Linux Audio

Check our new training course

Loading...
v3.5.6
   1#include <linux/ceph/ceph_debug.h>
   2
   3#include <linux/crc32c.h>
   4#include <linux/ctype.h>
   5#include <linux/highmem.h>
   6#include <linux/inet.h>
   7#include <linux/kthread.h>
   8#include <linux/net.h>
 
   9#include <linux/slab.h>
  10#include <linux/socket.h>
  11#include <linux/string.h>
 
  12#include <linux/bio.h>
  13#include <linux/blkdev.h>
  14#include <linux/dns_resolver.h>
  15#include <net/tcp.h>
  16
 
  17#include <linux/ceph/libceph.h>
  18#include <linux/ceph/messenger.h>
  19#include <linux/ceph/decode.h>
  20#include <linux/ceph/pagelist.h>
  21#include <linux/export.h>
  22
  23/*
  24 * Ceph uses the messenger to exchange ceph_msg messages with other
  25 * hosts in the system.  The messenger provides ordered and reliable
  26 * delivery.  We tolerate TCP disconnects by reconnecting (with
  27 * exponential backoff) in the case of a fault (disconnection, bad
  28 * crc, protocol error).  Acks allow sent messages to be discarded by
  29 * the sender.
  30 */
  31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  32/* static tag bytes (protocol control messages) */
  33static char tag_msg = CEPH_MSGR_TAG_MSG;
  34static char tag_ack = CEPH_MSGR_TAG_ACK;
  35static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
 
  36
  37#ifdef CONFIG_LOCKDEP
  38static struct lock_class_key socket_class;
  39#endif
  40
  41/*
  42 * When skipping (ignoring) a block of input we read it into a "skip
  43 * buffer," which is this many bytes in size.
  44 */
  45#define SKIP_BUF_SIZE	1024
  46
  47static void queue_con(struct ceph_connection *con);
  48static void con_work(struct work_struct *);
  49static void ceph_fault(struct ceph_connection *con);
 
  50
  51/*
  52 * Nicely render a sockaddr as a string.  An array of formatted
  53 * strings is used, to approximate reentrancy.
  54 */
  55#define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
  56#define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
  57#define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
  58#define MAX_ADDR_STR_LEN	64	/* 54 is enough */
  59
  60static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
  61static atomic_t addr_str_seq = ATOMIC_INIT(0);
  62
  63static struct page *zero_page;		/* used in certain error cases */
  64
  65const char *ceph_pr_addr(const struct sockaddr_storage *ss)
  66{
  67	int i;
  68	char *s;
  69	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
  70	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
  71
  72	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
  73	s = addr_str[i];
  74
  75	switch (ss->ss_family) {
  76	case AF_INET:
  77		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
  78			 ntohs(in4->sin_port));
  79		break;
  80
  81	case AF_INET6:
  82		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
  83			 ntohs(in6->sin6_port));
  84		break;
  85
  86	default:
  87		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
  88			 ss->ss_family);
  89	}
  90
  91	return s;
  92}
  93EXPORT_SYMBOL(ceph_pr_addr);
  94
  95static void encode_my_addr(struct ceph_messenger *msgr)
  96{
  97	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
  98	ceph_encode_addr(&msgr->my_enc_addr);
  99}
 100
 101/*
 102 * work queue for all reading and writing to/from the socket.
 103 */
 104static struct workqueue_struct *ceph_msgr_wq;
 105
 106void _ceph_msgr_exit(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 107{
 108	if (ceph_msgr_wq) {
 109		destroy_workqueue(ceph_msgr_wq);
 110		ceph_msgr_wq = NULL;
 111	}
 112
 113	BUG_ON(zero_page == NULL);
 114	kunmap(zero_page);
 115	page_cache_release(zero_page);
 116	zero_page = NULL;
 
 
 117}
 118
 119int ceph_msgr_init(void)
 120{
 
 
 
 121	BUG_ON(zero_page != NULL);
 122	zero_page = ZERO_PAGE(0);
 123	page_cache_get(zero_page);
 124
 125	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
 
 
 
 
 126	if (ceph_msgr_wq)
 127		return 0;
 128
 129	pr_err("msgr_init failed to create workqueue\n");
 130	_ceph_msgr_exit();
 131
 132	return -ENOMEM;
 133}
 134EXPORT_SYMBOL(ceph_msgr_init);
 135
 136void ceph_msgr_exit(void)
 137{
 138	BUG_ON(ceph_msgr_wq == NULL);
 139
 140	_ceph_msgr_exit();
 141}
 142EXPORT_SYMBOL(ceph_msgr_exit);
 143
 144void ceph_msgr_flush(void)
 145{
 146	flush_workqueue(ceph_msgr_wq);
 147}
 148EXPORT_SYMBOL(ceph_msgr_flush);
 149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 150
 151/*
 152 * socket callback functions
 153 */
 154
 155/* data available on socket, or listen socket received a connect */
 156static void ceph_data_ready(struct sock *sk, int count_unused)
 157{
 158	struct ceph_connection *con = sk->sk_user_data;
 
 
 
 159
 160	if (sk->sk_state != TCP_CLOSE_WAIT) {
 161		dout("ceph_data_ready on %p state = %lu, queueing work\n",
 162		     con, con->state);
 163		queue_con(con);
 164	}
 165}
 166
 167/* socket has buffer space for writing */
 168static void ceph_write_space(struct sock *sk)
 169{
 170	struct ceph_connection *con = sk->sk_user_data;
 171
 172	/* only queue to workqueue if there is data we want to write,
 173	 * and there is sufficient space in the socket buffer to accept
 174	 * more data.  clear SOCK_NOSPACE so that ceph_write_space()
 175	 * doesn't get called again until try_write() fills the socket
 176	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
 177	 * and net/core/stream.c:sk_stream_write_space().
 178	 */
 179	if (test_bit(WRITE_PENDING, &con->state)) {
 180		if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
 181			dout("ceph_write_space %p queueing write work\n", con);
 182			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 183			queue_con(con);
 184		}
 185	} else {
 186		dout("ceph_write_space %p nothing to write\n", con);
 187	}
 188}
 189
 190/* socket's state has changed */
 191static void ceph_state_change(struct sock *sk)
 192{
 193	struct ceph_connection *con = sk->sk_user_data;
 194
 195	dout("ceph_state_change %p state = %lu sk_state = %u\n",
 196	     con, con->state, sk->sk_state);
 197
 198	if (test_bit(CLOSED, &con->state))
 199		return;
 200
 201	switch (sk->sk_state) {
 202	case TCP_CLOSE:
 203		dout("ceph_state_change TCP_CLOSE\n");
 204	case TCP_CLOSE_WAIT:
 205		dout("ceph_state_change TCP_CLOSE_WAIT\n");
 206		if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
 207			if (test_bit(CONNECTING, &con->state))
 208				con->error_msg = "connection failed";
 209			else
 210				con->error_msg = "socket closed";
 211			queue_con(con);
 212		}
 213		break;
 214	case TCP_ESTABLISHED:
 215		dout("ceph_state_change TCP_ESTABLISHED\n");
 
 216		queue_con(con);
 217		break;
 218	default:	/* Everything else is uninteresting */
 219		break;
 220	}
 221}
 222
 223/*
 224 * set up socket callbacks
 225 */
 226static void set_sock_callbacks(struct socket *sock,
 227			       struct ceph_connection *con)
 228{
 229	struct sock *sk = sock->sk;
 230	sk->sk_user_data = con;
 231	sk->sk_data_ready = ceph_data_ready;
 232	sk->sk_write_space = ceph_write_space;
 233	sk->sk_state_change = ceph_state_change;
 234}
 235
 236
 237/*
 238 * socket helpers
 239 */
 240
 241/*
 242 * initiate connection to a remote socket.
 243 */
 244static int ceph_tcp_connect(struct ceph_connection *con)
 245{
 246	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
 247	struct socket *sock;
 248	int ret;
 249
 250	BUG_ON(con->sock);
 251	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
 252			       IPPROTO_TCP, &sock);
 253	if (ret)
 254		return ret;
 255	sock->sk->sk_allocation = GFP_NOFS;
 256
 257#ifdef CONFIG_LOCKDEP
 258	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
 259#endif
 260
 261	set_sock_callbacks(sock, con);
 262
 263	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
 264
 
 265	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
 266				 O_NONBLOCK);
 267	if (ret == -EINPROGRESS) {
 268		dout("connect %s EINPROGRESS sk_state = %u\n",
 269		     ceph_pr_addr(&con->peer_addr.in_addr),
 270		     sock->sk->sk_state);
 271	} else if (ret < 0) {
 272		pr_err("connect %s error %d\n",
 273		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
 274		sock_release(sock);
 275		con->error_msg = "connect error";
 276
 277		return ret;
 278	}
 279	con->sock = sock;
 280
 
 
 
 
 
 
 
 
 
 
 
 281	return 0;
 282}
 283
 284static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
 285{
 286	struct kvec iov = {buf, len};
 287	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 288	int r;
 289
 290	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
 291	if (r == -EAGAIN)
 292		r = 0;
 293	return r;
 294}
 295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 296/*
 297 * write something.  @more is true if caller will be sending more data
 298 * shortly.
 299 */
 300static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
 301		     size_t kvlen, size_t len, int more)
 302{
 303	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 304	int r;
 305
 306	if (more)
 307		msg.msg_flags |= MSG_MORE;
 308	else
 309		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
 310
 311	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
 312	if (r == -EAGAIN)
 313		r = 0;
 314	return r;
 315}
 316
 317static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
 318		     int offset, size_t size, int more)
 319{
 320	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
 321	int ret;
 322
 323	ret = kernel_sendpage(sock, page, offset, size, flags);
 324	if (ret == -EAGAIN)
 325		ret = 0;
 326
 327	return ret;
 328}
 329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330
 331/*
 332 * Shutdown/close the socket for the given connection.
 333 */
 334static int con_close_socket(struct ceph_connection *con)
 335{
 336	int rc;
 337
 338	dout("con_close_socket on %p sock %p\n", con, con->sock);
 339	if (!con->sock)
 340		return 0;
 341	set_bit(SOCK_CLOSED, &con->state);
 342	rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
 343	sock_release(con->sock);
 344	con->sock = NULL;
 345	clear_bit(SOCK_CLOSED, &con->state);
 
 
 
 
 
 
 
 
 346	return rc;
 347}
 348
 349/*
 350 * Reset a connection.  Discard all incoming and outgoing messages
 351 * and clear *_seq state.
 352 */
 353static void ceph_msg_remove(struct ceph_msg *msg)
 354{
 355	list_del_init(&msg->list_head);
 
 356	ceph_msg_put(msg);
 357}
 358static void ceph_msg_remove_list(struct list_head *head)
 359{
 360	while (!list_empty(head)) {
 361		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
 362							list_head);
 363		ceph_msg_remove(msg);
 364	}
 365}
 366
 367static void reset_connection(struct ceph_connection *con)
 368{
 369	/* reset connection, out_queue, msg_ and connect_seq */
 370	/* discard existing out_queue and msg_seq */
 
 371	ceph_msg_remove_list(&con->out_queue);
 372	ceph_msg_remove_list(&con->out_sent);
 373
 374	if (con->in_msg) {
 
 375		ceph_msg_put(con->in_msg);
 376		con->in_msg = NULL;
 377	}
 378
 379	con->connect_seq = 0;
 380	con->out_seq = 0;
 381	if (con->out_msg) {
 
 382		ceph_msg_put(con->out_msg);
 383		con->out_msg = NULL;
 384	}
 385	con->in_seq = 0;
 386	con->in_seq_acked = 0;
 
 
 387}
 388
 389/*
 390 * mark a peer down.  drop any open connections.
 391 */
 392void ceph_con_close(struct ceph_connection *con)
 393{
 
 394	dout("con_close %p peer %s\n", con,
 395	     ceph_pr_addr(&con->peer_addr.in_addr));
 396	set_bit(CLOSED, &con->state);  /* in case there's queued work */
 397	clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
 398	clear_bit(LOSSYTX, &con->state);  /* so we retry next connect */
 399	clear_bit(KEEPALIVE_PENDING, &con->state);
 400	clear_bit(WRITE_PENDING, &con->state);
 401	mutex_lock(&con->mutex);
 
 402	reset_connection(con);
 403	con->peer_global_seq = 0;
 404	cancel_delayed_work(&con->work);
 
 405	mutex_unlock(&con->mutex);
 406	queue_con(con);
 407}
 408EXPORT_SYMBOL(ceph_con_close);
 409
 410/*
 411 * Reopen a closed connection, with a new peer address.
 412 */
 413void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
 
 
 414{
 
 415	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
 416	set_bit(OPENING, &con->state);
 417	clear_bit(CLOSED, &con->state);
 
 
 
 
 
 418	memcpy(&con->peer_addr, addr, sizeof(*addr));
 419	con->delay = 0;      /* reset backoff memory */
 
 420	queue_con(con);
 421}
 422EXPORT_SYMBOL(ceph_con_open);
 423
 424/*
 425 * return true if this connection ever successfully opened
 426 */
 427bool ceph_con_opened(struct ceph_connection *con)
 428{
 429	return con->connect_seq > 0;
 430}
 431
 432/*
 433 * generic get/put
 434 */
 435struct ceph_connection *ceph_con_get(struct ceph_connection *con)
 436{
 437	int nref = __atomic_add_unless(&con->nref, 1, 0);
 438
 439	dout("con_get %p nref = %d -> %d\n", con, nref, nref + 1);
 440
 441	return nref ? con : NULL;
 442}
 443
 444void ceph_con_put(struct ceph_connection *con)
 445{
 446	int nref = atomic_dec_return(&con->nref);
 447
 448	BUG_ON(nref < 0);
 449	if (nref == 0) {
 450		BUG_ON(con->sock);
 451		kfree(con);
 452	}
 453	dout("con_put %p nref = %d -> %d\n", con, nref + 1, nref);
 454}
 455
 456/*
 457 * initialize a new connection.
 458 */
 459void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
 
 
 460{
 461	dout("con_init %p\n", con);
 462	memset(con, 0, sizeof(*con));
 463	atomic_set(&con->nref, 1);
 
 464	con->msgr = msgr;
 
 
 
 465	mutex_init(&con->mutex);
 466	INIT_LIST_HEAD(&con->out_queue);
 467	INIT_LIST_HEAD(&con->out_sent);
 468	INIT_DELAYED_WORK(&con->work, con_work);
 
 
 469}
 470EXPORT_SYMBOL(ceph_con_init);
 471
 472
 473/*
 474 * We maintain a global counter to order connection attempts.  Get
 475 * a unique seq greater than @gt.
 476 */
 477static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
 478{
 479	u32 ret;
 480
 481	spin_lock(&msgr->global_seq_lock);
 482	if (msgr->global_seq < gt)
 483		msgr->global_seq = gt;
 484	ret = ++msgr->global_seq;
 485	spin_unlock(&msgr->global_seq_lock);
 486	return ret;
 487}
 488
 489static void ceph_con_out_kvec_reset(struct ceph_connection *con)
 490{
 
 
 491	con->out_kvec_left = 0;
 492	con->out_kvec_bytes = 0;
 493	con->out_kvec_cur = &con->out_kvec[0];
 494}
 495
 496static void ceph_con_out_kvec_add(struct ceph_connection *con,
 497				size_t size, void *data)
 498{
 499	int index;
 500
 501	index = con->out_kvec_left;
 502	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
 503
 504	con->out_kvec[index].iov_len = size;
 505	con->out_kvec[index].iov_base = data;
 506	con->out_kvec_left++;
 507	con->out_kvec_bytes += size;
 508}
 509
 510/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 511 * Prepare footer for currently outgoing message, and finish things
 512 * off.  Assumes out_kvec* are already valid.. we just add on to the end.
 513 */
 514static void prepare_write_message_footer(struct ceph_connection *con)
 515{
 516	struct ceph_msg *m = con->out_msg;
 517	int v = con->out_kvec_left;
 
 518
 519	dout("prepare_write_message_footer %p\n", con);
 520	con->out_kvec_is_msg = true;
 521	con->out_kvec[v].iov_base = &m->footer;
 522	con->out_kvec[v].iov_len = sizeof(m->footer);
 523	con->out_kvec_bytes += sizeof(m->footer);
 524	con->out_kvec_left++;
 
 
 
 
 525	con->out_more = m->more_to_follow;
 526	con->out_msg_done = true;
 527}
 528
 529/*
 530 * Prepare headers for the next outgoing message.
 531 */
 532static void prepare_write_message(struct ceph_connection *con)
 533{
 534	struct ceph_msg *m;
 535	u32 crc;
 536
 537	ceph_con_out_kvec_reset(con);
 538	con->out_kvec_is_msg = true;
 539	con->out_msg_done = false;
 540
 541	/* Sneak an ack in there first?  If we can get it into the same
 542	 * TCP packet that's a good thing. */
 543	if (con->in_seq > con->in_seq_acked) {
 544		con->in_seq_acked = con->in_seq;
 545		ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
 546		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
 547		ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
 548			&con->out_temp_ack);
 549	}
 550
 
 551	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
 552	con->out_msg = m;
 
 553
 554	/* put message on sent list */
 555	ceph_msg_get(m);
 556	list_move_tail(&m->list_head, &con->out_sent);
 557
 558	/*
 559	 * only assign outgoing seq # if we haven't sent this message
 560	 * yet.  if it is requeued, resend with it's original seq.
 561	 */
 562	if (m->needs_out_seq) {
 563		m->hdr.seq = cpu_to_le64(++con->out_seq);
 564		m->needs_out_seq = false;
 565	}
 566#ifdef CONFIG_BLOCK
 567	else
 568		m->bio_iter = NULL;
 569#endif
 570
 571	dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
 572	     m, con->out_seq, le16_to_cpu(m->hdr.type),
 573	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
 574	     le32_to_cpu(m->hdr.data_len),
 575	     m->nr_pages);
 576	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
 577
 578	/* tag + hdr + front + middle */
 579	ceph_con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
 580	ceph_con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
 581	ceph_con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
 582
 583	if (m->middle)
 584		ceph_con_out_kvec_add(con, m->middle->vec.iov_len,
 585			m->middle->vec.iov_base);
 586
 587	/* fill in crc (except data pages), footer */
 588	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
 589	con->out_msg->hdr.crc = cpu_to_le32(crc);
 590	con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
 591
 
 592	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
 593	con->out_msg->footer.front_crc = cpu_to_le32(crc);
 594	if (m->middle) {
 595		crc = crc32c(0, m->middle->vec.iov_base,
 596				m->middle->vec.iov_len);
 597		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
 598	} else
 599		con->out_msg->footer.middle_crc = 0;
 600	con->out_msg->footer.data_crc = 0;
 601	dout("prepare_write_message front_crc %u data_crc %u\n",
 602	     le32_to_cpu(con->out_msg->footer.front_crc),
 603	     le32_to_cpu(con->out_msg->footer.middle_crc));
 
 604
 605	/* is there a data payload? */
 606	if (le32_to_cpu(m->hdr.data_len) > 0) {
 607		/* initialize page iterator */
 608		con->out_msg_pos.page = 0;
 609		if (m->pages)
 610			con->out_msg_pos.page_pos = m->page_alignment;
 611		else
 612			con->out_msg_pos.page_pos = 0;
 613		con->out_msg_pos.data_pos = 0;
 614		con->out_msg_pos.did_page_crc = false;
 615		con->out_more = 1;  /* data + footer will follow */
 616	} else {
 617		/* no, queue up footer too and be done */
 618		prepare_write_message_footer(con);
 619	}
 620
 621	set_bit(WRITE_PENDING, &con->state);
 622}
 623
 624/*
 625 * Prepare an ack.
 626 */
 627static void prepare_write_ack(struct ceph_connection *con)
 628{
 629	dout("prepare_write_ack %p %llu -> %llu\n", con,
 630	     con->in_seq_acked, con->in_seq);
 631	con->in_seq_acked = con->in_seq;
 632
 633	ceph_con_out_kvec_reset(con);
 634
 635	ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
 636
 637	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
 638	ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
 639				&con->out_temp_ack);
 640
 641	con->out_more = 1;  /* more will follow.. eventually.. */
 642	set_bit(WRITE_PENDING, &con->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643}
 644
 645/*
 646 * Prepare to write keepalive byte.
 647 */
 648static void prepare_write_keepalive(struct ceph_connection *con)
 649{
 650	dout("prepare_write_keepalive %p\n", con);
 651	ceph_con_out_kvec_reset(con);
 652	ceph_con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
 653	set_bit(WRITE_PENDING, &con->state);
 
 
 
 
 
 
 
 
 
 654}
 655
 656/*
 657 * Connection negotiation.
 658 */
 659
 660static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
 661						int *auth_proto)
 662{
 663	struct ceph_auth_handshake *auth;
 664
 665	if (!con->ops->get_authorizer) {
 666		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
 667		con->out_connect.authorizer_len = 0;
 668
 669		return NULL;
 670	}
 671
 672	/* Can't hold the mutex while getting authorizer */
 673
 674	mutex_unlock(&con->mutex);
 675
 676	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
 677
 678	mutex_lock(&con->mutex);
 679
 680	if (IS_ERR(auth))
 681		return auth;
 682	if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->state))
 683		return ERR_PTR(-EAGAIN);
 684
 685	con->auth_reply_buf = auth->authorizer_reply_buf;
 686	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
 687
 688
 689	return auth;
 690}
 691
 692/*
 693 * We connected to a peer and are saying hello.
 694 */
 695static void prepare_write_banner(struct ceph_connection *con)
 696{
 697	ceph_con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
 698	ceph_con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
 699					&con->msgr->my_enc_addr);
 700
 701	con->out_more = 0;
 702	set_bit(WRITE_PENDING, &con->state);
 703}
 704
 705static int prepare_write_connect(struct ceph_connection *con)
 706{
 707	unsigned int global_seq = get_global_seq(con->msgr, 0);
 708	int proto;
 709	int auth_proto;
 710	struct ceph_auth_handshake *auth;
 711
 712	switch (con->peer_name.type) {
 713	case CEPH_ENTITY_TYPE_MON:
 714		proto = CEPH_MONC_PROTOCOL;
 715		break;
 716	case CEPH_ENTITY_TYPE_OSD:
 717		proto = CEPH_OSDC_PROTOCOL;
 718		break;
 719	case CEPH_ENTITY_TYPE_MDS:
 720		proto = CEPH_MDSC_PROTOCOL;
 721		break;
 722	default:
 723		BUG();
 724	}
 725
 726	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
 727	     con->connect_seq, global_seq, proto);
 728
 729	con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
 
