195		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2196		tp->retrans_out += tcp_skb_pcount(skb);
2197
2198		/* Save stamp of the first retransmit. */
2199		if (!tp->retrans_stamp)
2200			tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2201
2202		tp->undo_retrans += tcp_skb_pcount(skb);
2203
2204		/* snd_nxt is stored to detect loss of retransmitted segment,
2205		 * see tcp_input.c tcp_sacktag_write_queue().
2206		 */
2207		TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2208	}
 
 
 
 
2209	return err;
2210}
2211
2212/* Check if we forward retransmits are possible in the current
2213 * window/congestion state.
2214 */
2215static bool tcp_can_forward_retransmit(struct sock *sk)
2216{
2217	const struct inet_connection_sock *icsk = inet_csk(sk);
2218	const struct tcp_sock *tp = tcp_sk(sk);
2219
2220	/* Forward retransmissions are possible only during Recovery. */
2221	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2222		return false;
2223
2224	/* No forward retransmissions in Reno are possible. */
2225	if (tcp_is_reno(tp))
2226		return false;
2227
2228	/* Yeah, we have to make difficult choice between forward transmission
2229	 * and retransmission... Both ways have their merits...
2230	 *
2231	 * For now we do not retransmit anything, while we have some new
2232	 * segments to send. In the other cases, follow rule 3 for
2233	 * NextSeg() specified in RFC3517.
2234	 */
2235
2236	if (tcp_may_send_now(sk))
2237		return false;
2238
2239	return true;
2240}
2241
2242/* This gets called after a retransmit timeout, and the initially
2243 * retransmitted data is acknowledged.  It tries to continue
2244 * resending the rest of the retransmit queue, until either
2245 * we've sent it all or the congestion window limit is reached.
2246 * If doing SACK, the first ACK which comes back for a timeout
2247 * based retransmit packet might feed us FACK information again.
2248 * If so, we use it to avoid unnecessarily retransmissions.
2249 */
2250void tcp_xmit_retransmit_queue(struct sock *sk)
2251{
2252	const struct inet_connection_sock *icsk = inet_csk(sk);
2253	struct tcp_sock *tp = tcp_sk(sk);
2254	struct sk_buff *skb;
2255	struct sk_buff *hole = NULL;
2256	u32 last_lost;
2257	int mib_idx;
2258	int fwd_rexmitting = 0;
2259
2260	if (!tp->packets_out)
2261		return;
2262
2263	if (!tp->lost_out)
2264		tp->retransmit_high = tp->snd_una;
2265
2266	if (tp->retransmit_skb_hint) {
2267		skb = tp->retransmit_skb_hint;
2268		last_lost = TCP_SKB_CB(skb)->end_seq;
2269		if (after(last_lost, tp->retransmit_high))
2270			last_lost = tp->retransmit_high;
2271	} else {
2272		skb = tcp_write_queue_head(sk);
2273		last_lost = tp->snd_una;
2274	}
2275
2276	tcp_for_write_queue_from(skb, sk) {
2277		__u8 sacked = TCP_SKB_CB(skb)->sacked;
2278
2279		if (skb == tcp_send_head(sk))
2280			break;
2281		/* we could do better than to assign each time */
2282		if (hole == NULL)
2283			tp->retransmit_skb_hint = skb;
2284
2285		/* Assume this retransmit will generate
2286		 * only one packet for congestion window
2287		 * calculation purposes.  This works because
2288		 * tcp_retransmit_skb() will chop up the
2289		 * packet to be MSS sized and all the
2290		 * packet counting works out.
2291		 */
2292		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2293			return;
2294
2295		if (fwd_rexmitting) {
2296begin_fwd:
2297			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2298				break;
2299			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2300
2301		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2302			tp->retransmit_high = last_lost;
2303			if (!tcp_can_forward_retransmit(sk))
2304				break;
2305			/* Backtrack if necessary to non-L'ed skb */
2306			if (hole != NULL) {
2307				skb = hole;
2308				hole = NULL;
2309			}
2310			fwd_rexmitting = 1;
2311			goto begin_fwd;
2312
2313		} else if (!(sacked & TCPCB_LOST)) {
2314			if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2315				hole = skb;
2316			continue;
2317
2318		} else {
2319			last_lost = TCP_SKB_CB(skb)->end_seq;
2320			if (icsk->icsk_ca_state != TCP_CA_Loss)
2321				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2322			else
2323				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2324		}
2325
2326		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2327			continue;
2328
2329		if (tcp_retransmit_skb(sk, skb)) {
2330			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2331			return;
2332		}
2333		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2334
2335		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Recovery)
2336			tp->prr_out += tcp_skb_pcount(skb);
2337
2338		if (skb == tcp_write_queue_head(sk))
2339			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2340						  inet_csk(sk)->icsk_rto,
2341						  TCP_RTO_MAX);
2342	}
2343}
2344
2345/* Send a fin.  The caller locks the socket for us.  This cannot be
2346 * allowed to fail queueing a FIN frame under any circumstances.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2347 */
2348void tcp_send_fin(struct sock *sk)
2349{
 
2350	struct tcp_sock *tp = tcp_sk(sk);
2351	struct sk_buff *skb = tcp_write_queue_tail(sk);
2352	int mss_now;
2353
2354	/* Optimization, tack on the FIN if we have a queue of
2355	 * unsent frames.  But be careful about outgoing SACKS
2356	 * and IP options.
2357	 */
2358	mss_now = tcp_current_mss(sk);
2359
2360	if (tcp_send_head(sk) != NULL) {
2361		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2362		TCP_SKB_CB(skb)->end_seq++;
 
 
 
 
 
 
2363		tp->write_seq++;
 
 
 
 
 
 
 
 
 
 
2364	} else {
2365		/* Socket is locked, keep trying until memory is available. */
2366		for (;;) {
2367			skb = alloc_skb_fclone(MAX_TCP_HEADER,
2368					       sk->sk_allocation);
2369			if (skb)
2370				break;
2371			yield();
2372		}
2373
2374		/* Reserve space for headers and prepare control bits. */
2375		skb_reserve(skb, MAX_TCP_HEADER);
 
2376		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2377		tcp_init_nondata_skb(skb, tp->write_seq,
2378				     TCPHDR_ACK | TCPHDR_FIN);
2379		tcp_queue_skb(sk, skb);
2380	}
2381	__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2382}
2383
2384/* We get here when a process closes a file descriptor (either due to
2385 * an explicit close() or as a byproduct of exit()'ing) and there
2386 * was unread data in the receive queue.  This behavior is recommended
2387 * by RFC 2525, section 2.17.  -DaveM
2388 */
2389void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2390{
2391	struct sk_buff *skb;
2392
2393	/* NOTE: No TCP options attached and we never retransmit this. */
2394	skb = alloc_skb(MAX_TCP_HEADER, priority);
2395	if (!skb) {
2396		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2397		return;
2398	}
2399
2400	/* Reserve space for headers and prepare control bits. */
2401	skb_reserve(skb, MAX_TCP_HEADER);
2402	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2403			     TCPHDR_ACK | TCPHDR_RST);
 
2404	/* Send it off. */
2405	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2406	if (tcp_transmit_skb(sk, skb, 0, priority))
2407		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2408
2409	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2410}
2411
2412/* Send a crossed SYN-ACK during socket establishment.
2413 * WARNING: This routine must only be called when we have already sent
2414 * a SYN packet that crossed the incoming SYN that caused this routine
2415 * to get called. If this assumption fails then the initial rcv_wnd
2416 * and rcv_wscale values will not be correct.
2417 */
2418int tcp_send_synack(struct sock *sk)
2419{
2420	struct sk_buff *skb;
2421
2422	skb = tcp_write_queue_head(sk);
2423	if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2424		pr_debug("%s: wrong queue state\n", __func__);
2425		return -EFAULT;
2426	}
2427	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2428		if (skb_cloned(skb)) {
2429			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2430			if (nskb == NULL)
2431				return -ENOMEM;
2432			tcp_unlink_write_queue(skb, sk);
2433			skb_header_release(nskb);
2434			__tcp_add_write_queue_head(sk, nskb);
2435			sk_wmem_free_skb(sk, skb);
2436			sk->sk_wmem_queued += nskb->truesize;
2437			sk_mem_charge(sk, nskb->truesize);
2438			skb = nskb;
2439		}
2440
2441		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2442		TCP_ECN_send_synack(tcp_sk(sk), skb);
2443	}
2444	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2445	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2446}
2447
2448/* Prepare a SYN-ACK. */
2449struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
 
 
 
 
 
 
 
 
2450				struct request_sock *req,
2451				struct request_values *rvp)
 
2452{
2453	struct tcp_out_options opts;
2454	struct tcp_extend_values *xvp = tcp_xv(rvp);
2455	struct inet_request_sock *ireq = inet_rsk(req);
2456	struct tcp_sock *tp = tcp_sk(sk);
2457	const struct tcp_cookie_values *cvp = tp->cookie_values;
2458	struct tcphdr *th;
2459	struct sk_buff *skb;
2460	struct tcp_md5sig_key *md5;
2461	int tcp_header_size;
 
 
2462	int mss;
2463	int s_data_desired = 0;
2464
2465	if (cvp != NULL && cvp->s_data_constant && cvp->s_data_desired)
2466		s_data_desired = cvp->s_data_desired;
2467	skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15 + s_data_desired, 1, GFP_ATOMIC);
2468	if (skb == NULL)
2469		return NULL;
2470
2471	/* Reserve space for headers. */
2472	skb_reserve(skb, MAX_TCP_HEADER);
2473
2474	skb_dst_set(skb, dst_clone(dst));
 
 
 
 
 
 
 
 
 
2475
2476	mss = dst_metric_advmss(dst);
2477	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2478		mss = tp->rx_opt.user_mss;
2479
2480	if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2481		__u8 rcv_wscale;
2482		/* Set this up on the first call only */
2483		req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2484
2485		/* limit the window selection if the user enforce a smaller rx buffer */
2486		if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2487		    (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
2488			req->window_clamp = tcp_full_space(sk);
2489
2490		/* tcp_full_space because it is guaranteed to be the first packet */
2491		tcp_select_initial_window(tcp_full_space(sk),
2492			mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2493			&req->rcv_wnd,
2494			&req->window_clamp,
2495			ireq->wscale_ok,
2496			&rcv_wscale,
2497			dst_metric(dst, RTAX_INITRWND));
2498		ireq->rcv_wscale = rcv_wscale;
2499	}
2500
2501	memset(&opts, 0, sizeof(opts));
2502#ifdef CONFIG_SYN_COOKIES
2503	if (unlikely(req->cookie_ts))
2504		TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2505	else
2506#endif
2507	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2508	tcp_header_size = tcp_synack_options(sk, req, mss,
2509					     skb, &opts, &md5, xvp)
2510			+ sizeof(*th);
 
 
 
 
 
2511
2512	skb_push(skb, tcp_header_size);
2513	skb_reset_transport_header(skb);
2514
2515	th = tcp_hdr(skb);
2516	memset(th, 0, sizeof(struct tcphdr));
2517	th->syn = 1;
2518	th->ack = 1;
2519	TCP_ECN_make_synack(req, th);
2520	th->source = ireq->loc_port;
2521	th->dest = ireq->rmt_port;
2522	/* Setting of flags are superfluous here for callers (and ECE is
2523	 * not even correctly set)
2524	 */
2525	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2526			     TCPHDR_SYN | TCPHDR_ACK);
2527
2528	if (OPTION_COOKIE_EXTENSION & opts.options) {
2529		if (s_data_desired) {
2530			u8 *buf = skb_put(skb, s_data_desired);
2531
2532			/* copy data directly from the listening socket. */
2533			memcpy(buf, cvp->s_data_payload, s_data_desired);
2534			TCP_SKB_CB(skb)->end_seq += s_data_desired;
2535		}
2536
2537		if (opts.hash_size > 0) {
2538			__u32 workspace[SHA_WORKSPACE_WORDS];
2539			u32 *mess = &xvp->cookie_bakery[COOKIE_DIGEST_WORDS];
2540			u32 *tail = &mess[COOKIE_MESSAGE_WORDS-1];
2541
2542			/* Secret recipe depends on the Timestamp, (future)
2543			 * Sequence and Acknowledgment Numbers, Initiator
2544			 * Cookie, and others handled by IP variant caller.
2545			 */
2546			*tail-- ^= opts.tsval;
2547			*tail-- ^= tcp_rsk(req)->rcv_isn + 1;
2548			*tail-- ^= TCP_SKB_CB(skb)->seq + 1;
2549
2550			/* recommended */
2551			*tail-- ^= (((__force u32)th->dest << 16) | (__force u32)th->source);
2552			*tail-- ^= (u32)(unsigned long)cvp; /* per sockopt */
2553
2554			sha_transform((__u32 *)&xvp->cookie_bakery[0],
2555				      (char *)mess,
2556				      &workspace[0]);
2557			opts.hash_location =
2558				(__u8 *)&xvp->cookie_bakery[0];
2559		}
2560	}
2561
2562	th->seq = htonl(TCP_SKB_CB(skb)->seq);
2563	th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1);
 
2564
2565	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2566	th->window = htons(min(req->rcv_wnd, 65535U));
2567	tcp_options_write((__be32 *)(th + 1), tp, &opts);
2568	th->doff = (tcp_header_size >> 2);
2569	TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb));
2570
2571#ifdef CONFIG_TCP_MD5SIG
2572	/* Okay, we have all we need - do the md5 hash if needed */
2573	if (md5) {
2574		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2575					       md5, NULL, req, skb);
2576	}
2577#endif
2578
 
 
2579	return skb;
2580}
2581EXPORT_SYMBOL(tcp_make_synack);
2582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2583/* Do all connect socket setups that can be done AF independent. */
2584void tcp_connect_init(struct sock *sk)
2585{
2586	const struct dst_entry *dst = __sk_dst_get(sk);
2587	struct tcp_sock *tp = tcp_sk(sk);
2588	__u8 rcv_wscale;
2589
2590	/* We'll fix this up when we get a response from the other end.
2591	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2592	 */
2593	tp->tcp_header_len = sizeof(struct tcphdr) +
2594		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2595
2596#ifdef CONFIG_TCP_MD5SIG
2597	if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2598		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2599#endif
2600
2601	/* If user gave his TCP_MAXSEG, record it to clamp */
2602	if (tp->rx_opt.user_mss)
2603		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2604	tp->max_window = 0;
2605	tcp_mtup_init(sk);
2606	tcp_sync_mss(sk, dst_mtu(dst));
2607
 
 
2608	if (!tp->window_clamp)
2609		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2610	tp->advmss = dst_metric_advmss(dst);
2611	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2612		tp->advmss = tp->rx_opt.user_mss;
2613
2614	tcp_initialize_rcv_mss(sk);
2615
2616	/* limit the window selection if the user enforce a smaller rx buffer */
2617	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2618	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2619		tp->window_clamp = tcp_full_space(sk);
2620
2621	tcp_select_initial_window(tcp_full_space(sk),
2622				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2623				  &tp->rcv_wnd,
2624				  &tp->window_clamp,
2625				  sysctl_tcp_window_scaling,
2626				  &rcv_wscale,
2627				  dst_metric(dst, RTAX_INITRWND));
2628
2629	tp->rx_opt.rcv_wscale = rcv_wscale;
2630	tp->rcv_ssthresh = tp->rcv_wnd;
2631
2632	sk->sk_err = 0;
2633	sock_reset_flag(sk, SOCK_DONE);
2634	tp->snd_wnd = 0;
2635	tcp_init_wl(tp, 0);
2636	tp->snd_una = tp->write_seq;
2637	tp->snd_sml = tp->write_seq;
2638	tp->snd_up = tp->write_seq;
2639	tp->snd_nxt = tp->write_seq;
2640
2641	if (likely(!tp->repair))
2642		tp->rcv_nxt = 0;
 
 
2643	tp->rcv_wup = tp->rcv_nxt;
2644	tp->copied_seq = tp->rcv_nxt;
2645
2646	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2647	inet_csk(sk)->icsk_retransmits = 0;
2648	tcp_clear_retrans(tp);
2649}
2650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2651/* Build a SYN and send it off. */
2652int tcp_connect(struct sock *sk)
2653{
2654	struct tcp_sock *tp = tcp_sk(sk);
2655	struct sk_buff *buff;
2656	int err;
2657
2658	tcp_connect_init(sk);
2659
2660	buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
2661	if (unlikely(buff == NULL))
2662		return -ENOBUFS;
 
2663
2664	/* Reserve space for headers. */
2665	skb_reserve(buff, MAX_TCP_HEADER);
 
2666
2667	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
2668	TCP_ECN_send_syn(sk, buff);
2669
2670	/* Send it off. */
2671	TCP_SKB_CB(buff)->when = tcp_time_stamp;
2672	tp->retrans_stamp = TCP_SKB_CB(buff)->when;
2673	skb_header_release(buff);
2674	__tcp_add_write_queue_tail(sk, buff);
2675	sk->sk_wmem_queued += buff->truesize;
2676	sk_mem_charge(sk, buff->truesize);
2677	tp->packets_out += tcp_skb_pcount(buff);
2678	err = tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
2679	if (err == -ECONNREFUSED)
2680		return err;
2681
2682	/* We change tp->snd_nxt after the tcp_transmit_skb() call
2683	 * in order to make this packet get counted in tcpOutSegs.
2684	 */
2685	tp->snd_nxt = tp->write_seq;
2686	tp->pushed_seq = tp->write_seq;
2687	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
2688
2689	/* Timer for repeating the SYN until an answer. */
2690	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2691				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2692	return 0;
2693}
2694EXPORT_SYMBOL(tcp_connect);
2695
2696/* Send out a delayed ack, the caller does the policy checking
2697 * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
2698 * for details.
2699 */
2700void tcp_send_delayed_ack(struct sock *sk)
2701{
2702	struct inet_connection_sock *icsk = inet_csk(sk);
2703	int ato = icsk->icsk_ack.ato;
2704	unsigned long timeout;
2705
 
