Loading...
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/blkdev.h>
20#include <linux/module.h>
21#include <linux/buffer_head.h>
22#include <linux/fs.h>
23#include <linux/pagemap.h>
24#include <linux/highmem.h>
25#include <linux/time.h>
26#include <linux/init.h>
27#include <linux/seq_file.h>
28#include <linux/string.h>
29#include <linux/backing-dev.h>
30#include <linux/mount.h>
31#include <linux/mpage.h>
32#include <linux/swap.h>
33#include <linux/writeback.h>
34#include <linux/statfs.h>
35#include <linux/compat.h>
36#include <linux/parser.h>
37#include <linux/ctype.h>
38#include <linux/namei.h>
39#include <linux/miscdevice.h>
40#include <linux/magic.h>
41#include <linux/slab.h>
42#include <linux/cleancache.h>
43#include <linux/ratelimit.h>
44#include "compat.h"
45#include "delayed-inode.h"
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
50#include "ioctl.h"
51#include "print-tree.h"
52#include "xattr.h"
53#include "volumes.h"
54#include "version.h"
55#include "export.h"
56#include "compression.h"
57#include "rcu-string.h"
58
59#define CREATE_TRACE_POINTS
60#include <trace/events/btrfs.h>
61
62static const struct super_operations btrfs_super_ops;
63static struct file_system_type btrfs_fs_type;
64
65static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
66 char nbuf[16])
67{
68 char *errstr = NULL;
69
70 switch (errno) {
71 case -EIO:
72 errstr = "IO failure";
73 break;
74 case -ENOMEM:
75 errstr = "Out of memory";
76 break;
77 case -EROFS:
78 errstr = "Readonly filesystem";
79 break;
80 case -EEXIST:
81 errstr = "Object already exists";
82 break;
83 default:
84 if (nbuf) {
85 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
86 errstr = nbuf;
87 }
88 break;
89 }
90
91 return errstr;
92}
93
94static void __save_error_info(struct btrfs_fs_info *fs_info)
95{
96 /*
97 * today we only save the error info into ram. Long term we'll
98 * also send it down to the disk
99 */
100 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
101}
102
103/* NOTE:
104 * We move write_super stuff at umount in order to avoid deadlock
105 * for umount hold all lock.
106 */
107static void save_error_info(struct btrfs_fs_info *fs_info)
108{
109 __save_error_info(fs_info);
110}
111
112/* btrfs handle error by forcing the filesystem readonly */
113static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
114{
115 struct super_block *sb = fs_info->sb;
116
117 if (sb->s_flags & MS_RDONLY)
118 return;
119
120 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
121 sb->s_flags |= MS_RDONLY;
122 printk(KERN_INFO "btrfs is forced readonly\n");
123 __btrfs_scrub_cancel(fs_info);
124// WARN_ON(1);
125 }
126}
127
128/*
129 * __btrfs_std_error decodes expected errors from the caller and
130 * invokes the approciate error response.
131 */
132void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
133 unsigned int line, int errno, const char *fmt, ...)
134{
135 struct super_block *sb = fs_info->sb;
136 char nbuf[16];
137 const char *errstr;
138 va_list args;
139 va_start(args, fmt);
140
141 /*
142 * Special case: if the error is EROFS, and we're already
143 * under MS_RDONLY, then it is safe here.
144 */
145 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
146 return;
147
148 errstr = btrfs_decode_error(fs_info, errno, nbuf);
149 if (fmt) {
150 struct va_format vaf = {
151 .fmt = fmt,
152 .va = &args,
153 };
154
155 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
156 sb->s_id, function, line, errstr, &vaf);
157 } else {
158 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
159 sb->s_id, function, line, errstr);
160 }
161
162 /* Don't go through full error handling during mount */
163 if (sb->s_flags & MS_BORN) {
164 save_error_info(fs_info);
165 btrfs_handle_error(fs_info);
166 }
167 va_end(args);
168}
169
170const char *logtypes[] = {
171 "emergency",
172 "alert",
173 "critical",
174 "error",
175 "warning",
176 "notice",
177 "info",
178 "debug",
179};
180
181void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
182{
183 struct super_block *sb = fs_info->sb;
184 char lvl[4];
185 struct va_format vaf;
186 va_list args;
187 const char *type = logtypes[4];
188
189 va_start(args, fmt);
190
191 if (fmt[0] == '<' && isdigit(fmt[1]) && fmt[2] == '>') {
192 memcpy(lvl, fmt, 3);
193 lvl[3] = '\0';
194 fmt += 3;
195 type = logtypes[fmt[1] - '0'];
196 } else
197 *lvl = '\0';
198
199 vaf.fmt = fmt;
200 vaf.va = &args;
201 printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
202}
203
204/*
205 * We only mark the transaction aborted and then set the file system read-only.
