Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  3 *		operating system.  INET is implemented using the  BSD Socket
  4 *		interface as the means of communication with the user level.
  5 *
  6 *		Implementation of the Transmission Control Protocol(TCP).
  7 *
  8 * Authors:	Ross Biro
  9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 12 *		Florian La Roche, <flla@stud.uni-sb.de>
 13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 18 *		Jorge Cwik, <jorge@laser.satlink.net>
 19 */
 20
 21#include <linux/mm.h>
 22#include <linux/module.h>
 23#include <linux/slab.h>
 24#include <linux/sysctl.h>
 25#include <linux/workqueue.h>
 26#include <net/tcp.h>
 27#include <net/inet_common.h>
 28#include <net/xfrm.h>
 29
 30int sysctl_tcp_syncookies __read_mostly = 1;
 31EXPORT_SYMBOL(sysctl_tcp_syncookies);
 32
 33int sysctl_tcp_abort_on_overflow __read_mostly;
 34
 35struct inet_timewait_death_row tcp_death_row = {
 36	.sysctl_max_tw_buckets = NR_FILE * 2,
 37	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
 38	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
 39	.hashinfo	= &tcp_hashinfo,
 40	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
 41					    (unsigned long)&tcp_death_row),
 42	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
 43					     inet_twdr_twkill_work),
 44/* Short-time timewait calendar */
 45
 46	.twcal_hand	= -1,
 47	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
 48					    (unsigned long)&tcp_death_row),
 49};
 50EXPORT_SYMBOL_GPL(tcp_death_row);
 51
 52/* VJ's idea. Save last timestamp seen from this destination
 53 * and hold it at least for normal timewait interval to use for duplicate
 54 * segment detection in subsequent connections, before they enter synchronized
 55 * state.
 56 */
 57
 58static bool tcp_remember_stamp(struct sock *sk)
 59{
 60	const struct inet_connection_sock *icsk = inet_csk(sk);
 61	struct tcp_sock *tp = tcp_sk(sk);
 62	struct inet_peer *peer;
 63	bool release_it;
 64
 65	peer = icsk->icsk_af_ops->get_peer(sk, &release_it);
 66	if (peer) {
 67		if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
 68		    ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
 69		     peer->tcp_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
 70			peer->tcp_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
 71			peer->tcp_ts = tp->rx_opt.ts_recent;
 72		}
 73		if (release_it)
 74			inet_putpeer(peer);
 75		return true;
 76	}
 77
 78	return false;
 79}
 80
 81static bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw)
 
 
 82{
 83	struct sock *sk = (struct sock *) tw;
 84	struct inet_peer *peer;
 85
 86	peer = twsk_getpeer(sk);
 87	if (peer) {
 88		const struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
 89
 90		if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
 91		    ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
 92		     peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
 93			peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
 94			peer->tcp_ts	   = tcptw->tw_ts_recent;
 95		}
 96		inet_putpeer(peer);
 97		return true;
 98	}
 99	return false;
100}
101
102static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
103{
104	if (seq == s_win)
105		return true;
106	if (after(end_seq, s_win) && before(seq, e_win))
107		return true;
108	return seq == e_win && seq == end_seq;
109}
110
111/*
112 * * Main purpose of TIME-WAIT state is to close connection gracefully,
113 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
114 *   (and, probably, tail of data) and one or more our ACKs are lost.
115 * * What is TIME-WAIT timeout? It is associated with maximal packet
116 *   lifetime in the internet, which results in wrong conclusion, that
117 *   it is set to catch "old duplicate segments" wandering out of their path.
118 *   It is not quite correct. This timeout is calculated so that it exceeds
119 *   maximal retransmission timeout enough to allow to lose one (or more)
120 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
121 * * When TIME-WAIT socket receives RST, it means that another end
122 *   finally closed and we are allowed to kill TIME-WAIT too.
123 * * Second purpose of TIME-WAIT is catching old duplicate segments.
124 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
125 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
126 * * If we invented some more clever way to catch duplicates
127 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
128 *
129 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
130 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
131 * from the very beginning.
132 *
133 * NOTE. With recycling (and later with fin-wait-2) TW bucket
134 * is _not_ stateless. It means, that strictly speaking we must
135 * spinlock it. I do not want! Well, probability of misbehaviour
136 * is ridiculously low and, seems, we could use some mb() tricks
137 * to avoid misread sequence numbers, states etc.  --ANK
 
 
138 */
139enum tcp_tw_status
140tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
141			   const struct tcphdr *th)
142{
143	struct tcp_options_received tmp_opt;
144	const u8 *hash_location;
145	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
146	bool paws_reject = false;
147
148	tmp_opt.saw_tstamp = 0;
149	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
150		tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
151
152		if (tmp_opt.saw_tstamp) {
 
153			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
154			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
155			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
156		}
157	}
158
159	if (tw->tw_substate == TCP_FIN_WAIT2) {
160		/* Just repeat all the checks of tcp_rcv_state_process() */
161
162		/* Out of window, send ACK */
163		if (paws_reject ||
164		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
165				   tcptw->tw_rcv_nxt,
166				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
167			return TCP_TW_ACK;
 
