Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
   3 * Written by Alex Tomas <alex@clusterfs.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public Licens
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
  17 */
  18
  19
  20/*
  21 * mballoc.c contains the multiblocks allocation routines
  22 */
  23
  24#include "ext4_jbd2.h"
  25#include "mballoc.h"
  26#include <linux/debugfs.h>
 
  27#include <linux/slab.h>
 
  28#include <trace/events/ext4.h>
  29
 
 
 
 
 
 
 
  30/*
  31 * MUSTDO:
  32 *   - test ext4_ext_search_left() and ext4_ext_search_right()
  33 *   - search for metadata in few groups
  34 *
  35 * TODO v4:
  36 *   - normalization should take into account whether file is still open
  37 *   - discard preallocations if no free space left (policy?)
  38 *   - don't normalize tails
  39 *   - quota
  40 *   - reservation for superuser
  41 *
  42 * TODO v3:
  43 *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
  44 *   - track min/max extents in each group for better group selection
  45 *   - mb_mark_used() may allocate chunk right after splitting buddy
  46 *   - tree of groups sorted by number of free blocks
  47 *   - error handling
  48 */
  49
  50/*
  51 * The allocation request involve request for multiple number of blocks
  52 * near to the goal(block) value specified.
  53 *
  54 * During initialization phase of the allocator we decide to use the
  55 * group preallocation or inode preallocation depending on the size of
  56 * the file. The size of the file could be the resulting file size we
  57 * would have after allocation, or the current file size, which ever
  58 * is larger. If the size is less than sbi->s_mb_stream_request we
  59 * select to use the group preallocation. The default value of
  60 * s_mb_stream_request is 16 blocks. This can also be tuned via
  61 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
  62 * terms of number of blocks.
  63 *
  64 * The main motivation for having small file use group preallocation is to
  65 * ensure that we have small files closer together on the disk.
  66 *
  67 * First stage the allocator looks at the inode prealloc list,
  68 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
  69 * spaces for this particular inode. The inode prealloc space is
  70 * represented as:
  71 *
  72 * pa_lstart -> the logical start block for this prealloc space
  73 * pa_pstart -> the physical start block for this prealloc space
  74 * pa_len    -> length for this prealloc space (in clusters)
  75 * pa_free   ->  free space available in this prealloc space (in clusters)
  76 *
  77 * The inode preallocation space is used looking at the _logical_ start
  78 * block. If only the logical file block falls within the range of prealloc
  79 * space we will consume the particular prealloc space. This makes sure that
  80 * we have contiguous physical blocks representing the file blocks
  81 *
  82 * The important thing to be noted in case of inode prealloc space is that
  83 * we don't modify the values associated to inode prealloc space except
  84 * pa_free.
  85 *
  86 * If we are not able to find blocks in the inode prealloc space and if we
  87 * have the group allocation flag set then we look at the locality group
  88 * prealloc space. These are per CPU prealloc list represented as
  89 *
  90 * ext4_sb_info.s_locality_groups[smp_processor_id()]
  91 *
  92 * The reason for having a per cpu locality group is to reduce the contention
  93 * between CPUs. It is possible to get scheduled at this point.
  94 *
  95 * The locality group prealloc space is used looking at whether we have
  96 * enough free space (pa_free) within the prealloc space.
  97 *
  98 * If we can't allocate blocks via inode prealloc or/and locality group
  99 * prealloc then we look at the buddy cache. The buddy cache is represented
 100 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
 101 * mapped to the buddy and bitmap information regarding different
 102 * groups. The buddy information is attached to buddy cache inode so that
 103 * we can access them through the page cache. The information regarding
 104 * each group is loaded via ext4_mb_load_buddy.  The information involve
 105 * block bitmap and buddy information. The information are stored in the
 106 * inode as:
 107 *
 108 *  {                        page                        }
 109 *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
 110 *
 111 *
 112 * one block each for bitmap and buddy information.  So for each group we
 113 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
 114 * blocksize) blocks.  So it can have information regarding groups_per_page
 115 * which is blocks_per_page/2
 116 *
 117 * The buddy cache inode is not stored on disk. The inode is thrown
 118 * away when the filesystem is unmounted.
 119 *
 120 * We look for count number of blocks in the buddy cache. If we were able
 121 * to locate that many free blocks we return with additional information
 122 * regarding rest of the contiguous physical block available
 123 *
 124 * Before allocating blocks via buddy cache we normalize the request
 125 * blocks. This ensure we ask for more blocks that we needed. The extra
 126 * blocks that we get after allocation is added to the respective prealloc
 127 * list. In case of inode preallocation we follow a list of heuristics
 128 * based on file size. This can be found in ext4_mb_normalize_request. If
 129 * we are doing a group prealloc we try to normalize the request to
 130 * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
 131 * dependent on the cluster size; for non-bigalloc file systems, it is
 132 * 512 blocks. This can be tuned via
 133 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
 134 * terms of number of blocks. If we have mounted the file system with -O
 135 * stripe=<value> option the group prealloc request is normalized to the
 136 * the smallest multiple of the stripe value (sbi->s_stripe) which is
 137 * greater than the default mb_group_prealloc.
 138 *
 139 * The regular allocator (using the buddy cache) supports a few tunables.
 140 *
 141 * /sys/fs/ext4/<partition>/mb_min_to_scan
 142 * /sys/fs/ext4/<partition>/mb_max_to_scan
 143 * /sys/fs/ext4/<partition>/mb_order2_req
 144 *
 145 * The regular allocator uses buddy scan only if the request len is power of
 146 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
 147 * value of s_mb_order2_reqs can be tuned via
 148 * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
 149 * stripe size (sbi->s_stripe), we try to search for contiguous block in
 150 * stripe size. This should result in better allocation on RAID setups. If
 151 * not, we search in the specific group using bitmap for best extents. The
 152 * tunable min_to_scan and max_to_scan control the behaviour here.
 153 * min_to_scan indicate how long the mballoc __must__ look for a best
 154 * extent and max_to_scan indicates how long the mballoc __can__ look for a
 155 * best extent in the found extents. Searching for the blocks starts with
 156 * the group specified as the goal value in allocation context via
 157 * ac_g_ex. Each group is first checked based on the criteria whether it
 158 * can be used for allocation. ext4_mb_good_group explains how the groups are
 159 * checked.
 160 *
 161 * Both the prealloc space are getting populated as above. So for the first
 162 * request we will hit the buddy cache which will result in this prealloc
 163 * space getting filled. The prealloc space is then later used for the
 164 * subsequent request.
 165 */
 166
 167/*
 168 * mballoc operates on the following data:
 169 *  - on-disk bitmap
 170 *  - in-core buddy (actually includes buddy and bitmap)
 171 *  - preallocation descriptors (PAs)
 172 *
 173 * there are two types of preallocations:
 174 *  - inode
 175 *    assiged to specific inode and can be used for this inode only.
 176 *    it describes part of inode's space preallocated to specific
 177 *    physical blocks. any block from that preallocated can be used
 178 *    independent. the descriptor just tracks number of blocks left
 179 *    unused. so, before taking some block from descriptor, one must
 180 *    make sure corresponded logical block isn't allocated yet. this
 181 *    also means that freeing any block within descriptor's range
 182 *    must discard all preallocated blocks.
 183 *  - locality group
 184 *    assigned to specific locality group which does not translate to
 185 *    permanent set of inodes: inode can join and leave group. space
 186 *    from this type of preallocation can be used for any inode. thus
 187 *    it's consumed from the beginning to the end.
 188 *
 189 * relation between them can be expressed as:
 190 *    in-core buddy = on-disk bitmap + preallocation descriptors
 191 *
 192 * this mean blocks mballoc considers used are:
 193 *  - allocated blocks (persistent)
 194 *  - preallocated blocks (non-persistent)
 195 *
 196 * consistency in mballoc world means that at any time a block is either
 197 * free or used in ALL structures. notice: "any time" should not be read
 198 * literally -- time is discrete and delimited by locks.
 199 *
 200 *  to keep it simple, we don't use block numbers, instead we count number of
 201 *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
 202 *
 203 * all operations can be expressed as:
 204 *  - init buddy:			buddy = on-disk + PAs
 205 *  - new PA:				buddy += N; PA = N
 206 *  - use inode PA:			on-disk += N; PA -= N
 207 *  - discard inode PA			buddy -= on-disk - PA; PA = 0
 208 *  - use locality group PA		on-disk += N; PA -= N
 209 *  - discard locality group PA		buddy -= PA; PA = 0
 210 *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
 211 *        is used in real operation because we can't know actual used
 212 *        bits from PA, only from on-disk bitmap
 213 *
 214 * if we follow this strict logic, then all operations above should be atomic.
 215 * given some of them can block, we'd have to use something like semaphores
 216 * killing performance on high-end SMP hardware. let's try to relax it using
 217 * the following knowledge:
 218 *  1) if buddy is referenced, it's already initialized
 219 *  2) while block is used in buddy and the buddy is referenced,
 220 *     nobody can re-allocate that block
 221 *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
 222 *     bit set and PA claims same block, it's OK. IOW, one can set bit in
 223 *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
 224 *     block
 225 *
 226 * so, now we're building a concurrency table:
 227 *  - init buddy vs.
 228 *    - new PA
 229 *      blocks for PA are allocated in the buddy, buddy must be referenced
 230 *      until PA is linked to allocation group to avoid concurrent buddy init
 231 *    - use inode PA
 232 *      we need to make sure that either on-disk bitmap or PA has uptodate data
 233 *      given (3) we care that PA-=N operation doesn't interfere with init
 234 *    - discard inode PA
 235 *      the simplest way would be to have buddy initialized by the discard
 236 *    - use locality group PA
 237 *      again PA-=N must be serialized with init
 238 *    - discard locality group PA
 239 *      the simplest way would be to have buddy initialized by the discard
 240 *  - new PA vs.
 241 *    - use inode PA
 242 *      i_data_sem serializes them
 243 *    - discard inode PA
 244 *      discard process must wait until PA isn't used by another process
 245 *    - use locality group PA
 246 *      some mutex should serialize them
 247 *    - discard locality group PA
 248 *      discard process must wait until PA isn't used by another process
 249 *  - use inode PA
 250 *    - use inode PA
 251 *      i_data_sem or another mutex should serializes them
 252 *    - discard inode PA
 253 *      discard process must wait until PA isn't used by another process
 254 *    - use locality group PA
 255 *      nothing wrong here -- they're different PAs covering different blocks
 256 *    - discard locality group PA
 257 *      discard process must wait until PA isn't used by another process
 258 *
 259 * now we're ready to make few consequences:
 260 *  - PA is referenced and while it is no discard is possible
 261 *  - PA is referenced until block isn't marked in on-disk bitmap
 262 *  - PA changes only after on-disk bitmap
 263 *  - discard must not compete with init. either init is done before
 264 *    any discard or they're serialized somehow
 265 *  - buddy init as sum of on-disk bitmap and PAs is done atomically
 266 *
 267 * a special case when we've used PA to emptiness. no need to modify buddy
 268 * in this case, but we should care about concurrent init
 269 *
 270 */
 271
 272 /*
 273 * Logic in few words:
 274 *
 275 *  - allocation:
 276 *    load group
 277 *    find blocks
 278 *    mark bits in on-disk bitmap
 279 *    release group
 280 *
 281 *  - use preallocation:
 282 *    find proper PA (per-inode or group)
 283 *    load group
 284 *    mark bits in on-disk bitmap
 285 *    release group
 286 *    release PA
 287 *
 288 *  - free:
 289 *    load group
 290 *    mark bits in on-disk bitmap
 291 *    release group
 292 *
 293 *  - discard preallocations in group:
 294 *    mark PAs deleted
 295 *    move them onto local list
 296 *    load on-disk bitmap
 297 *    load group
 298 *    remove PA from object (inode or locality group)
 299 *    mark free blocks in-core
 300 *
 301 *  - discard inode's preallocations:
 302 */
 303
 304/*
 305 * Locking rules
 306 *
 307 * Locks:
 308 *  - bitlock on a group	(group)
 309 *  - object (inode/locality)	(object)
 310 *  - per-pa lock		(pa)
 311 *
 312 * Paths:
 313 *  - new pa
 314 *    object
 315 *    group
 316 *
 317 *  - find and use pa:
 318 *    pa
 319 *
 320 *  - release consumed pa:
 321 *    pa
 322 *    group
 323 *    object
 324 *
 325 *  - generate in-core bitmap:
 326 *    group
 327 *        pa
 328 *
 329 *  - discard all for given object (inode, locality group):
 330 *    object
 331 *        pa
 332 *    group
 333 *
 334 *  - discard all for given group:
 335 *    group
 336 *        pa
 337 *    group
 338 *        object
 339 *
 340 */
 341static struct kmem_cache *ext4_pspace_cachep;
 342static struct kmem_cache *ext4_ac_cachep;
 343static struct kmem_cache *ext4_free_data_cachep;
 344
 345/* We create slab caches for groupinfo data structures based on the
 346 * superblock block size.  There will be one per mounted filesystem for
 347 * each unique s_blocksize_bits */
 348#define NR_GRPINFO_CACHES 8
 349static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
 350
 351static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
 352	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
 353	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
 354	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
 355};
 356
 357static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
 358					ext4_group_t group);
 359static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
 360						ext4_group_t group);
 361static void ext4_free_data_callback(struct super_block *sb,
 362				struct ext4_journal_cb_entry *jce, int rc);
 363
 364static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
 365{
 366#if BITS_PER_LONG == 64
 367	*bit += ((unsigned long) addr & 7UL) << 3;
 368	addr = (void *) ((unsigned long) addr & ~7UL);
 369#elif BITS_PER_LONG == 32
 370	*bit += ((unsigned long) addr & 3UL) << 3;
 371	addr = (void *) ((unsigned long) addr & ~3UL);
 372#else
 373#error "how many bits you are?!"
 374#endif
 375	return addr;
 376}
 377
 378static inline int mb_test_bit(int bit, void *addr)
 379{
 380	/*
 381	 * ext4_test_bit on architecture like powerpc
 382	 * needs unsigned long aligned address
 383	 */
 384	addr = mb_correct_addr_and_bit(&bit, addr);
 385	return ext4_test_bit(bit, addr);
 386}
 387
 388static inline void mb_set_bit(int bit, void *addr)
 389{
 390	addr = mb_correct_addr_and_bit(&bit, addr);
 391	ext4_set_bit(bit, addr);
 392}
 393
 394static inline void mb_clear_bit(int bit, void *addr)
 395{
 396	addr = mb_correct_addr_and_bit(&bit, addr);
 397	ext4_clear_bit(bit, addr);
 398}
 399
 
 
 
 
 
 
 400static inline int mb_find_next_zero_bit(void *addr, int max, int start)
 401{
 402	int fix = 0, ret, tmpmax;
 403	addr = mb_correct_addr_and_bit(&fix, addr);
 404	tmpmax = max + fix;
 405	start += fix;
 406
 407	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
 408	if (ret > max)
 409		return max;
 410	return ret;
 411}
 412
 413static inline int mb_find_next_bit(void *addr, int max, int start)
 414{
 415	int fix = 0, ret, tmpmax;
 416	addr = mb_correct_addr_and_bit(&fix, addr);
 417	tmpmax = max + fix;
 418	start += fix;
 419
 420	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
 421	if (ret > max)
 422		return max;
 423	return ret;
 424}
 425
 426static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
 427{
 428	char *bb;
 429
 430	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
 431	BUG_ON(max == NULL);
 432
 433	if (order > e4b->bd_blkbits + 1) {
 434		*max = 0;
 435		return NULL;
 436	}
 437
 438	/* at order 0 we see each particular block */
 439	if (order == 0) {
 440		*max = 1 << (e4b->bd_blkbits + 3);
 441		return e4b->bd_bitmap;
 442	}
 443
 444	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
 445	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
 446
 447	return bb;
 448}
 449
 450#ifdef DOUBLE_CHECK
 451static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
 452			   int first, int count)
 453{
 454	int i;
 455	struct super_block *sb = e4b->bd_sb;
 456
 457	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
 458		return;
 459	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
 460	for (i = 0; i < count; i++) {
 461		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
 462			ext4_fsblk_t blocknr;
 463
 464			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
 465			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
 466			ext4_grp_locked_error(sb, e4b->bd_group,
 467					      inode ? inode->i_ino : 0,
 468					      blocknr,
 469					      "freeing block already freed "
 470					      "(bit %u)",
 471					      first + i);
 472		}
 473		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
 474	}
 475}
 476
 477static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
 478{
 479	int i;
 480
 481	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
 482		return;
 483	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
 484	for (i = 0; i < count; i++) {
 485		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
 486		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
 487	}
 488}
 489
 490static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
 491{
 492	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
 493		unsigned char *b1, *b2;
 494		int i;
 495		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
 496		b2 = (unsigned char *) bitmap;
 497		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
 498			if (b1[i] != b2[i]) {
 499				ext4_msg(e4b->bd_sb, KERN_ERR,
 500					 "corruption in group %u "
 501					 "at byte %u(%u): %x in copy != %x "
 502					 "on disk/prealloc",
 503					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
 504				BUG();
 505			}
 506		}
 507	}
 508}
 509
 510#else
 511static inline void mb_free_blocks_double(struct inode *inode,
 512				struct ext4_buddy *e4b, int first, int count)
 513{
 514	return;
 515}
 516static inline void mb_mark_used_double(struct ext4_buddy *e4b,
 517						int first, int count)
 518{
 519	return;
 520}
 521static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
 522{
 523	return;
 524}
 525#endif
 526
 527#ifdef AGGRESSIVE_CHECK
 528
 529#define MB_CHECK_ASSERT(assert)						\
 530do {									\
 531	if (!(assert)) {						\
 532		printk(KERN_EMERG					\
 533			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
 534			function, file, line, # assert);		\
 535		BUG();							\
 536	}								\
 537} while (0)
 538
 539static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
 540				const char *function, int line)
 541{
 542	struct super_block *sb = e4b->bd_sb;
 543	int order = e4b->bd_blkbits + 1;
 544	int max;
 545	int max2;
 546	int i;
 547	int j;
 548	int k;
 549	int count;
 550	struct ext4_group_info *grp;
 551	int fragments = 0;
 552	int fstart;
 553	struct list_head *cur;
 554	void *buddy;
 555	void *buddy2;
 556
 557	{
 558		static int mb_check_counter;
 559		if (mb_check_counter++ % 100 != 0)
 560			return 0;
 561	}
 562
 563	while (order > 1) {
 564		buddy = mb_find_buddy(e4b, order, &max);
 565		MB_CHECK_ASSERT(buddy);
 566		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
 567		MB_CHECK_ASSERT(buddy2);
 568		MB_CHECK_ASSERT(buddy != buddy2);
 569		MB_CHECK_ASSERT(max * 2 == max2);
 570
 571		count = 0;
 572		for (i = 0; i < max; i++) {
 573
 574			if (mb_test_bit(i, buddy)) {
 575				/* only single bit in buddy2 may be 1 */
 576				if (!mb_test_bit(i << 1, buddy2)) {
 577					MB_CHECK_ASSERT(
 578						mb_test_bit((i<<1)+1, buddy2));
 579				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
 580					MB_CHECK_ASSERT(
 581						mb_test_bit(i << 1, buddy2));
 582				}
 583				continue;
 584			}
 585
 586			/* both bits in buddy2 must be 1 */
 587			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
 588			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
 589
 590			for (j = 0; j < (1 << order); j++) {
 591				k = (i * (1 << order)) + j;
 592				MB_CHECK_ASSERT(
 593					!mb_test_bit(k, e4b->bd_bitmap));
 594			}
 595			count++;
 596		}
 597		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
 598		order--;
 599	}
 600
 601	fstart = -1;
 602	buddy = mb_find_buddy(e4b, 0, &max);
 603	for (i = 0; i < max; i++) {
 604		if (!mb_test_bit(i, buddy)) {
 605			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
 606			if (fstart == -1) {
 607				fragments++;
 608				fstart = i;
 609			}
 610			continue;
 611		}
 612		fstart = -1;
 613		/* check used bits only */
 614		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
 615			buddy2 = mb_find_buddy(e4b, j, &max2);
 616			k = i >> j;
 617			MB_CHECK_ASSERT(k < max2);
 618			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
 619		}
 620	}
 621	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
 622	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
 623
 624	grp = ext4_get_group_info(sb, e4b->bd_group);
 625	list_for_each(cur, &grp->bb_prealloc_list) {
 626		ext4_group_t groupnr;
 627		struct ext4_prealloc_space *pa;
 628		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
 629		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
 630		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
 631		for (i = 0; i < pa->pa_len; i++)
 632			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
 633	}
 634	return 0;
 635}
 636#undef MB_CHECK_ASSERT
 637#define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
 638					__FILE__, __func__, __LINE__)
 639#else
 640#define mb_check_buddy(e4b)
 641#endif
 642
 643/*
 644 * Divide blocks started from @first with length @len into
 645 * smaller chunks with power of 2 blocks.
 646 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
 647 * then increase bb_counters[] for corresponded chunk size.
 648 */
 649static void ext4_mb_mark_free_simple(struct super_block *sb,
 650				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
 651					struct ext4_group_info *grp)
 652{
 653	struct ext4_sb_info *sbi = EXT4_SB(sb);
 654	ext4_grpblk_t min;
 655	ext4_grpblk_t max;
 656	ext4_grpblk_t chunk;
 657	unsigned short border;
 658
 659	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
 660
 661	border = 2 << sb->s_blocksize_bits;
 662
 663	while (len > 0) {
 664		/* find how many blocks can be covered since this position */
 665		max = ffs(first | border) - 1;
 666
 667		/* find how many blocks of power 2 we need to mark */
 668		min = fls(len) - 1;
 669
 670		if (max < min)
 671			min = max;
 672		chunk = 1 << min;
 673
 674		/* mark multiblock chunks only */
 675		grp->bb_counters[min]++;
 676		if (min > 0)
 677			mb_clear_bit(first >> min,
 678				     buddy + sbi->s_mb_offsets[min]);
 679
 680		len -= chunk;
 681		first += chunk;
 682	}
 683}
 684
 685/*
 686 * Cache the order of the largest free extent we have available in this block
 687 * group.
 688 */
 689static void
 690mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
 691{
 692	int i;
 693	int bits;
 694
 695	grp->bb_largest_free_order = -1; /* uninit */
 696
 697	bits = sb->s_blocksize_bits + 1;
 698	for (i = bits; i >= 0; i--) {
 699		if (grp->bb_counters[i] > 0) {
 700			grp->bb_largest_free_order = i;
 701			break;
 702		}
 703	}
 704}
 705
 706static noinline_for_stack
 707void ext4_mb_generate_buddy(struct super_block *sb,
 708				void *buddy, void *bitmap, ext4_group_t group)
 709{
 710	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
 
 711	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
 712	ext4_grpblk_t i = 0;
 713	ext4_grpblk_t first;
 714	ext4_grpblk_t len;
 715	unsigned free = 0;
 716	unsigned fragments = 0;
 717	unsigned long long period = get_cycles();
 718
 719	/* initialize buddy from bitmap which is aggregation
 720	 * of on-disk bitmap and preallocations */
 721	i = mb_find_next_zero_bit(bitmap, max, 0);
 722	grp->bb_first_free = i;
 723	while (i < max) {
 724		fragments++;
 725		first = i;
 726		i = mb_find_next_bit(bitmap, max, i);
 727		len = i - first;
 728		free += len;
 729		if (len > 1)
 730			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
 731		else
 732			grp->bb_counters[0]++;
 733		if (i < max)
 734			i = mb_find_next_zero_bit(bitmap, max, i);
 735	}
 736	grp->bb_fragments = fragments;
 737
 738	if (free != grp->bb_free) {
 739		ext4_grp_locked_error(sb, group, 0, 0,
 740				      "%u clusters in bitmap, %u in gd",
 
 741				      free, grp->bb_free);
 742		/*
 743		 * If we intent to continue, we consider group descritor
 744		 * corrupt and update bb_free using bitmap value
 745		 */
 746		grp->bb_free = free;
 
 
 
 
 747	}
 748	mb_set_largest_free_order(sb, grp);
 749
 750	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
 751
 752	period = get_cycles() - period;
 753	spin_lock(&EXT4_SB(sb)->s_bal_lock);
 754	EXT4_SB(sb)->s_mb_buddies_generated++;
 755	EXT4_SB(sb)->s_mb_generation_time += period;
 756	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
 757}
 758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 759/* The buddy information is attached the buddy cache inode
 760 * for convenience. The information regarding each group
 761 * is loaded via ext4_mb_load_buddy. The information involve
 762 * block bitmap and buddy information. The information are
 763 * stored in the inode as
 764 *
 765 * {                        page                        }
 766 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
 767 *
 768 *
 769 * one block each for bitmap and buddy information.
 770 * So for each group we take up 2 blocks. A page can
 771 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
 772 * So it can have information regarding groups_per_page which
 773 * is blocks_per_page/2
 774 *
 775 * Locking note:  This routine takes the block group lock of all groups
 776 * for this page; do not hold this lock when calling this routine!
 777 */
 778
 779static int ext4_mb_init_cache(struct page *page, char *incore)
 780{
 781	ext4_group_t ngroups;
 782	int blocksize;
 783	int blocks_per_page;
 784	int groups_per_page;
 785	int err = 0;
 786	int i;
 787	ext4_group_t first_group, group;
 788	int first_block;
 789	struct super_block *sb;
 790	struct buffer_head *bhs;
 791	struct buffer_head **bh = NULL;
 792	struct inode *inode;
 793	char *data;
 794	char *bitmap;
 795	struct ext4_group_info *grinfo;
 796
 797	mb_debug(1, "init page %lu\n", page->index);
 798
 799	inode = page->mapping->host;
 800	sb = inode->i_sb;
 801	ngroups = ext4_get_groups_count(sb);
 802	blocksize = 1 << inode->i_blkbits;
 803	blocks_per_page = PAGE_CACHE_SIZE / blocksize;
 804
 805	groups_per_page = blocks_per_page >> 1;
 806	if (groups_per_page == 0)
 807		groups_per_page = 1;
 808
 809	/* allocate buffer_heads to read bitmaps */
 810	if (groups_per_page > 1) {
 811		i = sizeof(struct buffer_head *) * groups_per_page;
 812		bh = kzalloc(i, GFP_NOFS);
 813		if (bh == NULL) {
 814			err = -ENOMEM;
 815			goto out;
 816		}
 817	} else
 818		bh = &bhs;
 819
 820	first_group = page->index * blocks_per_page / 2;
 821
 822	/* read all groups the page covers into the cache */
 823	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
 824		if (group >= ngroups)
 825			break;
 826
 827		grinfo = ext4_get_group_info(sb, group);
 828		/*
 829		 * If page is uptodate then we came here after online resize
 830		 * which added some new uninitialized group info structs, so
 831		 * we must skip all initialized uptodate buddies on the page,
 832		 * which may be currently in use by an allocating task.
 833		 */
 834		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
 835			bh[i] = NULL;
 836			continue;
 837		}
 838		if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
 839			err = -ENOMEM;
 
 
 840			goto out;
 841		}
 842		mb_debug(1, "read bitmap for group %u\n", group);
 843	}
 844
 845	/* wait for I/O completion */
 846	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
 847		if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
 848			err = -EIO;
 849			goto out;
 850		}
 
 
 
 851	}
 852
 853	first_block = page->index * blocks_per_page;
 854	for (i = 0; i < blocks_per_page; i++) {
 855		int group;
 856
 857		group = (first_block + i) >> 1;
 858		if (group >= ngroups)
 859			break;
 860
 861		if (!bh[group - first_group])
 862			/* skip initialized uptodate buddy */
 863			continue;
 864
 
 
 
 
 
 865		/*
 866		 * data carry information regarding this
 867		 * particular group in the format specified
 868		 * above
 869		 *
 870		 */
 871		data = page_address(page) + (i * blocksize);
 872		bitmap = bh[group - first_group]->b_data;
 873
 874		/*
 875		 * We place the buddy block and bitmap block
 876		 * close together
 877		 */
 878		if ((first_block + i) & 1) {
 879			/* this is block of buddy */
 880			BUG_ON(incore == NULL);
 881			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
 882				group, page->index, i * blocksize);
 883			trace_ext4_mb_buddy_bitmap_load(sb, group);
 884			grinfo = ext4_get_group_info(sb, group);
 885			grinfo->bb_fragments = 0;
 886			memset(grinfo->bb_counters, 0,
 887			       sizeof(*grinfo->bb_counters) *
 888				(sb->s_blocksize_bits+2));
 889			/*
 890			 * incore got set to the group block bitmap below
 891			 */
 892			ext4_lock_group(sb, group);
 893			/* init the buddy */
 894			memset(data, 0xff, blocksize);
 895			ext4_mb_generate_buddy(sb, data, incore, group);
 896			ext4_unlock_group(sb, group);
 897			incore = NULL;
 898		} else {
 899			/* this is block of bitmap */
 900			BUG_ON(incore != NULL);
 901			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
 902				group, page->index, i * blocksize);
 903			trace_ext4_mb_bitmap_load(sb, group);
 904
 905			/* see comments in ext4_mb_put_pa() */
 906			ext4_lock_group(sb, group);
 907			memcpy(data, bitmap, blocksize);
 908
 909			/* mark all preallocated blks used in in-core bitmap */
 910			ext4_mb_generate_from_pa(sb, data, group);
 911			ext4_mb_generate_from_freelist(sb, data, group);
 912			ext4_unlock_group(sb, group);
 913
 914			/* set incore so that the buddy information can be
 915			 * generated using this
 916			 */
 917			incore = data;
 918		}
 919	}
 920	SetPageUptodate(page);
 921
 922out:
 923	if (bh) {
 924		for (i = 0; i < groups_per_page; i++)
 925			brelse(bh[i]);
 926		if (bh != &bhs)
 927			kfree(bh);
 928	}
 929	return err;
 930}
 931
 932/*
 933 * Lock the buddy and bitmap pages. This make sure other parallel init_group
 934 * on the same buddy page doesn't happen whild holding the buddy page lock.
 935 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
 936 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
 937 */
 938static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
 939		ext4_group_t group, struct ext4_buddy *e4b)
 940{
 941	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
 942	int block, pnum, poff;
 943	int blocks_per_page;
 944	struct page *page;
 945
 946	e4b->bd_buddy_page = NULL;
 947	e4b->bd_bitmap_page = NULL;
 948
 949	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
 950	/*
 951	 * the buddy cache inode stores the block bitmap
 952	 * and buddy information in consecutive blocks.
 953	 * So for each group we need two blocks.
 954	 */
 955	block = group * 2;
 956	pnum = block / blocks_per_page;
 957	poff = block % blocks_per_page;
 958	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
 959	if (!page)
 960		return -EIO;
 961	BUG_ON(page->mapping != inode->i_mapping);
 962	e4b->bd_bitmap_page = page;
 963	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
 964
 965	if (blocks_per_page >= 2) {
 966		/* buddy and bitmap are on the same page */
 967		return 0;
 968	}
 969
 970	block++;
 971	pnum = block / blocks_per_page;
 972	poff = block % blocks_per_page;
 973	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
 974	if (!page)
 975		return -EIO;
 976	BUG_ON(page->mapping != inode->i_mapping);
 977	e4b->bd_buddy_page = page;
 978	return 0;
 979}
 980
 981static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
 982{
 983	if (e4b->bd_bitmap_page) {
 984		unlock_page(e4b->bd_bitmap_page);
 985		page_cache_release(e4b->bd_bitmap_page);
 986	}
 987	if (e4b->bd_buddy_page) {
 988		unlock_page(e4b->bd_buddy_page);
 989		page_cache_release(e4b->bd_buddy_page);
 990	}
 991}
 992
 993/*
 994 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
 995 * block group lock of all groups for this page; do not hold the BG lock when
 996 * calling this routine!
 997 */
 998static noinline_for_stack
 999int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1000{
1001
1002	struct ext4_group_info *this_grp;
1003	struct ext4_buddy e4b;
1004	struct page *page;
1005	int ret = 0;
1006
 
1007	mb_debug(1, "init group %u\n", group);
1008	this_grp = ext4_get_group_info(sb, group);
1009	/*
1010	 * This ensures that we don't reinit the buddy cache
1011	 * page which map to the group from which we are already
1012	 * allocating. If we are looking at the buddy cache we would
1013	 * have taken a reference using ext4_mb_load_buddy and that
1014	 * would have pinned buddy page to page cache.
 
 
1015	 */
1016	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1017	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1018		/*
1019		 * somebody initialized the group
1020		 * return without doing anything
1021		 */
1022		goto err;
1023	}
1024
1025	page = e4b.bd_bitmap_page;
1026	ret = ext4_mb_init_cache(page, NULL);
1027	if (ret)
1028		goto err;
1029	if (!PageUptodate(page)) {
1030		ret = -EIO;
1031		goto err;
1032	}
1033	mark_page_accessed(page);
1034
1035	if (e4b.bd_buddy_page == NULL) {
1036		/*
1037		 * If both the bitmap and buddy are in
1038		 * the same page we don't need to force
1039		 * init the buddy
1040		 */
1041		ret = 0;
1042		goto err;
1043	}
1044	/* init buddy cache */
1045	page = e4b.bd_buddy_page;
1046	ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1047	if (ret)
1048		goto err;
1049	if (!PageUptodate(page)) {
1050		ret = -EIO;
1051		goto err;
1052	}
1053	mark_page_accessed(page);
1054err:
1055	ext4_mb_put_buddy_page_lock(&e4b);
1056	return ret;
1057}
1058
1059/*
1060 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1061 * block group lock of all groups for this page; do not hold the BG lock when
1062 * calling this routine!
1063 */
1064static noinline_for_stack int
1065ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1066					struct ext4_buddy *e4b)
1067{
1068	int blocks_per_page;
1069	int block;
1070	int pnum;
1071	int poff;
1072	struct page *page;
1073	int ret;
1074	struct ext4_group_info *grp;
1075	struct ext4_sb_info *sbi = EXT4_SB(sb);
1076	struct inode *inode = sbi->s_buddy_cache;
1077
 
1078	mb_debug(1, "load group %u\n", group);
1079
1080	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1081	grp = ext4_get_group_info(sb, group);
1082
1083	e4b->bd_blkbits = sb->s_blocksize_bits;
1084	e4b->bd_info = grp;
1085	e4b->bd_sb = sb;
1086	e4b->bd_group = group;
1087	e4b->bd_buddy_page = NULL;
1088	e4b->bd_bitmap_page = NULL;
1089
1090	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1091		/*
1092		 * we need full data about the group
1093		 * to make a good selection
1094		 */
1095		ret = ext4_mb_init_group(sb, group);
1096		if (ret)
1097			return ret;
1098	}
1099
1100	/*
1101	 * the buddy cache inode stores the block bitmap
1102	 * and buddy information in consecutive blocks.
1103	 * So for each group we need two blocks.
1104	 */
1105	block = group * 2;
1106	pnum = block / blocks_per_page;
1107	poff = block % blocks_per_page;
1108
1109	/* we could use find_or_create_page(), but it locks page
1110	 * what we'd like to avoid in fast path ... */
1111	page = find_get_page(inode->i_mapping, pnum);
1112	if (page == NULL || !PageUptodate(page)) {
1113		if (page)
1114			/*
1115			 * drop the page reference and try
1116			 * to get the page with lock. If we
1117			 * are not uptodate that implies
1118			 * somebody just created the page but
1119			 * is yet to initialize the same. So
1120			 * wait for it to initialize.
1121			 */
1122			page_cache_release(page);
1123		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1124		if (page) {
1125			BUG_ON(page->mapping != inode->i_mapping);
1126			if (!PageUptodate(page)) {
1127				ret = ext4_mb_init_cache(page, NULL);
1128				if (ret) {
1129					unlock_page(page);
1130					goto err;
1131				}
1132				mb_cmp_bitmaps(e4b, page_address(page) +
1133					       (poff * sb->s_blocksize));
1134			}
1135			unlock_page(page);
1136		}
1137	}
1138	if (page == NULL || !PageUptodate(page)) {
 
 
 
 
1139		ret = -EIO;
1140		goto err;
1141	}
 
 
1142	e4b->bd_bitmap_page = page;
1143	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1144	mark_page_accessed(page);
1145
1146	block++;
1147	pnum = block / blocks_per_page;
1148	poff = block % blocks_per_page;
1149
1150	page = find_get_page(inode->i_mapping, pnum);
1151	if (page == NULL || !PageUptodate(page)) {
1152		if (page)
1153			page_cache_release(page);
1154		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1155		if (page) {
1156			BUG_ON(page->mapping != inode->i_mapping);
1157			if (!PageUptodate(page)) {
1158				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
 
1159				if (ret) {
1160					unlock_page(page);
1161					goto err;
1162				}
1163			}
1164			unlock_page(page);
1165		}
1166	}
1167	if (page == NULL || !PageUptodate(page)) {
 
 
 
 
1168		ret = -EIO;
1169		goto err;
1170	}
 
 
1171	e4b->bd_buddy_page = page;
1172	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1173	mark_page_accessed(page);
1174
1175	BUG_ON(e4b->bd_bitmap_page == NULL);
1176	BUG_ON(e4b->bd_buddy_page == NULL);
1177
1178	return 0;
1179
1180err:
1181	if (page)
1182		page_cache_release(page);
1183	if (e4b->bd_bitmap_page)
1184		page_cache_release(e4b->bd_bitmap_page);
1185	if (e4b->bd_buddy_page)
1186		page_cache_release(e4b->bd_buddy_page);
1187	e4b->bd_buddy = NULL;
1188	e4b->bd_bitmap = NULL;
1189	return ret;
1190}
1191
 
 
 
 
 
 
1192static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1193{
1194	if (e4b->bd_bitmap_page)
1195		page_cache_release(e4b->bd_bitmap_page);
1196	if (e4b->bd_buddy_page)
1197		page_cache_release(e4b->bd_buddy_page);
1198}
1199
1200
1201static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1202{
1203	int order = 1;
1204	void *bb;
1205
1206	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1207	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1208
1209	bb = e4b->bd_buddy;
1210	while (order <= e4b->bd_blkbits + 1) {
1211		block = block >> 1;
1212		if (!mb_test_bit(block, bb)) {
1213			/* this block is part of buddy of order 'order' */
1214			return order;
1215		}
1216		bb += 1 << (e4b->bd_blkbits - order);
1217		order++;
1218	}
1219	return 0;
1220}
1221
1222static void mb_clear_bits(void *bm, int cur, int len)
1223{
1224	__u32 *addr;
1225
1226	len = cur + len;
1227	while (cur < len) {
1228		if ((cur & 31) == 0 && (len - cur) >= 32) {
1229			/* fast path: clear whole word at once */
1230			addr = bm + (cur >> 3);
1231			*addr = 0;
1232			cur += 32;
1233			continue;
1234		}
1235		mb_clear_bit(cur, bm);
1236		cur++;
1237	}
1238}
1239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1240void ext4_set_bits(void *bm, int cur, int len)
1241{
1242	__u32 *addr;
1243
1244	len = cur + len;
1245	while (cur < len) {
1246		if ((cur & 31) == 0 && (len - cur) >= 32) {
1247			/* fast path: set whole word at once */
1248			addr = bm + (cur >> 3);
1249			*addr = 0xffffffff;
1250			cur += 32;
1251			continue;
1252		}
1253		mb_set_bit(cur, bm);
1254		cur++;
1255	}
1256}
1257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1258static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1259			  int first, int count)
1260{
1261	int block = 0;
1262	int max = 0;
1263	int order;
1264	void *buddy;
1265	void *buddy2;
1266	struct super_block *sb = e4b->bd_sb;
1267
1268	BUG_ON(first + count > (sb->s_blocksize << 3));
 
 
1269	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
 
 
 