 730	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
 731	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
 732	con->out_connect.global_seq = cpu_to_le32(global_seq);
 733	con->out_connect.protocol_version = cpu_to_le32(proto);
 734	con->out_connect.flags = 0;
 735
 736	auth_proto = CEPH_AUTH_UNKNOWN;
 737	auth = get_connect_authorizer(con, &auth_proto);
 738	if (IS_ERR(auth))
 739		return PTR_ERR(auth);
 740
 741	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
 742	con->out_connect.authorizer_len = auth ?
 743		cpu_to_le32(auth->authorizer_buf_len) : 0;
 744
 745	ceph_con_out_kvec_add(con, sizeof (con->out_connect),
 746					&con->out_connect);
 747	if (auth && auth->authorizer_buf_len)
 748		ceph_con_out_kvec_add(con, auth->authorizer_buf_len,
 749					auth->authorizer_buf);
 750
 751	con->out_more = 0;
 752	set_bit(WRITE_PENDING, &con->state);
 753
 754	return 0;
 755}
 756
 757/*
 758 * write as much of pending kvecs to the socket as we can.
 759 *  1 -> done
 760 *  0 -> socket full, but more to do
 761 * <0 -> error
 762 */
 763static int write_partial_kvec(struct ceph_connection *con)
 764{
 765	int ret;
 766
 767	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
 768	while (con->out_kvec_bytes > 0) {
 769		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
 770				       con->out_kvec_left, con->out_kvec_bytes,
 771				       con->out_more);
 772		if (ret <= 0)
 773			goto out;
 774		con->out_kvec_bytes -= ret;
 775		if (con->out_kvec_bytes == 0)
 776			break;            /* done */
 777
 778		/* account for full iov entries consumed */
 779		while (ret >= con->out_kvec_cur->iov_len) {
 780			BUG_ON(!con->out_kvec_left);
 781			ret -= con->out_kvec_cur->iov_len;
 782			con->out_kvec_cur++;
 783			con->out_kvec_left--;
 784		}
 785		/* and for a partially-consumed entry */
 786		if (ret) {
 787			con->out_kvec_cur->iov_len -= ret;
 788			con->out_kvec_cur->iov_base += ret;
 789		}
 790	}
 791	con->out_kvec_left = 0;
 792	con->out_kvec_is_msg = false;
 793	ret = 1;
 794out:
 795	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
 796	     con->out_kvec_bytes, con->out_kvec_left, ret);
 797	return ret;  /* done! */
 798}
 799
 800#ifdef CONFIG_BLOCK
 801static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
 802{
 803	if (!bio) {
 804		*iter = NULL;
 805		*seg = 0;
 806		return;
 807	}
 808	*iter = bio;
 809	*seg = bio->bi_idx;
 810}
 811
 812static void iter_bio_next(struct bio **bio_iter, int *seg)
 813{
 814	if (*bio_iter == NULL)
 815		return;
 816
 817	BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
 818
 819	(*seg)++;
 820	if (*seg == (*bio_iter)->bi_vcnt)
 821		init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
 822}
 823#endif
 824
 825/*
 826 * Write as much message data payload as we can.  If we finish, queue
 827 * up the footer.
 828 *  1 -> done, footer is now queued in out_kvec[].
 829 *  0 -> socket full, but more to do
 830 * <0 -> error
 831 */
 832static int write_partial_msg_pages(struct ceph_connection *con)
 833{
 834	struct ceph_msg *msg = con->out_msg;
 835	unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
 836	size_t len;
 837	bool do_datacrc = !con->msgr->nocrc;
 838	int ret;
 839	int total_max_write;
 840	int in_trail = 0;
 841	size_t trail_len = (msg->trail ? msg->trail->length : 0);
 842
 843	dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
 844	     con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
 845	     con->out_msg_pos.page_pos);
 846
 847#ifdef CONFIG_BLOCK
 848	if (msg->bio && !msg->bio_iter)
 849		init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
 850#endif
 851
 852	while (data_len > con->out_msg_pos.data_pos) {
 853		struct page *page = NULL;
 854		int max_write = PAGE_SIZE;
 855		int bio_offset = 0;
 856
 857		total_max_write = data_len - trail_len -
 858			con->out_msg_pos.data_pos;
 859
 860		/*
 861		 * if we are calculating the data crc (the default), we need
 862		 * to map the page.  if our pages[] has been revoked, use the
 863		 * zero page.
 864		 */
 865
 866		/* have we reached the trail part of the data? */
 867		if (con->out_msg_pos.data_pos >= data_len - trail_len) {
 868			in_trail = 1;
 869
 870			total_max_write = data_len - con->out_msg_pos.data_pos;
 871
 872			page = list_first_entry(&msg->trail->head,
 873						struct page, lru);
 874			max_write = PAGE_SIZE;
 875		} else if (msg->pages) {
 876			page = msg->pages[con->out_msg_pos.page];
 877		} else if (msg->pagelist) {
 878			page = list_first_entry(&msg->pagelist->head,
 879						struct page, lru);
 880#ifdef CONFIG_BLOCK
 881		} else if (msg->bio) {
 882			struct bio_vec *bv;
 883
 884			bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
 885			page = bv->bv_page;
 886			bio_offset = bv->bv_offset;
 887			max_write = bv->bv_len;
 888#endif
 889		} else {
 890			page = zero_page;
 891		}
 892		len = min_t(int, max_write - con->out_msg_pos.page_pos,
 893			    total_max_write);
 894
 895		if (do_datacrc && !con->out_msg_pos.did_page_crc) {
 896			void *base;
 897			u32 crc;
 898			u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
 899			char *kaddr;
 900
 901			kaddr = kmap(page);
 902			BUG_ON(kaddr == NULL);
 903			base = kaddr + con->out_msg_pos.page_pos + bio_offset;
 904			crc = crc32c(tmpcrc, base, len);
 905			con->out_msg->footer.data_crc = cpu_to_le32(crc);
 906			con->out_msg_pos.did_page_crc = true;
 907		}
 908		ret = ceph_tcp_sendpage(con->sock, page,
 909				      con->out_msg_pos.page_pos + bio_offset,
 910				      len, 1);
 911
 912		if (do_datacrc)
 913			kunmap(page);
 914
 915		if (ret <= 0)
 916			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 917
 918		con->out_msg_pos.data_pos += ret;
 919		con->out_msg_pos.page_pos += ret;
 920		if (ret == len) {
 921			con->out_msg_pos.page_pos = 0;
 922			con->out_msg_pos.page++;
 923			con->out_msg_pos.did_page_crc = false;
 924			if (in_trail)
 925				list_move_tail(&page->lru,
 926					       &msg->trail->head);
 927			else if (msg->pagelist)
 928				list_move_tail(&page->lru,
 929					       &msg->pagelist->head);
 930#ifdef CONFIG_BLOCK
 931			else if (msg->bio)
 932				iter_bio_next(&msg->bio_iter, &msg->bio_seg);
 933#endif
 934		}
 
 
 
 935	}
 936
 937	dout("write_partial_msg_pages %p msg %p done\n", con, msg);
 938
 939	/* prepare and queue up footer, too */
 940	if (!do_datacrc)
 941		con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
 942	ceph_con_out_kvec_reset(con);
 
 
 943	prepare_write_message_footer(con);
 944	ret = 1;
 945out:
 946	return ret;
 947}
 948
 949/*
 950 * write some zeros
 951 */
 952static int write_partial_skip(struct ceph_connection *con)
 953{
 954	int ret;
 955
 
 956	while (con->out_skip > 0) {
 957		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
 958
 959		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
 960		if (ret <= 0)
 961			goto out;
 962		con->out_skip -= ret;
 963	}
 964	ret = 1;
 965out:
 966	return ret;
 967}
 968
 969/*
 970 * Prepare to read connection handshake, or an ack.
 971 */
 972static void prepare_read_banner(struct ceph_connection *con)
 973{
 974	dout("prepare_read_banner %p\n", con);
 975	con->in_base_pos = 0;
 976}
 977
 978static void prepare_read_connect(struct ceph_connection *con)
 979{
 980	dout("prepare_read_connect %p\n", con);
 981	con->in_base_pos = 0;
 982}
 983
 984static void prepare_read_ack(struct ceph_connection *con)
 985{
 986	dout("prepare_read_ack %p\n", con);
 987	con->in_base_pos = 0;
 988}
 989
 
 
 
 
 
 
 
 990static void prepare_read_tag(struct ceph_connection *con)
 991{
 992	dout("prepare_read_tag %p\n", con);
 993	con->in_base_pos = 0;
 994	con->in_tag = CEPH_MSGR_TAG_READY;
 995}
 996
 
 
 
 
 
 
 997/*
 998 * Prepare to read a message.
 999 */
1000static int prepare_read_message(struct ceph_connection *con)
1001{
1002	dout("prepare_read_message %p\n", con);
1003	BUG_ON(con->in_msg != NULL);
1004	con->in_base_pos = 0;
1005	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1006	return 0;
1007}
1008
1009
1010static int read_partial(struct ceph_connection *con,
1011			int end, int size, void *object)
1012{
1013	while (con->in_base_pos < end) {
1014		int left = end - con->in_base_pos;
1015		int have = size - left;
1016		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1017		if (ret <= 0)
1018			return ret;
1019		con->in_base_pos += ret;
1020	}
1021	return 1;
1022}
1023
1024
1025/*
1026 * Read all or part of the connect-side handshake on a new connection
1027 */
1028static int read_partial_banner(struct ceph_connection *con)
1029{
1030	int size;
1031	int end;
1032	int ret;
1033
1034	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1035
1036	/* peer's banner */
1037	size = strlen(CEPH_BANNER);
1038	end = size;
1039	ret = read_partial(con, end, size, con->in_banner);
1040	if (ret <= 0)
1041		goto out;
1042
1043	size = sizeof (con->actual_peer_addr);
1044	end += size;
1045	ret = read_partial(con, end, size, &con->actual_peer_addr);
1046	if (ret <= 0)
1047		goto out;
1048
1049	size = sizeof (con->peer_addr_for_me);
1050	end += size;
1051	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1052	if (ret <= 0)
1053		goto out;
1054
1055out:
1056	return ret;
1057}
1058
1059static int read_partial_connect(struct ceph_connection *con)
1060{
1061	int size;
1062	int end;
1063	int ret;
1064
1065	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1066
1067	size = sizeof (con->in_reply);
1068	end = size;
1069	ret = read_partial(con, end, size, &con->in_reply);
1070	if (ret <= 0)
1071		goto out;
1072
1073	size = le32_to_cpu(con->in_reply.authorizer_len);
1074	end += size;
1075	ret = read_partial(con, end, size, con->auth_reply_buf);
1076	if (ret <= 0)
1077		goto out;
1078
1079	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1080	     con, (int)con->in_reply.tag,
1081	     le32_to_cpu(con->in_reply.connect_seq),
1082	     le32_to_cpu(con->in_reply.global_seq));
1083out:
1084	return ret;
1085
1086}
1087
1088/*
1089 * Verify the hello banner looks okay.
1090 */
1091static int verify_hello(struct ceph_connection *con)
1092{
1093	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1094		pr_err("connect to %s got bad banner\n",
1095		       ceph_pr_addr(&con->peer_addr.in_addr));
1096		con->error_msg = "protocol error, bad banner";
1097		return -1;
1098	}
1099	return 0;
1100}
1101
1102static bool addr_is_blank(struct sockaddr_storage *ss)
1103{
 
 
 
1104	switch (ss->ss_family) {
1105	case AF_INET:
1106		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1107	case AF_INET6:
1108		return
1109		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1110		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1111		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1112		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1113	}
1114	return false;
1115}
1116
1117static int addr_port(struct sockaddr_storage *ss)
1118{
1119	switch (ss->ss_family) {
1120	case AF_INET:
1121		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1122	case AF_INET6:
1123		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1124	}
1125	return 0;
1126}
1127
1128static void addr_set_port(struct sockaddr_storage *ss, int p)
1129{
1130	switch (ss->ss_family) {
1131	case AF_INET:
1132		((struct sockaddr_in *)ss)->sin_port = htons(p);
1133		break;
1134	case AF_INET6:
1135		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1136		break;
1137	}
1138}
1139
1140/*
1141 * Unlike other *_pton function semantics, zero indicates success.
1142 */
1143static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1144		char delim, const char **ipend)
1145{
1146	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1147	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1148
1149	memset(ss, 0, sizeof(*ss));
1150
1151	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1152		ss->ss_family = AF_INET;
1153		return 0;
1154	}
1155
1156	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1157		ss->ss_family = AF_INET6;
1158		return 0;
1159	}
1160
1161	return -EINVAL;
1162}
1163
1164/*
1165 * Extract hostname string and resolve using kernel DNS facility.
1166 */
1167#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1168static int ceph_dns_resolve_name(const char *name, size_t namelen,
1169		struct sockaddr_storage *ss, char delim, const char **ipend)
1170{
1171	const char *end, *delim_p;
1172	char *colon_p, *ip_addr = NULL;
1173	int ip_len, ret;
1174
1175	/*
1176	 * The end of the hostname occurs immediately preceding the delimiter or
1177	 * the port marker (':') where the delimiter takes precedence.
1178	 */
1179	delim_p = memchr(name, delim, namelen);
1180	colon_p = memchr(name, ':', namelen);
1181
1182	if (delim_p && colon_p)
1183		end = delim_p < colon_p ? delim_p : colon_p;
1184	else if (!delim_p && colon_p)
1185		end = colon_p;
1186	else {
1187		end = delim_p;
1188		if (!end) /* case: hostname:/ */
1189			end = name + namelen;
1190	}
1191
1192	if (end <= name)
1193		return -EINVAL;
1194
1195	/* do dns_resolve upcall */
1196	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1197	if (ip_len > 0)
1198		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1199	else
1200		ret = -ESRCH;
1201
1202	kfree(ip_addr);
1203
1204	*ipend = end;
1205
1206	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1207			ret, ret ? "failed" : ceph_pr_addr(ss));
1208
1209	return ret;
1210}
1211#else
1212static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1213		struct sockaddr_storage *ss, char delim, const char **ipend)
1214{
1215	return -EINVAL;
1216}
1217#endif
1218
1219/*
1220 * Parse a server name (IP or hostname). If a valid IP address is not found
1221 * then try to extract a hostname to resolve using userspace DNS upcall.
1222 */
1223static int ceph_parse_server_name(const char *name, size_t namelen,
1224			struct sockaddr_storage *ss, char delim, const char **ipend)
1225{
1226	int ret;
1227
1228	ret = ceph_pton(name, namelen, ss, delim, ipend);
1229	if (ret)
1230		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1231
1232	return ret;
1233}
1234
1235/*
1236 * Parse an ip[:port] list into an addr array.  Use the default
1237 * monitor port if a port isn't specified.
1238 */
1239int ceph_parse_ips(const char *c, const char *end,
1240		   struct ceph_entity_addr *addr,
1241		   int max_count, int *count)
1242{
1243	int i, ret = -EINVAL;
1244	const char *p = c;
1245
1246	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1247	for (i = 0; i < max_count; i++) {
1248		const char *ipend;
1249		struct sockaddr_storage *ss = &addr[i].in_addr;
1250		int port;
1251		char delim = ',';
1252
1253		if (*p == '[') {
1254			delim = ']';
1255			p++;
1256		}
1257
1258		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1259		if (ret)
1260			goto bad;
1261		ret = -EINVAL;
1262
1263		p = ipend;
1264
1265		if (delim == ']') {
1266			if (*p != ']') {
1267				dout("missing matching ']'\n");
1268				goto bad;
1269			}
1270			p++;
1271		}
1272
1273		/* port? */
1274		if (p < end && *p == ':') {
1275			port = 0;
1276			p++;
1277			while (p < end && *p >= '0' && *p <= '9') {
1278				port = (port * 10) + (*p - '0');
1279				p++;
1280			}
1281			if (port > 65535 || port == 0)
 
 
1282				goto bad;
1283		} else {
1284			port = CEPH_MON_PORT;
1285		}
1286
1287		addr_set_port(ss, port);
1288
1289		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1290
1291		if (p == end)
1292			break;
1293		if (*p != ',')
1294			goto bad;
1295		p++;
1296	}
1297
1298	if (p != end)
1299		goto bad;
1300
1301	if (count)
1302		*count = i + 1;
1303	return 0;
1304
1305bad:
1306	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1307	return ret;
1308}
1309EXPORT_SYMBOL(ceph_parse_ips);
1310
1311static int process_banner(struct ceph_connection *con)
1312{
1313	dout("process_banner on %p\n", con);
1314
1315	if (verify_hello(con) < 0)
1316		return -1;
1317
1318	ceph_decode_addr(&con->actual_peer_addr);
1319	ceph_decode_addr(&con->peer_addr_for_me);
1320
1321	/*
1322	 * Make sure the other end is who we wanted.  note that the other
1323	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1324	 * them the benefit of the doubt.
1325	 */
1326	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1327		   sizeof(con->peer_addr)) != 0 &&
1328	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1329	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1330		pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1331			   ceph_pr_addr(&con->peer_addr.in_addr),
1332			   (int)le32_to_cpu(con->peer_addr.nonce),
1333			   ceph_pr_addr(&con->actual_peer_addr.in_addr),
1334			   (int)le32_to_cpu(con->actual_peer_addr.nonce));
1335		con->error_msg = "wrong peer at address";
1336		return -1;
1337	}
1338
1339	/*
1340	 * did we learn our address?
1341	 */
1342	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1343		int port = addr_port(&con->msgr->inst.addr.in_addr);
1344
1345		memcpy(&con->msgr->inst.addr.in_addr,
1346		       &con->peer_addr_for_me.in_addr,
1347		       sizeof(con->peer_addr_for_me.in_addr));
1348		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1349		encode_my_addr(con->msgr);
1350		dout("process_banner learned my addr is %s\n",
1351		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1352	}
1353
1354	set_bit(NEGOTIATING, &con->state);
1355	prepare_read_connect(con);
1356	return 0;
1357}
1358
1359static void fail_protocol(struct ceph_connection *con)
1360{
1361	reset_connection(con);
1362	set_bit(CLOSED, &con->state);  /* in case there's queued work */
1363
1364	mutex_unlock(&con->mutex);
1365	if (con->ops->bad_proto)
1366		con->ops->bad_proto(con);
1367	mutex_lock(&con->mutex);
1368}
1369
1370static int process_connect(struct ceph_connection *con)
1371{
1372	u64 sup_feat = con->msgr->supported_features;
1373	u64 req_feat = con->msgr->required_features;
1374	u64 server_feat = le64_to_cpu(con->in_reply.features);
 
1375	int ret;
1376
1377	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1378
1379	switch (con->in_reply.tag) {
1380	case CEPH_MSGR_TAG_FEATURES:
1381		pr_err("%s%lld %s feature set mismatch,"
1382		       " my %llx < server's %llx, missing %llx\n",
1383		       ENTITY_NAME(con->peer_name),
1384		       ceph_pr_addr(&con->peer_addr.in_addr),
1385		       sup_feat, server_feat, server_feat & ~sup_feat);
1386		con->error_msg = "missing required protocol features";
1387		fail_protocol(con);
1388		return -1;
1389
1390	case CEPH_MSGR_TAG_BADPROTOVER:
1391		pr_err("%s%lld %s protocol version mismatch,"
1392		       " my %d != server's %d\n",
1393		       ENTITY_NAME(con->peer_name),
1394		       ceph_pr_addr(&con->peer_addr.in_addr),
1395		       le32_to_cpu(con->out_connect.protocol_version),
1396		       le32_to_cpu(con->in_reply.protocol_version));
1397		con->error_msg = "protocol version mismatch";
1398		fail_protocol(con);
1399		return -1;
1400
1401	case CEPH_MSGR_TAG_BADAUTHORIZER:
1402		con->auth_retry++;
1403		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1404		     con->auth_retry);
1405		if (con->auth_retry == 2) {
1406			con->error_msg = "connect authorization failure";
1407			return -1;
1408		}
1409		con->auth_retry = 1;
1410		ceph_con_out_kvec_reset(con);
1411		ret = prepare_write_connect(con);
1412		if (ret < 0)
1413			return ret;
1414		prepare_read_connect(con);
1415		break;
1416
1417	case CEPH_MSGR_TAG_RESETSESSION:
1418		/*
1419		 * If we connected with a large connect_seq but the peer
1420		 * has no record of a session with us (no connection, or
1421		 * connect_seq == 0), they will send RESETSESION to indicate
1422		 * that they must have reset their session, and may have
1423		 * dropped messages.
1424		 */
1425		dout("process_connect got RESET peer seq %u\n",
1426		     le32_to_cpu(con->in_reply.connect_seq));
1427		pr_err("%s%lld %s connection reset\n",
1428		       ENTITY_NAME(con->peer_name),
1429		       ceph_pr_addr(&con->peer_addr.in_addr));
1430		reset_connection(con);
1431		ceph_con_out_kvec_reset(con);
1432		ret = prepare_write_connect(con);
1433		if (ret < 0)
1434			return ret;
1435		prepare_read_connect(con);
1436
1437		/* Tell ceph about it. */
1438		mutex_unlock(&con->mutex);
1439		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1440		if (con->ops->peer_reset)
1441			con->ops->peer_reset(con);
1442		mutex_lock(&con->mutex);
1443		if (test_bit(CLOSED, &con->state) ||
1444		    test_bit(OPENING, &con->state))
1445			return -EAGAIN;
1446		break;
1447
1448	case CEPH_MSGR_TAG_RETRY_SESSION:
1449		/*
1450		 * If we sent a smaller connect_seq than the peer has, try
1451		 * again with a larger value.
1452		 */
1453		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1454		     le32_to_cpu(con->out_connect.connect_seq),
1455		     le32_to_cpu(con->in_reply.connect_seq));
1456		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1457		ceph_con_out_kvec_reset(con);
1458		ret = prepare_write_connect(con);
1459		if (ret < 0)
1460			return ret;
1461		prepare_read_connect(con);
1462		break;
1463
1464	case CEPH_MSGR_TAG_RETRY_GLOBAL:
1465		/*
1466		 * If we sent a smaller global_seq than the peer has, try
1467		 * again with a larger value.
1468		 */
1469		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1470		     con->peer_global_seq,
1471		     le32_to_cpu(con->in_reply.global_seq));
1472		get_global_seq(con->msgr,
1473			       le32_to_cpu(con->in_reply.global_seq));
1474		ceph_con_out_kvec_reset(con);
1475		ret = prepare_write_connect(con);
1476		if (ret < 0)
1477			return ret;
1478		prepare_read_connect(con);
1479		break;
1480
 
1481	case CEPH_MSGR_TAG_READY:
1482		if (req_feat & ~server_feat) {
1483			pr_err("%s%lld %s protocol feature mismatch,"
1484			       " my required %llx > server's %llx, need %llx\n",
1485			       ENTITY_NAME(con->peer_name),
1486			       ceph_pr_addr(&con->peer_addr.in_addr),
1487			       req_feat, server_feat, req_feat & ~server_feat);
1488			con->error_msg = "missing required protocol features";
1489			fail_protocol(con);
1490			return -1;
1491		}
1492		clear_bit(CONNECTING, &con->state);
 
 
 
1493		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1494		con->connect_seq++;
1495		con->peer_features = server_feat;
1496		dout("process_connect got READY gseq %d cseq %d (%d)\n",
1497		     con->peer_global_seq,
1498		     le32_to_cpu(con->in_reply.connect_seq),
1499		     con->connect_seq);
1500		WARN_ON(con->connect_seq !=
1501			le32_to_cpu(con->in_reply.connect_seq));
1502
1503		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1504			set_bit(LOSSYTX, &con->state);
1505
1506		prepare_read_tag(con);
 