 
2706	if (ato > TCP_DELACK_MIN) {
2707		const struct tcp_sock *tp = tcp_sk(sk);
2708		int max_ato = HZ / 2;
2709
2710		if (icsk->icsk_ack.pingpong ||
2711		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
2712			max_ato = TCP_DELACK_MAX;
2713
2714		/* Slow path, intersegment interval is "high". */
2715
2716		/* If some rtt estimate is known, use it to bound delayed ack.
2717		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
2718		 * directly.
2719		 */
2720		if (tp->srtt) {
2721			int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
 
2722
2723			if (rtt < max_ato)
2724				max_ato = rtt;
2725		}
2726
2727		ato = min(ato, max_ato);
2728	}
2729
2730	/* Stay within the limit we were given */
2731	timeout = jiffies + ato;
2732
2733	/* Use new timeout only if there wasn't a older one earlier. */
2734	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
2735		/* If delack timer was blocked or is about to expire,
2736		 * send ACK now.
2737		 */
2738		if (icsk->icsk_ack.blocked ||
2739		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
2740			tcp_send_ack(sk);
2741			return;
2742		}
2743
2744		if (!time_before(timeout, icsk->icsk_ack.timeout))
2745			timeout = icsk->icsk_ack.timeout;
2746	}
2747	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
2748	icsk->icsk_ack.timeout = timeout;
2749	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
2750}
2751
2752/* This routine sends an ack and also updates the window. */
2753void tcp_send_ack(struct sock *sk)
2754{
2755	struct sk_buff *buff;
2756
2757	/* If we have been reset, we may not send again. */
2758	if (sk->sk_state == TCP_CLOSE)
2759		return;
2760
 
 
2761	/* We are not putting this on the write queue, so
2762	 * tcp_transmit_skb() will set the ownership to this
2763	 * sock.
2764	 */
2765	buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2766	if (buff == NULL) {
 
2767		inet_csk_schedule_ack(sk);
2768		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
2769		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
2770					  TCP_DELACK_MAX, TCP_RTO_MAX);
2771		return;
2772	}
2773
2774	/* Reserve space for headers and prepare control bits. */
2775	skb_reserve(buff, MAX_TCP_HEADER);
2776	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
2777
 
 
 
 
 
 
 
 
2778	/* Send it off, this clears delayed acks for us. */
2779	TCP_SKB_CB(buff)->when = tcp_time_stamp;
2780	tcp_transmit_skb(sk, buff, 0, GFP_ATOMIC);
2781}
 
2782
2783/* This routine sends a packet with an out of date sequence
2784 * number. It assumes the other end will try to ack it.
2785 *
2786 * Question: what should we make while urgent mode?
2787 * 4.4BSD forces sending single byte of data. We cannot send
2788 * out of window data, because we have SND.NXT==SND.MAX...
2789 *
2790 * Current solution: to send TWO zero-length segments in urgent mode:
2791 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
2792 * out-of-date with SND.UNA-1 to probe window.
2793 */
2794static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
2795{
2796	struct tcp_sock *tp = tcp_sk(sk);
2797	struct sk_buff *skb;
2798
2799	/* We don't queue it, tcp_transmit_skb() sets ownership. */
2800	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2801	if (skb == NULL)
 
2802		return -1;
2803
2804	/* Reserve space for headers and set control bits. */
2805	skb_reserve(skb, MAX_TCP_HEADER);
2806	/* Use a previous sequence.  This should cause the other
2807	 * end to send an ack.  Don't queue or clone SKB, just
2808	 * send it.
2809	 */
2810	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
2811	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2812	return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
 
2813}
2814
2815void tcp_send_window_probe(struct sock *sk)
2816{
2817	if (sk->sk_state == TCP_ESTABLISHED) {
2818		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
2819		tcp_sk(sk)->snd_nxt = tcp_sk(sk)->write_seq;
2820		tcp_xmit_probe_skb(sk, 0);
2821	}
2822}
2823
2824/* Initiate keepalive or window probe from timer. */
2825int tcp_write_wakeup(struct sock *sk)
2826{
2827	struct tcp_sock *tp = tcp_sk(sk);
2828	struct sk_buff *skb;
2829
2830	if (sk->sk_state == TCP_CLOSE)
2831		return -1;
2832
2833	if ((skb = tcp_send_head(sk)) != NULL &&
2834	    before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
2835		int err;
2836		unsigned int mss = tcp_current_mss(sk);
2837		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2838
2839		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
2840			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
2841
2842		/* We are probing the opening of a window
2843		 * but the window size is != 0
2844		 * must have been a result SWS avoidance ( sender )
2845		 */
2846		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
2847		    skb->len > mss) {
2848			seg_size = min(seg_size, mss);
2849			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
2850			if (tcp_fragment(sk, skb, seg_size, mss))
2851				return -1;
2852		} else if (!tcp_skb_pcount(skb))
2853			tcp_set_skb_tso_segs(sk, skb, mss);
2854
2855		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
2856		TCP_SKB_CB(skb)->when = tcp_time_stamp;
2857		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2858		if (!err)
2859			tcp_event_new_data_sent(sk, skb);
2860		return err;
2861	} else {
2862		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
2863			tcp_xmit_probe_skb(sk, 1);
2864		return tcp_xmit_probe_skb(sk, 0);
2865	}
2866}
2867
2868/* A window probe timeout has occurred.  If window is not closed send
2869 * a partial packet else a zero probe.
2870 */
2871void tcp_send_probe0(struct sock *sk)
2872{
2873	struct inet_connection_sock *icsk = inet_csk(sk);
2874	struct tcp_sock *tp = tcp_sk(sk);
 
 
2875	int err;
2876
2877	err = tcp_write_wakeup(sk);
2878
2879	if (tp->packets_out || !tcp_send_head(sk)) {
2880		/* Cancel probe timer, if it is not required. */
2881		icsk->icsk_probes_out = 0;
2882		icsk->icsk_backoff = 0;
2883		return;
2884	}
2885
2886	if (err <= 0) {
2887		if (icsk->icsk_backoff < sysctl_tcp_retries2)
2888			icsk->icsk_backoff++;
2889		icsk->icsk_probes_out++;
2890		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2891					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2892					  TCP_RTO_MAX);
2893	} else {
2894		/* If packet was not sent due to local congestion,
2895		 * do not backoff and do not remember icsk_probes_out.
2896		 * Let local senders to fight for local resources.
2897		 *
2898		 * Use accumulated backoff yet.
2899		 */
2900		if (!icsk->icsk_probes_out)
2901			icsk->icsk_probes_out = 1;
2902		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2903					  min(icsk->icsk_rto << icsk->icsk_backoff,
2904					      TCP_RESOURCE_PROBE_INTERVAL),
2905					  TCP_RTO_MAX);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2906	}
 
2907}
v4.6
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *		Jorge Cwik, <jorge@laser.satlink.net>
  19 */
  20
  21/*
  22 * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
  23 *				:	Fragmentation on mtu decrease
  24 *				:	Segment collapse on retransmit
  25 *				:	AF independence
  26 *
  27 *		Linus Torvalds	:	send_delayed_ack
  28 *		David S. Miller	:	Charge memory using the right skb
  29 *					during syn/ack processing.
  30 *		David S. Miller :	Output engine completely rewritten.
  31 *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
  32 *		Cacophonix Gaul :	draft-minshall-nagle-01
  33 *		J Hadi Salim	:	ECN support
  34 *
  35 */
  36
  37#define pr_fmt(fmt) "TCP: " fmt
  38
  39#include <net/tcp.h>
  40
  41#include <linux/compiler.h>
  42#include <linux/gfp.h>
  43#include <linux/module.h>
  44
  45/* People can turn this off for buggy TCP's found in printers etc. */
  46int sysctl_tcp_retrans_collapse __read_mostly = 1;
  47
  48/* People can turn this on to work with those rare, broken TCPs that
  49 * interpret the window field as a signed quantity.
  50 */
  51int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
  52
  53/* Default TSQ limit of four TSO segments */
  54int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
  55
  56/* This limits the percentage of the congestion window which we
  57 * will allow a single TSO frame to consume.  Building TSO frames
  58 * which are too large can cause TCP streams to be bursty.
  59 */
  60int sysctl_tcp_tso_win_divisor __read_mostly = 3;
  61
 
 
 
  62/* By default, RFC2861 behavior.  */
  63int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
  64
  65static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  66			   int push_one, gfp_t gfp);
 
  67
  68/* Account for new data that has been sent to the network. */
  69static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
  70{
  71	struct inet_connection_sock *icsk = inet_csk(sk);
  72	struct tcp_sock *tp = tcp_sk(sk);
  73	unsigned int prior_packets = tp->packets_out;
  74
  75	tcp_advance_send_head(sk, skb);
  76	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
  77
 
 
 
 
  78	tp->packets_out += tcp_skb_pcount(skb);
  79	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  80	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  81		tcp_rearm_rto(sk);
  82	}
  83
  84	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
  85		      tcp_skb_pcount(skb));
  86}
  87
  88/* SND.NXT, if window was not shrunk.
  89 * If window has been shrunk, what should we make? It is not clear at all.
  90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
  91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
  92 * invalid. OK, let's make this for now:
  93 */
  94static inline __u32 tcp_acceptable_seq(const struct sock *sk)
  95{
  96	const struct tcp_sock *tp = tcp_sk(sk);
  97
  98	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
  99		return tp->snd_nxt;
 100	else
 101		return tcp_wnd_end(tp);
 102}
 103
 104/* Calculate mss to advertise in SYN segment.
 105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
 106 *
 107 * 1. It is independent of path mtu.
 108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
 109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
 110 *    attached devices, because some buggy hosts are confused by
 111 *    large MSS.
 112 * 4. We do not make 3, we advertise MSS, calculated from first
 113 *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
 114 *    This may be overridden via information stored in routing table.
 115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
 116 *    probably even Jumbo".
 117 */
 118static __u16 tcp_advertise_mss(struct sock *sk)
 119{
 120	struct tcp_sock *tp = tcp_sk(sk);
 121	const struct dst_entry *dst = __sk_dst_get(sk);
 122	int mss = tp->advmss;
 123
 124	if (dst) {
 125		unsigned int metric = dst_metric_advmss(dst);
 126
 127		if (metric < mss) {
 128			mss = metric;
 129			tp->advmss = mss;
 130		}
 131	}
 132
 133	return (__u16)mss;
 134}
 135
 136/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
 137 * This is the first part of cwnd validation mechanism.
 138 */
 139void tcp_cwnd_restart(struct sock *sk, s32 delta)
 140{
 141	struct tcp_sock *tp = tcp_sk(sk);
 142	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
 
 143	u32 cwnd = tp->snd_cwnd;
 144
 145	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
 146
 147	tp->snd_ssthresh = tcp_current_ssthresh(sk);
 148	restart_cwnd = min(restart_cwnd, cwnd);
 149
 150	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
 151		cwnd >>= 1;
 152	tp->snd_cwnd = max(cwnd, restart_cwnd);
 153	tp->snd_cwnd_stamp = tcp_time_stamp;
 154	tp->snd_cwnd_used = 0;
 155}
 156
 157/* Congestion state accounting after a packet has been sent. */
 158static void tcp_event_data_sent(struct tcp_sock *tp,
 159				struct sock *sk)
 160{
 161	struct inet_connection_sock *icsk = inet_csk(sk);
 162	const u32 now = tcp_time_stamp;
 163
 164	if (tcp_packets_in_flight(tp) == 0)
 165		tcp_ca_event(sk, CA_EVENT_TX_START);
 
 166
 167	tp->lsndtime = now;
 168
 169	/* If it is a reply for ato after last received
 170	 * packet, enter pingpong mode.
 171	 */
 172	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
 173		icsk->icsk_ack.pingpong = 1;
 174}
 175
 176/* Account for an ACK we sent. */
 177static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
 178{
 179	tcp_dec_quickack_mode(sk, pkts);
 180	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
 181}
 182
 183
 184u32 tcp_default_init_rwnd(u32 mss)
 185{
 186	/* Initial receive window should be twice of TCP_INIT_CWND to
 187	 * enable proper sending of new unsent data during fast recovery
 188	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
 189	 * limit when mss is larger than 1460.
 190	 */
 191	u32 init_rwnd = TCP_INIT_CWND * 2;
 192
 193	if (mss > 1460)
 194		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
 195	return init_rwnd;
 196}
 197
 198/* Determine a window scaling and initial window to offer.
 199 * Based on the assumption that the given amount of space
 200 * will be offered. Store the results in the tp structure.
 201 * NOTE: for smooth operation initial space offering should
 202 * be a multiple of mss if possible. We assume here that mss >= 1.
 203 * This MUST be enforced by all callers.
 204 */
 205void tcp_select_initial_window(int __space, __u32 mss,
 206			       __u32 *rcv_wnd, __u32 *window_clamp,
 207			       int wscale_ok, __u8 *rcv_wscale,
 208			       __u32 init_rcv_wnd)
 209{
 210	unsigned int space = (__space < 0 ? 0 : __space);
 211
 212	/* If no clamp set the clamp to the max possible scaled window */
 213	if (*window_clamp == 0)
 214		(*window_clamp) = (65535 << 14);
 215	space = min(*window_clamp, space);
 216
 217	/* Quantize space offering to a multiple of mss if possible. */
 218	if (space > mss)
 219		space = (space / mss) * mss;
 220
 221	/* NOTE: offering an initial window larger than 32767
 222	 * will break some buggy TCP stacks. If the admin tells us
 223	 * it is likely we could be speaking with such a buggy stack
 224	 * we will truncate our initial window offering to 32K-1
 225	 * unless the remote has sent us a window scaling option,
 226	 * which we interpret as a sign the remote TCP is not
 227	 * misinterpreting the window field as a signed quantity.
 228	 */
 229	if (sysctl_tcp_workaround_signed_windows)
 230		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
 231	else
 232		(*rcv_wnd) = space;
 233
 234	(*rcv_wscale) = 0;
 235	if (wscale_ok) {
 236		/* Set window scaling on max possible window
 237		 * See RFC1323 for an explanation of the limit to 14
 238		 */
 239		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
 240		space = min_t(u32, space, *window_clamp);
 241		while (space > 65535 && (*rcv_wscale) < 14) {
 242			space >>= 1;
 243			(*rcv_wscale)++;
 244		}
 245	}
 246
 
 
 
 
 247	if (mss > (1 << *rcv_wscale)) {
 248		if (!init_rcv_wnd) /* Use default unless specified otherwise */
 249			init_rcv_wnd = tcp_default_init_rwnd(mss);
 250		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
 
 
 
 
 
 
 