206 * This will prevent new transactions from starting or trying to join this
207 * one.
208 *
209 * This means that error recovery at the call site is limited to freeing
210 * any local memory allocations and passing the error code up without
211 * further cleanup. The transaction should complete as it normally would
212 * in the call path but will return -EIO.
213 *
214 * We'll complete the cleanup in btrfs_end_transaction and
215 * btrfs_commit_transaction.
216 */
217void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
218 struct btrfs_root *root, const char *function,
219 unsigned int line, int errno)
220{
221 WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted");
222 trans->aborted = errno;
223 /* Nothing used. The other threads that have joined this
224 * transaction may be able to continue. */
225 if (!trans->blocks_used) {
226 btrfs_printk(root->fs_info, "Aborting unused transaction.\n");
227 return;
228 }
229 trans->transaction->aborted = errno;
230 __btrfs_std_error(root->fs_info, function, line, errno, NULL);
231}
232/*
233 * __btrfs_panic decodes unexpected, fatal errors from the caller,
234 * issues an alert, and either panics or BUGs, depending on mount options.
235 */
236void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
237 unsigned int line, int errno, const char *fmt, ...)
238{
239 char nbuf[16];
240 char *s_id = "<unknown>";
241 const char *errstr;
242 struct va_format vaf = { .fmt = fmt };
243 va_list args;
244
245 if (fs_info)
246 s_id = fs_info->sb->s_id;
247
248 va_start(args, fmt);
249 vaf.va = &args;
250
251 errstr = btrfs_decode_error(fs_info, errno, nbuf);
252 if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
253 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
254 s_id, function, line, &vaf, errstr);
255
256 printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
257 s_id, function, line, &vaf, errstr);
258 va_end(args);
259 /* Caller calls BUG() */
260}
261
262static void btrfs_put_super(struct super_block *sb)
263{
264 (void)close_ctree(btrfs_sb(sb)->tree_root);
265 /* FIXME: need to fix VFS to return error? */
266 /* AV: return it _where_? ->put_super() can be triggered by any number
267 * of async events, up to and including delivery of SIGKILL to the
268 * last process that kept it busy. Or segfault in the aforementioned
269 * process... Whom would you report that to?
270 */
271}
272
273enum {
274 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
275 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
276 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
277 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
278 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
279 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
280 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
281 Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
282 Opt_check_integrity, Opt_check_integrity_including_extent_data,
283 Opt_check_integrity_print_mask, Opt_fatal_errors,
284 Opt_err,
285};
286
287static match_table_t tokens = {
288 {Opt_degraded, "degraded"},
289 {Opt_subvol, "subvol=%s"},
290 {Opt_subvolid, "subvolid=%d"},
291 {Opt_device, "device=%s"},
292 {Opt_nodatasum, "nodatasum"},
293 {Opt_nodatacow, "nodatacow"},
294 {Opt_nobarrier, "nobarrier"},
295 {Opt_max_inline, "max_inline=%s"},
296 {Opt_alloc_start, "alloc_start=%s"},
297 {Opt_thread_pool, "thread_pool=%d"},
298 {Opt_compress, "compress"},
299 {Opt_compress_type, "compress=%s"},
300 {Opt_compress_force, "compress-force"},
301 {Opt_compress_force_type, "compress-force=%s"},
302 {Opt_ssd, "ssd"},
303 {Opt_ssd_spread, "ssd_spread"},
304 {Opt_nossd, "nossd"},
305 {Opt_noacl, "noacl"},
306 {Opt_notreelog, "notreelog"},
307 {Opt_flushoncommit, "flushoncommit"},
308 {Opt_ratio, "metadata_ratio=%d"},
309 {Opt_discard, "discard"},
310 {Opt_space_cache, "space_cache"},
311 {Opt_clear_cache, "clear_cache"},
312 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
313 {Opt_enospc_debug, "enospc_debug"},
314 {Opt_subvolrootid, "subvolrootid=%d"},
315 {Opt_defrag, "autodefrag"},
316 {Opt_inode_cache, "inode_cache"},
317 {Opt_no_space_cache, "nospace_cache"},
318 {Opt_recovery, "recovery"},
319 {Opt_skip_balance, "skip_balance"},
320 {Opt_check_integrity, "check_int"},
321 {Opt_check_integrity_including_extent_data, "check_int_data"},
322 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
323 {Opt_fatal_errors, "fatal_errors=%s"},
324 {Opt_err, NULL},
325};
326
327/*
328 * Regular mount options parser. Everything that is needed only when
329 * reading in a new superblock is parsed here.