 
 
 
 
 
 
1507		break;
1508
1509	case CEPH_MSGR_TAG_WAIT:
1510		/*
1511		 * If there is a connection race (we are opening
1512		 * connections to each other), one of us may just have
1513		 * to WAIT.  This shouldn't happen if we are the
1514		 * client.
1515		 */
1516		pr_err("process_connect got WAIT as client\n");
1517		con->error_msg = "protocol error, got WAIT as client";
1518		return -1;
1519
1520	default:
1521		pr_err("connect protocol error, will retry\n");
1522		con->error_msg = "protocol error, garbage tag during connect";
1523		return -1;
1524	}
1525	return 0;
1526}
1527
1528
1529/*
1530 * read (part of) an ack
1531 */
1532static int read_partial_ack(struct ceph_connection *con)
1533{
1534	int size = sizeof (con->in_temp_ack);
1535	int end = size;
1536
1537	return read_partial(con, end, size, &con->in_temp_ack);
1538}
1539
1540
1541/*
1542 * We can finally discard anything that's been acked.
1543 */
1544static void process_ack(struct ceph_connection *con)
1545{
1546	struct ceph_msg *m;
1547	u64 ack = le64_to_cpu(con->in_temp_ack);
1548	u64 seq;
1549
1550	while (!list_empty(&con->out_sent)) {
1551		m = list_first_entry(&con->out_sent, struct ceph_msg,
1552				     list_head);
1553		seq = le64_to_cpu(m->hdr.seq);
1554		if (seq > ack)
1555			break;
1556		dout("got ack for seq %llu type %d at %p\n", seq,
1557		     le16_to_cpu(m->hdr.type), m);
1558		m->ack_stamp = jiffies;
1559		ceph_msg_remove(m);
1560	}
1561	prepare_read_tag(con);
1562}
1563
1564
1565
1566
1567static int read_partial_message_section(struct ceph_connection *con,
1568					struct kvec *section,
1569					unsigned int sec_len, u32 *crc)
1570{
1571	int ret, left;
1572
1573	BUG_ON(!section);
1574
1575	while (section->iov_len < sec_len) {
1576		BUG_ON(section->iov_base == NULL);
1577		left = sec_len - section->iov_len;
1578		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1579				       section->iov_len, left);
1580		if (ret <= 0)
1581			return ret;
1582		section->iov_len += ret;
1583	}
1584	if (section->iov_len == sec_len)
1585		*crc = crc32c(0, section->iov_base, section->iov_len);
1586
1587	return 1;
1588}
1589
1590static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1591				struct ceph_msg_header *hdr,
1592				int *skip);
1593
1594
1595static int read_partial_message_pages(struct ceph_connection *con,
1596				      struct page **pages,
1597				      unsigned int data_len, bool do_datacrc)
1598{
1599	void *p;
 
 
 
 
 
 
1600	int ret;
1601	int left;
1602
1603	left = min((int)(data_len - con->in_msg_pos.data_pos),
1604		   (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1605	/* (page) data */
1606	BUG_ON(pages == NULL);
1607	p = kmap(pages[con->in_msg_pos.page]);
1608	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1609			       left);
1610	if (ret > 0 && do_datacrc)
1611		con->in_data_crc =
1612			crc32c(con->in_data_crc,
1613				  p + con->in_msg_pos.page_pos, ret);
1614	kunmap(pages[con->in_msg_pos.page]);
1615	if (ret <= 0)
1616		return ret;
1617	con->in_msg_pos.data_pos += ret;
1618	con->in_msg_pos.page_pos += ret;
1619	if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1620		con->in_msg_pos.page_pos = 0;
1621		con->in_msg_pos.page++;
1622	}
1623
1624	return ret;
1625}
1626
1627#ifdef CONFIG_BLOCK
1628static int read_partial_message_bio(struct ceph_connection *con,
1629				    struct bio **bio_iter, int *bio_seg,
1630				    unsigned int data_len, bool do_datacrc)
1631{
1632	struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1633	void *p;
1634	int ret, left;
1635
1636	if (IS_ERR(bv))
1637		return PTR_ERR(bv);
1638
1639	left = min((int)(data_len - con->in_msg_pos.data_pos),
1640		   (int)(bv->bv_len - con->in_msg_pos.page_pos));
 
 
 
 
 
 
1641
1642	p = kmap(bv->bv_page) + bv->bv_offset;
 
1643
1644	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1645			       left);
1646	if (ret > 0 && do_datacrc)
1647		con->in_data_crc =
1648			crc32c(con->in_data_crc,
1649				  p + con->in_msg_pos.page_pos, ret);
1650	kunmap(bv->bv_page);
1651	if (ret <= 0)
1652		return ret;
1653	con->in_msg_pos.data_pos += ret;
1654	con->in_msg_pos.page_pos += ret;
1655	if (con->in_msg_pos.page_pos == bv->bv_len) {
1656		con->in_msg_pos.page_pos = 0;
1657		iter_bio_next(bio_iter, bio_seg);
1658	}
 
 
1659
1660	return ret;
1661}
1662#endif
1663
1664/*
1665 * read (part of) a message.
1666 */
 
 
1667static int read_partial_message(struct ceph_connection *con)
1668{
1669	struct ceph_msg *m = con->in_msg;
1670	int size;
1671	int end;
1672	int ret;
1673	unsigned int front_len, middle_len, data_len;
1674	bool do_datacrc = !con->msgr->nocrc;
1675	int skip;
1676	u64 seq;
1677	u32 crc;
1678
1679	dout("read_partial_message con %p msg %p\n", con, m);
1680
1681	/* header */
1682	size = sizeof (con->in_hdr);
1683	end = size;
1684	ret = read_partial(con, end, size, &con->in_hdr);
1685	if (ret <= 0)
1686		return ret;
1687
1688	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1689	if (cpu_to_le32(crc) != con->in_hdr.crc) {
1690		pr_err("read_partial_message bad hdr "
1691		       " crc %u != expected %u\n",
1692		       crc, con->in_hdr.crc);
1693		return -EBADMSG;
1694	}
1695
1696	front_len = le32_to_cpu(con->in_hdr.front_len);
1697	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1698		return -EIO;
1699	middle_len = le32_to_cpu(con->in_hdr.middle_len);
1700	if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1701		return -EIO;
1702	data_len = le32_to_cpu(con->in_hdr.data_len);
1703	if (data_len > CEPH_MSG_MAX_DATA_LEN)
1704		return -EIO;
1705
1706	/* verify seq# */
1707	seq = le64_to_cpu(con->in_hdr.seq);
1708	if ((s64)seq - (s64)con->in_seq < 1) {
1709		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1710			ENTITY_NAME(con->peer_name),
1711			ceph_pr_addr(&con->peer_addr.in_addr),
1712			seq, con->in_seq + 1);
1713		con->in_base_pos = -front_len - middle_len - data_len -
1714			sizeof(m->footer);
1715		con->in_tag = CEPH_MSGR_TAG_READY;
1716		return 0;
1717	} else if ((s64)seq - (s64)con->in_seq > 1) {
1718		pr_err("read_partial_message bad seq %lld expected %lld\n",
1719		       seq, con->in_seq + 1);
1720		con->error_msg = "bad message sequence # for incoming message";
1721		return -EBADMSG;
1722	}
1723
1724	/* allocate message? */
1725	if (!con->in_msg) {
 
 
1726		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1727		     con->in_hdr.front_len, con->in_hdr.data_len);
1728		skip = 0;
1729		con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
 
 
 
1730		if (skip) {
1731			/* skip this message */
1732			dout("alloc_msg said skip message\n");
1733			BUG_ON(con->in_msg);
1734			con->in_base_pos = -front_len - middle_len - data_len -
1735				sizeof(m->footer);
1736			con->in_tag = CEPH_MSGR_TAG_READY;
1737			con->in_seq++;
1738			return 0;
1739		}
1740		if (!con->in_msg) {
1741			con->error_msg =
1742				"error allocating memory for incoming message";
1743			return -ENOMEM;
1744		}
 
 
 
1745		m = con->in_msg;
1746		m->front.iov_len = 0;    /* haven't read it yet */
1747		if (m->middle)
1748			m->middle->vec.iov_len = 0;
1749
1750		con->in_msg_pos.page = 0;
1751		if (m->pages)
1752			con->in_msg_pos.page_pos = m->page_alignment;
1753		else
1754			con->in_msg_pos.page_pos = 0;
1755		con->in_msg_pos.data_pos = 0;
1756	}
1757
1758	/* front */
1759	ret = read_partial_message_section(con, &m->front, front_len,
1760					   &con->in_front_crc);
1761	if (ret <= 0)
1762		return ret;
1763
1764	/* middle */
1765	if (m->middle) {
1766		ret = read_partial_message_section(con, &m->middle->vec,
1767						   middle_len,
1768						   &con->in_middle_crc);
1769		if (ret <= 0)
1770			return ret;
1771	}
1772#ifdef CONFIG_BLOCK
1773	if (m->bio && !m->bio_iter)
1774		init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1775#endif
1776
1777	/* (page) data */
1778	while (con->in_msg_pos.data_pos < data_len) {
1779		if (m->pages) {
1780			ret = read_partial_message_pages(con, m->pages,
1781						 data_len, do_datacrc);
1782			if (ret <= 0)
1783				return ret;
1784#ifdef CONFIG_BLOCK
1785		} else if (m->bio) {
1786
1787			ret = read_partial_message_bio(con,
1788						 &m->bio_iter, &m->bio_seg,
1789						 data_len, do_datacrc);
1790			if (ret <= 0)
1791				return ret;
1792#endif
1793		} else {
1794			BUG_ON(1);
1795		}
1796	}
1797
1798	/* footer */
1799	size = sizeof (m->footer);
1800	end += size;
1801	ret = read_partial(con, end, size, &m->footer);
1802	if (ret <= 0)
1803		return ret;
1804
 
 
 
 
 
1805	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1806	     m, front_len, m->footer.front_crc, middle_len,
1807	     m->footer.middle_crc, data_len, m->footer.data_crc);
1808
1809	/* crc ok? */
1810	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1811		pr_err("read_partial_message %p front crc %u != exp. %u\n",
1812		       m, con->in_front_crc, m->footer.front_crc);
1813		return -EBADMSG;
1814	}
1815	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1816		pr_err("read_partial_message %p middle crc %u != exp %u\n",
1817		       m, con->in_middle_crc, m->footer.middle_crc);
1818		return -EBADMSG;
1819	}
1820	if (do_datacrc &&
1821	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1822	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1823		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1824		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1825		return -EBADMSG;
1826	}
1827
 
 
 
 
 
 
1828	return 1; /* done! */
1829}
1830
1831/*
1832 * Process message.  This happens in the worker thread.  The callback should
1833 * be careful not to do anything that waits on other incoming messages or it
1834 * may deadlock.
1835 */
1836static void process_message(struct ceph_connection *con)
1837{
1838	struct ceph_msg *msg;
1839
1840	msg = con->in_msg;
1841	con->in_msg = NULL;
1842
1843	/* if first message, set peer_name */
1844	if (con->peer_name.type == 0)
1845		con->peer_name = msg->hdr.src;
1846
1847	con->in_seq++;
1848	mutex_unlock(&con->mutex);
1849
1850	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1851	     msg, le64_to_cpu(msg->hdr.seq),
1852	     ENTITY_NAME(msg->hdr.src),
1853	     le16_to_cpu(msg->hdr.type),
1854	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1855	     le32_to_cpu(msg->hdr.front_len),
1856	     le32_to_cpu(msg->hdr.data_len),
1857	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1858	con->ops->dispatch(con, msg);
1859
1860	mutex_lock(&con->mutex);
1861	prepare_read_tag(con);
1862}
1863
 
 
 
 
 
 
 
 
 
 
 
1864
1865/*
1866 * Write something to the socket.  Called in a worker thread when the
1867 * socket appears to be writeable and we have something ready to send.
1868 */
1869static int try_write(struct ceph_connection *con)
1870{
1871	int ret = 1;
1872
1873	dout("try_write start %p state %lu nref %d\n", con, con->state,
1874	     atomic_read(&con->nref));
1875
1876more:
1877	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1878
1879	/* open the socket first? */
1880	if (con->sock == NULL) {
1881		ceph_con_out_kvec_reset(con);
 
 
 
1882		prepare_write_banner(con);
1883		ret = prepare_write_connect(con);
1884		if (ret < 0)
1885			goto out;
1886		prepare_read_banner(con);
1887		set_bit(CONNECTING, &con->state);
1888		clear_bit(NEGOTIATING, &con->state);
1889
1890		BUG_ON(con->in_msg);
1891		con->in_tag = CEPH_MSGR_TAG_READY;
1892		dout("try_write initiating connect on %p new state %lu\n",
1893		     con, con->state);
1894		ret = ceph_tcp_connect(con);
1895		if (ret < 0) {
1896			con->error_msg = "connect error";
1897			goto out;
1898		}
1899	}
1900
1901more_kvec:
1902	/* kvec data queued? */
1903	if (con->out_skip) {
1904		ret = write_partial_skip(con);
1905		if (ret <= 0)
1906			goto out;
1907	}
1908	if (con->out_kvec_left) {
1909		ret = write_partial_kvec(con);
1910		if (ret <= 0)
1911			goto out;
1912	}
1913
1914	/* msg pages? */
1915	if (con->out_msg) {
1916		if (con->out_msg_done) {
1917			ceph_msg_put(con->out_msg);
1918			con->out_msg = NULL;   /* we're done with this one */
1919			goto do_next;
1920		}
1921
1922		ret = write_partial_msg_pages(con);
1923		if (ret == 1)
1924			goto more_kvec;  /* we need to send the footer, too! */
1925		if (ret == 0)
1926			goto out;
1927		if (ret < 0) {
1928			dout("try_write write_partial_msg_pages err %d\n",
1929			     ret);
1930			goto out;
1931		}
1932	}
1933
1934do_next:
1935	if (!test_bit(CONNECTING, &con->state)) {
 
 
 
 
1936		/* is anything else pending? */
1937		if (!list_empty(&con->out_queue)) {
1938			prepare_write_message(con);
1939			goto more;
1940		}
1941		if (con->in_seq > con->in_seq_acked) {
1942			prepare_write_ack(con);
1943			goto more;
1944		}
1945		if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1946			prepare_write_keepalive(con);
1947			goto more;
1948		}
1949	}
1950
1951	/* Nothing to do! */
1952	clear_bit(WRITE_PENDING, &con->state);
1953	dout("try_write nothing else to write.\n");
1954	ret = 0;
1955out:
1956	dout("try_write done on %p ret %d\n", con, ret);
1957	return ret;
1958}
1959
1960
1961
1962/*
1963 * Read what we can from the socket.
1964 */
1965static int try_read(struct ceph_connection *con)
1966{
1967	int ret = -1;
1968
1969	if (!con->sock)
1970		return 0;
1971
1972	if (test_bit(STANDBY, &con->state))
 
1973		return 0;
1974
1975	dout("try_read start on %p\n", con);
1976
1977more:
1978	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1979	     con->in_base_pos);
1980
1981	/*
1982	 * process_connect and process_message drop and re-take
1983	 * con->mutex.  make sure we handle a racing close or reopen.
1984	 */
1985	if (test_bit(CLOSED, &con->state) ||
1986	    test_bit(OPENING, &con->state)) {
1987		ret = -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1988		goto out;
1989	}
1990
1991	if (test_bit(CONNECTING, &con->state)) {
1992		if (!test_bit(NEGOTIATING, &con->state)) {
1993			dout("try_read connecting\n");
1994			ret = read_partial_banner(con);
1995			if (ret <= 0)
1996				goto out;
1997			ret = process_banner(con);
1998			if (ret < 0)
1999				goto out;
2000		}
2001		ret = read_partial_connect(con);
2002		if (ret <= 0)
2003			goto out;
2004		ret = process_connect(con);
2005		if (ret < 0)
2006			goto out;
2007		goto more;
2008	}
2009
 
 
2010	if (con->in_base_pos < 0) {
2011		/*
2012		 * skipping + discarding content.
2013		 *
2014		 * FIXME: there must be a better way to do this!
2015		 */
2016		static char buf[SKIP_BUF_SIZE];
2017		int skip = min((int) sizeof (buf), -con->in_base_pos);
2018
2019		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2020		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2021		if (ret <= 0)
2022			goto out;
2023		con->in_base_pos += ret;
2024		if (con->in_base_pos)
2025			goto more;
2026	}
2027	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2028		/*
2029		 * what's next?
2030		 */
2031		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2032		if (ret <= 0)
2033			goto out;
2034		dout("try_read got tag %d\n", (int)con->in_tag);
2035		switch (con->in_tag) {
2036		case CEPH_MSGR_TAG_MSG:
2037			prepare_read_message(con);
2038			break;
2039		case CEPH_MSGR_TAG_ACK:
2040			prepare_read_ack(con);
2041			break;
 
 
 
2042		case CEPH_MSGR_TAG_CLOSE:
2043			set_bit(CLOSED, &con->state);   /* fixme */
 
2044			goto out;
2045		default:
2046			goto bad_tag;
2047		}
2048	}
2049	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2050		ret = read_partial_message(con);
2051		if (ret <= 0) {
2052			switch (ret) {
2053			case -EBADMSG:
2054				con->error_msg = "bad crc";
 
 
2055				ret = -EIO;
2056				break;
2057			case -EIO:
2058				con->error_msg = "io error";
2059				break;
2060			}
2061			goto out;
2062		}
2063		if (con->in_tag == CEPH_MSGR_TAG_READY)
2064			goto more;
2065		process_message(con);
 
 
2066		goto more;
2067	}
2068	if (con->in_tag == CEPH_MSGR_TAG_ACK) {
 
 
 
 
 
2069		ret = read_partial_ack(con);
2070		if (ret <= 0)
2071			goto out;
2072		process_ack(con);
2073		goto more;
2074	}
 
 
 
 
 
 
2075
2076out:
2077	dout("try_read done on %p ret %d\n", con, ret);
2078	return ret;
2079
2080bad_tag:
2081	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2082	con->error_msg = "protocol error, garbage tag";
2083	ret = -1;
2084	goto out;
2085}
2086
2087
2088/*
2089 * Atomically queue work on a connection.  Bump @con reference to
2090 * avoid races with connection teardown.
 
2091 */
2092static void queue_con(struct ceph_connection *con)
2093{
2094	if (test_bit(DEAD, &con->state)) {
2095		dout("queue_con %p ignoring: DEAD\n",
2096		     con);
2097		return;
2098	}
2099
2100	if (!con->ops->get(con)) {
2101		dout("queue_con %p ref count 0\n", con);
2102		return;
 
2103	}
2104
2105	if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2106		dout("queue_con %p - already queued\n", con);
 
 
 
 
 
 
 
 
 
 
 
2107		con->ops->put(con);
2108	} else {
2109		dout("queue_con %p\n", con);
2110	}
2111}
2112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2113/*
2114 * Do some work on a connection.  Drop a connection ref when we're done.
2115 */
2116static void con_work(struct work_struct *work)
2117{
2118	struct ceph_connection *con = container_of(work, struct ceph_connection,
2119						   work.work);
2120	int ret;
2121
2122	mutex_lock(&con->mutex);
2123restart:
2124	if (test_and_clear_bit(BACKOFF, &con->state)) {
2125		dout("con_work %p backing off\n", con);
2126		if (queue_delayed_work(ceph_msgr_wq, &con->work,
2127				       round_jiffies_relative(con->delay))) {
2128			dout("con_work %p backoff %lu\n", con, con->delay);
2129			mutex_unlock(&con->mutex);
2130			return;
2131		} else {
2132			con->ops->put(con);
2133			dout("con_work %p FAILED to back off %lu\n", con,
2134			     con->delay);
 
 
 
 
 
 
 
 
 
 
 
2135		}
2136	}
2137
2138	if (test_bit(STANDBY, &con->state)) {
2139		dout("con_work %p STANDBY\n", con);
2140		goto done;
2141	}
2142	if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2143		dout("con_work CLOSED\n");
2144		con_close_socket(con);
2145		goto done;
2146	}
2147	if (test_and_clear_bit(OPENING, &con->state)) {
2148		/* reopen w/ new peer */
2149		dout("con_work OPENING\n");
2150		con_close_socket(con);
2151	}
2152
2153	if (test_and_clear_bit(SOCK_CLOSED, &con->state))
2154		goto fault;
 
 
 
 
 
 
2155
2156	ret = try_read(con);
2157	if (ret == -EAGAIN)
2158		goto restart;
2159	if (ret < 0)
2160		goto fault;
2161
2162	ret = try_write(con);
2163	if (ret == -EAGAIN)
2164		goto restart;
2165	if (ret < 0)
2166		goto fault;
2167
2168done:
2169	mutex_unlock(&con->mutex);
2170done_unlocked:
2171	con->ops->put(con);
2172	return;
2173
2174fault:
2175	mutex_unlock(&con->mutex);
2176	ceph_fault(con);     /* error/fault path */
2177	goto done_unlocked;
2178}
2179
2180
2181/*
2182 * Generic error/fault handler.  A retry mechanism is used with
2183 * exponential backoff
2184 */
2185static void ceph_fault(struct ceph_connection *con)
2186{
2187	pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2188	       ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2189	dout("fault %p state %lu to peer %s\n",
2190	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2191
2192	if (test_bit(LOSSYTX, &con->state)) {
2193		dout("fault on LOSSYTX channel\n");
2194		goto out;
2195	}
2196
2197	mutex_lock(&con->mutex);
2198	if (test_bit(CLOSED, &con->state))
2199		goto out_unlock;
2200
2201	con_close_socket(con);
2202
 
 
 
 
 
 
2203	if (con->in_msg) {
 
2204		ceph_msg_put(con->in_msg);
2205		con->in_msg = NULL;
2206	}
2207
2208	/* Requeue anything that hasn't been acked */
2209	list_splice_init(&con->out_sent, &con->out_queue);
2210
2211	/* If there are no messages queued or keepalive pending, place
2212	 * the connection in a STANDBY state */
2213	if (list_empty(&con->out_queue) &&
2214	    !test_bit(KEEPALIVE_PENDING, &con->state)) {
2215		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2216		clear_bit(WRITE_PENDING, &con->state);
2217		set_bit(STANDBY, &con->state);
2218	} else {
2219		/* retry after a delay. */
 