 
 251	}
 252
 253	/* Set the clamp no higher than max representable value */
 254	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
 255}
 256EXPORT_SYMBOL(tcp_select_initial_window);
 257
 258/* Chose a new window to advertise, update state in tcp_sock for the
 259 * socket, and return result with RFC1323 scaling applied.  The return
 260 * value can be stuffed directly into th->window for an outgoing
 261 * frame.
 262 */
 263static u16 tcp_select_window(struct sock *sk)
 264{
 265	struct tcp_sock *tp = tcp_sk(sk);
 266	u32 old_win = tp->rcv_wnd;
 267	u32 cur_win = tcp_receive_window(tp);
 268	u32 new_win = __tcp_select_window(sk);
 269
 270	/* Never shrink the offered window */
 271	if (new_win < cur_win) {
 272		/* Danger Will Robinson!
 273		 * Don't update rcv_wup/rcv_wnd here or else
 274		 * we will not be able to advertise a zero
 275		 * window in time.  --DaveM
 276		 *
 277		 * Relax Will Robinson.
 278		 */
 279		if (new_win == 0)
 280			NET_INC_STATS(sock_net(sk),
 281				      LINUX_MIB_TCPWANTZEROWINDOWADV);
 282		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
 283	}
 284	tp->rcv_wnd = new_win;
 285	tp->rcv_wup = tp->rcv_nxt;
 286
 287	/* Make sure we do not exceed the maximum possible
 288	 * scaled window.
 289	 */
 290	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
 291		new_win = min(new_win, MAX_TCP_WINDOW);
 292	else
 293		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
 294
 295	/* RFC1323 scaling applied */
 296	new_win >>= tp->rx_opt.rcv_wscale;
 297
 298	/* If we advertise zero window, disable fast path. */
 299	if (new_win == 0) {
 300		tp->pred_flags = 0;
 301		if (old_win)
 302			NET_INC_STATS(sock_net(sk),
 303				      LINUX_MIB_TCPTOZEROWINDOWADV);
 304	} else if (old_win == 0) {
 305		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
 306	}
 307
 308	return new_win;
 309}
 310
 311/* Packet ECN state for a SYN-ACK */
 312static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
 313{
 314	const struct tcp_sock *tp = tcp_sk(sk);
 315
 316	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
 317	if (!(tp->ecn_flags & TCP_ECN_OK))
 318		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
 319	else if (tcp_ca_needs_ecn(sk))
 320		INET_ECN_xmit(sk);
 321}
 322
 323/* Packet ECN state for a SYN.  */
 324static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
 325{
 326	struct tcp_sock *tp = tcp_sk(sk);
 327	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
 328		       tcp_ca_needs_ecn(sk);
 329
 330	if (!use_ecn) {
 331		const struct dst_entry *dst = __sk_dst_get(sk);
 332
 333		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
 334			use_ecn = true;
 335	}
 336
 337	tp->ecn_flags = 0;
 338
 339	if (use_ecn) {
 340		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
 341		tp->ecn_flags = TCP_ECN_OK;
 342		if (tcp_ca_needs_ecn(sk))
 343			INET_ECN_xmit(sk);
 344	}
 345}
 346
 347static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
 348{
 349	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
 350		/* tp->ecn_flags are cleared at a later point in time when
 351		 * SYN ACK is ultimatively being received.
 352		 */
 353		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
 354}
 355
 356static void
 357tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
 358{
 359	if (inet_rsk(req)->ecn_ok)
 360		th->ece = 1;
 361}
 362
 363/* Set up ECN state for a packet on a ESTABLISHED socket that is about to
 364 * be sent.
 365 */
 366static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
 367				int tcp_header_len)
 368{
 369	struct tcp_sock *tp = tcp_sk(sk);
 370
 371	if (tp->ecn_flags & TCP_ECN_OK) {
 372		/* Not-retransmitted data segment: set ECT and inject CWR. */
 373		if (skb->len != tcp_header_len &&
 374		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
 375			INET_ECN_xmit(sk);
 376			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
 377				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
 378				tcp_hdr(skb)->cwr = 1;
 379				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
 380			}
 381		} else if (!tcp_ca_needs_ecn(sk)) {
 382			/* ACK or retransmitted segment: clear ECT|CE */
 383			INET_ECN_dontxmit(sk);
 384		}
 385		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
 386			tcp_hdr(skb)->ece = 1;
 387	}
 388}
 389
 390/* Constructs common control bits of non-data skb. If SYN/FIN is present,
 391 * auto increment end seqno.
 392 */
 393static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
 394{
 395	skb->ip_summed = CHECKSUM_PARTIAL;
 396	skb->csum = 0;
 397
 398	TCP_SKB_CB(skb)->tcp_flags = flags;
 399	TCP_SKB_CB(skb)->sacked = 0;
 400
 401	tcp_skb_pcount_set(skb, 1);
 
 
 402
 403	TCP_SKB_CB(skb)->seq = seq;
 404	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
 405		seq++;
 406	TCP_SKB_CB(skb)->end_seq = seq;
 407}
 408
 409static inline bool tcp_urg_mode(const struct tcp_sock *tp)
 410{
 411	return tp->snd_una != tp->snd_up;
 412}
 413
 414#define OPTION_SACK_ADVERTISE	(1 << 0)
 415#define OPTION_TS		(1 << 1)
 416#define OPTION_MD5		(1 << 2)
 417#define OPTION_WSCALE		(1 << 3)
 418#define OPTION_FAST_OPEN_COOKIE	(1 << 8)
 419
 420struct tcp_out_options {
 421	u16 options;		/* bit field of OPTION_* */
 422	u16 mss;		/* 0 to disable */
 423	u8 ws;			/* window scale, 0 to disable */
 424	u8 num_sack_blocks;	/* number of SACK blocks to include */
 425	u8 hash_size;		/* bytes in hash_location */
 
 
 426	__u8 *hash_location;	/* temporary pointer, overloaded */
 427	__u32 tsval, tsecr;	/* need to include OPTION_TS */
 428	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
 429};
 430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 431/* Write previously computed TCP options to the packet.
 432 *
 433 * Beware: Something in the Internet is very sensitive to the ordering of
 434 * TCP options, we learned this through the hard way, so be careful here.
 435 * Luckily we can at least blame others for their non-compliance but from
 436 * inter-operability perspective it seems that we're somewhat stuck with
 437 * the ordering which we have been using if we want to keep working with
 438 * those broken things (not that it currently hurts anybody as there isn't
 439 * particular reason why the ordering would need to be changed).
 440 *
 441 * At least SACK_PERM as the first option is known to lead to a disaster
 442 * (but it may well be that other scenarios fail similarly).
 443 */
 444static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
 445			      struct tcp_out_options *opts)
 446{
 447	u16 options = opts->options;	/* mungable copy */
 448
 
 
 
 
 
 
 
 
 449	if (unlikely(OPTION_MD5 & options)) {
 450		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 451			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
 
 
 
 
 
 
 
 
 
 
 452		/* overload cookie hash location */
 453		opts->hash_location = (__u8 *)ptr;
 454		ptr += 4;
 455	}
 456
 457	if (unlikely(opts->mss)) {
 458		*ptr++ = htonl((TCPOPT_MSS << 24) |
 459			       (TCPOLEN_MSS << 16) |
 460			       opts->mss);
 461	}
 462
 463	if (likely(OPTION_TS & options)) {
 464		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 465			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
 466				       (TCPOLEN_SACK_PERM << 16) |
 467				       (TCPOPT_TIMESTAMP << 8) |
 468				       TCPOLEN_TIMESTAMP);
 469			options &= ~OPTION_SACK_ADVERTISE;
 470		} else {
 471			*ptr++ = htonl((TCPOPT_NOP << 24) |
 472				       (TCPOPT_NOP << 16) |
 473				       (TCPOPT_TIMESTAMP << 8) |
 474				       TCPOLEN_TIMESTAMP);
 475		}
 476		*ptr++ = htonl(opts->tsval);
 477		*ptr++ = htonl(opts->tsecr);
 478	}
 479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 480	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 481		*ptr++ = htonl((TCPOPT_NOP << 24) |
 482			       (TCPOPT_NOP << 16) |
 483			       (TCPOPT_SACK_PERM << 8) |
 484			       TCPOLEN_SACK_PERM);
 485	}
 486
 487	if (unlikely(OPTION_WSCALE & options)) {
 488		*ptr++ = htonl((TCPOPT_NOP << 24) |
 489			       (TCPOPT_WINDOW << 16) |
 490			       (TCPOLEN_WINDOW << 8) |
 491			       opts->ws);
 492	}
 493
 494	if (unlikely(opts->num_sack_blocks)) {
 495		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
 496			tp->duplicate_sack : tp->selective_acks;
 497		int this_sack;
 498
 499		*ptr++ = htonl((TCPOPT_NOP  << 24) |
 500			       (TCPOPT_NOP  << 16) |
 501			       (TCPOPT_SACK <<  8) |
 502			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
 503						     TCPOLEN_SACK_PERBLOCK)));
 504
 505		for (this_sack = 0; this_sack < opts->num_sack_blocks;
 506		     ++this_sack) {
 507			*ptr++ = htonl(sp[this_sack].start_seq);
 508			*ptr++ = htonl(sp[this_sack].end_seq);
 509		}
 510
 511		tp->rx_opt.dsack = 0;
 512	}
 513
 514	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
 515		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
 516		u8 *p = (u8 *)ptr;
 517		u32 len; /* Fast Open option length */
 518
 519		if (foc->exp) {
 520			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
 521			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
 522				     TCPOPT_FASTOPEN_MAGIC);
 523			p += TCPOLEN_EXP_FASTOPEN_BASE;
 524		} else {
 525			len = TCPOLEN_FASTOPEN_BASE + foc->len;
 526			*p++ = TCPOPT_FASTOPEN;
 527			*p++ = len;
 528		}
 529
 530		memcpy(p, foc->val, foc->len);
 531		if ((len & 3) == 2) {
 532			p[foc->len] = TCPOPT_NOP;
 533			p[foc->len + 1] = TCPOPT_NOP;
 534		}
 535		ptr += (len + 3) >> 2;
 536	}
 537}
 538
 539/* Compute TCP options for SYN packets. This is not the final
 540 * network wire format yet.
 541 */
 542static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
 543				struct tcp_out_options *opts,
 544				struct tcp_md5sig_key **md5)
 545{
 546	struct tcp_sock *tp = tcp_sk(sk);
 
 547	unsigned int remaining = MAX_TCP_OPTION_SPACE;
 548	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
 
 
 549
 550#ifdef CONFIG_TCP_MD5SIG
 551	*md5 = tp->af_specific->md5_lookup(sk, sk);
 552	if (*md5) {
 553		opts->options |= OPTION_MD5;
 554		remaining -= TCPOLEN_MD5SIG_ALIGNED;
 555	}
 556#else
 557	*md5 = NULL;
 558#endif
 559
 560	/* We always get an MSS option.  The option bytes which will be seen in
 561	 * normal data packets should timestamps be used, must be in the MSS
 562	 * advertised.  But we subtract them from tp->mss_cache so that
 563	 * calculations in tcp_sendmsg are simpler etc.  So account for this
 564	 * fact here if necessary.  If we don't do this correctly, as a
 565	 * receiver we won't recognize data packets as being full sized when we
 566	 * should, and thus we won't abide by the delayed ACK rules correctly.
 567	 * SACKs don't matter, we never delay an ACK when we have any of those
 568	 * going out.  */
 569	opts->mss = tcp_advertise_mss(sk);
 570	remaining -= TCPOLEN_MSS_ALIGNED;
 571
 572	if (likely(sysctl_tcp_timestamps && !*md5)) {
 573		opts->options |= OPTION_TS;
 574		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
 575		opts->tsecr = tp->rx_opt.ts_recent;
 576		remaining -= TCPOLEN_TSTAMP_ALIGNED;
 577	}
 578	if (likely(sysctl_tcp_window_scaling)) {
 579		opts->ws = tp->rx_opt.rcv_wscale;
 580		opts->options |= OPTION_WSCALE;
 581		remaining -= TCPOLEN_WSCALE_ALIGNED;
 582	}
 583	if (likely(sysctl_tcp_sack)) {
 584		opts->options |= OPTION_SACK_ADVERTISE;
 585		if (unlikely(!(OPTION_TS & opts->options)))
 586			remaining -= TCPOLEN_SACKPERM_ALIGNED;
 587	}
 588
 589	if (fastopen && fastopen->cookie.len >= 0) {
 590		u32 need = fastopen->cookie.len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 591
 592		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
 593					       TCPOLEN_FASTOPEN_BASE;
 594		need = (need + 3) & ~3U;  /* Align to 32 bits */
 595		if (remaining >= need) {
 596			opts->options |= OPTION_FAST_OPEN_COOKIE;
 597			opts->fastopen_cookie = &fastopen->cookie;
 598			remaining -= need;
 599			tp->syn_fastopen = 1;
 600			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
 601		}
 602	}
 603
 604	return MAX_TCP_OPTION_SPACE - remaining;
 605}
 606
 607/* Set up TCP options for SYN-ACKs. */
 608static unsigned int tcp_synack_options(struct request_sock *req,
 609				       unsigned int mss, struct sk_buff *skb,
 610				       struct tcp_out_options *opts,
 611				       const struct tcp_md5sig_key *md5,
 612				       struct tcp_fastopen_cookie *foc)
 
 613{
 614	struct inet_request_sock *ireq = inet_rsk(req);
 615	unsigned int remaining = MAX_TCP_OPTION_SPACE;
 
 
 
 616
 617#ifdef CONFIG_TCP_MD5SIG
 618	if (md5) {
 
 619		opts->options |= OPTION_MD5;
 620		remaining -= TCPOLEN_MD5SIG_ALIGNED;
 621
 622		/* We can't fit any SACK blocks in a packet with MD5 + TS
 623		 * options. There was discussion about disabling SACK
 624		 * rather than TS in order to fit in better with old,
 625		 * buggy kernels, but that was deemed to be unnecessary.
 626		 */
 627		ireq->tstamp_ok &= !ireq->sack_ok;
 628	}
 
 
 629#endif
 630
 631	/* We always send an MSS option. */
 632	opts->mss = mss;
 633	remaining -= TCPOLEN_MSS_ALIGNED;
 634
 635	if (likely(ireq->wscale_ok)) {
 636		opts->ws = ireq->rcv_wscale;
 637		opts->options |= OPTION_WSCALE;
 638		remaining -= TCPOLEN_WSCALE_ALIGNED;
 639	}
 640	if (likely(ireq->tstamp_ok)) {
 641		opts->options |= OPTION_TS;
 642		opts->tsval = tcp_skb_timestamp(skb);
 643		opts->tsecr = req->ts_recent;
 644		remaining -= TCPOLEN_TSTAMP_ALIGNED;
 645	}
 646	if (likely(ireq->sack_ok)) {
 647		opts->options |= OPTION_SACK_ADVERTISE;
 648		if (unlikely(!ireq->tstamp_ok))
 649			remaining -= TCPOLEN_SACKPERM_ALIGNED;
 650	}
 651	if (foc != NULL && foc->len >= 0) {
 652		u32 need = foc->len;
 653
 654		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
 655				   TCPOLEN_FASTOPEN_BASE;
 656		need = (need + 3) & ~3U;  /* Align to 32 bits */
 657		if (remaining >= need) {
 658			opts->options |= OPTION_FAST_OPEN_COOKIE;
 659			opts->fastopen_cookie = foc;
 
 
 
 
 
 
 
 
 
 660			remaining -= need;
 
 
 
 
 661		}
 662	}
 663
 664	return MAX_TCP_OPTION_SPACE - remaining;
 665}
 666
 667/* Compute TCP options for ESTABLISHED sockets. This is not the
 668 * final wire format yet.
 669 */
 670static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
 671					struct tcp_out_options *opts,
 672					struct tcp_md5sig_key **md5)
 673{
 