330 * XXX JDM: This needs to be cleaned up for remount.
331 */
332int btrfs_parse_options(struct btrfs_root *root, char *options)
333{
334 struct btrfs_fs_info *info = root->fs_info;
335 substring_t args[MAX_OPT_ARGS];
336 char *p, *num, *orig = NULL;
337 u64 cache_gen;
338 int intarg;
339 int ret = 0;
340 char *compress_type;
341 bool compress_force = false;
342
343 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
344 if (cache_gen)
345 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
346
347 if (!options)
348 goto out;
349
350 /*
351 * strsep changes the string, duplicate it because parse_options
352 * gets called twice
353 */
354 options = kstrdup(options, GFP_NOFS);
355 if (!options)
356 return -ENOMEM;
357
358 orig = options;
359
360 while ((p = strsep(&options, ",")) != NULL) {
361 int token;
362 if (!*p)
363 continue;
364
365 token = match_token(p, tokens, args);
366 switch (token) {
367 case Opt_degraded:
368 printk(KERN_INFO "btrfs: allowing degraded mounts\n");
369 btrfs_set_opt(info->mount_opt, DEGRADED);
370 break;
371 case Opt_subvol:
372 case Opt_subvolid:
373 case Opt_subvolrootid:
374 case Opt_device:
375 /*
376 * These are parsed by btrfs_parse_early_options
377 * and can be happily ignored here.
378 */
379 break;
380 case Opt_nodatasum:
381 printk(KERN_INFO "btrfs: setting nodatasum\n");
382 btrfs_set_opt(info->mount_opt, NODATASUM);
383 break;
384 case Opt_nodatacow:
385 printk(KERN_INFO "btrfs: setting nodatacow\n");
386 btrfs_set_opt(info->mount_opt, NODATACOW);
387 btrfs_set_opt(info->mount_opt, NODATASUM);
388 break;
389 case Opt_compress_force:
390 case Opt_compress_force_type:
391 compress_force = true;
392 case Opt_compress:
393 case Opt_compress_type:
394 if (token == Opt_compress ||
395 token == Opt_compress_force ||
396 strcmp(args[0].from, "zlib") == 0) {
397 compress_type = "zlib";
398 info->compress_type = BTRFS_COMPRESS_ZLIB;
399 } else if (strcmp(args[0].from, "lzo") == 0) {
400 compress_type = "lzo";
401 info->compress_type = BTRFS_COMPRESS_LZO;
402 } else {
403 ret = -EINVAL;
404 goto out;
405 }
406
407 btrfs_set_opt(info->mount_opt, COMPRESS);
408 if (compress_force) {
409 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
410 pr_info("btrfs: force %s compression\n",
411 compress_type);
412 } else
413 pr_info("btrfs: use %s compression\n",
414 compress_type);
415 break;
416 case Opt_ssd:
417 printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
418 btrfs_set_opt(info->mount_opt, SSD);
419 break;
420 case Opt_ssd_spread:
421 printk(KERN_INFO "btrfs: use spread ssd "
422 "allocation scheme\n");
423 btrfs_set_opt(info->mount_opt, SSD);
424 btrfs_set_opt(info->mount_opt, SSD_SPREAD);
425 break;
426 case Opt_nossd:
427 printk(KERN_INFO "btrfs: not using ssd allocation "
428 "scheme\n");
429 btrfs_set_opt(info->mount_opt, NOSSD);
430 btrfs_clear_opt(info->mount_opt, SSD);
431 btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
432 break;
433 case Opt_nobarrier:
434 printk(KERN_INFO "btrfs: turning off barriers\n");
435 btrfs_set_opt(info->mount_opt, NOBARRIER);
436 break;
437 case Opt_thread_pool:
438 intarg = 0;
439 match_int(&args[0], &intarg);
440 if (intarg)
441 info->thread_pool_size = intarg;
442 break;
443 case Opt_max_inline:
444 num = match_strdup(&args[0]);
445 if (num) {
446 info->max_inline = memparse(num, NULL);
447 kfree(num);
448
449 if (info->max_inline) {
450 info->max_inline = max_t(u64,
451 info->max_inline,
452 root->sectorsize);
453 }
454 printk(KERN_INFO "btrfs: max_inline at %llu\n",
455 (unsigned long long)info->max_inline);
456 }
457 break;
458 case Opt_alloc_start:
459 num = match_strdup(&args[0]);
460 if (num) {
461 info->alloc_start = memparse(num, NULL);
462 kfree(num);
463 printk(KERN_INFO
464 "btrfs: allocations start at %llu\n",