2220		if (con->delay == 0)
2221			con->delay = BASE_DELAY_INTERVAL;
2222		else if (con->delay < MAX_DELAY_INTERVAL)
2223			con->delay *= 2;
2224		con->ops->get(con);
2225		if (queue_delayed_work(ceph_msgr_wq, &con->work,
2226				       round_jiffies_relative(con->delay))) {
2227			dout("fault queued %p delay %lu\n", con, con->delay);
2228		} else {
2229			con->ops->put(con);
2230			dout("fault failed to queue %p delay %lu, backoff\n",
2231			     con, con->delay);
2232			/*
2233			 * In many cases we see a socket state change
2234			 * while con_work is running and end up
2235			 * queuing (non-delayed) work, such that we
2236			 * can't backoff with a delay.  Set a flag so
2237			 * that when con_work restarts we schedule the
2238			 * delay then.
2239			 */
2240			set_bit(BACKOFF, &con->state);
2241		}
2242	}
2243
2244out_unlock:
2245	mutex_unlock(&con->mutex);
2246out:
2247	/*
2248	 * in case we faulted due to authentication, invalidate our
2249	 * current tickets so that we can get new ones.
2250	 */
2251	if (con->auth_retry && con->ops->invalidate_authorizer) {
2252		dout("calling invalidate_authorizer()\n");
2253		con->ops->invalidate_authorizer(con);
2254	}
2255
2256	if (con->ops->fault)
2257		con->ops->fault(con);
2258}
2259
2260
2261
2262/*
2263 * create a new messenger instance
2264 */
2265struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2266					     u32 supported_features,
2267					     u32 required_features)
2268{
2269	struct ceph_messenger *msgr;
2270
2271	msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2272	if (msgr == NULL)
2273		return ERR_PTR(-ENOMEM);
2274
2275	msgr->supported_features = supported_features;
2276	msgr->required_features = required_features;
2277
2278	spin_lock_init(&msgr->global_seq_lock);
2279
2280	if (myaddr)
2281		msgr->inst.addr = *myaddr;
2282
2283	/* select a random nonce */
2284	msgr->inst.addr.type = 0;
2285	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2286	encode_my_addr(msgr);
2287
2288	dout("messenger_create %p\n", msgr);
2289	return msgr;
 
 
2290}
2291EXPORT_SYMBOL(ceph_messenger_create);
2292
2293void ceph_messenger_destroy(struct ceph_messenger *msgr)
2294{
2295	dout("destroy %p\n", msgr);
2296	kfree(msgr);
2297	dout("destroyed messenger %p\n", msgr);
 
 
 
 
 
 
 
 
2298}
2299EXPORT_SYMBOL(ceph_messenger_destroy);
2300
2301static void clear_standby(struct ceph_connection *con)
2302{
2303	/* come back from STANDBY? */
2304	if (test_and_clear_bit(STANDBY, &con->state)) {
2305		mutex_lock(&con->mutex);
2306		dout("clear_standby %p and ++connect_seq\n", con);
 
2307		con->connect_seq++;
2308		WARN_ON(test_bit(WRITE_PENDING, &con->state));
2309		WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
2310		mutex_unlock(&con->mutex);
2311	}
2312}
2313
2314/*
2315 * Queue up an outgoing message on the given connection.
2316 */
2317void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2318{
2319	if (test_bit(CLOSED, &con->state)) {
2320		dout("con_send %p closed, dropping %p\n", con, msg);
2321		ceph_msg_put(msg);
2322		return;
2323	}
2324
2325	/* set src+dst */
2326	msg->hdr.src = con->msgr->inst.name;
2327
2328	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2329
2330	msg->needs_out_seq = true;
2331
2332	/* queue */
2333	mutex_lock(&con->mutex);
 
 
 
 
 
 
 
 
 
 
2334	BUG_ON(!list_empty(&msg->list_head));
2335	list_add_tail(&msg->list_head, &con->out_queue);
2336	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2337	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2338	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2339	     le32_to_cpu(msg->hdr.front_len),
2340	     le32_to_cpu(msg->hdr.middle_len),
2341	     le32_to_cpu(msg->hdr.data_len));
 
 
2342	mutex_unlock(&con->mutex);
2343
2344	/* if there wasn't anything waiting to send before, queue
2345	 * new work */
2346	clear_standby(con);
2347	if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2348		queue_con(con);
2349}
2350EXPORT_SYMBOL(ceph_con_send);
2351
2352/*
2353 * Revoke a message that was previously queued for send
2354 */
2355void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2356{
 
 
 
 
 
 
 
2357	mutex_lock(&con->mutex);
2358	if (!list_empty(&msg->list_head)) {
2359		dout("con_revoke %p msg %p - was on queue\n", con, msg);
2360		list_del_init(&msg->list_head);
2361		ceph_msg_put(msg);
2362		msg->hdr.seq = 0;
 
 
2363	}
2364	if (con->out_msg == msg) {
2365		dout("con_revoke %p msg %p - was sending\n", con, msg);
2366		con->out_msg = NULL;
2367		if (con->out_kvec_is_msg) {
2368			con->out_skip = con->out_kvec_bytes;
2369			con->out_kvec_is_msg = false;
 
 
2370		}
2371		ceph_msg_put(msg);
 
 
 
 
 
 
 
 
2372		msg->hdr.seq = 0;
 
 
2373	}
 
2374	mutex_unlock(&con->mutex);
2375}
2376
2377/*
2378 * Revoke a message that we may be reading data into
2379 */
2380void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2381{
 
 
 
 
 
 
 
2382	mutex_lock(&con->mutex);
2383	if (con->in_msg && con->in_msg == msg) {
2384		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2385		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2386		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2387
2388		/* skip rest of message */
2389		dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2390			con->in_base_pos = con->in_base_pos -
2391				sizeof(struct ceph_msg_header) -
2392				front_len -
2393				middle_len -
2394				data_len -
2395				sizeof(struct ceph_msg_footer);
2396		ceph_msg_put(con->in_msg);
2397		con->in_msg = NULL;
2398		con->in_tag = CEPH_MSGR_TAG_READY;
2399		con->in_seq++;
2400	} else {
2401		dout("con_revoke_pages %p msg %p pages %p no-op\n",
2402		     con, con->in_msg, msg);
2403	}
2404	mutex_unlock(&con->mutex);
2405}
2406
2407/*
2408 * Queue a keepalive byte to ensure the tcp connection is alive.
2409 */
2410void ceph_con_keepalive(struct ceph_connection *con)
2411{
2412	dout("con_keepalive %p\n", con);
 
2413	clear_standby(con);
2414	if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2415	    test_and_set_bit(WRITE_PENDING, &con->state) == 0)
 
2416		queue_con(con);
2417}
2418EXPORT_SYMBOL(ceph_con_keepalive);
2419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2420
2421/*
2422 * construct a new message with given type, size
2423 * the new msg has a ref count of 1.
2424 */
2425struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2426			      bool can_fail)
2427{
2428	struct ceph_msg *m;
2429
2430	m = kmalloc(sizeof(*m), flags);
2431	if (m == NULL)
2432		goto out;
2433	kref_init(&m->kref);
2434	INIT_LIST_HEAD(&m->list_head);
2435
2436	m->hdr.tid = 0;
2437	m->hdr.type = cpu_to_le16(type);
2438	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2439	m->hdr.version = 0;
2440	m->hdr.front_len = cpu_to_le32(front_len);
2441	m->hdr.middle_len = 0;
2442	m->hdr.data_len = 0;
2443	m->hdr.data_off = 0;
2444	m->hdr.reserved = 0;
2445	m->footer.front_crc = 0;
2446	m->footer.middle_crc = 0;
2447	m->footer.data_crc = 0;
2448	m->footer.flags = 0;
2449	m->front_max = front_len;
2450	m->front_is_vmalloc = false;
2451	m->more_to_follow = false;
2452	m->ack_stamp = 0;
2453	m->pool = NULL;
2454
2455	/* middle */
2456	m->middle = NULL;
2457
2458	/* data */
2459	m->nr_pages = 0;
2460	m->page_alignment = 0;
2461	m->pages = NULL;
2462	m->pagelist = NULL;
2463	m->bio = NULL;
2464	m->bio_iter = NULL;
2465	m->bio_seg = 0;
2466	m->trail = NULL;
2467
2468	/* front */
2469	if (front_len) {
2470		if (front_len > PAGE_CACHE_SIZE) {
2471			m->front.iov_base = __vmalloc(front_len, flags,
2472						      PAGE_KERNEL);
2473			m->front_is_vmalloc = true;
2474		} else {
2475			m->front.iov_base = kmalloc(front_len, flags);
2476		}
2477		if (m->front.iov_base == NULL) {
2478			dout("ceph_msg_new can't allocate %d bytes\n",
2479			     front_len);
2480			goto out2;
2481		}
2482	} else {
2483		m->front.iov_base = NULL;
2484	}
2485	m->front.iov_len = front_len;
2486
2487	dout("ceph_msg_new %p front %d\n", m, front_len);
2488	return m;
2489
2490out2:
2491	ceph_msg_put(m);
2492out:
2493	if (!can_fail) {
2494		pr_err("msg_new can't create type %d front %d\n", type,
2495		       front_len);
2496		WARN_ON(1);
2497	} else {
2498		dout("msg_new can't create type %d front %d\n", type,
2499		     front_len);
2500	}
2501	return NULL;
2502}
2503EXPORT_SYMBOL(ceph_msg_new);
2504
2505/*
2506 * Allocate "middle" portion of a message, if it is needed and wasn't
2507 * allocated by alloc_msg.  This allows us to read a small fixed-size
2508 * per-type header in the front and then gracefully fail (i.e.,
2509 * propagate the error to the caller based on info in the front) when
2510 * the middle is too large.
2511 */
2512static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2513{
2514	int type = le16_to_cpu(msg->hdr.type);
2515	int middle_len = le32_to_cpu(msg->hdr.middle_len);
2516
2517	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2518	     ceph_msg_type_name(type), middle_len);
2519	BUG_ON(!middle_len);
2520	BUG_ON(msg->middle);
2521
2522	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2523	if (!msg->middle)
2524		return -ENOMEM;
2525	return 0;
2526}
2527
2528/*
2529 * Generic message allocator, for incoming messages.
 
 
 
 
 
 
 
 
 
 
 
 
2530 */
2531static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2532				struct ceph_msg_header *hdr,
2533				int *skip)
2534{
2535	int type = le16_to_cpu(hdr->type);
2536	int front_len = le32_to_cpu(hdr->front_len);
2537	int middle_len = le32_to_cpu(hdr->middle_len);
2538	struct ceph_msg *msg = NULL;
2539	int ret;
2540
2541	if (con->ops->alloc_msg) {
2542		mutex_unlock(&con->mutex);
2543		msg = con->ops->alloc_msg(con, hdr, skip);
2544		mutex_lock(&con->mutex);
2545		if (!msg || *skip)
2546			return NULL;
 
 
 
 
2547	}
2548	if (!msg) {
2549		*skip = 0;
2550		msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2551		if (!msg) {
2552			pr_err("unable to allocate msg type %d len %d\n",
2553			       type, front_len);
2554			return NULL;
2555		}
2556		msg->page_alignment = le16_to_cpu(hdr->data_off);
 
 
 
 
 
 
2557	}
2558	memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2559
2560	if (middle_len && !msg->middle) {
2561		ret = ceph_alloc_middle(con, msg);
2562		if (ret < 0) {
2563			ceph_msg_put(msg);
2564			return NULL;
2565		}
2566	}
2567
2568	return msg;
2569}
2570
2571
2572/*
2573 * Free a generically kmalloc'd message.
2574 */
2575void ceph_msg_kfree(struct ceph_msg *m)
2576{
2577	dout("msg_kfree %p\n", m);
2578	if (m->front_is_vmalloc)
2579		vfree(m->front.iov_base);
2580	else
2581		kfree(m->front.iov_base);
2582	kfree(m);
2583}
2584
2585/*
2586 * Drop a msg ref.  Destroy as needed.
2587 */
2588void ceph_msg_last_put(struct kref *kref)
2589{
2590	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
 
2591
2592	dout("ceph_msg_put last one on %p\n", m);
2593	WARN_ON(!list_empty(&m->list_head));
2594
 
 
2595	/* drop middle, data, if any */
2596	if (m->middle) {
2597		ceph_buffer_put(m->middle);
2598		m->middle = NULL;
2599	}
2600	m->nr_pages = 0;
2601	m->pages = NULL;
2602
2603	if (m->pagelist) {
2604		ceph_pagelist_release(m->pagelist);
2605		kfree(m->pagelist);
2606		m->pagelist = NULL;
2607	}
2608
2609	m->trail = NULL;
2610
2611	if (m->pool)
2612		ceph_msgpool_put(m->pool, m);
2613	else
2614		ceph_msg_kfree(m);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2615}
2616EXPORT_SYMBOL(ceph_msg_last_put);
2617
2618void ceph_msg_dump(struct ceph_msg *msg)
2619{
2620	pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2621		 msg->front_max, msg->nr_pages);
2622	print_hex_dump(KERN_DEBUG, "header: ",
2623		       DUMP_PREFIX_OFFSET, 16, 1,
2624		       &msg->hdr, sizeof(msg->hdr), true);
2625	print_hex_dump(KERN_DEBUG, " front: ",
2626		       DUMP_PREFIX_OFFSET, 16, 1,
2627		       msg->front.iov_base, msg->front.iov_len, true);
2628	if (msg->middle)
2629		print_hex_dump(KERN_DEBUG, "middle: ",
2630			       DUMP_PREFIX_OFFSET, 16, 1,
2631			       msg->middle->vec.iov_base,
2632			       msg->middle->vec.iov_len, true);
2633	print_hex_dump(KERN_DEBUG, "footer: ",
2634		       DUMP_PREFIX_OFFSET, 16, 1,
2635		       &msg->footer, sizeof(msg->footer), true);
2636}
2637EXPORT_SYMBOL(ceph_msg_dump);
v4.6
   1#include <linux/ceph/ceph_debug.h>
   2
   3#include <linux/crc32c.h>
   4#include <linux/ctype.h>
   5#include <linux/highmem.h>
   6#include <linux/inet.h>
   7#include <linux/kthread.h>
   8#include <linux/net.h>
   9#include <linux/nsproxy.h>
  10#include <linux/slab.h>
  11#include <linux/socket.h>
  12#include <linux/string.h>
  13#ifdef	CONFIG_BLOCK
  14#include <linux/bio.h>
  15#endif	/* CONFIG_BLOCK */
  16#include <linux/dns_resolver.h>
  17#include <net/tcp.h>
  18
  19#include <linux/ceph/ceph_features.h>
  20#include <linux/ceph/libceph.h>
  21#include <linux/ceph/messenger.h>
  22#include <linux/ceph/decode.h>
  23#include <linux/ceph/pagelist.h>
  24#include <linux/export.h>
  25
  26/*
  27 * Ceph uses the messenger to exchange ceph_msg messages with other
  28 * hosts in the system.  The messenger provides ordered and reliable
  29 * delivery.  We tolerate TCP disconnects by reconnecting (with
  30 * exponential backoff) in the case of a fault (disconnection, bad
  31 * crc, protocol error).  Acks allow sent messages to be discarded by
  32 * the sender.
  33 */
  34
  35/*
  36 * We track the state of the socket on a given connection using
  37 * values defined below.  The transition to a new socket state is
  38 * handled by a function which verifies we aren't coming from an
  39 * unexpected state.
  40 *
  41 *      --------
  42 *      | NEW* |  transient initial state
  43 *      --------
  44 *          | con_sock_state_init()
  45 *          v
  46 *      ----------
  47 *      | CLOSED |  initialized, but no socket (and no
  48 *      ----------  TCP connection)
  49 *       ^      \
  50 *       |       \ con_sock_state_connecting()
  51 *       |        ----------------------
  52 *       |                              \
  53 *       + con_sock_state_closed()       \
  54 *       |+---------------------------    \
  55 *       | \                          \    \
  56 *       |  -----------                \    \
  57 *       |  | CLOSING |  socket event;  \    \
  58 *       |  -----------  await close     \    \
  59 *       |       ^                        \   |
  60 *       |       |                         \  |
  61 *       |       + con_sock_state_closing() \ |
  62 *       |      / \                         | |
  63 *       |     /   ---------------          | |
  64 *       |    /                   \         v v
  65 *       |   /                    --------------
  66 *       |  /    -----------------| CONNECTING |  socket created, TCP
  67 *       |  |   /                 --------------  connect initiated
  68 *       |  |   | con_sock_state_connected()
  69 *       |  |   v
  70 *      -------------
  71 *      | CONNECTED |  TCP connection established
  72 *      -------------
  73 *
  74 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
  75 */
  76
  77#define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
  78#define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
  79#define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
  80#define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
  81#define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
  82
  83/*
  84 * connection states
  85 */
  86#define CON_STATE_CLOSED        1  /* -> PREOPEN */
  87#define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
  88#define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
  89#define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
  90#define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
  91#define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
  92
  93/*
  94 * ceph_connection flag bits
  95 */
  96#define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
  97				       * messages on errors */
  98#define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
  99#define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
 100#define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
 101#define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
 102
 103static bool con_flag_valid(unsigned long con_flag)
 104{
 105	switch (con_flag) {
 106	case CON_FLAG_LOSSYTX:
 107	case CON_FLAG_KEEPALIVE_PENDING:
 108	case CON_FLAG_WRITE_PENDING:
 109	case CON_FLAG_SOCK_CLOSED:
 110	case CON_FLAG_BACKOFF:
 111		return true;
 112	default:
 113		return false;
 114	}
 115}
 116
 117static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
 118{
 119	BUG_ON(!con_flag_valid(con_flag));
 120
 121	clear_bit(con_flag, &con->flags);
 122}
 123
 124static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
 125{
 126	BUG_ON(!con_flag_valid(con_flag));
 127
 128	set_bit(con_flag, &con->flags);
 129}
 130
 131static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
 132{
 133	BUG_ON(!con_flag_valid(con_flag));
 134
 135	return test_bit(con_flag, &con->flags);
 136}
 137
 138static bool con_flag_test_and_clear(struct ceph_connection *con,
 139					unsigned long con_flag)
 140{
 141	BUG_ON(!con_flag_valid(con_flag));
 142
 143	return test_and_clear_bit(con_flag, &con->flags);
 144}
 145
 146static bool con_flag_test_and_set(struct ceph_connection *con,
 147					unsigned long con_flag)
 148{
 149	BUG_ON(!con_flag_valid(con_flag));
 150
 151	return test_and_set_bit(con_flag, &con->flags);
 152}
 153
 154/* Slab caches for frequently-allocated structures */
 155
 156static struct kmem_cache	*ceph_msg_cache;
 157static struct kmem_cache	*ceph_msg_data_cache;
 158
 159/* static tag bytes (protocol control messages) */
 160static char tag_msg = CEPH_MSGR_TAG_MSG;
 161static char tag_ack = CEPH_MSGR_TAG_ACK;
 162static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
 163static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
 164
 165#ifdef CONFIG_LOCKDEP
 166static struct lock_class_key socket_class;
 167#endif
 168
 169/*
 170 * When skipping (ignoring) a block of input we read it into a "skip
 171 * buffer," which is this many bytes in size.
 172 */
 173#define SKIP_BUF_SIZE	1024
 174
 175static void queue_con(struct ceph_connection *con);
 176static void cancel_con(struct ceph_connection *con);
 177static void ceph_con_workfn(struct work_struct *);
 178static void con_fault(struct ceph_connection *con);
 179
 180/*
 181 * Nicely render a sockaddr as a string.  An array of formatted
 182 * strings is used, to approximate reentrancy.
 183 */
 184#define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
 185#define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
 186#define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
 187#define MAX_ADDR_STR_LEN	64	/* 54 is enough */
 188
 189static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
 190static atomic_t addr_str_seq = ATOMIC_INIT(0);
 191
 192static struct page *zero_page;		/* used in certain error cases */
 193
 194const char *ceph_pr_addr(const struct sockaddr_storage *ss)
 195{
 196	int i;
 197	char *s;
 198	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
 199	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
 200
 201	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
 202	s = addr_str[i];
 203
 204	switch (ss->ss_family) {
 205	case AF_INET:
 206		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
 207			 ntohs(in4->sin_port));
 208		break;
 209
 210	case AF_INET6:
 211		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
 212			 ntohs(in6->sin6_port));
 213		break;
 214
 215	default:
 216		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
 217			 ss->ss_family);
 218	}
 219
 220	return s;
 221}
 222EXPORT_SYMBOL(ceph_pr_addr);
 223
 224static void encode_my_addr(struct ceph_messenger *msgr)
 225{
 226	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
 227	ceph_encode_addr(&msgr->my_enc_addr);
 228}
 229
 230/*
 231 * work queue for all reading and writing to/from the socket.
 232 */
 233static struct workqueue_struct *ceph_msgr_wq;
 234
 235static int ceph_msgr_slab_init(void)
 236{
 237	BUG_ON(ceph_msg_cache);
 238	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
 239	if (!ceph_msg_cache)
 240		return -ENOMEM;
 241
 242	BUG_ON(ceph_msg_data_cache);
 243	ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
 244	if (ceph_msg_data_cache)
 245		return 0;
 246
 247	kmem_cache_destroy(ceph_msg_cache);
 248	ceph_msg_cache = NULL;
 249
 250	return -ENOMEM;
 251}
 252
 253static void ceph_msgr_slab_exit(void)
 254{
 255	BUG_ON(!ceph_msg_data_cache);
 256	kmem_cache_destroy(ceph_msg_data_cache);
 257	ceph_msg_data_cache = NULL;
 258
 259	BUG_ON(!ceph_msg_cache);
 260	kmem_cache_destroy(ceph_msg_cache);
 261	ceph_msg_cache = NULL;
 262}
 263
 264static void _ceph_msgr_exit(void)
 265{
 266	if (ceph_msgr_wq) {
 267		destroy_workqueue(ceph_msgr_wq);
 268		ceph_msgr_wq = NULL;
 269	}
 270
 271	BUG_ON(zero_page == NULL);
 272	put_page(zero_page);
 