 674	struct tcp_sock *tp = tcp_sk(sk);
 675	unsigned int size = 0;
 676	unsigned int eff_sacks;
 677
 678	opts->options = 0;
 679
 680#ifdef CONFIG_TCP_MD5SIG
 681	*md5 = tp->af_specific->md5_lookup(sk, sk);
 682	if (unlikely(*md5)) {
 683		opts->options |= OPTION_MD5;
 684		size += TCPOLEN_MD5SIG_ALIGNED;
 685	}
 686#else
 687	*md5 = NULL;
 688#endif
 689
 690	if (likely(tp->rx_opt.tstamp_ok)) {
 691		opts->options |= OPTION_TS;
 692		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
 693		opts->tsecr = tp->rx_opt.ts_recent;
 694		size += TCPOLEN_TSTAMP_ALIGNED;
 695	}
 696
 697	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
 698	if (unlikely(eff_sacks)) {
 699		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
 700		opts->num_sack_blocks =
 701			min_t(unsigned int, eff_sacks,
 702			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
 703			      TCPOLEN_SACK_PERBLOCK);
 704		size += TCPOLEN_SACK_BASE_ALIGNED +
 705			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
 706	}
 707
 708	return size;
 709}
 710
 711
 712/* TCP SMALL QUEUES (TSQ)
 713 *
 714 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
 715 * to reduce RTT and bufferbloat.
 716 * We do this using a special skb destructor (tcp_wfree).
 717 *
 718 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
 719 * needs to be reallocated in a driver.
 720 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
 721 *
 722 * Since transmit from skb destructor is forbidden, we use a tasklet
 723 * to process all sockets that eventually need to send more skbs.
 724 * We use one tasklet per cpu, with its own queue of sockets.
 725 */
 726struct tsq_tasklet {
 727	struct tasklet_struct	tasklet;
 728	struct list_head	head; /* queue of tcp sockets */
 729};
 730static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
 731
 732static void tcp_tsq_handler(struct sock *sk)
 733{
 734	if ((1 << sk->sk_state) &
 735	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
 736	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK))
 737		tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
 738			       0, GFP_ATOMIC);
 739}
 740/*
 741 * One tasklet per cpu tries to send more skbs.
 742 * We run in tasklet context but need to disable irqs when
 743 * transferring tsq->head because tcp_wfree() might
 744 * interrupt us (non NAPI drivers)
 745 */
 746static void tcp_tasklet_func(unsigned long data)
 747{
 748	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
 749	LIST_HEAD(list);
 750	unsigned long flags;
 751	struct list_head *q, *n;
 752	struct tcp_sock *tp;
 753	struct sock *sk;
 754
 755	local_irq_save(flags);
 756	list_splice_init(&tsq->head, &list);
 757	local_irq_restore(flags);
 758
 759	list_for_each_safe(q, n, &list) {
 760		tp = list_entry(q, struct tcp_sock, tsq_node);
 761		list_del(&tp->tsq_node);
 762
 763		sk = (struct sock *)tp;
 764		bh_lock_sock(sk);
 765
 766		if (!sock_owned_by_user(sk)) {
 767			tcp_tsq_handler(sk);
 768		} else {
 769			/* defer the work to tcp_release_cb() */
 770			set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
 771		}
 772		bh_unlock_sock(sk);
 773
 774		clear_bit(TSQ_QUEUED, &tp->tsq_flags);
 775		sk_free(sk);
 776	}
 777}
 778
 779#define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) |		\
 780			  (1UL << TCP_WRITE_TIMER_DEFERRED) |	\
 781			  (1UL << TCP_DELACK_TIMER_DEFERRED) |	\
 782			  (1UL << TCP_MTU_REDUCED_DEFERRED))
 783/**
 784 * tcp_release_cb - tcp release_sock() callback
 785 * @sk: socket
 786 *
 787 * called from release_sock() to perform protocol dependent
 788 * actions before socket release.
 789 */
 790void tcp_release_cb(struct sock *sk)
 791{
 792	struct tcp_sock *tp = tcp_sk(sk);
 793	unsigned long flags, nflags;
 794
 795	/* perform an atomic operation only if at least one flag is set */
 796	do {
 797		flags = tp->tsq_flags;
 798		if (!(flags & TCP_DEFERRED_ALL))
 799			return;
 800		nflags = flags & ~TCP_DEFERRED_ALL;
 801	} while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
 802
 803	if (flags & (1UL << TCP_TSQ_DEFERRED))
 804		tcp_tsq_handler(sk);
 805
 806	/* Here begins the tricky part :
 807	 * We are called from release_sock() with :
 808	 * 1) BH disabled
 809	 * 2) sk_lock.slock spinlock held
 810	 * 3) socket owned by us (sk->sk_lock.owned == 1)
 811	 *
 812	 * But following code is meant to be called from BH handlers,
 813	 * so we should keep BH disabled, but early release socket ownership
 814	 */
 815	sock_release_ownership(sk);
 816
 817	if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
 818		tcp_write_timer_handler(sk);
 819		__sock_put(sk);
 820	}
 821	if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
 822		tcp_delack_timer_handler(sk);
 823		__sock_put(sk);
 824	}
 825	if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
 826		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
 827		__sock_put(sk);
 828	}
 829}
 830EXPORT_SYMBOL(tcp_release_cb);
 831
 832void __init tcp_tasklet_init(void)
 833{
 834	int i;
 835
 836	for_each_possible_cpu(i) {
 837		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
 838
 839		INIT_LIST_HEAD(&tsq->head);
 840		tasklet_init(&tsq->tasklet,
 841			     tcp_tasklet_func,
 842			     (unsigned long)tsq);
 843	}
 844}
 845
 846/*
 847 * Write buffer destructor automatically called from kfree_skb.
 848 * We can't xmit new skbs from this context, as we might already
 849 * hold qdisc lock.
 850 */
 851void tcp_wfree(struct sk_buff *skb)
 852{
 853	struct sock *sk = skb->sk;
 854	struct tcp_sock *tp = tcp_sk(sk);
 855	int wmem;
 856
 857	/* Keep one reference on sk_wmem_alloc.
 858	 * Will be released by sk_free() from here or tcp_tasklet_func()
 859	 */
 860	wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
 861
 862	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
 863	 * Wait until our queues (qdisc + devices) are drained.
 864	 * This gives :
 865	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
 866	 * - chance for incoming ACK (processed by another cpu maybe)
 867	 *   to migrate this flow (skb->ooo_okay will be eventually set)
 868	 */
 869	if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
 870		goto out;
 871
 872	if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
 873	    !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
 874		unsigned long flags;
 875		struct tsq_tasklet *tsq;
 876
 877		/* queue this socket to tasklet queue */
 878		local_irq_save(flags);
 879		tsq = this_cpu_ptr(&tsq_tasklet);
 880		list_add(&tp->tsq_node, &tsq->head);
 881		tasklet_schedule(&tsq->tasklet);
 882		local_irq_restore(flags);
 883		return;
 884	}
 885out:
 886	sk_free(sk);
 887}
 888
 889/* This routine actually transmits TCP packets queued in by
 890 * tcp_do_sendmsg().  This is used by both the initial
 891 * transmission and possible later retransmissions.
 892 * All SKB's seen here are completely headerless.  It is our
 893 * job to build the TCP header, and pass the packet down to
 894 * IP so it can do the same plus pass the packet off to the
 895 * device.
 896 *
 897 * We are working here with either a clone of the original
 898 * SKB, or a fresh unique copy made by the retransmit engine.
 899 */
 900static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
 901			    gfp_t gfp_mask)
 902{
 903	const struct inet_connection_sock *icsk = inet_csk(sk);
 904	struct inet_sock *inet;
 905	struct tcp_sock *tp;
 906	struct tcp_skb_cb *tcb;
 907	struct tcp_out_options opts;
 908	unsigned int tcp_options_size, tcp_header_size;
 909	struct tcp_md5sig_key *md5;
 910	struct tcphdr *th;
 911	int err;
 912
 913	BUG_ON(!skb || !tcp_skb_pcount(skb));
 914
 915	if (clone_it) {
 916		skb_mstamp_get(&skb->skb_mstamp);
 
 
 
 917
 
 918		if (unlikely(skb_cloned(skb)))
 919			skb = pskb_copy(skb, gfp_mask);
 920		else
 921			skb = skb_clone(skb, gfp_mask);
 922		if (unlikely(!skb))
 923			return -ENOBUFS;
 924	}
 925
 926	inet = inet_sk(sk);
 927	tp = tcp_sk(sk);
 928	tcb = TCP_SKB_CB(skb);
 929	memset(&opts, 0, sizeof(opts));
 930
 931	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
 932		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
 933	else
 934		tcp_options_size = tcp_established_options(sk, skb, &opts,
 935							   &md5);
 936	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
 937
 938	/* if no packet is in qdisc/device queue, then allow XPS to select
 939	 * another queue. We can be called from tcp_tsq_handler()
 940	 * which holds one reference to sk_wmem_alloc.
 941	 *
 942	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
 943	 * One way to get this would be to set skb->truesize = 2 on them.
 944	 */
 945	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
 946
 947	skb_push(skb, tcp_header_size);
 948	skb_reset_transport_header(skb);
 949
 950	skb_orphan(skb);
 951	skb->sk = sk;
 952	skb->destructor = skb_is_tcp_pure_ack(skb) ? sock_wfree : tcp_wfree;
 953	skb_set_hash_from_sk(skb, sk);
 954	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
 955
 956	/* Build TCP header and checksum it. */
 957	th = tcp_hdr(skb);
 958	th->source		= inet->inet_sport;
 959	th->dest		= inet->inet_dport;
 960	th->seq			= htonl(tcb->seq);
 961	th->ack_seq		= htonl(tp->rcv_nxt);
 962	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
 963					tcb->tcp_flags);
 964
 965	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
 966		/* RFC1323: The window in SYN & SYN/ACK segments
 967		 * is never scaled.
 968		 */
 969		th->window	= htons(min(tp->rcv_wnd, 65535U));
 970	} else {
 971		th->window	= htons(tcp_select_window(sk));
 972	}
 973	th->check		= 0;
 974	th->urg_ptr		= 0;
 975
 976	/* The urg_mode check is necessary during a below snd_una win probe */
 977	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
 978		if (before(tp->snd_up, tcb->seq + 0x10000)) {
 979			th->urg_ptr = htons(tp->snd_up - tcb->seq);
 980			th->urg = 1;
 981		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
 982			th->urg_ptr = htons(0xFFFF);
 983			th->urg = 1;
 984		}
 985	}
 986
 987	tcp_options_write((__be32 *)(th + 1), tp, &opts);
 988	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
 989	if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
 990		tcp_ecn_send(sk, skb, tcp_header_size);
 991
 992#ifdef CONFIG_TCP_MD5SIG
 993	/* Calculate the MD5 hash, as we have all we need now */
 994	if (md5) {
 995		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
 996		tp->af_specific->calc_md5_hash(opts.hash_location,
 997					       md5, sk, skb);
 998	}
 999#endif
1000
1001	icsk->icsk_af_ops->send_check(sk, skb);
1002
1003	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1004		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1005
1006	if (skb->len != tcp_header_size) {
1007		tcp_event_data_sent(tp, sk);
1008		tp->data_segs_out += tcp_skb_pcount(skb);
1009	}
1010
1011	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1012		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1013			      tcp_skb_pcount(skb));
1014
1015	tp->segs_out += tcp_skb_pcount(skb);
1016	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1017	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1018	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1019
1020	/* Our usage of tstamp should remain private */
1021	skb->tstamp.tv64 = 0;
1022
1023	/* Cleanup our debris for IP stacks */
1024	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1025			       sizeof(struct inet6_skb_parm)));
1026
1027	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1028
1029	if (likely(err <= 0))
1030		return err;
1031
1032	tcp_enter_cwr(sk);
1033
1034	return net_xmit_eval(err);
1035}
1036
1037/* This routine just queues the buffer for sending.
1038 *
1039 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1040 * otherwise socket can stall.
1041 */
1042static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1043{
1044	struct tcp_sock *tp = tcp_sk(sk);
1045
1046	/* Advance write_seq and place onto the write_queue. */
1047	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1048	__skb_header_release(skb);
1049	tcp_add_write_queue_tail(sk, skb);
1050	sk->sk_wmem_queued += skb->truesize;
1051	sk_mem_charge(sk, skb->truesize);
1052}
1053
1054/* Initialize TSO segments for a packet. */
1055static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
 
1056{
1057	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
 
1058		/* Avoid the costly divide in the normal
1059		 * non-TSO case.
1060		 */
1061		tcp_skb_pcount_set(skb, 1);
1062		TCP_SKB_CB(skb)->tcp_gso_size = 0;
 
1063	} else {
1064		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1065		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
 
1066	}
1067}
1068
1069/* When a modification to fackets out becomes necessary, we need to check
1070 * skb is counted to fackets_out or not.
1071 */
1072static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1073				   int decr)
1074{
1075	struct tcp_sock *tp = tcp_sk(sk);
1076
1077	if (!tp->sacked_out || tcp_is_reno(tp))
1078		return;
1079
1080	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1081		tp->fackets_out -= decr;
1082}
1083
1084/* Pcount in the middle of the write queue got changed, we need to do various
1085 * tweaks to fix counters
1086 */
1087static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1088{
1089	struct tcp_sock *tp = tcp_sk(sk);
1090
1091	tp->packets_out -= decr;
1092
1093	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1094		tp->sacked_out -= decr;
1095	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1096		tp->retrans_out -= decr;
1097	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1098		tp->lost_out -= decr;
1099
1100	/* Reno case is special. Sigh... */
1101	if (tcp_is_reno(tp) && decr > 0)
1102		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1103
1104	tcp_adjust_fackets_out(sk, skb, decr);
1105
1106	if (tp->lost_skb_hint &&
1107	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1108	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1109		tp->lost_cnt_hint -= decr;
1110
1111	tcp_verify_left_out(tp);
1112}
1113
1114static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1115{
1116	struct skb_shared_info *shinfo = skb_shinfo(skb);
1117
1118	if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) &&
1119	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1120		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1121		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1122
1123		shinfo->tx_flags &= ~tsflags;
1124		shinfo2->tx_flags |= tsflags;
1125		swap(shinfo->tskey, shinfo2->tskey);
1126	}
1127}
1128
1129/* Function to create two new TCP segments.  Shrinks the given segment
1130 * to the specified size and appends a new segment with the rest of the
1131 * packet to the list.  This won't be called frequently, I hope.
1132 * Remember, these are still headerless SKBs at this point.
1133 */
1134int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1135		 unsigned int mss_now, gfp_t gfp)
1136{
1137	struct tcp_sock *tp = tcp_sk(sk);
1138	struct sk_buff *buff;
1139	int nsize, old_factor;
1140	int nlen;
1141	u8 flags;
1142
1143	if (WARN_ON(len > skb->len))
1144		return -EINVAL;
1145
1146	nsize = skb_headlen(skb) - len;
1147	if (nsize < 0)
1148		nsize = 0;
1149
1150	if (skb_unclone(skb, gfp))
 
 
1151		return -ENOMEM;
1152
1153	/* Get a new skb... force flag on. */
1154	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1155	if (!buff)
1156		return -ENOMEM; /* We'll just try again later. */
1157
1158	sk->sk_wmem_queued += buff->truesize;
1159	sk_mem_charge(sk, buff->truesize);
1160	nlen = skb->len - len - nsize;
1161	buff->truesize += nlen;
1162	skb->truesize -= nlen;
1163
1164	/* Correct the sequence numbers. */
1165	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1166	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1167	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1168
1169	/* PSH and FIN should only be set in the second packet. */
1170	flags = TCP_SKB_CB(skb)->tcp_flags;
1171	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1172	TCP_SKB_CB(buff)->tcp_flags = flags;
1173	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1174
1175	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1176		/* Copy and checksum data tail into the new buffer. */
1177		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1178						       skb_put(buff, nsize),
1179						       nsize, 0);
1180
1181		skb_trim(skb, len);
1182
1183		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1184	} else {
1185		skb->ip_summed = CHECKSUM_PARTIAL;
1186		skb_split(skb, buff, len);
1187	}
1188
1189	buff->ip_summed = skb->ip_summed;
1190
 
 
 
 
1191	buff->tstamp = skb->tstamp;
1192	tcp_fragment_tstamp(skb, buff);
1193
1194	old_factor = tcp_skb_pcount(skb);
1195
1196	/* Fix up tso_factor for both original and new SKB.  */
1197	tcp_set_skb_tso_segs(skb, mss_now);
1198	tcp_set_skb_tso_segs(buff, mss_now);
1199
1200	/* If this packet has been sent out already, we must
1201	 * adjust the various packet counters.
1202	 */
1203	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1204		int diff = old_factor - tcp_skb_pcount(skb) -
1205			tcp_skb_pcount(buff);
1206
1207		if (diff)
1208			tcp_adjust_pcount(sk, skb, diff);
1209	}
1210
1211	/* Link BUFF into the send queue. */
1212	__skb_header_release(buff);
1213	tcp_insert_write_queue_after(skb, buff, sk);
1214
1215	return 0;
1216}
1217
1218/* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1219 * eventually). The difference is that pulled data not copied, but
1220 * immediately discarded.
1221 */
1222static void __pskb_trim_head(struct sk_buff *skb, int len)
1223{
1224	struct skb_shared_info *shinfo;
1225	int i, k, eat;
1226
1227	eat = min_t(int, len, skb_headlen(skb));
1228	if (eat) {
1229		__skb_pull(skb, eat);
 
1230		len -= eat;
1231		if (!len)
1232			return;
1233	}
1234	eat = len;
1235	k = 0;
1236	shinfo = skb_shinfo(skb);
1237	for (i = 0; i < shinfo->nr_frags; i++) {
1238		int size = skb_frag_size(&shinfo->frags[i]);
1239
1240		if (size <= eat) {
1241			skb_frag_unref(skb, i);
1242			eat -= size;
1243		} else {
1244			shinfo->frags[k] = shinfo->frags[i];
1245			if (eat) {
1246				shinfo->frags[k].page_offset += eat;
1247				skb_frag_size_sub(&shinfo->frags[k], eat);
1248				eat = 0;
1249			}
1250			k++;
1251		}
1252	}
1253	shinfo->nr_frags = k;
1254
1255	skb_reset_tail_pointer(skb);
1256	skb->data_len -= len;
1257	skb->len = skb->data_len;
1258}
1259
1260/* Remove acked data from a packet in the transmit queue. */
1261int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1262{
1263	if (skb_unclone(skb, GFP_ATOMIC))
1264		return -ENOMEM;
1265
1266	__pskb_trim_head(skb, len);
1267
1268	TCP_SKB_CB(skb)->seq += len;
1269	skb->ip_summed = CHECKSUM_PARTIAL;
1270
1271	skb->truesize	     -= len;
1272	sk->sk_wmem_queued   -= len;
1273	sk_mem_uncharge(sk, len);
1274	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1275
1276	/* Any change of skb->len requires recalculation of tso factor. */
1277	if (tcp_skb_pcount(skb) > 1)
1278		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1279
1280	return 0;
1281}
1282
1283/* Calculate MSS not accounting any TCP options.  */
1284static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1285{
1286	const struct tcp_sock *tp = tcp_sk(sk);
1287	const struct inet_connection_sock *icsk = inet_csk(sk);
1288	int mss_now;
1289
1290	/* Calculate base mss without TCP options:
1291	   It is MMS_S - sizeof(tcphdr) of rfc1122
1292	 */
1293	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1294
1295	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1296	if (icsk->icsk_af_ops->net_frag_header_len) {
1297		const struct dst_entry *dst = __sk_dst_get(sk);
1298
1299		if (dst && dst_allfrag(dst))
1300			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1301	}
1302
1303	/* Clamp it (mss_clamp does not include tcp options) */
1304	if (mss_now > tp->rx_opt.mss_clamp)
1305		mss_now = tp->rx_opt.mss_clamp;
1306
1307	/* Now subtract optional transport overhead */
1308	mss_now -= icsk->icsk_ext_hdr_len;
1309
1310	/* Then reserve room for full set of TCP options and 8 bytes of data */
1311	if (mss_now < 48)
1312		mss_now = 48;
 
 
 