168
169		if (th->rst)
170			goto kill;
171
172		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
173			goto kill_with_rst;
174
175		/* Dup ACK? */
176		if (!th->ack ||
177		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
178		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
179			inet_twsk_put(tw);
180			return TCP_TW_SUCCESS;
181		}
182
183		/* New data or FIN. If new data arrive after half-duplex close,
184		 * reset.
185		 */
186		if (!th->fin ||
187		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
188kill_with_rst:
189			inet_twsk_deschedule(tw, &tcp_death_row);
190			inet_twsk_put(tw);
191			return TCP_TW_RST;
192		}
193
194		/* FIN arrived, enter true time-wait state. */
195		tw->tw_substate	  = TCP_TIME_WAIT;
196		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
197		if (tmp_opt.saw_tstamp) {
198			tcptw->tw_ts_recent_stamp = get_seconds();
199			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
200		}
201
202		if (tcp_death_row.sysctl_tw_recycle &&
203		    tcptw->tw_ts_recent_stamp &&
204		    tcp_tw_remember_stamp(tw))
205			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
206					   TCP_TIMEWAIT_LEN);
207		else
208			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
209					   TCP_TIMEWAIT_LEN);
210		return TCP_TW_ACK;
211	}
212
213	/*
214	 *	Now real TIME-WAIT state.
215	 *
216	 *	RFC 1122:
217	 *	"When a connection is [...] on TIME-WAIT state [...]
218	 *	[a TCP] MAY accept a new SYN from the remote TCP to
219	 *	reopen the connection directly, if it:
220	 *
221	 *	(1)  assigns its initial sequence number for the new
222	 *	connection to be larger than the largest sequence
223	 *	number it used on the previous connection incarnation,
224	 *	and
225	 *
226	 *	(2)  returns to TIME-WAIT state if the SYN turns out
227	 *	to be an old duplicate".
228	 */
229
230	if (!paws_reject &&
231	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
232	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
233		/* In window segment, it may be only reset or bare ack. */
234
235		if (th->rst) {
236			/* This is TIME_WAIT assassination, in two flavors.
237			 * Oh well... nobody has a sufficient solution to this
238			 * protocol bug yet.
239			 */
240			if (sysctl_tcp_rfc1337 == 0) {
241kill:
242				inet_twsk_deschedule(tw, &tcp_death_row);
243				inet_twsk_put(tw);
244				return TCP_TW_SUCCESS;
245			}
246		}
247		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
248				   TCP_TIMEWAIT_LEN);
249
250		if (tmp_opt.saw_tstamp) {
251			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
252			tcptw->tw_ts_recent_stamp = get_seconds();
253		}
254
255		inet_twsk_put(tw);
256		return TCP_TW_SUCCESS;
257	}
258
259	/* Out of window segment.
260
261	   All the segments are ACKed immediately.
262
263	   The only exception is new SYN. We accept it, if it is
264	   not old duplicate and we are not in danger to be killed
265	   by delayed old duplicates. RFC check is that it has
266	   newer sequence number works at rates <40Mbit/sec.
267	   However, if paws works, it is reliable AND even more,
268	   we even may relax silly seq space cutoff.
269
270	   RED-PEN: we violate main RFC requirement, if this SYN will appear
271	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
272	   we must return socket to time-wait state. It is not good,
273	   but not fatal yet.
274	 */
275
276	if (th->syn && !th->rst && !th->ack && !paws_reject &&
277	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
278	     (tmp_opt.saw_tstamp &&
279	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
280		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
281		if (isn == 0)
282			isn++;
283		TCP_SKB_CB(skb)->when = isn;
284		return TCP_TW_SYN;
285	}
286
287	if (paws_reject)
288		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
289
290	if (!th->rst) {
291		/* In this case we must reset the TIMEWAIT timer.
292		 *
293		 * If it is ACKless SYN it may be both old duplicate
294		 * and new good SYN with random sequence number <rcv_nxt.
295		 * Do not reschedule in the last case.
296		 */
297		if (paws_reject || th->ack)
298			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
299					   TCP_TIMEWAIT_LEN);
300
301		/* Send ACK. Note, we do not put the bucket,
302		 * it will be released by caller.
303		 */
304		return TCP_TW_ACK;
305	}
306	inet_twsk_put(tw);
307	return TCP_TW_SUCCESS;
308}
309EXPORT_SYMBOL(tcp_timewait_state_process);
310
311/*
312 * Move a socket to time-wait or dead fin-wait-2 state.
313 */
314void tcp_time_wait(struct sock *sk, int state, int timeo)
315{
316	struct inet_timewait_sock *tw = NULL;
317	const struct inet_connection_sock *icsk = inet_csk(sk);
318	const struct tcp_sock *tp = tcp_sk(sk);
 
319	bool recycle_ok = false;
320
321	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
322		recycle_ok = tcp_remember_stamp(sk);
323
324	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
325		tw = inet_twsk_alloc(sk, state);
326
327	if (tw != NULL) {
328		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
329		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
 
330
331		tw->tw_transparent	= inet_sk(sk)->transparent;
332		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
333		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
334		tcptw->tw_snd_nxt	= tp->snd_nxt;
335		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
336		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
337		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
 
 
338
339#if IS_ENABLED(CONFIG_IPV6)
340		if (tw->tw_family == PF_INET6) {
341			struct ipv6_pinfo *np = inet6_sk(sk);
342			struct inet6_timewait_sock *tw6;
343
344			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
345			tw6 = inet6_twsk((struct sock *)tw);
346			tw6->tw_v6_daddr = np->daddr;
347			tw6->tw_v6_rcv_saddr = np->rcv_saddr;
348			tw->tw_tclass = np->tclass;
349			tw->tw_ipv6only = np->ipv6only;
 
350		}
351#endif
352
353#ifdef CONFIG_TCP_MD5SIG
354		/*
355		 * The timewait bucket does not have the key DB from the
356		 * sock structure. We just make a quick copy of the
357		 * md5 key being used (if indeed we are using one)
358		 * so the timewait ack generating code has the key.
359		 */
360		do {
361			struct tcp_md5sig_key *key;
362			tcptw->tw_md5_key = NULL;
363			key = tp->af_specific->md5_lookup(sk, sk);
364			if (key != NULL) {
365				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
366				if (tcptw->tw_md5_key && tcp_alloc_md5sig_pool(sk) == NULL)
367					BUG();
368			}
369		} while (0);
370#endif
371
372		/* Linkage updates. */
373		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
374
375		/* Get the TIME_WAIT timeout firing. */
376		if (timeo < rto)
377			timeo = rto;
378
379		if (recycle_ok) {
380			tw->tw_timeout = rto;
381		} else {
382			tw->tw_timeout = TCP_TIMEWAIT_LEN;
383			if (state == TCP_TIME_WAIT)
384				timeo = TCP_TIMEWAIT_LEN;
385		}
386
387		inet_twsk_schedule(tw, &tcp_death_row, timeo,
388				   TCP_TIMEWAIT_LEN);
 
389		inet_twsk_put(tw);
390	} else {
391		/* Sorry, if we're out of memory, just CLOSE this
392		 * socket up.  We've got bigger problems than
393		 * non-graceful socket closings.
394		 */
395		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
396	}
397
398	tcp_update_metrics(sk);
399	tcp_done(sk);
400}
401
402void tcp_twsk_destructor(struct sock *sk)
403{
404#ifdef CONFIG_TCP_MD5SIG
405	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
406	if (twsk->tw_md5_key) {
407		tcp_free_md5sig_pool();
408		kfree_rcu(twsk->tw_md5_key, rcu);
409	}
410#endif
411}
412EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
413
414static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
415					 struct request_sock *req)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
416{
417	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
418}
419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
420/* This is not only more efficient than what we used to do, it eliminates
421 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
422 *
423 * Actually, we could lots of memory writes here. tp of listening
424 * socket contains all necessary default parameters.
425 */
426struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
 