 
1270	mb_check_buddy(e4b);
1271	mb_free_blocks_double(inode, e4b, first, count);
1272
1273	e4b->bd_info->bb_free += count;
1274	if (first < e4b->bd_info->bb_first_free)
1275		e4b->bd_info->bb_first_free = first;
1276
1277	/* let's maintain fragments counter */
 
 
1278	if (first != 0)
1279		block = !mb_test_bit(first - 1, e4b->bd_bitmap);
1280	if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1281		max = !mb_test_bit(first + count, e4b->bd_bitmap);
1282	if (block && max)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1283		e4b->bd_info->bb_fragments--;
1284	else if (!block && !max)
1285		e4b->bd_info->bb_fragments++;
1286
1287	/* let's maintain buddy itself */
1288	while (count-- > 0) {
1289		block = first++;
1290		order = 0;
1291
1292		if (!mb_test_bit(block, e4b->bd_bitmap)) {
1293			ext4_fsblk_t blocknr;
1294
1295			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1296			blocknr += EXT4_C2B(EXT4_SB(sb), block);
1297			ext4_grp_locked_error(sb, e4b->bd_group,
1298					      inode ? inode->i_ino : 0,
1299					      blocknr,
1300					      "freeing already freed block "
1301					      "(bit %u)", block);
1302		}
1303		mb_clear_bit(block, e4b->bd_bitmap);
1304		e4b->bd_info->bb_counters[order]++;
1305
1306		/* start of the buddy */
1307		buddy = mb_find_buddy(e4b, order, &max);
1308
1309		do {
1310			block &= ~1UL;
1311			if (mb_test_bit(block, buddy) ||
1312					mb_test_bit(block + 1, buddy))
1313				break;
1314
1315			/* both the buddies are free, try to coalesce them */
1316			buddy2 = mb_find_buddy(e4b, order + 1, &max);
1317
1318			if (!buddy2)
1319				break;
1320
1321			if (order > 0) {
1322				/* for special purposes, we don't set
1323				 * free bits in bitmap */
1324				mb_set_bit(block, buddy);
1325				mb_set_bit(block + 1, buddy);
1326			}
1327			e4b->bd_info->bb_counters[order]--;
1328			e4b->bd_info->bb_counters[order]--;
1329
1330			block = block >> 1;
1331			order++;
1332			e4b->bd_info->bb_counters[order]++;
1333
1334			mb_clear_bit(block, buddy2);
1335			buddy = buddy2;
1336		} while (1);
1337	}
1338	mb_set_largest_free_order(sb, e4b->bd_info);
1339	mb_check_buddy(e4b);
1340}
1341
1342static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1343				int needed, struct ext4_free_extent *ex)
1344{
1345	int next = block;
1346	int max;
1347	void *buddy;
1348
1349	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1350	BUG_ON(ex == NULL);
1351
1352	buddy = mb_find_buddy(e4b, order, &max);
1353	BUG_ON(buddy == NULL);
1354	BUG_ON(block >= max);
1355	if (mb_test_bit(block, buddy)) {
1356		ex->fe_len = 0;
1357		ex->fe_start = 0;
1358		ex->fe_group = 0;
1359		return 0;
1360	}
1361
1362	/* FIXME dorp order completely ? */
1363	if (likely(order == 0)) {
1364		/* find actual order */
1365		order = mb_find_order_for_block(e4b, block);
1366		block = block >> order;
1367	}
1368
1369	ex->fe_len = 1 << order;
1370	ex->fe_start = block << order;
1371	ex->fe_group = e4b->bd_group;
1372
1373	/* calc difference from given start */
1374	next = next - ex->fe_start;
1375	ex->fe_len -= next;
1376	ex->fe_start += next;
1377
1378	while (needed > ex->fe_len &&
1379	       (buddy = mb_find_buddy(e4b, order, &max))) {
1380
1381		if (block + 1 >= max)
1382			break;
1383
1384		next = (block + 1) * (1 << order);
1385		if (mb_test_bit(next, e4b->bd_bitmap))
1386			break;
1387
1388		order = mb_find_order_for_block(e4b, next);
1389
1390		block = next >> order;
1391		ex->fe_len += 1 << order;
1392	}
1393
1394	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1395	return ex->fe_len;
1396}
1397
1398static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1399{
1400	int ord;
1401	int mlen = 0;
1402	int max = 0;
1403	int cur;
1404	int start = ex->fe_start;
1405	int len = ex->fe_len;
1406	unsigned ret = 0;
1407	int len0 = len;
1408	void *buddy;
1409
1410	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1411	BUG_ON(e4b->bd_group != ex->fe_group);
1412	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1413	mb_check_buddy(e4b);
1414	mb_mark_used_double(e4b, start, len);
1415
1416	e4b->bd_info->bb_free -= len;
1417	if (e4b->bd_info->bb_first_free == start)
1418		e4b->bd_info->bb_first_free += len;
1419
1420	/* let's maintain fragments counter */
1421	if (start != 0)
1422		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1423	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1424		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1425	if (mlen && max)
1426		e4b->bd_info->bb_fragments++;
1427	else if (!mlen && !max)
1428		e4b->bd_info->bb_fragments--;
1429
1430	/* let's maintain buddy itself */
1431	while (len) {
1432		ord = mb_find_order_for_block(e4b, start);
1433
1434		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1435			/* the whole chunk may be allocated at once! */
1436			mlen = 1 << ord;
1437			buddy = mb_find_buddy(e4b, ord, &max);
1438			BUG_ON((start >> ord) >= max);
1439			mb_set_bit(start >> ord, buddy);
1440			e4b->bd_info->bb_counters[ord]--;
1441			start += mlen;
1442			len -= mlen;
1443			BUG_ON(len < 0);
1444			continue;
1445		}
1446
1447		/* store for history */
1448		if (ret == 0)
1449			ret = len | (ord << 16);
1450
1451		/* we have to split large buddy */
1452		BUG_ON(ord <= 0);
1453		buddy = mb_find_buddy(e4b, ord, &max);
1454		mb_set_bit(start >> ord, buddy);
1455		e4b->bd_info->bb_counters[ord]--;
1456
1457		ord--;
1458		cur = (start >> ord) & ~1U;
1459		buddy = mb_find_buddy(e4b, ord, &max);
1460		mb_clear_bit(cur, buddy);
1461		mb_clear_bit(cur + 1, buddy);
1462		e4b->bd_info->bb_counters[ord]++;
1463		e4b->bd_info->bb_counters[ord]++;
1464	}
1465	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1466
1467	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1468	mb_check_buddy(e4b);
1469
1470	return ret;
1471}
1472
1473/*
1474 * Must be called under group lock!
1475 */
1476static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1477					struct ext4_buddy *e4b)
1478{
1479	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1480	int ret;
1481
1482	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1483	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1484
1485	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1486	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1487	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1488
1489	/* preallocation can change ac_b_ex, thus we store actually
1490	 * allocated blocks for history */
1491	ac->ac_f_ex = ac->ac_b_ex;
1492
1493	ac->ac_status = AC_STATUS_FOUND;
1494	ac->ac_tail = ret & 0xffff;
1495	ac->ac_buddy = ret >> 16;
1496
1497	/*
1498	 * take the page reference. We want the page to be pinned
1499	 * so that we don't get a ext4_mb_init_cache_call for this
1500	 * group until we update the bitmap. That would mean we
1501	 * double allocate blocks. The reference is dropped
1502	 * in ext4_mb_release_context
1503	 */
1504	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1505	get_page(ac->ac_bitmap_page);
1506	ac->ac_buddy_page = e4b->bd_buddy_page;
1507	get_page(ac->ac_buddy_page);
1508	/* store last allocated for subsequent stream allocation */
1509	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1510		spin_lock(&sbi->s_md_lock);
1511		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1512		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1513		spin_unlock(&sbi->s_md_lock);
1514	}
1515}
1516
1517/*
1518 * regular allocator, for general purposes allocation
1519 */
1520
1521static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1522					struct ext4_buddy *e4b,
1523					int finish_group)
1524{
1525	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1526	struct ext4_free_extent *bex = &ac->ac_b_ex;
1527	struct ext4_free_extent *gex = &ac->ac_g_ex;
1528	struct ext4_free_extent ex;
1529	int max;
1530
1531	if (ac->ac_status == AC_STATUS_FOUND)
1532		return;
1533	/*
1534	 * We don't want to scan for a whole year
1535	 */
1536	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1537			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1538		ac->ac_status = AC_STATUS_BREAK;
1539		return;
1540	}
1541
1542	/*
1543	 * Haven't found good chunk so far, let's continue
1544	 */
1545	if (bex->fe_len < gex->fe_len)
1546		return;
1547
1548	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1549			&& bex->fe_group == e4b->bd_group) {
1550		/* recheck chunk's availability - we don't know
1551		 * when it was found (within this lock-unlock
1552		 * period or not) */
1553		max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1554		if (max >= gex->fe_len) {
1555			ext4_mb_use_best_found(ac, e4b);
1556			return;
1557		}
1558	}
1559}
1560
1561/*
1562 * The routine checks whether found extent is good enough. If it is,
1563 * then the extent gets marked used and flag is set to the context
1564 * to stop scanning. Otherwise, the extent is compared with the
1565 * previous found extent and if new one is better, then it's stored
1566 * in the context. Later, the best found extent will be used, if
1567 * mballoc can't find good enough extent.
1568 *
1569 * FIXME: real allocation policy is to be designed yet!
1570 */
1571static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1572					struct ext4_free_extent *ex,
1573					struct ext4_buddy *e4b)
1574{
1575	struct ext4_free_extent *bex = &ac->ac_b_ex;
1576	struct ext4_free_extent *gex = &ac->ac_g_ex;
1577
1578	BUG_ON(ex->fe_len <= 0);
1579	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1580	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1581	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1582
1583	ac->ac_found++;
1584
1585	/*
1586	 * The special case - take what you catch first
1587	 */
1588	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1589		*bex = *ex;
1590		ext4_mb_use_best_found(ac, e4b);
1591		return;
1592	}
1593
1594	/*
1595	 * Let's check whether the chuck is good enough
1596	 */
1597	if (ex->fe_len == gex->fe_len) {
1598		*bex = *ex;
1599		ext4_mb_use_best_found(ac, e4b);
1600		return;
1601	}
1602
1603	/*
1604	 * If this is first found extent, just store it in the context
1605	 */
1606	if (bex->fe_len == 0) {
1607		*bex = *ex;
1608		return;
1609	}
1610
1611	/*
1612	 * If new found extent is better, store it in the context
1613	 */
1614	if (bex->fe_len < gex->fe_len) {
1615		/* if the request isn't satisfied, any found extent
1616		 * larger than previous best one is better */
1617		if (ex->fe_len > bex->fe_len)
1618			*bex = *ex;
1619	} else if (ex->fe_len > gex->fe_len) {
1620		/* if the request is satisfied, then we try to find
1621		 * an extent that still satisfy the request, but is
1622		 * smaller than previous one */
1623		if (ex->fe_len < bex->fe_len)
1624			*bex = *ex;
1625	}
1626
1627	ext4_mb_check_limits(ac, e4b, 0);
1628}
1629
1630static noinline_for_stack
1631int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1632					struct ext4_buddy *e4b)
1633{
1634	struct ext4_free_extent ex = ac->ac_b_ex;
1635	ext4_group_t group = ex.fe_group;
1636	int max;
1637	int err;
1638
1639	BUG_ON(ex.fe_len <= 0);
1640	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1641	if (err)
1642		return err;
1643
1644	ext4_lock_group(ac->ac_sb, group);
1645	max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1646
1647	if (max > 0) {
1648		ac->ac_b_ex = ex;
1649		ext4_mb_use_best_found(ac, e4b);
1650	}
1651
1652	ext4_unlock_group(ac->ac_sb, group);
1653	ext4_mb_unload_buddy(e4b);
1654
1655	return 0;
1656}
1657
1658static noinline_for_stack
1659int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1660				struct ext4_buddy *e4b)
1661{
1662	ext4_group_t group = ac->ac_g_ex.fe_group;
1663	int max;
1664	int err;
1665	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
 
1666	struct ext4_free_extent ex;
1667
1668	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1669		return 0;
 
 
1670
1671	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1672	if (err)
1673		return err;
1674
 
 
 
 
 
1675	ext4_lock_group(ac->ac_sb, group);
1676	max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1677			     ac->ac_g_ex.fe_len, &ex);
 
1678
1679	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1680		ext4_fsblk_t start;
1681
1682		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1683			ex.fe_start;
1684		/* use do_div to get remainder (would be 64-bit modulo) */
1685		if (do_div(start, sbi->s_stripe) == 0) {
1686			ac->ac_found++;
1687			ac->ac_b_ex = ex;
1688			ext4_mb_use_best_found(ac, e4b);
1689		}
1690	} else if (max >= ac->ac_g_ex.fe_len) {
1691		BUG_ON(ex.fe_len <= 0);
1692		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1693		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1694		ac->ac_found++;
1695		ac->ac_b_ex = ex;
1696		ext4_mb_use_best_found(ac, e4b);
1697	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1698		/* Sometimes, caller may want to merge even small
1699		 * number of blocks to an existing extent */
1700		BUG_ON(ex.fe_len <= 0);
1701		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1702		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1703		ac->ac_found++;
1704		ac->ac_b_ex = ex;
1705		ext4_mb_use_best_found(ac, e4b);
1706	}
1707	ext4_unlock_group(ac->ac_sb, group);
1708	ext4_mb_unload_buddy(e4b);
1709
1710	return 0;
1711}
1712
1713/*
1714 * The routine scans buddy structures (not bitmap!) from given order
1715 * to max order and tries to find big enough chunk to satisfy the req
1716 */
1717static noinline_for_stack
1718void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1719					struct ext4_buddy *e4b)
1720{
1721	struct super_block *sb = ac->ac_sb;
1722	struct ext4_group_info *grp = e4b->bd_info;
1723	void *buddy;
1724	int i;
1725	int k;
1726	int max;
1727
1728	BUG_ON(ac->ac_2order <= 0);
1729	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1730		if (grp->bb_counters[i] == 0)
1731			continue;
1732
1733		buddy = mb_find_buddy(e4b, i, &max);
1734		BUG_ON(buddy == NULL);
1735
1736		k = mb_find_next_zero_bit(buddy, max, 0);
1737		BUG_ON(k >= max);
1738
1739		ac->ac_found++;
1740
1741		ac->ac_b_ex.fe_len = 1 << i;
1742		ac->ac_b_ex.fe_start = k << i;
1743		ac->ac_b_ex.fe_group = e4b->bd_group;
1744
1745		ext4_mb_use_best_found(ac, e4b);
1746
1747		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1748
1749		if (EXT4_SB(sb)->s_mb_stats)
1750			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1751
1752		break;
1753	}
1754}
1755
1756/*
1757 * The routine scans the group and measures all found extents.
1758 * In order to optimize scanning, caller must pass number of
1759 * free blocks in the group, so the routine can know upper limit.
1760 */
1761static noinline_for_stack
1762void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1763					struct ext4_buddy *e4b)
1764{
1765	struct super_block *sb = ac->ac_sb;
1766	void *bitmap = e4b->bd_bitmap;
1767	struct ext4_free_extent ex;
1768	int i;
1769	int free;
1770
1771	free = e4b->bd_info->bb_free;
1772	BUG_ON(free <= 0);
1773
1774	i = e4b->bd_info->bb_first_free;
1775
1776	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1777		i = mb_find_next_zero_bit(bitmap,
1778						EXT4_CLUSTERS_PER_GROUP(sb), i);
1779		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1780			/*
1781			 * IF we have corrupt bitmap, we won't find any
1782			 * free blocks even though group info says we
1783			 * we have free blocks
1784			 */
1785			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1786					"%d free clusters as per "
1787					"group info. But bitmap says 0",
1788					free);
1789			break;
1790		}
1791
1792		mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1793		BUG_ON(ex.fe_len <= 0);
1794		if (free < ex.fe_len) {
1795			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1796					"%d free clusters as per "
1797					"group info. But got %d blocks",
1798					free, ex.fe_len);
1799			/*
1800			 * The number of free blocks differs. This mostly
1801			 * indicate that the bitmap is corrupt. So exit
1802			 * without claiming the space.
1803			 */
1804			break;
1805		}
1806
1807		ext4_mb_measure_extent(ac, &ex, e4b);
1808
1809		i += ex.fe_len;
1810		free -= ex.fe_len;
1811	}
1812
1813	ext4_mb_check_limits(ac, e4b, 1);
1814}
1815
1816/*
1817 * This is a special case for storages like raid5
1818 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1819 */
1820static noinline_for_stack
1821void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1822				 struct ext4_buddy *e4b)
1823{
1824	struct super_block *sb = ac->ac_sb;
1825	struct ext4_sb_info *sbi = EXT4_SB(sb);
1826	void *bitmap = e4b->bd_bitmap;
1827	struct ext4_free_extent ex;
1828	ext4_fsblk_t first_group_block;
1829	ext4_fsblk_t a;
1830	ext4_grpblk_t i;
1831	int max;
1832
1833	BUG_ON(sbi->s_stripe == 0);
1834
1835	/* find first stripe-aligned block in group */
1836	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1837
1838	a = first_group_block + sbi->s_stripe - 1;
1839	do_div(a, sbi->s_stripe);
1840	i = (a * sbi->s_stripe) - first_group_block;
1841
1842	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1843		if (!mb_test_bit(i, bitmap)) {
1844			max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1845			if (max >= sbi->s_stripe) {
1846				ac->ac_found++;
 
1847				ac->ac_b_ex = ex;
1848				ext4_mb_use_best_found(ac, e4b);
1849				break;
1850			}
1851		}
1852		i += sbi->s_stripe;
1853	}
1854}
1855
1856/* This is now called BEFORE we load the buddy bitmap. */
 
 
 
 
 
1857static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1858				ext4_group_t group, int cr)
1859{
1860	unsigned free, fragments;
1861	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1862	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1863
1864	BUG_ON(cr < 0 || cr >= 4);
1865
 
 
 
 
 
 
 
 
 
1866	/* We only do this if the grp has never been initialized */
1867	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1868		int ret = ext4_mb_init_group(ac->ac_sb, group);
1869		if (ret)
1870			return 0;
1871	}
1872
1873	free = grp->bb_free;
1874	fragments = grp->bb_fragments;
1875	if (free == 0)
1876		return 0;
1877	if (fragments == 0)
1878		return 0;
1879
1880	switch (cr) {
1881	case 0:
1882		BUG_ON(ac->ac_2order == 0);
1883
1884		if (grp->bb_largest_free_order < ac->ac_2order)
1885			return 0;
1886
1887		/* Avoid using the first bg of a flexgroup for data files */
1888		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1889		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1890		    ((group % flex_size) == 0))
1891			return 0;
1892
 
 
 
 
 
 
 
1893		return 1;
1894	case 1:
1895		if ((free / fragments) >= ac->ac_g_ex.fe_len)
1896			return 1;
1897		break;
1898	case 2:
1899		if (free >= ac->ac_g_ex.fe_len)
1900			return 1;
1901		break;
1902	case 3:
1903		return 1;
1904	default:
1905		BUG();
1906	}
1907
1908	return 0;
1909}
1910
1911static noinline_for_stack int
1912ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1913{
1914	ext4_group_t ngroups, group, i;
1915	int cr;
1916	int err = 0;
1917	struct ext4_sb_info *sbi;
1918	struct super_block *sb;
1919	struct ext4_buddy e4b;
1920
1921	sb = ac->ac_sb;
1922	sbi = EXT4_SB(sb);
1923	ngroups = ext4_get_groups_count(sb);
1924	/* non-extent files are limited to low blocks/groups */
1925	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
1926		ngroups = sbi->s_blockfile_groups;
1927
1928	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1929
1930	/* first, try the goal */
1931	err = ext4_mb_find_by_goal(ac, &e4b);
1932	if (err || ac->ac_status == AC_STATUS_FOUND)
1933		goto out;
1934
1935	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1936		goto out;
1937
1938	/*
1939	 * ac->ac2_order is set only if the fe_len is a power of 2
1940	 * if ac2_order is set we also set criteria to 0 so that we
1941	 * try exact allocation using buddy.
1942	 */
1943	i = fls(ac->ac_g_ex.fe_len);
1944	ac->ac_2order = 0;
1945	/*
1946	 * We search using buddy data only if the order of the request
1947	 * is greater than equal to the sbi_s_mb_order2_reqs
1948	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1949	 */
1950	if (i >= sbi->s_mb_order2_reqs) {
1951		/*
1952		 * This should tell if fe_len is exactly power of 2
1953		 */
1954		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1955			ac->ac_2order = i - 1;
1956	}
1957
1958	/* if stream allocation is enabled, use global goal */
1959	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1960		/* TBD: may be hot point */
1961		spin_lock(&sbi->s_md_lock);
1962		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1963		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1964		spin_unlock(&sbi->s_md_lock);
1965	}
1966
1967	/* Let's just scan groups to find more-less suitable blocks */
1968	cr = ac->ac_2order ? 0 : 1;
1969	/*
1970	 * cr == 0 try to get exact allocation,
1971	 * cr == 3  try to get anything
1972	 */
1973repeat:
1974	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
1975		ac->ac_criteria = cr;
1976		/*
1977		 * searching for the right group start
1978		 * from the goal value specified
1979		 */
1980		group = ac->ac_g_ex.fe_group;
1981
1982		for (i = 0; i < ngroups; group++, i++) {
1983			if (group == ngroups)
 
 
 
 
 
 
1984				group = 0;
1985
1986			/* This now checks without needing the buddy page */
1987			if (!ext4_mb_good_group(ac, group, cr))
 
 
 
1988				continue;
 
1989
1990			err = ext4_mb_load_buddy(sb, group, &e4b);
1991			if (err)
1992				goto out;
1993
1994			ext4_lock_group(sb, group);
1995
1996			/*
1997			 * We need to check again after locking the
1998			 * block group
1999			 */
2000			if (!ext4_mb_good_group(ac, group, cr)) {
 
2001				ext4_unlock_group(sb, group);
2002				ext4_mb_unload_buddy(&e4b);
 
 
2003				continue;
2004			}
2005
2006			ac->ac_groups_scanned++;
2007			if (cr == 0)
2008				ext4_mb_simple_scan_group(ac, &e4b);
2009			else if (cr == 1 && sbi->s_stripe &&
2010					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2011				ext4_mb_scan_aligned(ac, &e4b);
2012			else
2013				ext4_mb_complex_scan_group(ac, &e4b);
2014
2015			ext4_unlock_group(sb, group);
2016			ext4_mb_unload_buddy(&e4b);
2017
2018			if (ac->ac_status != AC_STATUS_CONTINUE)
2019				break;
2020		}
2021	}
2022
2023	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2024	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2025		/*
2026		 * We've been searching too long. Let's try to allocate
2027		 * the best chunk we've found so far
2028		 */
2029
2030		ext4_mb_try_best_found(ac, &e4b);
2031		if (ac->ac_status != AC_STATUS_FOUND) {
2032			/*
2033			 * Someone more lucky has already allocated it.
2034			 * The only thing we can do is just take first
2035			 * found block(s)
2036			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2037			 */
2038			ac->ac_b_ex.fe_group = 0;
2039			ac->ac_b_ex.fe_start = 0;
2040			ac->ac_b_ex.fe_len = 0;
2041			ac->ac_status = AC_STATUS_CONTINUE;
2042			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2043			cr = 3;
2044			atomic_inc(&sbi->s_mb_lost_chunks);
2045			goto repeat;
2046		}
2047	}
2048out:
 
 
2049	return err;
2050}
2051
2052static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2053{
2054	struct super_block *sb = seq->private;
2055	ext4_group_t group;
2056
2057	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2058		return NULL;
2059	group = *pos + 1;
2060	return (void *) ((unsigned long) group);
2061}
2062
2063static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2064{
2065	struct super_block *sb = seq->private;
2066	ext4_group_t group;
2067
2068	++*pos;
2069	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2070		return NULL;
2071	group = *pos + 1;
2072	return (void *) ((unsigned long) group);
2073}
2074
2075static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2076{
2077	struct super_block *sb = seq->private;
2078	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2079	int i;
2080	int err;
2081	struct ext4_buddy e4b;
 
2082	struct sg {
2083		struct ext4_group_info info;
2084		ext4_grpblk_t counters[16];
2085	} sg;
2086
2087	group--;
2088	if (group == 0)
2089		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2090				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2091				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2092			   "group", "free", "frags", "first",
2093			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2094			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2095
2096	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2097		sizeof(struct ext4_group_info);
2098	err = ext4_mb_load_buddy(sb, group, &e4b);
2099	if (err) {
2100		seq_printf(seq, "#%-5u: I/O error\n", group);
2101		return 0;
 
 
 
 
 
2102	}
2103	ext4_lock_group(sb, group);
2104	memcpy(&sg, ext4_get_group_info(sb, group), i);
2105	ext4_unlock_group(sb, group);
2106	ext4_mb_unload_buddy(&e4b);
 
2107
2108	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2109			sg.info.bb_fragments, sg.info.bb_first_free);
2110	for (i = 0; i <= 13; i++)
2111		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2112				sg.info.bb_counters[i] : 0);
2113	seq_printf(seq, " ]\n");
2114
2115	return 0;
2116}
2117
2118static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2119{
2120}
2121
2122static const struct seq_operations ext4_mb_seq_groups_ops = {
2123	.start  = ext4_mb_seq_groups_start,
2124	.next   = ext4_mb_seq_groups_next,
2125	.stop   = ext4_mb_seq_groups_stop,
2126	.show   = ext4_mb_seq_groups_show,
2127};
2128
2129static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2130{
2131	struct super_block *sb = PDE(inode)->data;
2132	int rc;
2133
2134	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2135	if (rc == 0) {
2136		struct seq_file *m = file->private_data;
2137		m->private = sb;
2138	}
2139	return rc;
2140
2141}
2142
2143static const struct file_operations ext4_mb_seq_groups_fops = {
2144	.owner		= THIS_MODULE,
2145	.open		= ext4_mb_seq_groups_open,
2146	.read		= seq_read,
2147	.llseek		= seq_lseek,
2148	.release	= seq_release,
2149};
2150
2151static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2152{
2153	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2154	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2155
2156	BUG_ON(!cachep);
2157	return cachep;
2158}
2159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2160/* Create and initialize ext4_group_info data for the given group. */
2161int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2162			  struct ext4_group_desc *desc)
2163{
2164	int i;
2165	int metalen = 0;
2166	struct ext4_sb_info *sbi = EXT4_SB(sb);
2167	struct ext4_group_info **meta_group_info;
2168	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2169
2170	/*
2171	 * First check if this group is the first of a reserved block.
2172	 * If it's true, we have to allocate a new table of pointers
2173	 * to ext4_group_info structures
2174	 */
2175	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2176		metalen = sizeof(*meta_group_info) <<
2177			EXT4_DESC_PER_BLOCK_BITS(sb);
2178		meta_group_info = kmalloc(metalen, GFP_KERNEL);
2179		if (meta_group_info == NULL) {
2180			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2181				 "for a buddy group");
2182			goto exit_meta_group_info;
2183		}
2184		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2185			meta_group_info;
2186	}
2187
2188	meta_group_info =
2189		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2190	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2191
2192	meta_group_info[i] = kmem_cache_alloc(cachep, GFP_KERNEL);
2193	if (meta_group_info[i] == NULL) {
2194		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2195		goto exit_group_info;
2196	}
2197	memset(meta_group_info[i], 0, kmem_cache_size(cachep));
2198	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2199		&(meta_group_info[i]->bb_state));
2200
2201	/*
2202	 * initialize bb_free to be able to skip
2203	 * empty groups without initialization
2204	 */
2205	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2206		meta_group_info[i]->bb_free =
2207			ext4_free_clusters_after_init(sb, group, desc);
2208	} else {
2209		meta_group_info[i]->bb_free =
2210			ext4_free_group_clusters(sb, desc);
2211	}
2212
2213	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2214	init_rwsem(&meta_group_info[i]->alloc_sem);
2215	meta_group_info[i]->bb_free_root = RB_ROOT;
2216	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2217
2218#ifdef DOUBLE_CHECK
2219	{
2220		struct buffer_head *bh;
2221		meta_group_info[i]->bb_bitmap =
2222			kmalloc(sb->s_blocksize, GFP_KERNEL);
2223		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2224		bh = ext4_read_block_bitmap(sb, group);
2225		BUG_ON(bh == NULL);
2226		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2227			sb->s_blocksize);
2228		put_bh(bh);
2229	}
2230#endif
2231
2232	return 0;
2233
2234exit_group_info:
2235	/* If a meta_group_info table has been allocated, release it now */
2236	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2237		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2238		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2239	}
2240exit_meta_group_info:
2241	return -ENOMEM;
2242} /* ext4_mb_add_groupinfo */
2243
2244static int ext4_mb_init_backend(struct super_block *sb)
2245{
2246	ext4_group_t ngroups = ext4_get_groups_count(sb);
2247	ext4_group_t i;
2248	struct ext4_sb_info *sbi = EXT4_SB(sb);
2249	struct ext4_super_block *es = sbi->s_es;
2250	int num_meta_group_infos;
2251	int num_meta_group_infos_max;
2252	int array_size;
2253	struct ext4_group_desc *desc;
2254	struct kmem_cache *cachep;
2255
2256	/* This is the number of blocks used by GDT */
2257	num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2258				1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2259
2260	/*
2261	 * This is the total number of blocks used by GDT including
2262	 * the number of reserved blocks for GDT.
2263	 * The s_group_info array is allocated with this value
2264	 * to allow a clean online resize without a complex
2265	 * manipulation of pointer.
2266	 * The drawback is the unused memory when no resize
2267	 * occurs but it's very low in terms of pages
2268	 * (see comments below)
2269	 * Need to handle this properly when META_BG resizing is allowed
2270	 */
2271	num_meta_group_infos_max = num_meta_group_infos +
2272				le16_to_cpu(es->s_reserved_gdt_blocks);
2273
2274	/*
2275	 * array_size is the size of s_group_info array. We round it
2276	 * to the next power of two because this approximation is done
2277	 * internally by kmalloc so we can have some more memory
2278	 * for free here (e.g. may be used for META_BG resize).
2279	 */
2280	array_size = 1;
2281	while (array_size < sizeof(*sbi->s_group_info) *
2282	       num_meta_group_infos_max)
2283		array_size = array_size << 1;
2284	/* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2285	 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2286	 * So a two level scheme suffices for now. */
2287	sbi->s_group_info = ext4_kvzalloc(array_size, GFP_KERNEL);
2288	if (sbi->s_group_info == NULL) {
2289		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2290		return -ENOMEM;
2291	}
2292	sbi->s_buddy_cache = new_inode(sb);
2293	if (sbi->s_buddy_cache == NULL) {
2294		ext4_msg(sb, KERN_ERR, "can't get new inode");
2295		goto err_freesgi;
2296	}
2297	/* To avoid potentially colliding with an valid on-disk inode number,
2298	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2299	 * not in the inode hash, so it should never be found by iget(), but
2300	 * this will avoid confusion if it ever shows up during debugging. */
2301	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2302	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2303	for (i = 0; i < ngroups; i++) {
2304		desc = ext4_get_group_desc(sb, i, NULL);
2305		if (desc == NULL) {
2306			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2307			goto err_freebuddy;
2308		}
2309		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2310			goto err_freebuddy;
2311	}
2312
2313	return 0;
2314
2315err_freebuddy:
2316	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2317	while (i-- > 0)
2318		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2319	i = num_meta_group_infos;
2320	while (i-- > 0)
2321		kfree(sbi->s_group_info[i]);
2322	iput(sbi->s_buddy_cache);
2323err_freesgi:
2324	ext4_kvfree(sbi->s_group_info);
2325	return -ENOMEM;
2326}
2327
2328static void ext4_groupinfo_destroy_slabs(void)
2329{
2330	int i;
2331
2332	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2333		if (ext4_groupinfo_caches[i])
2334			kmem_cache_destroy(ext4_groupinfo_caches[i]);
2335		ext4_groupinfo_caches[i] = NULL;
2336	}
2337}
2338
2339static int ext4_groupinfo_create_slab(size_t size)
2340{
2341	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2342	int slab_size;
2343	int blocksize_bits = order_base_2(size);
2344	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2345	struct kmem_cache *cachep;
2346
2347	if (cache_index >= NR_GRPINFO_CACHES)
2348		return -EINVAL;
2349
2350	if (unlikely(cache_index < 0))
2351		cache_index = 0;
2352
2353	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2354	if (ext4_groupinfo_caches[cache_index]) {
2355		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2356		return 0;	/* Already created */
2357	}
2358
2359	slab_size = offsetof(struct ext4_group_info,
2360				bb_counters[blocksize_bits + 2]);
2361
2362	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2363					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2364					NULL);
2365
2366	ext4_groupinfo_caches[cache_index] = cachep;
2367
2368	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2369	if (!cachep) {
2370		printk(KERN_EMERG
2371		       "EXT4-fs: no memory for groupinfo slab cache\n");
2372		return -ENOMEM;
2373	}
2374
2375	return 0;
2376}
2377
2378int ext4_mb_init(struct super_block *sb)
2379{
2380	struct ext4_sb_info *sbi = EXT4_SB(sb);
2381	unsigned i, j;
2382	unsigned offset;
2383	unsigned max;
2384	int ret;
2385
2386	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2387
2388	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2389	if (sbi->s_mb_offsets == NULL) {
2390		ret = -ENOMEM;
2391		goto out;
2392	}
2393
2394	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2395	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2396	if (sbi->s_mb_maxs == NULL) {
2397		ret = -ENOMEM;
2398		goto out;
2399	}
2400
2401	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2402	if (ret < 0)
2403		goto out;
2404
2405	/* order 0 is regular bitmap */
2406	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2407	sbi->s_mb_offsets[0] = 0;
2408
2409	i = 1;
2410	offset = 0;
2411	max = sb->s_blocksize << 2;
2412	do {
2413		sbi->s_mb_offsets[i] = offset;
2414		sbi->s_mb_maxs[i] = max;
2415		offset += 1 << (sb->s_blocksize_bits - i);
2416		max = max >> 1;
2417		i++;
2418	} while (i <= sb->s_blocksize_bits + 1);
2419
2420	spin_lock_init(&sbi->s_md_lock);
2421	spin_lock_init(&sbi->s_bal_lock);
2422
2423	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2424	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2425	sbi->s_mb_stats = MB_DEFAULT_STATS;
2426	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2427	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2428	/*
2429	 * The default group preallocation is 512, which for 4k block
2430	 * sizes translates to 2 megabytes.  However for bigalloc file
2431	 * systems, this is probably too big (i.e, if the cluster size
2432	 * is 1 megabyte, then group preallocation size becomes half a
2433	 * gigabyte!).  As a default, we will keep a two megabyte
2434	 * group pralloc size for cluster sizes up to 64k, and after
2435	 * that, we will force a minimum group preallocation size of
2436	 * 32 clusters.  This translates to 8 megs when the cluster
2437	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2438	 * which seems reasonable as a default.
2439	 */
2440	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2441				       sbi->s_cluster_bits, 32);
2442	/*
2443	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2444	 * to the lowest multiple of s_stripe which is bigger than
2445	 * the s_mb_group_prealloc as determined above. We want
2446	 * the preallocation size to be an exact multiple of the
2447	 * RAID stripe size so that preallocations don't fragment
2448	 * the stripes.
2449	 */
2450	if (sbi->s_stripe > 1) {
2451		sbi->s_mb_group_prealloc = roundup(
2452			sbi->s_mb_group_prealloc, sbi->s_stripe);
2453	}
2454
2455	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2456	if (sbi->s_locality_groups == NULL) {
2457		ret = -ENOMEM;
2458		goto out_free_groupinfo_slab;
2459	}
2460	for_each_possible_cpu(i) {
2461		struct ext4_locality_group *lg;
2462		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2463		mutex_init(&lg->lg_mutex);
2464		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2465			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2466		spin_lock_init(&lg->lg_prealloc_lock);
2467	}
2468
2469	/* init file for buddy data */
2470	ret = ext4_mb_init_backend(sb);
2471	if (ret != 0)
2472		goto out_free_locality_groups;
2473
2474	if (sbi->s_proc)
2475		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2476				 &ext4_mb_seq_groups_fops, sb);
2477
2478	return 0;
2479
2480out_free_locality_groups:
2481	free_percpu(sbi->s_locality_groups);
2482	sbi->s_locality_groups = NULL;
2483out_free_groupinfo_slab:
2484	ext4_groupinfo_destroy_slabs();
2485out:
2486	kfree(sbi->s_mb_offsets);
2487	sbi->s_mb_offsets = NULL;
2488	kfree(sbi->s_mb_maxs);
2489	sbi->s_mb_maxs = NULL;
2490	return ret;
2491}
2492
2493/* need to called with the ext4 group lock held */
2494static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2495{
2496	struct ext4_prealloc_space *pa;
2497	struct list_head *cur, *tmp;
2498	int count = 0;
2499
2500	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2501		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2502		list_del(&pa->pa_group_list);
2503		count++;
2504		kmem_cache_free(ext4_pspace_cachep, pa);
2505	}
2506	if (count)
2507		mb_debug(1, "mballoc: %u PAs left\n", count);
2508
2509}
2510
2511int ext4_mb_release(struct super_block *sb)
2512{
2513	ext4_group_t ngroups = ext4_get_groups_count(sb);
2514	ext4_group_t i;
2515	int num_meta_group_infos;
2516	struct ext4_group_info *grinfo;
2517	struct ext4_sb_info *sbi = EXT4_SB(sb);
2518	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2519
2520	if (sbi->s_proc)
2521		remove_proc_entry("mb_groups", sbi->s_proc);
2522
2523	if (sbi->s_group_info) {
2524		for (i = 0; i < ngroups; i++) {
2525			grinfo = ext4_get_group_info(sb, i);
2526#ifdef DOUBLE_CHECK
2527			kfree(grinfo->bb_bitmap);
2528#endif
2529			ext4_lock_group(sb, i);
2530			ext4_mb_cleanup_pa(grinfo);
2531			ext4_unlock_group(sb, i);
2532			kmem_cache_free(cachep, grinfo);
2533		}
2534		num_meta_group_infos = (ngroups +
2535				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2536			EXT4_DESC_PER_BLOCK_BITS(sb);
2537		for (i = 0; i < num_meta_group_infos; i++)
2538			kfree(sbi->s_group_info[i]);
2539		ext4_kvfree(sbi->s_group_info);
2540	}
2541	kfree(sbi->s_mb_offsets);
2542	kfree(sbi->s_mb_maxs);
2543	if (sbi->s_buddy_cache)
2544		iput(sbi->s_buddy_cache);
2545	if (sbi->s_mb_stats) {
2546		ext4_msg(sb, KERN_INFO,
2547		       "mballoc: %u blocks %u reqs (%u success)",
2548				atomic_read(&sbi->s_bal_allocated),
2549				atomic_read(&sbi->s_bal_reqs),
2550				atomic_read(&sbi->s_bal_success));
2551		ext4_msg(sb, KERN_INFO,
2552		      "mballoc: %u extents scanned, %u goal hits, "
2553				"%u 2^N hits, %u breaks, %u lost",
2554				atomic_read(&sbi->s_bal_ex_scanned),
2555				atomic_read(&sbi->s_bal_goals),
2556				atomic_read(&sbi->s_bal_2orders),
2557				atomic_read(&sbi->s_bal_breaks),
2558				atomic_read(&sbi->s_mb_lost_chunks));
2559		ext4_msg(sb, KERN_INFO,
2560		       "mballoc: %lu generated and it took %Lu",
2561				sbi->s_mb_buddies_generated,
2562				sbi->s_mb_generation_time);
2563		ext4_msg(sb, KERN_INFO,
2564		       "mballoc: %u preallocated, %u discarded",
2565				atomic_read(&sbi->s_mb_preallocated),
2566				atomic_read(&sbi->s_mb_discarded));
2567	}
2568
2569	free_percpu(sbi->s_locality_groups);
2570
2571	return 0;
2572}
2573
2574static inline int ext4_issue_discard(struct super_block *sb,
2575		ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2576{
2577	ext4_fsblk_t discard_block;
2578
2579	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2580			 ext4_group_first_block_no(sb, block_group));
2581	count = EXT4_C2B(EXT4_SB(sb), count);
2582	trace_ext4_discard_blocks(sb,
2583			(unsigned long long) discard_block, count);
2584	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2585}
2586
2587/*
2588 * This function is called by the jbd2 layer once the commit has finished,
2589 * so we know we can free the blocks that were released with that commit.
2590 */
2591static void ext4_free_data_callback(struct super_block *sb,
2592				    struct ext4_journal_cb_entry *jce,
2593				    int rc)
2594{
2595	struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2596	struct ext4_buddy e4b;
2597	struct ext4_group_info *db;
2598	int err, count = 0, count2 = 0;
2599
2600	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2601		 entry->efd_count, entry->efd_group, entry);
2602
2603	if (test_opt(sb, DISCARD))
2604		ext4_issue_discard(sb, entry->efd_group,
2605				   entry->efd_start_cluster, entry->efd_count);
 