 
1313	return mss_now;
1314}
1315
1316/* Calculate MSS. Not accounting for SACKs here.  */
1317int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1318{
1319	/* Subtract TCP options size, not including SACKs */
1320	return __tcp_mtu_to_mss(sk, pmtu) -
1321	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1322}
1323
1324/* Inverse of above */
1325int tcp_mss_to_mtu(struct sock *sk, int mss)
1326{
1327	const struct tcp_sock *tp = tcp_sk(sk);
1328	const struct inet_connection_sock *icsk = inet_csk(sk);
1329	int mtu;
1330
1331	mtu = mss +
1332	      tp->tcp_header_len +
1333	      icsk->icsk_ext_hdr_len +
1334	      icsk->icsk_af_ops->net_header_len;
1335
1336	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1337	if (icsk->icsk_af_ops->net_frag_header_len) {
1338		const struct dst_entry *dst = __sk_dst_get(sk);
1339
1340		if (dst && dst_allfrag(dst))
1341			mtu += icsk->icsk_af_ops->net_frag_header_len;
1342	}
1343	return mtu;
1344}
1345
1346/* MTU probing init per socket */
1347void tcp_mtup_init(struct sock *sk)
1348{
1349	struct tcp_sock *tp = tcp_sk(sk);
1350	struct inet_connection_sock *icsk = inet_csk(sk);
1351	struct net *net = sock_net(sk);
1352
1353	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1354	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1355			       icsk->icsk_af_ops->net_header_len;
1356	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1357	icsk->icsk_mtup.probe_size = 0;
1358	if (icsk->icsk_mtup.enabled)
1359		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1360}
1361EXPORT_SYMBOL(tcp_mtup_init);
1362
1363/* This function synchronize snd mss to current pmtu/exthdr set.
1364
1365   tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1366   for TCP options, but includes only bare TCP header.
1367
1368   tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1369   It is minimum of user_mss and mss received with SYN.
1370   It also does not include TCP options.
1371
1372   inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1373
1374   tp->mss_cache is current effective sending mss, including
1375   all tcp options except for SACKs. It is evaluated,
1376   taking into account current pmtu, but never exceeds
1377   tp->rx_opt.mss_clamp.
1378
1379   NOTE1. rfc1122 clearly states that advertised MSS
1380   DOES NOT include either tcp or ip options.
1381
1382   NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1383   are READ ONLY outside this function.		--ANK (980731)
1384 */
1385unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1386{
1387	struct tcp_sock *tp = tcp_sk(sk);
1388	struct inet_connection_sock *icsk = inet_csk(sk);
1389	int mss_now;
1390
1391	if (icsk->icsk_mtup.search_high > pmtu)
1392		icsk->icsk_mtup.search_high = pmtu;
1393
1394	mss_now = tcp_mtu_to_mss(sk, pmtu);
1395	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1396
1397	/* And store cached results */
1398	icsk->icsk_pmtu_cookie = pmtu;
1399	if (icsk->icsk_mtup.enabled)
1400		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1401	tp->mss_cache = mss_now;
1402
1403	return mss_now;
1404}
1405EXPORT_SYMBOL(tcp_sync_mss);
1406
1407/* Compute the current effective MSS, taking SACKs and IP options,
1408 * and even PMTU discovery events into account.
1409 */
1410unsigned int tcp_current_mss(struct sock *sk)
1411{
1412	const struct tcp_sock *tp = tcp_sk(sk);
1413	const struct dst_entry *dst = __sk_dst_get(sk);
1414	u32 mss_now;
1415	unsigned int header_len;
1416	struct tcp_out_options opts;
1417	struct tcp_md5sig_key *md5;
1418
1419	mss_now = tp->mss_cache;
1420
1421	if (dst) {
1422		u32 mtu = dst_mtu(dst);
1423		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1424			mss_now = tcp_sync_mss(sk, mtu);
1425	}
1426
1427	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1428		     sizeof(struct tcphdr);
1429	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1430	 * some common options. If this is an odd packet (because we have SACK
1431	 * blocks etc) then our calculated header_len will be different, and
1432	 * we have to adjust mss_now correspondingly */
1433	if (header_len != tp->tcp_header_len) {
1434		int delta = (int) header_len - tp->tcp_header_len;
1435		mss_now -= delta;
1436	}
1437
1438	return mss_now;
1439}
1440
1441/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1442 * As additional protections, we do not touch cwnd in retransmission phases,
1443 * and if application hit its sndbuf limit recently.
1444 */
1445static void tcp_cwnd_application_limited(struct sock *sk)
1446{
1447	struct tcp_sock *tp = tcp_sk(sk);
1448
1449	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1450	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1451		/* Limited by application or receiver window. */
1452		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1453		u32 win_used = max(tp->snd_cwnd_used, init_win);
1454		if (win_used < tp->snd_cwnd) {
1455			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1456			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1457		}
1458		tp->snd_cwnd_used = 0;
1459	}
1460	tp->snd_cwnd_stamp = tcp_time_stamp;
1461}
1462
1463static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1464{
1465	struct tcp_sock *tp = tcp_sk(sk);
1466
1467	/* Track the maximum number of outstanding packets in each
1468	 * window, and remember whether we were cwnd-limited then.
1469	 */
1470	if (!before(tp->snd_una, tp->max_packets_seq) ||
1471	    tp->packets_out > tp->max_packets_out) {
1472		tp->max_packets_out = tp->packets_out;
1473		tp->max_packets_seq = tp->snd_nxt;
1474		tp->is_cwnd_limited = is_cwnd_limited;
1475	}
1476
1477	if (tcp_is_cwnd_limited(sk)) {
1478		/* Network is feed fully. */
1479		tp->snd_cwnd_used = 0;
1480		tp->snd_cwnd_stamp = tcp_time_stamp;
1481	} else {
1482		/* Network starves. */
1483		if (tp->packets_out > tp->snd_cwnd_used)
1484			tp->snd_cwnd_used = tp->packets_out;
1485
1486		if (sysctl_tcp_slow_start_after_idle &&
1487		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1488			tcp_cwnd_application_limited(sk);
1489	}
1490}
1491
1492/* Minshall's variant of the Nagle send check. */
1493static bool tcp_minshall_check(const struct tcp_sock *tp)
1494{
1495	return after(tp->snd_sml, tp->snd_una) &&
1496		!after(tp->snd_sml, tp->snd_nxt);
1497}
1498
1499/* Update snd_sml if this skb is under mss
1500 * Note that a TSO packet might end with a sub-mss segment
1501 * The test is really :
1502 * if ((skb->len % mss) != 0)
1503 *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1504 * But we can avoid doing the divide again given we already have
1505 *  skb_pcount = skb->len / mss_now
1506 */
1507static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1508				const struct sk_buff *skb)
1509{
1510	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1511		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1512}
1513
1514/* Return false, if packet can be sent now without violation Nagle's rules:
1515 * 1. It is full sized. (provided by caller in %partial bool)
1516 * 2. Or it contains FIN. (already checked by caller)
1517 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1518 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1519 *    With Minshall's modification: all sent small packets are ACKed.
1520 */
1521static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1522			    int nonagle)
1523{
1524	return partial &&
1525		((nonagle & TCP_NAGLE_CORK) ||
1526		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1527}
1528
1529/* Return how many segs we'd like on a TSO packet,
1530 * to send one TSO packet per ms
1531 */
1532static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now)
1533{
1534	u32 bytes, segs;
1535
1536	bytes = min(sk->sk_pacing_rate >> 10,
1537		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1538
1539	/* Goal is to send at least one packet per ms,
1540	 * not one big TSO packet every 100 ms.
1541	 * This preserves ACK clocking and is consistent
1542	 * with tcp_tso_should_defer() heuristic.
1543	 */
1544	segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs);
1545
1546	return min_t(u32, segs, sk->sk_gso_max_segs);
1547}
1548
1549/* Returns the portion of skb which can be sent right away */
1550static unsigned int tcp_mss_split_point(const struct sock *sk,
1551					const struct sk_buff *skb,
1552					unsigned int mss_now,
1553					unsigned int max_segs,
1554					int nonagle)
1555{
1556	const struct tcp_sock *tp = tcp_sk(sk);
1557	u32 partial, needed, window, max_len;
1558
1559	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1560	max_len = mss_now * max_segs;
1561
1562	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1563		return max_len;
1564
1565	needed = min(skb->len, window);
1566
1567	if (max_len <= needed)
1568		return max_len;
1569
1570	partial = needed % mss_now;
1571	/* If last segment is not a full MSS, check if Nagle rules allow us
1572	 * to include this last segment in this skb.
1573	 * Otherwise, we'll split the skb at last MSS boundary
1574	 */
1575	if (tcp_nagle_check(partial != 0, tp, nonagle))
1576		return needed - partial;
1577
1578	return needed;
1579}
1580
1581/* Can at least one segment of SKB be sent right now, according to the
1582 * congestion window rules?  If so, return how many segments are allowed.
1583 */
1584static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1585					 const struct sk_buff *skb)
1586{
1587	u32 in_flight, cwnd, halfcwnd;
1588
1589	/* Don't be strict about the congestion window for the final FIN.  */
1590	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1591	    tcp_skb_pcount(skb) == 1)
1592		return 1;
1593
1594	in_flight = tcp_packets_in_flight(tp);
1595	cwnd = tp->snd_cwnd;
1596	if (in_flight >= cwnd)
1597		return 0;
1598
1599	/* For better scheduling, ensure we have at least
1600	 * 2 GSO packets in flight.
1601	 */
1602	halfcwnd = max(cwnd >> 1, 1U);
1603	return min(halfcwnd, cwnd - in_flight);
1604}
1605
1606/* Initialize TSO state of a skb.
1607 * This must be invoked the first time we consider transmitting
1608 * SKB onto the wire.
1609 */
1610static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
 
1611{
1612	int tso_segs = tcp_skb_pcount(skb);
1613
1614	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1615		tcp_set_skb_tso_segs(skb, mss_now);
1616		tso_segs = tcp_skb_pcount(skb);
1617	}
1618	return tso_segs;
1619}
1620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1621
1622/* Return true if the Nagle test allows this packet to be
1623 * sent now.
1624 */
1625static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1626				  unsigned int cur_mss, int nonagle)
1627{
1628	/* Nagle rule does not apply to frames, which sit in the middle of the
1629	 * write_queue (they have no chances to get new data).
1630	 *
1631	 * This is implemented in the callers, where they modify the 'nonagle'
1632	 * argument based upon the location of SKB in the send queue.
1633	 */
1634	if (nonagle & TCP_NAGLE_PUSH)
1635		return true;
1636
1637	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1638	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
 
 
 
1639		return true;
1640
1641	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1642		return true;
1643
1644	return false;
1645}
1646
1647/* Does at least the first segment of SKB fit into the send window? */
1648static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1649			     const struct sk_buff *skb,
1650			     unsigned int cur_mss)
1651{
1652	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1653
1654	if (skb->len > cur_mss)
1655		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1656
1657	return !after(end_seq, tcp_wnd_end(tp));
1658}
1659
1660/* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1661 * should be put on the wire right now.  If so, it returns the number of
1662 * packets allowed by the congestion window.
1663 */
1664static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1665				 unsigned int cur_mss, int nonagle)
1666{
1667	const struct tcp_sock *tp = tcp_sk(sk);
1668	unsigned int cwnd_quota;
1669
1670	tcp_init_tso_segs(skb, cur_mss);
1671
1672	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1673		return 0;
1674
1675	cwnd_quota = tcp_cwnd_test(tp, skb);
1676	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1677		cwnd_quota = 0;
1678
1679	return cwnd_quota;
1680}
1681
1682/* Test if sending is allowed right now. */
1683bool tcp_may_send_now(struct sock *sk)
1684{
1685	const struct tcp_sock *tp = tcp_sk(sk);
1686	struct sk_buff *skb = tcp_send_head(sk);
1687
1688	return skb &&
1689		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1690			     (tcp_skb_is_last(sk, skb) ?
1691			      tp->nonagle : TCP_NAGLE_PUSH));
1692}
1693
1694/* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1695 * which is put after SKB on the list.  It is very much like
1696 * tcp_fragment() except that it may make several kinds of assumptions
1697 * in order to speed up the splitting operation.  In particular, we
1698 * know that all the data is in scatter-gather pages, and that the
1699 * packet has never been sent out before (and thus is not cloned).
1700 */
1701static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1702			unsigned int mss_now, gfp_t gfp)
1703{
1704	struct sk_buff *buff;
1705	int nlen = skb->len - len;
1706	u8 flags;
1707
1708	/* All of a TSO frame must be composed of paged data.  */
1709	if (skb->len != skb->data_len)
1710		return tcp_fragment(sk, skb, len, mss_now, gfp);
1711
1712	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1713	if (unlikely(!buff))
1714		return -ENOMEM;
1715
1716	sk->sk_wmem_queued += buff->truesize;
1717	sk_mem_charge(sk, buff->truesize);
1718	buff->truesize += nlen;
1719	skb->truesize -= nlen;
1720
1721	/* Correct the sequence numbers. */
1722	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1723	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1724	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1725
1726	/* PSH and FIN should only be set in the second packet. */
1727	flags = TCP_SKB_CB(skb)->tcp_flags;
1728	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1729	TCP_SKB_CB(buff)->tcp_flags = flags;
1730
1731	/* This packet was never sent out yet, so no SACK bits. */
1732	TCP_SKB_CB(buff)->sacked = 0;
1733
1734	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1735	skb_split(skb, buff, len);
1736	tcp_fragment_tstamp(skb, buff);
1737
1738	/* Fix up tso_factor for both original and new SKB.  */
1739	tcp_set_skb_tso_segs(skb, mss_now);
1740	tcp_set_skb_tso_segs(buff, mss_now);
1741
1742	/* Link BUFF into the send queue. */
1743	__skb_header_release(buff);
1744	tcp_insert_write_queue_after(skb, buff, sk);
1745
1746	return 0;
1747}
1748
1749/* Try to defer sending, if possible, in order to minimize the amount
1750 * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1751 *
1752 * This algorithm is from John Heffner.
1753 */
1754static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1755				 bool *is_cwnd_limited, u32 max_segs)
1756{
 
1757	const struct inet_connection_sock *icsk = inet_csk(sk);
1758	u32 age, send_win, cong_win, limit, in_flight;
1759	struct tcp_sock *tp = tcp_sk(sk);
1760	struct skb_mstamp now;
1761	struct sk_buff *head;
1762	int win_divisor;
1763
1764	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1765		goto send_now;
1766
1767	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1768		goto send_now;
1769
1770	/* Avoid bursty behavior by allowing defer
1771	 * only if the last write was recent.
1772	 */
1773	if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1774		goto send_now;
1775
1776	in_flight = tcp_packets_in_flight(tp);
1777
1778	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1779
1780	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1781
1782	/* From in_flight test above, we know that cwnd > in_flight.  */
1783	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1784
1785	limit = min(send_win, cong_win);
1786
1787	/* If a full-sized TSO skb can be sent, do it. */
1788	if (limit >= max_segs * tp->mss_cache)
 
1789		goto send_now;
1790
1791	/* Middle in queue won't get any more data, full sendable already? */
1792	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1793		goto send_now;
1794
1795	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1796	if (win_divisor) {
1797		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1798
1799		/* If at least some fraction of a window is available,
1800		 * just use it.
1801		 */
1802		chunk /= win_divisor;
1803		if (limit >= chunk)
1804			goto send_now;
1805	} else {
1806		/* Different approach, try not to defer past a single
1807		 * ACK.  Receiver should ACK every other full sized
1808		 * frame, so if we have space for more than 3 frames
1809		 * then send now.
1810		 */
1811		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1812			goto send_now;
1813	}
1814
1815	head = tcp_write_queue_head(sk);
1816	skb_mstamp_get(&now);
1817	age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1818	/* If next ACK is likely to come too late (half srtt), do not defer */
1819	if (age < (tp->srtt_us >> 4))
1820		goto send_now;
1821
1822	/* Ok, it looks like it is advisable to defer. */
1823
1824	if (cong_win < send_win && cong_win <= skb->len)
1825		*is_cwnd_limited = true;
1826
1827	return true;
1828
1829send_now:
 