 
427{
428	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
429
430	if (newsk != NULL) {
431		const struct inet_request_sock *ireq = inet_rsk(req);
432		struct tcp_request_sock *treq = tcp_rsk(req);
433		struct inet_connection_sock *newicsk = inet_csk(newsk);
434		struct tcp_sock *newtp = tcp_sk(newsk);
435		struct tcp_sock *oldtp = tcp_sk(sk);
436		struct tcp_cookie_values *oldcvp = oldtp->cookie_values;
437
438		/* TCP Cookie Transactions require space for the cookie pair,
439		 * as it differs for each connection.  There is no need to
440		 * copy any s_data_payload stored at the original socket.
441		 * Failure will prevent resuming the connection.
442		 *
443		 * Presumed copied, in order of appearance:
444		 *	cookie_in_always, cookie_out_never
445		 */
446		if (oldcvp != NULL) {
447			struct tcp_cookie_values *newcvp =
448				kzalloc(sizeof(*newtp->cookie_values),
449					GFP_ATOMIC);
450
451			if (newcvp != NULL) {
452				kref_init(&newcvp->kref);
453				newcvp->cookie_desired =
454						oldcvp->cookie_desired;
455				newtp->cookie_values = newcvp;
456			} else {
457				/* Not Yet Implemented */
458				newtp->cookie_values = NULL;
459			}
460		}
461
462		/* Now setup tcp_sock */
463		newtp->pred_flags = 0;
464
465		newtp->rcv_wup = newtp->copied_seq =
466		newtp->rcv_nxt = treq->rcv_isn + 1;
 
467
468		newtp->snd_sml = newtp->snd_una =
469		newtp->snd_nxt = newtp->snd_up =
470			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
471
472		tcp_prequeue_init(newtp);
 
473
474		tcp_init_wl(newtp, treq->rcv_isn);
475
476		newtp->srtt = 0;
477		newtp->mdev = TCP_TIMEOUT_INIT;
 
478		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
479
480		newtp->packets_out = 0;
481		newtp->retrans_out = 0;
482		newtp->sacked_out = 0;
483		newtp->fackets_out = 0;
484		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
485		tcp_enable_early_retrans(newtp);
 
 
 
 
 
486
487		/* So many TCP implementations out there (incorrectly) count the
488		 * initial SYN frame in their delayed-ACK and congestion control
489		 * algorithms that we must have the following bandaid to talk
490		 * efficiently to them.  -DaveM
491		 */
492		newtp->snd_cwnd = TCP_INIT_CWND;
493		newtp->snd_cwnd_cnt = 0;
494		newtp->bytes_acked = 0;
495
496		newtp->frto_counter = 0;
497		newtp->frto_highmark = 0;
498
499		if (newicsk->icsk_ca_ops != &tcp_init_congestion_ops &&
500		    !try_module_get(newicsk->icsk_ca_ops->owner))
501			newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
502
503		tcp_set_ca_state(newsk, TCP_CA_Open);
504		tcp_init_xmit_timers(newsk);
505		skb_queue_head_init(&newtp->out_of_order_queue);
506		newtp->write_seq = newtp->pushed_seq =
507			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
508
509		newtp->rx_opt.saw_tstamp = 0;
510
511		newtp->rx_opt.dsack = 0;
512		newtp->rx_opt.num_sacks = 0;
513
514		newtp->urg_data = 0;
515
516		if (sock_flag(newsk, SOCK_KEEPOPEN))
517			inet_csk_reset_keepalive_timer(newsk,
518						       keepalive_time_when(newtp));
519
520		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
521		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
522			if (sysctl_tcp_fack)
523				tcp_enable_fack(newtp);
524		}
525		newtp->window_clamp = req->window_clamp;
526		newtp->rcv_ssthresh = req->rcv_wnd;
527		newtp->rcv_wnd = req->rcv_wnd;
528		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
529		if (newtp->rx_opt.wscale_ok) {
530			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
531			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
532		} else {
533			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
534			newtp->window_clamp = min(newtp->window_clamp, 65535U);
535		}
536		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
537				  newtp->rx_opt.snd_wscale);
538		newtp->max_window = newtp->snd_wnd;
539
540		if (newtp->rx_opt.tstamp_ok) {
541			newtp->rx_opt.ts_recent = req->ts_recent;
542			newtp->rx_opt.ts_recent_stamp = get_seconds();
543			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
544		} else {
545			newtp->rx_opt.ts_recent_stamp = 0;
546			newtp->tcp_header_len = sizeof(struct tcphdr);
547		}
 
548#ifdef CONFIG_TCP_MD5SIG
549		newtp->md5sig_info = NULL;	/*XXX*/
550		if (newtp->af_specific->md5_lookup(sk, newsk))
551			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
552#endif
553		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
554			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
555		newtp->rx_opt.mss_clamp = req->mss;
556		TCP_ECN_openreq_child(newtp, req);
 
 
 
 
557
558		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
559	}
560	return newsk;
561}
562EXPORT_SYMBOL(tcp_create_openreq_child);
563
564/*
565 *	Process an incoming packet for SYN_RECV sockets represented
566 *	as a request_sock.
 
 
 
 
 
 
567 */
568
569struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
570			   struct request_sock *req,
571			   struct request_sock **prev)
572{
573	struct tcp_options_received tmp_opt;
574	const u8 *hash_location;
575	struct sock *child;
576	const struct tcphdr *th = tcp_hdr(skb);
577	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
578	bool paws_reject = false;
 
579
580	tmp_opt.saw_tstamp = 0;
581	if (th->doff > (sizeof(struct tcphdr)>>2)) {
582		tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
583
584		if (tmp_opt.saw_tstamp) {
585			tmp_opt.ts_recent = req->ts_recent;
586			/* We do not store true stamp, but it is not required,
587			 * it can be estimated (approximately)
588			 * from another data.
589			 */
590			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
591			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
592		}
593	}
594
595	/* Check for pure retransmitted SYN. */
596	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
597	    flg == TCP_FLAG_SYN &&
598	    !paws_reject) {
599		/*
600		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
601		 * this case on figure 6 and figure 8, but formal
602		 * protocol description says NOTHING.
603		 * To be more exact, it says that we should send ACK,
604		 * because this segment (at least, if it has no data)
605		 * is out of window.
606		 *
607		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
608		 *  describe SYN-RECV state. All the description
609		 *  is wrong, we cannot believe to it and should
610		 *  rely only on common sense and implementation
611		 *  experience.
612		 *
613		 * Enforce "SYN-ACK" according to figure 8, figure 6
614		 * of RFC793, fixed by RFC1122.
 