465 (unsigned long long)info->alloc_start);
466 }
467 break;
468 case Opt_noacl:
469 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
470 break;
471 case Opt_notreelog:
472 printk(KERN_INFO "btrfs: disabling tree log\n");
473 btrfs_set_opt(info->mount_opt, NOTREELOG);
474 break;
475 case Opt_flushoncommit:
476 printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
477 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
478 break;
479 case Opt_ratio:
480 intarg = 0;
481 match_int(&args[0], &intarg);
482 if (intarg) {
483 info->metadata_ratio = intarg;
484 printk(KERN_INFO "btrfs: metadata ratio %d\n",
485 info->metadata_ratio);
486 }
487 break;
488 case Opt_discard:
489 btrfs_set_opt(info->mount_opt, DISCARD);
490 break;
491 case Opt_space_cache:
492 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
493 break;
494 case Opt_no_space_cache:
495 printk(KERN_INFO "btrfs: disabling disk space caching\n");
496 btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
497 break;
498 case Opt_inode_cache:
499 printk(KERN_INFO "btrfs: enabling inode map caching\n");
500 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
501 break;
502 case Opt_clear_cache:
503 printk(KERN_INFO "btrfs: force clearing of disk cache\n");
504 btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
505 break;
506 case Opt_user_subvol_rm_allowed:
507 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
508 break;
509 case Opt_enospc_debug:
510 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
511 break;
512 case Opt_defrag:
513 printk(KERN_INFO "btrfs: enabling auto defrag");
514 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
515 break;
516 case Opt_recovery:
517 printk(KERN_INFO "btrfs: enabling auto recovery");
518 btrfs_set_opt(info->mount_opt, RECOVERY);
519 break;
520 case Opt_skip_balance:
521 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
522 break;
523#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
524 case Opt_check_integrity_including_extent_data:
525 printk(KERN_INFO "btrfs: enabling check integrity"
526 " including extent data\n");
527 btrfs_set_opt(info->mount_opt,
528 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
529 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
530 break;
531 case Opt_check_integrity:
532 printk(KERN_INFO "btrfs: enabling check integrity\n");
533 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
534 break;
535 case Opt_check_integrity_print_mask:
536 intarg = 0;
537 match_int(&args[0], &intarg);
538 if (intarg) {
539 info->check_integrity_print_mask = intarg;
540 printk(KERN_INFO "btrfs:"
541 " check_integrity_print_mask 0x%x\n",
542 info->check_integrity_print_mask);
543 }
544 break;
545#else
546 case Opt_check_integrity_including_extent_data:
547 case Opt_check_integrity:
548 case Opt_check_integrity_print_mask:
549 printk(KERN_ERR "btrfs: support for check_integrity*"
550 " not compiled in!\n");
551 ret = -EINVAL;
552 goto out;
553#endif
554 case Opt_fatal_errors:
555 if (strcmp(args[0].from, "panic") == 0)
556 btrfs_set_opt(info->mount_opt,
557 PANIC_ON_FATAL_ERROR);
558 else if (strcmp(args[0].from, "bug") == 0)
559 btrfs_clear_opt(info->mount_opt,
560 PANIC_ON_FATAL_ERROR);
561 else {
562 ret = -EINVAL;
563 goto out;
564 }
565 break;
566 case Opt_err:
567 printk(KERN_INFO "btrfs: unrecognized mount option "
568 "'%s'\n", p);
569 ret = -EINVAL;
570 goto out;
571 default:
572 break;
573 }
574 }
575out:
576 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
577 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
578 kfree(orig);
579 return ret;
580}
581
582/*
583 * Parse mount options that are required early in the mount process.
584 *
585 * All other options will be parsed on much later in the mount process and
586 * only when we need to allocate a new super block.