 273	zero_page = NULL;
 274
 275	ceph_msgr_slab_exit();
 276}
 277
 278int ceph_msgr_init(void)
 279{
 280	if (ceph_msgr_slab_init())
 281		return -ENOMEM;
 282
 283	BUG_ON(zero_page != NULL);
 284	zero_page = ZERO_PAGE(0);
 285	get_page(zero_page);
 286
 287	/*
 288	 * The number of active work items is limited by the number of
 289	 * connections, so leave @max_active at default.
 290	 */
 291	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
 292	if (ceph_msgr_wq)
 293		return 0;
 294
 295	pr_err("msgr_init failed to create workqueue\n");
 296	_ceph_msgr_exit();
 297
 298	return -ENOMEM;
 299}
 300EXPORT_SYMBOL(ceph_msgr_init);
 301
 302void ceph_msgr_exit(void)
 303{
 304	BUG_ON(ceph_msgr_wq == NULL);
 305
 306	_ceph_msgr_exit();
 307}
 308EXPORT_SYMBOL(ceph_msgr_exit);
 309
 310void ceph_msgr_flush(void)
 311{
 312	flush_workqueue(ceph_msgr_wq);
 313}
 314EXPORT_SYMBOL(ceph_msgr_flush);
 315
 316/* Connection socket state transition functions */
 317
 318static void con_sock_state_init(struct ceph_connection *con)
 319{
 320	int old_state;
 321
 322	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 323	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
 324		printk("%s: unexpected old state %d\n", __func__, old_state);
 325	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 326	     CON_SOCK_STATE_CLOSED);
 327}
 328
 329static void con_sock_state_connecting(struct ceph_connection *con)
 330{
 331	int old_state;
 332
 333	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
 334	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
 335		printk("%s: unexpected old state %d\n", __func__, old_state);
 336	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 337	     CON_SOCK_STATE_CONNECTING);
 338}
 339
 340static void con_sock_state_connected(struct ceph_connection *con)
 341{
 342	int old_state;
 343
 344	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
 345	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
 346		printk("%s: unexpected old state %d\n", __func__, old_state);
 347	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 348	     CON_SOCK_STATE_CONNECTED);
 349}
 350
 351static void con_sock_state_closing(struct ceph_connection *con)
 352{
 353	int old_state;
 354
 355	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
 356	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
 357			old_state != CON_SOCK_STATE_CONNECTED &&
 358			old_state != CON_SOCK_STATE_CLOSING))
 359		printk("%s: unexpected old state %d\n", __func__, old_state);
 360	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 361	     CON_SOCK_STATE_CLOSING);
 362}
 363
 364static void con_sock_state_closed(struct ceph_connection *con)
 365{
 366	int old_state;
 367
 368	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 369	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
 370		    old_state != CON_SOCK_STATE_CLOSING &&
 371		    old_state != CON_SOCK_STATE_CONNECTING &&
 372		    old_state != CON_SOCK_STATE_CLOSED))
 373		printk("%s: unexpected old state %d\n", __func__, old_state);
 374	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 375	     CON_SOCK_STATE_CLOSED);
 376}
 377
 378/*
 379 * socket callback functions
 380 */
 381
 382/* data available on socket, or listen socket received a connect */
 383static void ceph_sock_data_ready(struct sock *sk)
 384{
 385	struct ceph_connection *con = sk->sk_user_data;
 386	if (atomic_read(&con->msgr->stopping)) {
 387		return;
 388	}
 389
 390	if (sk->sk_state != TCP_CLOSE_WAIT) {
 391		dout("%s on %p state = %lu, queueing work\n", __func__,
 392		     con, con->state);
 393		queue_con(con);
 394	}
 395}
 396
 397/* socket has buffer space for writing */
 398static void ceph_sock_write_space(struct sock *sk)
 399{
 400	struct ceph_connection *con = sk->sk_user_data;
 401
 402	/* only queue to workqueue if there is data we want to write,
 403	 * and there is sufficient space in the socket buffer to accept
 404	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
 405	 * doesn't get called again until try_write() fills the socket
 406	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
 407	 * and net/core/stream.c:sk_stream_write_space().
 408	 */
 409	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
 410		if (sk_stream_is_writeable(sk)) {
 411			dout("%s %p queueing write work\n", __func__, con);
 412			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 413			queue_con(con);
 414		}
 415	} else {
 416		dout("%s %p nothing to write\n", __func__, con);
 417	}
 418}
 419
 420/* socket's state has changed */
 421static void ceph_sock_state_change(struct sock *sk)
 422{
 423	struct ceph_connection *con = sk->sk_user_data;
 424
 425	dout("%s %p state = %lu sk_state = %u\n", __func__,
 426	     con, con->state, sk->sk_state);
 427
 
 
 
 428	switch (sk->sk_state) {
 429	case TCP_CLOSE:
 430		dout("%s TCP_CLOSE\n", __func__);
 431	case TCP_CLOSE_WAIT:
 432		dout("%s TCP_CLOSE_WAIT\n", __func__);
 433		con_sock_state_closing(con);
 434		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
 435		queue_con(con);
 
 
 
 
 436		break;
 437	case TCP_ESTABLISHED:
 438		dout("%s TCP_ESTABLISHED\n", __func__);
 439		con_sock_state_connected(con);
 440		queue_con(con);
 441		break;
 442	default:	/* Everything else is uninteresting */
 443		break;
 444	}
 445}
 446
 447/*
 448 * set up socket callbacks
 449 */
 450static void set_sock_callbacks(struct socket *sock,
 451			       struct ceph_connection *con)
 452{
 453	struct sock *sk = sock->sk;
 454	sk->sk_user_data = con;
 455	sk->sk_data_ready = ceph_sock_data_ready;
 456	sk->sk_write_space = ceph_sock_write_space;
 457	sk->sk_state_change = ceph_sock_state_change;
 458}
 459
 460
 461/*
 462 * socket helpers
 463 */
 464
 465/*
 466 * initiate connection to a remote socket.
 467 */
 468static int ceph_tcp_connect(struct ceph_connection *con)
 469{
 470	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
 471	struct socket *sock;
 472	int ret;
 473
 474	BUG_ON(con->sock);
 475	ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
 476			       SOCK_STREAM, IPPROTO_TCP, &sock);
 477	if (ret)
 478		return ret;
 479	sock->sk->sk_allocation = GFP_NOFS;
 480
 481#ifdef CONFIG_LOCKDEP
 482	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
 483#endif
 484
 485	set_sock_callbacks(sock, con);
 486
 487	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
 488
 489	con_sock_state_connecting(con);
 490	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
 491				 O_NONBLOCK);
 492	if (ret == -EINPROGRESS) {
 493		dout("connect %s EINPROGRESS sk_state = %u\n",
 494		     ceph_pr_addr(&con->peer_addr.in_addr),
 495		     sock->sk->sk_state);
 496	} else if (ret < 0) {
 497		pr_err("connect %s error %d\n",
 498		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
 499		sock_release(sock);
 
 
 500		return ret;
 501	}
 
 502
 503	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
 504		int optval = 1;
 505
 506		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
 507					(char *)&optval, sizeof(optval));
 508		if (ret)
 509			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
 510			       ret);
 511	}
 512
 513	con->sock = sock;
 514	return 0;
 515}
 516
 517static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
 518{
 519	struct kvec iov = {buf, len};
 520	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 521	int r;
 522
 523	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
 524	if (r == -EAGAIN)
 525		r = 0;
 526	return r;
 527}
 528
 529static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
 530		     int page_offset, size_t length)
 531{
 532	void *kaddr;
 533	int ret;
 534
 535	BUG_ON(page_offset + length > PAGE_SIZE);
 536
 537	kaddr = kmap(page);
 538	BUG_ON(!kaddr);
 539	ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
 540	kunmap(page);
 541
 542	return ret;
 543}
 544
 545/*
 546 * write something.  @more is true if caller will be sending more data
 547 * shortly.
 548 */
 549static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
 550		     size_t kvlen, size_t len, int more)
 551{
 552	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 553	int r;
 554
 555	if (more)
 556		msg.msg_flags |= MSG_MORE;
 557	else
 558		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
 559
 560	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
 561	if (r == -EAGAIN)
 562		r = 0;
 563	return r;
 564}
 565
 566static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
 567		     int offset, size_t size, bool more)
 568{
 569	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
 570	int ret;
 571
 572	ret = kernel_sendpage(sock, page, offset, size, flags);
 573	if (ret == -EAGAIN)
 574		ret = 0;
 575
 576	return ret;
 577}
 578
 579static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
 580		     int offset, size_t size, bool more)
 581{
 582	int ret;
 583	struct kvec iov;
 584
 585	/* sendpage cannot properly handle pages with page_count == 0,
 586	 * we need to fallback to sendmsg if that's the case */
 587	if (page_count(page) >= 1)
 588		return __ceph_tcp_sendpage(sock, page, offset, size, more);
 589
 590	iov.iov_base = kmap(page) + offset;
 591	iov.iov_len = size;
 592	ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
 593	kunmap(page);
 594
 595	return ret;
 596}
 597
 598/*
 599 * Shutdown/close the socket for the given connection.
 600 */
 601static int con_close_socket(struct ceph_connection *con)
 602{
 603	int rc = 0;
 604
 605	dout("con_close_socket on %p sock %p\n", con, con->sock);
 606	if (con->sock) {
 607		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
 608		sock_release(con->sock);
 609		con->sock = NULL;
 610	}
 611
 612	/*
 613	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
 614	 * independent of the connection mutex, and we could have
 615	 * received a socket close event before we had the chance to
 616	 * shut the socket down.
 617	 */
 618	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
 619
 620	con_sock_state_closed(con);
 621	return rc;
 622}
 623
 624/*
 625 * Reset a connection.  Discard all incoming and outgoing messages
 626 * and clear *_seq state.
 627 */
 628static void ceph_msg_remove(struct ceph_msg *msg)
 629{
 630	list_del_init(&msg->list_head);
 631
 632	ceph_msg_put(msg);
 633}
 634static void ceph_msg_remove_list(struct list_head *head)
 635{
 636	while (!list_empty(head)) {
 637		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
 638							list_head);
 639		ceph_msg_remove(msg);
 640	}
 641}
 642
 643static void reset_connection(struct ceph_connection *con)
 644{
 645	/* reset connection, out_queue, msg_ and connect_seq */
 646	/* discard existing out_queue and msg_seq */
 647	dout("reset_connection %p\n", con);
 648	ceph_msg_remove_list(&con->out_queue);
 649	ceph_msg_remove_list(&con->out_sent);
 650
 651	if (con->in_msg) {
 652		BUG_ON(con->in_msg->con != con);
 653		ceph_msg_put(con->in_msg);
 654		con->in_msg = NULL;
 655	}
 656
 657	con->connect_seq = 0;
 658	con->out_seq = 0;
 659	if (con->out_msg) {
 660		BUG_ON(con->out_msg->con != con);
 661		ceph_msg_put(con->out_msg);
 662		con->out_msg = NULL;
 663	}
 664	con->in_seq = 0;
 665	con->in_seq_acked = 0;
 666
 667	con->out_skip = 0;
 668}
 669
 670/*
 671 * mark a peer down.  drop any open connections.
 672 */
 673void ceph_con_close(struct ceph_connection *con)
 674{
 675	mutex_lock(&con->mutex);
 676	dout("con_close %p peer %s\n", con,
 677	     ceph_pr_addr(&con->peer_addr.in_addr));
 678	con->state = CON_STATE_CLOSED;
 679
 680	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
 681	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
 682	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
 683	con_flag_clear(con, CON_FLAG_BACKOFF);
 684
 685	reset_connection(con);
 686	con->peer_global_seq = 0;
 687	cancel_con(con);
 688	con_close_socket(con);
 689	mutex_unlock(&con->mutex);
 
 690}
 691EXPORT_SYMBOL(ceph_con_close);
 692
 693/*
 694 * Reopen a closed connection, with a new peer address.
 695 */
 696void ceph_con_open(struct ceph_connection *con,
 697		   __u8 entity_type, __u64 entity_num,
 698		   struct ceph_entity_addr *addr)
 699{
 700	mutex_lock(&con->mutex);
 701	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
 702
 703	WARN_ON(con->state != CON_STATE_CLOSED);
 704	con->state = CON_STATE_PREOPEN;
 705
 706	con->peer_name.type = (__u8) entity_type;
 707	con->peer_name.num = cpu_to_le64(entity_num);
 708
 709	memcpy(&con->peer_addr, addr, sizeof(*addr));
 710	con->delay = 0;      /* reset backoff memory */
 711	mutex_unlock(&con->mutex);
 712	queue_con(con);
 713}
 714EXPORT_SYMBOL(ceph_con_open);
 715
 716/*
 717 * return true if this connection ever successfully opened
 718 */
 719bool ceph_con_opened(struct ceph_connection *con)
 720{
 721	return con->connect_seq > 0;
 722}
 723
 724/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 725 * initialize a new connection.
 726 */
 727void ceph_con_init(struct ceph_connection *con, void *private,
 728	const struct ceph_connection_operations *ops,
 729	struct ceph_messenger *msgr)
 730{
 731	dout("con_init %p\n", con);
 732	memset(con, 0, sizeof(*con));
 733	con->private = private;
 734	con->ops = ops;
 735	con->msgr = msgr;
 736
 737	con_sock_state_init(con);
 738
 739	mutex_init(&con->mutex);
 740	INIT_LIST_HEAD(&con->out_queue);
 741	INIT_LIST_HEAD(&con->out_sent);
 742	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
 743
 744	con->state = CON_STATE_CLOSED;
 745}
 746EXPORT_SYMBOL(ceph_con_init);
 747
 748
 749/*
 750 * We maintain a global counter to order connection attempts.  Get
 751 * a unique seq greater than @gt.
 752 */
 753static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
 754{
 755	u32 ret;
 756
 757	spin_lock(&msgr->global_seq_lock);
 758	if (msgr->global_seq < gt)
 759		msgr->global_seq = gt;
 760	ret = ++msgr->global_seq;
 761	spin_unlock(&msgr->global_seq_lock);
 762	return ret;
 763}
 764
 765static void con_out_kvec_reset(struct ceph_connection *con)
 766{
 767	BUG_ON(con->out_skip);
 768
 769	con->out_kvec_left = 0;
 770	con->out_kvec_bytes = 0;
 771	con->out_kvec_cur = &con->out_kvec[0];
 772}
 773
 774static void con_out_kvec_add(struct ceph_connection *con,
 775				size_t size, void *data)
 776{
 777	int index = con->out_kvec_left;
 778
 779	BUG_ON(con->out_skip);
 780	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
 781
 782	con->out_kvec[index].iov_len = size;
 783	con->out_kvec[index].iov_base = data;
 784	con->out_kvec_left++;
 785	con->out_kvec_bytes += size;
 786}
 787
 788/*
 789 * Chop off a kvec from the end.  Return residual number of bytes for
 790 * that kvec, i.e. how many bytes would have been written if the kvec
 791 * hadn't been nuked.
 792 */
 793static int con_out_kvec_skip(struct ceph_connection *con)
 794{
 795	int off = con->out_kvec_cur - con->out_kvec;
 796	int skip = 0;
 797
 798	if (con->out_kvec_bytes > 0) {
 799		skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
 800		BUG_ON(con->out_kvec_bytes < skip);
 801		BUG_ON(!con->out_kvec_left);
 802		con->out_kvec_bytes -= skip;
 803		con->out_kvec_left--;
 804	}
 805
 806	return skip;
 807}
 808
 809#ifdef CONFIG_BLOCK
 810
 811/*
 812 * For a bio data item, a piece is whatever remains of the next
 813 * entry in the current bio iovec, or the first entry in the next
 814 * bio in the list.
 815 */
 816static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
 817					size_t length)
 818{
 819	struct ceph_msg_data *data = cursor->data;
 820	struct bio *bio;
 821
 822	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
 823
 824	bio = data->bio;
 825	BUG_ON(!bio);
 826
 827	cursor->resid = min(length, data->bio_length);
 828	cursor->bio = bio;
 829	cursor->bvec_iter = bio->bi_iter;
 830	cursor->last_piece =
 831		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
 832}
 833
 834static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
 835						size_t *page_offset,
 836						size_t *length)
 837{
 838	struct ceph_msg_data *data = cursor->data;
 839	struct bio *bio;
 840	struct bio_vec bio_vec;
 841
 842	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
 843
 844	bio = cursor->bio;
 845	BUG_ON(!bio);
 846
 847	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
 848
 849	*page_offset = (size_t) bio_vec.bv_offset;
 850	BUG_ON(*page_offset >= PAGE_SIZE);
 851	if (cursor->last_piece) /* pagelist offset is always 0 */
 852		*length = cursor->resid;
 853	else
 854		*length = (size_t) bio_vec.bv_len;
 855	BUG_ON(*length > cursor->resid);
 856	BUG_ON(*page_offset + *length > PAGE_SIZE);
 857
 858	return bio_vec.bv_page;
 859}
 860
 861static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
 862					size_t bytes)
 863{
 864	struct bio *bio;
 865	struct bio_vec bio_vec;
 866
 867	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
 868
 869	bio = cursor->bio;
 870	BUG_ON(!bio);
 871
 872	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
 873
 874	/* Advance the cursor offset */
 875
 876	BUG_ON(cursor->resid < bytes);
 877	cursor->resid -= bytes;
 878
 879	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
 880
 881	if (bytes < bio_vec.bv_len)
 882		return false;	/* more bytes to process in this segment */
 883
 884	/* Move on to the next segment, and possibly the next bio */
 885
 886	if (!cursor->bvec_iter.bi_size) {
 887		bio = bio->bi_next;
 888		cursor->bio = bio;
 889		if (bio)
 890			cursor->bvec_iter = bio->bi_iter;
 891		else
 892			memset(&cursor->bvec_iter, 0,
 893			       sizeof(cursor->bvec_iter));
 894	}
 895
 896	if (!cursor->last_piece) {
 897		BUG_ON(!cursor->resid);
 898		BUG_ON(!bio);
 899		/* A short read is OK, so use <= rather than == */
 900		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
 901			cursor->last_piece = true;
 902	}
 903
 904	return true;
 905}
 906#endif /* CONFIG_BLOCK */
 907
 908/*
 909 * For a page array, a piece comes from the first page in the array
 910 * that has not already been fully consumed.
 911 */
 912static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
 913					size_t length)
 914{
 915	struct ceph_msg_data *data = cursor->data;
 916	int page_count;
 917
 918	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 919
 920	BUG_ON(!data->pages);
 921	BUG_ON(!data->length);
 922
 923	cursor->resid = min(length, data->length);
 924	page_count = calc_pages_for(data->alignment, (u64)data->length);
 925	cursor->page_offset = data->alignment & ~PAGE_MASK;
 926	cursor->page_index = 0;
 927	BUG_ON(page_count > (int)USHRT_MAX);
 928	cursor->page_count = (unsigned short)page_count;
 929	BUG_ON(length > SIZE_MAX - cursor->page_offset);
 930	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
 931}
 932
 933static struct page *
 934ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
 935					size_t *page_offset, size_t *length)
 936{
 937	struct ceph_msg_data *data = cursor->data;
 938
 939	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 940
 941	BUG_ON(cursor->page_index >= cursor->page_count);
 942	BUG_ON(cursor->page_offset >= PAGE_SIZE);
 943
 944	*page_offset = cursor->page_offset;
 945	if (cursor->last_piece)
 946		*length = cursor->resid;
 947	else
 948		*length = PAGE_SIZE - *page_offset;
 949
 950	return data->pages[cursor->page_index];
 951}
 952
 953static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
 954						size_t bytes)
 955{
 956	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
 957
 958	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
 959
 960	/* Advance the cursor page offset */
 961
 962	cursor->resid -= bytes;
 963	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
 964	if (!bytes || cursor->page_offset)
 965		return false;	/* more bytes to process in the current page */
 966
 967	if (!cursor->resid)
 968		return false;   /* no more data */
 969
 970	/* Move on to the next page; offset is already at 0 */
 971
 972	BUG_ON(cursor->page_index >= cursor->page_count);
 973	cursor->page_index++;
 974	cursor->last_piece = cursor->resid <= PAGE_SIZE;
 975
 976	return true;
 977}
 978
 979/*
 980 * For a pagelist, a piece is whatever remains to be consumed in the
 981 * first page in the list, or the front of the next page.
 982 */
 983static void
 984ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
 985					size_t length)
 986{
 987	struct ceph_msg_data *data = cursor->data;
 988	struct ceph_pagelist *pagelist;
 989	struct page *page;
 990
 991	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
 992
 993	pagelist = data->pagelist;
 994	BUG_ON(!pagelist);
 995
 996	if (!length)
 997		return;		/* pagelist can be assigned but empty */
 998
 999	BUG_ON(list_empty(&pagelist->head));
1000	page = list_first_entry(&pagelist->head, struct page, lru);
1001
1002	cursor->resid = min(length, pagelist->length);
1003	cursor->page = page;
1004	cursor->offset = 0;
1005	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1006}
1007
1008static struct page *
1009ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1010				size_t *page_offset, size_t *length)
1011{
1012	struct ceph_msg_data *data = cursor->data;
1013	struct ceph_pagelist *pagelist;
1014
1015	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1016
1017	pagelist = data->pagelist;
1018	BUG_ON(!pagelist);
1019
1020	BUG_ON(!cursor->page);
1021	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1022
1023	/* offset of first page in pagelist is always 0 */
1024	*page_offset = cursor->offset & ~PAGE_MASK;
1025	if (cursor->last_piece)
1026		*length = cursor->resid;
1027	else
1028		*length = PAGE_SIZE - *page_offset;
1029
1030	return cursor->page;
1031}
1032
1033static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1034						size_t bytes)
1035{
1036	struct ceph_msg_data *data = cursor->data;
1037	struct ceph_pagelist *pagelist;
1038
1039	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1040
1041	pagelist = data->pagelist;
1042	BUG_ON(!pagelist);
1043
1044	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1045	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1046
1047	/* Advance the cursor offset */
1048
1049	cursor->resid -= bytes;
1050	cursor->offset += bytes;
1051	/* offset of first page in pagelist is always 0 */
1052	if (!bytes || cursor->offset & ~PAGE_MASK)
1053		return false;	/* more bytes to process in the current page */
1054
1055	if (!cursor->resid)
1056		return false;   /* no more data */
1057
1058	/* Move on to the next page */
1059
1060	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1061	cursor->page = list_next_entry(cursor->page, lru);
1062	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1063
1064	return true;
1065}
1066
1067/*
1068 * Message data is handled (sent or received) in pieces, where each
1069 * piece resides on a single page.  The network layer might not
1070 * consume an entire piece at once.  A data item's cursor keeps
1071 * track of which piece is next to process and how much remains to
1072 * be processed in that piece.  It also tracks whether the current
1073 * piece is the last one in the data item.
1074 */
1075static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1076{
1077	size_t length = cursor->total_resid;
1078
1079	switch (cursor->data->type) {
1080	case CEPH_MSG_DATA_PAGELIST:
1081		ceph_msg_data_pagelist_cursor_init(cursor, length);
1082		break;
1083	case CEPH_MSG_DATA_PAGES:
1084		ceph_msg_data_pages_cursor_init(cursor, length);
1085		break;
1086#ifdef CONFIG_BLOCK
1087	case CEPH_MSG_DATA_BIO:
1088		ceph_msg_data_bio_cursor_init(cursor, length);
1089		break;
1090#endif /* CONFIG_BLOCK */
1091	case CEPH_MSG_DATA_NONE:
1092	default:
1093		/* BUG(); */
1094		break;
1095	}
1096	cursor->need_crc = true;
1097}
1098
1099static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1100{
1101	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1102	struct ceph_msg_data *data;
1103
1104	BUG_ON(!length);
1105	BUG_ON(length > msg->data_length);
1106	BUG_ON(list_empty(&msg->data));
1107
1108	cursor->data_head = &msg->data;
1109	cursor->total_resid = length;
1110	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1111	cursor->data = data;
1112
1113	__ceph_msg_data_cursor_init(cursor);
1114}
1115
1116/*
1117 * Return the page containing the next piece to process for a given
1118 * data item, and supply the page offset and length of that piece.
1119 * Indicate whether this is the last piece in this data item.
1120 */
1121static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1122					size_t *page_offset, size_t *length,
1123					bool *last_piece)
1124{
1125	struct page *page;
1126
1127	switch (cursor->data->type) {
1128	case CEPH_MSG_DATA_PAGELIST:
1129		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1130		break;
1131	case CEPH_MSG_DATA_PAGES:
1132		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1133		break;
1134#ifdef CONFIG_BLOCK
1135	case CEPH_MSG_DATA_BIO:
1136		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1137		break;
1138#endif /* CONFIG_BLOCK */
1139	case CEPH_MSG_DATA_NONE:
1140	default:
1141		page = NULL;
1142		break;
1143	}
1144	BUG_ON(!page);
1145	BUG_ON(*page_offset + *length > PAGE_SIZE);
1146	BUG_ON(!*length);
1147	if (last_piece)
1148		*last_piece = cursor->last_piece;
1149
1150	return page;
1151}
1152
1153/*
1154 * Returns true if the result moves the cursor on to the next piece
1155 * of the data item.
1156 */
1157static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1158				size_t bytes)
1159{
1160	bool new_piece;
1161
1162	BUG_ON(bytes > cursor->resid);
1163	switch (cursor->data->type) {
1164	case CEPH_MSG_DATA_PAGELIST:
1165		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1166		break;
1167	case CEPH_MSG_DATA_PAGES:
1168		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1169		break;
1170#ifdef CONFIG_BLOCK
1171	case CEPH_MSG_DATA_BIO:
1172		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1173		break;
1174#endif /* CONFIG_BLOCK */
1175	case CEPH_MSG_DATA_NONE:
1176	default:
1177		BUG();
1178		break;
1179	}
1180	cursor->total_resid -= bytes;
1181
1182	if (!cursor->resid && cursor->total_resid) {
1183		WARN_ON(!cursor->last_piece);
1184		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1185		cursor->data = list_next_entry(cursor->data, links);
1186		__ceph_msg_data_cursor_init(cursor);
1187		new_piece = true;
1188	}
1189	cursor->need_crc = new_piece;
1190
1191	return new_piece;
1192}
1193
1194static size_t sizeof_footer(struct ceph_connection *con)
1195{
1196	return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1197	    sizeof(struct ceph_msg_footer) :
1198	    sizeof(struct ceph_msg_footer_old);
1199}
1200
1201static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1202{
1203	BUG_ON(!msg);
1204	BUG_ON(!data_len);
1205
1206	/* Initialize data cursor */
1207
1208	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1209}
1210
1211/*
1212 * Prepare footer for currently outgoing message, and finish things
1213 * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1214 */
1215static void prepare_write_message_footer(struct ceph_connection *con)
1216{
1217	struct ceph_msg *m = con->out_msg;
1218
1219	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1220
1221	dout("prepare_write_message_footer %p\n", con);
1222	con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1223	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1224		if (con->ops->sign_message)
1225			con->ops->sign_message(m);
1226		else
1227			m->footer.sig = 0;
1228	} else {
1229		m->old_footer.flags = m->footer.flags;
1230	}
1231	con->out_more = m->more_to_follow;
1232	con->out_msg_done = true;
1233}
1234
1235/*
1236 * Prepare headers for the next outgoing message.
1237 */
1238static void prepare_write_message(struct ceph_connection *con)
1239{
1240	struct ceph_msg *m;
1241	u32 crc;
1242
1243	con_out_kvec_reset(con);
 