 
 
 
 
 
615		 */
616		req->rsk_ops->rtx_syn_ack(sk, req, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
617		return NULL;
618	}
619
620	/* Further reproduces section "SEGMENT ARRIVES"
621	   for state SYN-RECEIVED of RFC793.
622	   It is broken, however, it does not work only
623	   when SYNs are crossed.
624
625	   You would think that SYN crossing is impossible here, since
626	   we should have a SYN_SENT socket (from connect()) on our end,
627	   but this is not true if the crossed SYNs were sent to both
628	   ends by a malicious third party.  We must defend against this,
629	   and to do that we first verify the ACK (as per RFC793, page
630	   36) and reset if it is invalid.  Is this a true full defense?
631	   To convince ourselves, let us consider a way in which the ACK
632	   test can still pass in this 'malicious crossed SYNs' case.
633	   Malicious sender sends identical SYNs (and thus identical sequence
634	   numbers) to both A and B:
635
636		A: gets SYN, seq=7
637		B: gets SYN, seq=7
638
639	   By our good fortune, both A and B select the same initial
640	   send sequence number of seven :-)
641
642		A: sends SYN|ACK, seq=7, ack_seq=8
643		B: sends SYN|ACK, seq=7, ack_seq=8
644
645	   So we are now A eating this SYN|ACK, ACK test passes.  So
646	   does sequence test, SYN is truncated, and thus we consider
647	   it a bare ACK.
648
649	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
650	   bare ACK.  Otherwise, we create an established connection.  Both
651	   ends (listening sockets) accept the new incoming connection and try
652	   to talk to each other. 8-)
653
654	   Note: This case is both harmless, and rare.  Possibility is about the
655	   same as us discovering intelligent life on another plant tomorrow.
656
657	   But generally, we should (RFC lies!) to accept ACK
658	   from SYNACK both here and in tcp_rcv_state_process().
659	   tcp_rcv_state_process() does not, hence, we do not too.
660
661	   Note that the case is absolutely generic:
662	   we cannot optimize anything here without
663	   violating protocol. All the checks must be made
664	   before attempt to create socket.
665	 */
666
667	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
668	 *                  and the incoming segment acknowledges something not yet
669	 *                  sent (the segment carries an unacceptable ACK) ...
670	 *                  a reset is sent."
671	 *
672	 * Invalid ACK: reset will be sent by listening socket
 
 
 
673	 */
674	if ((flg & TCP_FLAG_ACK) &&
675	    (TCP_SKB_CB(skb)->ack_seq !=
676	     tcp_rsk(req)->snt_isn + 1 + tcp_s_data_size(tcp_sk(sk))))
677		return sk;
678
679	/* Also, it would be not so bad idea to check rcv_tsecr, which
680	 * is essentially ACK extension and too early or too late values
681	 * should cause reset in unsynchronized states.
682	 */
683
684	/* RFC793: "first check sequence number". */
685
686	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
687					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
688		/* Out of window: send ACK and drop. */
689		if (!(flg & TCP_FLAG_RST))
690			req->rsk_ops->send_ack(sk, skb, req);
691		if (paws_reject)
692			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
693		return NULL;
694	}
695
696	/* In sequence, PAWS is OK. */
697
698	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
699		req->ts_recent = tmp_opt.rcv_tsval;
700
701	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
702		/* Truncate SYN, it is out of window starting
703		   at tcp_rsk(req)->rcv_isn + 1. */
704		flg &= ~TCP_FLAG_SYN;
705	}
706
707	/* RFC793: "second check the RST bit" and
708	 *	   "fourth, check the SYN bit"
709	 */
710	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
711		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
712		goto embryonic_reset;
713	}
714
715	/* ACK sequence verified above, just make sure ACK is
716	 * set.  If ACK not set, just silently drop the packet.
 
 
 
717	 */
718	if (!(flg & TCP_FLAG_ACK))
719		return NULL;
720
 
 
 
 
 
 
721	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
722	if (req->retrans < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
723	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
724		inet_rsk(req)->acked = 1;
725		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
726		return NULL;
727	}
728	if (tmp_opt.saw_tstamp && tmp_opt.rcv_tsecr)
729		tcp_rsk(req)->snt_synack = tmp_opt.rcv_tsecr;
730	else if (req->retrans) /* don't take RTT sample if retrans && ~TS */
731		tcp_rsk(req)->snt_synack = 0;
732
733	/* OK, ACK is valid, create big socket and
734	 * feed this segment to it. It will repeat all
735	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
736	 * ESTABLISHED STATE. If it will be dropped after
737	 * socket is created, wait for troubles.
738	 */
739	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
740	if (child == NULL)
 
741		goto listen_overflow;
742
743	inet_csk_reqsk_queue_unlink(sk, req, prev);
744	inet_csk_reqsk_queue_removed(sk, req);
745
746	inet_csk_reqsk_queue_add(sk, req, child);
747	return child;
748
749listen_overflow:
750	if (!sysctl_tcp_abort_on_overflow) {
751		inet_rsk(req)->acked = 1;
752		return NULL;
753	}
754
755embryonic_reset:
756	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
757	if (!(flg & TCP_FLAG_RST))
 
 
 
 
758		req->rsk_ops->send_reset(sk, skb);
759
760	inet_csk_reqsk_queue_drop(sk, req, prev);
 
 
 
 
 
 
761	return NULL;
762}
763EXPORT_SYMBOL(tcp_check_req);
764
765/*
766 * Queue segment on the new socket if the new socket is active,
767 * otherwise we just shortcircuit this and continue with
768 * the new socket.
 
 
 
 
 
 
769 */
770
771int tcp_child_process(struct sock *parent, struct sock *child,
772		      struct sk_buff *skb)
773{
774	int ret = 0;
775	int state = child->sk_state;
776
 
777	if (!sock_owned_by_user(child)) {
778		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
779					    skb->len);
780		/* Wakeup parent, send SIGIO */
781		if (state == TCP_SYN_RECV && child->sk_state != state)
782			parent->sk_data_ready(parent, 0);
783	} else {
784		/* Alas, it is possible again, because we do lookup
785		 * in main socket hash table and lock on listening
786		 * socket does not protect us more.
787		 */
788		__sk_add_backlog(child, skb);
789	}
790
791	bh_unlock_sock(child);
792	sock_put(child);
793	return ret;
794}
795EXPORT_SYMBOL(tcp_child_process);
v4.6
  1/*
  2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  3 *		operating system.  INET is implemented using the  BSD Socket
  4 *		interface as the means of communication with the user level.
  5 *
  6 *		Implementation of the Transmission Control Protocol(TCP).
  7 *
  8 * Authors:	Ross Biro
  9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 12 *		Florian La Roche, <flla@stud.uni-sb.de>
 13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 18 *		Jorge Cwik, <jorge@laser.satlink.net>
 19 */
 20
 21#include <linux/mm.h>
 22#include <linux/module.h>
 23#include <linux/slab.h>
 24#include <linux/sysctl.h>
 25#include <linux/workqueue.h>
 26#include <net/tcp.h>
 27#include <net/inet_common.h>
 28#include <net/xfrm.h>
 29
 