 
 
 
 
 
 
 
2606
2607	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2608	/* we expect to find existing buddy because it's pinned */
2609	BUG_ON(err != 0);
2610
2611
2612	db = e4b.bd_info;
2613	/* there are blocks to put in buddy to make them really free */
2614	count += entry->efd_count;
2615	count2++;
2616	ext4_lock_group(sb, entry->efd_group);
2617	/* Take it out of per group rb tree */
2618	rb_erase(&entry->efd_node, &(db->bb_free_root));
2619	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2620
2621	/*
2622	 * Clear the trimmed flag for the group so that the next
2623	 * ext4_trim_fs can trim it.
2624	 * If the volume is mounted with -o discard, online discard
2625	 * is supported and the free blocks will be trimmed online.
2626	 */
2627	if (!test_opt(sb, DISCARD))
2628		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2629
2630	if (!db->bb_free_root.rb_node) {
2631		/* No more items in the per group rb tree
2632		 * balance refcounts from ext4_mb_free_metadata()
2633		 */
2634		page_cache_release(e4b.bd_buddy_page);
2635		page_cache_release(e4b.bd_bitmap_page);
2636	}
2637	ext4_unlock_group(sb, entry->efd_group);
2638	kmem_cache_free(ext4_free_data_cachep, entry);
2639	ext4_mb_unload_buddy(&e4b);
2640
2641	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2642}
2643
2644#ifdef CONFIG_EXT4_DEBUG
2645u8 mb_enable_debug __read_mostly;
2646
2647static struct dentry *debugfs_dir;
2648static struct dentry *debugfs_debug;
2649
2650static void __init ext4_create_debugfs_entry(void)
2651{
2652	debugfs_dir = debugfs_create_dir("ext4", NULL);
2653	if (debugfs_dir)
2654		debugfs_debug = debugfs_create_u8("mballoc-debug",
2655						  S_IRUGO | S_IWUSR,
2656						  debugfs_dir,
2657						  &mb_enable_debug);
2658}
2659
2660static void ext4_remove_debugfs_entry(void)
2661{
2662	debugfs_remove(debugfs_debug);
2663	debugfs_remove(debugfs_dir);
2664}
2665
2666#else
2667
2668static void __init ext4_create_debugfs_entry(void)
2669{
2670}
2671
2672static void ext4_remove_debugfs_entry(void)
2673{
2674}
2675
2676#endif
2677
2678int __init ext4_init_mballoc(void)
2679{
2680	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2681					SLAB_RECLAIM_ACCOUNT);
2682	if (ext4_pspace_cachep == NULL)
2683		return -ENOMEM;
2684
2685	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2686				    SLAB_RECLAIM_ACCOUNT);
2687	if (ext4_ac_cachep == NULL) {
2688		kmem_cache_destroy(ext4_pspace_cachep);
2689		return -ENOMEM;
2690	}
2691
2692	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2693					   SLAB_RECLAIM_ACCOUNT);
2694	if (ext4_free_data_cachep == NULL) {
2695		kmem_cache_destroy(ext4_pspace_cachep);
2696		kmem_cache_destroy(ext4_ac_cachep);
2697		return -ENOMEM;
2698	}
2699	ext4_create_debugfs_entry();
2700	return 0;
2701}
2702
2703void ext4_exit_mballoc(void)
2704{
2705	/*
2706	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2707	 * before destroying the slab cache.
2708	 */
2709	rcu_barrier();
2710	kmem_cache_destroy(ext4_pspace_cachep);
2711	kmem_cache_destroy(ext4_ac_cachep);
2712	kmem_cache_destroy(ext4_free_data_cachep);
2713	ext4_groupinfo_destroy_slabs();
2714	ext4_remove_debugfs_entry();
2715}
2716
2717
2718/*
2719 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2720 * Returns 0 if success or error code
2721 */
2722static noinline_for_stack int
2723ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2724				handle_t *handle, unsigned int reserv_clstrs)
2725{
2726	struct buffer_head *bitmap_bh = NULL;
2727	struct ext4_group_desc *gdp;
2728	struct buffer_head *gdp_bh;
2729	struct ext4_sb_info *sbi;
2730	struct super_block *sb;
2731	ext4_fsblk_t block;
2732	int err, len;
2733
2734	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2735	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2736
2737	sb = ac->ac_sb;
2738	sbi = EXT4_SB(sb);
2739
2740	err = -EIO;
2741	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2742	if (!bitmap_bh)
 
 
2743		goto out_err;
 
2744
 
2745	err = ext4_journal_get_write_access(handle, bitmap_bh);
2746	if (err)
2747		goto out_err;
2748
2749	err = -EIO;
2750	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2751	if (!gdp)
2752		goto out_err;
2753
2754	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2755			ext4_free_group_clusters(sb, gdp));
2756
 
2757	err = ext4_journal_get_write_access(handle, gdp_bh);
2758	if (err)
2759		goto out_err;
2760
2761	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2762
2763	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2764	if (!ext4_data_block_valid(sbi, block, len)) {
2765		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2766			   "fs metadata", block, block+len);
2767		/* File system mounted not to panic on error
2768		 * Fix the bitmap and repeat the block allocation
2769		 * We leak some of the blocks here.
2770		 */
2771		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2772		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2773			      ac->ac_b_ex.fe_len);
2774		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2775		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2776		if (!err)
2777			err = -EAGAIN;
2778		goto out_err;
2779	}
2780
2781	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2782#ifdef AGGRESSIVE_CHECK
2783	{
2784		int i;
2785		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2786			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2787						bitmap_bh->b_data));
2788		}
2789	}
2790#endif
2791	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2792		      ac->ac_b_ex.fe_len);
2793	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2794		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2795		ext4_free_group_clusters_set(sb, gdp,
2796					     ext4_free_clusters_after_init(sb,
2797						ac->ac_b_ex.fe_group, gdp));
2798	}
2799	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2800	ext4_free_group_clusters_set(sb, gdp, len);
2801	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh,
2802				   EXT4_BLOCKS_PER_GROUP(sb) / 8);
2803	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2804
2805	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2806	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2807	/*
2808	 * Now reduce the dirty block count also. Should not go negative
2809	 */
2810	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2811		/* release all the reserved blocks if non delalloc */
2812		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2813				   reserv_clstrs);
2814
2815	if (sbi->s_log_groups_per_flex) {
2816		ext4_group_t flex_group = ext4_flex_group(sbi,
2817							  ac->ac_b_ex.fe_group);
2818		atomic_sub(ac->ac_b_ex.fe_len,
2819			   &sbi->s_flex_groups[flex_group].free_clusters);
2820	}
2821
2822	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2823	if (err)
2824		goto out_err;
2825	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2826
2827out_err:
2828	ext4_mark_super_dirty(sb);
2829	brelse(bitmap_bh);
2830	return err;
2831}
2832
2833/*
2834 * here we normalize request for locality group
2835 * Group request are normalized to s_mb_group_prealloc, which goes to
2836 * s_strip if we set the same via mount option.
2837 * s_mb_group_prealloc can be configured via
2838 * /sys/fs/ext4/<partition>/mb_group_prealloc
2839 *
2840 * XXX: should we try to preallocate more than the group has now?
2841 */
2842static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2843{
2844	struct super_block *sb = ac->ac_sb;
2845	struct ext4_locality_group *lg = ac->ac_lg;
2846
2847	BUG_ON(lg == NULL);
2848	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2849	mb_debug(1, "#%u: goal %u blocks for locality group\n",
2850		current->pid, ac->ac_g_ex.fe_len);
2851}
2852
2853/*
2854 * Normalization means making request better in terms of
2855 * size and alignment
2856 */
2857static noinline_for_stack void
2858ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2859				struct ext4_allocation_request *ar)
2860{
2861	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2862	int bsbits, max;
2863	ext4_lblk_t end;
2864	loff_t size, start_off;
2865	loff_t orig_size __maybe_unused;
2866	ext4_lblk_t start;
2867	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2868	struct ext4_prealloc_space *pa;
2869
2870	/* do normalize only data requests, metadata requests
2871	   do not need preallocation */
2872	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2873		return;
2874
2875	/* sometime caller may want exact blocks */
2876	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2877		return;
2878
2879	/* caller may indicate that preallocation isn't
2880	 * required (it's a tail, for example) */
2881	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2882		return;
2883
2884	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
2885		ext4_mb_normalize_group_request(ac);
2886		return ;
2887	}
2888
2889	bsbits = ac->ac_sb->s_blocksize_bits;
2890
2891	/* first, let's learn actual file size
2892	 * given current request is allocated */
2893	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
2894	size = size << bsbits;
2895	if (size < i_size_read(ac->ac_inode))
2896		size = i_size_read(ac->ac_inode);
2897	orig_size = size;
2898
2899	/* max size of free chunks */
2900	max = 2 << bsbits;
2901
2902#define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
2903		(req <= (size) || max <= (chunk_size))
2904
2905	/* first, try to predict filesize */
2906	/* XXX: should this table be tunable? */
2907	start_off = 0;
2908	if (size <= 16 * 1024) {
2909		size = 16 * 1024;
2910	} else if (size <= 32 * 1024) {
2911		size = 32 * 1024;
2912	} else if (size <= 64 * 1024) {
2913		size = 64 * 1024;
2914	} else if (size <= 128 * 1024) {
2915		size = 128 * 1024;
2916	} else if (size <= 256 * 1024) {
2917		size = 256 * 1024;
2918	} else if (size <= 512 * 1024) {
2919		size = 512 * 1024;
2920	} else if (size <= 1024 * 1024) {
2921		size = 1024 * 1024;
2922	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2923		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2924						(21 - bsbits)) << 21;
2925		size = 2 * 1024 * 1024;
2926	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2927		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2928							(22 - bsbits)) << 22;
2929		size = 4 * 1024 * 1024;
2930	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2931					(8<<20)>>bsbits, max, 8 * 1024)) {
2932		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2933							(23 - bsbits)) << 23;
2934		size = 8 * 1024 * 1024;
2935	} else {
2936		start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
2937		size	  = ac->ac_o_ex.fe_len << bsbits;
 
2938	}
2939	size = size >> bsbits;
2940	start = start_off >> bsbits;
2941
2942	/* don't cover already allocated blocks in selected range */
2943	if (ar->pleft && start <= ar->lleft) {
2944		size -= ar->lleft + 1 - start;
2945		start = ar->lleft + 1;
2946	}
2947	if (ar->pright && start + size - 1 >= ar->lright)
2948		size -= start + size - ar->lright;
2949
2950	end = start + size;
2951
2952	/* check we don't cross already preallocated blocks */
2953	rcu_read_lock();
2954	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2955		ext4_lblk_t pa_end;
2956
2957		if (pa->pa_deleted)
2958			continue;
2959		spin_lock(&pa->pa_lock);
2960		if (pa->pa_deleted) {
2961			spin_unlock(&pa->pa_lock);
2962			continue;
2963		}
2964
2965		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
2966						  pa->pa_len);
2967
2968		/* PA must not overlap original request */
2969		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
2970			ac->ac_o_ex.fe_logical < pa->pa_lstart));
2971
2972		/* skip PAs this normalized request doesn't overlap with */
2973		if (pa->pa_lstart >= end || pa_end <= start) {
2974			spin_unlock(&pa->pa_lock);
2975			continue;
2976		}
2977		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
2978
2979		/* adjust start or end to be adjacent to this pa */
2980		if (pa_end <= ac->ac_o_ex.fe_logical) {
2981			BUG_ON(pa_end < start);
2982			start = pa_end;
2983		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
2984			BUG_ON(pa->pa_lstart > end);
2985			end = pa->pa_lstart;
2986		}
2987		spin_unlock(&pa->pa_lock);
2988	}
2989	rcu_read_unlock();
2990	size = end - start;
2991
2992	/* XXX: extra loop to check we really don't overlap preallocations */
2993	rcu_read_lock();
2994	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2995		ext4_lblk_t pa_end;
2996
2997		spin_lock(&pa->pa_lock);
2998		if (pa->pa_deleted == 0) {
2999			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3000							  pa->pa_len);
3001			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3002		}
3003		spin_unlock(&pa->pa_lock);
3004	}
3005	rcu_read_unlock();
3006
3007	if (start + size <= ac->ac_o_ex.fe_logical &&
3008			start > ac->ac_o_ex.fe_logical) {
3009		ext4_msg(ac->ac_sb, KERN_ERR,
3010			 "start %lu, size %lu, fe_logical %lu",
3011			 (unsigned long) start, (unsigned long) size,
3012			 (unsigned long) ac->ac_o_ex.fe_logical);
 
3013	}
3014	BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3015			start > ac->ac_o_ex.fe_logical);
3016	BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
3017
3018	/* now prepare goal request */
3019
3020	/* XXX: is it better to align blocks WRT to logical
3021	 * placement or satisfy big request as is */
3022	ac->ac_g_ex.fe_logical = start;
3023	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3024
3025	/* define goal start in order to merge */
3026	if (ar->pright && (ar->lright == (start + size))) {
3027		/* merge to the right */
3028		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3029						&ac->ac_f_ex.fe_group,
3030						&ac->ac_f_ex.fe_start);
3031		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3032	}
3033	if (ar->pleft && (ar->lleft + 1 == start)) {
3034		/* merge to the left */
3035		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3036						&ac->ac_f_ex.fe_group,
3037						&ac->ac_f_ex.fe_start);
3038		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3039	}
3040
3041	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3042		(unsigned) orig_size, (unsigned) start);
3043}
3044
3045static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3046{
3047	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3048
3049	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3050		atomic_inc(&sbi->s_bal_reqs);
3051		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3052		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3053			atomic_inc(&sbi->s_bal_success);
3054		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3055		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3056				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3057			atomic_inc(&sbi->s_bal_goals);
3058		if (ac->ac_found > sbi->s_mb_max_to_scan)
3059			atomic_inc(&sbi->s_bal_breaks);
3060	}
3061
3062	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3063		trace_ext4_mballoc_alloc(ac);
3064	else
3065		trace_ext4_mballoc_prealloc(ac);
3066}
3067
3068/*
3069 * Called on failure; free up any blocks from the inode PA for this
3070 * context.  We don't need this for MB_GROUP_PA because we only change
3071 * pa_free in ext4_mb_release_context(), but on failure, we've already
3072 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3073 */
3074static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3075{
3076	struct ext4_prealloc_space *pa = ac->ac_pa;
 
 
3077
3078	if (pa && pa->pa_type == MB_INODE_PA)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3079		pa->pa_free += ac->ac_b_ex.fe_len;
3080}
3081
3082/*
3083 * use blocks preallocated to inode
3084 */
3085static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3086				struct ext4_prealloc_space *pa)
3087{
3088	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3089	ext4_fsblk_t start;
3090	ext4_fsblk_t end;
3091	int len;
3092
3093	/* found preallocated blocks, use them */
3094	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3095	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3096		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3097	len = EXT4_NUM_B2C(sbi, end - start);
3098	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3099					&ac->ac_b_ex.fe_start);
3100	ac->ac_b_ex.fe_len = len;
3101	ac->ac_status = AC_STATUS_FOUND;
3102	ac->ac_pa = pa;
3103
3104	BUG_ON(start < pa->pa_pstart);
3105	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3106	BUG_ON(pa->pa_free < len);
3107	pa->pa_free -= len;
3108
3109	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3110}
3111
3112/*
3113 * use blocks preallocated to locality group
3114 */
3115static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3116				struct ext4_prealloc_space *pa)
3117{
3118	unsigned int len = ac->ac_o_ex.fe_len;
3119
3120	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3121					&ac->ac_b_ex.fe_group,
3122					&ac->ac_b_ex.fe_start);
3123	ac->ac_b_ex.fe_len = len;
3124	ac->ac_status = AC_STATUS_FOUND;
3125	ac->ac_pa = pa;
3126
3127	/* we don't correct pa_pstart or pa_plen here to avoid
3128	 * possible race when the group is being loaded concurrently
3129	 * instead we correct pa later, after blocks are marked
3130	 * in on-disk bitmap -- see ext4_mb_release_context()
3131	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3132	 */
3133	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3134}
3135
3136/*
3137 * Return the prealloc space that have minimal distance
3138 * from the goal block. @cpa is the prealloc
3139 * space that is having currently known minimal distance
3140 * from the goal block.
3141 */
3142static struct ext4_prealloc_space *
3143ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3144			struct ext4_prealloc_space *pa,
3145			struct ext4_prealloc_space *cpa)
3146{
3147	ext4_fsblk_t cur_distance, new_distance;
3148
3149	if (cpa == NULL) {
3150		atomic_inc(&pa->pa_count);
3151		return pa;
3152	}
3153	cur_distance = abs(goal_block - cpa->pa_pstart);
3154	new_distance = abs(goal_block - pa->pa_pstart);
3155
3156	if (cur_distance <= new_distance)
3157		return cpa;
3158
3159	/* drop the previous reference */
3160	atomic_dec(&cpa->pa_count);
3161	atomic_inc(&pa->pa_count);
3162	return pa;
3163}
3164
3165/*
3166 * search goal blocks in preallocated space
3167 */
3168static noinline_for_stack int
3169ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3170{
3171	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3172	int order, i;
3173	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3174	struct ext4_locality_group *lg;
3175	struct ext4_prealloc_space *pa, *cpa = NULL;
3176	ext4_fsblk_t goal_block;
3177
3178	/* only data can be preallocated */
3179	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3180		return 0;
3181
3182	/* first, try per-file preallocation */
3183	rcu_read_lock();
3184	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3185
3186		/* all fields in this condition don't change,
3187		 * so we can skip locking for them */
3188		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3189		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3190					       EXT4_C2B(sbi, pa->pa_len)))
3191			continue;
3192
3193		/* non-extent files can't have physical blocks past 2^32 */
3194		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3195		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3196		     EXT4_MAX_BLOCK_FILE_PHYS))
3197			continue;
3198
3199		/* found preallocated blocks, use them */
3200		spin_lock(&pa->pa_lock);
3201		if (pa->pa_deleted == 0 && pa->pa_free) {
3202			atomic_inc(&pa->pa_count);
3203			ext4_mb_use_inode_pa(ac, pa);
3204			spin_unlock(&pa->pa_lock);
3205			ac->ac_criteria = 10;
3206			rcu_read_unlock();
3207			return 1;
3208		}
3209		spin_unlock(&pa->pa_lock);
3210	}
3211	rcu_read_unlock();
3212
3213	/* can we use group allocation? */
3214	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3215		return 0;
3216
3217	/* inode may have no locality group for some reason */
3218	lg = ac->ac_lg;
3219	if (lg == NULL)
3220		return 0;
3221	order  = fls(ac->ac_o_ex.fe_len) - 1;
3222	if (order > PREALLOC_TB_SIZE - 1)
3223		/* The max size of hash table is PREALLOC_TB_SIZE */
3224		order = PREALLOC_TB_SIZE - 1;
3225
3226	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3227	/*
3228	 * search for the prealloc space that is having
3229	 * minimal distance from the goal block.
3230	 */
3231	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3232		rcu_read_lock();
3233		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3234					pa_inode_list) {
3235			spin_lock(&pa->pa_lock);
3236			if (pa->pa_deleted == 0 &&
3237					pa->pa_free >= ac->ac_o_ex.fe_len) {
3238
3239				cpa = ext4_mb_check_group_pa(goal_block,
3240								pa, cpa);
3241			}
3242			spin_unlock(&pa->pa_lock);
3243		}
3244		rcu_read_unlock();
3245	}
3246	if (cpa) {
3247		ext4_mb_use_group_pa(ac, cpa);
3248		ac->ac_criteria = 20;
3249		return 1;
3250	}
3251	return 0;
3252}
3253
3254/*
3255 * the function goes through all block freed in the group
3256 * but not yet committed and marks them used in in-core bitmap.
3257 * buddy must be generated from this bitmap
3258 * Need to be called with the ext4 group lock held
3259 */
3260static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3261						ext4_group_t group)
3262{
3263	struct rb_node *n;
3264	struct ext4_group_info *grp;
3265	struct ext4_free_data *entry;
3266
3267	grp = ext4_get_group_info(sb, group);
3268	n = rb_first(&(grp->bb_free_root));
3269
3270	while (n) {
3271		entry = rb_entry(n, struct ext4_free_data, efd_node);
3272		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3273		n = rb_next(n);
3274	}
3275	return;
3276}
3277
3278/*
3279 * the function goes through all preallocation in this group and marks them
3280 * used in in-core bitmap. buddy must be generated from this bitmap
3281 * Need to be called with ext4 group lock held
3282 */
3283static noinline_for_stack
3284void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3285					ext4_group_t group)
3286{
3287	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3288	struct ext4_prealloc_space *pa;
3289	struct list_head *cur;
3290	ext4_group_t groupnr;
3291	ext4_grpblk_t start;
3292	int preallocated = 0;
3293	int len;
3294
3295	/* all form of preallocation discards first load group,
3296	 * so the only competing code is preallocation use.
3297	 * we don't need any locking here
3298	 * notice we do NOT ignore preallocations with pa_deleted
3299	 * otherwise we could leave used blocks available for
3300	 * allocation in buddy when concurrent ext4_mb_put_pa()
3301	 * is dropping preallocation
3302	 */
3303	list_for_each(cur, &grp->bb_prealloc_list) {
3304		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3305		spin_lock(&pa->pa_lock);
3306		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3307					     &groupnr, &start);
3308		len = pa->pa_len;
3309		spin_unlock(&pa->pa_lock);
3310		if (unlikely(len == 0))
3311			continue;
3312		BUG_ON(groupnr != group);
3313		ext4_set_bits(bitmap, start, len);
3314		preallocated += len;
3315	}
3316	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3317}
3318
3319static void ext4_mb_pa_callback(struct rcu_head *head)
3320{
3321	struct ext4_prealloc_space *pa;
3322	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
 
 
 
3323	kmem_cache_free(ext4_pspace_cachep, pa);
3324}
3325
3326/*
3327 * drops a reference to preallocated space descriptor
3328 * if this was the last reference and the space is consumed
3329 */
3330static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3331			struct super_block *sb, struct ext4_prealloc_space *pa)
3332{
3333	ext4_group_t grp;
3334	ext4_fsblk_t grp_blk;
3335
3336	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3337		return;
3338
3339	/* in this short window concurrent discard can set pa_deleted */
3340	spin_lock(&pa->pa_lock);
 
 
 
 
 
3341	if (pa->pa_deleted == 1) {
3342		spin_unlock(&pa->pa_lock);
3343		return;
3344	}
3345
3346	pa->pa_deleted = 1;
3347	spin_unlock(&pa->pa_lock);
3348
3349	grp_blk = pa->pa_pstart;
3350	/*
3351	 * If doing group-based preallocation, pa_pstart may be in the
3352	 * next group when pa is used up
3353	 */
3354	if (pa->pa_type == MB_GROUP_PA)
3355		grp_blk--;
3356
3357	ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3358
3359	/*
3360	 * possible race:
3361	 *
3362	 *  P1 (buddy init)			P2 (regular allocation)
3363	 *					find block B in PA
3364	 *  copy on-disk bitmap to buddy
3365	 *  					mark B in on-disk bitmap
3366	 *					drop PA from group
3367	 *  mark all PAs in buddy
3368	 *
3369	 * thus, P1 initializes buddy with B available. to prevent this
3370	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3371	 * against that pair
3372	 */
3373	ext4_lock_group(sb, grp);
3374	list_del(&pa->pa_group_list);
3375	ext4_unlock_group(sb, grp);
3376
3377	spin_lock(pa->pa_obj_lock);
3378	list_del_rcu(&pa->pa_inode_list);
3379	spin_unlock(pa->pa_obj_lock);
3380
3381	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3382}
3383
3384/*
3385 * creates new preallocated space for given inode
3386 */
3387static noinline_for_stack int
3388ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3389{
3390	struct super_block *sb = ac->ac_sb;
3391	struct ext4_sb_info *sbi = EXT4_SB(sb);
3392	struct ext4_prealloc_space *pa;
3393	struct ext4_group_info *grp;
3394	struct ext4_inode_info *ei;
3395
3396	/* preallocate only when found space is larger then requested */
3397	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3398	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3399	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3400
3401	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3402	if (pa == NULL)
3403		return -ENOMEM;
3404
3405	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3406		int winl;
3407		int wins;
3408		int win;
3409		int offs;
3410
3411		/* we can't allocate as much as normalizer wants.
3412		 * so, found space must get proper lstart
3413		 * to cover original request */
3414		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3415		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3416
3417		/* we're limited by original request in that
3418		 * logical block must be covered any way
3419		 * winl is window we can move our chunk within */
3420		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3421
3422		/* also, we should cover whole original request */
3423		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3424
3425		/* the smallest one defines real window */
3426		win = min(winl, wins);
3427
3428		offs = ac->ac_o_ex.fe_logical %
3429			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3430		if (offs && offs < win)
3431			win = offs;
3432
3433		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3434			EXT4_B2C(sbi, win);
3435		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3436		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3437	}
3438
3439	/* preallocation can change ac_b_ex, thus we store actually
3440	 * allocated blocks for history */
3441	ac->ac_f_ex = ac->ac_b_ex;
3442
3443	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3444	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3445	pa->pa_len = ac->ac_b_ex.fe_len;
3446	pa->pa_free = pa->pa_len;
3447	atomic_set(&pa->pa_count, 1);
3448	spin_lock_init(&pa->pa_lock);
3449	INIT_LIST_HEAD(&pa->pa_inode_list);
3450	INIT_LIST_HEAD(&pa->pa_group_list);
3451	pa->pa_deleted = 0;
3452	pa->pa_type = MB_INODE_PA;
3453
3454	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3455			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3456	trace_ext4_mb_new_inode_pa(ac, pa);
3457
3458	ext4_mb_use_inode_pa(ac, pa);
3459	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3460
3461	ei = EXT4_I(ac->ac_inode);
3462	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3463
3464	pa->pa_obj_lock = &ei->i_prealloc_lock;
3465	pa->pa_inode = ac->ac_inode;
3466
3467	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3468	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3469	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3470
3471	spin_lock(pa->pa_obj_lock);
3472	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3473	spin_unlock(pa->pa_obj_lock);
3474
3475	return 0;
3476}
3477
3478/*
3479 * creates new preallocated space for locality group inodes belongs to
3480 */
3481static noinline_for_stack int
3482ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3483{
3484	struct super_block *sb = ac->ac_sb;
3485	struct ext4_locality_group *lg;
3486	struct ext4_prealloc_space *pa;
3487	struct ext4_group_info *grp;
3488
3489	/* preallocate only when found space is larger then requested */
3490	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3491	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3492	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3493
3494	BUG_ON(ext4_pspace_cachep == NULL);
3495	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3496	if (pa == NULL)
3497		return -ENOMEM;
3498
3499	/* preallocation can change ac_b_ex, thus we store actually
3500	 * allocated blocks for history */
3501	ac->ac_f_ex = ac->ac_b_ex;
3502
3503	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3504	pa->pa_lstart = pa->pa_pstart;
3505	pa->pa_len = ac->ac_b_ex.fe_len;
3506	pa->pa_free = pa->pa_len;
3507	atomic_set(&pa->pa_count, 1);
3508	spin_lock_init(&pa->pa_lock);
3509	INIT_LIST_HEAD(&pa->pa_inode_list);
3510	INIT_LIST_HEAD(&pa->pa_group_list);
3511	pa->pa_deleted = 0;
3512	pa->pa_type = MB_GROUP_PA;
3513
3514	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3515			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3516	trace_ext4_mb_new_group_pa(ac, pa);
3517
3518	ext4_mb_use_group_pa(ac, pa);
3519	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3520
3521	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3522	lg = ac->ac_lg;
3523	BUG_ON(lg == NULL);
3524
3525	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3526	pa->pa_inode = NULL;
3527
3528	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3529	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3530	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3531
3532	/*
3533	 * We will later add the new pa to the right bucket
3534	 * after updating the pa_free in ext4_mb_release_context
3535	 */
3536	return 0;
3537}
3538
3539static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3540{
3541	int err;
3542
3543	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3544		err = ext4_mb_new_group_pa(ac);
3545	else
3546		err = ext4_mb_new_inode_pa(ac);
3547	return err;
3548}
3549
3550/*
3551 * finds all unused blocks in on-disk bitmap, frees them in
3552 * in-core bitmap and buddy.
3553 * @pa must be unlinked from inode and group lists, so that
3554 * nobody else can find/use it.
3555 * the caller MUST hold group/inode locks.
3556 * TODO: optimize the case when there are no in-core structures yet
3557 */
3558static noinline_for_stack int
3559ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3560			struct ext4_prealloc_space *pa)
3561{
3562	struct super_block *sb = e4b->bd_sb;
3563	struct ext4_sb_info *sbi = EXT4_SB(sb);
3564	unsigned int end;
3565	unsigned int next;
3566	ext4_group_t group;
3567	ext4_grpblk_t bit;
3568	unsigned long long grp_blk_start;
3569	int err = 0;
3570	int free = 0;
3571
3572	BUG_ON(pa->pa_deleted == 0);
3573	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3574	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3575	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3576	end = bit + pa->pa_len;
3577
3578	while (bit < end) {
3579		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3580		if (bit >= end)
3581			break;
3582		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3583		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3584			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3585			 (unsigned) next - bit, (unsigned) group);
3586		free += next - bit;
3587
3588		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3589		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3590						    EXT4_C2B(sbi, bit)),
3591					       next - bit);
3592		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3593		bit = next + 1;
3594	}
3595	if (free != pa->pa_free) {
3596		ext4_msg(e4b->bd_sb, KERN_CRIT,
3597			 "pa %p: logic %lu, phys. %lu, len %lu",
3598			 pa, (unsigned long) pa->pa_lstart,
3599			 (unsigned long) pa->pa_pstart,
3600			 (unsigned long) pa->pa_len);
3601		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3602					free, pa->pa_free);
3603		/*
3604		 * pa is already deleted so we use the value obtained
3605		 * from the bitmap and continue.
3606		 */
3607	}
3608	atomic_add(free, &sbi->s_mb_discarded);
3609
3610	return err;
3611}
3612
3613static noinline_for_stack int
3614ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3615				struct ext4_prealloc_space *pa)
3616{
3617	struct super_block *sb = e4b->bd_sb;
3618	ext4_group_t group;
3619	ext4_grpblk_t bit;
3620
3621	trace_ext4_mb_release_group_pa(sb, pa);
3622	BUG_ON(pa->pa_deleted == 0);
3623	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3624	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3625	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3626	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3627	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3628
3629	return 0;
3630}
3631
3632/*
3633 * releases all preallocations in given group
3634 *
3635 * first, we need to decide discard policy:
3636 * - when do we discard
3637 *   1) ENOSPC
3638 * - how many do we discard
3639 *   1) how many requested
3640 */
3641static noinline_for_stack int
3642ext4_mb_discard_group_preallocations(struct super_block *sb,
3643					ext4_group_t group, int needed)
3644{
3645	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3646	struct buffer_head *bitmap_bh = NULL;
3647	struct ext4_prealloc_space *pa, *tmp;
3648	struct list_head list;
3649	struct ext4_buddy e4b;
3650	int err;
3651	int busy = 0;
3652	int free = 0;
3653
3654	mb_debug(1, "discard preallocation for group %u\n", group);
3655
3656	if (list_empty(&grp->bb_prealloc_list))
3657		return 0;
3658
3659	bitmap_bh = ext4_read_block_bitmap(sb, group);
3660	if (bitmap_bh == NULL) {
3661		ext4_error(sb, "Error reading block bitmap for %u", group);
 
 
3662		return 0;
3663	}
3664
3665	err = ext4_mb_load_buddy(sb, group, &e4b);
3666	if (err) {
3667		ext4_error(sb, "Error loading buddy information for %u", group);
3668		put_bh(bitmap_bh);
3669		return 0;
3670	}
3671
3672	if (needed == 0)
3673		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3674
3675	INIT_LIST_HEAD(&list);
3676repeat:
3677	ext4_lock_group(sb, group);
3678	list_for_each_entry_safe(pa, tmp,
3679				&grp->bb_prealloc_list, pa_group_list) {
3680		spin_lock(&pa->pa_lock);
3681		if (atomic_read(&pa->pa_count)) {
3682			spin_unlock(&pa->pa_lock);
3683			busy = 1;
3684			continue;
3685		}
3686		if (pa->pa_deleted) {
3687			spin_unlock(&pa->pa_lock);
3688			continue;
3689		}
3690
3691		/* seems this one can be freed ... */
3692		pa->pa_deleted = 1;
3693
3694		/* we can trust pa_free ... */
3695		free += pa->pa_free;
3696
3697		spin_unlock(&pa->pa_lock);
3698
3699		list_del(&pa->pa_group_list);
3700		list_add(&pa->u.pa_tmp_list, &list);
3701	}
3702
3703	/* if we still need more blocks and some PAs were used, try again */
3704	if (free < needed && busy) {
3705		busy = 0;
3706		ext4_unlock_group(sb, group);
3707		/*
3708		 * Yield the CPU here so that we don't get soft lockup
3709		 * in non preempt case.
3710		 */
3711		yield();
3712		goto repeat;
3713	}
3714
3715	/* found anything to free? */
3716	if (list_empty(&list)) {
3717		BUG_ON(free != 0);
3718		goto out;
3719	}
3720
3721	/* now free all selected PAs */
3722	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3723
3724		/* remove from object (inode or locality group) */
3725		spin_lock(pa->pa_obj_lock);
3726		list_del_rcu(&pa->pa_inode_list);
3727		spin_unlock(pa->pa_obj_lock);
3728
3729		if (pa->pa_type == MB_GROUP_PA)
3730			ext4_mb_release_group_pa(&e4b, pa);
3731		else
3732			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3733
3734		list_del(&pa->u.pa_tmp_list);
3735		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3736	}
3737
3738out:
3739	ext4_unlock_group(sb, group);
3740	ext4_mb_unload_buddy(&e4b);
3741	put_bh(bitmap_bh);
3742	return free;
3743}
3744
3745/*
3746 * releases all non-used preallocated blocks for given inode
3747 *
3748 * It's important to discard preallocations under i_data_sem
3749 * We don't want another block to be served from the prealloc
3750 * space when we are discarding the inode prealloc space.
3751 *
3752 * FIXME!! Make sure it is valid at all the call sites
3753 */
3754void ext4_discard_preallocations(struct inode *inode)
3755{
3756	struct ext4_inode_info *ei = EXT4_I(inode);
3757	struct super_block *sb = inode->i_sb;
3758	struct buffer_head *bitmap_bh = NULL;
3759	struct ext4_prealloc_space *pa, *tmp;
3760	ext4_group_t group = 0;
3761	struct list_head list;
3762	struct ext4_buddy e4b;
3763	int err;
3764
3765	if (!S_ISREG(inode->i_mode)) {
3766		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3767		return;
3768	}
3769
3770	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3771	trace_ext4_discard_preallocations(inode);
3772
3773	INIT_LIST_HEAD(&list);
3774
3775repeat:
3776	/* first, collect all pa's in the inode */
3777	spin_lock(&ei->i_prealloc_lock);
3778	while (!list_empty(&ei->i_prealloc_list)) {
3779		pa = list_entry(ei->i_prealloc_list.next,
3780				struct ext4_prealloc_space, pa_inode_list);
3781		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3782		spin_lock(&pa->pa_lock);
3783		if (atomic_read(&pa->pa_count)) {
3784			/* this shouldn't happen often - nobody should
3785			 * use preallocation while we're discarding it */
3786			spin_unlock(&pa->pa_lock);
3787			spin_unlock(&ei->i_prealloc_lock);
3788			ext4_msg(sb, KERN_ERR,
3789				 "uh-oh! used pa while discarding");
3790			WARN_ON(1);
3791			schedule_timeout_uninterruptible(HZ);
3792			goto repeat;
3793
3794		}
3795		if (pa->pa_deleted == 0) {
3796			pa->pa_deleted = 1;
3797			spin_unlock(&pa->pa_lock);
3798			list_del_rcu(&pa->pa_inode_list);
3799			list_add(&pa->u.pa_tmp_list, &list);
3800			continue;
3801		}
3802
3803		/* someone is deleting pa right now */
3804		spin_unlock(&pa->pa_lock);
3805		spin_unlock(&ei->i_prealloc_lock);
3806
3807		/* we have to wait here because pa_deleted
3808		 * doesn't mean pa is already unlinked from
3809		 * the list. as we might be called from
3810		 * ->clear_inode() the inode will get freed
3811		 * and concurrent thread which is unlinking
3812		 * pa from inode's list may access already
3813		 * freed memory, bad-bad-bad */
3814
3815		/* XXX: if this happens too often, we can
3816		 * add a flag to force wait only in case
3817		 * of ->clear_inode(), but not in case of
3818		 * regular truncate */
3819		schedule_timeout_uninterruptible(HZ);
3820		goto repeat;
3821	}
3822	spin_unlock(&ei->i_prealloc_lock);
3823
3824	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3825		BUG_ON(pa->pa_type != MB_INODE_PA);
3826		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
3827
3828		err = ext4_mb_load_buddy(sb, group, &e4b);
3829		if (err) {
3830			ext4_error(sb, "Error loading buddy information for %u",
3831					group);
3832			continue;
3833		}
3834
3835		bitmap_bh = ext4_read_block_bitmap(sb, group);
3836		if (bitmap_bh == NULL) {
3837			ext4_error(sb, "Error reading block bitmap for %u",
3838					group);
 