587 */
588static int btrfs_parse_early_options(const char *options, fmode_t flags,
589 void *holder, char **subvol_name, u64 *subvol_objectid,
590 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
591{
592 substring_t args[MAX_OPT_ARGS];
593 char *device_name, *opts, *orig, *p;
594 int error = 0;
595 int intarg;
596
597 if (!options)
598 return 0;
599
600 /*
601 * strsep changes the string, duplicate it because parse_options
602 * gets called twice
603 */
604 opts = kstrdup(options, GFP_KERNEL);
605 if (!opts)
606 return -ENOMEM;
607 orig = opts;
608
609 while ((p = strsep(&opts, ",")) != NULL) {
610 int token;
611 if (!*p)
612 continue;
613
614 token = match_token(p, tokens, args);
615 switch (token) {
616 case Opt_subvol:
617 kfree(*subvol_name);
618 *subvol_name = match_strdup(&args[0]);
619 break;
620 case Opt_subvolid:
621 intarg = 0;
622 error = match_int(&args[0], &intarg);
623 if (!error) {
624 /* we want the original fs_tree */
625 if (!intarg)
626 *subvol_objectid =
627 BTRFS_FS_TREE_OBJECTID;
628 else
629 *subvol_objectid = intarg;
630 }
631 break;
632 case Opt_subvolrootid:
633 intarg = 0;
634 error = match_int(&args[0], &intarg);
635 if (!error) {
636 /* we want the original fs_tree */
637 if (!intarg)
638 *subvol_rootid =
639 BTRFS_FS_TREE_OBJECTID;
640 else
641 *subvol_rootid = intarg;
642 }
643 break;
644 case Opt_device:
645 device_name = match_strdup(&args[0]);
646 if (!device_name) {
647 error = -ENOMEM;
648 goto out;
649 }
650 error = btrfs_scan_one_device(device_name,
651 flags, holder, fs_devices);
652 kfree(device_name);
653 if (error)
654 goto out;
655 break;
656 default:
657 break;
658 }
659 }
660
661out:
662 kfree(orig);
663 return error;
664}
665
666static struct dentry *get_default_root(struct super_block *sb,
667 u64 subvol_objectid)
668{
669 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
670 struct btrfs_root *root = fs_info->tree_root;
671 struct btrfs_root *new_root;
672 struct btrfs_dir_item *di;
673 struct btrfs_path *path;
674 struct btrfs_key location;
675 struct inode *inode;
676 u64 dir_id;
677 int new = 0;
678
679 /*
680 * We have a specific subvol we want to mount, just setup location and
681 * go look up the root.
682 */
683 if (subvol_objectid) {
684 location.objectid = subvol_objectid;
685 location.type = BTRFS_ROOT_ITEM_KEY;
686 location.offset = (u64)-1;
687 goto find_root;
688 }
689
690 path = btrfs_alloc_path();
691 if (!path)
692 return ERR_PTR(-ENOMEM);
693 path->leave_spinning = 1;
694
695 /*
696 * Find the "default" dir item which points to the root item that we
697 * will mount by default if we haven't been given a specific subvolume
698 * to mount.
699 */
700 dir_id = btrfs_super_root_dir(fs_info->super_copy);
701 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
702 if (IS_ERR(di)) {
703 btrfs_free_path(path);
704 return ERR_CAST(di);
705 }
706 if (!di) {
707 /*
708 * Ok the default dir item isn't there. This is weird since
709 * it's always been there, but don't freak out, just try and
710 * mount to root most subvolume.
711 */
712 btrfs_free_path(path);
713 dir_id = BTRFS_FIRST_FREE_OBJECTID;
714 new_root = fs_info->fs_root;
715 goto setup_root;
716 }
717
718 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
719 btrfs_free_path(path);
720
721find_root:
722 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
723 if (IS_ERR(new_root))
724 return ERR_CAST(new_root);
725
726 if (btrfs_root_refs(&new_root->root_item) == 0)
727 return ERR_PTR(-ENOENT);
728
729 dir_id = btrfs_root_dirid(&new_root->root_item);
730setup_root:
731 location.objectid = dir_id;
732 location.type = BTRFS_INODE_ITEM_KEY;
733 location.offset = 0;
734
735 inode = btrfs_iget(sb, &location, new_root, &new);
736 if (IS_ERR(inode))
737 return ERR_CAST(inode);
738
739 /*
740 * If we're just mounting the root most subvol put the inode and return
741 * a reference to the dentry. We will have already gotten a reference
742 * to the inode in btrfs_fill_super so we're good to go.