 
 
 30int sysctl_tcp_abort_on_overflow __read_mostly;
 31
 32struct inet_timewait_death_row tcp_death_row = {
 33	.sysctl_max_tw_buckets = NR_FILE * 2,
 
 
 34	.hashinfo	= &tcp_hashinfo,
 
 
 
 
 
 
 
 
 
 35};
 36EXPORT_SYMBOL_GPL(tcp_death_row);
 37
 38static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 
 
 
 
 
 
 39{
 40	if (seq == s_win)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 41		return true;
 42	if (after(end_seq, s_win) && before(seq, e_win))
 43		return true;
 44	return seq == e_win && seq == end_seq;
 45}
 46
 47static enum tcp_tw_status
 48tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
 49				  const struct sk_buff *skb, int mib_idx)
 50{
 51	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 
 52
 53	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
 54				  &tcptw->tw_last_oow_ack_time)) {
 55		/* Send ACK. Note, we do not put the bucket,
 56		 * it will be released by caller.
 57		 */
 58		return TCP_TW_ACK;
 
 
 
 
 
 
 59	}
 
 
 60
 61	/* We are rate-limiting, so just release the tw sock and drop skb. */
 62	inet_twsk_put(tw);
 63	return TCP_TW_SUCCESS;
 
 
 
 
 64}
 65
 66/*
 67 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 68 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 69 *   (and, probably, tail of data) and one or more our ACKs are lost.
 70 * * What is TIME-WAIT timeout? It is associated with maximal packet
 71 *   lifetime in the internet, which results in wrong conclusion, that
 72 *   it is set to catch "old duplicate segments" wandering out of their path.
 73 *   It is not quite correct. This timeout is calculated so that it exceeds
 74 *   maximal retransmission timeout enough to allow to lose one (or more)
 75 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 76 * * When TIME-WAIT socket receives RST, it means that another end
 77 *   finally closed and we are allowed to kill TIME-WAIT too.
 78 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 79 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 80 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 81 * * If we invented some more clever way to catch duplicates
 82 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 83 *
 84 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 85 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 86 * from the very beginning.
 87 *
 88 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 89 * is _not_ stateless. It means, that strictly speaking we must
 90 * spinlock it. I do not want! Well, probability of misbehaviour
 91 * is ridiculously low and, seems, we could use some mb() tricks
 92 * to avoid misread sequence numbers, states etc.  --ANK
 93 *
 94 * We don't need to initialize tmp_out.sack_ok as we don't use the results
 95 */
 96enum tcp_tw_status
 97tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
 98			   const struct tcphdr *th)
 99{
100	struct tcp_options_received tmp_opt;
 
101	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
102	bool paws_reject = false;
103
104	tmp_opt.saw_tstamp = 0;
105	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
106		tcp_parse_options(skb, &tmp_opt, 0, NULL);
107
108		if (tmp_opt.saw_tstamp) {
109			tmp_opt.rcv_tsecr	-= tcptw->tw_ts_offset;
110			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
111			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
112			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
113		}
114	}
115
116	if (tw->tw_substate == TCP_FIN_WAIT2) {
117		/* Just repeat all the checks of tcp_rcv_state_process() */
118
119		/* Out of window, send ACK */
120		if (paws_reject ||
121		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
122				   tcptw->tw_rcv_nxt,
123				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
124			return tcp_timewait_check_oow_rate_limit(
125				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
126
127		if (th->rst)
128			goto kill;
129
130		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
131			return TCP_TW_RST;
132
133		/* Dup ACK? */
134		if (!th->ack ||
135		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
136		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
137			inet_twsk_put(tw);
138			return TCP_TW_SUCCESS;
139		}
140
141		/* New data or FIN. If new data arrive after half-duplex close,
142		 * reset.
143		 */
144		if (!th->fin ||
145		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
 
 
 
146			return TCP_TW_RST;
 
147
148		/* FIN arrived, enter true time-wait state. */
149		tw->tw_substate	  = TCP_TIME_WAIT;
150		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
151		if (tmp_opt.saw_tstamp) {
152			tcptw->tw_ts_recent_stamp = get_seconds();
153			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
154		}
155
156		if (tcp_death_row.sysctl_tw_recycle &&
157		    tcptw->tw_ts_recent_stamp &&
158		    tcp_tw_remember_stamp(tw))
159			inet_twsk_reschedule(tw, tw->tw_timeout);
 
160		else
161			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
 
162		return TCP_TW_ACK;
163	}
164
165	/*
166	 *	Now real TIME-WAIT state.
167	 *
168	 *	RFC 1122:
169	 *	"When a connection is [...] on TIME-WAIT state [...]
170	 *	[a TCP] MAY accept a new SYN from the remote TCP to
171	 *	reopen the connection directly, if it:
172	 *
173	 *	(1)  assigns its initial sequence number for the new
174	 *	connection to be larger than the largest sequence
175	 *	number it used on the previous connection incarnation,
176	 *	and
177	 *
178	 *	(2)  returns to TIME-WAIT state if the SYN turns out
179	 *	to be an old duplicate".
180	 */
181
182	if (!paws_reject &&
183	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
184	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
185		/* In window segment, it may be only reset or bare ack. */
186
187		if (th->rst) {
188			/* This is TIME_WAIT assassination, in two flavors.
189			 * Oh well... nobody has a sufficient solution to this
190			 * protocol bug yet.
191			 */
192			if (sysctl_tcp_rfc1337 == 0) {
193kill:
194				inet_twsk_deschedule_put(tw);
 
195				return TCP_TW_SUCCESS;
196			}
197		}
198		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
 
199
200		if (tmp_opt.saw_tstamp) {
201			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
202			tcptw->tw_ts_recent_stamp = get_seconds();
203		}
204
205		inet_twsk_put(tw);
206		return TCP_TW_SUCCESS;
207	}
208
209	/* Out of window segment.
210
211	   All the segments are ACKed immediately.
212
213	   The only exception is new SYN. We accept it, if it is
214	   not old duplicate and we are not in danger to be killed
215	   by delayed old duplicates. RFC check is that it has
216	   newer sequence number works at rates <40Mbit/sec.
217	   However, if paws works, it is reliable AND even more,
218	   we even may relax silly seq space cutoff.
219
220	   RED-PEN: we violate main RFC requirement, if this SYN will appear
221	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
222	   we must return socket to time-wait state. It is not good,
223	   but not fatal yet.
224	 */
225
226	if (th->syn && !th->rst && !th->ack && !paws_reject &&
227	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
228	     (tmp_opt.saw_tstamp &&
229	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
230		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
231		if (isn == 0)
232			isn++;
233		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
234		return TCP_TW_SYN;
235	}
236
237	if (paws_reject)
238		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
239
240	if (!th->rst) {
241		/* In this case we must reset the TIMEWAIT timer.
242		 *
243		 * If it is ACKless SYN it may be both old duplicate
244		 * and new good SYN with random sequence number <rcv_nxt.
245		 * Do not reschedule in the last case.
246		 */
247		if (paws_reject || th->ack)
248			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
 