3839			ext4_mb_unload_buddy(&e4b);
3840			continue;
3841		}
3842
3843		ext4_lock_group(sb, group);
3844		list_del(&pa->pa_group_list);
3845		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3846		ext4_unlock_group(sb, group);
3847
3848		ext4_mb_unload_buddy(&e4b);
3849		put_bh(bitmap_bh);
3850
3851		list_del(&pa->u.pa_tmp_list);
3852		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3853	}
3854}
3855
3856#ifdef CONFIG_EXT4_DEBUG
3857static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3858{
3859	struct super_block *sb = ac->ac_sb;
3860	ext4_group_t ngroups, i;
3861
3862	if (!mb_enable_debug ||
3863	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3864		return;
3865
3866	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
3867			" Allocation context details:");
3868	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
3869			ac->ac_status, ac->ac_flags);
3870	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
3871		 	"goal %lu/%lu/%lu@%lu, "
3872			"best %lu/%lu/%lu@%lu cr %d",
3873			(unsigned long)ac->ac_o_ex.fe_group,
3874			(unsigned long)ac->ac_o_ex.fe_start,
3875			(unsigned long)ac->ac_o_ex.fe_len,
3876			(unsigned long)ac->ac_o_ex.fe_logical,
3877			(unsigned long)ac->ac_g_ex.fe_group,
3878			(unsigned long)ac->ac_g_ex.fe_start,
3879			(unsigned long)ac->ac_g_ex.fe_len,
3880			(unsigned long)ac->ac_g_ex.fe_logical,
3881			(unsigned long)ac->ac_b_ex.fe_group,
3882			(unsigned long)ac->ac_b_ex.fe_start,
3883			(unsigned long)ac->ac_b_ex.fe_len,
3884			(unsigned long)ac->ac_b_ex.fe_logical,
3885			(int)ac->ac_criteria);
3886	ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found",
3887		 ac->ac_ex_scanned, ac->ac_found);
3888	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
3889	ngroups = ext4_get_groups_count(sb);
3890	for (i = 0; i < ngroups; i++) {
3891		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3892		struct ext4_prealloc_space *pa;
3893		ext4_grpblk_t start;
3894		struct list_head *cur;
3895		ext4_lock_group(sb, i);
3896		list_for_each(cur, &grp->bb_prealloc_list) {
3897			pa = list_entry(cur, struct ext4_prealloc_space,
3898					pa_group_list);
3899			spin_lock(&pa->pa_lock);
3900			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3901						     NULL, &start);
3902			spin_unlock(&pa->pa_lock);
3903			printk(KERN_ERR "PA:%u:%d:%u \n", i,
3904			       start, pa->pa_len);
3905		}
3906		ext4_unlock_group(sb, i);
3907
3908		if (grp->bb_free == 0)
3909			continue;
3910		printk(KERN_ERR "%u: %d/%d \n",
3911		       i, grp->bb_free, grp->bb_fragments);
3912	}
3913	printk(KERN_ERR "\n");
3914}
3915#else
3916static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3917{
3918	return;
3919}
3920#endif
3921
3922/*
3923 * We use locality group preallocation for small size file. The size of the
3924 * file is determined by the current size or the resulting size after
3925 * allocation which ever is larger
3926 *
3927 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3928 */
3929static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
3930{
3931	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3932	int bsbits = ac->ac_sb->s_blocksize_bits;
3933	loff_t size, isize;
3934
3935	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3936		return;
3937
3938	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3939		return;
3940
3941	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3942	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
3943		>> bsbits;
3944
3945	if ((size == isize) &&
3946	    !ext4_fs_is_busy(sbi) &&
3947	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
3948		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
3949		return;
3950	}
3951
3952	if (sbi->s_mb_group_prealloc <= 0) {
3953		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3954		return;
3955	}
3956
3957	/* don't use group allocation for large files */
3958	size = max(size, isize);
3959	if (size > sbi->s_mb_stream_request) {
3960		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3961		return;
3962	}
3963
3964	BUG_ON(ac->ac_lg != NULL);
3965	/*
3966	 * locality group prealloc space are per cpu. The reason for having
3967	 * per cpu locality group is to reduce the contention between block
3968	 * request from multiple CPUs.
3969	 */
3970	ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
3971
3972	/* we're going to use group allocation */
3973	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
3974
3975	/* serialize all allocations in the group */
3976	mutex_lock(&ac->ac_lg->lg_mutex);
3977}
3978
3979static noinline_for_stack int
3980ext4_mb_initialize_context(struct ext4_allocation_context *ac,
3981				struct ext4_allocation_request *ar)
3982{
3983	struct super_block *sb = ar->inode->i_sb;
3984	struct ext4_sb_info *sbi = EXT4_SB(sb);
3985	struct ext4_super_block *es = sbi->s_es;
3986	ext4_group_t group;
3987	unsigned int len;
3988	ext4_fsblk_t goal;
3989	ext4_grpblk_t block;
3990
3991	/* we can't allocate > group size */
3992	len = ar->len;
3993
3994	/* just a dirty hack to filter too big requests  */
3995	if (len >= EXT4_CLUSTERS_PER_GROUP(sb) - 10)
3996		len = EXT4_CLUSTERS_PER_GROUP(sb) - 10;
3997
3998	/* start searching from the goal */
3999	goal = ar->goal;
4000	if (goal < le32_to_cpu(es->s_first_data_block) ||
4001			goal >= ext4_blocks_count(es))
4002		goal = le32_to_cpu(es->s_first_data_block);
4003	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4004
4005	/* set up allocation goals */
4006	memset(ac, 0, sizeof(struct ext4_allocation_context));
4007	ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1);
4008	ac->ac_status = AC_STATUS_CONTINUE;
4009	ac->ac_sb = sb;
4010	ac->ac_inode = ar->inode;
4011	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4012	ac->ac_o_ex.fe_group = group;
4013	ac->ac_o_ex.fe_start = block;
4014	ac->ac_o_ex.fe_len = len;
4015	ac->ac_g_ex = ac->ac_o_ex;
4016	ac->ac_flags = ar->flags;
4017
4018	/* we have to define context: we'll we work with a file or
4019	 * locality group. this is a policy, actually */
4020	ext4_mb_group_or_file(ac);
4021
4022	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4023			"left: %u/%u, right %u/%u to %swritable\n",
4024			(unsigned) ar->len, (unsigned) ar->logical,
4025			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4026			(unsigned) ar->lleft, (unsigned) ar->pleft,
4027			(unsigned) ar->lright, (unsigned) ar->pright,
4028			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4029	return 0;
4030
4031}
4032
4033static noinline_for_stack void
4034ext4_mb_discard_lg_preallocations(struct super_block *sb,
4035					struct ext4_locality_group *lg,
4036					int order, int total_entries)
4037{
4038	ext4_group_t group = 0;
4039	struct ext4_buddy e4b;
4040	struct list_head discard_list;
4041	struct ext4_prealloc_space *pa, *tmp;
4042
4043	mb_debug(1, "discard locality group preallocation\n");
4044
4045	INIT_LIST_HEAD(&discard_list);
4046
4047	spin_lock(&lg->lg_prealloc_lock);
4048	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4049						pa_inode_list) {
4050		spin_lock(&pa->pa_lock);
4051		if (atomic_read(&pa->pa_count)) {
4052			/*
4053			 * This is the pa that we just used
4054			 * for block allocation. So don't
4055			 * free that
4056			 */
4057			spin_unlock(&pa->pa_lock);
4058			continue;
4059		}
4060		if (pa->pa_deleted) {
4061			spin_unlock(&pa->pa_lock);
4062			continue;
4063		}
4064		/* only lg prealloc space */
4065		BUG_ON(pa->pa_type != MB_GROUP_PA);
4066
4067		/* seems this one can be freed ... */
4068		pa->pa_deleted = 1;
4069		spin_unlock(&pa->pa_lock);
4070
4071		list_del_rcu(&pa->pa_inode_list);
4072		list_add(&pa->u.pa_tmp_list, &discard_list);
4073
4074		total_entries--;
4075		if (total_entries <= 5) {
4076			/*
4077			 * we want to keep only 5 entries
4078			 * allowing it to grow to 8. This
4079			 * mak sure we don't call discard
4080			 * soon for this list.
4081			 */
4082			break;
4083		}
4084	}
4085	spin_unlock(&lg->lg_prealloc_lock);
4086
4087	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4088
4089		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4090		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4091			ext4_error(sb, "Error loading buddy information for %u",
4092					group);
4093			continue;
4094		}
4095		ext4_lock_group(sb, group);
4096		list_del(&pa->pa_group_list);
4097		ext4_mb_release_group_pa(&e4b, pa);
4098		ext4_unlock_group(sb, group);
4099
4100		ext4_mb_unload_buddy(&e4b);
4101		list_del(&pa->u.pa_tmp_list);
4102		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4103	}
4104}
4105
4106/*
4107 * We have incremented pa_count. So it cannot be freed at this
4108 * point. Also we hold lg_mutex. So no parallel allocation is
4109 * possible from this lg. That means pa_free cannot be updated.
4110 *
4111 * A parallel ext4_mb_discard_group_preallocations is possible.
4112 * which can cause the lg_prealloc_list to be updated.
4113 */
4114
4115static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4116{
4117	int order, added = 0, lg_prealloc_count = 1;
4118	struct super_block *sb = ac->ac_sb;
4119	struct ext4_locality_group *lg = ac->ac_lg;
4120	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4121
4122	order = fls(pa->pa_free) - 1;
4123	if (order > PREALLOC_TB_SIZE - 1)
4124		/* The max size of hash table is PREALLOC_TB_SIZE */
4125		order = PREALLOC_TB_SIZE - 1;
4126	/* Add the prealloc space to lg */
4127	rcu_read_lock();
4128	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4129						pa_inode_list) {
4130		spin_lock(&tmp_pa->pa_lock);
4131		if (tmp_pa->pa_deleted) {
4132			spin_unlock(&tmp_pa->pa_lock);
4133			continue;
4134		}
4135		if (!added && pa->pa_free < tmp_pa->pa_free) {
4136			/* Add to the tail of the previous entry */
4137			list_add_tail_rcu(&pa->pa_inode_list,
4138						&tmp_pa->pa_inode_list);
4139			added = 1;
4140			/*
4141			 * we want to count the total
4142			 * number of entries in the list
4143			 */
4144		}
4145		spin_unlock(&tmp_pa->pa_lock);
4146		lg_prealloc_count++;
4147	}
4148	if (!added)
4149		list_add_tail_rcu(&pa->pa_inode_list,
4150					&lg->lg_prealloc_list[order]);
4151	rcu_read_unlock();
4152
4153	/* Now trim the list to be not more than 8 elements */
4154	if (lg_prealloc_count > 8) {
4155		ext4_mb_discard_lg_preallocations(sb, lg,
4156						order, lg_prealloc_count);
4157		return;
4158	}
4159	return ;
4160}
4161
4162/*
4163 * release all resource we used in allocation
4164 */
4165static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4166{
4167	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4168	struct ext4_prealloc_space *pa = ac->ac_pa;
4169	if (pa) {
4170		if (pa->pa_type == MB_GROUP_PA) {
4171			/* see comment in ext4_mb_use_group_pa() */
4172			spin_lock(&pa->pa_lock);
4173			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4174			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4175			pa->pa_free -= ac->ac_b_ex.fe_len;
4176			pa->pa_len -= ac->ac_b_ex.fe_len;
4177			spin_unlock(&pa->pa_lock);
4178		}
4179	}
4180	if (pa) {
4181		/*
4182		 * We want to add the pa to the right bucket.
4183		 * Remove it from the list and while adding
4184		 * make sure the list to which we are adding
4185		 * doesn't grow big.
4186		 */
4187		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4188			spin_lock(pa->pa_obj_lock);
4189			list_del_rcu(&pa->pa_inode_list);
4190			spin_unlock(pa->pa_obj_lock);
4191			ext4_mb_add_n_trim(ac);
4192		}
4193		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4194	}
4195	if (ac->ac_bitmap_page)
4196		page_cache_release(ac->ac_bitmap_page);
4197	if (ac->ac_buddy_page)
4198		page_cache_release(ac->ac_buddy_page);
4199	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4200		mutex_unlock(&ac->ac_lg->lg_mutex);
4201	ext4_mb_collect_stats(ac);
4202	return 0;
4203}
4204
4205static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4206{
4207	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4208	int ret;
4209	int freed = 0;
4210
4211	trace_ext4_mb_discard_preallocations(sb, needed);
4212	for (i = 0; i < ngroups && needed > 0; i++) {
4213		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4214		freed += ret;
4215		needed -= ret;
4216	}
4217
4218	return freed;
4219}
4220
4221/*
4222 * Main entry point into mballoc to allocate blocks
4223 * it tries to use preallocation first, then falls back
4224 * to usual allocation
4225 */
4226ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4227				struct ext4_allocation_request *ar, int *errp)
4228{
4229	int freed;
4230	struct ext4_allocation_context *ac = NULL;
4231	struct ext4_sb_info *sbi;
4232	struct super_block *sb;
4233	ext4_fsblk_t block = 0;
4234	unsigned int inquota = 0;
4235	unsigned int reserv_clstrs = 0;
4236
 
4237	sb = ar->inode->i_sb;
4238	sbi = EXT4_SB(sb);
4239
4240	trace_ext4_request_blocks(ar);
4241
4242	/* Allow to use superuser reservation for quota file */
4243	if (IS_NOQUOTA(ar->inode))
4244		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4245
4246	/*
4247	 * For delayed allocation, we could skip the ENOSPC and
4248	 * EDQUOT check, as blocks and quotas have been already
4249	 * reserved when data being copied into pagecache.
4250	 */
4251	if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4252		ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4253	else {
4254		/* Without delayed allocation we need to verify
4255		 * there is enough free blocks to do block allocation
4256		 * and verify allocation doesn't exceed the quota limits.
4257		 */
4258		while (ar->len &&
4259			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4260
4261			/* let others to free the space */
4262			yield();
4263			ar->len = ar->len >> 1;
4264		}
4265		if (!ar->len) {
4266			*errp = -ENOSPC;
4267			return 0;
4268		}
4269		reserv_clstrs = ar->len;
4270		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4271			dquot_alloc_block_nofail(ar->inode,
4272						 EXT4_C2B(sbi, ar->len));
4273		} else {
4274			while (ar->len &&
4275				dquot_alloc_block(ar->inode,
4276						  EXT4_C2B(sbi, ar->len))) {
4277
4278				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4279				ar->len--;
4280			}
4281		}
4282		inquota = ar->len;
4283		if (ar->len == 0) {
4284			*errp = -EDQUOT;
4285			goto out;
4286		}
4287	}
4288
4289	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4290	if (!ac) {
4291		ar->len = 0;
4292		*errp = -ENOMEM;
4293		goto out;
4294	}
4295
4296	*errp = ext4_mb_initialize_context(ac, ar);
4297	if (*errp) {
4298		ar->len = 0;
4299		goto out;
4300	}
4301
4302	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4303	if (!ext4_mb_use_preallocated(ac)) {
4304		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4305		ext4_mb_normalize_request(ac, ar);
4306repeat:
4307		/* allocate space in core */
4308		*errp = ext4_mb_regular_allocator(ac);
4309		if (*errp)
4310			goto errout;
4311
4312		/* as we've just preallocated more space than
4313		 * user requested orinally, we store allocated
4314		 * space in a special descriptor */
4315		if (ac->ac_status == AC_STATUS_FOUND &&
4316				ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4317			ext4_mb_new_preallocation(ac);
 
 
 
 
 
4318	}
4319	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4320		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4321		if (*errp == -EAGAIN) {
4322			/*
4323			 * drop the reference that we took
4324			 * in ext4_mb_use_best_found
4325			 */
4326			ext4_mb_release_context(ac);
4327			ac->ac_b_ex.fe_group = 0;
4328			ac->ac_b_ex.fe_start = 0;
4329			ac->ac_b_ex.fe_len = 0;
4330			ac->ac_status = AC_STATUS_CONTINUE;
4331			goto repeat;
4332		} else if (*errp)
4333		errout:
4334			ext4_discard_allocated_blocks(ac);
4335		else {
 
4336			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4337			ar->len = ac->ac_b_ex.fe_len;
4338		}
4339	} else {
4340		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4341		if (freed)
4342			goto repeat;
4343		*errp = -ENOSPC;
4344	}
4345
 
4346	if (*errp) {
4347		ac->ac_b_ex.fe_len = 0;
4348		ar->len = 0;
4349		ext4_mb_show_ac(ac);
4350	}
4351	ext4_mb_release_context(ac);
4352out:
4353	if (ac)
4354		kmem_cache_free(ext4_ac_cachep, ac);
4355	if (inquota && ar->len < inquota)
4356		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4357	if (!ar->len) {
4358		if (!ext4_test_inode_state(ar->inode,
4359					   EXT4_STATE_DELALLOC_RESERVED))
4360			/* release all the reserved blocks if non delalloc */
4361			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4362						reserv_clstrs);
4363	}
4364
4365	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4366
4367	return block;
4368}
4369
4370/*
4371 * We can merge two free data extents only if the physical blocks
4372 * are contiguous, AND the extents were freed by the same transaction,
4373 * AND the blocks are associated with the same group.
4374 */
4375static int can_merge(struct ext4_free_data *entry1,
4376			struct ext4_free_data *entry2)
4377{
4378	if ((entry1->efd_tid == entry2->efd_tid) &&
4379	    (entry1->efd_group == entry2->efd_group) &&
4380	    ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4381		return 1;
4382	return 0;
4383}
4384
4385static noinline_for_stack int
4386ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4387		      struct ext4_free_data *new_entry)
4388{
4389	ext4_group_t group = e4b->bd_group;
4390	ext4_grpblk_t cluster;
4391	struct ext4_free_data *entry;
4392	struct ext4_group_info *db = e4b->bd_info;
4393	struct super_block *sb = e4b->bd_sb;
4394	struct ext4_sb_info *sbi = EXT4_SB(sb);
4395	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4396	struct rb_node *parent = NULL, *new_node;
4397
4398	BUG_ON(!ext4_handle_valid(handle));
4399	BUG_ON(e4b->bd_bitmap_page == NULL);
4400	BUG_ON(e4b->bd_buddy_page == NULL);
4401
4402	new_node = &new_entry->efd_node;
4403	cluster = new_entry->efd_start_cluster;
4404
4405	if (!*n) {
4406		/* first free block exent. We need to
4407		   protect buddy cache from being freed,
4408		 * otherwise we'll refresh it from
4409		 * on-disk bitmap and lose not-yet-available
4410		 * blocks */
4411		page_cache_get(e4b->bd_buddy_page);
4412		page_cache_get(e4b->bd_bitmap_page);
4413	}
4414	while (*n) {
4415		parent = *n;
4416		entry = rb_entry(parent, struct ext4_free_data, efd_node);
4417		if (cluster < entry->efd_start_cluster)
4418			n = &(*n)->rb_left;
4419		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4420			n = &(*n)->rb_right;
4421		else {
4422			ext4_grp_locked_error(sb, group, 0,
4423				ext4_group_first_block_no(sb, group) +
4424				EXT4_C2B(sbi, cluster),
4425				"Block already on to-be-freed list");
4426			return 0;
4427		}
4428	}
4429
4430	rb_link_node(new_node, parent, n);
4431	rb_insert_color(new_node, &db->bb_free_root);
4432
4433	/* Now try to see the extent can be merged to left and right */
4434	node = rb_prev(new_node);
4435	if (node) {
4436		entry = rb_entry(node, struct ext4_free_data, efd_node);
4437		if (can_merge(entry, new_entry)) {
 
4438			new_entry->efd_start_cluster = entry->efd_start_cluster;
4439			new_entry->efd_count += entry->efd_count;
4440			rb_erase(node, &(db->bb_free_root));
4441			ext4_journal_callback_del(handle, &entry->efd_jce);
4442			kmem_cache_free(ext4_free_data_cachep, entry);
4443		}
4444	}
4445
4446	node = rb_next(new_node);
4447	if (node) {
4448		entry = rb_entry(node, struct ext4_free_data, efd_node);
4449		if (can_merge(new_entry, entry)) {
 
4450			new_entry->efd_count += entry->efd_count;
4451			rb_erase(node, &(db->bb_free_root));
4452			ext4_journal_callback_del(handle, &entry->efd_jce);
4453			kmem_cache_free(ext4_free_data_cachep, entry);
4454		}
4455	}
4456	/* Add the extent to transaction's private list */
4457	ext4_journal_callback_add(handle, ext4_free_data_callback,
4458				  &new_entry->efd_jce);
4459	return 0;
4460}
4461
4462/**
4463 * ext4_free_blocks() -- Free given blocks and update quota
4464 * @handle:		handle for this transaction
4465 * @inode:		inode
4466 * @block:		start physical block to free
4467 * @count:		number of blocks to count
4468 * @flags:		flags used by ext4_free_blocks
4469 */
4470void ext4_free_blocks(handle_t *handle, struct inode *inode,
4471		      struct buffer_head *bh, ext4_fsblk_t block,
4472		      unsigned long count, int flags)
4473{
4474	struct buffer_head *bitmap_bh = NULL;
4475	struct super_block *sb = inode->i_sb;
4476	struct ext4_group_desc *gdp;
4477	unsigned long freed = 0;
4478	unsigned int overflow;
4479	ext4_grpblk_t bit;
4480	struct buffer_head *gd_bh;
4481	ext4_group_t block_group;
4482	struct ext4_sb_info *sbi;
4483	struct ext4_buddy e4b;
4484	unsigned int count_clusters;
4485	int err = 0;
4486	int ret;
4487
 
4488	if (bh) {
4489		if (block)
4490			BUG_ON(block != bh->b_blocknr);
4491		else
4492			block = bh->b_blocknr;
4493	}
4494
4495	sbi = EXT4_SB(sb);
4496	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4497	    !ext4_data_block_valid(sbi, block, count)) {
4498		ext4_error(sb, "Freeing blocks not in datazone - "
4499			   "block = %llu, count = %lu", block, count);
4500		goto error_return;
4501	}
4502
4503	ext4_debug("freeing block %llu\n", block);
4504	trace_ext4_free_blocks(inode, block, count, flags);
4505
4506	if (flags & EXT4_FREE_BLOCKS_FORGET) {
4507		struct buffer_head *tbh = bh;
4508		int i;
4509
4510		BUG_ON(bh && (count > 1));
4511
4512		for (i = 0; i < count; i++) {
4513			if (!bh)
4514				tbh = sb_find_get_block(inode->i_sb,
4515							block + i);
4516			if (unlikely(!tbh))
4517				continue;
4518			ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4519				    inode, tbh, block + i);
4520		}
4521	}
4522
4523	/*
4524	 * We need to make sure we don't reuse the freed block until
4525	 * after the transaction is committed, which we can do by
4526	 * treating the block as metadata, below.  We make an
4527	 * exception if the inode is to be written in writeback mode
4528	 * since writeback mode has weak data consistency guarantees.
4529	 */
4530	if (!ext4_should_writeback_data(inode))
4531		flags |= EXT4_FREE_BLOCKS_METADATA;
4532
4533	/*
4534	 * If the extent to be freed does not begin on a cluster
4535	 * boundary, we need to deal with partial clusters at the
4536	 * beginning and end of the extent.  Normally we will free
4537	 * blocks at the beginning or the end unless we are explicitly
4538	 * requested to avoid doing so.
4539	 */
4540	overflow = block & (sbi->s_cluster_ratio - 1);
4541	if (overflow) {
4542		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4543			overflow = sbi->s_cluster_ratio - overflow;
4544			block += overflow;
4545			if (count > overflow)
4546				count -= overflow;
4547			else
4548				return;
4549		} else {
4550			block -= overflow;
4551			count += overflow;
4552		}
4553	}
4554	overflow = count & (sbi->s_cluster_ratio - 1);
4555	if (overflow) {
4556		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4557			if (count > overflow)
4558				count -= overflow;
4559			else
4560				return;
4561		} else
4562			count += sbi->s_cluster_ratio - overflow;
4563	}
4564
 
 
 
 
 
 
 
 
 
 
 
 
4565do_more:
4566	overflow = 0;
4567	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4568
 
 
 
 
4569	/*
4570	 * Check to see if we are freeing blocks across a group
4571	 * boundary.
4572	 */
4573	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4574		overflow = EXT4_C2B(sbi, bit) + count -
4575			EXT4_BLOCKS_PER_GROUP(sb);
4576		count -= overflow;
4577	}
4578	count_clusters = EXT4_B2C(sbi, count);
4579	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4580	if (!bitmap_bh) {
4581		err = -EIO;
 
4582		goto error_return;
4583	}
4584	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4585	if (!gdp) {
4586		err = -EIO;
4587		goto error_return;
4588	}
4589
4590	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4591	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4592	    in_range(block, ext4_inode_table(sb, gdp),
4593		     EXT4_SB(sb)->s_itb_per_group) ||
4594	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4595		     EXT4_SB(sb)->s_itb_per_group)) {
4596
4597		ext4_error(sb, "Freeing blocks in system zone - "
4598			   "Block = %llu, count = %lu", block, count);
4599		/* err = 0. ext4_std_error should be a no op */
4600		goto error_return;
4601	}
4602
4603	BUFFER_TRACE(bitmap_bh, "getting write access");
4604	err = ext4_journal_get_write_access(handle, bitmap_bh);
4605	if (err)
4606		goto error_return;
4607
4608	/*
4609	 * We are about to modify some metadata.  Call the journal APIs
4610	 * to unshare ->b_data if a currently-committing transaction is
4611	 * using it
4612	 */
4613	BUFFER_TRACE(gd_bh, "get_write_access");
4614	err = ext4_journal_get_write_access(handle, gd_bh);
4615	if (err)
4616		goto error_return;
4617#ifdef AGGRESSIVE_CHECK
4618	{
4619		int i;
4620		for (i = 0; i < count_clusters; i++)
4621			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4622	}
4623#endif
4624	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4625
4626	err = ext4_mb_load_buddy(sb, block_group, &e4b);
 
 
4627	if (err)
4628		goto error_return;
4629
4630	if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
 
 
 
 
 
 
 
 
4631		struct ext4_free_data *new_entry;
4632		/*
4633		 * blocks being freed are metadata. these blocks shouldn't
4634		 * be used until this transaction is committed
4635		 */
4636		new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4637		if (!new_entry) {
4638			ext4_mb_unload_buddy(&e4b);
4639			err = -ENOMEM;
4640			goto error_return;
4641		}
4642		new_entry->efd_start_cluster = bit;
4643		new_entry->efd_group = block_group;
4644		new_entry->efd_count = count_clusters;
4645		new_entry->efd_tid = handle->h_transaction->t_tid;
4646
4647		ext4_lock_group(sb, block_group);
4648		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4649		ext4_mb_free_metadata(handle, &e4b, new_entry);
4650	} else {
4651		/* need to update group_info->bb_free and bitmap
4652		 * with group lock held. generate_buddy look at
4653		 * them with group lock_held
4654		 */
 
 
 
 
 
 
 
 
 
 
4655		ext4_lock_group(sb, block_group);
4656		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4657		mb_free_blocks(inode, &e4b, bit, count_clusters);
4658	}
4659
4660	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4661	ext4_free_group_clusters_set(sb, gdp, ret);
4662	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
4663				   EXT4_BLOCKS_PER_GROUP(sb) / 8);
4664	ext4_group_desc_csum_set(sb, block_group, gdp);
4665	ext4_unlock_group(sb, block_group);
4666	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4667
4668	if (sbi->s_log_groups_per_flex) {
4669		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4670		atomic_add(count_clusters,
4671			   &sbi->s_flex_groups[flex_group].free_clusters);
4672	}
4673
4674	ext4_mb_unload_buddy(&e4b);
4675
4676	freed += count;
4677
4678	if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4679		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
 
 
 
4680
4681	/* We dirtied the bitmap block */
4682	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4683	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4684
4685	/* And the group descriptor block */
4686	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4687	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4688	if (!err)
4689		err = ret;
4690
4691	if (overflow && !err) {
4692		block += count;
4693		count = overflow;
4694		put_bh(bitmap_bh);
4695		goto do_more;
4696	}
4697	ext4_mark_super_dirty(sb);
4698error_return:
4699	brelse(bitmap_bh);
4700	ext4_std_error(sb, err);
4701	return;
4702}
4703
4704/**
4705 * ext4_group_add_blocks() -- Add given blocks to an existing group
4706 * @handle:			handle to this transaction
4707 * @sb:				super block
4708 * @block:			start physcial block to add to the block group
4709 * @count:			number of blocks to free
4710 *
4711 * This marks the blocks as free in the bitmap and buddy.
4712 */
4713int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4714			 ext4_fsblk_t block, unsigned long count)
4715{
4716	struct buffer_head *bitmap_bh = NULL;
4717	struct buffer_head *gd_bh;
4718	ext4_group_t block_group;
4719	ext4_grpblk_t bit;
4720	unsigned int i;
4721	struct ext4_group_desc *desc;
4722	struct ext4_sb_info *sbi = EXT4_SB(sb);
4723	struct ext4_buddy e4b;
4724	int err = 0, ret, blk_free_count;
4725	ext4_grpblk_t blocks_freed;
4726
4727	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4728
4729	if (count == 0)
4730		return 0;
4731
4732	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4733	/*
4734	 * Check to see if we are freeing blocks across a group
4735	 * boundary.
4736	 */
4737	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4738		ext4_warning(sb, "too much blocks added to group %u\n",
4739			     block_group);
4740		err = -EINVAL;
4741		goto error_return;
4742	}
4743
4744	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4745	if (!bitmap_bh) {
4746		err = -EIO;
 
4747		goto error_return;
4748	}
4749
4750	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4751	if (!desc) {
4752		err = -EIO;
4753		goto error_return;
4754	}
4755
4756	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4757	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4758	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4759	    in_range(block + count - 1, ext4_inode_table(sb, desc),
4760		     sbi->s_itb_per_group)) {
4761		ext4_error(sb, "Adding blocks in system zones - "
4762			   "Block = %llu, count = %lu",
4763			   block, count);
4764		err = -EINVAL;
4765		goto error_return;
4766	}
4767
4768	BUFFER_TRACE(bitmap_bh, "getting write access");
4769	err = ext4_journal_get_write_access(handle, bitmap_bh);
4770	if (err)
4771		goto error_return;
4772
4773	/*
4774	 * We are about to modify some metadata.  Call the journal APIs
4775	 * to unshare ->b_data if a currently-committing transaction is
4776	 * using it
4777	 */
4778	BUFFER_TRACE(gd_bh, "get_write_access");
4779	err = ext4_journal_get_write_access(handle, gd_bh);
4780	if (err)
4781		goto error_return;
4782
4783	for (i = 0, blocks_freed = 0; i < count; i++) {
4784		BUFFER_TRACE(bitmap_bh, "clear bit");
4785		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4786			ext4_error(sb, "bit already cleared for block %llu",
4787				   (ext4_fsblk_t)(block + i));
4788			BUFFER_TRACE(bitmap_bh, "bit already cleared");
4789		} else {
4790			blocks_freed++;
4791		}
4792	}
4793
4794	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4795	if (err)
4796		goto error_return;
4797
4798	/*
4799	 * need to update group_info->bb_free and bitmap
4800	 * with group lock held. generate_buddy look at
4801	 * them with group lock_held
4802	 */
4803	ext4_lock_group(sb, block_group);
4804	mb_clear_bits(bitmap_bh->b_data, bit, count);
4805	mb_free_blocks(NULL, &e4b, bit, count);
4806	blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4807	ext4_free_group_clusters_set(sb, desc, blk_free_count);
4808	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh,
4809				   EXT4_BLOCKS_PER_GROUP(sb) / 8);
4810	ext4_group_desc_csum_set(sb, block_group, desc);
4811	ext4_unlock_group(sb, block_group);
4812	percpu_counter_add(&sbi->s_freeclusters_counter,
4813			   EXT4_B2C(sbi, blocks_freed));
4814
4815	if (sbi->s_log_groups_per_flex) {
4816		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4817		atomic_add(EXT4_B2C(sbi, blocks_freed),
4818			   &sbi->s_flex_groups[flex_group].free_clusters);
4819	}
4820
4821	ext4_mb_unload_buddy(&e4b);
4822
4823	/* We dirtied the bitmap block */
4824	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4825	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4826
4827	/* And the group descriptor block */
4828	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4829	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4830	if (!err)
4831		err = ret;
4832
4833error_return:
4834	brelse(bitmap_bh);
4835	ext4_std_error(sb, err);
4836	return err;
4837}
4838
4839/**
4840 * ext4_trim_extent -- function to TRIM one single free extent in the group
4841 * @sb:		super block for the file system
4842 * @start:	starting block of the free extent in the alloc. group
4843 * @count:	number of blocks to TRIM
4844 * @group:	alloc. group we are working with
4845 * @e4b:	ext4 buddy for the group
4846 *
4847 * Trim "count" blocks starting at "start" in the "group". To assure that no
4848 * one will allocate those blocks, mark it as used in buddy bitmap. This must
4849 * be called with under the group lock.
4850 */
4851static void ext4_trim_extent(struct super_block *sb, int start, int count,
4852			     ext4_group_t group, struct ext4_buddy *e4b)
 
 
4853{
4854	struct ext4_free_extent ex;
 
4855
4856	trace_ext4_trim_extent(sb, group, start, count);
4857
4858	assert_spin_locked(ext4_group_lock_ptr(sb, group));
4859
4860	ex.fe_start = start;
4861	ex.fe_group = group;
4862	ex.fe_len = count;
4863
4864	/*
4865	 * Mark blocks used, so no one can reuse them while
4866	 * being trimmed.
4867	 */
4868	mb_mark_used(e4b, &ex);
4869	ext4_unlock_group(sb, group);
4870	ext4_issue_discard(sb, group, start, count);
4871	ext4_lock_group(sb, group);
4872	mb_free_blocks(NULL, e4b, start, ex.fe_len);
 
4873}
4874
4875/**
4876 * ext4_trim_all_free -- function to trim all free space in alloc. group
4877 * @sb:			super block for file system
4878 * @group:		group to be trimmed
4879 * @start:		first group block to examine
4880 * @max:		last group block to examine
4881 * @minblocks:		minimum extent block count
4882 *
4883 * ext4_trim_all_free walks through group's buddy bitmap searching for free
4884 * extents. When the free block is found, ext4_trim_extent is called to TRIM
4885 * the extent.
4886 *
4887 *
4888 * ext4_trim_all_free walks through group's block bitmap searching for free
4889 * extents. When the free extent is found, mark it as used in group buddy
4890 * bitmap. Then issue a TRIM command on this extent and free the extent in
4891 * the group buddy bitmap. This is done until whole group is scanned.
4892 */
4893static ext4_grpblk_t
4894ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
4895		   ext4_grpblk_t start, ext4_grpblk_t max,
4896		   ext4_grpblk_t minblocks)
4897{
4898	void *bitmap;
4899	ext4_grpblk_t next, count = 0, free_count = 0;
4900	struct ext4_buddy e4b;
4901	int ret;
4902
4903	trace_ext4_trim_all_free(sb, group, start, max);
4904
4905	ret = ext4_mb_load_buddy(sb, group, &e4b);
4906	if (ret) {
4907		ext4_error(sb, "Error in loading buddy "
4908				"information for %u", group);
4909		return ret;
4910	}
4911	bitmap = e4b.bd_bitmap;
4912
4913	ext4_lock_group(sb, group);
4914	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
4915	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
4916		goto out;
4917
4918	start = (e4b.bd_info->bb_first_free > start) ?
4919		e4b.bd_info->bb_first_free : start;
4920
4921	while (start <= max) {
4922		start = mb_find_next_zero_bit(bitmap, max + 1, start);
4923		if (start > max)
4924			break;
4925		next = mb_find_next_bit(bitmap, max + 1, start);
4926
4927		if ((next - start) >= minblocks) {
4928			ext4_trim_extent(sb, start,
4929					 next - start, group, &e4b);
 
 
 
4930			count += next - start;
4931		}
4932		free_count += next - start;
4933		start = next + 1;
4934
4935		if (fatal_signal_pending(current)) {
4936			count = -ERESTARTSYS;
4937			break;
4938		}
4939
4940		if (need_resched()) {
4941			ext4_unlock_group(sb, group);
4942			cond_resched();
4943			ext4_lock_group(sb, group);
4944		}
4945
4946		if ((e4b.bd_info->bb_free - free_count) < minblocks)
4947			break;
4948	}
4949
4950	if (!ret)
 
4951		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
 
4952out:
4953	ext4_unlock_group(sb, group);
4954	ext4_mb_unload_buddy(&e4b);
4955
4956	ext4_debug("trimmed %d blocks in the group %d\n",
4957		count, group);
4958
4959	return count;
4960}
4961
4962/**
4963 * ext4_trim_fs() -- trim ioctl handle function
4964 * @sb:			superblock for filesystem
4965 * @range:		fstrim_range structure
4966 *
4967 * start:	First Byte to trim
4968 * len:		number of Bytes to trim from start
4969 * minlen:	minimum extent length in Bytes
4970 * ext4_trim_fs goes through all allocation groups containing Bytes from
4971 * start to start+len. For each such a group ext4_trim_all_free function
4972 * is invoked to trim all free space.
4973 */
4974int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
4975{
4976	struct ext4_group_info *grp;
4977	ext4_group_t group, first_group, last_group;
4978	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
4979	uint64_t start, end, minlen, trimmed = 0;
4980	ext4_fsblk_t first_data_blk =
4981			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
4982	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
4983	int ret = 0;
4984
4985	start = range->start >> sb->s_blocksize_bits;
4986	end = start + (range->len >> sb->s_blocksize_bits) - 1;
4987	minlen = range->minlen >> sb->s_blocksize_bits;
 
4988
4989	if (unlikely(minlen > EXT4_CLUSTERS_PER_GROUP(sb)) ||
4990	    unlikely(start >= max_blks))
 