743 */
744 if (!new && sb->s_root->d_inode == inode) {
745 iput(inode);
746 return dget(sb->s_root);
747 }
748
749 return d_obtain_alias(inode);
750}
751
752static int btrfs_fill_super(struct super_block *sb,
753 struct btrfs_fs_devices *fs_devices,
754 void *data, int silent)
755{
756 struct inode *inode;
757 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
758 struct btrfs_key key;
759 int err;
760
761 sb->s_maxbytes = MAX_LFS_FILESIZE;
762 sb->s_magic = BTRFS_SUPER_MAGIC;
763 sb->s_op = &btrfs_super_ops;
764 sb->s_d_op = &btrfs_dentry_operations;
765 sb->s_export_op = &btrfs_export_ops;
766 sb->s_xattr = btrfs_xattr_handlers;
767 sb->s_time_gran = 1;
768#ifdef CONFIG_BTRFS_FS_POSIX_ACL
769 sb->s_flags |= MS_POSIXACL;
770#endif
771 sb->s_flags |= MS_I_VERSION;
772 err = open_ctree(sb, fs_devices, (char *)data);
773 if (err) {
774 printk("btrfs: open_ctree failed\n");
775 return err;
776 }
777
778 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
779 key.type = BTRFS_INODE_ITEM_KEY;
780 key.offset = 0;
781 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
782 if (IS_ERR(inode)) {
783 err = PTR_ERR(inode);
784 goto fail_close;
785 }
786
787 sb->s_root = d_make_root(inode);
788 if (!sb->s_root) {
789 err = -ENOMEM;
790 goto fail_close;
791 }
792
793 save_mount_options(sb, data);
794 cleancache_init_fs(sb);
795 sb->s_flags |= MS_ACTIVE;
796 return 0;
797
798fail_close:
799 close_ctree(fs_info->tree_root);
800 return err;
801}
802
803int btrfs_sync_fs(struct super_block *sb, int wait)
804{
805 struct btrfs_trans_handle *trans;
806 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
807 struct btrfs_root *root = fs_info->tree_root;
808 int ret;
809
810 trace_btrfs_sync_fs(wait);
811
812 if (!wait) {
813 filemap_flush(fs_info->btree_inode->i_mapping);
814 return 0;
815 }
816
817 btrfs_wait_ordered_extents(root, 0, 0);
818
819 trans = btrfs_start_transaction(root, 0);
820 if (IS_ERR(trans))
821 return PTR_ERR(trans);
822 ret = btrfs_commit_transaction(trans, root);
823 return ret;
824}
825
826static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
827{
828 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
829 struct btrfs_root *root = info->tree_root;
830 char *compress_type;
831
832 if (btrfs_test_opt(root, DEGRADED))
833 seq_puts(seq, ",degraded");
834 if (btrfs_test_opt(root, NODATASUM))
835 seq_puts(seq, ",nodatasum");
836 if (btrfs_test_opt(root, NODATACOW))
837 seq_puts(seq, ",nodatacow");
838 if (btrfs_test_opt(root, NOBARRIER))
839 seq_puts(seq, ",nobarrier");
840 if (info->max_inline != 8192 * 1024)
841 seq_printf(seq, ",max_inline=%llu",
842 (unsigned long long)info->max_inline);
843 if (info->alloc_start != 0)
844 seq_printf(seq, ",alloc_start=%llu",
845 (unsigned long long)info->alloc_start);
846 if (info->thread_pool_size != min_t(unsigned long,
847 num_online_cpus() + 2, 8))
848 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
849 if (btrfs_test_opt(root, COMPRESS)) {
850 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
851 compress_type = "zlib";
852 else
853 compress_type = "lzo";
854 if (btrfs_test_opt(root, FORCE_COMPRESS))
855 seq_printf(seq, ",compress-force=%s", compress_type);
856 else
857 seq_printf(seq, ",compress=%s", compress_type);
858 }
859 if (btrfs_test_opt(root, NOSSD))
860 seq_puts(seq, ",nossd");
861 if (btrfs_test_opt(root, SSD_SPREAD))
862 seq_puts(seq, ",ssd_spread");
863 else if (btrfs_test_opt(root, SSD))
864 seq_puts(seq, ",ssd");
865 if (btrfs_test_opt(root, NOTREELOG))
866 seq_puts(seq, ",notreelog");
867 if (btrfs_test_opt(root, FLUSHONCOMMIT))
868 seq_puts(seq, ",flushoncommit");
869 if (btrfs_test_opt(root, DISCARD))
870 seq_puts(seq, ",discard");