249
250		return tcp_timewait_check_oow_rate_limit(
251			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
 
 
252	}
253	inet_twsk_put(tw);
254	return TCP_TW_SUCCESS;
255}
256EXPORT_SYMBOL(tcp_timewait_state_process);
257
258/*
259 * Move a socket to time-wait or dead fin-wait-2 state.
260 */
261void tcp_time_wait(struct sock *sk, int state, int timeo)
262{
 
263	const struct inet_connection_sock *icsk = inet_csk(sk);
264	const struct tcp_sock *tp = tcp_sk(sk);
265	struct inet_timewait_sock *tw;
266	bool recycle_ok = false;
267
268	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
269		recycle_ok = tcp_remember_stamp(sk);
270
271	tw = inet_twsk_alloc(sk, &tcp_death_row, state);
 
272
273	if (tw) {
274		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
275		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
276		struct inet_sock *inet = inet_sk(sk);
277
278		tw->tw_transparent	= inet->transparent;
279		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
280		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
281		tcptw->tw_snd_nxt	= tp->snd_nxt;
282		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
283		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
284		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
285		tcptw->tw_ts_offset	= tp->tsoffset;
286		tcptw->tw_last_oow_ack_time = 0;
287
288#if IS_ENABLED(CONFIG_IPV6)
289		if (tw->tw_family == PF_INET6) {
290			struct ipv6_pinfo *np = inet6_sk(sk);
 
291
292			tw->tw_v6_daddr = sk->sk_v6_daddr;
293			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
 
 
294			tw->tw_tclass = np->tclass;
295			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
296			tw->tw_ipv6only = sk->sk_ipv6only;
297		}
298#endif
299
300#ifdef CONFIG_TCP_MD5SIG
301		/*
302		 * The timewait bucket does not have the key DB from the
303		 * sock structure. We just make a quick copy of the
304		 * md5 key being used (if indeed we are using one)
305		 * so the timewait ack generating code has the key.
306		 */
307		do {
308			struct tcp_md5sig_key *key;
309			tcptw->tw_md5_key = NULL;
310			key = tp->af_specific->md5_lookup(sk, sk);
311			if (key) {
312				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
313				if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
314					BUG();
315			}
316		} while (0);
317#endif
318
 
 
 
319		/* Get the TIME_WAIT timeout firing. */
320		if (timeo < rto)
321			timeo = rto;
322
323		if (recycle_ok) {
324			tw->tw_timeout = rto;
325		} else {
326			tw->tw_timeout = TCP_TIMEWAIT_LEN;
327			if (state == TCP_TIME_WAIT)
328				timeo = TCP_TIMEWAIT_LEN;
329		}
330
331		inet_twsk_schedule(tw, timeo);
332		/* Linkage updates. */
333		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
334		inet_twsk_put(tw);
335	} else {
336		/* Sorry, if we're out of memory, just CLOSE this
337		 * socket up.  We've got bigger problems than
338		 * non-graceful socket closings.
339		 */
340		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
341	}
342
343	tcp_update_metrics(sk);
344	tcp_done(sk);
345}
346
347void tcp_twsk_destructor(struct sock *sk)
348{
349#ifdef CONFIG_TCP_MD5SIG
350	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
351
352	if (twsk->tw_md5_key)
353		kfree_rcu(twsk->tw_md5_key, rcu);
 
354#endif
355}
356EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
357
358/* Warning : This function is called without sk_listener being locked.
359 * Be sure to read socket fields once, as their value could change under us.
360 */
361void tcp_openreq_init_rwin(struct request_sock *req,
362			   const struct sock *sk_listener,
363			   const struct dst_entry *dst)
364{
365	struct inet_request_sock *ireq = inet_rsk(req);
366	const struct tcp_sock *tp = tcp_sk(sk_listener);
367	u16 user_mss = READ_ONCE(tp->rx_opt.user_mss);
368	int full_space = tcp_full_space(sk_listener);
369	int mss = dst_metric_advmss(dst);
370	u32 window_clamp;
371	__u8 rcv_wscale;
372
373	if (user_mss && user_mss < mss)
374		mss = user_mss;
375
376	window_clamp = READ_ONCE(tp->window_clamp);
377	/* Set this up on the first call only */
378	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
379
380	/* limit the window selection if the user enforce a smaller rx buffer */
381	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
382	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
383		req->rsk_window_clamp = full_space;
384
385	/* tcp_full_space because it is guaranteed to be the first packet */
386	tcp_select_initial_window(full_space,
387		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
388		&req->rsk_rcv_wnd,
389		&req->rsk_window_clamp,
390		ireq->wscale_ok,
391		&rcv_wscale,
392		dst_metric(dst, RTAX_INITRWND));
393	ireq->rcv_wscale = rcv_wscale;
394}
395EXPORT_SYMBOL(tcp_openreq_init_rwin);
396
397static void tcp_ecn_openreq_child(struct tcp_sock *tp,
398				  const struct request_sock *req)
399{
400	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
401}
402
403void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
404{
405	struct inet_connection_sock *icsk = inet_csk(sk);
406	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
407	bool ca_got_dst = false;
408
409	if (ca_key != TCP_CA_UNSPEC) {
410		const struct tcp_congestion_ops *ca;
411
412		rcu_read_lock();
413		ca = tcp_ca_find_key(ca_key);
414		if (likely(ca && try_module_get(ca->owner))) {
415			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
416			icsk->icsk_ca_ops = ca;
417			ca_got_dst = true;
418		}
419		rcu_read_unlock();
420	}
421
422	/* If no valid choice made yet, assign current system default ca. */
423	if (!ca_got_dst &&
424	    (!icsk->icsk_ca_setsockopt ||
425	     !try_module_get(icsk->icsk_ca_ops->owner)))
426		tcp_assign_congestion_control(sk);
427
428	tcp_set_ca_state(sk, TCP_CA_Open);
429}
430EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
431
432/* This is not only more efficient than what we used to do, it eliminates
433 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
434 *
435 * Actually, we could lots of memory writes here. tp of listening
436 * socket contains all necessary default parameters.
437 */
438struct sock *tcp_create_openreq_child(const struct sock *sk,
439				      struct request_sock *req,
440				      struct sk_buff *skb)
441{
442	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
443
444	if (newsk) {
445		const struct inet_request_sock *ireq = inet_rsk(req);
446		struct tcp_request_sock *treq = tcp_rsk(req);
447		struct inet_connection_sock *newicsk = inet_csk(newsk);
448		struct tcp_sock *newtp = tcp_sk(newsk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
449
450		/* Now setup tcp_sock */
451		newtp->pred_flags = 0;
452
453		newtp->rcv_wup = newtp->copied_seq =
454		newtp->rcv_nxt = treq->rcv_isn + 1;
455		newtp->segs_in = 1;
456
457		newtp->snd_sml = newtp->snd_una =
458		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
 