4991		return -EINVAL;
4992	if (end >= max_blks)
4993		end = max_blks - 1;
4994	if (end <= first_data_blk)
4995		goto out;
4996	if (start < first_data_blk)
4997		start = first_data_blk;
4998
4999	/* Determine first and last group to examine based on start and end */
5000	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5001				     &first_group, &first_cluster);
5002	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5003				     &last_group, &last_cluster);
5004
5005	/* end now represents the last cluster to discard in this group */
5006	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5007
5008	for (group = first_group; group <= last_group; group++) {
5009		grp = ext4_get_group_info(sb, group);
5010		/* We only do this if the grp has never been initialized */
5011		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5012			ret = ext4_mb_init_group(sb, group);
5013			if (ret)
5014				break;
5015		}
5016
5017		/*
5018		 * For all the groups except the last one, last cluster will
5019		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5020		 * change it for the last group, note that last_cluster is
5021		 * already computed earlier by ext4_get_group_no_and_offset()
5022		 */
5023		if (group == last_group)
5024			end = last_cluster;
5025
5026		if (grp->bb_free >= minlen) {
5027			cnt = ext4_trim_all_free(sb, group, first_cluster,
5028						end, minlen);
5029			if (cnt < 0) {
5030				ret = cnt;
5031				break;
5032			}
5033			trimmed += cnt;
5034		}
5035
5036		/*
5037		 * For every group except the first one, we are sure
5038		 * that the first cluster to discard will be cluster #0.
5039		 */
5040		first_cluster = 0;
5041	}
5042
5043	if (!ret)
5044		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5045
5046out:
5047	range->len = trimmed * sb->s_blocksize;
5048	return ret;
5049}
v4.6
   1/*
   2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
   3 * Written by Alex Tomas <alex@clusterfs.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
  17 */
  18
  19
  20/*
  21 * mballoc.c contains the multiblocks allocation routines
  22 */
  23
  24#include "ext4_jbd2.h"
  25#include "mballoc.h"
  26#include <linux/log2.h>
  27#include <linux/module.h>
  28#include <linux/slab.h>
  29#include <linux/backing-dev.h>
  30#include <trace/events/ext4.h>
  31
  32#ifdef CONFIG_EXT4_DEBUG
  33ushort ext4_mballoc_debug __read_mostly;
  34
  35module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
  36MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
  37#endif
  38
  39/*
  40 * MUSTDO:
  41 *   - test ext4_ext_search_left() and ext4_ext_search_right()
  42 *   - search for metadata in few groups
  43 *
  44 * TODO v4:
  45 *   - normalization should take into account whether file is still open
  46 *   - discard preallocations if no free space left (policy?)
  47 *   - don't normalize tails
  48 *   - quota
  49 *   - reservation for superuser
  50 *
  51 * TODO v3:
  52 *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
  53 *   - track min/max extents in each group for better group selection
  54 *   - mb_mark_used() may allocate chunk right after splitting buddy
  55 *   - tree of groups sorted by number of free blocks
  56 *   - error handling
  57 */
  58
  59/*
  60 * The allocation request involve request for multiple number of blocks
  61 * near to the goal(block) value specified.
  62 *
  63 * During initialization phase of the allocator we decide to use the
  64 * group preallocation or inode preallocation depending on the size of
  65 * the file. The size of the file could be the resulting file size we
  66 * would have after allocation, or the current file size, which ever
  67 * is larger. If the size is less than sbi->s_mb_stream_request we
  68 * select to use the group preallocation. The default value of
  69 * s_mb_stream_request is 16 blocks. This can also be tuned via
  70 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
  71 * terms of number of blocks.
  72 *
  73 * The main motivation for having small file use group preallocation is to
  74 * ensure that we have small files closer together on the disk.
  75 *
  76 * First stage the allocator looks at the inode prealloc list,
  77 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
  78 * spaces for this particular inode. The inode prealloc space is
  79 * represented as:
  80 *
  81 * pa_lstart -> the logical start block for this prealloc space
  82 * pa_pstart -> the physical start block for this prealloc space
  83 * pa_len    -> length for this prealloc space (in clusters)
  84 * pa_free   ->  free space available in this prealloc space (in clusters)
  85 *
  86 * The inode preallocation space is used looking at the _logical_ start
  87 * block. If only the logical file block falls within the range of prealloc
  88 * space we will consume the particular prealloc space. This makes sure that
  89 * we have contiguous physical blocks representing the file blocks
  90 *
  91 * The important thing to be noted in case of inode prealloc space is that
  92 * we don't modify the values associated to inode prealloc space except
  93 * pa_free.
  94 *
  95 * If we are not able to find blocks in the inode prealloc space and if we
  96 * have the group allocation flag set then we look at the locality group
  97 * prealloc space. These are per CPU prealloc list represented as
  98 *
  99 * ext4_sb_info.s_locality_groups[smp_processor_id()]
 100 *
 101 * The reason for having a per cpu locality group is to reduce the contention
 102 * between CPUs. It is possible to get scheduled at this point.
 103 *
 104 * The locality group prealloc space is used looking at whether we have
 105 * enough free space (pa_free) within the prealloc space.
 106 *
 107 * If we can't allocate blocks via inode prealloc or/and locality group
 108 * prealloc then we look at the buddy cache. The buddy cache is represented
 109 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
 110 * mapped to the buddy and bitmap information regarding different
 111 * groups. The buddy information is attached to buddy cache inode so that
 112 * we can access them through the page cache. The information regarding
 113 * each group is loaded via ext4_mb_load_buddy.  The information involve
 114 * block bitmap and buddy information. The information are stored in the
 115 * inode as:
 116 *
 117 *  {                        page                        }
 118 *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
 119 *
 120 *
 121 * one block each for bitmap and buddy information.  So for each group we
 122 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
 123 * blocksize) blocks.  So it can have information regarding groups_per_page
 124 * which is blocks_per_page/2
 125 *
 126 * The buddy cache inode is not stored on disk. The inode is thrown
 127 * away when the filesystem is unmounted.
 128 *
 129 * We look for count number of blocks in the buddy cache. If we were able
 130 * to locate that many free blocks we return with additional information
 131 * regarding rest of the contiguous physical block available
 132 *
 133 * Before allocating blocks via buddy cache we normalize the request
 134 * blocks. This ensure we ask for more blocks that we needed. The extra
 135 * blocks that we get after allocation is added to the respective prealloc
 136 * list. In case of inode preallocation we follow a list of heuristics
 137 * based on file size. This can be found in ext4_mb_normalize_request. If
 138 * we are doing a group prealloc we try to normalize the request to
 139 * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
 140 * dependent on the cluster size; for non-bigalloc file systems, it is
 141 * 512 blocks. This can be tuned via
 142 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
 143 * terms of number of blocks. If we have mounted the file system with -O
 144 * stripe=<value> option the group prealloc request is normalized to the
 145 * the smallest multiple of the stripe value (sbi->s_stripe) which is
 146 * greater than the default mb_group_prealloc.
 147 *
 148 * The regular allocator (using the buddy cache) supports a few tunables.
 149 *
 150 * /sys/fs/ext4/<partition>/mb_min_to_scan
 151 * /sys/fs/ext4/<partition>/mb_max_to_scan
 152 * /sys/fs/ext4/<partition>/mb_order2_req
 153 *
 154 * The regular allocator uses buddy scan only if the request len is power of
 155 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
 156 * value of s_mb_order2_reqs can be tuned via
 157 * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
 158 * stripe size (sbi->s_stripe), we try to search for contiguous block in
 159 * stripe size. This should result in better allocation on RAID setups. If
 160 * not, we search in the specific group using bitmap for best extents. The
 161 * tunable min_to_scan and max_to_scan control the behaviour here.
 162 * min_to_scan indicate how long the mballoc __must__ look for a best
 163 * extent and max_to_scan indicates how long the mballoc __can__ look for a
 164 * best extent in the found extents. Searching for the blocks starts with
 165 * the group specified as the goal value in allocation context via
 166 * ac_g_ex. Each group is first checked based on the criteria whether it
 167 * can be used for allocation. ext4_mb_good_group explains how the groups are
 168 * checked.
 169 *
 170 * Both the prealloc space are getting populated as above. So for the first
 171 * request we will hit the buddy cache which will result in this prealloc
 172 * space getting filled. The prealloc space is then later used for the
 173 * subsequent request.
 174 */
 175
 176/*
 177 * mballoc operates on the following data:
 178 *  - on-disk bitmap
 179 *  - in-core buddy (actually includes buddy and bitmap)
 180 *  - preallocation descriptors (PAs)
 181 *
 182 * there are two types of preallocations:
 183 *  - inode
 184 *    assiged to specific inode and can be used for this inode only.
 185 *    it describes part of inode's space preallocated to specific
 186 *    physical blocks. any block from that preallocated can be used
 187 *    independent. the descriptor just tracks number of blocks left
 188 *    unused. so, before taking some block from descriptor, one must
 189 *    make sure corresponded logical block isn't allocated yet. this
 190 *    also means that freeing any block within descriptor's range
 191 *    must discard all preallocated blocks.
 192 *  - locality group
 193 *    assigned to specific locality group which does not translate to
 194 *    permanent set of inodes: inode can join and leave group. space
 195 *    from this type of preallocation can be used for any inode. thus
 196 *    it's consumed from the beginning to the end.
 197 *
 198 * relation between them can be expressed as:
 199 *    in-core buddy = on-disk bitmap + preallocation descriptors
 200 *
 201 * this mean blocks mballoc considers used are:
 202 *  - allocated blocks (persistent)
 203 *  - preallocated blocks (non-persistent)
 204 *
 205 * consistency in mballoc world means that at any time a block is either
 206 * free or used in ALL structures. notice: "any time" should not be read
 207 * literally -- time is discrete and delimited by locks.
 208 *
 209 *  to keep it simple, we don't use block numbers, instead we count number of
 210 *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
 211 *
 212 * all operations can be expressed as:
 213 *  - init buddy:			buddy = on-disk + PAs
 214 *  - new PA:				buddy += N; PA = N
 215 *  - use inode PA:			on-disk += N; PA -= N
 216 *  - discard inode PA			buddy -= on-disk - PA; PA = 0
 217 *  - use locality group PA		on-disk += N; PA -= N
 218 *  - discard locality group PA		buddy -= PA; PA = 0
 219 *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
 220 *        is used in real operation because we can't know actual used
 221 *        bits from PA, only from on-disk bitmap
 222 *
 223 * if we follow this strict logic, then all operations above should be atomic.
 224 * given some of them can block, we'd have to use something like semaphores
 225 * killing performance on high-end SMP hardware. let's try to relax it using
 226 * the following knowledge:
 227 *  1) if buddy is referenced, it's already initialized
 228 *  2) while block is used in buddy and the buddy is referenced,
 229 *     nobody can re-allocate that block
 230 *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
 231 *     bit set and PA claims same block, it's OK. IOW, one can set bit in
 232 *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
 233 *     block
 234 *
 235 * so, now we're building a concurrency table:
 236 *  - init buddy vs.
 237 *    - new PA
 238 *      blocks for PA are allocated in the buddy, buddy must be referenced
 239 *      until PA is linked to allocation group to avoid concurrent buddy init
 240 *    - use inode PA
 241 *      we need to make sure that either on-disk bitmap or PA has uptodate data
 242 *      given (3) we care that PA-=N operation doesn't interfere with init
 243 *    - discard inode PA
 244 *      the simplest way would be to have buddy initialized by the discard
 245 *    - use locality group PA
 246 *      again PA-=N must be serialized with init
 247 *    - discard locality group PA
 248 *      the simplest way would be to have buddy initialized by the discard
 249 *  - new PA vs.
 250 *    - use inode PA
 251 *      i_data_sem serializes them
 252 *    - discard inode PA
 253 *      discard process must wait until PA isn't used by another process
 254 *    - use locality group PA
 255 *      some mutex should serialize them
 256 *    - discard locality group PA
 257 *      discard process must wait until PA isn't used by another process
 258 *  - use inode PA
 259 *    - use inode PA
 260 *      i_data_sem or another mutex should serializes them
 261 *    - discard inode PA
 262 *      discard process must wait until PA isn't used by another process
 263 *    - use locality group PA
 264 *      nothing wrong here -- they're different PAs covering different blocks
 265 *    - discard locality group PA
 266 *      discard process must wait until PA isn't used by another process
 267 *
 268 * now we're ready to make few consequences:
 269 *  - PA is referenced and while it is no discard is possible
 270 *  - PA is referenced until block isn't marked in on-disk bitmap
 271 *  - PA changes only after on-disk bitmap
 272 *  - discard must not compete with init. either init is done before
 273 *    any discard or they're serialized somehow
 274 *  - buddy init as sum of on-disk bitmap and PAs is done atomically
 275 *
 276 * a special case when we've used PA to emptiness. no need to modify buddy
 277 * in this case, but we should care about concurrent init
 278 *
 279 */
 280
 281 /*
 282 * Logic in few words:
 283 *
 284 *  - allocation:
 285 *    load group
 286 *    find blocks
 287 *    mark bits in on-disk bitmap
 288 *    release group
 289 *
 290 *  - use preallocation:
 291 *    find proper PA (per-inode or group)
 292 *    load group
 293 *    mark bits in on-disk bitmap
 294 *    release group
 295 *    release PA
 296 *
 297 *  - free:
 298 *    load group
 299 *    mark bits in on-disk bitmap
 300 *    release group
 301 *
 302 *  - discard preallocations in group:
 303 *    mark PAs deleted
 304 *    move them onto local list
 305 *    load on-disk bitmap
 306 *    load group
 307 *    remove PA from object (inode or locality group)
 308 *    mark free blocks in-core
 309 *
 310 *  - discard inode's preallocations:
 311 */
 312
 313/*
 314 * Locking rules
 315 *
 316 * Locks:
 317 *  - bitlock on a group	(group)
 318 *  - object (inode/locality)	(object)
 319 *  - per-pa lock		(pa)
 320 *
 321 * Paths:
 322 *  - new pa
 323 *    object
 324 *    group
 325 *
 326 *  - find and use pa:
 327 *    pa
 328 *
 329 *  - release consumed pa:
 330 *    pa
 331 *    group
 332 *    object
 333 *
 334 *  - generate in-core bitmap:
 335 *    group
 336 *        pa
 337 *
 338 *  - discard all for given object (inode, locality group):
 339 *    object
 340 *        pa
 341 *    group
 342 *
 343 *  - discard all for given group:
 344 *    group
 345 *        pa
 346 *    group
 347 *        object
 348 *
 349 */
 350static struct kmem_cache *ext4_pspace_cachep;
 351static struct kmem_cache *ext4_ac_cachep;
 352static struct kmem_cache *ext4_free_data_cachep;
 353
 354/* We create slab caches for groupinfo data structures based on the
 355 * superblock block size.  There will be one per mounted filesystem for
 356 * each unique s_blocksize_bits */
 357#define NR_GRPINFO_CACHES 8
 358static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
 359
 360static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
 361	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
 362	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
 363	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
 364};
 365
 366static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
 367					ext4_group_t group);
 368static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
 369						ext4_group_t group);
 370static void ext4_free_data_callback(struct super_block *sb,
 371				struct ext4_journal_cb_entry *jce, int rc);
 372
 373static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
 374{
 375#if BITS_PER_LONG == 64
 376	*bit += ((unsigned long) addr & 7UL) << 3;
 377	addr = (void *) ((unsigned long) addr & ~7UL);
 378#elif BITS_PER_LONG == 32
 379	*bit += ((unsigned long) addr & 3UL) << 3;
 380	addr = (void *) ((unsigned long) addr & ~3UL);
 381#else
 382#error "how many bits you are?!"
 383#endif
 384	return addr;
 385}
 386
 387static inline int mb_test_bit(int bit, void *addr)
 388{
 389	/*
 390	 * ext4_test_bit on architecture like powerpc
 391	 * needs unsigned long aligned address
 392	 */
 393	addr = mb_correct_addr_and_bit(&bit, addr);
 394	return ext4_test_bit(bit, addr);
 395}
 396
 397static inline void mb_set_bit(int bit, void *addr)
 398{
 399	addr = mb_correct_addr_and_bit(&bit, addr);
 400	ext4_set_bit(bit, addr);
 401}
 402
 403static inline void mb_clear_bit(int bit, void *addr)
 404{
 405	addr = mb_correct_addr_and_bit(&bit, addr);
 406	ext4_clear_bit(bit, addr);
 407}
 408
 409static inline int mb_test_and_clear_bit(int bit, void *addr)
 410{
 411	addr = mb_correct_addr_and_bit(&bit, addr);
 412	return ext4_test_and_clear_bit(bit, addr);
 413}
 414
 415static inline int mb_find_next_zero_bit(void *addr, int max, int start)
 416{
 417	int fix = 0, ret, tmpmax;
 418	addr = mb_correct_addr_and_bit(&fix, addr);
 419	tmpmax = max + fix;
 420	start += fix;
 421
 422	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
 423	if (ret > max)
 424		return max;
 425	return ret;
 426}
 427
 428static inline int mb_find_next_bit(void *addr, int max, int start)
 429{
 430	int fix = 0, ret, tmpmax;
 431	addr = mb_correct_addr_and_bit(&fix, addr);
 432	tmpmax = max + fix;
 433	start += fix;
 434
 435	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
 436	if (ret > max)
 437		return max;
 438	return ret;
 439}
 440
 441static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
 442{
 443	char *bb;
 444
 445	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
 446	BUG_ON(max == NULL);
 447
 448	if (order > e4b->bd_blkbits + 1) {
 449		*max = 0;
 450		return NULL;
 451	}
 452
 453	/* at order 0 we see each particular block */
 454	if (order == 0) {
 455		*max = 1 << (e4b->bd_blkbits + 3);
 456		return e4b->bd_bitmap;
 457	}
 458
 459	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
 460	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
 461
 462	return bb;
 463}
 464
 465#ifdef DOUBLE_CHECK
 466static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
 467			   int first, int count)
 468{
 469	int i;
 470	struct super_block *sb = e4b->bd_sb;
 471
 472	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
 473		return;
 474	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
 475	for (i = 0; i < count; i++) {
 476		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
 477			ext4_fsblk_t blocknr;
 478
 479			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
 480			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
 481			ext4_grp_locked_error(sb, e4b->bd_group,
 482					      inode ? inode->i_ino : 0,
 483					      blocknr,
 484					      "freeing block already freed "
 485					      "(bit %u)",
 486					      first + i);
 487		}
 488		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
 489	}
 490}
 491
 492static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
 493{
 494	int i;
 495
 496	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
 497		return;
 498	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
 499	for (i = 0; i < count; i++) {
 500		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
 501		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
 502	}
 503}
 504
 505static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
 506{
 507	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
 508		unsigned char *b1, *b2;
 509		int i;
 510		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
 511		b2 = (unsigned char *) bitmap;
 512		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
 513			if (b1[i] != b2[i]) {
 514				ext4_msg(e4b->bd_sb, KERN_ERR,
 515					 "corruption in group %u "
 516					 "at byte %u(%u): %x in copy != %x "
 517					 "on disk/prealloc",
 518					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
 519				BUG();
 520			}
 521		}
 522	}
 523}
 524
 525#else
 526static inline void mb_free_blocks_double(struct inode *inode,
 527				struct ext4_buddy *e4b, int first, int count)
 528{
 529	return;
 530}
 531static inline void mb_mark_used_double(struct ext4_buddy *e4b,
 532						int first, int count)
 533{
 534	return;
 535}
 536static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
 537{
 538	return;
 539}
 540#endif
 541
 542#ifdef AGGRESSIVE_CHECK
 543
 544#define MB_CHECK_ASSERT(assert)						\
 545do {									\
 546	if (!(assert)) {						\
 547		printk(KERN_EMERG					\
 548			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
 549			function, file, line, # assert);		\
 550		BUG();							\
 551	}								\
 552} while (0)
 553
 554static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
 555				const char *function, int line)
 556{
 557	struct super_block *sb = e4b->bd_sb;
 558	int order = e4b->bd_blkbits + 1;
 559	int max;
 560	int max2;
 561	int i;
 562	int j;
 563	int k;
 564	int count;
 565	struct ext4_group_info *grp;
 566	int fragments = 0;
 567	int fstart;
 568	struct list_head *cur;
 569	void *buddy;
 570	void *buddy2;
 571
 572	{
 573		static int mb_check_counter;
 574		if (mb_check_counter++ % 100 != 0)
 575			return 0;
 576	}
 577
 578	while (order > 1) {
 579		buddy = mb_find_buddy(e4b, order, &max);
 580		MB_CHECK_ASSERT(buddy);
 581		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
 582		MB_CHECK_ASSERT(buddy2);
 583		MB_CHECK_ASSERT(buddy != buddy2);
 584		MB_CHECK_ASSERT(max * 2 == max2);
 585
 586		count = 0;
 587		for (i = 0; i < max; i++) {
 588
 589			if (mb_test_bit(i, buddy)) {
 590				/* only single bit in buddy2 may be 1 */
 591				if (!mb_test_bit(i << 1, buddy2)) {
 592					MB_CHECK_ASSERT(
 593						mb_test_bit((i<<1)+1, buddy2));
 594				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
 595					MB_CHECK_ASSERT(
 596						mb_test_bit(i << 1, buddy2));
 597				}
 598				continue;
 599			}
 600
 601			/* both bits in buddy2 must be 1 */
 602			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
 603			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
 604
 605			for (j = 0; j < (1 << order); j++) {
 606				k = (i * (1 << order)) + j;
 607				MB_CHECK_ASSERT(
 608					!mb_test_bit(k, e4b->bd_bitmap));
 609			}
 610			count++;
 611		}
 612		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
 613		order--;
 614	}
 615
 616	fstart = -1;
 617	buddy = mb_find_buddy(e4b, 0, &max);
 618	for (i = 0; i < max; i++) {
 619		if (!mb_test_bit(i, buddy)) {
 620			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
 621			if (fstart == -1) {
 622				fragments++;
 623				fstart = i;
 624			}
 625			continue;
 626		}
 627		fstart = -1;
 628		/* check used bits only */
 629		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
 630			buddy2 = mb_find_buddy(e4b, j, &max2);
 631			k = i >> j;
 632			MB_CHECK_ASSERT(k < max2);
 633			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
 634		}
 635	}
 636	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
 637	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
 638
 639	grp = ext4_get_group_info(sb, e4b->bd_group);
 640	list_for_each(cur, &grp->bb_prealloc_list) {
 641		ext4_group_t groupnr;
 642		struct ext4_prealloc_space *pa;
 643		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
 644		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
 645		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
 646		for (i = 0; i < pa->pa_len; i++)
 647			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
 648	}
 649	return 0;
 650}
 651#undef MB_CHECK_ASSERT
 652#define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
 653					__FILE__, __func__, __LINE__)
 654#else
 655#define mb_check_buddy(e4b)
 656#endif
 657
 658/*
 659 * Divide blocks started from @first with length @len into
 660 * smaller chunks with power of 2 blocks.
 661 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
 662 * then increase bb_counters[] for corresponded chunk size.
 663 */
 664static void ext4_mb_mark_free_simple(struct super_block *sb,
 665				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
 666					struct ext4_group_info *grp)
 667{
 668	struct ext4_sb_info *sbi = EXT4_SB(sb);
 669	ext4_grpblk_t min;
 670	ext4_grpblk_t max;
 671	ext4_grpblk_t chunk;
 672	unsigned short border;
 673
 674	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
 675
 676	border = 2 << sb->s_blocksize_bits;
 677
 678	while (len > 0) {
 679		/* find how many blocks can be covered since this position */
 680		max = ffs(first | border) - 1;
 681
 682		/* find how many blocks of power 2 we need to mark */
 683		min = fls(len) - 1;
 684
 685		if (max < min)
 686			min = max;
 687		chunk = 1 << min;
 688
 689		/* mark multiblock chunks only */
 690		grp->bb_counters[min]++;
 691		if (min > 0)
 692			mb_clear_bit(first >> min,
 693				     buddy + sbi->s_mb_offsets[min]);
 694
 695		len -= chunk;
 696		first += chunk;
 697	}
 698}
 699
 700/*
 701 * Cache the order of the largest free extent we have available in this block
 702 * group.
 703 */
 704static void
 705mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
 706{
 707	int i;
 708	int bits;
 709
 710	grp->bb_largest_free_order = -1; /* uninit */
 711
 712	bits = sb->s_blocksize_bits + 1;
 713	for (i = bits; i >= 0; i--) {
 714		if (grp->bb_counters[i] > 0) {
 715			grp->bb_largest_free_order = i;
 716			break;
 717		}
 718	}
 719}
 720
 721static noinline_for_stack
 722void ext4_mb_generate_buddy(struct super_block *sb,
 723				void *buddy, void *bitmap, ext4_group_t group)
 724{
 725	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
 726	struct ext4_sb_info *sbi = EXT4_SB(sb);
 727	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
 728	ext4_grpblk_t i = 0;
 729	ext4_grpblk_t first;
 730	ext4_grpblk_t len;
 731	unsigned free = 0;
 732	unsigned fragments = 0;
 733	unsigned long long period = get_cycles();
 734
 735	/* initialize buddy from bitmap which is aggregation
 736	 * of on-disk bitmap and preallocations */
 737	i = mb_find_next_zero_bit(bitmap, max, 0);
 738	grp->bb_first_free = i;
 739	while (i < max) {
 740		fragments++;
 741		first = i;
 742		i = mb_find_next_bit(bitmap, max, i);
 743		len = i - first;
 744		free += len;
 745		if (len > 1)
 746			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
 747		else
 748			grp->bb_counters[0]++;
 749		if (i < max)
 750			i = mb_find_next_zero_bit(bitmap, max, i);
 751	}
 752	grp->bb_fragments = fragments;
 753
 754	if (free != grp->bb_free) {
 755		ext4_grp_locked_error(sb, group, 0, 0,
 756				      "block bitmap and bg descriptor "
 757				      "inconsistent: %u vs %u free clusters",
 758				      free, grp->bb_free);
 759		/*
 760		 * If we intend to continue, we consider group descriptor
 761		 * corrupt and update bb_free using bitmap value
 762		 */
 763		grp->bb_free = free;
 764		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
 765			percpu_counter_sub(&sbi->s_freeclusters_counter,
 766					   grp->bb_free);
 767		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
 768	}
 769	mb_set_largest_free_order(sb, grp);
 770
 771	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
 772
 773	period = get_cycles() - period;
 774	spin_lock(&EXT4_SB(sb)->s_bal_lock);
 775	EXT4_SB(sb)->s_mb_buddies_generated++;
 776	EXT4_SB(sb)->s_mb_generation_time += period;
 777	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
 778}
 779
 780static void mb_regenerate_buddy(struct ext4_buddy *e4b)
 781{
 782	int count;
 783	int order = 1;
 784	void *buddy;
 785
 786	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
 787		ext4_set_bits(buddy, 0, count);
 788	}
 789	e4b->bd_info->bb_fragments = 0;
 790	memset(e4b->bd_info->bb_counters, 0,
 791		sizeof(*e4b->bd_info->bb_counters) *
 792		(e4b->bd_sb->s_blocksize_bits + 2));
 793
 794	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
 795		e4b->bd_bitmap, e4b->bd_group);
 796}
 797
 798/* The buddy information is attached the buddy cache inode
 799 * for convenience. The information regarding each group
 800 * is loaded via ext4_mb_load_buddy. The information involve
 801 * block bitmap and buddy information. The information are
 802 * stored in the inode as
 803 *
 804 * {                        page                        }
 805 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
 806 *
 807 *
 808 * one block each for bitmap and buddy information.
 809 * So for each group we take up 2 blocks. A page can
 810 * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
 811 * So it can have information regarding groups_per_page which
 812 * is blocks_per_page/2
 813 *
 814 * Locking note:  This routine takes the block group lock of all groups
 815 * for this page; do not hold this lock when calling this routine!
 816 */
 817
 818static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
 819{
 820	ext4_group_t ngroups;
 821	int blocksize;
 822	int blocks_per_page;
 823	int groups_per_page;
 824	int err = 0;
 825	int i;
 826	ext4_group_t first_group, group;
 827	int first_block;
 828	struct super_block *sb;
 829	struct buffer_head *bhs;
 830	struct buffer_head **bh = NULL;
 831	struct inode *inode;
 832	char *data;
 833	char *bitmap;
 834	struct ext4_group_info *grinfo;
 835
 836	mb_debug(1, "init page %lu\n", page->index);
 837
 838	inode = page->mapping->host;
 839	sb = inode->i_sb;
 840	ngroups = ext4_get_groups_count(sb);
 841	blocksize = 1 << inode->i_blkbits;
 842	blocks_per_page = PAGE_SIZE / blocksize;
 843
 844	groups_per_page = blocks_per_page >> 1;
 845	if (groups_per_page == 0)
 846		groups_per_page = 1;
 847
 848	/* allocate buffer_heads to read bitmaps */
 849	if (groups_per_page > 1) {
 850		i = sizeof(struct buffer_head *) * groups_per_page;
 851		bh = kzalloc(i, gfp);
 852		if (bh == NULL) {
 853			err = -ENOMEM;
 854			goto out;
 855		}
 856	} else
 857		bh = &bhs;
 858
 859	first_group = page->index * blocks_per_page / 2;
 860
 861	/* read all groups the page covers into the cache */
 862	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
 863		if (group >= ngroups)
 864			break;
 865
 866		grinfo = ext4_get_group_info(sb, group);
 867		/*
 868		 * If page is uptodate then we came here after online resize
 869		 * which added some new uninitialized group info structs, so
 870		 * we must skip all initialized uptodate buddies on the page,
 871		 * which may be currently in use by an allocating task.
 872		 */
 873		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
 874			bh[i] = NULL;
 875			continue;
 876		}
 877		bh[i] = ext4_read_block_bitmap_nowait(sb, group);
 878		if (IS_ERR(bh[i])) {
 879			err = PTR_ERR(bh[i]);
 880			bh[i] = NULL;
 881			goto out;
 882		}
 883		mb_debug(1, "read bitmap for group %u\n", group);
 884	}
 885
 886	/* wait for I/O completion */
 887	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
 888		int err2;
 889
 890		if (!bh[i])
 891			continue;
 892		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
 893		if (!err)
 894			err = err2;
 895	}
 896
 897	first_block = page->index * blocks_per_page;
 898	for (i = 0; i < blocks_per_page; i++) {
 
 
 899		group = (first_block + i) >> 1;
 900		if (group >= ngroups)
 901			break;
 902
 903		if (!bh[group - first_group])
 904			/* skip initialized uptodate buddy */
 905			continue;
 906
 907		if (!buffer_verified(bh[group - first_group]))
 908			/* Skip faulty bitmaps */
 909			continue;
 910		err = 0;
 911
 912		/*
 913		 * data carry information regarding this
 914		 * particular group in the format specified
 915		 * above
 916		 *
 917		 */
 918		data = page_address(page) + (i * blocksize);
 919		bitmap = bh[group - first_group]->b_data;
 920
 921		/*
 922		 * We place the buddy block and bitmap block
 923		 * close together
 924		 */
 925		if ((first_block + i) & 1) {
 926			/* this is block of buddy */
 927			BUG_ON(incore == NULL);
 928			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
 929				group, page->index, i * blocksize);
 930			trace_ext4_mb_buddy_bitmap_load(sb, group);
 931			grinfo = ext4_get_group_info(sb, group);
 932			grinfo->bb_fragments = 0;
 933			memset(grinfo->bb_counters, 0,
 934			       sizeof(*grinfo->bb_counters) *
 935				(sb->s_blocksize_bits+2));
 936			/*
 937			 * incore got set to the group block bitmap below
 938			 */
 939			ext4_lock_group(sb, group);
 940			/* init the buddy */
 941			memset(data, 0xff, blocksize);
 942			ext4_mb_generate_buddy(sb, data, incore, group);
 943			ext4_unlock_group(sb, group);
 944			incore = NULL;
 945		} else {
 946			/* this is block of bitmap */
 947			BUG_ON(incore != NULL);
 948			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
 949				group, page->index, i * blocksize);
 950			trace_ext4_mb_bitmap_load(sb, group);
 951
 952			/* see comments in ext4_mb_put_pa() */
 953			ext4_lock_group(sb, group);
 954			memcpy(data, bitmap, blocksize);
 955
 956			/* mark all preallocated blks used in in-core bitmap */
 957			ext4_mb_generate_from_pa(sb, data, group);
 958			ext4_mb_generate_from_freelist(sb, data, group);
 959			ext4_unlock_group(sb, group);
 960
 961			/* set incore so that the buddy information can be
 962			 * generated using this
 963			 */
 964			incore = data;
 965		}
 966	}
 967	SetPageUptodate(page);
 968
 969out:
 970	if (bh) {
 971		for (i = 0; i < groups_per_page; i++)
 972			brelse(bh[i]);
 973		if (bh != &bhs)
 974			kfree(bh);
 975	}
 976	return err;
 977}
 978
 979/*
 980 * Lock the buddy and bitmap pages. This make sure other parallel init_group
 981 * on the same buddy page doesn't happen whild holding the buddy page lock.
 982 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
 983 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
 984 */
 985static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
 986		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
 987{
 988	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
 989	int block, pnum, poff;
 990	int blocks_per_page;
 991	struct page *page;
 992
 993	e4b->bd_buddy_page = NULL;
 994	e4b->bd_bitmap_page = NULL;
 995
 996	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
 997	/*
 998	 * the buddy cache inode stores the block bitmap
 999	 * and buddy information in consecutive blocks.
1000	 * So for each group we need two blocks.
1001	 */
1002	block = group * 2;
1003	pnum = block / blocks_per_page;
1004	poff = block % blocks_per_page;
1005	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1006	if (!page)
1007		return -ENOMEM;
1008	BUG_ON(page->mapping != inode->i_mapping);
1009	e4b->bd_bitmap_page = page;
1010	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1011
1012	if (blocks_per_page >= 2) {
1013		/* buddy and bitmap are on the same page */
1014		return 0;
1015	}
1016
1017	block++;
1018	pnum = block / blocks_per_page;
1019	page = find_or_create_page(inode->i_mapping, pnum, gfp);
 
1020	if (!page)
1021		return -ENOMEM;
1022	BUG_ON(page->mapping != inode->i_mapping);
1023	e4b->bd_buddy_page = page;
1024	return 0;
1025}
1026
1027static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1028{
1029	if (e4b->bd_bitmap_page) {
1030		unlock_page(e4b->bd_bitmap_page);
1031		put_page(e4b->bd_bitmap_page);
1032	}
1033	if (e4b->bd_buddy_page) {
1034		unlock_page(e4b->bd_buddy_page);
1035		put_page(e4b->bd_buddy_page);
1036	}
1037}
1038
1039/*
1040 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1041 * block group lock of all groups for this page; do not hold the BG lock when
1042 * calling this routine!
1043 */
1044static noinline_for_stack
1045int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1046{
1047
1048	struct ext4_group_info *this_grp;
1049	struct ext4_buddy e4b;
1050	struct page *page;
1051	int ret = 0;
1052
1053	might_sleep();
1054	mb_debug(1, "init group %u\n", group);
1055	this_grp = ext4_get_group_info(sb, group);
1056	/*
1057	 * This ensures that we don't reinit the buddy cache
1058	 * page which map to the group from which we are already
1059	 * allocating. If we are looking at the buddy cache we would
1060	 * have taken a reference using ext4_mb_load_buddy and that
1061	 * would have pinned buddy page to page cache.
1062	 * The call to ext4_mb_get_buddy_page_lock will mark the
1063	 * page accessed.
1064	 */
1065	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1066	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1067		/*
1068		 * somebody initialized the group
1069		 * return without doing anything
1070		 */
1071		goto err;
1072	}
1073
1074	page = e4b.bd_bitmap_page;
1075	ret = ext4_mb_init_cache(page, NULL, gfp);
1076	if (ret)
1077		goto err;
1078	if (!PageUptodate(page)) {
1079		ret = -EIO;
1080		goto err;
1081	}
 
1082
1083	if (e4b.bd_buddy_page == NULL) {
1084		/*
1085		 * If both the bitmap and buddy are in
1086		 * the same page we don't need to force
1087		 * init the buddy
1088		 */
1089		ret = 0;
1090		goto err;
1091	}
1092	/* init buddy cache */
1093	page = e4b.bd_buddy_page;
1094	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1095	if (ret)
1096		goto err;
1097	if (!PageUptodate(page)) {
1098		ret = -EIO;
1099		goto err;
1100	}
 
1101err:
1102	ext4_mb_put_buddy_page_lock(&e4b);
1103	return ret;
1104}
1105
1106/*
1107 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1108 * block group lock of all groups for this page; do not hold the BG lock when
1109 * calling this routine!
1110 */
1111static noinline_for_stack int
1112ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1113		       struct ext4_buddy *e4b, gfp_t gfp)
1114{
1115	int blocks_per_page;
1116	int block;
1117	int pnum;
1118	int poff;
1119	struct page *page;
1120	int ret;
1121	struct ext4_group_info *grp;
1122	struct ext4_sb_info *sbi = EXT4_SB(sb);
1123	struct inode *inode = sbi->s_buddy_cache;
1124
1125	might_sleep();
1126	mb_debug(1, "load group %u\n", group);
1127
1128	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1129	grp = ext4_get_group_info(sb, group);
1130
1131	e4b->bd_blkbits = sb->s_blocksize_bits;
1132	e4b->bd_info = grp;
1133	e4b->bd_sb = sb;
1134	e4b->bd_group = group;
1135	e4b->bd_buddy_page = NULL;
1136	e4b->bd_bitmap_page = NULL;
1137
1138	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1139		/*
1140		 * we need full data about the group
1141		 * to make a good selection
1142		 */
1143		ret = ext4_mb_init_group(sb, group, gfp);
1144		if (ret)
1145			return ret;
1146	}
1147
1148	/*
1149	 * the buddy cache inode stores the block bitmap
1150	 * and buddy information in consecutive blocks.
1151	 * So for each group we need two blocks.
1152	 */
1153	block = group * 2;
1154	pnum = block / blocks_per_page;
1155	poff = block % blocks_per_page;
1156
1157	/* we could use find_or_create_page(), but it locks page
1158	 * what we'd like to avoid in fast path ... */
1159	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1160	if (page == NULL || !PageUptodate(page)) {
1161		if (page)
1162			/*
1163			 * drop the page reference and try
1164			 * to get the page with lock. If we
1165			 * are not uptodate that implies
1166			 * somebody just created the page but
1167			 * is yet to initialize the same. So
1168			 * wait for it to initialize.
1169			 */
1170			put_page(page);
1171		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1172		if (page) {
1173			BUG_ON(page->mapping != inode->i_mapping);
1174			if (!PageUptodate(page)) {
1175				ret = ext4_mb_init_cache(page, NULL, gfp);
1176				if (ret) {
1177					unlock_page(page);
1178					goto err;
1179				}
1180				mb_cmp_bitmaps(e4b, page_address(page) +
1181					       (poff * sb->s_blocksize));
1182			}
1183			unlock_page(page);
1184		}
1185	}
1186	if (page == NULL) {
1187		ret = -ENOMEM;
1188		goto err;
1189	}
1190	if (!PageUptodate(page)) {
1191		ret = -EIO;
1192		goto err;
1193	}
1194
1195	/* Pages marked accessed already */
1196	e4b->bd_bitmap_page = page;
1197	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
 
1198
1199	block++;
1200	pnum = block / blocks_per_page;
1201	poff = block % blocks_per_page;
1202
1203	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1204	if (page == NULL || !PageUptodate(page)) {
1205		if (page)
1206			put_page(page);
1207		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1208		if (page) {
1209			BUG_ON(page->mapping != inode->i_mapping);
1210			if (!PageUptodate(page)) {
1211				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1212							 gfp);
1213				if (ret) {
1214					unlock_page(page);
1215					goto err;
1216				}
1217			}
1218			unlock_page(page);
1219		}
1220	}
1221	if (page == NULL) {
1222		ret = -ENOMEM;
1223		goto err;
1224	}
1225	if (!PageUptodate(page)) {
1226		ret = -EIO;
1227		goto err;
1228	}
1229
1230	/* Pages marked accessed already */
1231	e4b->bd_buddy_page = page;
1232	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
 
1233
1234	BUG_ON(e4b->bd_bitmap_page == NULL);
1235	BUG_ON(e4b->bd_buddy_page == NULL);
1236
1237	return 0;
1238
1239err:
1240	if (page)
1241		put_page(page);
1242	if (e4b->bd_bitmap_page)
1243		put_page(e4b->bd_bitmap_page);
1244	if (e4b->bd_buddy_page)
1245		put_page(e4b->bd_buddy_page);
1246	e4b->bd_buddy = NULL;
1247	e4b->bd_bitmap = NULL;
1248	return ret;
1249}
1250
1251static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1252			      struct ext4_buddy *e4b)
1253{
1254	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1255}
1256
1257static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1258{
1259	if (e4b->bd_bitmap_page)
1260		put_page(e4b->bd_bitmap_page);
1261	if (e4b->bd_buddy_page)
1262		put_page(e4b->bd_buddy_page);
1263}
1264
1265
1266static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1267{
1268	int order = 1;
1269	void *bb;
1270
1271	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1272	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1273
1274	bb = e4b->bd_buddy;
1275	while (order <= e4b->bd_blkbits + 1) {
1276		block = block >> 1;
1277		if (!mb_test_bit(block, bb)) {
1278			/* this block is part of buddy of order 'order' */
1279			return order;
1280		}
1281		bb += 1 << (e4b->bd_blkbits - order);
1282		order++;
1283	}
1284	return 0;
1285}
1286
1287static void mb_clear_bits(void *bm, int cur, int len)
1288{
1289	__u32 *addr;
1290
1291	len = cur + len;
1292	while (cur < len) {
1293		if ((cur & 31) == 0 && (len - cur) >= 32) {
1294			/* fast path: clear whole word at once */
1295			addr = bm + (cur >> 3);
1296			*addr = 0;
1297			cur += 32;
1298			continue;
1299		}
1300		mb_clear_bit(cur, bm);
1301		cur++;
1302	}
1303}
1304
1305/* clear bits in given range
1306 * will return first found zero bit if any, -1 otherwise
1307 */
1308static int mb_test_and_clear_bits(void *bm, int cur, int len)
1309{
1310	__u32 *addr;
1311	int zero_bit = -1;
1312
1313	len = cur + len;
1314	while (cur < len) {
1315		if ((cur & 31) == 0 && (len - cur) >= 32) {
1316			/* fast path: clear whole word at once */
1317			addr = bm + (cur >> 3);
1318			if (*addr != (__u32)(-1) && zero_bit == -1)
1319				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1320			*addr = 0;
1321			cur += 32;
1322			continue;
1323		}
1324		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1325			zero_bit = cur;
1326		cur++;
1327	}
1328
1329	return zero_bit;
1330}
1331
1332void ext4_set_bits(void *bm, int cur, int len)
1333{
1334	__u32 *addr;
1335
1336	len = cur + len;
1337	while (cur < len) {
1338		if ((cur & 31) == 0 && (len - cur) >= 32) {
1339			/* fast path: set whole word at once */
1340			addr = bm + (cur >> 3);
1341			*addr = 0xffffffff;
1342			cur += 32;
1343			continue;
1344		}
1345		mb_set_bit(cur, bm);
1346		cur++;
1347	}
1348}
1349
1350/*
1351 * _________________________________________________________________ */
1352
1353static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1354{
1355	if (mb_test_bit(*bit + side, bitmap)) {
1356		mb_clear_bit(*bit, bitmap);
1357		(*bit) -= side;
1358		return 1;
1359	}
1360	else {
1361		(*bit) += side;
1362		mb_set_bit(*bit, bitmap);
1363		return -1;
1364	}
1365}
1366
1367static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1368{
1369	int max;
1370	int order = 1;
1371	void *buddy = mb_find_buddy(e4b, order, &max);
1372
1373	while (buddy) {
1374		void *buddy2;
1375
1376		/* Bits in range [first; last] are known to be set since
1377		 * corresponding blocks were allocated. Bits in range
1378		 * (first; last) will stay set because they form buddies on
1379		 * upper layer. We just deal with borders if they don't
1380		 * align with upper layer and then go up.
1381		 * Releasing entire group is all about clearing
1382		 * single bit of highest order buddy.
1383		 */
1384
1385		/* Example:
1386		 * ---------------------------------
1387		 * |   1   |   1   |   1   |   1   |
1388		 * ---------------------------------
1389		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1390		 * ---------------------------------
1391		 *   0   1   2   3   4   5   6   7
1392		 *      \_____________________/
1393		 *
1394		 * Neither [1] nor [6] is aligned to above layer.
1395		 * Left neighbour [0] is free, so mark it busy,
1396		 * decrease bb_counters and extend range to
1397		 * [0; 6]
1398		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1399		 * mark [6] free, increase bb_counters and shrink range to
1400		 * [0; 5].
1401		 * Then shift range to [0; 2], go up and do the same.
1402		 */
1403
1404
1405		if (first & 1)
1406			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1407		if (!(last & 1))
1408			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1409		if (first > last)
1410			break;
1411		order++;
1412
1413		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1414			mb_clear_bits(buddy, first, last - first + 1);
1415			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1416			break;
1417		}
1418		first >>= 1;
1419		last >>= 1;
1420		buddy = buddy2;
1421	}
1422}
1423
1424static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1425			   int first, int count)
1426{
1427	int left_is_free = 0;
1428	int right_is_free = 0;
1429	int block;
1430	int last = first + count - 1;
 