1244	con->out_msg_done = false;
1245
1246	/* Sneak an ack in there first?  If we can get it into the same
1247	 * TCP packet that's a good thing. */
1248	if (con->in_seq > con->in_seq_acked) {
1249		con->in_seq_acked = con->in_seq;
1250		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1251		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1252		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1253			&con->out_temp_ack);
1254	}
1255
1256	BUG_ON(list_empty(&con->out_queue));
1257	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1258	con->out_msg = m;
1259	BUG_ON(m->con != con);
1260
1261	/* put message on sent list */
1262	ceph_msg_get(m);
1263	list_move_tail(&m->list_head, &con->out_sent);
1264
1265	/*
1266	 * only assign outgoing seq # if we haven't sent this message
1267	 * yet.  if it is requeued, resend with it's original seq.
1268	 */
1269	if (m->needs_out_seq) {
1270		m->hdr.seq = cpu_to_le64(++con->out_seq);
1271		m->needs_out_seq = false;
1272	}
1273	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
 
 
 
1274
1275	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1276	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1277	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1278	     m->data_length);
 
1279	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1280
1281	/* tag + hdr + front + middle */
1282	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1283	con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1284	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1285
1286	if (m->middle)
1287		con_out_kvec_add(con, m->middle->vec.iov_len,
1288			m->middle->vec.iov_base);
1289
1290	/* fill in hdr crc and finalize hdr */
1291	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1292	con->out_msg->hdr.crc = cpu_to_le32(crc);
1293	memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1294
1295	/* fill in front and middle crc, footer */
1296	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1297	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1298	if (m->middle) {
1299		crc = crc32c(0, m->middle->vec.iov_base,
1300				m->middle->vec.iov_len);
1301		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1302	} else
1303		con->out_msg->footer.middle_crc = 0;
1304	dout("%s front_crc %u middle_crc %u\n", __func__,
 
1305	     le32_to_cpu(con->out_msg->footer.front_crc),
1306	     le32_to_cpu(con->out_msg->footer.middle_crc));
1307	con->out_msg->footer.flags = 0;
1308
1309	/* is there a data payload? */
1310	con->out_msg->footer.data_crc = 0;
1311	if (m->data_length) {
1312		prepare_message_data(con->out_msg, m->data_length);
 
 
 
 
 
 
1313		con->out_more = 1;  /* data + footer will follow */
1314	} else {
1315		/* no, queue up footer too and be done */
1316		prepare_write_message_footer(con);
1317	}
1318
1319	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1320}
1321
1322/*
1323 * Prepare an ack.
1324 */
1325static void prepare_write_ack(struct ceph_connection *con)
1326{
1327	dout("prepare_write_ack %p %llu -> %llu\n", con,
1328	     con->in_seq_acked, con->in_seq);
1329	con->in_seq_acked = con->in_seq;
1330
1331	con_out_kvec_reset(con);
1332
1333	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1334
1335	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1336	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1337				&con->out_temp_ack);
1338
1339	con->out_more = 1;  /* more will follow.. eventually.. */
1340	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1341}
1342
1343/*
1344 * Prepare to share the seq during handshake
1345 */
1346static void prepare_write_seq(struct ceph_connection *con)
1347{
1348	dout("prepare_write_seq %p %llu -> %llu\n", con,
1349	     con->in_seq_acked, con->in_seq);
1350	con->in_seq_acked = con->in_seq;
1351
1352	con_out_kvec_reset(con);
1353
1354	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1355	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1356			 &con->out_temp_ack);
1357
1358	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1359}
1360
1361/*
1362 * Prepare to write keepalive byte.
1363 */
1364static void prepare_write_keepalive(struct ceph_connection *con)
1365{
1366	dout("prepare_write_keepalive %p\n", con);
1367	con_out_kvec_reset(con);
1368	if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1369		struct timespec now = CURRENT_TIME;
1370
1371		con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1372		ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1373		con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1374				 &con->out_temp_keepalive2);
1375	} else {
1376		con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1377	}
1378	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1379}
1380
1381/*
1382 * Connection negotiation.
1383 */
1384
1385static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1386						int *auth_proto)
1387{
1388	struct ceph_auth_handshake *auth;
1389
1390	if (!con->ops->get_authorizer) {
1391		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1392		con->out_connect.authorizer_len = 0;
 
1393		return NULL;
1394	}
1395
1396	/* Can't hold the mutex while getting authorizer */
 
1397	mutex_unlock(&con->mutex);
 
1398	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
 
1399	mutex_lock(&con->mutex);
1400
1401	if (IS_ERR(auth))
1402		return auth;
1403	if (con->state != CON_STATE_NEGOTIATING)
1404		return ERR_PTR(-EAGAIN);
1405
1406	con->auth_reply_buf = auth->authorizer_reply_buf;
1407	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
 
 
1408	return auth;
1409}
1410
1411/*
1412 * We connected to a peer and are saying hello.
1413 */
1414static void prepare_write_banner(struct ceph_connection *con)
1415{
1416	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1417	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1418					&con->msgr->my_enc_addr);
1419
1420	con->out_more = 0;
1421	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1422}
1423
1424static int prepare_write_connect(struct ceph_connection *con)
1425{
1426	unsigned int global_seq = get_global_seq(con->msgr, 0);
1427	int proto;
1428	int auth_proto;
1429	struct ceph_auth_handshake *auth;
1430
1431	switch (con->peer_name.type) {
1432	case CEPH_ENTITY_TYPE_MON:
1433		proto = CEPH_MONC_PROTOCOL;
1434		break;
1435	case CEPH_ENTITY_TYPE_OSD:
1436		proto = CEPH_OSDC_PROTOCOL;
1437		break;
1438	case CEPH_ENTITY_TYPE_MDS:
1439		proto = CEPH_MDSC_PROTOCOL;
1440		break;
1441	default:
1442		BUG();
1443	}
1444
1445	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1446	     con->connect_seq, global_seq, proto);
1447
1448	con->out_connect.features =
1449	    cpu_to_le64(from_msgr(con->msgr)->supported_features);
1450	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1451	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1452	con->out_connect.global_seq = cpu_to_le32(global_seq);
1453	con->out_connect.protocol_version = cpu_to_le32(proto);
1454	con->out_connect.flags = 0;
1455
1456	auth_proto = CEPH_AUTH_UNKNOWN;
1457	auth = get_connect_authorizer(con, &auth_proto);
1458	if (IS_ERR(auth))
1459		return PTR_ERR(auth);
1460
1461	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1462	con->out_connect.authorizer_len = auth ?
1463		cpu_to_le32(auth->authorizer_buf_len) : 0;
1464
1465	con_out_kvec_add(con, sizeof (con->out_connect),
1466					&con->out_connect);
1467	if (auth && auth->authorizer_buf_len)
1468		con_out_kvec_add(con, auth->authorizer_buf_len,
1469					auth->authorizer_buf);
1470
1471	con->out_more = 0;
1472	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1473
1474	return 0;
1475}
1476
1477/*
1478 * write as much of pending kvecs to the socket as we can.
1479 *  1 -> done
1480 *  0 -> socket full, but more to do
1481 * <0 -> error
1482 */
1483static int write_partial_kvec(struct ceph_connection *con)
1484{
1485	int ret;
1486
1487	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1488	while (con->out_kvec_bytes > 0) {
1489		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1490				       con->out_kvec_left, con->out_kvec_bytes,
1491				       con->out_more);
1492		if (ret <= 0)
1493			goto out;
1494		con->out_kvec_bytes -= ret;
1495		if (con->out_kvec_bytes == 0)
1496			break;            /* done */
1497
1498		/* account for full iov entries consumed */
1499		while (ret >= con->out_kvec_cur->iov_len) {
1500			BUG_ON(!con->out_kvec_left);
1501			ret -= con->out_kvec_cur->iov_len;
1502			con->out_kvec_cur++;
1503			con->out_kvec_left--;
1504		}
1505		/* and for a partially-consumed entry */
1506		if (ret) {
1507			con->out_kvec_cur->iov_len -= ret;
1508			con->out_kvec_cur->iov_base += ret;
1509		}
1510	}
1511	con->out_kvec_left = 0;
 
1512	ret = 1;
1513out:
1514	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1515	     con->out_kvec_bytes, con->out_kvec_left, ret);
1516	return ret;  /* done! */
1517}
1518
1519static u32 ceph_crc32c_page(u32 crc, struct page *page,
1520				unsigned int page_offset,
1521				unsigned int length)
1522{
1523	char *kaddr;
1524
1525	kaddr = kmap(page);
1526	BUG_ON(kaddr == NULL);
1527	crc = crc32c(crc, kaddr + page_offset, length);
1528	kunmap(page);
 
 
 
 
 
 
1529
1530	return crc;
 
 
 
 
1531}
 
 
1532/*
1533 * Write as much message data payload as we can.  If we finish, queue
1534 * up the footer.
1535 *  1 -> done, footer is now queued in out_kvec[].
1536 *  0 -> socket full, but more to do
1537 * <0 -> error
1538 */
1539static int write_partial_message_data(struct ceph_connection *con)
1540{
1541	struct ceph_msg *msg = con->out_msg;
1542	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1543	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1544	u32 crc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1545
1546	dout("%s %p msg %p\n", __func__, con, msg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1547
1548	if (list_empty(&msg->data))
1549		return -EINVAL;
1550
1551	/*
1552	 * Iterate through each page that contains data to be
1553	 * written, and send as much as possible for each.
1554	 *
1555	 * If we are calculating the data crc (the default), we will
1556	 * need to map the page.  If we have no pages, they have
1557	 * been revoked, so use the zero page.
1558	 */
1559	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1560	while (cursor->resid) {
1561		struct page *page;
1562		size_t page_offset;
1563		size_t length;
1564		bool last_piece;
1565		bool need_crc;
1566		int ret;
1567
1568		page = ceph_msg_data_next(cursor, &page_offset, &length,
1569					  &last_piece);
1570		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1571					length, !last_piece);
1572		if (ret <= 0) {
1573			if (do_datacrc)
1574				msg->footer.data_crc = cpu_to_le32(crc);
1575
1576			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1577		}
1578		if (do_datacrc && cursor->need_crc)
1579			crc = ceph_crc32c_page(crc, page, page_offset, length);
1580		need_crc = ceph_msg_data_advance(cursor, (size_t)ret);
1581	}
1582
1583	dout("%s %p msg %p done\n", __func__, con, msg);
1584
1585	/* prepare and queue up footer, too */
1586	if (do_datacrc)
1587		msg->footer.data_crc = cpu_to_le32(crc);
1588	else
1589		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1590	con_out_kvec_reset(con);
1591	prepare_write_message_footer(con);
1592
1593	return 1;	/* must return > 0 to indicate success */
 
1594}
1595
1596/*
1597 * write some zeros
1598 */
1599static int write_partial_skip(struct ceph_connection *con)
1600{
1601	int ret;
1602
1603	dout("%s %p %d left\n", __func__, con, con->out_skip);
1604	while (con->out_skip > 0) {
1605		size_t size = min(con->out_skip, (int) PAGE_SIZE);
1606
1607		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1608		if (ret <= 0)
1609			goto out;
1610		con->out_skip -= ret;
1611	}
1612	ret = 1;
1613out:
1614	return ret;
1615}
1616
1617/*
1618 * Prepare to read connection handshake, or an ack.
1619 */
1620static void prepare_read_banner(struct ceph_connection *con)
1621{
1622	dout("prepare_read_banner %p\n", con);
1623	con->in_base_pos = 0;
1624}
1625
1626static void prepare_read_connect(struct ceph_connection *con)
1627{
1628	dout("prepare_read_connect %p\n", con);
1629	con->in_base_pos = 0;
1630}
1631
1632static void prepare_read_ack(struct ceph_connection *con)
1633{
1634	dout("prepare_read_ack %p\n", con);
1635	con->in_base_pos = 0;
1636}
1637
1638static void prepare_read_seq(struct ceph_connection *con)
1639{
1640	dout("prepare_read_seq %p\n", con);
1641	con->in_base_pos = 0;
1642	con->in_tag = CEPH_MSGR_TAG_SEQ;
1643}
1644
1645static void prepare_read_tag(struct ceph_connection *con)
1646{
1647	dout("prepare_read_tag %p\n", con);
1648	con->in_base_pos = 0;
1649	con->in_tag = CEPH_MSGR_TAG_READY;
1650}
1651
1652static void prepare_read_keepalive_ack(struct ceph_connection *con)
1653{
1654	dout("prepare_read_keepalive_ack %p\n", con);
1655	con->in_base_pos = 0;
1656}
1657
1658/*
1659 * Prepare to read a message.
1660 */
1661static int prepare_read_message(struct ceph_connection *con)
1662{
1663	dout("prepare_read_message %p\n", con);
1664	BUG_ON(con->in_msg != NULL);
1665	con->in_base_pos = 0;
1666	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1667	return 0;
1668}
1669
1670
1671static int read_partial(struct ceph_connection *con,
1672			int end, int size, void *object)
1673{
1674	while (con->in_base_pos < end) {
1675		int left = end - con->in_base_pos;
1676		int have = size - left;
1677		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1678		if (ret <= 0)
1679			return ret;
1680		con->in_base_pos += ret;
1681	}
1682	return 1;
1683}
1684
1685
1686/*
1687 * Read all or part of the connect-side handshake on a new connection
1688 */
1689static int read_partial_banner(struct ceph_connection *con)
1690{
1691	int size;
1692	int end;
1693	int ret;
1694
1695	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1696
1697	/* peer's banner */
1698	size = strlen(CEPH_BANNER);
1699	end = size;
1700	ret = read_partial(con, end, size, con->in_banner);
1701	if (ret <= 0)
1702		goto out;
1703
1704	size = sizeof (con->actual_peer_addr);
1705	end += size;
1706	ret = read_partial(con, end, size, &con->actual_peer_addr);
1707	if (ret <= 0)
1708		goto out;
1709
1710	size = sizeof (con->peer_addr_for_me);
1711	end += size;
1712	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1713	if (ret <= 0)
1714		goto out;
1715
1716out:
1717	return ret;
1718}
1719
1720static int read_partial_connect(struct ceph_connection *con)
1721{
1722	int size;
1723	int end;
1724	int ret;
1725
1726	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1727
1728	size = sizeof (con->in_reply);
1729	end = size;
1730	ret = read_partial(con, end, size, &con->in_reply);
1731	if (ret <= 0)
1732		goto out;
1733
1734	size = le32_to_cpu(con->in_reply.authorizer_len);
1735	end += size;
1736	ret = read_partial(con, end, size, con->auth_reply_buf);
1737	if (ret <= 0)
1738		goto out;
1739
1740	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1741	     con, (int)con->in_reply.tag,
1742	     le32_to_cpu(con->in_reply.connect_seq),
1743	     le32_to_cpu(con->in_reply.global_seq));
1744out:
1745	return ret;
1746
1747}
1748
1749/*
1750 * Verify the hello banner looks okay.
1751 */
1752static int verify_hello(struct ceph_connection *con)
1753{
1754	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1755		pr_err("connect to %s got bad banner\n",
1756		       ceph_pr_addr(&con->peer_addr.in_addr));
1757		con->error_msg = "protocol error, bad banner";
1758		return -1;
1759	}
1760	return 0;
1761}
1762
1763static bool addr_is_blank(struct sockaddr_storage *ss)
1764{
1765	struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1766	struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1767
1768	switch (ss->ss_family) {
1769	case AF_INET:
1770		return addr->s_addr == htonl(INADDR_ANY);
1771	case AF_INET6:
1772		return ipv6_addr_any(addr6);
1773	default:
1774		return true;
 
 
1775	}
 
1776}
1777
1778static int addr_port(struct sockaddr_storage *ss)
1779{
1780	switch (ss->ss_family) {
1781	case AF_INET:
1782		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1783	case AF_INET6:
1784		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1785	}
1786	return 0;
1787}
1788
1789static void addr_set_port(struct sockaddr_storage *ss, int p)
1790{
1791	switch (ss->ss_family) {
1792	case AF_INET:
1793		((struct sockaddr_in *)ss)->sin_port = htons(p);
1794		break;
1795	case AF_INET6:
1796		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1797		break;
1798	}
1799}
1800
1801/*
1802 * Unlike other *_pton function semantics, zero indicates success.
1803 */
1804static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1805		char delim, const char **ipend)
1806{
1807	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1808	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1809
1810	memset(ss, 0, sizeof(*ss));
1811
1812	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1813		ss->ss_family = AF_INET;
1814		return 0;
1815	}
1816
1817	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1818		ss->ss_family = AF_INET6;
1819		return 0;
1820	}
1821
1822	return -EINVAL;
1823}
1824
1825/*
1826 * Extract hostname string and resolve using kernel DNS facility.
1827 */
1828#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1829static int ceph_dns_resolve_name(const char *name, size_t namelen,
1830		struct sockaddr_storage *ss, char delim, const char **ipend)
1831{
1832	const char *end, *delim_p;
1833	char *colon_p, *ip_addr = NULL;
1834	int ip_len, ret;
1835
1836	/*
1837	 * The end of the hostname occurs immediately preceding the delimiter or
1838	 * the port marker (':') where the delimiter takes precedence.
1839	 */
1840	delim_p = memchr(name, delim, namelen);
1841	colon_p = memchr(name, ':', namelen);
1842
1843	if (delim_p && colon_p)
1844		end = delim_p < colon_p ? delim_p : colon_p;
1845	else if (!delim_p && colon_p)
1846		end = colon_p;
1847	else {
1848		end = delim_p;
1849		if (!end) /* case: hostname:/ */
1850			end = name + namelen;
1851	}
1852
1853	if (end <= name)
1854		return -EINVAL;
1855
1856	/* do dns_resolve upcall */
1857	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1858	if (ip_len > 0)
1859		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1860	else
1861		ret = -ESRCH;
1862
1863	kfree(ip_addr);
1864
1865	*ipend = end;
1866
1867	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1868			ret, ret ? "failed" : ceph_pr_addr(ss));
1869
1870	return ret;
1871}
1872#else
1873static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1874		struct sockaddr_storage *ss, char delim, const char **ipend)
1875{
1876	return -EINVAL;
1877}
1878#endif
1879
1880/*
1881 * Parse a server name (IP or hostname). If a valid IP address is not found
1882 * then try to extract a hostname to resolve using userspace DNS upcall.
1883 */
1884static int ceph_parse_server_name(const char *name, size_t namelen,
1885			struct sockaddr_storage *ss, char delim, const char **ipend)
1886{
1887	int ret;
1888
1889	ret = ceph_pton(name, namelen, ss, delim, ipend);
1890	if (ret)
1891		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1892
1893	return ret;
1894}
1895
1896/*
1897 * Parse an ip[:port] list into an addr array.  Use the default
1898 * monitor port if a port isn't specified.
1899 */
1900int ceph_parse_ips(const char *c, const char *end,
1901		   struct ceph_entity_addr *addr,
1902		   int max_count, int *count)
1903{
1904	int i, ret = -EINVAL;
1905	const char *p = c;
1906
1907	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1908	for (i = 0; i < max_count; i++) {
1909		const char *ipend;
1910		struct sockaddr_storage *ss = &addr[i].in_addr;
1911		int port;
1912		char delim = ',';
1913
1914		if (*p == '[') {
1915			delim = ']';
1916			p++;
1917		}
1918
1919		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1920		if (ret)
1921			goto bad;
1922		ret = -EINVAL;
1923
1924		p = ipend;
1925
1926		if (delim == ']') {
1927			if (*p != ']') {
1928				dout("missing matching ']'\n");
1929				goto bad;
1930			}
1931			p++;
1932		}
1933
1934		/* port? */
1935		if (p < end && *p == ':') {
1936			port = 0;
1937			p++;
1938			while (p < end && *p >= '0' && *p <= '9') {
1939				port = (port * 10) + (*p - '0');
1940				p++;
1941			}
1942			if (port == 0)
1943				port = CEPH_MON_PORT;
1944			else if (port > 65535)
1945				goto bad;
1946		} else {
1947			port = CEPH_MON_PORT;
1948		}
1949
1950		addr_set_port(ss, port);
1951
1952		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1953
1954		if (p == end)
1955			break;
1956		if (*p != ',')
1957			goto bad;
1958		p++;
1959	}
1960
1961	if (p != end)
1962		goto bad;
1963
1964	if (count)
1965		*count = i + 1;
1966	return 0;
1967
1968bad:
1969	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1970	return ret;
1971}
1972EXPORT_SYMBOL(ceph_parse_ips);
1973
1974static int process_banner(struct ceph_connection *con)
1975{
1976	dout("process_banner on %p\n", con);
1977
1978	if (verify_hello(con) < 0)
1979		return -1;
1980
1981	ceph_decode_addr(&con->actual_peer_addr);
1982	ceph_decode_addr(&con->peer_addr_for_me);
1983
1984	/*
1985	 * Make sure the other end is who we wanted.  note that the other
1986	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1987	 * them the benefit of the doubt.
1988	 */
1989	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1990		   sizeof(con->peer_addr)) != 0 &&
1991	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1992	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1993		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1994			ceph_pr_addr(&con->peer_addr.in_addr),
1995			(int)le32_to_cpu(con->peer_addr.nonce),
1996			ceph_pr_addr(&con->actual_peer_addr.in_addr),
1997			(int)le32_to_cpu(con->actual_peer_addr.nonce));
1998		con->error_msg = "wrong peer at address";
1999		return -1;
2000	}
2001
2002	/*
2003	 * did we learn our address?
2004	 */
2005	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2006		int port = addr_port(&con->msgr->inst.addr.in_addr);
2007
2008		memcpy(&con->msgr->inst.addr.in_addr,
2009		       &con->peer_addr_for_me.in_addr,
2010		       sizeof(con->peer_addr_for_me.in_addr));
2011		addr_set_port(&con->msgr->inst.addr.in_addr, port);
2012		encode_my_addr(con->msgr);
2013		dout("process_banner learned my addr is %s\n",
2014		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2015	}
2016
 