459
460		tcp_prequeue_init(newtp);
461		INIT_LIST_HEAD(&newtp->tsq_node);
462
463		tcp_init_wl(newtp, treq->rcv_isn);
464
465		newtp->srtt_us = 0;
466		newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
467		newtp->rtt_min[0].rtt = ~0U;
468		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
469
470		newtp->packets_out = 0;
471		newtp->retrans_out = 0;
472		newtp->sacked_out = 0;
473		newtp->fackets_out = 0;
474		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
475		tcp_enable_early_retrans(newtp);
476		newtp->tlp_high_seq = 0;
477		newtp->lsndtime = treq->snt_synack.stamp_jiffies;
478		newsk->sk_txhash = treq->txhash;
479		newtp->last_oow_ack_time = 0;
480		newtp->total_retrans = req->num_retrans;
481
482		/* So many TCP implementations out there (incorrectly) count the
483		 * initial SYN frame in their delayed-ACK and congestion control
484		 * algorithms that we must have the following bandaid to talk
485		 * efficiently to them.  -DaveM
486		 */
487		newtp->snd_cwnd = TCP_INIT_CWND;
488		newtp->snd_cwnd_cnt = 0;
 
 
 
 
489
 
 
 
 
 
490		tcp_init_xmit_timers(newsk);
491		__skb_queue_head_init(&newtp->out_of_order_queue);
492		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
 
493
494		newtp->rx_opt.saw_tstamp = 0;
495
496		newtp->rx_opt.dsack = 0;
497		newtp->rx_opt.num_sacks = 0;
498
499		newtp->urg_data = 0;
500
501		if (sock_flag(newsk, SOCK_KEEPOPEN))
502			inet_csk_reset_keepalive_timer(newsk,
503						       keepalive_time_when(newtp));
504
505		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
506		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
507			if (sysctl_tcp_fack)
508				tcp_enable_fack(newtp);
509		}
510		newtp->window_clamp = req->rsk_window_clamp;
511		newtp->rcv_ssthresh = req->rsk_rcv_wnd;
512		newtp->rcv_wnd = req->rsk_rcv_wnd;
513		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
514		if (newtp->rx_opt.wscale_ok) {
515			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
516			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
517		} else {
518			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
519			newtp->window_clamp = min(newtp->window_clamp, 65535U);
520		}
521		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
522				  newtp->rx_opt.snd_wscale);
523		newtp->max_window = newtp->snd_wnd;
524
525		if (newtp->rx_opt.tstamp_ok) {
526			newtp->rx_opt.ts_recent = req->ts_recent;
527			newtp->rx_opt.ts_recent_stamp = get_seconds();
528			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
529		} else {
530			newtp->rx_opt.ts_recent_stamp = 0;
531			newtp->tcp_header_len = sizeof(struct tcphdr);
532		}
533		newtp->tsoffset = 0;
534#ifdef CONFIG_TCP_MD5SIG
535		newtp->md5sig_info = NULL;	/*XXX*/
536		if (newtp->af_specific->md5_lookup(sk, newsk))
537			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
538#endif
539		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
540			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
541		newtp->rx_opt.mss_clamp = req->mss;
542		tcp_ecn_openreq_child(newtp, req);
543		newtp->fastopen_rsk = NULL;
544		newtp->syn_data_acked = 0;
545		newtp->rack.mstamp.v64 = 0;
546		newtp->rack.advanced = 0;
547
548		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
549	}
550	return newsk;
551}
552EXPORT_SYMBOL(tcp_create_openreq_child);
553
554/*
555 * Process an incoming packet for SYN_RECV sockets represented as a
556 * request_sock. Normally sk is the listener socket but for TFO it
557 * points to the child socket.
558 *
559 * XXX (TFO) - The current impl contains a special check for ack
560 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
561 *
562 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
563 */
564
565struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
566			   struct request_sock *req,
567			   bool fastopen)
568{
569	struct tcp_options_received tmp_opt;
 