1431	struct super_block *sb = e4b->bd_sb;
1432
1433	if (WARN_ON(count == 0))
1434		return;
1435	BUG_ON(last >= (sb->s_blocksize << 3));
1436	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1437	/* Don't bother if the block group is corrupt. */
1438	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1439		return;
1440
1441	mb_check_buddy(e4b);
1442	mb_free_blocks_double(inode, e4b, first, count);
1443
1444	e4b->bd_info->bb_free += count;
1445	if (first < e4b->bd_info->bb_first_free)
1446		e4b->bd_info->bb_first_free = first;
1447
1448	/* access memory sequentially: check left neighbour,
1449	 * clear range and then check right neighbour
1450	 */
1451	if (first != 0)
1452		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1453	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1454	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1455		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1456
1457	if (unlikely(block != -1)) {
1458		struct ext4_sb_info *sbi = EXT4_SB(sb);
1459		ext4_fsblk_t blocknr;
1460
1461		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1462		blocknr += EXT4_C2B(EXT4_SB(sb), block);
1463		ext4_grp_locked_error(sb, e4b->bd_group,
1464				      inode ? inode->i_ino : 0,
1465				      blocknr,
1466				      "freeing already freed block "
1467				      "(bit %u); block bitmap corrupt.",
1468				      block);
1469		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1470			percpu_counter_sub(&sbi->s_freeclusters_counter,
1471					   e4b->bd_info->bb_free);
1472		/* Mark the block group as corrupt. */
1473		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1474			&e4b->bd_info->bb_state);
1475		mb_regenerate_buddy(e4b);
1476		goto done;
1477	}
1478
1479	/* let's maintain fragments counter */
1480	if (left_is_free && right_is_free)
1481		e4b->bd_info->bb_fragments--;
1482	else if (!left_is_free && !right_is_free)
1483		e4b->bd_info->bb_fragments++;
1484
1485	/* buddy[0] == bd_bitmap is a special case, so handle
1486	 * it right away and let mb_buddy_mark_free stay free of
1487	 * zero order checks.
1488	 * Check if neighbours are to be coaleasced,
1489	 * adjust bitmap bb_counters and borders appropriately.
1490	 */
1491	if (first & 1) {
1492		first += !left_is_free;
1493		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1494	}
1495	if (!(last & 1)) {
1496		last -= !right_is_free;
1497		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1498	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1499
1500	if (first <= last)
1501		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
 
 
 
 
 
 
1502
1503done:
 
 
 
 
 
 
 
1504	mb_set_largest_free_order(sb, e4b->bd_info);
1505	mb_check_buddy(e4b);
1506}
1507
1508static int mb_find_extent(struct ext4_buddy *e4b, int block,
1509				int needed, struct ext4_free_extent *ex)
1510{
1511	int next = block;
1512	int max, order;
1513	void *buddy;
1514
1515	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1516	BUG_ON(ex == NULL);
1517
1518	buddy = mb_find_buddy(e4b, 0, &max);
1519	BUG_ON(buddy == NULL);
1520	BUG_ON(block >= max);
1521	if (mb_test_bit(block, buddy)) {
1522		ex->fe_len = 0;
1523		ex->fe_start = 0;
1524		ex->fe_group = 0;
1525		return 0;
1526	}
1527
1528	/* find actual order */
1529	order = mb_find_order_for_block(e4b, block);
1530	block = block >> order;
 
 
 
1531
1532	ex->fe_len = 1 << order;
1533	ex->fe_start = block << order;
1534	ex->fe_group = e4b->bd_group;
1535
1536	/* calc difference from given start */
1537	next = next - ex->fe_start;
1538	ex->fe_len -= next;
1539	ex->fe_start += next;
1540
1541	while (needed > ex->fe_len &&
1542	       mb_find_buddy(e4b, order, &max)) {
1543
1544		if (block + 1 >= max)
1545			break;
1546
1547		next = (block + 1) * (1 << order);
1548		if (mb_test_bit(next, e4b->bd_bitmap))
1549			break;
1550
1551		order = mb_find_order_for_block(e4b, next);
1552
1553		block = next >> order;
1554		ex->fe_len += 1 << order;
1555	}
1556
1557	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1558	return ex->fe_len;
1559}
1560
1561static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1562{
1563	int ord;
1564	int mlen = 0;
1565	int max = 0;
1566	int cur;
1567	int start = ex->fe_start;
1568	int len = ex->fe_len;
1569	unsigned ret = 0;
1570	int len0 = len;
1571	void *buddy;
1572
1573	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1574	BUG_ON(e4b->bd_group != ex->fe_group);
1575	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1576	mb_check_buddy(e4b);
1577	mb_mark_used_double(e4b, start, len);
1578
1579	e4b->bd_info->bb_free -= len;
1580	if (e4b->bd_info->bb_first_free == start)
1581		e4b->bd_info->bb_first_free += len;
1582
1583	/* let's maintain fragments counter */
1584	if (start != 0)
1585		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1586	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1587		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1588	if (mlen && max)
1589		e4b->bd_info->bb_fragments++;
1590	else if (!mlen && !max)
1591		e4b->bd_info->bb_fragments--;
1592
1593	/* let's maintain buddy itself */
1594	while (len) {
1595		ord = mb_find_order_for_block(e4b, start);
1596
1597		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1598			/* the whole chunk may be allocated at once! */
1599			mlen = 1 << ord;
1600			buddy = mb_find_buddy(e4b, ord, &max);
1601			BUG_ON((start >> ord) >= max);
1602			mb_set_bit(start >> ord, buddy);
1603			e4b->bd_info->bb_counters[ord]--;
1604			start += mlen;
1605			len -= mlen;
1606			BUG_ON(len < 0);
1607			continue;
1608		}
1609
1610		/* store for history */
1611		if (ret == 0)
1612			ret = len | (ord << 16);
1613
1614		/* we have to split large buddy */
1615		BUG_ON(ord <= 0);
1616		buddy = mb_find_buddy(e4b, ord, &max);
1617		mb_set_bit(start >> ord, buddy);
1618		e4b->bd_info->bb_counters[ord]--;
1619
1620		ord--;
1621		cur = (start >> ord) & ~1U;
1622		buddy = mb_find_buddy(e4b, ord, &max);
1623		mb_clear_bit(cur, buddy);
1624		mb_clear_bit(cur + 1, buddy);
1625		e4b->bd_info->bb_counters[ord]++;
1626		e4b->bd_info->bb_counters[ord]++;
1627	}
1628	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1629
1630	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1631	mb_check_buddy(e4b);
1632
1633	return ret;
1634}
1635
1636/*
1637 * Must be called under group lock!
1638 */
1639static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1640					struct ext4_buddy *e4b)
1641{
1642	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1643	int ret;
1644
1645	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1646	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1647
1648	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1649	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1650	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1651
1652	/* preallocation can change ac_b_ex, thus we store actually
1653	 * allocated blocks for history */
1654	ac->ac_f_ex = ac->ac_b_ex;
1655
1656	ac->ac_status = AC_STATUS_FOUND;
1657	ac->ac_tail = ret & 0xffff;
1658	ac->ac_buddy = ret >> 16;
1659
1660	/*
1661	 * take the page reference. We want the page to be pinned
1662	 * so that we don't get a ext4_mb_init_cache_call for this
1663	 * group until we update the bitmap. That would mean we
1664	 * double allocate blocks. The reference is dropped
1665	 * in ext4_mb_release_context
1666	 */
1667	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1668	get_page(ac->ac_bitmap_page);
1669	ac->ac_buddy_page = e4b->bd_buddy_page;
1670	get_page(ac->ac_buddy_page);
1671	/* store last allocated for subsequent stream allocation */
1672	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1673		spin_lock(&sbi->s_md_lock);
1674		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1675		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1676		spin_unlock(&sbi->s_md_lock);
1677	}
1678}
1679
1680/*
1681 * regular allocator, for general purposes allocation
1682 */
1683
1684static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1685					struct ext4_buddy *e4b,
1686					int finish_group)
1687{
1688	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1689	struct ext4_free_extent *bex = &ac->ac_b_ex;
1690	struct ext4_free_extent *gex = &ac->ac_g_ex;
1691	struct ext4_free_extent ex;
1692	int max;
1693
1694	if (ac->ac_status == AC_STATUS_FOUND)
1695		return;
1696	/*
1697	 * We don't want to scan for a whole year
1698	 */
1699	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1700			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1701		ac->ac_status = AC_STATUS_BREAK;
1702		return;
1703	}
1704
1705	/*
1706	 * Haven't found good chunk so far, let's continue
1707	 */
1708	if (bex->fe_len < gex->fe_len)
1709		return;
1710
1711	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1712			&& bex->fe_group == e4b->bd_group) {
1713		/* recheck chunk's availability - we don't know
1714		 * when it was found (within this lock-unlock
1715		 * period or not) */
1716		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1717		if (max >= gex->fe_len) {
1718			ext4_mb_use_best_found(ac, e4b);
1719			return;
1720		}
1721	}
1722}
1723
1724/*
1725 * The routine checks whether found extent is good enough. If it is,
1726 * then the extent gets marked used and flag is set to the context
1727 * to stop scanning. Otherwise, the extent is compared with the
1728 * previous found extent and if new one is better, then it's stored
1729 * in the context. Later, the best found extent will be used, if
1730 * mballoc can't find good enough extent.
1731 *
1732 * FIXME: real allocation policy is to be designed yet!
1733 */
1734static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1735					struct ext4_free_extent *ex,
1736					struct ext4_buddy *e4b)
1737{
1738	struct ext4_free_extent *bex = &ac->ac_b_ex;
1739	struct ext4_free_extent *gex = &ac->ac_g_ex;
1740
1741	BUG_ON(ex->fe_len <= 0);
1742	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1743	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1744	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1745
1746	ac->ac_found++;
1747
1748	/*
1749	 * The special case - take what you catch first
1750	 */
1751	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1752		*bex = *ex;
1753		ext4_mb_use_best_found(ac, e4b);
1754		return;
1755	}
1756
1757	/*
1758	 * Let's check whether the chuck is good enough
1759	 */
1760	if (ex->fe_len == gex->fe_len) {
1761		*bex = *ex;
1762		ext4_mb_use_best_found(ac, e4b);
1763		return;
1764	}
1765
1766	/*
1767	 * If this is first found extent, just store it in the context
1768	 */
1769	if (bex->fe_len == 0) {
1770		*bex = *ex;
1771		return;
1772	}
1773
1774	/*
1775	 * If new found extent is better, store it in the context
1776	 */
1777	if (bex->fe_len < gex->fe_len) {
1778		/* if the request isn't satisfied, any found extent
1779		 * larger than previous best one is better */
1780		if (ex->fe_len > bex->fe_len)
1781			*bex = *ex;
1782	} else if (ex->fe_len > gex->fe_len) {
1783		/* if the request is satisfied, then we try to find
1784		 * an extent that still satisfy the request, but is
1785		 * smaller than previous one */
1786		if (ex->fe_len < bex->fe_len)
1787			*bex = *ex;
1788	}
1789
1790	ext4_mb_check_limits(ac, e4b, 0);
1791}
1792
1793static noinline_for_stack
1794int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1795					struct ext4_buddy *e4b)
1796{
1797	struct ext4_free_extent ex = ac->ac_b_ex;
1798	ext4_group_t group = ex.fe_group;
1799	int max;
1800	int err;
1801
1802	BUG_ON(ex.fe_len <= 0);
1803	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1804	if (err)
1805		return err;
1806
1807	ext4_lock_group(ac->ac_sb, group);
1808	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1809
1810	if (max > 0) {
1811		ac->ac_b_ex = ex;
1812		ext4_mb_use_best_found(ac, e4b);
1813	}
1814
1815	ext4_unlock_group(ac->ac_sb, group);
1816	ext4_mb_unload_buddy(e4b);
1817
1818	return 0;
1819}
1820
1821static noinline_for_stack
1822int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1823				struct ext4_buddy *e4b)
1824{
1825	ext4_group_t group = ac->ac_g_ex.fe_group;
1826	int max;
1827	int err;
1828	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1829	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1830	struct ext4_free_extent ex;
1831
1832	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1833		return 0;
1834	if (grp->bb_free == 0)
1835		return 0;
1836
1837	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1838	if (err)
1839		return err;
1840
1841	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1842		ext4_mb_unload_buddy(e4b);
1843		return 0;
1844	}
1845
1846	ext4_lock_group(ac->ac_sb, group);
1847	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1848			     ac->ac_g_ex.fe_len, &ex);
1849	ex.fe_logical = 0xDEADFA11; /* debug value */
1850
1851	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1852		ext4_fsblk_t start;
1853
1854		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1855			ex.fe_start;
1856		/* use do_div to get remainder (would be 64-bit modulo) */
1857		if (do_div(start, sbi->s_stripe) == 0) {
1858			ac->ac_found++;
1859			ac->ac_b_ex = ex;
1860			ext4_mb_use_best_found(ac, e4b);
1861		}
1862	} else if (max >= ac->ac_g_ex.fe_len) {
1863		BUG_ON(ex.fe_len <= 0);
1864		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1865		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1866		ac->ac_found++;
1867		ac->ac_b_ex = ex;
1868		ext4_mb_use_best_found(ac, e4b);
1869	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1870		/* Sometimes, caller may want to merge even small
1871		 * number of blocks to an existing extent */
1872		BUG_ON(ex.fe_len <= 0);
1873		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1874		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1875		ac->ac_found++;
1876		ac->ac_b_ex = ex;
1877		ext4_mb_use_best_found(ac, e4b);
1878	}
1879	ext4_unlock_group(ac->ac_sb, group);
1880	ext4_mb_unload_buddy(e4b);
1881
1882	return 0;
1883}
1884
1885/*
1886 * The routine scans buddy structures (not bitmap!) from given order
1887 * to max order and tries to find big enough chunk to satisfy the req
1888 */
1889static noinline_for_stack
1890void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1891					struct ext4_buddy *e4b)
1892{
1893	struct super_block *sb = ac->ac_sb;
1894	struct ext4_group_info *grp = e4b->bd_info;
1895	void *buddy;
1896	int i;
1897	int k;
1898	int max;
1899
1900	BUG_ON(ac->ac_2order <= 0);
1901	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1902		if (grp->bb_counters[i] == 0)
1903			continue;
1904
1905		buddy = mb_find_buddy(e4b, i, &max);
1906		BUG_ON(buddy == NULL);
1907
1908		k = mb_find_next_zero_bit(buddy, max, 0);
1909		BUG_ON(k >= max);
1910
1911		ac->ac_found++;
1912
1913		ac->ac_b_ex.fe_len = 1 << i;
1914		ac->ac_b_ex.fe_start = k << i;
1915		ac->ac_b_ex.fe_group = e4b->bd_group;
1916
1917		ext4_mb_use_best_found(ac, e4b);
1918
1919		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1920
1921		if (EXT4_SB(sb)->s_mb_stats)
1922			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1923
1924		break;
1925	}
1926}
1927
1928/*
1929 * The routine scans the group and measures all found extents.
1930 * In order to optimize scanning, caller must pass number of
1931 * free blocks in the group, so the routine can know upper limit.
1932 */
1933static noinline_for_stack
1934void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1935					struct ext4_buddy *e4b)
1936{
1937	struct super_block *sb = ac->ac_sb;
1938	void *bitmap = e4b->bd_bitmap;
1939	struct ext4_free_extent ex;
1940	int i;
1941	int free;
1942
1943	free = e4b->bd_info->bb_free;
1944	BUG_ON(free <= 0);
1945
1946	i = e4b->bd_info->bb_first_free;
1947
1948	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1949		i = mb_find_next_zero_bit(bitmap,
1950						EXT4_CLUSTERS_PER_GROUP(sb), i);
1951		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1952			/*
1953			 * IF we have corrupt bitmap, we won't find any
1954			 * free blocks even though group info says we
1955			 * we have free blocks
1956			 */
1957			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1958					"%d free clusters as per "
1959					"group info. But bitmap says 0",
1960					free);
1961			break;
1962		}
1963
1964		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1965		BUG_ON(ex.fe_len <= 0);
1966		if (free < ex.fe_len) {
1967			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1968					"%d free clusters as per "
1969					"group info. But got %d blocks",
1970					free, ex.fe_len);
1971			/*
1972			 * The number of free blocks differs. This mostly
1973			 * indicate that the bitmap is corrupt. So exit
1974			 * without claiming the space.
1975			 */
1976			break;
1977		}
1978		ex.fe_logical = 0xDEADC0DE; /* debug value */
1979		ext4_mb_measure_extent(ac, &ex, e4b);
1980
1981		i += ex.fe_len;
1982		free -= ex.fe_len;
1983	}
1984
1985	ext4_mb_check_limits(ac, e4b, 1);
1986}
1987
1988/*
1989 * This is a special case for storages like raid5
1990 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1991 */
1992static noinline_for_stack
1993void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1994				 struct ext4_buddy *e4b)
1995{
1996	struct super_block *sb = ac->ac_sb;
1997	struct ext4_sb_info *sbi = EXT4_SB(sb);
1998	void *bitmap = e4b->bd_bitmap;
1999	struct ext4_free_extent ex;
2000	ext4_fsblk_t first_group_block;
2001	ext4_fsblk_t a;
2002	ext4_grpblk_t i;
2003	int max;
2004
2005	BUG_ON(sbi->s_stripe == 0);
2006
2007	/* find first stripe-aligned block in group */
2008	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2009
2010	a = first_group_block + sbi->s_stripe - 1;
2011	do_div(a, sbi->s_stripe);
2012	i = (a * sbi->s_stripe) - first_group_block;
2013
2014	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2015		if (!mb_test_bit(i, bitmap)) {
2016			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2017			if (max >= sbi->s_stripe) {
2018				ac->ac_found++;
2019				ex.fe_logical = 0xDEADF00D; /* debug value */
2020				ac->ac_b_ex = ex;
2021				ext4_mb_use_best_found(ac, e4b);
2022				break;
2023			}
2024		}
2025		i += sbi->s_stripe;
2026	}
2027}
2028
2029/*
2030 * This is now called BEFORE we load the buddy bitmap.
2031 * Returns either 1 or 0 indicating that the group is either suitable
2032 * for the allocation or not. In addition it can also return negative
2033 * error code when something goes wrong.
2034 */
2035static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2036				ext4_group_t group, int cr)
2037{
2038	unsigned free, fragments;
2039	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2040	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2041
2042	BUG_ON(cr < 0 || cr >= 4);
2043
2044	free = grp->bb_free;
2045	if (free == 0)
2046		return 0;
2047	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2048		return 0;
2049
2050	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2051		return 0;
2052
2053	/* We only do this if the grp has never been initialized */
2054	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2055		int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2056		if (ret)
2057			return ret;
2058	}
2059
 
2060	fragments = grp->bb_fragments;
 
 
2061	if (fragments == 0)
2062		return 0;
2063
2064	switch (cr) {
2065	case 0:
2066		BUG_ON(ac->ac_2order == 0);
2067
 
 
 
2068		/* Avoid using the first bg of a flexgroup for data files */
2069		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2070		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2071		    ((group % flex_size) == 0))
2072			return 0;
2073
2074		if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2075		    (free / fragments) >= ac->ac_g_ex.fe_len)
2076			return 1;
2077
2078		if (grp->bb_largest_free_order < ac->ac_2order)
2079			return 0;
2080
2081		return 1;
2082	case 1:
2083		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2084			return 1;
2085		break;
2086	case 2:
2087		if (free >= ac->ac_g_ex.fe_len)
2088			return 1;
2089		break;
2090	case 3:
2091		return 1;
2092	default:
2093		BUG();
2094	}
2095
2096	return 0;
2097}
2098
2099static noinline_for_stack int
2100ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2101{
2102	ext4_group_t ngroups, group, i;
2103	int cr;
2104	int err = 0, first_err = 0;
2105	struct ext4_sb_info *sbi;
2106	struct super_block *sb;
2107	struct ext4_buddy e4b;
2108
2109	sb = ac->ac_sb;
2110	sbi = EXT4_SB(sb);
2111	ngroups = ext4_get_groups_count(sb);
2112	/* non-extent files are limited to low blocks/groups */
2113	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2114		ngroups = sbi->s_blockfile_groups;
2115
2116	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2117
2118	/* first, try the goal */
2119	err = ext4_mb_find_by_goal(ac, &e4b);
2120	if (err || ac->ac_status == AC_STATUS_FOUND)
2121		goto out;
2122
2123	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2124		goto out;
2125
2126	/*
2127	 * ac->ac2_order is set only if the fe_len is a power of 2
2128	 * if ac2_order is set we also set criteria to 0 so that we
2129	 * try exact allocation using buddy.
2130	 */
2131	i = fls(ac->ac_g_ex.fe_len);
2132	ac->ac_2order = 0;
2133	/*
2134	 * We search using buddy data only if the order of the request
2135	 * is greater than equal to the sbi_s_mb_order2_reqs
2136	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2137	 */
2138	if (i >= sbi->s_mb_order2_reqs) {
2139		/*
2140		 * This should tell if fe_len is exactly power of 2
2141		 */
2142		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2143			ac->ac_2order = i - 1;
2144	}
2145
2146	/* if stream allocation is enabled, use global goal */
2147	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2148		/* TBD: may be hot point */
2149		spin_lock(&sbi->s_md_lock);
2150		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2151		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2152		spin_unlock(&sbi->s_md_lock);
2153	}
2154
2155	/* Let's just scan groups to find more-less suitable blocks */
2156	cr = ac->ac_2order ? 0 : 1;
2157	/*
2158	 * cr == 0 try to get exact allocation,
2159	 * cr == 3  try to get anything
2160	 */
2161repeat:
2162	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2163		ac->ac_criteria = cr;
2164		/*
2165		 * searching for the right group start
2166		 * from the goal value specified
2167		 */
2168		group = ac->ac_g_ex.fe_group;
2169
2170		for (i = 0; i < ngroups; group++, i++) {
2171			int ret = 0;
2172			cond_resched();
2173			/*
2174			 * Artificially restricted ngroups for non-extent
2175			 * files makes group > ngroups possible on first loop.
2176			 */
2177			if (group >= ngroups)
2178				group = 0;
2179
2180			/* This now checks without needing the buddy page */
2181			ret = ext4_mb_good_group(ac, group, cr);
2182			if (ret <= 0) {
2183				if (!first_err)
2184					first_err = ret;
2185				continue;
2186			}
2187
2188			err = ext4_mb_load_buddy(sb, group, &e4b);
2189			if (err)
2190				goto out;
2191
2192			ext4_lock_group(sb, group);
2193
2194			/*
2195			 * We need to check again after locking the
2196			 * block group
2197			 */
2198			ret = ext4_mb_good_group(ac, group, cr);
2199			if (ret <= 0) {
2200				ext4_unlock_group(sb, group);
2201				ext4_mb_unload_buddy(&e4b);
2202				if (!first_err)
2203					first_err = ret;
2204				continue;
2205			}
2206
2207			ac->ac_groups_scanned++;
2208			if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2209				ext4_mb_simple_scan_group(ac, &e4b);
2210			else if (cr == 1 && sbi->s_stripe &&
2211					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2212				ext4_mb_scan_aligned(ac, &e4b);
2213			else
2214				ext4_mb_complex_scan_group(ac, &e4b);
2215
2216			ext4_unlock_group(sb, group);
2217			ext4_mb_unload_buddy(&e4b);
2218
2219			if (ac->ac_status != AC_STATUS_CONTINUE)
2220				break;
2221		}
2222	}
2223
2224	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2225	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2226		/*
2227		 * We've been searching too long. Let's try to allocate
2228		 * the best chunk we've found so far
2229		 */
2230
2231		ext4_mb_try_best_found(ac, &e4b);
2232		if (ac->ac_status != AC_STATUS_FOUND) {
2233			/*
2234			 * Someone more lucky has already allocated it.
2235			 * The only thing we can do is just take first
2236			 * found block(s)
2237			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2238			 */
2239			ac->ac_b_ex.fe_group = 0;
2240			ac->ac_b_ex.fe_start = 0;
2241			ac->ac_b_ex.fe_len = 0;
2242			ac->ac_status = AC_STATUS_CONTINUE;
2243			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2244			cr = 3;
2245			atomic_inc(&sbi->s_mb_lost_chunks);
2246			goto repeat;
2247		}
2248	}
2249out:
2250	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2251		err = first_err;
2252	return err;
2253}
2254
2255static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2256{
2257	struct super_block *sb = seq->private;
2258	ext4_group_t group;
2259
2260	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2261		return NULL;
2262	group = *pos + 1;
2263	return (void *) ((unsigned long) group);
2264}
2265
2266static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2267{
2268	struct super_block *sb = seq->private;
2269	ext4_group_t group;
2270
2271	++*pos;
2272	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2273		return NULL;
2274	group = *pos + 1;
2275	return (void *) ((unsigned long) group);
2276}
2277
2278static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2279{
2280	struct super_block *sb = seq->private;
2281	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2282	int i;
2283	int err, buddy_loaded = 0;
2284	struct ext4_buddy e4b;
2285	struct ext4_group_info *grinfo;
2286	struct sg {
2287		struct ext4_group_info info;
2288		ext4_grpblk_t counters[16];
2289	} sg;
2290
2291	group--;
2292	if (group == 0)
2293		seq_puts(seq, "#group: free  frags first ["
2294			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2295			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
 
 
 
2296
2297	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2298		sizeof(struct ext4_group_info);
2299	grinfo = ext4_get_group_info(sb, group);
2300	/* Load the group info in memory only if not already loaded. */
2301	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2302		err = ext4_mb_load_buddy(sb, group, &e4b);
2303		if (err) {
2304			seq_printf(seq, "#%-5u: I/O error\n", group);
2305			return 0;
2306		}
2307		buddy_loaded = 1;
2308	}
2309
2310	memcpy(&sg, ext4_get_group_info(sb, group), i);
2311
2312	if (buddy_loaded)
2313		ext4_mb_unload_buddy(&e4b);
2314
2315	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2316			sg.info.bb_fragments, sg.info.bb_first_free);
2317	for (i = 0; i <= 13; i++)
2318		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2319				sg.info.bb_counters[i] : 0);
2320	seq_printf(seq, " ]\n");
2321
2322	return 0;
2323}
2324
2325static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2326{
2327}
2328
2329static const struct seq_operations ext4_mb_seq_groups_ops = {
2330	.start  = ext4_mb_seq_groups_start,
2331	.next   = ext4_mb_seq_groups_next,
2332	.stop   = ext4_mb_seq_groups_stop,
2333	.show   = ext4_mb_seq_groups_show,
2334};
2335
2336static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2337{
2338	struct super_block *sb = PDE_DATA(inode);
2339	int rc;
2340
2341	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2342	if (rc == 0) {
2343		struct seq_file *m = file->private_data;
2344		m->private = sb;
2345	}
2346	return rc;
2347
2348}
2349
2350const struct file_operations ext4_seq_mb_groups_fops = {
2351	.owner		= THIS_MODULE,
2352	.open		= ext4_mb_seq_groups_open,
2353	.read		= seq_read,
2354	.llseek		= seq_lseek,
2355	.release	= seq_release,
2356};
2357
2358static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2359{
2360	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2361	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2362
2363	BUG_ON(!cachep);
2364	return cachep;
2365}
2366
2367/*
2368 * Allocate the top-level s_group_info array for the specified number
2369 * of groups
2370 */
2371int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2372{
2373	struct ext4_sb_info *sbi = EXT4_SB(sb);
2374	unsigned size;
2375	struct ext4_group_info ***new_groupinfo;
2376
2377	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2378		EXT4_DESC_PER_BLOCK_BITS(sb);
2379	if (size <= sbi->s_group_info_size)
2380		return 0;
2381
2382	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2383	new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2384	if (!new_groupinfo) {
2385		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2386		return -ENOMEM;
2387	}
2388	if (sbi->s_group_info) {
2389		memcpy(new_groupinfo, sbi->s_group_info,
2390		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2391		kvfree(sbi->s_group_info);
2392	}
2393	sbi->s_group_info = new_groupinfo;
2394	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2395	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 
2396		   sbi->s_group_info_size);
2397	return 0;
2398}
2399
2400/* Create and initialize ext4_group_info data for the given group. */
2401int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2402			  struct ext4_group_desc *desc)
2403{
2404	int i;
2405	int metalen = 0;
2406	struct ext4_sb_info *sbi = EXT4_SB(sb);
2407	struct ext4_group_info **meta_group_info;
2408	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2409
2410	/*
2411	 * First check if this group is the first of a reserved block.
2412	 * If it's true, we have to allocate a new table of pointers
2413	 * to ext4_group_info structures
2414	 */
2415	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2416		metalen = sizeof(*meta_group_info) <<
2417			EXT4_DESC_PER_BLOCK_BITS(sb);
2418		meta_group_info = kmalloc(metalen, GFP_NOFS);
2419		if (meta_group_info == NULL) {
2420			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2421				 "for a buddy group");
2422			goto exit_meta_group_info;
2423		}
2424		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2425			meta_group_info;
2426	}
2427
2428	meta_group_info =
2429		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2430	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2431
2432	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2433	if (meta_group_info[i] == NULL) {
2434		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2435		goto exit_group_info;
2436	}
 
2437	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2438		&(meta_group_info[i]->bb_state));
2439
2440	/*
2441	 * initialize bb_free to be able to skip
2442	 * empty groups without initialization
2443	 */
2444	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2445		meta_group_info[i]->bb_free =
2446			ext4_free_clusters_after_init(sb, group, desc);
2447	} else {
2448		meta_group_info[i]->bb_free =
2449			ext4_free_group_clusters(sb, desc);
2450	}
2451
2452	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2453	init_rwsem(&meta_group_info[i]->alloc_sem);
2454	meta_group_info[i]->bb_free_root = RB_ROOT;
2455	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2456
2457#ifdef DOUBLE_CHECK
2458	{
2459		struct buffer_head *bh;
2460		meta_group_info[i]->bb_bitmap =
2461			kmalloc(sb->s_blocksize, GFP_NOFS);
2462		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2463		bh = ext4_read_block_bitmap(sb, group);
2464		BUG_ON(IS_ERR_OR_NULL(bh));
2465		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2466			sb->s_blocksize);
2467		put_bh(bh);
2468	}
2469#endif
2470
2471	return 0;
2472
2473exit_group_info:
2474	/* If a meta_group_info table has been allocated, release it now */
2475	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2476		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2477		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2478	}
2479exit_meta_group_info:
2480	return -ENOMEM;
2481} /* ext4_mb_add_groupinfo */
2482
2483static int ext4_mb_init_backend(struct super_block *sb)
2484{
2485	ext4_group_t ngroups = ext4_get_groups_count(sb);
2486	ext4_group_t i;
2487	struct ext4_sb_info *sbi = EXT4_SB(sb);
2488	int err;
 
 
 
2489	struct ext4_group_desc *desc;
2490	struct kmem_cache *cachep;
2491
2492	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2493	if (err)
2494		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2496	sbi->s_buddy_cache = new_inode(sb);
2497	if (sbi->s_buddy_cache == NULL) {
2498		ext4_msg(sb, KERN_ERR, "can't get new inode");
2499		goto err_freesgi;
2500	}
2501	/* To avoid potentially colliding with an valid on-disk inode number,
2502	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2503	 * not in the inode hash, so it should never be found by iget(), but
2504	 * this will avoid confusion if it ever shows up during debugging. */
2505	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2506	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2507	for (i = 0; i < ngroups; i++) {
2508		desc = ext4_get_group_desc(sb, i, NULL);
2509		if (desc == NULL) {
2510			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2511			goto err_freebuddy;
2512		}
2513		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2514			goto err_freebuddy;
2515	}
2516
2517	return 0;
2518
2519err_freebuddy:
2520	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2521	while (i-- > 0)
2522		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2523	i = sbi->s_group_info_size;
2524	while (i-- > 0)
2525		kfree(sbi->s_group_info[i]);
2526	iput(sbi->s_buddy_cache);
2527err_freesgi:
2528	kvfree(sbi->s_group_info);
2529	return -ENOMEM;
2530}
2531
2532static void ext4_groupinfo_destroy_slabs(void)
2533{
2534	int i;
2535
2536	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2537		if (ext4_groupinfo_caches[i])
2538			kmem_cache_destroy(ext4_groupinfo_caches[i]);
2539		ext4_groupinfo_caches[i] = NULL;
2540	}
2541}
2542
2543static int ext4_groupinfo_create_slab(size_t size)
2544{
2545	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2546	int slab_size;
2547	int blocksize_bits = order_base_2(size);
2548	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2549	struct kmem_cache *cachep;
2550
2551	if (cache_index >= NR_GRPINFO_CACHES)
2552		return -EINVAL;
2553
2554	if (unlikely(cache_index < 0))
2555		cache_index = 0;
2556
2557	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2558	if (ext4_groupinfo_caches[cache_index]) {
2559		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2560		return 0;	/* Already created */
2561	}
2562
2563	slab_size = offsetof(struct ext4_group_info,
2564				bb_counters[blocksize_bits + 2]);
2565
2566	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2567					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2568					NULL);
2569
2570	ext4_groupinfo_caches[cache_index] = cachep;
2571
2572	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2573	if (!cachep) {
2574		printk(KERN_EMERG
2575		       "EXT4-fs: no memory for groupinfo slab cache\n");
2576		return -ENOMEM;
2577	}
2578
2579	return 0;
2580}
2581
2582int ext4_mb_init(struct super_block *sb)
2583{
2584	struct ext4_sb_info *sbi = EXT4_SB(sb);
2585	unsigned i, j;
2586	unsigned offset;
2587	unsigned max;
2588	int ret;
2589
2590	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2591
2592	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2593	if (sbi->s_mb_offsets == NULL) {
2594		ret = -ENOMEM;
2595		goto out;
2596	}
2597
2598	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2599	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2600	if (sbi->s_mb_maxs == NULL) {
2601		ret = -ENOMEM;
2602		goto out;
2603	}
2604
2605	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2606	if (ret < 0)
2607		goto out;
2608
2609	/* order 0 is regular bitmap */
2610	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2611	sbi->s_mb_offsets[0] = 0;
2612
2613	i = 1;
2614	offset = 0;
2615	max = sb->s_blocksize << 2;
2616	do {
2617		sbi->s_mb_offsets[i] = offset;
2618		sbi->s_mb_maxs[i] = max;
2619		offset += 1 << (sb->s_blocksize_bits - i);
2620		max = max >> 1;
2621		i++;
2622	} while (i <= sb->s_blocksize_bits + 1);
2623
2624	spin_lock_init(&sbi->s_md_lock);
2625	spin_lock_init(&sbi->s_bal_lock);
2626
2627	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2628	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2629	sbi->s_mb_stats = MB_DEFAULT_STATS;
2630	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2631	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2632	/*
2633	 * The default group preallocation is 512, which for 4k block
2634	 * sizes translates to 2 megabytes.  However for bigalloc file
2635	 * systems, this is probably too big (i.e, if the cluster size
2636	 * is 1 megabyte, then group preallocation size becomes half a
2637	 * gigabyte!).  As a default, we will keep a two megabyte
2638	 * group pralloc size for cluster sizes up to 64k, and after
2639	 * that, we will force a minimum group preallocation size of
2640	 * 32 clusters.  This translates to 8 megs when the cluster
2641	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2642	 * which seems reasonable as a default.
2643	 */
2644	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2645				       sbi->s_cluster_bits, 32);
2646	/*
2647	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2648	 * to the lowest multiple of s_stripe which is bigger than
2649	 * the s_mb_group_prealloc as determined above. We want
2650	 * the preallocation size to be an exact multiple of the
2651	 * RAID stripe size so that preallocations don't fragment
2652	 * the stripes.
2653	 */
2654	if (sbi->s_stripe > 1) {
2655		sbi->s_mb_group_prealloc = roundup(
2656			sbi->s_mb_group_prealloc, sbi->s_stripe);
2657	}
2658
2659	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2660	if (sbi->s_locality_groups == NULL) {
2661		ret = -ENOMEM;
2662		goto out;
2663	}
2664	for_each_possible_cpu(i) {
2665		struct ext4_locality_group *lg;
2666		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2667		mutex_init(&lg->lg_mutex);
2668		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2669			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2670		spin_lock_init(&lg->lg_prealloc_lock);
2671	}
2672
2673	/* init file for buddy data */
2674	ret = ext4_mb_init_backend(sb);
2675	if (ret != 0)
2676		goto out_free_locality_groups;
2677
 
 
 
 
2678	return 0;
2679
2680out_free_locality_groups:
2681	free_percpu(sbi->s_locality_groups);
2682	sbi->s_locality_groups = NULL;
 
 
2683out:
2684	kfree(sbi->s_mb_offsets);
2685	sbi->s_mb_offsets = NULL;
2686	kfree(sbi->s_mb_maxs);
2687	sbi->s_mb_maxs = NULL;
2688	return ret;
2689}
2690
2691/* need to called with the ext4 group lock held */
2692static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2693{
2694	struct ext4_prealloc_space *pa;
2695	struct list_head *cur, *tmp;
2696	int count = 0;
2697
2698	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2699		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2700		list_del(&pa->pa_group_list);
2701		count++;
2702		kmem_cache_free(ext4_pspace_cachep, pa);
2703	}
2704	if (count)
2705		mb_debug(1, "mballoc: %u PAs left\n", count);
2706
2707}
2708
2709int ext4_mb_release(struct super_block *sb)
2710{
2711	ext4_group_t ngroups = ext4_get_groups_count(sb);
2712	ext4_group_t i;
2713	int num_meta_group_infos;
2714	struct ext4_group_info *grinfo;
2715	struct ext4_sb_info *sbi = EXT4_SB(sb);
2716	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2717
 