 
2017	return 0;
2018}
2019
 
 
 
 
 
 
 
 
 
 
 
2020static int process_connect(struct ceph_connection *con)
2021{
2022	u64 sup_feat = from_msgr(con->msgr)->supported_features;
2023	u64 req_feat = from_msgr(con->msgr)->required_features;
2024	u64 server_feat = ceph_sanitize_features(
2025				le64_to_cpu(con->in_reply.features));
2026	int ret;
2027
2028	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2029
2030	switch (con->in_reply.tag) {
2031	case CEPH_MSGR_TAG_FEATURES:
2032		pr_err("%s%lld %s feature set mismatch,"
2033		       " my %llx < server's %llx, missing %llx\n",
2034		       ENTITY_NAME(con->peer_name),
2035		       ceph_pr_addr(&con->peer_addr.in_addr),
2036		       sup_feat, server_feat, server_feat & ~sup_feat);
2037		con->error_msg = "missing required protocol features";
2038		reset_connection(con);
2039		return -1;
2040
2041	case CEPH_MSGR_TAG_BADPROTOVER:
2042		pr_err("%s%lld %s protocol version mismatch,"
2043		       " my %d != server's %d\n",
2044		       ENTITY_NAME(con->peer_name),
2045		       ceph_pr_addr(&con->peer_addr.in_addr),
2046		       le32_to_cpu(con->out_connect.protocol_version),
2047		       le32_to_cpu(con->in_reply.protocol_version));
2048		con->error_msg = "protocol version mismatch";
2049		reset_connection(con);
2050		return -1;
2051
2052	case CEPH_MSGR_TAG_BADAUTHORIZER:
2053		con->auth_retry++;
2054		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2055		     con->auth_retry);
2056		if (con->auth_retry == 2) {
2057			con->error_msg = "connect authorization failure";
2058			return -1;
2059		}
2060		con_out_kvec_reset(con);
 
2061		ret = prepare_write_connect(con);
2062		if (ret < 0)
2063			return ret;
2064		prepare_read_connect(con);
2065		break;
2066
2067	case CEPH_MSGR_TAG_RESETSESSION:
2068		/*
2069		 * If we connected with a large connect_seq but the peer
2070		 * has no record of a session with us (no connection, or
2071		 * connect_seq == 0), they will send RESETSESION to indicate
2072		 * that they must have reset their session, and may have
2073		 * dropped messages.
2074		 */
2075		dout("process_connect got RESET peer seq %u\n",
2076		     le32_to_cpu(con->in_reply.connect_seq));
2077		pr_err("%s%lld %s connection reset\n",
2078		       ENTITY_NAME(con->peer_name),
2079		       ceph_pr_addr(&con->peer_addr.in_addr));
2080		reset_connection(con);
2081		con_out_kvec_reset(con);
2082		ret = prepare_write_connect(con);
2083		if (ret < 0)
2084			return ret;
2085		prepare_read_connect(con);
2086
2087		/* Tell ceph about it. */
2088		mutex_unlock(&con->mutex);
2089		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2090		if (con->ops->peer_reset)
2091			con->ops->peer_reset(con);
2092		mutex_lock(&con->mutex);
2093		if (con->state != CON_STATE_NEGOTIATING)
 
2094			return -EAGAIN;
2095		break;
2096
2097	case CEPH_MSGR_TAG_RETRY_SESSION:
2098		/*
2099		 * If we sent a smaller connect_seq than the peer has, try
2100		 * again with a larger value.
2101		 */
2102		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2103		     le32_to_cpu(con->out_connect.connect_seq),
2104		     le32_to_cpu(con->in_reply.connect_seq));
2105		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2106		con_out_kvec_reset(con);
2107		ret = prepare_write_connect(con);
2108		if (ret < 0)
2109			return ret;
2110		prepare_read_connect(con);
2111		break;
2112
2113	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2114		/*
2115		 * If we sent a smaller global_seq than the peer has, try
2116		 * again with a larger value.
2117		 */
2118		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2119		     con->peer_global_seq,
2120		     le32_to_cpu(con->in_reply.global_seq));
2121		get_global_seq(con->msgr,
2122			       le32_to_cpu(con->in_reply.global_seq));
2123		con_out_kvec_reset(con);
2124		ret = prepare_write_connect(con);
2125		if (ret < 0)
2126			return ret;
2127		prepare_read_connect(con);
2128		break;
2129
2130	case CEPH_MSGR_TAG_SEQ:
2131	case CEPH_MSGR_TAG_READY:
2132		if (req_feat & ~server_feat) {
2133			pr_err("%s%lld %s protocol feature mismatch,"
2134			       " my required %llx > server's %llx, need %llx\n",
2135			       ENTITY_NAME(con->peer_name),
2136			       ceph_pr_addr(&con->peer_addr.in_addr),
2137			       req_feat, server_feat, req_feat & ~server_feat);
2138			con->error_msg = "missing required protocol features";
2139			reset_connection(con);
2140			return -1;
2141		}
2142
2143		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2144		con->state = CON_STATE_OPEN;
2145		con->auth_retry = 0;    /* we authenticated; clear flag */
2146		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2147		con->connect_seq++;
2148		con->peer_features = server_feat;
2149		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2150		     con->peer_global_seq,
2151		     le32_to_cpu(con->in_reply.connect_seq),
2152		     con->connect_seq);
2153		WARN_ON(con->connect_seq !=
2154			le32_to_cpu(con->in_reply.connect_seq));
2155
2156		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2157			con_flag_set(con, CON_FLAG_LOSSYTX);
2158
2159		con->delay = 0;      /* reset backoff memory */
2160
2161		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2162			prepare_write_seq(con);
2163			prepare_read_seq(con);
2164		} else {
2165			prepare_read_tag(con);
2166		}
2167		break;
2168
2169	case CEPH_MSGR_TAG_WAIT:
2170		/*
2171		 * If there is a connection race (we are opening
2172		 * connections to each other), one of us may just have
2173		 * to WAIT.  This shouldn't happen if we are the
2174		 * client.
2175		 */
 
2176		con->error_msg = "protocol error, got WAIT as client";
2177		return -1;
2178
2179	default:
 
2180		con->error_msg = "protocol error, garbage tag during connect";
2181		return -1;
2182	}
2183	return 0;
2184}
2185
2186
2187/*
2188 * read (part of) an ack
2189 */
2190static int read_partial_ack(struct ceph_connection *con)
2191{
2192	int size = sizeof (con->in_temp_ack);
2193	int end = size;
2194
2195	return read_partial(con, end, size, &con->in_temp_ack);
2196}
2197
 
2198/*
2199 * We can finally discard anything that's been acked.
2200 */
2201static void process_ack(struct ceph_connection *con)
2202{
2203	struct ceph_msg *m;
2204	u64 ack = le64_to_cpu(con->in_temp_ack);
2205	u64 seq;
2206
2207	while (!list_empty(&con->out_sent)) {
2208		m = list_first_entry(&con->out_sent, struct ceph_msg,
2209				     list_head);
2210		seq = le64_to_cpu(m->hdr.seq);
2211		if (seq > ack)
2212			break;
2213		dout("got ack for seq %llu type %d at %p\n", seq,
2214		     le16_to_cpu(m->hdr.type), m);
2215		m->ack_stamp = jiffies;
2216		ceph_msg_remove(m);
2217	}
2218	prepare_read_tag(con);
2219}
2220
2221
 
 
2222static int read_partial_message_section(struct ceph_connection *con,
2223					struct kvec *section,
2224					unsigned int sec_len, u32 *crc)
2225{
2226	int ret, left;
2227
2228	BUG_ON(!section);
2229
2230	while (section->iov_len < sec_len) {
2231		BUG_ON(section->iov_base == NULL);
2232		left = sec_len - section->iov_len;
2233		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2234				       section->iov_len, left);
2235		if (ret <= 0)
2236			return ret;
2237		section->iov_len += ret;
2238	}
2239	if (section->iov_len == sec_len)
2240		*crc = crc32c(0, section->iov_base, section->iov_len);
2241
2242	return 1;
2243}
2244
2245static int read_partial_msg_data(struct ceph_connection *con)
 
 
 
 
 
 
 
2246{
2247	struct ceph_msg *msg = con->in_msg;
2248	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2249	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2250	struct page *page;
2251	size_t page_offset;
2252	size_t length;
2253	u32 crc = 0;
2254	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2255
2256	BUG_ON(!msg);
2257	if (list_empty(&msg->data))
2258		return -EIO;
 
 
 
 
 
 
 
 
2259
2260	if (do_datacrc)
2261		crc = con->in_data_crc;
2262	while (cursor->resid) {
2263		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2264		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2265		if (ret <= 0) {
2266			if (do_datacrc)
2267				con->in_data_crc = crc;
2268
2269			return ret;
2270		}
2271
2272		if (do_datacrc)
2273			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2274		(void) ceph_msg_data_advance(cursor, (size_t)ret);
 
 
 
 
 
 
 
 
 
 
 
2275	}
2276	if (do_datacrc)
2277		con->in_data_crc = crc;
2278
2279	return 1;	/* must return > 0 to indicate success */
2280}
 
2281
2282/*
2283 * read (part of) a message.
2284 */
2285static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2286
2287static int read_partial_message(struct ceph_connection *con)
2288{
2289	struct ceph_msg *m = con->in_msg;
2290	int size;
2291	int end;
2292	int ret;
2293	unsigned int front_len, middle_len, data_len;
2294	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2295	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2296	u64 seq;
2297	u32 crc;
2298
2299	dout("read_partial_message con %p msg %p\n", con, m);
2300
2301	/* header */
2302	size = sizeof (con->in_hdr);
2303	end = size;
2304	ret = read_partial(con, end, size, &con->in_hdr);
2305	if (ret <= 0)
2306		return ret;
2307
2308	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2309	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2310		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
 
2311		       crc, con->in_hdr.crc);
2312		return -EBADMSG;
2313	}
2314
2315	front_len = le32_to_cpu(con->in_hdr.front_len);
2316	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2317		return -EIO;
2318	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2319	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2320		return -EIO;
2321	data_len = le32_to_cpu(con->in_hdr.data_len);
2322	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2323		return -EIO;
2324
2325	/* verify seq# */
2326	seq = le64_to_cpu(con->in_hdr.seq);
2327	if ((s64)seq - (s64)con->in_seq < 1) {
2328		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2329			ENTITY_NAME(con->peer_name),
2330			ceph_pr_addr(&con->peer_addr.in_addr),
2331			seq, con->in_seq + 1);
2332		con->in_base_pos = -front_len - middle_len - data_len -
2333			sizeof_footer(con);
2334		con->in_tag = CEPH_MSGR_TAG_READY;
2335		return 1;
2336	} else if ((s64)seq - (s64)con->in_seq > 1) {
2337		pr_err("read_partial_message bad seq %lld expected %lld\n",
2338		       seq, con->in_seq + 1);
2339		con->error_msg = "bad message sequence # for incoming message";
2340		return -EBADE;
2341	}
2342
2343	/* allocate message? */
2344	if (!con->in_msg) {
2345		int skip = 0;
2346
2347		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2348		     front_len, data_len);
2349		ret = ceph_con_in_msg_alloc(con, &skip);
2350		if (ret < 0)
2351			return ret;
2352
2353		BUG_ON(!con->in_msg ^ skip);
2354		if (skip) {
2355			/* skip this message */
2356			dout("alloc_msg said skip message\n");
 
2357			con->in_base_pos = -front_len - middle_len - data_len -
2358				sizeof_footer(con);
2359			con->in_tag = CEPH_MSGR_TAG_READY;
2360			con->in_seq++;
2361			return 1;
 
 
 
 
 
2362		}
2363
2364		BUG_ON(!con->in_msg);
2365		BUG_ON(con->in_msg->con != con);
2366		m = con->in_msg;
2367		m->front.iov_len = 0;    /* haven't read it yet */
2368		if (m->middle)
2369			m->middle->vec.iov_len = 0;
2370
2371		/* prepare for data payload, if any */
2372
2373		if (data_len)
2374			prepare_message_data(con->in_msg, data_len);
 
 
2375	}
2376
2377	/* front */
2378	ret = read_partial_message_section(con, &m->front, front_len,
2379					   &con->in_front_crc);
2380	if (ret <= 0)
2381		return ret;
2382
2383	/* middle */
2384	if (m->middle) {
2385		ret = read_partial_message_section(con, &m->middle->vec,
2386						   middle_len,
2387						   &con->in_middle_crc);
2388		if (ret <= 0)
2389			return ret;
2390	}
 
 
 
 
2391
2392	/* (page) data */
2393	if (data_len) {
2394		ret = read_partial_msg_data(con);
2395		if (ret <= 0)
2396			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2397	}
2398
2399	/* footer */
2400	size = sizeof_footer(con);
2401	end += size;
2402	ret = read_partial(con, end, size, &m->footer);
2403	if (ret <= 0)
2404		return ret;
2405
2406	if (!need_sign) {
2407		m->footer.flags = m->old_footer.flags;
2408		m->footer.sig = 0;
2409	}
2410
2411	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2412	     m, front_len, m->footer.front_crc, middle_len,
2413	     m->footer.middle_crc, data_len, m->footer.data_crc);
2414
2415	/* crc ok? */
2416	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2417		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2418		       m, con->in_front_crc, m->footer.front_crc);
2419		return -EBADMSG;
2420	}
2421	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2422		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2423		       m, con->in_middle_crc, m->footer.middle_crc);
2424		return -EBADMSG;
2425	}
2426	if (do_datacrc &&
2427	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2428	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2429		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2430		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2431		return -EBADMSG;
2432	}
2433
2434	if (need_sign && con->ops->check_message_signature &&
2435	    con->ops->check_message_signature(m)) {
2436		pr_err("read_partial_message %p signature check failed\n", m);
2437		return -EBADMSG;
2438	}
2439
2440	return 1; /* done! */
2441}
2442
2443/*
2444 * Process message.  This happens in the worker thread.  The callback should
2445 * be careful not to do anything that waits on other incoming messages or it
2446 * may deadlock.
2447 */
2448static void process_message(struct ceph_connection *con)
2449{
2450	struct ceph_msg *msg = con->in_msg;
2451
2452	BUG_ON(con->in_msg->con != con);
2453	con->in_msg = NULL;
2454
2455	/* if first message, set peer_name */
2456	if (con->peer_name.type == 0)
2457		con->peer_name = msg->hdr.src;
2458
2459	con->in_seq++;
2460	mutex_unlock(&con->mutex);
2461
2462	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2463	     msg, le64_to_cpu(msg->hdr.seq),
2464	     ENTITY_NAME(msg->hdr.src),
2465	     le16_to_cpu(msg->hdr.type),
2466	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2467	     le32_to_cpu(msg->hdr.front_len),
2468	     le32_to_cpu(msg->hdr.data_len),
2469	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2470	con->ops->dispatch(con, msg);
2471
2472	mutex_lock(&con->mutex);
 
2473}
2474
2475static int read_keepalive_ack(struct ceph_connection *con)
2476{
2477	struct ceph_timespec ceph_ts;
2478	size_t size = sizeof(ceph_ts);
2479	int ret = read_partial(con, size, size, &ceph_ts);
2480	if (ret <= 0)
2481		return ret;
2482	ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2483	prepare_read_tag(con);
2484	return 1;
2485}
2486
2487/*
2488 * Write something to the socket.  Called in a worker thread when the
2489 * socket appears to be writeable and we have something ready to send.
2490 */
2491static int try_write(struct ceph_connection *con)
2492{
2493	int ret = 1;
2494
2495	dout("try_write start %p state %lu\n", con, con->state);
 
2496
2497more:
2498	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2499
2500	/* open the socket first? */
2501	if (con->state == CON_STATE_PREOPEN) {
2502		BUG_ON(con->sock);
2503		con->state = CON_STATE_CONNECTING;
2504
2505		con_out_kvec_reset(con);
2506		prepare_write_banner(con);
 
 
 
2507		prepare_read_banner(con);
 
 
2508
2509		BUG_ON(con->in_msg);
2510		con->in_tag = CEPH_MSGR_TAG_READY;
2511		dout("try_write initiating connect on %p new state %lu\n",
2512		     con, con->state);
2513		ret = ceph_tcp_connect(con);
2514		if (ret < 0) {
2515			con->error_msg = "connect error";
2516			goto out;
2517		}
2518	}
2519
2520more_kvec:
2521	/* kvec data queued? */
2522	if (con->out_kvec_left) {
2523		ret = write_partial_kvec(con);
2524		if (ret <= 0)
2525			goto out;
2526	}
2527	if (con->out_skip) {
2528		ret = write_partial_skip(con);
2529		if (ret <= 0)
2530			goto out;
2531	}
2532
2533	/* msg pages? */
2534	if (con->out_msg) {
2535		if (con->out_msg_done) {
2536			ceph_msg_put(con->out_msg);
2537			con->out_msg = NULL;   /* we're done with this one */
2538			goto do_next;
2539		}
2540
2541		ret = write_partial_message_data(con);
2542		if (ret == 1)
2543			goto more_kvec;  /* we need to send the footer, too! */
2544		if (ret == 0)
2545			goto out;
2546		if (ret < 0) {
2547			dout("try_write write_partial_message_data err %d\n",
2548			     ret);
2549			goto out;
2550		}
2551	}
2552
2553do_next:
2554	if (con->state == CON_STATE_OPEN) {
2555		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2556			prepare_write_keepalive(con);
2557			goto more;
2558		}
2559		/* is anything else pending? */
2560		if (!list_empty(&con->out_queue)) {
2561			prepare_write_message(con);
2562			goto more;
2563		}
2564		if (con->in_seq > con->in_seq_acked) {
2565			prepare_write_ack(con);
2566			goto more;
2567		}
 
 
 
 
2568	}
2569
2570	/* Nothing to do! */
2571	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2572	dout("try_write nothing else to write.\n");
2573	ret = 0;
2574out:
2575	dout("try_write done on %p ret %d\n", con, ret);
2576	return ret;
2577}
2578
2579
2580
2581/*
2582 * Read what we can from the socket.
2583 */
2584static int try_read(struct ceph_connection *con)
2585{
2586	int ret = -1;
2587
2588more:
2589	dout("try_read start on %p state %lu\n", con, con->state);
2590	if (con->state != CON_STATE_CONNECTING &&
2591	    con->state != CON_STATE_NEGOTIATING &&
2592	    con->state != CON_STATE_OPEN)
2593		return 0;
2594
2595	BUG_ON(!con->sock);
2596
 
2597	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2598	     con->in_base_pos);
2599
2600	if (con->state == CON_STATE_CONNECTING) {
2601		dout("try_read connecting\n");
2602		ret = read_partial_banner(con);
2603		if (ret <= 0)
2604			goto out;
2605		ret = process_banner(con);
2606		if (ret < 0)
2607			goto out;
2608
2609		con->state = CON_STATE_NEGOTIATING;
2610
2611		/*
2612		 * Received banner is good, exchange connection info.
2613		 * Do not reset out_kvec, as sending our banner raced
2614		 * with receiving peer banner after connect completed.
2615		 */
2616		ret = prepare_write_connect(con);
2617		if (ret < 0)
2618			goto out;
2619		prepare_read_connect(con);
2620
2621		/* Send connection info before awaiting response */
2622		goto out;
2623	}
2624
2625	if (con->state == CON_STATE_NEGOTIATING) {
2626		dout("try_read negotiating\n");
 
 
 
 
 
 
 
 
2627		ret = read_partial_connect(con);
2628		if (ret <= 0)
2629			goto out;
2630		ret = process_connect(con);
2631		if (ret < 0)
2632			goto out;
2633		goto more;
2634	}
2635
2636	WARN_ON(con->state != CON_STATE_OPEN);
2637
2638	if (con->in_base_pos < 0) {
2639		/*
2640		 * skipping + discarding content.
2641		 *
2642		 * FIXME: there must be a better way to do this!
2643		 */
2644		static char buf[SKIP_BUF_SIZE];
2645		int skip = min((int) sizeof (buf), -con->in_base_pos);
2646
2647		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2648		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2649		if (ret <= 0)
2650			goto out;
2651		con->in_base_pos += ret;
2652		if (con->in_base_pos)
2653			goto more;
2654	}
2655	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2656		/*
2657		 * what's next?
2658		 */
2659		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2660		if (ret <= 0)
2661			goto out;
2662		dout("try_read got tag %d\n", (int)con->in_tag);
2663		switch (con->in_tag) {
2664		case CEPH_MSGR_TAG_MSG:
2665			prepare_read_message(con);
2666			break;
2667		case CEPH_MSGR_TAG_ACK:
2668			prepare_read_ack(con);
2669			break;
2670		case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2671			prepare_read_keepalive_ack(con);
2672			break;
2673		case CEPH_MSGR_TAG_CLOSE:
2674			con_close_socket(con);
2675			con->state = CON_STATE_CLOSED;
2676			goto out;
2677		default:
2678			goto bad_tag;
2679		}
2680	}
2681	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2682		ret = read_partial_message(con);
2683		if (ret <= 0) {
2684			switch (ret) {
2685			case -EBADMSG:
2686				con->error_msg = "bad crc/signature";
2687				/* fall through */
2688			case -EBADE:
2689				ret = -EIO;
2690				break;
2691			case -EIO:
2692				con->error_msg = "io error";
2693				break;
2694			}
2695			goto out;
2696		}
2697		if (con->in_tag == CEPH_MSGR_TAG_READY)
2698			goto more;
2699		process_message(con);
2700		if (con->state == CON_STATE_OPEN)
2701			prepare_read_tag(con);
2702		goto more;
2703	}
2704	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2705	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2706		/*
2707		 * the final handshake seq exchange is semantically
2708		 * equivalent to an ACK
2709		 */
2710		ret = read_partial_ack(con);
2711		if (ret <= 0)
2712			goto out;
2713		process_ack(con);
2714		goto more;
2715	}
2716	if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2717		ret = read_keepalive_ack(con);
2718		if (ret <= 0)
2719			goto out;
2720		goto more;
2721	}
2722
2723out:
2724	dout("try_read done on %p ret %d\n", con, ret);
2725	return ret;
2726
2727bad_tag:
2728	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2729	con->error_msg = "protocol error, garbage tag";
2730	ret = -1;
2731	goto out;
2732}
2733
2734
2735/*
2736 * Atomically queue work on a connection after the specified delay.
2737 * Bump @con reference to avoid races with connection teardown.
2738 * Returns 0 if work was queued, or an error code otherwise.
2739 */
2740static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2741{
2742	if (!con->ops->get(con)) {
2743		dout("%s %p ref count 0\n", __func__, con);
2744		return -ENOENT;
 