1830	return false;
1831}
1832
1833static inline void tcp_mtu_check_reprobe(struct sock *sk)
1834{
1835	struct inet_connection_sock *icsk = inet_csk(sk);
1836	struct tcp_sock *tp = tcp_sk(sk);
1837	struct net *net = sock_net(sk);
1838	u32 interval;
1839	s32 delta;
1840
1841	interval = net->ipv4.sysctl_tcp_probe_interval;
1842	delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1843	if (unlikely(delta >= interval * HZ)) {
1844		int mss = tcp_current_mss(sk);
1845
1846		/* Update current search range */
1847		icsk->icsk_mtup.probe_size = 0;
1848		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1849			sizeof(struct tcphdr) +
1850			icsk->icsk_af_ops->net_header_len;
1851		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1852
1853		/* Update probe time stamp */
1854		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1855	}
1856}
1857
1858/* Create a new MTU probe if we are ready.
1859 * MTU probe is regularly attempting to increase the path MTU by
1860 * deliberately sending larger packets.  This discovers routing
1861 * changes resulting in larger path MTUs.
1862 *
1863 * Returns 0 if we should wait to probe (no cwnd available),
1864 *         1 if a probe was sent,
1865 *         -1 otherwise
1866 */
1867static int tcp_mtu_probe(struct sock *sk)
1868{
1869	struct tcp_sock *tp = tcp_sk(sk);
1870	struct inet_connection_sock *icsk = inet_csk(sk);
1871	struct sk_buff *skb, *nskb, *next;
1872	struct net *net = sock_net(sk);
1873	int len;
1874	int probe_size;
1875	int size_needed;
1876	int copy;
1877	int mss_now;
1878	int interval;
1879
1880	/* Not currently probing/verifying,
1881	 * not in recovery,
1882	 * have enough cwnd, and
1883	 * not SACKing (the variable headers throw things off) */
1884	if (!icsk->icsk_mtup.enabled ||
1885	    icsk->icsk_mtup.probe_size ||
1886	    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1887	    tp->snd_cwnd < 11 ||
1888	    tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1889		return -1;
1890
1891	/* Use binary search for probe_size between tcp_mss_base,
1892	 * and current mss_clamp. if (search_high - search_low)
1893	 * smaller than a threshold, backoff from probing.
1894	 */
1895	mss_now = tcp_current_mss(sk);
1896	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1897				    icsk->icsk_mtup.search_low) >> 1);
1898	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1899	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1900	/* When misfortune happens, we are reprobing actively,
1901	 * and then reprobe timer has expired. We stick with current
1902	 * probing process by not resetting search range to its orignal.
1903	 */
1904	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1905		interval < net->ipv4.sysctl_tcp_probe_threshold) {
1906		/* Check whether enough time has elaplased for
1907		 * another round of probing.
1908		 */
1909		tcp_mtu_check_reprobe(sk);
1910		return -1;
1911	}
1912
1913	/* Have enough data in the send queue to probe? */
1914	if (tp->write_seq - tp->snd_nxt < size_needed)
1915		return -1;
1916
1917	if (tp->snd_wnd < size_needed)
1918		return -1;
1919	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1920		return 0;
1921
1922	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1923	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1924		if (!tcp_packets_in_flight(tp))
1925			return -1;
1926		else
1927			return 0;
1928	}
1929
1930	/* We're allowed to probe.  Build it now. */
1931	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
1932	if (!nskb)
1933		return -1;
1934	sk->sk_wmem_queued += nskb->truesize;
1935	sk_mem_charge(sk, nskb->truesize);
1936
1937	skb = tcp_send_head(sk);
1938
1939	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1940	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1941	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1942	TCP_SKB_CB(nskb)->sacked = 0;
1943	nskb->csum = 0;
1944	nskb->ip_summed = skb->ip_summed;
1945
1946	tcp_insert_write_queue_before(nskb, skb, sk);
1947
1948	len = 0;
1949	tcp_for_write_queue_from_safe(skb, next, sk) {
1950		copy = min_t(int, skb->len, probe_size - len);
1951		if (nskb->ip_summed)
1952			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1953		else
1954			nskb->csum = skb_copy_and_csum_bits(skb, 0,
1955							    skb_put(nskb, copy),
1956							    copy, nskb->csum);
1957
1958		if (skb->len <= copy) {
1959			/* We've eaten all the data from this skb.
1960			 * Throw it away. */
1961			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1962			tcp_unlink_write_queue(skb, sk);
1963			sk_wmem_free_skb(sk, skb);
1964		} else {
1965			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1966						   ~(TCPHDR_FIN|TCPHDR_PSH);
1967			if (!skb_shinfo(skb)->nr_frags) {
1968				skb_pull(skb, copy);
1969				if (skb->ip_summed != CHECKSUM_PARTIAL)
1970					skb->csum = csum_partial(skb->data,
1971								 skb->len, 0);
1972			} else {
1973				__pskb_trim_head(skb, copy);
1974				tcp_set_skb_tso_segs(skb, mss_now);
1975			}
1976			TCP_SKB_CB(skb)->seq += copy;
1977		}
1978
1979		len += copy;
1980
1981		if (len >= probe_size)
1982			break;
1983	}
1984	tcp_init_tso_segs(nskb, nskb->len);
1985
1986	/* We're ready to send.  If this fails, the probe will
1987	 * be resegmented into mss-sized pieces by tcp_write_xmit().
1988	 */
1989	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1990		/* Decrement cwnd here because we are sending
1991		 * effectively two packets. */
1992		tp->snd_cwnd--;
1993		tcp_event_new_data_sent(sk, nskb);
1994
1995		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1996		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1997		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1998
1999		return 1;
2000	}
2001
2002	return -1;
2003}
2004
2005/* This routine writes packets to the network.  It advances the
2006 * send_head.  This happens as incoming acks open up the remote
2007 * window for us.
2008 *
2009 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2010 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2011 * account rare use of URG, this is not a big flaw.
2012 *
2013 * Send at most one packet when push_one > 0. Temporarily ignore
2014 * cwnd limit to force at most one packet out when push_one == 2.
2015
2016 * Returns true, if no segments are in flight and we have queued segments,
2017 * but cannot send anything now because of SWS or another problem.
2018 */
2019static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2020			   int push_one, gfp_t gfp)
2021{
2022	struct tcp_sock *tp = tcp_sk(sk);
2023	struct sk_buff *skb;
2024	unsigned int tso_segs, sent_pkts;
2025	int cwnd_quota;
2026	int result;
2027	bool is_cwnd_limited = false;
2028	u32 max_segs;
2029
2030	sent_pkts = 0;
2031
2032	if (!push_one) {
2033		/* Do MTU probing. */
2034		result = tcp_mtu_probe(sk);
2035		if (!result) {
2036			return false;
2037		} else if (result > 0) {
2038			sent_pkts = 1;
2039		}
2040	}
2041
2042	max_segs = tcp_tso_autosize(sk, mss_now);
2043	while ((skb = tcp_send_head(sk))) {
2044		unsigned int limit;
2045
2046		tso_segs = tcp_init_tso_segs(skb, mss_now);
2047		BUG_ON(!tso_segs);
2048
2049		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2050			/* "skb_mstamp" is used as a start point for the retransmit timer */
2051			skb_mstamp_get(&skb->skb_mstamp);
2052			goto repair; /* Skip network transmission */
2053		}
2054
2055		cwnd_quota = tcp_cwnd_test(tp, skb);
2056		if (!cwnd_quota) {
2057			if (push_one == 2)
2058				/* Force out a loss probe pkt. */
2059				cwnd_quota = 1;
2060			else
2061				break;
2062		}
2063
2064		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
2065			break;
2066
2067		if (tso_segs == 1) {
2068			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2069						     (tcp_skb_is_last(sk, skb) ?
2070						      nonagle : TCP_NAGLE_PUSH))))
2071				break;
2072		} else {
2073			if (!push_one &&
2074			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2075						 max_segs))
2076				break;
2077		}
2078
2079		limit = mss_now;
2080		if (tso_segs > 1 && !tcp_urg_mode(tp))
2081			limit = tcp_mss_split_point(sk, skb, mss_now,
2082						    min_t(unsigned int,
2083							  cwnd_quota,
2084							  max_segs),
2085						    nonagle);
2086
2087		if (skb->len > limit &&
2088		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2089			break;
2090
2091		/* TCP Small Queues :
2092		 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2093		 * This allows for :
2094		 *  - better RTT estimation and ACK scheduling
2095		 *  - faster recovery
2096		 *  - high rates
2097		 * Alas, some drivers / subsystems require a fair amount
2098		 * of queued bytes to ensure line rate.
2099		 * One example is wifi aggregation (802.11 AMPDU)
2100		 */
2101		limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2102		limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2103
2104		if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2105			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2106			/* It is possible TX completion already happened
2107			 * before we set TSQ_THROTTLED, so we must
2108			 * test again the condition.
2109			 */
2110			smp_mb__after_atomic();
2111			if (atomic_read(&sk->sk_wmem_alloc) > limit)
2112				break;
2113		}
2114
2115		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2116			break;
2117
2118repair:
2119		/* Advance the send_head.  This one is sent out.
2120		 * This call will increment packets_out.
2121		 */
2122		tcp_event_new_data_sent(sk, skb);
2123
2124		tcp_minshall_update(tp, mss_now, skb);
2125		sent_pkts += tcp_skb_pcount(skb);
2126
2127		if (push_one)
2128			break;
2129	}
 
 
2130
2131	if (likely(sent_pkts)) {
2132		if (tcp_in_cwnd_reduction(sk))
2133			tp->prr_out += sent_pkts;
2134
2135		/* Send one loss probe per tail loss episode. */
2136		if (push_one != 2)
2137			tcp_schedule_loss_probe(sk);
2138		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2139		tcp_cwnd_validate(sk, is_cwnd_limited);
2140		return false;
2141	}
2142	return !tp->packets_out && tcp_send_head(sk);
2143}
2144
2145bool tcp_schedule_loss_probe(struct sock *sk)
2146{
2147	struct inet_connection_sock *icsk = inet_csk(sk);
2148	struct tcp_sock *tp = tcp_sk(sk);
2149	u32 timeout, tlp_time_stamp, rto_time_stamp;
2150	u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2151
2152	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2153		return false;
2154	/* No consecutive loss probes. */
2155	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2156		tcp_rearm_rto(sk);
2157		return false;
2158	}
2159	/* Don't do any loss probe on a Fast Open connection before 3WHS
2160	 * finishes.
2161	 */
2162	if (tp->fastopen_rsk)
2163		return false;
2164
2165	/* TLP is only scheduled when next timer event is RTO. */
2166	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2167		return false;
2168
2169	/* Schedule a loss probe in 2*RTT for SACK capable connections
2170	 * in Open state, that are either limited by cwnd or application.
2171	 */
2172	if (sysctl_tcp_early_retrans < 3 || !tp->packets_out ||
2173	    !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2174		return false;
2175
2176	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2177	     tcp_send_head(sk))
2178		return false;
2179
2180	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2181	 * for delayed ack when there's one outstanding packet. If no RTT
2182	 * sample is available then probe after TCP_TIMEOUT_INIT.
2183	 */
2184	timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2185	if (tp->packets_out == 1)
2186		timeout = max_t(u32, timeout,
2187				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2188	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2189
2190	/* If RTO is shorter, just schedule TLP in its place. */
2191	tlp_time_stamp = tcp_time_stamp + timeout;
2192	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2193	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2194		s32 delta = rto_time_stamp - tcp_time_stamp;
2195		if (delta > 0)
2196			timeout = delta;
2197	}
2198
2199	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2200				  TCP_RTO_MAX);
2201	return true;
2202}
2203
2204/* Thanks to skb fast clones, we can detect if a prior transmit of
2205 * a packet is still in a qdisc or driver queue.
2206 * In this case, there is very little point doing a retransmit !
2207 * Note: This is called from BH context only.
2208 */
2209static bool skb_still_in_host_queue(const struct sock *sk,
2210				    const struct sk_buff *skb)
2211{
2212	if (unlikely(skb_fclone_busy(sk, skb))) {
2213		NET_INC_STATS_BH(sock_net(sk),
2214				 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2215		return true;
2216	}
2217	return false;
2218}
2219
2220/* When probe timeout (PTO) fires, try send a new segment if possible, else
2221 * retransmit the last segment.
2222 */
2223void tcp_send_loss_probe(struct sock *sk)
2224{
2225	struct tcp_sock *tp = tcp_sk(sk);
2226	struct sk_buff *skb;
2227	int pcount;
2228	int mss = tcp_current_mss(sk);
2229
2230	skb = tcp_send_head(sk);
2231	if (skb) {
2232		if (tcp_snd_wnd_test(tp, skb, mss)) {
2233			pcount = tp->packets_out;
2234			tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2235			if (tp->packets_out > pcount)
2236				goto probe_sent;
2237			goto rearm_timer;
2238		}
2239		skb = tcp_write_queue_prev(sk, skb);
2240	} else {
2241		skb = tcp_write_queue_tail(sk);
2242	}
2243
2244	/* At most one outstanding TLP retransmission. */
2245	if (tp->tlp_high_seq)
2246		goto rearm_timer;
2247
2248	/* Retransmit last segment. */
2249	if (WARN_ON(!skb))
2250		goto rearm_timer;
2251
2252	if (skb_still_in_host_queue(sk, skb))
2253		goto rearm_timer;
2254
2255	pcount = tcp_skb_pcount(skb);
2256	if (WARN_ON(!pcount))
2257		goto rearm_timer;
2258
2259	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2260		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2261					  GFP_ATOMIC)))
2262			goto rearm_timer;
2263		skb = tcp_write_queue_next(sk, skb);
2264	}
2265
2266	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2267		goto rearm_timer;
2268
2269	if (__tcp_retransmit_skb(sk, skb))
2270		goto rearm_timer;
2271
2272	/* Record snd_nxt for loss detection. */
2273	tp->tlp_high_seq = tp->snd_nxt;
2274
2275probe_sent:
2276	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2277	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2278	inet_csk(sk)->icsk_pending = 0;
2279rearm_timer:
2280	tcp_rearm_rto(sk);
2281}
2282
2283/* Push out any pending frames which were held back due to
2284 * TCP_CORK or attempt at coalescing tiny packets.
2285 * The socket must be locked by the caller.
2286 */
2287void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2288			       int nonagle)
2289{
2290	/* If we are closed, the bytes will have to remain here.
2291	 * In time closedown will finish, we empty the write queue and
2292	 * all will be happy.
2293	 */
2294	if (unlikely(sk->sk_state == TCP_CLOSE))
2295		return;
2296
2297	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2298			   sk_gfp_mask(sk, GFP_ATOMIC)))
2299		tcp_check_probe_timer(sk);
2300}
2301
2302/* Send _single_ skb sitting at the send head. This function requires
2303 * true push pending frames to setup probe timer etc.
2304 */
2305void tcp_push_one(struct sock *sk, unsigned int mss_now)
2306{
2307	struct sk_buff *skb = tcp_send_head(sk);
2308
2309	BUG_ON(!skb || skb->len < mss_now);
2310
2311	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2312}
2313
2314/* This function returns the amount that we can raise the
2315 * usable window based on the following constraints
2316 *
2317 * 1. The window can never be shrunk once it is offered (RFC 793)
2318 * 2. We limit memory per socket
2319 *
2320 * RFC 1122:
2321 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2322 *  RECV.NEXT + RCV.WIN fixed until:
2323 *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2324 *
2325 * i.e. don't raise the right edge of the window until you can raise
2326 * it at least MSS bytes.
2327 *
2328 * Unfortunately, the recommended algorithm breaks header prediction,
2329 * since header prediction assumes th->window stays fixed.
2330 *
2331 * Strictly speaking, keeping th->window fixed violates the receiver
2332 * side SWS prevention criteria. The problem is that under this rule
2333 * a stream of single byte packets will cause the right side of the
2334 * window to always advance by a single byte.
2335 *
2336 * Of course, if the sender implements sender side SWS prevention
2337 * then this will not be a problem.
2338 *
2339 * BSD seems to make the following compromise:
2340 *
2341 *	If the free space is less than the 1/4 of the maximum
2342 *	space available and the free space is less than 1/2 mss,
2343 *	then set the window to 0.
2344 *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2345 *	Otherwise, just prevent the window from shrinking
2346 *	and from being larger than the largest representable value.
2347 *
2348 * This prevents incremental opening of the window in the regime
2349 * where TCP is limited by the speed of the reader side taking
2350 * data out of the TCP receive queue. It does nothing about
2351 * those cases where the window is constrained on the sender side
2352 * because the pipeline is full.
2353 *
2354 * BSD also seems to "accidentally" limit itself to windows that are a
2355 * multiple of MSS, at least until the free space gets quite small.
2356 * This would appear to be a side effect of the mbuf implementation.
2357 * Combining these two algorithms results in the observed behavior
2358 * of having a fixed window size at almost all times.
2359 *
2360 * Below we obtain similar behavior by forcing the offered window to
2361 * a multiple of the mss when it is feasible to do so.
2362 *
2363 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2364 * Regular options like TIMESTAMP are taken into account.
2365 */
2366u32 __tcp_select_window(struct sock *sk)
2367{
2368	struct inet_connection_sock *icsk = inet_csk(sk);
2369	struct tcp_sock *tp = tcp_sk(sk);
2370	/* MSS for the peer's data.  Previous versions used mss_clamp
2371	 * here.  I don't know if the value based on our guesses
2372	 * of peer's MSS is better for the performance.  It's more correct
2373	 * but may be worse for the performance because of rcv_mss
2374	 * fluctuations.  --SAW  1998/11/1
2375	 */
2376	int mss = icsk->icsk_ack.rcv_mss;
2377	int free_space = tcp_space(sk);
2378	int allowed_space = tcp_full_space(sk);
2379	int full_space = min_t(int, tp->window_clamp, allowed_space);
2380	int window;
2381
2382	if (mss > full_space)
2383		mss = full_space;
2384
2385	if (free_space < (full_space >> 1)) {
2386		icsk->icsk_ack.quick = 0;
2387
2388		if (tcp_under_memory_pressure(sk))
2389			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2390					       4U * tp->advmss);
2391
2392		/* free_space might become our new window, make sure we don't
2393		 * increase it due to wscale.
2394		 */
2395		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2396
2397		/* if free space is less than mss estimate, or is below 1/16th
2398		 * of the maximum allowed, try to move to zero-window, else
2399		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2400		 * new incoming data is dropped due to memory limits.
2401		 * With large window, mss test triggers way too late in order
2402		 * to announce zero window in time before rmem limit kicks in.
2403		 */
2404		if (free_space < (allowed_space >> 4) || free_space < mss)
2405			return 0;
2406	}
2407
2408	if (free_space > tp->rcv_ssthresh)
2409		free_space = tp->rcv_ssthresh;
2410
2411	/* Don't do rounding if we are using window scaling, since the
2412	 * scaled window will not line up with the MSS boundary anyway.
2413	 */
2414	window = tp->rcv_wnd;
2415	if (tp->rx_opt.rcv_wscale) {
2416		window = free_space;
2417
2418		/* Advertise enough space so that it won't get scaled away.
2419		 * Import case: prevent zero window announcement if
2420		 * 1<<rcv_wscale > mss.
2421		 */
2422		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2423			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2424				  << tp->rx_opt.rcv_wscale);
2425	} else {
2426		/* Get the largest window that is a nice multiple of mss.
2427		 * Window clamp already applied above.
2428		 * If our current window offering is within 1 mss of the
2429		 * free space we just keep it. This prevents the divide
2430		 * and multiply from happening most of the time.
2431		 * We also don't do any window rounding when the free space
2432		 * is too small.
2433		 */
2434		if (window <= free_space - mss || window > free_space)
2435			window = (free_space / mss) * mss;
2436		else if (mss == full_space &&
2437			 free_space > window + (full_space >> 1))
2438			window = free_space;
2439	}
2440
2441	return window;
2442}
2443
2444void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2445			     const struct sk_buff *next_skb)
2446{
2447	const struct skb_shared_info *next_shinfo = skb_shinfo(next_skb);
2448	u8 tsflags = next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2449
2450	if (unlikely(tsflags)) {
2451		struct skb_shared_info *shinfo = skb_shinfo(skb);
2452
2453		shinfo->tx_flags |= tsflags;
2454		shinfo->tskey = next_shinfo->tskey;
2455	}
2456}
2457
2458/* Collapses two adjacent SKB's during retransmission. */
2459static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2460{
2461	struct tcp_sock *tp = tcp_sk(sk);
2462	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2463	int skb_size, next_skb_size;
2464
2465	skb_size = skb->len;
2466	next_skb_size = next_skb->len;
2467
2468	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2469
2470	tcp_highest_sack_combine(sk, next_skb, skb);
2471
2472	tcp_unlink_write_queue(next_skb, sk);
2473
2474	skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2475				  next_skb_size);
2476
2477	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2478		skb->ip_summed = CHECKSUM_PARTIAL;
2479
2480	if (skb->ip_summed != CHECKSUM_PARTIAL)
2481		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2482
2483	/* Update sequence range on original skb. */
2484	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2485
2486	/* Merge over control information. This moves PSH/FIN etc. over */
2487	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2488
2489	/* All done, get rid of second SKB and account for it so
2490	 * packet counting does not break.
2491	 */
2492	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2493
2494	/* changed transmit queue under us so clear hints */
2495	tcp_clear_retrans_hints_partial(tp);
2496	if (next_skb == tp->retransmit_skb_hint)
2497		tp->retransmit_skb_hint = skb;
2498
2499	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2500
2501	tcp_skb_collapse_tstamp(skb, next_skb);
2502
2503	sk_wmem_free_skb(sk, next_skb);
2504}
2505
2506/* Check if coalescing SKBs is legal. */
2507static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2508{
2509	if (tcp_skb_pcount(skb) > 1)
2510		return false;
2511	/* TODO: SACK collapsing could be used to remove this condition */
2512	if (skb_shinfo(skb)->nr_frags != 0)
2513		return false;
2514	if (skb_cloned(skb))
2515		return false;
2516	if (skb == tcp_send_head(sk))
2517		return false;
2518	/* Some heurestics for collapsing over SACK'd could be invented */
2519	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2520		return false;
2521
2522	return true;
2523}
2524
2525/* Collapse packets in the retransmit queue to make to create
2526 * less packets on the wire. This is only done on retransmission.
2527 */
2528static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2529				     int space)
2530{
2531	struct tcp_sock *tp = tcp_sk(sk);
2532	struct sk_buff *skb = to, *tmp;
2533	bool first = true;
2534
2535	if (!sysctl_tcp_retrans_collapse)
2536		return;
2537	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2538		return;
2539
2540	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2541		if (!tcp_can_collapse(sk, skb))
2542			break;
2543
2544		space -= skb->len;
2545
2546		if (first) {
2547			first = false;
2548			continue;
2549		}
2550
2551		if (space < 0)
2552			break;
2553		/* Punt if not enough space exists in the first SKB for
2554		 * the data in the second
2555		 */
2556		if (skb->len > skb_availroom(to))
2557			break;
2558
2559		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2560			break;
2561
2562		tcp_collapse_retrans(sk, to);
2563	}
2564}
2565
2566/* This retransmits one SKB.  Policy decisions and retransmit queue
2567 * state updates are done by the caller.  Returns non-zero if an
2568 * error occurred which prevented the send.
2569 */
2570int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2571{
2572	struct tcp_sock *tp = tcp_sk(sk);
2573	struct inet_connection_sock *icsk = inet_csk(sk);
2574	unsigned int cur_mss;
2575	int err;
2576
2577	/* Inconslusive MTU probe */
2578	if (icsk->icsk_mtup.probe_size) {
2579		icsk->icsk_mtup.probe_size = 0;
2580	}
2581
2582	/* Do not sent more than we queued. 1/4 is reserved for possible
2583	 * copying overhead: fragmentation, tunneling, mangling etc.
2584	 */
2585	if (atomic_read(&sk->sk_wmem_alloc) >
2586	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2587		return -EAGAIN;
2588
2589	if (skb_still_in_host_queue(sk, skb))
2590		return -EBUSY;
2591
2592	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2593		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2594			BUG();
2595		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2596			return -ENOMEM;
2597	}
2598
2599	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2600		return -EHOSTUNREACH; /* Routing failure or similar. */
2601
2602	cur_mss = tcp_current_mss(sk);
2603
2604	/* If receiver has shrunk his window, and skb is out of
2605	 * new window, do not retransmit it. The exception is the
2606	 * case, when window is shrunk to zero. In this case
2607	 * our retransmit serves as a zero window probe.
2608	 */
2609	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2610	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2611		return -EAGAIN;
2612
2613	if (skb->len > cur_mss) {
2614		if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
2615			return -ENOMEM; /* We'll try again later. */
2616	} else {
2617		int oldpcount = tcp_skb_pcount(skb);
2618
2619		if (unlikely(oldpcount > 1)) {
2620			if (skb_unclone(skb, GFP_ATOMIC))
2621				return -ENOMEM;
2622			tcp_init_tso_segs(skb, cur_mss);
2623			tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2624		}
2625	}
2626
2627	/* RFC3168, section 6.1.1.1. ECN fallback */
2628	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2629		tcp_ecn_clear_syn(sk, skb);
2630
2631	tcp_retrans_try_collapse(sk, skb, cur_mss);
 