 
 
2718	if (sbi->s_group_info) {
2719		for (i = 0; i < ngroups; i++) {
2720			grinfo = ext4_get_group_info(sb, i);
2721#ifdef DOUBLE_CHECK
2722			kfree(grinfo->bb_bitmap);
2723#endif
2724			ext4_lock_group(sb, i);
2725			ext4_mb_cleanup_pa(grinfo);
2726			ext4_unlock_group(sb, i);
2727			kmem_cache_free(cachep, grinfo);
2728		}
2729		num_meta_group_infos = (ngroups +
2730				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2731			EXT4_DESC_PER_BLOCK_BITS(sb);
2732		for (i = 0; i < num_meta_group_infos; i++)
2733			kfree(sbi->s_group_info[i]);
2734		kvfree(sbi->s_group_info);
2735	}
2736	kfree(sbi->s_mb_offsets);
2737	kfree(sbi->s_mb_maxs);
2738	iput(sbi->s_buddy_cache);
 
2739	if (sbi->s_mb_stats) {
2740		ext4_msg(sb, KERN_INFO,
2741		       "mballoc: %u blocks %u reqs (%u success)",
2742				atomic_read(&sbi->s_bal_allocated),
2743				atomic_read(&sbi->s_bal_reqs),
2744				atomic_read(&sbi->s_bal_success));
2745		ext4_msg(sb, KERN_INFO,
2746		      "mballoc: %u extents scanned, %u goal hits, "
2747				"%u 2^N hits, %u breaks, %u lost",
2748				atomic_read(&sbi->s_bal_ex_scanned),
2749				atomic_read(&sbi->s_bal_goals),
2750				atomic_read(&sbi->s_bal_2orders),
2751				atomic_read(&sbi->s_bal_breaks),
2752				atomic_read(&sbi->s_mb_lost_chunks));
2753		ext4_msg(sb, KERN_INFO,
2754		       "mballoc: %lu generated and it took %Lu",
2755				sbi->s_mb_buddies_generated,
2756				sbi->s_mb_generation_time);
2757		ext4_msg(sb, KERN_INFO,
2758		       "mballoc: %u preallocated, %u discarded",
2759				atomic_read(&sbi->s_mb_preallocated),
2760				atomic_read(&sbi->s_mb_discarded));
2761	}
2762
2763	free_percpu(sbi->s_locality_groups);
2764
2765	return 0;
2766}
2767
2768static inline int ext4_issue_discard(struct super_block *sb,
2769		ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2770{
2771	ext4_fsblk_t discard_block;
2772
2773	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2774			 ext4_group_first_block_no(sb, block_group));
2775	count = EXT4_C2B(EXT4_SB(sb), count);
2776	trace_ext4_discard_blocks(sb,
2777			(unsigned long long) discard_block, count);
2778	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2779}
2780
2781/*
2782 * This function is called by the jbd2 layer once the commit has finished,
2783 * so we know we can free the blocks that were released with that commit.
2784 */
2785static void ext4_free_data_callback(struct super_block *sb,
2786				    struct ext4_journal_cb_entry *jce,
2787				    int rc)
2788{
2789	struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2790	struct ext4_buddy e4b;
2791	struct ext4_group_info *db;
2792	int err, count = 0, count2 = 0;
2793
2794	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2795		 entry->efd_count, entry->efd_group, entry);
2796
2797	if (test_opt(sb, DISCARD)) {
2798		err = ext4_issue_discard(sb, entry->efd_group,
2799					 entry->efd_start_cluster,
2800					 entry->efd_count);
2801		if (err && err != -EOPNOTSUPP)
2802			ext4_msg(sb, KERN_WARNING, "discard request in"
2803				 " group:%d block:%d count:%d failed"
2804				 " with %d", entry->efd_group,
2805				 entry->efd_start_cluster,
2806				 entry->efd_count, err);
2807	}
2808
2809	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2810	/* we expect to find existing buddy because it's pinned */
2811	BUG_ON(err != 0);
2812
2813
2814	db = e4b.bd_info;
2815	/* there are blocks to put in buddy to make them really free */
2816	count += entry->efd_count;
2817	count2++;
2818	ext4_lock_group(sb, entry->efd_group);
2819	/* Take it out of per group rb tree */
2820	rb_erase(&entry->efd_node, &(db->bb_free_root));
2821	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2822
2823	/*
2824	 * Clear the trimmed flag for the group so that the next
2825	 * ext4_trim_fs can trim it.
2826	 * If the volume is mounted with -o discard, online discard
2827	 * is supported and the free blocks will be trimmed online.
2828	 */
2829	if (!test_opt(sb, DISCARD))
2830		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2831
2832	if (!db->bb_free_root.rb_node) {
2833		/* No more items in the per group rb tree
2834		 * balance refcounts from ext4_mb_free_metadata()
2835		 */
2836		put_page(e4b.bd_buddy_page);
2837		put_page(e4b.bd_bitmap_page);
2838	}
2839	ext4_unlock_group(sb, entry->efd_group);
2840	kmem_cache_free(ext4_free_data_cachep, entry);
2841	ext4_mb_unload_buddy(&e4b);
2842
2843	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2844}
2845
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2846int __init ext4_init_mballoc(void)
2847{
2848	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2849					SLAB_RECLAIM_ACCOUNT);
2850	if (ext4_pspace_cachep == NULL)
2851		return -ENOMEM;
2852
2853	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2854				    SLAB_RECLAIM_ACCOUNT);
2855	if (ext4_ac_cachep == NULL) {
2856		kmem_cache_destroy(ext4_pspace_cachep);
2857		return -ENOMEM;
2858	}
2859
2860	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2861					   SLAB_RECLAIM_ACCOUNT);
2862	if (ext4_free_data_cachep == NULL) {
2863		kmem_cache_destroy(ext4_pspace_cachep);
2864		kmem_cache_destroy(ext4_ac_cachep);
2865		return -ENOMEM;
2866	}
 
2867	return 0;
2868}
2869
2870void ext4_exit_mballoc(void)
2871{
2872	/*
2873	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2874	 * before destroying the slab cache.
2875	 */
2876	rcu_barrier();
2877	kmem_cache_destroy(ext4_pspace_cachep);
2878	kmem_cache_destroy(ext4_ac_cachep);
2879	kmem_cache_destroy(ext4_free_data_cachep);
2880	ext4_groupinfo_destroy_slabs();
 
2881}
2882
2883
2884/*
2885 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2886 * Returns 0 if success or error code
2887 */
2888static noinline_for_stack int
2889ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2890				handle_t *handle, unsigned int reserv_clstrs)
2891{
2892	struct buffer_head *bitmap_bh = NULL;
2893	struct ext4_group_desc *gdp;
2894	struct buffer_head *gdp_bh;
2895	struct ext4_sb_info *sbi;
2896	struct super_block *sb;
2897	ext4_fsblk_t block;
2898	int err, len;
2899
2900	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2901	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2902
2903	sb = ac->ac_sb;
2904	sbi = EXT4_SB(sb);
2905
 
2906	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2907	if (IS_ERR(bitmap_bh)) {
2908		err = PTR_ERR(bitmap_bh);
2909		bitmap_bh = NULL;
2910		goto out_err;
2911	}
2912
2913	BUFFER_TRACE(bitmap_bh, "getting write access");
2914	err = ext4_journal_get_write_access(handle, bitmap_bh);
2915	if (err)
2916		goto out_err;
2917
2918	err = -EIO;
2919	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2920	if (!gdp)
2921		goto out_err;
2922
2923	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2924			ext4_free_group_clusters(sb, gdp));
2925
2926	BUFFER_TRACE(gdp_bh, "get_write_access");
2927	err = ext4_journal_get_write_access(handle, gdp_bh);
2928	if (err)
2929		goto out_err;
2930
2931	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2932
2933	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2934	if (!ext4_data_block_valid(sbi, block, len)) {
2935		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2936			   "fs metadata", block, block+len);
2937		/* File system mounted not to panic on error
2938		 * Fix the bitmap and repeat the block allocation
2939		 * We leak some of the blocks here.
2940		 */
2941		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2942		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2943			      ac->ac_b_ex.fe_len);
2944		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2945		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2946		if (!err)
2947			err = -EAGAIN;
2948		goto out_err;
2949	}
2950
2951	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2952#ifdef AGGRESSIVE_CHECK
2953	{
2954		int i;
2955		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2956			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2957						bitmap_bh->b_data));
2958		}
2959	}
2960#endif
2961	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2962		      ac->ac_b_ex.fe_len);
2963	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2964		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2965		ext4_free_group_clusters_set(sb, gdp,
2966					     ext4_free_clusters_after_init(sb,
2967						ac->ac_b_ex.fe_group, gdp));
2968	}
2969	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2970	ext4_free_group_clusters_set(sb, gdp, len);
2971	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
 
2972	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2973
2974	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2975	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2976	/*
2977	 * Now reduce the dirty block count also. Should not go negative
2978	 */
2979	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2980		/* release all the reserved blocks if non delalloc */
2981		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2982				   reserv_clstrs);
2983
2984	if (sbi->s_log_groups_per_flex) {
2985		ext4_group_t flex_group = ext4_flex_group(sbi,
2986							  ac->ac_b_ex.fe_group);
2987		atomic64_sub(ac->ac_b_ex.fe_len,
2988			     &sbi->s_flex_groups[flex_group].free_clusters);
2989	}
2990
2991	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2992	if (err)
2993		goto out_err;
2994	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2995
2996out_err:
 
2997	brelse(bitmap_bh);
2998	return err;
2999}
3000
3001/*
3002 * here we normalize request for locality group
3003 * Group request are normalized to s_mb_group_prealloc, which goes to
3004 * s_strip if we set the same via mount option.
3005 * s_mb_group_prealloc can be configured via
3006 * /sys/fs/ext4/<partition>/mb_group_prealloc
3007 *
3008 * XXX: should we try to preallocate more than the group has now?
3009 */
3010static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3011{
3012	struct super_block *sb = ac->ac_sb;
3013	struct ext4_locality_group *lg = ac->ac_lg;
3014
3015	BUG_ON(lg == NULL);
3016	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3017	mb_debug(1, "#%u: goal %u blocks for locality group\n",
3018		current->pid, ac->ac_g_ex.fe_len);
3019}
3020
3021/*
3022 * Normalization means making request better in terms of
3023 * size and alignment
3024 */
3025static noinline_for_stack void
3026ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3027				struct ext4_allocation_request *ar)
3028{
3029	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3030	int bsbits, max;
3031	ext4_lblk_t end;
3032	loff_t size, start_off;
3033	loff_t orig_size __maybe_unused;
3034	ext4_lblk_t start;
3035	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3036	struct ext4_prealloc_space *pa;
3037
3038	/* do normalize only data requests, metadata requests
3039	   do not need preallocation */
3040	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3041		return;
3042
3043	/* sometime caller may want exact blocks */
3044	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3045		return;
3046
3047	/* caller may indicate that preallocation isn't
3048	 * required (it's a tail, for example) */
3049	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3050		return;
3051
3052	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3053		ext4_mb_normalize_group_request(ac);
3054		return ;
3055	}
3056
3057	bsbits = ac->ac_sb->s_blocksize_bits;
3058
3059	/* first, let's learn actual file size
3060	 * given current request is allocated */
3061	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3062	size = size << bsbits;
3063	if (size < i_size_read(ac->ac_inode))
3064		size = i_size_read(ac->ac_inode);
3065	orig_size = size;
3066
3067	/* max size of free chunks */
3068	max = 2 << bsbits;
3069
3070#define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3071		(req <= (size) || max <= (chunk_size))
3072
3073	/* first, try to predict filesize */
3074	/* XXX: should this table be tunable? */
3075	start_off = 0;
3076	if (size <= 16 * 1024) {
3077		size = 16 * 1024;
3078	} else if (size <= 32 * 1024) {
3079		size = 32 * 1024;
3080	} else if (size <= 64 * 1024) {
3081		size = 64 * 1024;
3082	} else if (size <= 128 * 1024) {
3083		size = 128 * 1024;
3084	} else if (size <= 256 * 1024) {
3085		size = 256 * 1024;
3086	} else if (size <= 512 * 1024) {
3087		size = 512 * 1024;
3088	} else if (size <= 1024 * 1024) {
3089		size = 1024 * 1024;
3090	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3091		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3092						(21 - bsbits)) << 21;
3093		size = 2 * 1024 * 1024;
3094	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3095		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3096							(22 - bsbits)) << 22;
3097		size = 4 * 1024 * 1024;
3098	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3099					(8<<20)>>bsbits, max, 8 * 1024)) {
3100		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3101							(23 - bsbits)) << 23;
3102		size = 8 * 1024 * 1024;
3103	} else {
3104		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3105		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3106					      ac->ac_o_ex.fe_len) << bsbits;
3107	}
3108	size = size >> bsbits;
3109	start = start_off >> bsbits;
3110
3111	/* don't cover already allocated blocks in selected range */
3112	if (ar->pleft && start <= ar->lleft) {
3113		size -= ar->lleft + 1 - start;
3114		start = ar->lleft + 1;
3115	}
3116	if (ar->pright && start + size - 1 >= ar->lright)
3117		size -= start + size - ar->lright;
3118
3119	end = start + size;
3120
3121	/* check we don't cross already preallocated blocks */
3122	rcu_read_lock();
3123	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3124		ext4_lblk_t pa_end;
3125
3126		if (pa->pa_deleted)
3127			continue;
3128		spin_lock(&pa->pa_lock);
3129		if (pa->pa_deleted) {
3130			spin_unlock(&pa->pa_lock);
3131			continue;
3132		}
3133
3134		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3135						  pa->pa_len);
3136
3137		/* PA must not overlap original request */
3138		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3139			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3140
3141		/* skip PAs this normalized request doesn't overlap with */
3142		if (pa->pa_lstart >= end || pa_end <= start) {
3143			spin_unlock(&pa->pa_lock);
3144			continue;
3145		}
3146		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3147
3148		/* adjust start or end to be adjacent to this pa */
3149		if (pa_end <= ac->ac_o_ex.fe_logical) {
3150			BUG_ON(pa_end < start);
3151			start = pa_end;
3152		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3153			BUG_ON(pa->pa_lstart > end);
3154			end = pa->pa_lstart;
3155		}
3156		spin_unlock(&pa->pa_lock);
3157	}
3158	rcu_read_unlock();
3159	size = end - start;
3160
3161	/* XXX: extra loop to check we really don't overlap preallocations */
3162	rcu_read_lock();
3163	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3164		ext4_lblk_t pa_end;
3165
3166		spin_lock(&pa->pa_lock);
3167		if (pa->pa_deleted == 0) {
3168			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3169							  pa->pa_len);
3170			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3171		}
3172		spin_unlock(&pa->pa_lock);
3173	}
3174	rcu_read_unlock();
3175
3176	if (start + size <= ac->ac_o_ex.fe_logical &&
3177			start > ac->ac_o_ex.fe_logical) {
3178		ext4_msg(ac->ac_sb, KERN_ERR,
3179			 "start %lu, size %lu, fe_logical %lu",
3180			 (unsigned long) start, (unsigned long) size,
3181			 (unsigned long) ac->ac_o_ex.fe_logical);
3182		BUG();
3183	}
3184	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
 
 
3185
3186	/* now prepare goal request */
3187
3188	/* XXX: is it better to align blocks WRT to logical
3189	 * placement or satisfy big request as is */
3190	ac->ac_g_ex.fe_logical = start;
3191	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3192
3193	/* define goal start in order to merge */
3194	if (ar->pright && (ar->lright == (start + size))) {
3195		/* merge to the right */
3196		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3197						&ac->ac_f_ex.fe_group,
3198						&ac->ac_f_ex.fe_start);
3199		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3200	}
3201	if (ar->pleft && (ar->lleft + 1 == start)) {
3202		/* merge to the left */
3203		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3204						&ac->ac_f_ex.fe_group,
3205						&ac->ac_f_ex.fe_start);
3206		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3207	}
3208
3209	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3210		(unsigned) orig_size, (unsigned) start);
3211}
3212
3213static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3214{
3215	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3216
3217	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3218		atomic_inc(&sbi->s_bal_reqs);
3219		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3220		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3221			atomic_inc(&sbi->s_bal_success);
3222		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3223		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3224				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3225			atomic_inc(&sbi->s_bal_goals);
3226		if (ac->ac_found > sbi->s_mb_max_to_scan)
3227			atomic_inc(&sbi->s_bal_breaks);
3228	}
3229
3230	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3231		trace_ext4_mballoc_alloc(ac);
3232	else
3233		trace_ext4_mballoc_prealloc(ac);
3234}
3235
3236/*
3237 * Called on failure; free up any blocks from the inode PA for this
3238 * context.  We don't need this for MB_GROUP_PA because we only change
3239 * pa_free in ext4_mb_release_context(), but on failure, we've already
3240 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3241 */
3242static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3243{
3244	struct ext4_prealloc_space *pa = ac->ac_pa;
3245	struct ext4_buddy e4b;
3246	int err;
3247
3248	if (pa == NULL) {
3249		if (ac->ac_f_ex.fe_len == 0)
3250			return;
3251		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3252		if (err) {
3253			/*
3254			 * This should never happen since we pin the
3255			 * pages in the ext4_allocation_context so
3256			 * ext4_mb_load_buddy() should never fail.
3257			 */
3258			WARN(1, "mb_load_buddy failed (%d)", err);
3259			return;
3260		}
3261		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3262		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3263			       ac->ac_f_ex.fe_len);
3264		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3265		ext4_mb_unload_buddy(&e4b);
3266		return;
3267	}
3268	if (pa->pa_type == MB_INODE_PA)
3269		pa->pa_free += ac->ac_b_ex.fe_len;
3270}
3271
3272/*
3273 * use blocks preallocated to inode
3274 */
3275static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3276				struct ext4_prealloc_space *pa)
3277{
3278	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3279	ext4_fsblk_t start;
3280	ext4_fsblk_t end;
3281	int len;
3282
3283	/* found preallocated blocks, use them */
3284	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3285	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3286		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3287	len = EXT4_NUM_B2C(sbi, end - start);
3288	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3289					&ac->ac_b_ex.fe_start);
3290	ac->ac_b_ex.fe_len = len;
3291	ac->ac_status = AC_STATUS_FOUND;
3292	ac->ac_pa = pa;
3293
3294	BUG_ON(start < pa->pa_pstart);
3295	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3296	BUG_ON(pa->pa_free < len);
3297	pa->pa_free -= len;
3298
3299	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3300}
3301
3302/*
3303 * use blocks preallocated to locality group
3304 */
3305static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3306				struct ext4_prealloc_space *pa)
3307{
3308	unsigned int len = ac->ac_o_ex.fe_len;
3309
3310	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3311					&ac->ac_b_ex.fe_group,
3312					&ac->ac_b_ex.fe_start);
3313	ac->ac_b_ex.fe_len = len;
3314	ac->ac_status = AC_STATUS_FOUND;
3315	ac->ac_pa = pa;
3316
3317	/* we don't correct pa_pstart or pa_plen here to avoid
3318	 * possible race when the group is being loaded concurrently
3319	 * instead we correct pa later, after blocks are marked
3320	 * in on-disk bitmap -- see ext4_mb_release_context()
3321	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3322	 */
3323	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3324}
3325
3326/*
3327 * Return the prealloc space that have minimal distance
3328 * from the goal block. @cpa is the prealloc
3329 * space that is having currently known minimal distance
3330 * from the goal block.
3331 */
3332static struct ext4_prealloc_space *
3333ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3334			struct ext4_prealloc_space *pa,
3335			struct ext4_prealloc_space *cpa)
3336{
3337	ext4_fsblk_t cur_distance, new_distance;
3338
3339	if (cpa == NULL) {
3340		atomic_inc(&pa->pa_count);
3341		return pa;
3342	}
3343	cur_distance = abs(goal_block - cpa->pa_pstart);
3344	new_distance = abs(goal_block - pa->pa_pstart);
3345
3346	if (cur_distance <= new_distance)
3347		return cpa;
3348
3349	/* drop the previous reference */
3350	atomic_dec(&cpa->pa_count);
3351	atomic_inc(&pa->pa_count);
3352	return pa;
3353}
3354
3355/*
3356 * search goal blocks in preallocated space
3357 */
3358static noinline_for_stack int
3359ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3360{
3361	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3362	int order, i;
3363	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3364	struct ext4_locality_group *lg;
3365	struct ext4_prealloc_space *pa, *cpa = NULL;
3366	ext4_fsblk_t goal_block;
3367
3368	/* only data can be preallocated */
3369	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3370		return 0;
3371
3372	/* first, try per-file preallocation */
3373	rcu_read_lock();
3374	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3375
3376		/* all fields in this condition don't change,
3377		 * so we can skip locking for them */
3378		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3379		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3380					       EXT4_C2B(sbi, pa->pa_len)))
3381			continue;
3382
3383		/* non-extent files can't have physical blocks past 2^32 */
3384		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3385		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3386		     EXT4_MAX_BLOCK_FILE_PHYS))
3387			continue;
3388
3389		/* found preallocated blocks, use them */
3390		spin_lock(&pa->pa_lock);
3391		if (pa->pa_deleted == 0 && pa->pa_free) {
3392			atomic_inc(&pa->pa_count);
3393			ext4_mb_use_inode_pa(ac, pa);
3394			spin_unlock(&pa->pa_lock);
3395			ac->ac_criteria = 10;
3396			rcu_read_unlock();
3397			return 1;
3398		}
3399		spin_unlock(&pa->pa_lock);
3400	}
3401	rcu_read_unlock();
3402
3403	/* can we use group allocation? */
3404	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3405		return 0;
3406
3407	/* inode may have no locality group for some reason */
3408	lg = ac->ac_lg;
3409	if (lg == NULL)
3410		return 0;
3411	order  = fls(ac->ac_o_ex.fe_len) - 1;
3412	if (order > PREALLOC_TB_SIZE - 1)
3413		/* The max size of hash table is PREALLOC_TB_SIZE */
3414		order = PREALLOC_TB_SIZE - 1;
3415
3416	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3417	/*
3418	 * search for the prealloc space that is having
3419	 * minimal distance from the goal block.
3420	 */
3421	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3422		rcu_read_lock();
3423		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3424					pa_inode_list) {
3425			spin_lock(&pa->pa_lock);
3426			if (pa->pa_deleted == 0 &&
3427					pa->pa_free >= ac->ac_o_ex.fe_len) {
3428
3429				cpa = ext4_mb_check_group_pa(goal_block,
3430								pa, cpa);
3431			}
3432			spin_unlock(&pa->pa_lock);
3433		}
3434		rcu_read_unlock();
3435	}
3436	if (cpa) {
3437		ext4_mb_use_group_pa(ac, cpa);
3438		ac->ac_criteria = 20;
3439		return 1;
3440	}
3441	return 0;
3442}
3443
3444/*
3445 * the function goes through all block freed in the group
3446 * but not yet committed and marks them used in in-core bitmap.
3447 * buddy must be generated from this bitmap
3448 * Need to be called with the ext4 group lock held
3449 */
3450static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3451						ext4_group_t group)
3452{
3453	struct rb_node *n;
3454	struct ext4_group_info *grp;
3455	struct ext4_free_data *entry;
3456
3457	grp = ext4_get_group_info(sb, group);
3458	n = rb_first(&(grp->bb_free_root));
3459
3460	while (n) {
3461		entry = rb_entry(n, struct ext4_free_data, efd_node);
3462		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3463		n = rb_next(n);
3464	}
3465	return;
3466}
3467
3468/*
3469 * the function goes through all preallocation in this group and marks them
3470 * used in in-core bitmap. buddy must be generated from this bitmap
3471 * Need to be called with ext4 group lock held
3472 */
3473static noinline_for_stack
3474void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3475					ext4_group_t group)
3476{
3477	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3478	struct ext4_prealloc_space *pa;
3479	struct list_head *cur;
3480	ext4_group_t groupnr;
3481	ext4_grpblk_t start;
3482	int preallocated = 0;
3483	int len;
3484
3485	/* all form of preallocation discards first load group,
3486	 * so the only competing code is preallocation use.
3487	 * we don't need any locking here
3488	 * notice we do NOT ignore preallocations with pa_deleted
3489	 * otherwise we could leave used blocks available for
3490	 * allocation in buddy when concurrent ext4_mb_put_pa()
3491	 * is dropping preallocation
3492	 */
3493	list_for_each(cur, &grp->bb_prealloc_list) {
3494		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3495		spin_lock(&pa->pa_lock);
3496		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3497					     &groupnr, &start);
3498		len = pa->pa_len;
3499		spin_unlock(&pa->pa_lock);
3500		if (unlikely(len == 0))
3501			continue;
3502		BUG_ON(groupnr != group);
3503		ext4_set_bits(bitmap, start, len);
3504		preallocated += len;
3505	}
3506	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3507}
3508
3509static void ext4_mb_pa_callback(struct rcu_head *head)
3510{
3511	struct ext4_prealloc_space *pa;
3512	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3513
3514	BUG_ON(atomic_read(&pa->pa_count));
3515	BUG_ON(pa->pa_deleted == 0);
3516	kmem_cache_free(ext4_pspace_cachep, pa);
3517}
3518
3519/*
3520 * drops a reference to preallocated space descriptor
3521 * if this was the last reference and the space is consumed
3522 */
3523static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3524			struct super_block *sb, struct ext4_prealloc_space *pa)
3525{
3526	ext4_group_t grp;
3527	ext4_fsblk_t grp_blk;
3528
 
 
 
3529	/* in this short window concurrent discard can set pa_deleted */
3530	spin_lock(&pa->pa_lock);
3531	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3532		spin_unlock(&pa->pa_lock);
3533		return;
3534	}
3535
3536	if (pa->pa_deleted == 1) {
3537		spin_unlock(&pa->pa_lock);
3538		return;
3539	}
3540
3541	pa->pa_deleted = 1;
3542	spin_unlock(&pa->pa_lock);
3543
3544	grp_blk = pa->pa_pstart;
3545	/*
3546	 * If doing group-based preallocation, pa_pstart may be in the
3547	 * next group when pa is used up
3548	 */
3549	if (pa->pa_type == MB_GROUP_PA)
3550		grp_blk--;
3551
3552	grp = ext4_get_group_number(sb, grp_blk);
3553
3554	/*
3555	 * possible race:
3556	 *
3557	 *  P1 (buddy init)			P2 (regular allocation)
3558	 *					find block B in PA
3559	 *  copy on-disk bitmap to buddy
3560	 *  					mark B in on-disk bitmap
3561	 *					drop PA from group
3562	 *  mark all PAs in buddy
3563	 *
3564	 * thus, P1 initializes buddy with B available. to prevent this
3565	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3566	 * against that pair
3567	 */
3568	ext4_lock_group(sb, grp);
3569	list_del(&pa->pa_group_list);
3570	ext4_unlock_group(sb, grp);
3571
3572	spin_lock(pa->pa_obj_lock);
3573	list_del_rcu(&pa->pa_inode_list);
3574	spin_unlock(pa->pa_obj_lock);
3575
3576	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3577}
3578
3579/*
3580 * creates new preallocated space for given inode
3581 */
3582static noinline_for_stack int
3583ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3584{
3585	struct super_block *sb = ac->ac_sb;
3586	struct ext4_sb_info *sbi = EXT4_SB(sb);
3587	struct ext4_prealloc_space *pa;
3588	struct ext4_group_info *grp;
3589	struct ext4_inode_info *ei;
3590
3591	/* preallocate only when found space is larger then requested */
3592	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3593	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3594	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3595
3596	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3597	if (pa == NULL)
3598		return -ENOMEM;
3599
3600	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3601		int winl;
3602		int wins;
3603		int win;
3604		int offs;
3605
3606		/* we can't allocate as much as normalizer wants.
3607		 * so, found space must get proper lstart
3608		 * to cover original request */
3609		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3610		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3611
3612		/* we're limited by original request in that
3613		 * logical block must be covered any way
3614		 * winl is window we can move our chunk within */
3615		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3616
3617		/* also, we should cover whole original request */
3618		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3619
3620		/* the smallest one defines real window */
3621		win = min(winl, wins);
3622
3623		offs = ac->ac_o_ex.fe_logical %
3624			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3625		if (offs && offs < win)
3626			win = offs;
3627
3628		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3629			EXT4_NUM_B2C(sbi, win);
3630		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3631		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3632	}
3633
3634	/* preallocation can change ac_b_ex, thus we store actually
3635	 * allocated blocks for history */
3636	ac->ac_f_ex = ac->ac_b_ex;
3637
3638	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3639	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3640	pa->pa_len = ac->ac_b_ex.fe_len;
3641	pa->pa_free = pa->pa_len;
3642	atomic_set(&pa->pa_count, 1);
3643	spin_lock_init(&pa->pa_lock);
3644	INIT_LIST_HEAD(&pa->pa_inode_list);
3645	INIT_LIST_HEAD(&pa->pa_group_list);
3646	pa->pa_deleted = 0;
3647	pa->pa_type = MB_INODE_PA;
3648
3649	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3650			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3651	trace_ext4_mb_new_inode_pa(ac, pa);
3652
3653	ext4_mb_use_inode_pa(ac, pa);
3654	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3655
3656	ei = EXT4_I(ac->ac_inode);
3657	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3658
3659	pa->pa_obj_lock = &ei->i_prealloc_lock;
3660	pa->pa_inode = ac->ac_inode;
3661
3662	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3663	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3664	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3665
3666	spin_lock(pa->pa_obj_lock);
3667	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3668	spin_unlock(pa->pa_obj_lock);
3669
3670	return 0;
3671}
3672
3673/*
3674 * creates new preallocated space for locality group inodes belongs to
3675 */
3676static noinline_for_stack int
3677ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3678{
3679	struct super_block *sb = ac->ac_sb;
3680	struct ext4_locality_group *lg;
3681	struct ext4_prealloc_space *pa;
3682	struct ext4_group_info *grp;
3683
3684	/* preallocate only when found space is larger then requested */
3685	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3686	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3687	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3688
3689	BUG_ON(ext4_pspace_cachep == NULL);
3690	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3691	if (pa == NULL)
3692		return -ENOMEM;
3693
3694	/* preallocation can change ac_b_ex, thus we store actually
3695	 * allocated blocks for history */
3696	ac->ac_f_ex = ac->ac_b_ex;
3697
3698	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3699	pa->pa_lstart = pa->pa_pstart;
3700	pa->pa_len = ac->ac_b_ex.fe_len;
3701	pa->pa_free = pa->pa_len;
3702	atomic_set(&pa->pa_count, 1);
3703	spin_lock_init(&pa->pa_lock);
3704	INIT_LIST_HEAD(&pa->pa_inode_list);
3705	INIT_LIST_HEAD(&pa->pa_group_list);
3706	pa->pa_deleted = 0;
3707	pa->pa_type = MB_GROUP_PA;
3708
3709	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3710			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3711	trace_ext4_mb_new_group_pa(ac, pa);
3712
3713	ext4_mb_use_group_pa(ac, pa);
3714	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3715
3716	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3717	lg = ac->ac_lg;
3718	BUG_ON(lg == NULL);
3719
3720	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3721	pa->pa_inode = NULL;
3722
3723	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3724	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3725	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3726
3727	/*
3728	 * We will later add the new pa to the right bucket
3729	 * after updating the pa_free in ext4_mb_release_context
3730	 */
3731	return 0;
3732}
3733
3734static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3735{
3736	int err;
3737
3738	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3739		err = ext4_mb_new_group_pa(ac);
3740	else
3741		err = ext4_mb_new_inode_pa(ac);
3742	return err;
3743}
3744
3745/*
3746 * finds all unused blocks in on-disk bitmap, frees them in
3747 * in-core bitmap and buddy.
3748 * @pa must be unlinked from inode and group lists, so that
3749 * nobody else can find/use it.
3750 * the caller MUST hold group/inode locks.
3751 * TODO: optimize the case when there are no in-core structures yet
3752 */
3753static noinline_for_stack int
3754ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3755			struct ext4_prealloc_space *pa)
3756{
3757	struct super_block *sb = e4b->bd_sb;
3758	struct ext4_sb_info *sbi = EXT4_SB(sb);
3759	unsigned int end;
3760	unsigned int next;
3761	ext4_group_t group;
3762	ext4_grpblk_t bit;
3763	unsigned long long grp_blk_start;
3764	int err = 0;
3765	int free = 0;
3766
3767	BUG_ON(pa->pa_deleted == 0);
3768	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3769	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3770	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3771	end = bit + pa->pa_len;
3772
3773	while (bit < end) {
3774		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3775		if (bit >= end)
3776			break;
3777		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3778		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3779			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3780			 (unsigned) next - bit, (unsigned) group);
3781		free += next - bit;
3782
3783		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3784		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3785						    EXT4_C2B(sbi, bit)),
3786					       next - bit);
3787		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3788		bit = next + 1;
3789	}
3790	if (free != pa->pa_free) {
3791		ext4_msg(e4b->bd_sb, KERN_CRIT,
3792			 "pa %p: logic %lu, phys. %lu, len %lu",
3793			 pa, (unsigned long) pa->pa_lstart,
3794			 (unsigned long) pa->pa_pstart,
3795			 (unsigned long) pa->pa_len);
3796		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3797					free, pa->pa_free);
3798		/*
3799		 * pa is already deleted so we use the value obtained
3800		 * from the bitmap and continue.
3801		 */
3802	}
3803	atomic_add(free, &sbi->s_mb_discarded);
3804
3805	return err;
3806}
3807
3808static noinline_for_stack int
3809ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3810				struct ext4_prealloc_space *pa)
3811{
3812	struct super_block *sb = e4b->bd_sb;
3813	ext4_group_t group;
3814	ext4_grpblk_t bit;
3815
3816	trace_ext4_mb_release_group_pa(sb, pa);
3817	BUG_ON(pa->pa_deleted == 0);
3818	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3819	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3820	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3821	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3822	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3823
3824	return 0;
3825}
3826
3827/*
3828 * releases all preallocations in given group
3829 *
3830 * first, we need to decide discard policy:
3831 * - when do we discard
3832 *   1) ENOSPC
3833 * - how many do we discard
3834 *   1) how many requested
3835 */
3836static noinline_for_stack int
3837ext4_mb_discard_group_preallocations(struct super_block *sb,
3838					ext4_group_t group, int needed)
3839{
3840	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3841	struct buffer_head *bitmap_bh = NULL;
3842	struct ext4_prealloc_space *pa, *tmp;
3843	struct list_head list;
3844	struct ext4_buddy e4b;
3845	int err;
3846	int busy = 0;
3847	int free = 0;
3848
3849	mb_debug(1, "discard preallocation for group %u\n", group);
3850
3851	if (list_empty(&grp->bb_prealloc_list))
3852		return 0;
3853
3854	bitmap_bh = ext4_read_block_bitmap(sb, group);
3855	if (IS_ERR(bitmap_bh)) {
3856		err = PTR_ERR(bitmap_bh);
3857		ext4_error(sb, "Error %d reading block bitmap for %u",
3858			   err, group);
3859		return 0;
3860	}
3861
3862	err = ext4_mb_load_buddy(sb, group, &e4b);
3863	if (err) {
3864		ext4_error(sb, "Error loading buddy information for %u", group);
3865		put_bh(bitmap_bh);
3866		return 0;
3867	}
3868
3869	if (needed == 0)
3870		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3871
3872	INIT_LIST_HEAD(&list);
3873repeat:
3874	ext4_lock_group(sb, group);
3875	list_for_each_entry_safe(pa, tmp,
3876				&grp->bb_prealloc_list, pa_group_list) {
3877		spin_lock(&pa->pa_lock);
3878		if (atomic_read(&pa->pa_count)) {
3879			spin_unlock(&pa->pa_lock);
3880			busy = 1;
3881			continue;
3882		}
3883		if (pa->pa_deleted) {
3884			spin_unlock(&pa->pa_lock);
3885			continue;
3886		}
3887
3888		/* seems this one can be freed ... */
3889		pa->pa_deleted = 1;
3890
3891		/* we can trust pa_free ... */
3892		free += pa->pa_free;
3893
3894		spin_unlock(&pa->pa_lock);
3895
3896		list_del(&pa->pa_group_list);
3897		list_add(&pa->u.pa_tmp_list, &list);
3898	}
3899
3900	/* if we still need more blocks and some PAs were used, try again */
3901	if (free < needed && busy) {
3902		busy = 0;
3903		ext4_unlock_group(sb, group);
3904		cond_resched();
 
 
 
 
3905		goto repeat;
3906	}
3907
3908	/* found anything to free? */
3909	if (list_empty(&list)) {
3910		BUG_ON(free != 0);
3911		goto out;
3912	}
3913
3914	/* now free all selected PAs */
3915	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3916
3917		/* remove from object (inode or locality group) */
3918		spin_lock(pa->pa_obj_lock);
3919		list_del_rcu(&pa->pa_inode_list);
3920		spin_unlock(pa->pa_obj_lock);
3921
3922		if (pa->pa_type == MB_GROUP_PA)
3923			ext4_mb_release_group_pa(&e4b, pa);
3924		else
3925			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3926
3927		list_del(&pa->u.pa_tmp_list);
3928		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3929	}
3930
3931out:
3932	ext4_unlock_group(sb, group);
3933	ext4_mb_unload_buddy(&e4b);
3934	put_bh(bitmap_bh);
3935	return free;
3936}
3937
3938/*
3939 * releases all non-used preallocated blocks for given inode
3940 *
3941 * It's important to discard preallocations under i_data_sem
3942 * We don't want another block to be served from the prealloc
3943 * space when we are discarding the inode prealloc space.
3944 *
3945 * FIXME!! Make sure it is valid at all the call sites
3946 */
3947void ext4_discard_preallocations(struct inode *inode)
3948{
3949	struct ext4_inode_info *ei = EXT4_I(inode);
3950	struct super_block *sb = inode->i_sb;
3951	struct buffer_head *bitmap_bh = NULL;
3952	struct ext4_prealloc_space *pa, *tmp;
3953	ext4_group_t group = 0;
3954	struct list_head list;
3955	struct ext4_buddy e4b;
3956	int err;
3957
3958	if (!S_ISREG(inode->i_mode)) {
3959		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3960		return;
3961	}
3962
3963	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3964	trace_ext4_discard_preallocations(inode);
3965
3966	INIT_LIST_HEAD(&list);
3967
3968repeat:
3969	/* first, collect all pa's in the inode */
3970	spin_lock(&ei->i_prealloc_lock);
3971	while (!list_empty(&ei->i_prealloc_list)) {
3972		pa = list_entry(ei->i_prealloc_list.next,
3973				struct ext4_prealloc_space, pa_inode_list);
3974		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3975		spin_lock(&pa->pa_lock);
3976		if (atomic_read(&pa->pa_count)) {
3977			/* this shouldn't happen often - nobody should
3978			 * use preallocation while we're discarding it */
3979			spin_unlock(&pa->pa_lock);
3980			spin_unlock(&ei->i_prealloc_lock);
3981			ext4_msg(sb, KERN_ERR,
3982				 "uh-oh! used pa while discarding");
3983			WARN_ON(1);
3984			schedule_timeout_uninterruptible(HZ);
3985			goto repeat;
3986
3987		}
3988		if (pa->pa_deleted == 0) {
3989			pa->pa_deleted = 1;
3990			spin_unlock(&pa->pa_lock);
3991			list_del_rcu(&pa->pa_inode_list);
3992			list_add(&pa->u.pa_tmp_list, &list);
3993			continue;
3994		}
3995
3996		/* someone is deleting pa right now */
3997		spin_unlock(&pa->pa_lock);
3998		spin_unlock(&ei->i_prealloc_lock);
3999
4000		/* we have to wait here because pa_deleted
4001		 * doesn't mean pa is already unlinked from
4002		 * the list. as we might be called from
4003		 * ->clear_inode() the inode will get freed
4004		 * and concurrent thread which is unlinking
4005		 * pa from inode's list may access already
4006		 * freed memory, bad-bad-bad */
4007
4008		/* XXX: if this happens too often, we can
4009		 * add a flag to force wait only in case
4010		 * of ->clear_inode(), but not in case of
4011		 * regular truncate */
4012		schedule_timeout_uninterruptible(HZ);
4013		goto repeat;
4014	}
4015	spin_unlock(&ei->i_prealloc_lock);
4016
4017	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4018		BUG_ON(pa->pa_type != MB_INODE_PA);
4019		group = ext4_get_group_number(sb, pa->pa_pstart);
4020
4021		err = ext4_mb_load_buddy(sb, group, &e4b);
4022		if (err) {
4023			ext4_error(sb, "Error loading buddy information for %u",
4024					group);
4025			continue;
4026		}
4027
4028		bitmap_bh = ext4_read_block_bitmap(sb, group);
4029		if (IS_ERR(bitmap_bh)) {
4030			err = PTR_ERR(bitmap_bh);
4031			ext4_error(sb, "Error %d reading block bitmap for %u",
4032					err, group);
4033			ext4_mb_unload_buddy(&e4b);
4034			continue;
4035		}
4036
4037		ext4_lock_group(sb, group);
4038		list_del(&pa->pa_group_list);
4039		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4040		ext4_unlock_group(sb, group);
4041
4042		ext4_mb_unload_buddy(&e4b);
4043		put_bh(bitmap_bh);
4044
4045		list_del(&pa->u.pa_tmp_list);
4046		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4047	}
4048}
4049
4050#ifdef CONFIG_EXT4_DEBUG
4051static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4052{
4053	struct super_block *sb = ac->ac_sb;
4054	ext4_group_t ngroups, i;
4055
4056	if (!ext4_mballoc_debug ||
4057	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4058		return;
4059
4060	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4061			" Allocation context details:");
4062	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4063			ac->ac_status, ac->ac_flags);
4064	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4065		 	"goal %lu/%lu/%lu@%lu, "
4066			"best %lu/%lu/%lu@%lu cr %d",
4067			(unsigned long)ac->ac_o_ex.fe_group,
4068			(unsigned long)ac->ac_o_ex.fe_start,
4069			(unsigned long)ac->ac_o_ex.fe_len,
4070			(unsigned long)ac->ac_o_ex.fe_logical,
4071			(unsigned long)ac->ac_g_ex.fe_group,
4072			(unsigned long)ac->ac_g_ex.fe_start,
4073			(unsigned long)ac->ac_g_ex.fe_len,
4074			(unsigned long)ac->ac_g_ex.fe_logical,
4075			(unsigned long)ac->ac_b_ex.fe_group,
4076			(unsigned long)ac->ac_b_ex.fe_start,
4077			(unsigned long)ac->ac_b_ex.fe_len,
4078			(unsigned long)ac->ac_b_ex.fe_logical,
4079			(int)ac->ac_criteria);
4080	ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
 