570	struct sock *child;
571	const struct tcphdr *th = tcp_hdr(skb);
572	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
573	bool paws_reject = false;
574	bool own_req;
575
576	tmp_opt.saw_tstamp = 0;
577	if (th->doff > (sizeof(struct tcphdr)>>2)) {
578		tcp_parse_options(skb, &tmp_opt, 0, NULL);
579
580		if (tmp_opt.saw_tstamp) {
581			tmp_opt.ts_recent = req->ts_recent;
582			/* We do not store true stamp, but it is not required,
583			 * it can be estimated (approximately)
584			 * from another data.
585			 */
586			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
587			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
588		}
589	}
590
591	/* Check for pure retransmitted SYN. */
592	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
593	    flg == TCP_FLAG_SYN &&
594	    !paws_reject) {
595		/*
596		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
597		 * this case on figure 6 and figure 8, but formal
598		 * protocol description says NOTHING.
599		 * To be more exact, it says that we should send ACK,
600		 * because this segment (at least, if it has no data)
601		 * is out of window.
602		 *
603		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
604		 *  describe SYN-RECV state. All the description
605		 *  is wrong, we cannot believe to it and should
606		 *  rely only on common sense and implementation
607		 *  experience.
608		 *
609		 * Enforce "SYN-ACK" according to figure 8, figure 6
610		 * of RFC793, fixed by RFC1122.
611		 *
612		 * Note that even if there is new data in the SYN packet
613		 * they will be thrown away too.
614		 *
615		 * Reset timer after retransmitting SYNACK, similar to
616		 * the idea of fast retransmit in recovery.
617		 */
618		if (!tcp_oow_rate_limited(sock_net(sk), skb,
619					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
620					  &tcp_rsk(req)->last_oow_ack_time) &&
621
622		    !inet_rtx_syn_ack(sk, req)) {
623			unsigned long expires = jiffies;
624
625			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
626				       TCP_RTO_MAX);
627			if (!fastopen)
628				mod_timer_pending(&req->rsk_timer, expires);
629			else
630				req->rsk_timer.expires = expires;
631		}
632		return NULL;
633	}
634
635	/* Further reproduces section "SEGMENT ARRIVES"
636	   for state SYN-RECEIVED of RFC793.
637	   It is broken, however, it does not work only
638	   when SYNs are crossed.
639
640	   You would think that SYN crossing is impossible here, since
641	   we should have a SYN_SENT socket (from connect()) on our end,
642	   but this is not true if the crossed SYNs were sent to both
643	   ends by a malicious third party.  We must defend against this,
644	   and to do that we first verify the ACK (as per RFC793, page
645	   36) and reset if it is invalid.  Is this a true full defense?
646	   To convince ourselves, let us consider a way in which the ACK
647	   test can still pass in this 'malicious crossed SYNs' case.
648	   Malicious sender sends identical SYNs (and thus identical sequence
649	   numbers) to both A and B:
650
651		A: gets SYN, seq=7
652		B: gets SYN, seq=7
653
654	   By our good fortune, both A and B select the same initial
655	   send sequence number of seven :-)
656
657		A: sends SYN|ACK, seq=7, ack_seq=8
658		B: sends SYN|ACK, seq=7, ack_seq=8
659
660	   So we are now A eating this SYN|ACK, ACK test passes.  So
661	   does sequence test, SYN is truncated, and thus we consider
662	   it a bare ACK.
663
664	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
665	   bare ACK.  Otherwise, we create an established connection.  Both
666	   ends (listening sockets) accept the new incoming connection and try
667	   to talk to each other. 8-)
668
669	   Note: This case is both harmless, and rare.  Possibility is about the
670	   same as us discovering intelligent life on another plant tomorrow.
671
672	   But generally, we should (RFC lies!) to accept ACK
673	   from SYNACK both here and in tcp_rcv_state_process().
674	   tcp_rcv_state_process() does not, hence, we do not too.
675
676	   Note that the case is absolutely generic:
677	   we cannot optimize anything here without
678	   violating protocol. All the checks must be made
679	   before attempt to create socket.
680	 */
681
682	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
683	 *                  and the incoming segment acknowledges something not yet
684	 *                  sent (the segment carries an unacceptable ACK) ...
685	 *                  a reset is sent."
686	 *
687	 * Invalid ACK: reset will be sent by listening socket.
688	 * Note that the ACK validity check for a Fast Open socket is done
689	 * elsewhere and is checked directly against the child socket rather
690	 * than req because user data may have been sent out.
691	 */
692	if ((flg & TCP_FLAG_ACK) && !fastopen &&
693	    (TCP_SKB_CB(skb)->ack_seq !=
694	     tcp_rsk(req)->snt_isn + 1))
695		return sk;
696
697	/* Also, it would be not so bad idea to check rcv_tsecr, which
698	 * is essentially ACK extension and too early or too late values
699	 * should cause reset in unsynchronized states.
700	 */
701
702	/* RFC793: "first check sequence number". */
703
704	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
705					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
706		/* Out of window: send ACK and drop. */
707		if (!(flg & TCP_FLAG_RST))
708			req->rsk_ops->send_ack(sk, skb, req);
709		if (paws_reject)
710			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
711		return NULL;
712	}
713
714	/* In sequence, PAWS is OK. */
715
716	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
717		req->ts_recent = tmp_opt.rcv_tsval;
718
719	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
720		/* Truncate SYN, it is out of window starting
721		   at tcp_rsk(req)->rcv_isn + 1. */
722		flg &= ~TCP_FLAG_SYN;
723	}
724
725	/* RFC793: "second check the RST bit" and
726	 *	   "fourth, check the SYN bit"
727	 */
728	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
729		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
730		goto embryonic_reset;
731	}
732
733	/* ACK sequence verified above, just make sure ACK is
734	 * set.  If ACK not set, just silently drop the packet.
735	 *
736	 * XXX (TFO) - if we ever allow "data after SYN", the
737	 * following check needs to be removed.
738	 */
739	if (!(flg & TCP_FLAG_ACK))
740		return NULL;
741
742	/* For Fast Open no more processing is needed (sk is the
743	 * child socket).
744	 */
745	if (fastopen)
746		return sk;
747
748	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
749	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
750	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
751		inet_rsk(req)->acked = 1;
752		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
753		return NULL;
754	}
 
 
 
 
755
756	/* OK, ACK is valid, create big socket and
757	 * feed this segment to it. It will repeat all
758	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
759	 * ESTABLISHED STATE. If it will be dropped after
760	 * socket is created, wait for troubles.
761	 */
762	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
763							 req, &own_req);
764	if (!child)
765		goto listen_overflow;
766
767	sock_rps_save_rxhash(child, skb);
768	tcp_synack_rtt_meas(child, req);
769	return inet_csk_complete_hashdance(sk, child, req, own_req);
 
 
770
771listen_overflow:
772	if (!sysctl_tcp_abort_on_overflow) {
773		inet_rsk(req)->acked = 1;
774		return NULL;
775	}
776
777embryonic_reset:
778	if (!(flg & TCP_FLAG_RST)) {
779		/* Received a bad SYN pkt - for TFO We try not to reset
780		 * the local connection unless it's really necessary to
781		 * avoid becoming vulnerable to outside attack aiming at
782		 * resetting legit local connections.
783		 */
784		req->rsk_ops->send_reset(sk, skb);
785	} else if (fastopen) { /* received a valid RST pkt */
786		reqsk_fastopen_remove(sk, req, true);
787		tcp_reset(sk);
788	}
789	if (!fastopen) {
790		inet_csk_reqsk_queue_drop(sk, req);
791		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
792	}
793	return NULL;
794}
795EXPORT_SYMBOL(tcp_check_req);
796
797/*
798 * Queue segment on the new socket if the new socket is active,
799 * otherwise we just shortcircuit this and continue with
800 * the new socket.
801 *
802 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
803 * when entering. But other states are possible due to a race condition
804 * where after __inet_lookup_established() fails but before the listener
805 * locked is obtained, other packets cause the same connection to
806 * be created.
807 */
808
809int tcp_child_process(struct sock *parent, struct sock *child,
810		      struct sk_buff *skb)
811{
812	int ret = 0;
813	int state = child->sk_state;
814
815	tcp_segs_in(tcp_sk(child), skb);
816	if (!sock_owned_by_user(child)) {
817		ret = tcp_rcv_state_process(child, skb);
 
818		/* Wakeup parent, send SIGIO */
819		if (state == TCP_SYN_RECV && child->sk_state != state)
820			parent->sk_data_ready(parent);
821	} else {
822		/* Alas, it is possible again, because we do lookup
823		 * in main socket hash table and lock on listening
824		 * socket does not protect us more.
825		 */
826		__sk_add_backlog(child, skb);
827	}
828
829	bh_unlock_sock(child);
830	sock_put(child);
831	return ret;
832}
833EXPORT_SYMBOL(tcp_child_process);