 
 
 
 
 
 
 
 
 
 
 
 
2632
2633	/* Make a copy, if the first transmission SKB clone we made
2634	 * is still in somebody's hands, else make a clone.
2635	 */
 
2636
2637	/* make sure skb->data is aligned on arches that require it
2638	 * and check if ack-trimming & collapsing extended the headroom
2639	 * beyond what csum_start can cover.
2640	 */
2641	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2642		     skb_headroom(skb) >= 0xFFFF)) {
2643		struct sk_buff *nskb;
2644
2645		skb_mstamp_get(&skb->skb_mstamp);
2646		nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2647		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2648			     -ENOBUFS;
2649	} else {
2650		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2651	}
2652
2653	if (likely(!err)) {
2654		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2655		/* Update global TCP statistics. */
2656		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2657		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2658			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2659		tp->total_retrans++;
2660	}
2661	return err;
2662}
2663
2664int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2665{
2666	struct tcp_sock *tp = tcp_sk(sk);
2667	int err = __tcp_retransmit_skb(sk, skb);
2668
2669	if (err == 0) {
2670#if FASTRETRANS_DEBUG > 0
2671		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2672			net_dbg_ratelimited("retrans_out leaked\n");
2673		}
2674#endif
 
 
2675		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2676		tp->retrans_out += tcp_skb_pcount(skb);
2677
2678		/* Save stamp of the first retransmit. */
2679		if (!tp->retrans_stamp)
2680			tp->retrans_stamp = tcp_skb_timestamp(skb);
 
 
2681
2682	} else if (err != -EBUSY) {
2683		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
 
 
2684	}
2685
2686	if (tp->undo_retrans < 0)
2687		tp->undo_retrans = 0;
2688	tp->undo_retrans += tcp_skb_pcount(skb);
2689	return err;
2690}
2691
2692/* Check if we forward retransmits are possible in the current
2693 * window/congestion state.
2694 */
2695static bool tcp_can_forward_retransmit(struct sock *sk)
2696{
2697	const struct inet_connection_sock *icsk = inet_csk(sk);
2698	const struct tcp_sock *tp = tcp_sk(sk);
2699
2700	/* Forward retransmissions are possible only during Recovery. */
2701	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2702		return false;
2703
2704	/* No forward retransmissions in Reno are possible. */
2705	if (tcp_is_reno(tp))
2706		return false;
2707
2708	/* Yeah, we have to make difficult choice between forward transmission
2709	 * and retransmission... Both ways have their merits...
2710	 *
2711	 * For now we do not retransmit anything, while we have some new
2712	 * segments to send. In the other cases, follow rule 3 for
2713	 * NextSeg() specified in RFC3517.
2714	 */
2715
2716	if (tcp_may_send_now(sk))
2717		return false;
2718
2719	return true;
2720}
2721
2722/* This gets called after a retransmit timeout, and the initially
2723 * retransmitted data is acknowledged.  It tries to continue
2724 * resending the rest of the retransmit queue, until either
2725 * we've sent it all or the congestion window limit is reached.
2726 * If doing SACK, the first ACK which comes back for a timeout
2727 * based retransmit packet might feed us FACK information again.
2728 * If so, we use it to avoid unnecessarily retransmissions.
2729 */
2730void tcp_xmit_retransmit_queue(struct sock *sk)
2731{
2732	const struct inet_connection_sock *icsk = inet_csk(sk);
2733	struct tcp_sock *tp = tcp_sk(sk);
2734	struct sk_buff *skb;
2735	struct sk_buff *hole = NULL;
2736	u32 last_lost;
2737	int mib_idx;
2738	int fwd_rexmitting = 0;
2739
2740	if (!tp->packets_out)
2741		return;
2742
2743	if (!tp->lost_out)
2744		tp->retransmit_high = tp->snd_una;
2745
2746	if (tp->retransmit_skb_hint) {
2747		skb = tp->retransmit_skb_hint;
2748		last_lost = TCP_SKB_CB(skb)->end_seq;
2749		if (after(last_lost, tp->retransmit_high))
2750			last_lost = tp->retransmit_high;
2751	} else {
2752		skb = tcp_write_queue_head(sk);
2753		last_lost = tp->snd_una;
2754	}
2755
2756	tcp_for_write_queue_from(skb, sk) {
2757		__u8 sacked = TCP_SKB_CB(skb)->sacked;
2758
2759		if (skb == tcp_send_head(sk))
2760			break;
2761		/* we could do better than to assign each time */
2762		if (!hole)
2763			tp->retransmit_skb_hint = skb;
2764
2765		/* Assume this retransmit will generate
2766		 * only one packet for congestion window
2767		 * calculation purposes.  This works because
2768		 * tcp_retransmit_skb() will chop up the
2769		 * packet to be MSS sized and all the
2770		 * packet counting works out.
2771		 */
2772		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2773			return;
2774
2775		if (fwd_rexmitting) {
2776begin_fwd:
2777			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2778				break;
2779			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2780
2781		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2782			tp->retransmit_high = last_lost;
2783			if (!tcp_can_forward_retransmit(sk))
2784				break;
2785			/* Backtrack if necessary to non-L'ed skb */
2786			if (hole) {
2787				skb = hole;
2788				hole = NULL;
2789			}
2790			fwd_rexmitting = 1;
2791			goto begin_fwd;
2792
2793		} else if (!(sacked & TCPCB_LOST)) {
2794			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2795				hole = skb;
2796			continue;
2797
2798		} else {
2799			last_lost = TCP_SKB_CB(skb)->end_seq;
2800			if (icsk->icsk_ca_state != TCP_CA_Loss)
2801				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2802			else
2803				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2804		}
2805
2806		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2807			continue;
2808
2809		if (tcp_retransmit_skb(sk, skb))
 
2810			return;
2811
2812		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2813
2814		if (tcp_in_cwnd_reduction(sk))
2815			tp->prr_out += tcp_skb_pcount(skb);
2816
2817		if (skb == tcp_write_queue_head(sk))
2818			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2819						  inet_csk(sk)->icsk_rto,
2820						  TCP_RTO_MAX);
2821	}
2822}
2823
2824/* We allow to exceed memory limits for FIN packets to expedite
2825 * connection tear down and (memory) recovery.
2826 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2827 * or even be forced to close flow without any FIN.
2828 * In general, we want to allow one skb per socket to avoid hangs
2829 * with edge trigger epoll()
2830 */
2831void sk_forced_mem_schedule(struct sock *sk, int size)
2832{
2833	int amt;
2834
2835	if (size <= sk->sk_forward_alloc)
2836		return;
2837	amt = sk_mem_pages(size);
2838	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2839	sk_memory_allocated_add(sk, amt);
2840
2841	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2842		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
2843}
2844
2845/* Send a FIN. The caller locks the socket for us.
2846 * We should try to send a FIN packet really hard, but eventually give up.
2847 */
2848void tcp_send_fin(struct sock *sk)
2849{
2850	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2851	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
 
 
 
2852
2853	/* Optimization, tack on the FIN if we have one skb in write queue and
2854	 * this skb was not yet sent, or we are under memory pressure.
2855	 * Note: in the latter case, FIN packet will be sent after a timeout,
2856	 * as TCP stack thinks it has already been transmitted.
2857	 */
2858	if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2859coalesce:
2860		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2861		TCP_SKB_CB(tskb)->end_seq++;
2862		tp->write_seq++;
2863		if (!tcp_send_head(sk)) {
2864			/* This means tskb was already sent.
2865			 * Pretend we included the FIN on previous transmit.
2866			 * We need to set tp->snd_nxt to the value it would have
2867			 * if FIN had been sent. This is because retransmit path
2868			 * does not change tp->snd_nxt.
2869			 */
2870			tp->snd_nxt++;
2871			return;
2872		}
2873	} else {
2874		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2875		if (unlikely(!skb)) {
2876			if (tskb)
2877				goto coalesce;
2878			return;
 
 
2879		}
 
 
2880		skb_reserve(skb, MAX_TCP_HEADER);
2881		sk_forced_mem_schedule(sk, skb->truesize);
2882		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2883		tcp_init_nondata_skb(skb, tp->write_seq,
2884				     TCPHDR_ACK | TCPHDR_FIN);
2885		tcp_queue_skb(sk, skb);
2886	}
2887	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2888}
2889
2890/* We get here when a process closes a file descriptor (either due to
2891 * an explicit close() or as a byproduct of exit()'ing) and there
2892 * was unread data in the receive queue.  This behavior is recommended
2893 * by RFC 2525, section 2.17.  -DaveM
2894 */
2895void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2896{
2897	struct sk_buff *skb;
2898
2899	/* NOTE: No TCP options attached and we never retransmit this. */
2900	skb = alloc_skb(MAX_TCP_HEADER, priority);
2901	if (!skb) {
2902		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2903		return;
2904	}
2905
2906	/* Reserve space for headers and prepare control bits. */
2907	skb_reserve(skb, MAX_TCP_HEADER);
2908	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2909			     TCPHDR_ACK | TCPHDR_RST);
2910	skb_mstamp_get(&skb->skb_mstamp);
2911	/* Send it off. */
 
2912	if (tcp_transmit_skb(sk, skb, 0, priority))
2913		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2914
2915	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2916}
2917
2918/* Send a crossed SYN-ACK during socket establishment.
2919 * WARNING: This routine must only be called when we have already sent
2920 * a SYN packet that crossed the incoming SYN that caused this routine
2921 * to get called. If this assumption fails then the initial rcv_wnd
2922 * and rcv_wscale values will not be correct.
2923 */
2924int tcp_send_synack(struct sock *sk)
2925{
2926	struct sk_buff *skb;
2927
2928	skb = tcp_write_queue_head(sk);
2929	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2930		pr_debug("%s: wrong queue state\n", __func__);
2931		return -EFAULT;
2932	}
2933	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2934		if (skb_cloned(skb)) {
2935			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2936			if (!nskb)
2937				return -ENOMEM;
2938			tcp_unlink_write_queue(skb, sk);
2939			__skb_header_release(nskb);
2940			__tcp_add_write_queue_head(sk, nskb);
2941			sk_wmem_free_skb(sk, skb);
2942			sk->sk_wmem_queued += nskb->truesize;
2943			sk_mem_charge(sk, nskb->truesize);
2944			skb = nskb;
2945		}
2946
2947		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2948		tcp_ecn_send_synack(sk, skb);
2949	}
 
2950	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2951}
2952
2953/**
2954 * tcp_make_synack - Prepare a SYN-ACK.
2955 * sk: listener socket
2956 * dst: dst entry attached to the SYNACK
2957 * req: request_sock pointer
2958 *
2959 * Allocate one skb and build a SYNACK packet.
2960 * @dst is consumed : Caller should not use it again.
2961 */
2962struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
2963				struct request_sock *req,
2964				struct tcp_fastopen_cookie *foc,
2965				bool attach_req)
2966{
 
 
2967	struct inet_request_sock *ireq = inet_rsk(req);
2968	const struct tcp_sock *tp = tcp_sk(sk);
2969	struct tcp_md5sig_key *md5 = NULL;
2970	struct tcp_out_options opts;
2971	struct sk_buff *skb;
 
2972	int tcp_header_size;
2973	struct tcphdr *th;
2974	u16 user_mss;
2975	int mss;
 
2976
2977	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2978	if (unlikely(!skb)) {
2979		dst_release(dst);
 