2745	}
2746
2747	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2748		dout("%s %p - already queued\n", __func__, con);
2749		con->ops->put(con);
2750		return -EBUSY;
2751	}
2752
2753	dout("%s %p %lu\n", __func__, con, delay);
2754	return 0;
2755}
2756
2757static void queue_con(struct ceph_connection *con)
2758{
2759	(void) queue_con_delay(con, 0);
2760}
2761
2762static void cancel_con(struct ceph_connection *con)
2763{
2764	if (cancel_delayed_work(&con->work)) {
2765		dout("%s %p\n", __func__, con);
2766		con->ops->put(con);
 
 
2767	}
2768}
2769
2770static bool con_sock_closed(struct ceph_connection *con)
2771{
2772	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2773		return false;
2774
2775#define CASE(x)								\
2776	case CON_STATE_ ## x:						\
2777		con->error_msg = "socket closed (con state " #x ")";	\
2778		break;
2779
2780	switch (con->state) {
2781	CASE(CLOSED);
2782	CASE(PREOPEN);
2783	CASE(CONNECTING);
2784	CASE(NEGOTIATING);
2785	CASE(OPEN);
2786	CASE(STANDBY);
2787	default:
2788		pr_warn("%s con %p unrecognized state %lu\n",
2789			__func__, con, con->state);
2790		con->error_msg = "unrecognized con state";
2791		BUG();
2792		break;
2793	}
2794#undef CASE
2795
2796	return true;
2797}
2798
2799static bool con_backoff(struct ceph_connection *con)
2800{
2801	int ret;
2802
2803	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2804		return false;
2805
2806	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2807	if (ret) {
2808		dout("%s: con %p FAILED to back off %lu\n", __func__,
2809			con, con->delay);
2810		BUG_ON(ret == -ENOENT);
2811		con_flag_set(con, CON_FLAG_BACKOFF);
2812	}
2813
2814	return true;
2815}
2816
2817/* Finish fault handling; con->mutex must *not* be held here */
2818
2819static void con_fault_finish(struct ceph_connection *con)
2820{
2821	dout("%s %p\n", __func__, con);
2822
2823	/*
2824	 * in case we faulted due to authentication, invalidate our
2825	 * current tickets so that we can get new ones.
2826	 */
2827	if (con->auth_retry) {
2828		dout("auth_retry %d, invalidating\n", con->auth_retry);
2829		if (con->ops->invalidate_authorizer)
2830			con->ops->invalidate_authorizer(con);
2831		con->auth_retry = 0;
2832	}
2833
2834	if (con->ops->fault)
2835		con->ops->fault(con);
2836}
2837
2838/*
2839 * Do some work on a connection.  Drop a connection ref when we're done.
2840 */
2841static void ceph_con_workfn(struct work_struct *work)
2842{
2843	struct ceph_connection *con = container_of(work, struct ceph_connection,
2844						   work.work);
2845	bool fault;
2846
2847	mutex_lock(&con->mutex);
2848	while (true) {
2849		int ret;
2850
2851		if ((fault = con_sock_closed(con))) {
2852			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2853			break;
2854		}
2855		if (con_backoff(con)) {
2856			dout("%s: con %p BACKOFF\n", __func__, con);
2857			break;
2858		}
2859		if (con->state == CON_STATE_STANDBY) {
2860			dout("%s: con %p STANDBY\n", __func__, con);
2861			break;
2862		}
2863		if (con->state == CON_STATE_CLOSED) {
2864			dout("%s: con %p CLOSED\n", __func__, con);
2865			BUG_ON(con->sock);
2866			break;
2867		}
2868		if (con->state == CON_STATE_PREOPEN) {
2869			dout("%s: con %p PREOPEN\n", __func__, con);
2870			BUG_ON(con->sock);
2871		}
 
2872
2873		ret = try_read(con);
2874		if (ret < 0) {
2875			if (ret == -EAGAIN)
2876				continue;
2877			if (!con->error_msg)
2878				con->error_msg = "socket error on read";
2879			fault = true;
2880			break;
2881		}
 
 
 
 
 
2882
2883		ret = try_write(con);
2884		if (ret < 0) {
2885			if (ret == -EAGAIN)
2886				continue;
2887			if (!con->error_msg)
2888				con->error_msg = "socket error on write";
2889			fault = true;
2890		}
2891
2892		break;	/* If we make it to here, we're done */
2893	}
2894	if (fault)
2895		con_fault(con);
2896	mutex_unlock(&con->mutex);
2897
2898	if (fault)
2899		con_fault_finish(con);
 
 
 
2900
 
 
 
2901	con->ops->put(con);
 
 
 
 
 
 
2902}
2903
 
2904/*
2905 * Generic error/fault handler.  A retry mechanism is used with
2906 * exponential backoff
2907 */
2908static void con_fault(struct ceph_connection *con)
2909{
 
 
2910	dout("fault %p state %lu to peer %s\n",
2911	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2912
2913	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2914		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2915	con->error_msg = NULL;
2916
2917	WARN_ON(con->state != CON_STATE_CONNECTING &&
2918	       con->state != CON_STATE_NEGOTIATING &&
2919	       con->state != CON_STATE_OPEN);
 
2920
2921	con_close_socket(con);
2922
2923	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2924		dout("fault on LOSSYTX channel, marking CLOSED\n");
2925		con->state = CON_STATE_CLOSED;
2926		return;
2927	}
2928
2929	if (con->in_msg) {
2930		BUG_ON(con->in_msg->con != con);
2931		ceph_msg_put(con->in_msg);
2932		con->in_msg = NULL;
2933	}
2934
2935	/* Requeue anything that hasn't been acked */
2936	list_splice_init(&con->out_sent, &con->out_queue);
2937
2938	/* If there are no messages queued or keepalive pending, place
2939	 * the connection in a STANDBY state */
2940	if (list_empty(&con->out_queue) &&
2941	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2942		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2943		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2944		con->state = CON_STATE_STANDBY;
2945	} else {
2946		/* retry after a delay. */
2947		con->state = CON_STATE_PREOPEN;
2948		if (con->delay == 0)
2949			con->delay = BASE_DELAY_INTERVAL;
2950		else if (con->delay < MAX_DELAY_INTERVAL)
2951			con->delay *= 2;
2952		con_flag_set(con, CON_FLAG_BACKOFF);
2953		queue_con(con);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2954	}
 
 
 
2955}
2956
2957
2958
2959/*
2960 * initialize a new messenger instance
2961 */
2962void ceph_messenger_init(struct ceph_messenger *msgr,
2963			 struct ceph_entity_addr *myaddr)
 
2964{
 
 
 
 
 
 
 
 
 
2965	spin_lock_init(&msgr->global_seq_lock);
2966
2967	if (myaddr)
2968		msgr->inst.addr = *myaddr;
2969
2970	/* select a random nonce */
2971	msgr->inst.addr.type = 0;
2972	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2973	encode_my_addr(msgr);
2974
2975	atomic_set(&msgr->stopping, 0);
2976	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
2977
2978	dout("%s %p\n", __func__, msgr);
2979}
2980EXPORT_SYMBOL(ceph_messenger_init);
2981
2982void ceph_messenger_fini(struct ceph_messenger *msgr)
2983{
2984	put_net(read_pnet(&msgr->net));
2985}
2986EXPORT_SYMBOL(ceph_messenger_fini);
2987
2988static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
2989{
2990	if (msg->con)
2991		msg->con->ops->put(msg->con);
2992
2993	msg->con = con ? con->ops->get(con) : NULL;
2994	BUG_ON(msg->con != con);
2995}
 
2996
2997static void clear_standby(struct ceph_connection *con)
2998{
2999	/* come back from STANDBY? */
3000	if (con->state == CON_STATE_STANDBY) {
 
3001		dout("clear_standby %p and ++connect_seq\n", con);
3002		con->state = CON_STATE_PREOPEN;
3003		con->connect_seq++;
3004		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3005		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
 
3006	}
3007}
3008
3009/*
3010 * Queue up an outgoing message on the given connection.
3011 */
3012void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3013{
 
 
 
 
 
 
3014	/* set src+dst */
3015	msg->hdr.src = con->msgr->inst.name;
 
3016	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
 
3017	msg->needs_out_seq = true;
3018
 
3019	mutex_lock(&con->mutex);
3020
3021	if (con->state == CON_STATE_CLOSED) {
3022		dout("con_send %p closed, dropping %p\n", con, msg);
3023		ceph_msg_put(msg);
3024		mutex_unlock(&con->mutex);
3025		return;
3026	}
3027
3028	msg_con_set(msg, con);
3029
3030	BUG_ON(!list_empty(&msg->list_head));
3031	list_add_tail(&msg->list_head, &con->out_queue);
3032	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3033	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3034	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3035	     le32_to_cpu(msg->hdr.front_len),
3036	     le32_to_cpu(msg->hdr.middle_len),
3037	     le32_to_cpu(msg->hdr.data_len));
3038
3039	clear_standby(con);
3040	mutex_unlock(&con->mutex);
3041
3042	/* if there wasn't anything waiting to send before, queue
3043	 * new work */
3044	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
 
3045		queue_con(con);
3046}
3047EXPORT_SYMBOL(ceph_con_send);
3048
3049/*
3050 * Revoke a message that was previously queued for send
3051 */
3052void ceph_msg_revoke(struct ceph_msg *msg)
3053{
3054	struct ceph_connection *con = msg->con;
3055
3056	if (!con) {
3057		dout("%s msg %p null con\n", __func__, msg);
3058		return;		/* Message not in our possession */
3059	}
3060
3061	mutex_lock(&con->mutex);
3062	if (!list_empty(&msg->list_head)) {
3063		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3064		list_del_init(&msg->list_head);
 
3065		msg->hdr.seq = 0;
3066
3067		ceph_msg_put(msg);
3068	}
3069	if (con->out_msg == msg) {
3070		BUG_ON(con->out_skip);
3071		/* footer */
3072		if (con->out_msg_done) {
3073			con->out_skip += con_out_kvec_skip(con);
3074		} else {
3075			BUG_ON(!msg->data_length);
3076			con->out_skip += sizeof_footer(con);
3077		}
3078		/* data, middle, front */
3079		if (msg->data_length)
3080			con->out_skip += msg->cursor.total_resid;
3081		if (msg->middle)
3082			con->out_skip += con_out_kvec_skip(con);
3083		con->out_skip += con_out_kvec_skip(con);
3084
3085		dout("%s %p msg %p - was sending, will write %d skip %d\n",
3086		     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3087		msg->hdr.seq = 0;
3088		con->out_msg = NULL;
3089		ceph_msg_put(msg);
3090	}
3091
3092	mutex_unlock(&con->mutex);
3093}
3094
3095/*
3096 * Revoke a message that we may be reading data into
3097 */
3098void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3099{
3100	struct ceph_connection *con = msg->con;
3101
3102	if (!con) {
3103		dout("%s msg %p null con\n", __func__, msg);
3104		return;		/* Message not in our possession */
3105	}
3106
3107	mutex_lock(&con->mutex);
3108	if (con->in_msg == msg) {
3109		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3110		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3111		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3112
3113		/* skip rest of message */
3114		dout("%s %p msg %p revoked\n", __func__, con, msg);
3115		con->in_base_pos = con->in_base_pos -
3116				sizeof(struct ceph_msg_header) -
3117				front_len -
3118				middle_len -
3119				data_len -
3120				sizeof(struct ceph_msg_footer);
3121		ceph_msg_put(con->in_msg);
3122		con->in_msg = NULL;
3123		con->in_tag = CEPH_MSGR_TAG_READY;
3124		con->in_seq++;
3125	} else {
3126		dout("%s %p in_msg %p msg %p no-op\n",
3127		     __func__, con, con->in_msg, msg);
3128	}
3129	mutex_unlock(&con->mutex);
3130}
3131
3132/*
3133 * Queue a keepalive byte to ensure the tcp connection is alive.
3134 */
3135void ceph_con_keepalive(struct ceph_connection *con)
3136{
3137	dout("con_keepalive %p\n", con);
3138	mutex_lock(&con->mutex);
3139	clear_standby(con);
3140	mutex_unlock(&con->mutex);
3141	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3142	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3143		queue_con(con);
3144}
3145EXPORT_SYMBOL(ceph_con_keepalive);
3146
3147bool ceph_con_keepalive_expired(struct ceph_connection *con,
3148			       unsigned long interval)
3149{
3150	if (interval > 0 &&
3151	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3152		struct timespec now = CURRENT_TIME;
3153		struct timespec ts;
3154		jiffies_to_timespec(interval, &ts);
3155		ts = timespec_add(con->last_keepalive_ack, ts);
3156		return timespec_compare(&now, &ts) >= 0;
3157	}
3158	return false;
3159}
3160
3161static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3162{
3163	struct ceph_msg_data *data;
3164
3165	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3166		return NULL;
3167
3168	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3169	if (data)
3170		data->type = type;
3171	INIT_LIST_HEAD(&data->links);
3172
3173	return data;
3174}
3175
3176static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3177{
3178	if (!data)
3179		return;
3180
3181	WARN_ON(!list_empty(&data->links));
3182	if (data->type == CEPH_MSG_DATA_PAGELIST)
3183		ceph_pagelist_release(data->pagelist);
3184	kmem_cache_free(ceph_msg_data_cache, data);
3185}
3186
3187void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3188		size_t length, size_t alignment)
3189{
3190	struct ceph_msg_data *data;
3191
3192	BUG_ON(!pages);
3193	BUG_ON(!length);
3194
3195	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3196	BUG_ON(!data);
3197	data->pages = pages;
3198	data->length = length;
3199	data->alignment = alignment & ~PAGE_MASK;
3200
3201	list_add_tail(&data->links, &msg->data);
3202	msg->data_length += length;
3203}
3204EXPORT_SYMBOL(ceph_msg_data_add_pages);
3205
3206void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3207				struct ceph_pagelist *pagelist)
3208{
3209	struct ceph_msg_data *data;
3210
3211	BUG_ON(!pagelist);
3212	BUG_ON(!pagelist->length);
3213
3214	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3215	BUG_ON(!data);
3216	data->pagelist = pagelist;
3217
3218	list_add_tail(&data->links, &msg->data);
3219	msg->data_length += pagelist->length;
3220}
3221EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3222
3223#ifdef	CONFIG_BLOCK
3224void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3225		size_t length)
3226{
3227	struct ceph_msg_data *data;
3228
3229	BUG_ON(!bio);
3230
3231	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3232	BUG_ON(!data);
3233	data->bio = bio;
3234	data->bio_length = length;
3235
3236	list_add_tail(&data->links, &msg->data);
3237	msg->data_length += length;
3238}
3239EXPORT_SYMBOL(ceph_msg_data_add_bio);
3240#endif	/* CONFIG_BLOCK */
3241
3242/*
3243 * construct a new message with given type, size
3244 * the new msg has a ref count of 1.
3245 */
3246struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3247			      bool can_fail)
3248{
3249	struct ceph_msg *m;
3250
3251	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3252	if (m == NULL)
3253		goto out;
 
 
3254
 
3255	m->hdr.type = cpu_to_le16(type);
3256	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
 
3257	m->hdr.front_len = cpu_to_le32(front_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3258
3259	INIT_LIST_HEAD(&m->list_head);
3260	kref_init(&m->kref);
3261	INIT_LIST_HEAD(&m->data);
 
 
 
 
 
 
3262
3263	/* front */
3264	if (front_len) {
3265		m->front.iov_base = ceph_kvmalloc(front_len, flags);
 
 
 
 
 
 
3266		if (m->front.iov_base == NULL) {
3267			dout("ceph_msg_new can't allocate %d bytes\n",
3268			     front_len);
3269			goto out2;
3270		}
3271	} else {
3272		m->front.iov_base = NULL;
3273	}
3274	m->front_alloc_len = m->front.iov_len = front_len;
3275
3276	dout("ceph_msg_new %p front %d\n", m, front_len);
3277	return m;
3278
3279out2:
3280	ceph_msg_put(m);
3281out:
3282	if (!can_fail) {
3283		pr_err("msg_new can't create type %d front %d\n", type,
3284		       front_len);
3285		WARN_ON(1);
3286	} else {
3287		dout("msg_new can't create type %d front %d\n", type,
3288		     front_len);
3289	}
3290	return NULL;
3291}
3292EXPORT_SYMBOL(ceph_msg_new);
3293
3294/*
3295 * Allocate "middle" portion of a message, if it is needed and wasn't
3296 * allocated by alloc_msg.  This allows us to read a small fixed-size
3297 * per-type header in the front and then gracefully fail (i.e.,
3298 * propagate the error to the caller based on info in the front) when
3299 * the middle is too large.
3300 */
3301static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3302{
3303	int type = le16_to_cpu(msg->hdr.type);
3304	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3305
3306	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3307	     ceph_msg_type_name(type), middle_len);
3308	BUG_ON(!middle_len);
3309	BUG_ON(msg->middle);
3310
3311	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3312	if (!msg->middle)
3313		return -ENOMEM;
3314	return 0;
3315}
3316
3317/*
3318 * Allocate a message for receiving an incoming message on a
3319 * connection, and save the result in con->in_msg.  Uses the
3320 * connection's private alloc_msg op if available.
3321 *
3322 * Returns 0 on success, or a negative error code.
3323 *
3324 * On success, if we set *skip = 1:
3325 *  - the next message should be skipped and ignored.
3326 *  - con->in_msg == NULL
3327 * or if we set *skip = 0:
3328 *  - con->in_msg is non-null.
3329 * On error (ENOMEM, EAGAIN, ...),
3330 *  - con->in_msg == NULL
3331 */
3332static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
 
 
3333{
3334	struct ceph_msg_header *hdr = &con->in_hdr;
 
3335	int middle_len = le32_to_cpu(hdr->middle_len);
3336	struct ceph_msg *msg;
3337	int ret = 0;
3338
3339	BUG_ON(con->in_msg != NULL);
3340	BUG_ON(!con->ops->alloc_msg);
3341
3342	mutex_unlock(&con->mutex);
3343	msg = con->ops->alloc_msg(con, hdr, skip);
3344	mutex_lock(&con->mutex);
3345	if (con->state != CON_STATE_OPEN) {
3346		if (msg)
3347			ceph_msg_put(msg);
3348		return -EAGAIN;
3349	}
3350	if (msg) {
3351		BUG_ON(*skip);
3352		msg_con_set(msg, con);
3353		con->in_msg = msg;
3354	} else {
3355		/*
3356		 * Null message pointer means either we should skip
3357		 * this message or we couldn't allocate memory.  The
3358		 * former is not an error.
3359		 */
3360		if (*skip)
3361			return 0;
3362
3363		con->error_msg = "error allocating memory for incoming message";
3364		return -ENOMEM;
3365	}
3366	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3367
3368	if (middle_len && !con->in_msg->middle) {
3369		ret = ceph_alloc_middle(con, con->in_msg);
3370		if (ret < 0) {
3371			ceph_msg_put(con->in_msg);
3372			con->in_msg = NULL;
3373		}
3374	}
3375
3376	return ret;
3377}
3378
3379
3380/*
3381 * Free a generically kmalloc'd message.
3382 */
3383static void ceph_msg_free(struct ceph_msg *m)
3384{
3385	dout("%s %p\n", __func__, m);
3386	kvfree(m->front.iov_base);
3387	kmem_cache_free(ceph_msg_cache, m);
 
 
 
3388}
3389
3390static void ceph_msg_release(struct kref *kref)
 
 
 
3391{
3392	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3393	struct ceph_msg_data *data, *next;
3394
3395	dout("%s %p\n", __func__, m);
3396	WARN_ON(!list_empty(&m->list_head));
3397
3398	msg_con_set(m, NULL);
3399
3400	/* drop middle, data, if any */
3401	if (m->middle) {
3402		ceph_buffer_put(m->middle);
3403		m->middle = NULL;
3404	}
 
 
3405
3406	list_for_each_entry_safe(data, next, &m->data, links) {
3407		list_del_init(&data->links);
3408		ceph_msg_data_destroy(data);
 
3409	}
3410	m->data_length = 0;
 
3411
3412	if (m->pool)
3413		ceph_msgpool_put(m->pool, m);
3414	else
3415		ceph_msg_free(m);
3416}
3417
3418struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3419{
3420	dout("%s %p (was %d)\n", __func__, msg,
3421	     atomic_read(&msg->kref.refcount));
3422	kref_get(&msg->kref);
3423	return msg;
3424}
3425EXPORT_SYMBOL(ceph_msg_get);
3426
3427void ceph_msg_put(struct ceph_msg *msg)
3428{
3429	dout("%s %p (was %d)\n", __func__, msg,
3430	     atomic_read(&msg->kref.refcount));
3431	kref_put(&msg->kref, ceph_msg_release);
3432}
3433EXPORT_SYMBOL(ceph_msg_put);
3434
3435void ceph_msg_dump(struct ceph_msg *msg)
3436{
3437	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3438		 msg->front_alloc_len, msg->data_length);
3439	print_hex_dump(KERN_DEBUG, "header: ",
3440		       DUMP_PREFIX_OFFSET, 16, 1,
3441		       &msg->hdr, sizeof(msg->hdr), true);
3442	print_hex_dump(KERN_DEBUG, " front: ",
3443		       DUMP_PREFIX_OFFSET, 16, 1,
3444		       msg->front.iov_base, msg->front.iov_len, true);
3445	if (msg->middle)
3446		print_hex_dump(KERN_DEBUG, "middle: ",
3447			       DUMP_PREFIX_OFFSET, 16, 1,
3448			       msg->middle->vec.iov_base,
3449			       msg->middle->vec.iov_len, true);
3450	print_hex_dump(KERN_DEBUG, "footer: ",
3451		       DUMP_PREFIX_OFFSET, 16, 1,
3452		       &msg->footer, sizeof(msg->footer), true);
3453}
3454EXPORT_SYMBOL(ceph_msg_dump);