871 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
872 seq_puts(seq, ",noacl");
873 if (btrfs_test_opt(root, SPACE_CACHE))
874 seq_puts(seq, ",space_cache");
875 else
876 seq_puts(seq, ",nospace_cache");
877 if (btrfs_test_opt(root, CLEAR_CACHE))
878 seq_puts(seq, ",clear_cache");
879 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
880 seq_puts(seq, ",user_subvol_rm_allowed");
881 if (btrfs_test_opt(root, ENOSPC_DEBUG))
882 seq_puts(seq, ",enospc_debug");
883 if (btrfs_test_opt(root, AUTO_DEFRAG))
884 seq_puts(seq, ",autodefrag");
885 if (btrfs_test_opt(root, INODE_MAP_CACHE))
886 seq_puts(seq, ",inode_cache");
887 if (btrfs_test_opt(root, SKIP_BALANCE))
888 seq_puts(seq, ",skip_balance");
889 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
890 seq_puts(seq, ",fatal_errors=panic");
891 return 0;
892}
893
894static int btrfs_test_super(struct super_block *s, void *data)
895{
896 struct btrfs_fs_info *p = data;
897 struct btrfs_fs_info *fs_info = btrfs_sb(s);
898
899 return fs_info->fs_devices == p->fs_devices;
900}
901
902static int btrfs_set_super(struct super_block *s, void *data)
903{
904 int err = set_anon_super(s, data);
905 if (!err)
906 s->s_fs_info = data;
907 return err;
908}
909
910/*
911 * subvolumes are identified by ino 256
912 */
913static inline int is_subvolume_inode(struct inode *inode)
914{
915 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
916 return 1;
917 return 0;
918}
919
920/*
921 * This will strip out the subvol=%s argument for an argument string and add
922 * subvolid=0 to make sure we get the actual tree root for path walking to the
923 * subvol we want.
924 */
925static char *setup_root_args(char *args)
926{
927 unsigned len = strlen(args) + 2 + 1;
928 char *src, *dst, *buf;
929
930 /*
931 * We need the same args as before, but with this substitution:
932 * s!subvol=[^,]+!subvolid=0!
933 *
934 * Since the replacement string is up to 2 bytes longer than the
935 * original, allocate strlen(args) + 2 + 1 bytes.
936 */
937
938 src = strstr(args, "subvol=");
939 /* This shouldn't happen, but just in case.. */
940 if (!src)
941 return NULL;
942
943 buf = dst = kmalloc(len, GFP_NOFS);
944 if (!buf)
945 return NULL;
946
947 /*
948 * If the subvol= arg is not at the start of the string,
949 * copy whatever precedes it into buf.
950 */
951 if (src != args) {
952 *src++ = '\0';
953 strcpy(buf, args);
954 dst += strlen(args);
955 }
956
957 strcpy(dst, "subvolid=0");
958 dst += strlen("subvolid=0");
959
960 /*
961 * If there is a "," after the original subvol=... string,
962 * copy that suffix into our buffer. Otherwise, we're done.
963 */
964 src = strchr(src, ',');
965 if (src)
966 strcpy(dst, src);
967
968 return buf;
969}
970
971static struct dentry *mount_subvol(const char *subvol_name, int flags,
972 const char *device_name, char *data)
973{
974 struct dentry *root;
975 struct vfsmount *mnt;
976 char *newargs;
977
978 newargs = setup_root_args(data);
979 if (!newargs)
980 return ERR_PTR(-ENOMEM);
981 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
982 newargs);
983 kfree(newargs);
984 if (IS_ERR(mnt))
985 return ERR_CAST(mnt);
986
987 root = mount_subtree(mnt, subvol_name);
988
989 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
990 struct super_block *s = root->d_sb;
991 dput(root);
992 root = ERR_PTR(-EINVAL);
993 deactivate_locked_super(s);
994 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
995 subvol_name);
996 }
997
998 return root;
999}
1000
1001/*
1002 * Find a superblock for the given device / mount point.
1003 *
1004 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1005 * for multiple device setup. Make sure to keep it in sync.