2980		return NULL;
2981	}
2982	/* Reserve space for headers. */
2983	skb_reserve(skb, MAX_TCP_HEADER);
2984
2985	if (attach_req) {
2986		skb_set_owner_w(skb, req_to_sk(req));
2987	} else {
2988		/* sk is a const pointer, because we want to express multiple
2989		 * cpu might call us concurrently.
2990		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
2991		 */
2992		skb_set_owner_w(skb, (struct sock *)sk);
2993	}
2994	skb_dst_set(skb, dst);
2995
2996	mss = dst_metric_advmss(dst);
2997	user_mss = READ_ONCE(tp->rx_opt.user_mss);
2998	if (user_mss && user_mss < mss)
2999		mss = user_mss;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3000
3001	memset(&opts, 0, sizeof(opts));
3002#ifdef CONFIG_SYN_COOKIES
3003	if (unlikely(req->cookie_ts))
3004		skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
3005	else
3006#endif
3007	skb_mstamp_get(&skb->skb_mstamp);
3008
3009#ifdef CONFIG_TCP_MD5SIG
3010	rcu_read_lock();
3011	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3012#endif
3013	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3014	tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3015			  sizeof(*th);
3016
3017	skb_push(skb, tcp_header_size);
3018	skb_reset_transport_header(skb);
3019
3020	th = tcp_hdr(skb);
3021	memset(th, 0, sizeof(struct tcphdr));
3022	th->syn = 1;
3023	th->ack = 1;
3024	tcp_ecn_make_synack(req, th);
3025	th->source = htons(ireq->ir_num);
3026	th->dest = ireq->ir_rmt_port;
3027	/* Setting of flags are superfluous here for callers (and ECE is
3028	 * not even correctly set)
3029	 */
3030	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3031			     TCPHDR_SYN | TCPHDR_ACK);
3032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3033	th->seq = htonl(TCP_SKB_CB(skb)->seq);
3034	/* XXX data is queued and acked as is. No buffer/window check */
3035	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3036
3037	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3038	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3039	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3040	th->doff = (tcp_header_size >> 2);
3041	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
3042
3043#ifdef CONFIG_TCP_MD5SIG
3044	/* Okay, we have all we need - do the md5 hash if needed */
3045	if (md5)
3046		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3047					       md5, req_to_sk(req), skb);
3048	rcu_read_unlock();
3049#endif
3050
3051	/* Do not fool tcpdump (if any), clean our debris */
3052	skb->tstamp.tv64 = 0;
3053	return skb;
3054}
3055EXPORT_SYMBOL(tcp_make_synack);
3056
3057static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3058{
3059	struct inet_connection_sock *icsk = inet_csk(sk);
3060	const struct tcp_congestion_ops *ca;
3061	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3062
3063	if (ca_key == TCP_CA_UNSPEC)
3064		return;
3065
3066	rcu_read_lock();
3067	ca = tcp_ca_find_key(ca_key);
3068	if (likely(ca && try_module_get(ca->owner))) {
3069		module_put(icsk->icsk_ca_ops->owner);
3070		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3071		icsk->icsk_ca_ops = ca;
3072	}
3073	rcu_read_unlock();
3074}
3075
3076/* Do all connect socket setups that can be done AF independent. */
3077static void tcp_connect_init(struct sock *sk)
3078{
3079	const struct dst_entry *dst = __sk_dst_get(sk);
3080	struct tcp_sock *tp = tcp_sk(sk);
3081	__u8 rcv_wscale;
3082
3083	/* We'll fix this up when we get a response from the other end.
3084	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3085	 */
3086	tp->tcp_header_len = sizeof(struct tcphdr) +
3087		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3088
3089#ifdef CONFIG_TCP_MD5SIG
3090	if (tp->af_specific->md5_lookup(sk, sk))
3091		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3092#endif
3093
3094	/* If user gave his TCP_MAXSEG, record it to clamp */
3095	if (tp->rx_opt.user_mss)
3096		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3097	tp->max_window = 0;
3098	tcp_mtup_init(sk);
3099	tcp_sync_mss(sk, dst_mtu(dst));
3100
3101	tcp_ca_dst_init(sk, dst);
3102
3103	if (!tp->window_clamp)
3104		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3105	tp->advmss = dst_metric_advmss(dst);
3106	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3107		tp->advmss = tp->rx_opt.user_mss;
3108
3109	tcp_initialize_rcv_mss(sk);
3110
3111	/* limit the window selection if the user enforce a smaller rx buffer */
3112	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3113	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3114		tp->window_clamp = tcp_full_space(sk);
3115
3116	tcp_select_initial_window(tcp_full_space(sk),
3117				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3118				  &tp->rcv_wnd,
3119				  &tp->window_clamp,
3120				  sysctl_tcp_window_scaling,
3121				  &rcv_wscale,
3122				  dst_metric(dst, RTAX_INITRWND));
3123
3124	tp->rx_opt.rcv_wscale = rcv_wscale;
3125	tp->rcv_ssthresh = tp->rcv_wnd;
3126
3127	sk->sk_err = 0;
3128	sock_reset_flag(sk, SOCK_DONE);
3129	tp->snd_wnd = 0;
3130	tcp_init_wl(tp, 0);
3131	tp->snd_una = tp->write_seq;
3132	tp->snd_sml = tp->write_seq;
3133	tp->snd_up = tp->write_seq;
3134	tp->snd_nxt = tp->write_seq;
3135
3136	if (likely(!tp->repair))
3137		tp->rcv_nxt = 0;
3138	else
3139		tp->rcv_tstamp = tcp_time_stamp;
3140	tp->rcv_wup = tp->rcv_nxt;
3141	tp->copied_seq = tp->rcv_nxt;
3142
3143	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3144	inet_csk(sk)->icsk_retransmits = 0;
3145	tcp_clear_retrans(tp);
3146}
3147
3148static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3149{
3150	struct tcp_sock *tp = tcp_sk(sk);
3151	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3152
3153	tcb->end_seq += skb->len;
3154	__skb_header_release(skb);
3155	__tcp_add_write_queue_tail(sk, skb);
3156	sk->sk_wmem_queued += skb->truesize;
3157	sk_mem_charge(sk, skb->truesize);
3158	tp->write_seq = tcb->end_seq;
3159	tp->packets_out += tcp_skb_pcount(skb);
3160}
3161
3162/* Build and send a SYN with data and (cached) Fast Open cookie. However,
3163 * queue a data-only packet after the regular SYN, such that regular SYNs
3164 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3165 * only the SYN sequence, the data are retransmitted in the first ACK.
3166 * If cookie is not cached or other error occurs, falls back to send a
3167 * regular SYN with Fast Open cookie request option.
3168 */
3169static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3170{
3171	struct tcp_sock *tp = tcp_sk(sk);
3172	struct tcp_fastopen_request *fo = tp->fastopen_req;
3173	int syn_loss = 0, space, err = 0;
3174	unsigned long last_syn_loss = 0;
3175	struct sk_buff *syn_data;
3176
3177	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3178	tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3179			       &syn_loss, &last_syn_loss);
3180	/* Recurring FO SYN losses: revert to regular handshake temporarily */
3181	if (syn_loss > 1 &&
3182	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3183		fo->cookie.len = -1;
3184		goto fallback;
3185	}
3186
3187	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3188		fo->cookie.len = -1;
3189	else if (fo->cookie.len <= 0)
3190		goto fallback;
3191
3192	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3193	 * user-MSS. Reserve maximum option space for middleboxes that add
3194	 * private TCP options. The cost is reduced data space in SYN :(
3195	 */
3196	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3197		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3198	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3199		MAX_TCP_OPTION_SPACE;
3200
3201	space = min_t(size_t, space, fo->size);
3202
3203	/* limit to order-0 allocations */
3204	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3205
3206	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3207	if (!syn_data)
3208		goto fallback;
3209	syn_data->ip_summed = CHECKSUM_PARTIAL;
3210	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3211	if (space) {
3212		int copied = copy_from_iter(skb_put(syn_data, space), space,
3213					    &fo->data->msg_iter);
3214		if (unlikely(!copied)) {
3215			kfree_skb(syn_data);
3216			goto fallback;
3217		}
3218		if (copied != space) {
3219			skb_trim(syn_data, copied);
3220			space = copied;
3221		}
3222	}
3223	/* No more data pending in inet_wait_for_connect() */
3224	if (space == fo->size)
3225		fo->data = NULL;
3226	fo->copied = space;
3227
3228	tcp_connect_queue_skb(sk, syn_data);
3229
3230	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3231
3232	syn->skb_mstamp = syn_data->skb_mstamp;
3233
3234	/* Now full SYN+DATA was cloned and sent (or not),
3235	 * remove the SYN from the original skb (syn_data)
3236	 * we keep in write queue in case of a retransmit, as we
3237	 * also have the SYN packet (with no data) in the same queue.
3238	 */
3239	TCP_SKB_CB(syn_data)->seq++;
3240	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3241	if (!err) {
3242		tp->syn_data = (fo->copied > 0);
3243		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3244		goto done;
3245	}
3246
3247fallback:
3248	/* Send a regular SYN with Fast Open cookie request option */
3249	if (fo->cookie.len > 0)
3250		fo->cookie.len = 0;
3251	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3252	if (err)
3253		tp->syn_fastopen = 0;
3254done:
3255	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3256	return err;
3257}
3258
3259/* Build a SYN and send it off. */
3260int tcp_connect(struct sock *sk)
3261{
3262	struct tcp_sock *tp = tcp_sk(sk);
3263	struct sk_buff *buff;
3264	int err;
3265
3266	tcp_connect_init(sk);
3267
3268	if (unlikely(tp->repair)) {
3269		tcp_finish_connect(sk, NULL);
3270		return 0;
3271	}
3272
3273	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3274	if (unlikely(!buff))
3275		return -ENOBUFS;
3276
3277	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3278	tp->retrans_stamp = tcp_time_stamp;
3279	tcp_connect_queue_skb(sk, buff);
3280	tcp_ecn_send_syn(sk, buff);
3281
3282	/* Send off SYN; include data in Fast Open. */
3283	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3284	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
 
 
 
 
3285	if (err == -ECONNREFUSED)
3286		return err;
3287
3288	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3289	 * in order to make this packet get counted in tcpOutSegs.
3290	 */
3291	tp->snd_nxt = tp->write_seq;
3292	tp->pushed_seq = tp->write_seq;
3293	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3294
3295	/* Timer for repeating the SYN until an answer. */
3296	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3297				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3298	return 0;
3299}
3300EXPORT_SYMBOL(tcp_connect);
3301
3302/* Send out a delayed ack, the caller does the policy checking
3303 * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3304 * for details.
3305 */
3306void tcp_send_delayed_ack(struct sock *sk)
3307{
3308	struct inet_connection_sock *icsk = inet_csk(sk);
3309	int ato = icsk->icsk_ack.ato;
3310	unsigned long timeout;
3311
3312	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3313
3314	if (ato > TCP_DELACK_MIN) {
3315		const struct tcp_sock *tp = tcp_sk(sk);
3316		int max_ato = HZ / 2;
3317
3318		if (icsk->icsk_ack.pingpong ||
3319		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3320			max_ato = TCP_DELACK_MAX;
3321
3322		/* Slow path, intersegment interval is "high". */
3323
3324		/* If some rtt estimate is known, use it to bound delayed ack.
3325		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3326		 * directly.
3327		 */
3328		if (tp->srtt_us) {
3329			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3330					TCP_DELACK_MIN);
3331
3332			if (rtt < max_ato)
3333				max_ato = rtt;
3334		}
3335
3336		ato = min(ato, max_ato);
3337	}
3338
3339	/* Stay within the limit we were given */
3340	timeout = jiffies + ato;
3341
3342	/* Use new timeout only if there wasn't a older one earlier. */
3343	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3344		/* If delack timer was blocked or is about to expire,
3345		 * send ACK now.
3346		 */
3347		if (icsk->icsk_ack.blocked ||
3348		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3349			tcp_send_ack(sk);
3350			return;
3351		}
3352
3353		if (!time_before(timeout, icsk->icsk_ack.timeout))
3354			timeout = icsk->icsk_ack.timeout;
3355	}
3356	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3357	icsk->icsk_ack.timeout = timeout;
3358	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3359}
3360
3361/* This routine sends an ack and also updates the window. */
3362void tcp_send_ack(struct sock *sk)
3363{
3364	struct sk_buff *buff;
3365
3366	/* If we have been reset, we may not send again. */
3367	if (sk->sk_state == TCP_CLOSE)
3368		return;
3369
3370	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3371
3372	/* We are not putting this on the write queue, so
3373	 * tcp_transmit_skb() will set the ownership to this
3374	 * sock.
3375	 */
3376	buff = alloc_skb(MAX_TCP_HEADER,
3377			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3378	if (unlikely(!buff)) {
3379		inet_csk_schedule_ack(sk);
3380		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3381		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3382					  TCP_DELACK_MAX, TCP_RTO_MAX);
3383		return;
3384	}
3385
3386	/* Reserve space for headers and prepare control bits. */
3387	skb_reserve(buff, MAX_TCP_HEADER);
3388	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3389
3390	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3391	 * too much.
3392	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3393	 * We also avoid tcp_wfree() overhead (cache line miss accessing
3394	 * tp->tsq_flags) by using regular sock_wfree()
3395	 */
3396	skb_set_tcp_pure_ack(buff);
3397
3398	/* Send it off, this clears delayed acks for us. */
3399	skb_mstamp_get(&buff->skb_mstamp);
3400	tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3401}
3402EXPORT_SYMBOL_GPL(tcp_send_ack);
3403
3404/* This routine sends a packet with an out of date sequence
3405 * number. It assumes the other end will try to ack it.
3406 *
3407 * Question: what should we make while urgent mode?
3408 * 4.4BSD forces sending single byte of data. We cannot send
3409 * out of window data, because we have SND.NXT==SND.MAX...
3410 *
3411 * Current solution: to send TWO zero-length segments in urgent mode:
3412 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3413 * out-of-date with SND.UNA-1 to probe window.
3414 */
3415static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3416{
3417	struct tcp_sock *tp = tcp_sk(sk);
3418	struct sk_buff *skb;
3419
3420	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3421	skb = alloc_skb(MAX_TCP_HEADER,
3422			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3423	if (!skb)
3424		return -1;
3425
3426	/* Reserve space for headers and set control bits. */
3427	skb_reserve(skb, MAX_TCP_HEADER);
3428	/* Use a previous sequence.  This should cause the other
3429	 * end to send an ack.  Don't queue or clone SKB, just
3430	 * send it.
3431	 */
3432	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3433	skb_mstamp_get(&skb->skb_mstamp);
3434	NET_INC_STATS(sock_net(sk), mib);
3435	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3436}
3437
3438void tcp_send_window_probe(struct sock *sk)
3439{
3440	if (sk->sk_state == TCP_ESTABLISHED) {
3441		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3442		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
 
3443	}
3444}
3445
3446/* Initiate keepalive or window probe from timer. */
3447int tcp_write_wakeup(struct sock *sk, int mib)
3448{
3449	struct tcp_sock *tp = tcp_sk(sk);
3450	struct sk_buff *skb;
3451
3452	if (sk->sk_state == TCP_CLOSE)
3453		return -1;
3454
3455	skb = tcp_send_head(sk);
3456	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3457		int err;
3458		unsigned int mss = tcp_current_mss(sk);
3459		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3460
3461		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3462			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3463
3464		/* We are probing the opening of a window
3465		 * but the window size is != 0
3466		 * must have been a result SWS avoidance ( sender )
3467		 */
3468		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3469		    skb->len > mss) {
3470			seg_size = min(seg_size, mss);
3471			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3472			if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3473				return -1;
3474		} else if (!tcp_skb_pcount(skb))
3475			tcp_set_skb_tso_segs(skb, mss);
3476
3477		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
 
3478		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3479		if (!err)
3480			tcp_event_new_data_sent(sk, skb);
3481		return err;
3482	} else {
3483		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3484			tcp_xmit_probe_skb(sk, 1, mib);
3485		return tcp_xmit_probe_skb(sk, 0, mib);
3486	}
3487}
3488
3489/* A window probe timeout has occurred.  If window is not closed send
3490 * a partial packet else a zero probe.
3491 */
3492void tcp_send_probe0(struct sock *sk)
3493{
3494	struct inet_connection_sock *icsk = inet_csk(sk);
3495	struct tcp_sock *tp = tcp_sk(sk);
3496	struct net *net = sock_net(sk);
3497	unsigned long probe_max;
3498	int err;
3499
3500	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3501
3502	if (tp->packets_out || !tcp_send_head(sk)) {
3503		/* Cancel probe timer, if it is not required. */
3504		icsk->icsk_probes_out = 0;
3505		icsk->icsk_backoff = 0;
3506		return;
3507	}
3508
3509	if (err <= 0) {
3510		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3511			icsk->icsk_backoff++;
3512		icsk->icsk_probes_out++;
3513		probe_max = TCP_RTO_MAX;
 
 
3514	} else {
3515		/* If packet was not sent due to local congestion,
3516		 * do not backoff and do not remember icsk_probes_out.
3517		 * Let local senders to fight for local resources.
3518		 *
3519		 * Use accumulated backoff yet.
3520		 */
3521		if (!icsk->icsk_probes_out)
3522			icsk->icsk_probes_out = 1;
3523		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3524	}
3525	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3526				  tcp_probe0_when(sk, probe_max),
3527				  TCP_RTO_MAX);
3528}
3529
3530int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3531{
3532	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3533	struct flowi fl;
3534	int res;
3535
3536	tcp_rsk(req)->txhash = net_tx_rndhash();
3537	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, true);
3538	if (!res) {
3539		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
3540		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3541	}
3542	return res;
3543}
3544EXPORT_SYMBOL(tcp_rtx_synack);