4081	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4082	ngroups = ext4_get_groups_count(sb);
4083	for (i = 0; i < ngroups; i++) {
4084		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4085		struct ext4_prealloc_space *pa;
4086		ext4_grpblk_t start;
4087		struct list_head *cur;
4088		ext4_lock_group(sb, i);
4089		list_for_each(cur, &grp->bb_prealloc_list) {
4090			pa = list_entry(cur, struct ext4_prealloc_space,
4091					pa_group_list);
4092			spin_lock(&pa->pa_lock);
4093			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4094						     NULL, &start);
4095			spin_unlock(&pa->pa_lock);
4096			printk(KERN_ERR "PA:%u:%d:%u \n", i,
4097			       start, pa->pa_len);
4098		}
4099		ext4_unlock_group(sb, i);
4100
4101		if (grp->bb_free == 0)
4102			continue;
4103		printk(KERN_ERR "%u: %d/%d \n",
4104		       i, grp->bb_free, grp->bb_fragments);
4105	}
4106	printk(KERN_ERR "\n");
4107}
4108#else
4109static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4110{
4111	return;
4112}
4113#endif
4114
4115/*
4116 * We use locality group preallocation for small size file. The size of the
4117 * file is determined by the current size or the resulting size after
4118 * allocation which ever is larger
4119 *
4120 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4121 */
4122static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4123{
4124	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4125	int bsbits = ac->ac_sb->s_blocksize_bits;
4126	loff_t size, isize;
4127
4128	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4129		return;
4130
4131	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4132		return;
4133
4134	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4135	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4136		>> bsbits;
4137
4138	if ((size == isize) &&
4139	    !ext4_fs_is_busy(sbi) &&
4140	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4141		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4142		return;
4143	}
4144
4145	if (sbi->s_mb_group_prealloc <= 0) {
4146		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4147		return;
4148	}
4149
4150	/* don't use group allocation for large files */
4151	size = max(size, isize);
4152	if (size > sbi->s_mb_stream_request) {
4153		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4154		return;
4155	}
4156
4157	BUG_ON(ac->ac_lg != NULL);
4158	/*
4159	 * locality group prealloc space are per cpu. The reason for having
4160	 * per cpu locality group is to reduce the contention between block
4161	 * request from multiple CPUs.
4162	 */
4163	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4164
4165	/* we're going to use group allocation */
4166	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4167
4168	/* serialize all allocations in the group */
4169	mutex_lock(&ac->ac_lg->lg_mutex);
4170}
4171
4172static noinline_for_stack int
4173ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4174				struct ext4_allocation_request *ar)
4175{
4176	struct super_block *sb = ar->inode->i_sb;
4177	struct ext4_sb_info *sbi = EXT4_SB(sb);
4178	struct ext4_super_block *es = sbi->s_es;
4179	ext4_group_t group;
4180	unsigned int len;
4181	ext4_fsblk_t goal;
4182	ext4_grpblk_t block;
4183
4184	/* we can't allocate > group size */
4185	len = ar->len;
4186
4187	/* just a dirty hack to filter too big requests  */
4188	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4189		len = EXT4_CLUSTERS_PER_GROUP(sb);
4190
4191	/* start searching from the goal */
4192	goal = ar->goal;
4193	if (goal < le32_to_cpu(es->s_first_data_block) ||
4194			goal >= ext4_blocks_count(es))
4195		goal = le32_to_cpu(es->s_first_data_block);
4196	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4197
4198	/* set up allocation goals */
4199	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
 
4200	ac->ac_status = AC_STATUS_CONTINUE;
4201	ac->ac_sb = sb;
4202	ac->ac_inode = ar->inode;
4203	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4204	ac->ac_o_ex.fe_group = group;
4205	ac->ac_o_ex.fe_start = block;
4206	ac->ac_o_ex.fe_len = len;
4207	ac->ac_g_ex = ac->ac_o_ex;
4208	ac->ac_flags = ar->flags;
4209
4210	/* we have to define context: we'll we work with a file or
4211	 * locality group. this is a policy, actually */
4212	ext4_mb_group_or_file(ac);
4213
4214	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4215			"left: %u/%u, right %u/%u to %swritable\n",
4216			(unsigned) ar->len, (unsigned) ar->logical,
4217			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4218			(unsigned) ar->lleft, (unsigned) ar->pleft,
4219			(unsigned) ar->lright, (unsigned) ar->pright,
4220			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4221	return 0;
4222
4223}
4224
4225static noinline_for_stack void
4226ext4_mb_discard_lg_preallocations(struct super_block *sb,
4227					struct ext4_locality_group *lg,
4228					int order, int total_entries)
4229{
4230	ext4_group_t group = 0;
4231	struct ext4_buddy e4b;
4232	struct list_head discard_list;
4233	struct ext4_prealloc_space *pa, *tmp;
4234
4235	mb_debug(1, "discard locality group preallocation\n");
4236
4237	INIT_LIST_HEAD(&discard_list);
4238
4239	spin_lock(&lg->lg_prealloc_lock);
4240	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4241						pa_inode_list) {
4242		spin_lock(&pa->pa_lock);
4243		if (atomic_read(&pa->pa_count)) {
4244			/*
4245			 * This is the pa that we just used
4246			 * for block allocation. So don't
4247			 * free that
4248			 */
4249			spin_unlock(&pa->pa_lock);
4250			continue;
4251		}
4252		if (pa->pa_deleted) {
4253			spin_unlock(&pa->pa_lock);
4254			continue;
4255		}
4256		/* only lg prealloc space */
4257		BUG_ON(pa->pa_type != MB_GROUP_PA);
4258
4259		/* seems this one can be freed ... */
4260		pa->pa_deleted = 1;
4261		spin_unlock(&pa->pa_lock);
4262
4263		list_del_rcu(&pa->pa_inode_list);
4264		list_add(&pa->u.pa_tmp_list, &discard_list);
4265
4266		total_entries--;
4267		if (total_entries <= 5) {
4268			/*
4269			 * we want to keep only 5 entries
4270			 * allowing it to grow to 8. This
4271			 * mak sure we don't call discard
4272			 * soon for this list.
4273			 */
4274			break;
4275		}
4276	}
4277	spin_unlock(&lg->lg_prealloc_lock);
4278
4279	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4280
4281		group = ext4_get_group_number(sb, pa->pa_pstart);
4282		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4283			ext4_error(sb, "Error loading buddy information for %u",
4284					group);
4285			continue;
4286		}
4287		ext4_lock_group(sb, group);
4288		list_del(&pa->pa_group_list);
4289		ext4_mb_release_group_pa(&e4b, pa);
4290		ext4_unlock_group(sb, group);
4291
4292		ext4_mb_unload_buddy(&e4b);
4293		list_del(&pa->u.pa_tmp_list);
4294		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4295	}
4296}
4297
4298/*
4299 * We have incremented pa_count. So it cannot be freed at this
4300 * point. Also we hold lg_mutex. So no parallel allocation is
4301 * possible from this lg. That means pa_free cannot be updated.
4302 *
4303 * A parallel ext4_mb_discard_group_preallocations is possible.
4304 * which can cause the lg_prealloc_list to be updated.
4305 */
4306
4307static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4308{
4309	int order, added = 0, lg_prealloc_count = 1;
4310	struct super_block *sb = ac->ac_sb;
4311	struct ext4_locality_group *lg = ac->ac_lg;
4312	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4313
4314	order = fls(pa->pa_free) - 1;
4315	if (order > PREALLOC_TB_SIZE - 1)
4316		/* The max size of hash table is PREALLOC_TB_SIZE */
4317		order = PREALLOC_TB_SIZE - 1;
4318	/* Add the prealloc space to lg */
4319	spin_lock(&lg->lg_prealloc_lock);
4320	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4321						pa_inode_list) {
4322		spin_lock(&tmp_pa->pa_lock);
4323		if (tmp_pa->pa_deleted) {
4324			spin_unlock(&tmp_pa->pa_lock);
4325			continue;
4326		}
4327		if (!added && pa->pa_free < tmp_pa->pa_free) {
4328			/* Add to the tail of the previous entry */
4329			list_add_tail_rcu(&pa->pa_inode_list,
4330						&tmp_pa->pa_inode_list);
4331			added = 1;
4332			/*
4333			 * we want to count the total
4334			 * number of entries in the list
4335			 */
4336		}
4337		spin_unlock(&tmp_pa->pa_lock);
4338		lg_prealloc_count++;
4339	}
4340	if (!added)
4341		list_add_tail_rcu(&pa->pa_inode_list,
4342					&lg->lg_prealloc_list[order]);
4343	spin_unlock(&lg->lg_prealloc_lock);
4344
4345	/* Now trim the list to be not more than 8 elements */
4346	if (lg_prealloc_count > 8) {
4347		ext4_mb_discard_lg_preallocations(sb, lg,
4348						  order, lg_prealloc_count);
4349		return;
4350	}
4351	return ;
4352}
4353
4354/*
4355 * release all resource we used in allocation
4356 */
4357static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4358{
4359	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4360	struct ext4_prealloc_space *pa = ac->ac_pa;
4361	if (pa) {
4362		if (pa->pa_type == MB_GROUP_PA) {
4363			/* see comment in ext4_mb_use_group_pa() */
4364			spin_lock(&pa->pa_lock);
4365			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4366			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4367			pa->pa_free -= ac->ac_b_ex.fe_len;
4368			pa->pa_len -= ac->ac_b_ex.fe_len;
4369			spin_unlock(&pa->pa_lock);
4370		}
4371	}
4372	if (pa) {
4373		/*
4374		 * We want to add the pa to the right bucket.
4375		 * Remove it from the list and while adding
4376		 * make sure the list to which we are adding
4377		 * doesn't grow big.
4378		 */
4379		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4380			spin_lock(pa->pa_obj_lock);
4381			list_del_rcu(&pa->pa_inode_list);
4382			spin_unlock(pa->pa_obj_lock);
4383			ext4_mb_add_n_trim(ac);
4384		}
4385		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4386	}
4387	if (ac->ac_bitmap_page)
4388		put_page(ac->ac_bitmap_page);
4389	if (ac->ac_buddy_page)
4390		put_page(ac->ac_buddy_page);
4391	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4392		mutex_unlock(&ac->ac_lg->lg_mutex);
4393	ext4_mb_collect_stats(ac);
4394	return 0;
4395}
4396
4397static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4398{
4399	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4400	int ret;
4401	int freed = 0;
4402
4403	trace_ext4_mb_discard_preallocations(sb, needed);
4404	for (i = 0; i < ngroups && needed > 0; i++) {
4405		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4406		freed += ret;
4407		needed -= ret;
4408	}
4409
4410	return freed;
4411}
4412
4413/*
4414 * Main entry point into mballoc to allocate blocks
4415 * it tries to use preallocation first, then falls back
4416 * to usual allocation
4417 */
4418ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4419				struct ext4_allocation_request *ar, int *errp)
4420{
4421	int freed;
4422	struct ext4_allocation_context *ac = NULL;
4423	struct ext4_sb_info *sbi;
4424	struct super_block *sb;
4425	ext4_fsblk_t block = 0;
4426	unsigned int inquota = 0;
4427	unsigned int reserv_clstrs = 0;
4428
4429	might_sleep();
4430	sb = ar->inode->i_sb;
4431	sbi = EXT4_SB(sb);
4432
4433	trace_ext4_request_blocks(ar);
4434
4435	/* Allow to use superuser reservation for quota file */
4436	if (IS_NOQUOTA(ar->inode))
4437		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4438
4439	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
 
 
 
 
 
 
 
4440		/* Without delayed allocation we need to verify
4441		 * there is enough free blocks to do block allocation
4442		 * and verify allocation doesn't exceed the quota limits.
4443		 */
4444		while (ar->len &&
4445			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4446
4447			/* let others to free the space */
4448			cond_resched();
4449			ar->len = ar->len >> 1;
4450		}
4451		if (!ar->len) {
4452			*errp = -ENOSPC;
4453			return 0;
4454		}
4455		reserv_clstrs = ar->len;
4456		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4457			dquot_alloc_block_nofail(ar->inode,
4458						 EXT4_C2B(sbi, ar->len));
4459		} else {
4460			while (ar->len &&
4461				dquot_alloc_block(ar->inode,
4462						  EXT4_C2B(sbi, ar->len))) {
4463
4464				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4465				ar->len--;
4466			}
4467		}
4468		inquota = ar->len;
4469		if (ar->len == 0) {
4470			*errp = -EDQUOT;
4471			goto out;
4472		}
4473	}
4474
4475	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4476	if (!ac) {
4477		ar->len = 0;
4478		*errp = -ENOMEM;
4479		goto out;
4480	}
4481
4482	*errp = ext4_mb_initialize_context(ac, ar);
4483	if (*errp) {
4484		ar->len = 0;
4485		goto out;
4486	}
4487
4488	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4489	if (!ext4_mb_use_preallocated(ac)) {
4490		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4491		ext4_mb_normalize_request(ac, ar);
4492repeat:
4493		/* allocate space in core */
4494		*errp = ext4_mb_regular_allocator(ac);
4495		if (*errp)
4496			goto discard_and_exit;
4497
4498		/* as we've just preallocated more space than
4499		 * user requested originally, we store allocated
4500		 * space in a special descriptor */
4501		if (ac->ac_status == AC_STATUS_FOUND &&
4502		    ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4503			*errp = ext4_mb_new_preallocation(ac);
4504		if (*errp) {
4505		discard_and_exit:
4506			ext4_discard_allocated_blocks(ac);
4507			goto errout;
4508		}
4509	}
4510	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4511		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4512		if (*errp == -EAGAIN) {
4513			/*
4514			 * drop the reference that we took
4515			 * in ext4_mb_use_best_found
4516			 */
4517			ext4_mb_release_context(ac);
4518			ac->ac_b_ex.fe_group = 0;
4519			ac->ac_b_ex.fe_start = 0;
4520			ac->ac_b_ex.fe_len = 0;
4521			ac->ac_status = AC_STATUS_CONTINUE;
4522			goto repeat;
4523		} else if (*errp) {
 
4524			ext4_discard_allocated_blocks(ac);
4525			goto errout;
4526		} else {
4527			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4528			ar->len = ac->ac_b_ex.fe_len;
4529		}
4530	} else {
4531		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4532		if (freed)
4533			goto repeat;
4534		*errp = -ENOSPC;
4535	}
4536
4537errout:
4538	if (*errp) {
4539		ac->ac_b_ex.fe_len = 0;
4540		ar->len = 0;
4541		ext4_mb_show_ac(ac);
4542	}
4543	ext4_mb_release_context(ac);
4544out:
4545	if (ac)
4546		kmem_cache_free(ext4_ac_cachep, ac);
4547	if (inquota && ar->len < inquota)
4548		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4549	if (!ar->len) {
4550		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
 
4551			/* release all the reserved blocks if non delalloc */
4552			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4553						reserv_clstrs);
4554	}
4555
4556	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4557
4558	return block;
4559}
4560
4561/*
4562 * We can merge two free data extents only if the physical blocks
4563 * are contiguous, AND the extents were freed by the same transaction,
4564 * AND the blocks are associated with the same group.
4565 */
4566static int can_merge(struct ext4_free_data *entry1,
4567			struct ext4_free_data *entry2)
4568{
4569	if ((entry1->efd_tid == entry2->efd_tid) &&
4570	    (entry1->efd_group == entry2->efd_group) &&
4571	    ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4572		return 1;
4573	return 0;
4574}
4575
4576static noinline_for_stack int
4577ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4578		      struct ext4_free_data *new_entry)
4579{
4580	ext4_group_t group = e4b->bd_group;
4581	ext4_grpblk_t cluster;
4582	struct ext4_free_data *entry;
4583	struct ext4_group_info *db = e4b->bd_info;
4584	struct super_block *sb = e4b->bd_sb;
4585	struct ext4_sb_info *sbi = EXT4_SB(sb);
4586	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4587	struct rb_node *parent = NULL, *new_node;
4588
4589	BUG_ON(!ext4_handle_valid(handle));
4590	BUG_ON(e4b->bd_bitmap_page == NULL);
4591	BUG_ON(e4b->bd_buddy_page == NULL);
4592
4593	new_node = &new_entry->efd_node;
4594	cluster = new_entry->efd_start_cluster;
4595
4596	if (!*n) {
4597		/* first free block exent. We need to
4598		   protect buddy cache from being freed,
4599		 * otherwise we'll refresh it from
4600		 * on-disk bitmap and lose not-yet-available
4601		 * blocks */
4602		get_page(e4b->bd_buddy_page);
4603		get_page(e4b->bd_bitmap_page);
4604	}
4605	while (*n) {
4606		parent = *n;
4607		entry = rb_entry(parent, struct ext4_free_data, efd_node);
4608		if (cluster < entry->efd_start_cluster)
4609			n = &(*n)->rb_left;
4610		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4611			n = &(*n)->rb_right;
4612		else {
4613			ext4_grp_locked_error(sb, group, 0,
4614				ext4_group_first_block_no(sb, group) +
4615				EXT4_C2B(sbi, cluster),
4616				"Block already on to-be-freed list");
4617			return 0;
4618		}
4619	}
4620
4621	rb_link_node(new_node, parent, n);
4622	rb_insert_color(new_node, &db->bb_free_root);
4623
4624	/* Now try to see the extent can be merged to left and right */
4625	node = rb_prev(new_node);
4626	if (node) {
4627		entry = rb_entry(node, struct ext4_free_data, efd_node);
4628		if (can_merge(entry, new_entry) &&
4629		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4630			new_entry->efd_start_cluster = entry->efd_start_cluster;
4631			new_entry->efd_count += entry->efd_count;
4632			rb_erase(node, &(db->bb_free_root));
 
4633			kmem_cache_free(ext4_free_data_cachep, entry);
4634		}
4635	}
4636
4637	node = rb_next(new_node);
4638	if (node) {
4639		entry = rb_entry(node, struct ext4_free_data, efd_node);
4640		if (can_merge(new_entry, entry) &&
4641		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4642			new_entry->efd_count += entry->efd_count;
4643			rb_erase(node, &(db->bb_free_root));
 
4644			kmem_cache_free(ext4_free_data_cachep, entry);
4645		}
4646	}
4647	/* Add the extent to transaction's private list */
4648	ext4_journal_callback_add(handle, ext4_free_data_callback,
4649				  &new_entry->efd_jce);
4650	return 0;
4651}
4652
4653/**
4654 * ext4_free_blocks() -- Free given blocks and update quota
4655 * @handle:		handle for this transaction
4656 * @inode:		inode
4657 * @block:		start physical block to free
4658 * @count:		number of blocks to count
4659 * @flags:		flags used by ext4_free_blocks
4660 */
4661void ext4_free_blocks(handle_t *handle, struct inode *inode,
4662		      struct buffer_head *bh, ext4_fsblk_t block,
4663		      unsigned long count, int flags)
4664{
4665	struct buffer_head *bitmap_bh = NULL;
4666	struct super_block *sb = inode->i_sb;
4667	struct ext4_group_desc *gdp;
 
4668	unsigned int overflow;
4669	ext4_grpblk_t bit;
4670	struct buffer_head *gd_bh;
4671	ext4_group_t block_group;
4672	struct ext4_sb_info *sbi;
4673	struct ext4_buddy e4b;
4674	unsigned int count_clusters;
4675	int err = 0;
4676	int ret;
4677
4678	might_sleep();
4679	if (bh) {
4680		if (block)
4681			BUG_ON(block != bh->b_blocknr);
4682		else
4683			block = bh->b_blocknr;
4684	}
4685
4686	sbi = EXT4_SB(sb);
4687	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4688	    !ext4_data_block_valid(sbi, block, count)) {
4689		ext4_error(sb, "Freeing blocks not in datazone - "
4690			   "block = %llu, count = %lu", block, count);
4691		goto error_return;
4692	}
4693
4694	ext4_debug("freeing block %llu\n", block);
4695	trace_ext4_free_blocks(inode, block, count, flags);
4696
4697	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4698		BUG_ON(count > 1);
 
 
 
4699
4700		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4701			    inode, bh, block);
 
 
 
 
 
 
 
4702	}
4703
4704	/*
 
 
 
 
 
 
 
 
 
 
4705	 * If the extent to be freed does not begin on a cluster
4706	 * boundary, we need to deal with partial clusters at the
4707	 * beginning and end of the extent.  Normally we will free
4708	 * blocks at the beginning or the end unless we are explicitly
4709	 * requested to avoid doing so.
4710	 */
4711	overflow = EXT4_PBLK_COFF(sbi, block);
4712	if (overflow) {
4713		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4714			overflow = sbi->s_cluster_ratio - overflow;
4715			block += overflow;
4716			if (count > overflow)
4717				count -= overflow;
4718			else
4719				return;
4720		} else {
4721			block -= overflow;
4722			count += overflow;
4723		}
4724	}
4725	overflow = EXT4_LBLK_COFF(sbi, count);
4726	if (overflow) {
4727		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4728			if (count > overflow)
4729				count -= overflow;
4730			else
4731				return;
4732		} else
4733			count += sbi->s_cluster_ratio - overflow;
4734	}
4735
4736	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4737		int i;
4738		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4739
4740		for (i = 0; i < count; i++) {
4741			cond_resched();
4742			if (is_metadata)
4743				bh = sb_find_get_block(inode->i_sb, block + i);
4744			ext4_forget(handle, is_metadata, inode, bh, block + i);
4745		}
4746	}
4747
4748do_more:
4749	overflow = 0;
4750	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4751
4752	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4753			ext4_get_group_info(sb, block_group))))
4754		return;
4755
4756	/*
4757	 * Check to see if we are freeing blocks across a group
4758	 * boundary.
4759	 */
4760	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4761		overflow = EXT4_C2B(sbi, bit) + count -
4762			EXT4_BLOCKS_PER_GROUP(sb);
4763		count -= overflow;
4764	}
4765	count_clusters = EXT4_NUM_B2C(sbi, count);
4766	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4767	if (IS_ERR(bitmap_bh)) {
4768		err = PTR_ERR(bitmap_bh);
4769		bitmap_bh = NULL;
4770		goto error_return;
4771	}
4772	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4773	if (!gdp) {
4774		err = -EIO;
4775		goto error_return;
4776	}
4777
4778	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4779	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4780	    in_range(block, ext4_inode_table(sb, gdp),
4781		     EXT4_SB(sb)->s_itb_per_group) ||
4782	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4783		     EXT4_SB(sb)->s_itb_per_group)) {
4784
4785		ext4_error(sb, "Freeing blocks in system zone - "
4786			   "Block = %llu, count = %lu", block, count);
4787		/* err = 0. ext4_std_error should be a no op */
4788		goto error_return;
4789	}
4790
4791	BUFFER_TRACE(bitmap_bh, "getting write access");
4792	err = ext4_journal_get_write_access(handle, bitmap_bh);
4793	if (err)
4794		goto error_return;
4795
4796	/*
4797	 * We are about to modify some metadata.  Call the journal APIs
4798	 * to unshare ->b_data if a currently-committing transaction is
4799	 * using it
4800	 */
4801	BUFFER_TRACE(gd_bh, "get_write_access");
4802	err = ext4_journal_get_write_access(handle, gd_bh);
4803	if (err)
4804		goto error_return;
4805#ifdef AGGRESSIVE_CHECK
4806	{
4807		int i;
4808		for (i = 0; i < count_clusters; i++)
4809			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4810	}
4811#endif
4812	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4813
4814	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4815	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4816				     GFP_NOFS|__GFP_NOFAIL);
4817	if (err)
4818		goto error_return;
4819
4820	/*
4821	 * We need to make sure we don't reuse the freed block until after the
4822	 * transaction is committed. We make an exception if the inode is to be
4823	 * written in writeback mode since writeback mode has weak data
4824	 * consistency guarantees.
4825	 */
4826	if (ext4_handle_valid(handle) &&
4827	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4828	     !ext4_should_writeback_data(inode))) {
4829		struct ext4_free_data *new_entry;
4830		/*
4831		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4832		 * to fail.
4833		 */
4834		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4835				GFP_NOFS|__GFP_NOFAIL);
 
 
 
 
4836		new_entry->efd_start_cluster = bit;
4837		new_entry->efd_group = block_group;
4838		new_entry->efd_count = count_clusters;
4839		new_entry->efd_tid = handle->h_transaction->t_tid;
4840
4841		ext4_lock_group(sb, block_group);
4842		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4843		ext4_mb_free_metadata(handle, &e4b, new_entry);
4844	} else {
4845		/* need to update group_info->bb_free and bitmap
4846		 * with group lock held. generate_buddy look at
4847		 * them with group lock_held
4848		 */
4849		if (test_opt(sb, DISCARD)) {
4850			err = ext4_issue_discard(sb, block_group, bit, count);
4851			if (err && err != -EOPNOTSUPP)
4852				ext4_msg(sb, KERN_WARNING, "discard request in"
4853					 " group:%d block:%d count:%lu failed"
4854					 " with %d", block_group, bit, count,
4855					 err);
4856		} else
4857			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4858
4859		ext4_lock_group(sb, block_group);
4860		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4861		mb_free_blocks(inode, &e4b, bit, count_clusters);
4862	}
4863
4864	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4865	ext4_free_group_clusters_set(sb, gdp, ret);
4866	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
 
4867	ext4_group_desc_csum_set(sb, block_group, gdp);
4868	ext4_unlock_group(sb, block_group);
 
4869
4870	if (sbi->s_log_groups_per_flex) {
4871		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4872		atomic64_add(count_clusters,
4873			     &sbi->s_flex_groups[flex_group].free_clusters);
4874	}
4875
 
 
 
 
4876	if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4877		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4878	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4879
4880	ext4_mb_unload_buddy(&e4b);
4881
4882	/* We dirtied the bitmap block */
4883	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4884	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4885
4886	/* And the group descriptor block */
4887	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4888	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4889	if (!err)
4890		err = ret;
4891
4892	if (overflow && !err) {
4893		block += count;
4894		count = overflow;
4895		put_bh(bitmap_bh);
4896		goto do_more;
4897	}
 
4898error_return:
4899	brelse(bitmap_bh);
4900	ext4_std_error(sb, err);
4901	return;
4902}
4903
4904/**
4905 * ext4_group_add_blocks() -- Add given blocks to an existing group
4906 * @handle:			handle to this transaction
4907 * @sb:				super block
4908 * @block:			start physical block to add to the block group
4909 * @count:			number of blocks to free
4910 *
4911 * This marks the blocks as free in the bitmap and buddy.
4912 */
4913int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4914			 ext4_fsblk_t block, unsigned long count)
4915{
4916	struct buffer_head *bitmap_bh = NULL;
4917	struct buffer_head *gd_bh;
4918	ext4_group_t block_group;
4919	ext4_grpblk_t bit;
4920	unsigned int i;
4921	struct ext4_group_desc *desc;
4922	struct ext4_sb_info *sbi = EXT4_SB(sb);
4923	struct ext4_buddy e4b;
4924	int err = 0, ret, blk_free_count;
4925	ext4_grpblk_t blocks_freed;
4926
4927	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4928
4929	if (count == 0)
4930		return 0;
4931
4932	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4933	/*
4934	 * Check to see if we are freeing blocks across a group
4935	 * boundary.
4936	 */
4937	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4938		ext4_warning(sb, "too much blocks added to group %u\n",
4939			     block_group);
4940		err = -EINVAL;
4941		goto error_return;
4942	}
4943
4944	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4945	if (IS_ERR(bitmap_bh)) {
4946		err = PTR_ERR(bitmap_bh);
4947		bitmap_bh = NULL;
4948		goto error_return;
4949	}
4950
4951	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4952	if (!desc) {
4953		err = -EIO;
4954		goto error_return;
4955	}
4956
4957	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4958	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4959	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4960	    in_range(block + count - 1, ext4_inode_table(sb, desc),
4961		     sbi->s_itb_per_group)) {
4962		ext4_error(sb, "Adding blocks in system zones - "
4963			   "Block = %llu, count = %lu",
4964			   block, count);
4965		err = -EINVAL;
4966		goto error_return;
4967	}
4968
4969	BUFFER_TRACE(bitmap_bh, "getting write access");
4970	err = ext4_journal_get_write_access(handle, bitmap_bh);
4971	if (err)
4972		goto error_return;
4973
4974	/*
4975	 * We are about to modify some metadata.  Call the journal APIs
4976	 * to unshare ->b_data if a currently-committing transaction is
4977	 * using it
4978	 */
4979	BUFFER_TRACE(gd_bh, "get_write_access");
4980	err = ext4_journal_get_write_access(handle, gd_bh);
4981	if (err)
4982		goto error_return;
4983
4984	for (i = 0, blocks_freed = 0; i < count; i++) {
4985		BUFFER_TRACE(bitmap_bh, "clear bit");
4986		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4987			ext4_error(sb, "bit already cleared for block %llu",
4988				   (ext4_fsblk_t)(block + i));
4989			BUFFER_TRACE(bitmap_bh, "bit already cleared");
4990		} else {
4991			blocks_freed++;
4992		}
4993	}
4994
4995	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4996	if (err)
4997		goto error_return;
4998
4999	/*
5000	 * need to update group_info->bb_free and bitmap
5001	 * with group lock held. generate_buddy look at
5002	 * them with group lock_held
5003	 */
5004	ext4_lock_group(sb, block_group);
5005	mb_clear_bits(bitmap_bh->b_data, bit, count);
5006	mb_free_blocks(NULL, &e4b, bit, count);
5007	blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
5008	ext4_free_group_clusters_set(sb, desc, blk_free_count);
5009	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
 
5010	ext4_group_desc_csum_set(sb, block_group, desc);
5011	ext4_unlock_group(sb, block_group);
5012	percpu_counter_add(&sbi->s_freeclusters_counter,
5013			   EXT4_NUM_B2C(sbi, blocks_freed));
5014
5015	if (sbi->s_log_groups_per_flex) {
5016		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5017		atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
5018			     &sbi->s_flex_groups[flex_group].free_clusters);
5019	}
5020
5021	ext4_mb_unload_buddy(&e4b);
5022
5023	/* We dirtied the bitmap block */
5024	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5025	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5026
5027	/* And the group descriptor block */
5028	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5029	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5030	if (!err)
5031		err = ret;
5032
5033error_return:
5034	brelse(bitmap_bh);
5035	ext4_std_error(sb, err);
5036	return err;
5037}
5038
5039/**
5040 * ext4_trim_extent -- function to TRIM one single free extent in the group
5041 * @sb:		super block for the file system
5042 * @start:	starting block of the free extent in the alloc. group
5043 * @count:	number of blocks to TRIM
5044 * @group:	alloc. group we are working with
5045 * @e4b:	ext4 buddy for the group
5046 *
5047 * Trim "count" blocks starting at "start" in the "group". To assure that no
5048 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5049 * be called with under the group lock.
5050 */
5051static int ext4_trim_extent(struct super_block *sb, int start, int count,
5052			     ext4_group_t group, struct ext4_buddy *e4b)
5053__releases(bitlock)
5054__acquires(bitlock)
5055{
5056	struct ext4_free_extent ex;
5057	int ret = 0;
5058
5059	trace_ext4_trim_extent(sb, group, start, count);
5060
5061	assert_spin_locked(ext4_group_lock_ptr(sb, group));
5062
5063	ex.fe_start = start;
5064	ex.fe_group = group;
5065	ex.fe_len = count;
5066
5067	/*
5068	 * Mark blocks used, so no one can reuse them while
5069	 * being trimmed.
5070	 */
5071	mb_mark_used(e4b, &ex);
5072	ext4_unlock_group(sb, group);
5073	ret = ext4_issue_discard(sb, group, start, count);
5074	ext4_lock_group(sb, group);
5075	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5076	return ret;
5077}
5078
5079/**
5080 * ext4_trim_all_free -- function to trim all free space in alloc. group
5081 * @sb:			super block for file system
5082 * @group:		group to be trimmed
5083 * @start:		first group block to examine
5084 * @max:		last group block to examine
5085 * @minblocks:		minimum extent block count
5086 *
5087 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5088 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5089 * the extent.
5090 *
5091 *
5092 * ext4_trim_all_free walks through group's block bitmap searching for free
5093 * extents. When the free extent is found, mark it as used in group buddy
5094 * bitmap. Then issue a TRIM command on this extent and free the extent in
5095 * the group buddy bitmap. This is done until whole group is scanned.
5096 */
5097static ext4_grpblk_t
5098ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5099		   ext4_grpblk_t start, ext4_grpblk_t max,
5100		   ext4_grpblk_t minblocks)
5101{
5102	void *bitmap;
5103	ext4_grpblk_t next, count = 0, free_count = 0;
5104	struct ext4_buddy e4b;
5105	int ret = 0;
5106
5107	trace_ext4_trim_all_free(sb, group, start, max);
5108
5109	ret = ext4_mb_load_buddy(sb, group, &e4b);
5110	if (ret) {
5111		ext4_error(sb, "Error in loading buddy "
5112				"information for %u", group);
5113		return ret;
5114	}
5115	bitmap = e4b.bd_bitmap;
5116
5117	ext4_lock_group(sb, group);
5118	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5119	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5120		goto out;
5121
5122	start = (e4b.bd_info->bb_first_free > start) ?
5123		e4b.bd_info->bb_first_free : start;
5124
5125	while (start <= max) {
5126		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5127		if (start > max)
5128			break;
5129		next = mb_find_next_bit(bitmap, max + 1, start);
5130
5131		if ((next - start) >= minblocks) {
5132			ret = ext4_trim_extent(sb, start,
5133					       next - start, group, &e4b);
5134			if (ret && ret != -EOPNOTSUPP)
5135				break;
5136			ret = 0;
5137			count += next - start;
5138		}
5139		free_count += next - start;
5140		start = next + 1;
5141
5142		if (fatal_signal_pending(current)) {
5143			count = -ERESTARTSYS;
5144			break;
5145		}
5146
5147		if (need_resched()) {
5148			ext4_unlock_group(sb, group);
5149			cond_resched();
5150			ext4_lock_group(sb, group);
5151		}
5152
5153		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5154			break;
5155	}
5156
5157	if (!ret) {
5158		ret = count;
5159		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5160	}
5161out:
5162	ext4_unlock_group(sb, group);
5163	ext4_mb_unload_buddy(&e4b);
5164
5165	ext4_debug("trimmed %d blocks in the group %d\n",
5166		count, group);
5167
5168	return ret;
5169}
5170
5171/**
5172 * ext4_trim_fs() -- trim ioctl handle function
5173 * @sb:			superblock for filesystem
5174 * @range:		fstrim_range structure
5175 *
5176 * start:	First Byte to trim
5177 * len:		number of Bytes to trim from start
5178 * minlen:	minimum extent length in Bytes
5179 * ext4_trim_fs goes through all allocation groups containing Bytes from
5180 * start to start+len. For each such a group ext4_trim_all_free function
5181 * is invoked to trim all free space.
5182 */
5183int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5184{
5185	struct ext4_group_info *grp;
5186	ext4_group_t group, first_group, last_group;
5187	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5188	uint64_t start, end, minlen, trimmed = 0;
5189	ext4_fsblk_t first_data_blk =
5190			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5191	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5192	int ret = 0;
5193
5194	start = range->start >> sb->s_blocksize_bits;
5195	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5196	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5197			      range->minlen >> sb->s_blocksize_bits);
5198
5199	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5200	    start >= max_blks ||
5201	    range->len < sb->s_blocksize)
5202		return -EINVAL;
5203	if (end >= max_blks)
5204		end = max_blks - 1;
5205	if (end <= first_data_blk)
5206		goto out;
5207	if (start < first_data_blk)
5208		start = first_data_blk;
5209
5210	/* Determine first and last group to examine based on start and end */
5211	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5212				     &first_group, &first_cluster);
5213	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5214				     &last_group, &last_cluster);
5215
5216	/* end now represents the last cluster to discard in this group */
5217	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5218
5219	for (group = first_group; group <= last_group; group++) {
5220		grp = ext4_get_group_info(sb, group);
5221		/* We only do this if the grp has never been initialized */
5222		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5223			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5224			if (ret)
5225				break;
5226		}
5227
5228		/*
5229		 * For all the groups except the last one, last cluster will
5230		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5231		 * change it for the last group, note that last_cluster is
5232		 * already computed earlier by ext4_get_group_no_and_offset()
5233		 */
5234		if (group == last_group)
5235			end = last_cluster;
5236
5237		if (grp->bb_free >= minlen) {
5238			cnt = ext4_trim_all_free(sb, group, first_cluster,
5239						end, minlen);
5240			if (cnt < 0) {
5241				ret = cnt;
5242				break;
5243			}
5244			trimmed += cnt;
5245		}
5246
5247		/*
5248		 * For every group except the first one, we are sure
5249		 * that the first cluster to discard will be cluster #0.
5250		 */
5251		first_cluster = 0;
5252	}
5253
5254	if (!ret)
5255		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5256
5257out:
5258	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5259	return ret;
5260}