1006 */
1007static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1008 const char *device_name, void *data)
1009{
1010 struct block_device *bdev = NULL;
1011 struct super_block *s;
1012 struct dentry *root;
1013 struct btrfs_fs_devices *fs_devices = NULL;
1014 struct btrfs_fs_info *fs_info = NULL;
1015 fmode_t mode = FMODE_READ;
1016 char *subvol_name = NULL;
1017 u64 subvol_objectid = 0;
1018 u64 subvol_rootid = 0;
1019 int error = 0;
1020
1021 if (!(flags & MS_RDONLY))
1022 mode |= FMODE_WRITE;
1023
1024 error = btrfs_parse_early_options(data, mode, fs_type,
1025 &subvol_name, &subvol_objectid,
1026 &subvol_rootid, &fs_devices);
1027 if (error) {
1028 kfree(subvol_name);
1029 return ERR_PTR(error);
1030 }
1031
1032 if (subvol_name) {
1033 root = mount_subvol(subvol_name, flags, device_name, data);
1034 kfree(subvol_name);
1035 return root;
1036 }
1037
1038 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1039 if (error)
1040 return ERR_PTR(error);
1041
1042 /*
1043 * Setup a dummy root and fs_info for test/set super. This is because
1044 * we don't actually fill this stuff out until open_ctree, but we need
1045 * it for searching for existing supers, so this lets us do that and
1046 * then open_ctree will properly initialize everything later.
1047 */
1048 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1049 if (!fs_info)
1050 return ERR_PTR(-ENOMEM);
1051
1052 fs_info->fs_devices = fs_devices;
1053
1054 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1055 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1056 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1057 error = -ENOMEM;
1058 goto error_fs_info;
1059 }
1060
1061 error = btrfs_open_devices(fs_devices, mode, fs_type);
1062 if (error)
1063 goto error_fs_info;
1064
1065 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1066 error = -EACCES;
1067 goto error_close_devices;
1068 }
1069
1070 bdev = fs_devices->latest_bdev;
1071 s = sget(fs_type, btrfs_test_super, btrfs_set_super, fs_info);
1072 if (IS_ERR(s)) {
1073 error = PTR_ERR(s);
1074 goto error_close_devices;
1075 }
1076
1077 if (s->s_root) {
1078 btrfs_close_devices(fs_devices);
1079 free_fs_info(fs_info);
1080 if ((flags ^ s->s_flags) & MS_RDONLY)
1081 error = -EBUSY;
1082 } else {
1083 char b[BDEVNAME_SIZE];
1084
1085 s->s_flags = flags | MS_NOSEC;
1086 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1087 btrfs_sb(s)->bdev_holder = fs_type;
1088 error = btrfs_fill_super(s, fs_devices, data,
1089 flags & MS_SILENT ? 1 : 0);
1090 }
1091
1092 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1093 if (IS_ERR(root))
1094 deactivate_locked_super(s);
1095
1096 return root;
1097
1098error_close_devices:
1099 btrfs_close_devices(fs_devices);
1100error_fs_info:
1101 free_fs_info(fs_info);
1102 return ERR_PTR(error);
1103}
1104
1105static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1106{
1107 spin_lock_irq(&workers->lock);
1108 workers->max_workers = new_limit;
1109 spin_unlock_irq(&workers->lock);
1110}
1111
1112static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1113 int new_pool_size, int old_pool_size)
1114{
1115 if (new_pool_size == old_pool_size)
1116 return;
1117
1118 fs_info->thread_pool_size = new_pool_size;
1119
1120 printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1121 old_pool_size, new_pool_size);
1122
1123 btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1124 btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1125 btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1126 btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1127 btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1128 btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1129 btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1130 btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1131 btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1132 btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1133 btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1134 btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1135 btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1136 btrfs_set_max_workers(&fs_info->scrub_workers, new_pool_size);
1137}
1138
1139static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1140{
1141 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1142 struct btrfs_root *root = fs_info->tree_root;
1143 unsigned old_flags = sb->s_flags;
1144 unsigned long old_opts = fs_info->mount_opt;
1145 unsigned long old_compress_type = fs_info->compress_type;
1146 u64 old_max_inline = fs_info->max_inline;
1147 u64 old_alloc_start = fs_info->alloc_start;
1148 int old_thread_pool_size = fs_info->thread_pool_size;
1149 unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1150 int ret;
1151
1152 ret = btrfs_parse_options(root, data);
1153 if (ret) {
1154 ret = -EINVAL;
1155 goto restore;
1156 }
1157
1158 btrfs_resize_thread_pool(fs_info,
1159 fs_info->thread_pool_size, old_thread_pool_size);
1160
1161 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1162 return 0;
1163
1164 if (*flags & MS_RDONLY) {
1165 sb->s_flags |= MS_RDONLY;
1166
1167 ret = btrfs_commit_super(root);
1168 if (ret)
1169 goto restore;
1170 } else {
1171 if (fs_info->fs_devices->rw_devices == 0) {
1172 ret = -EACCES;
1173 goto restore;
1174 }
1175
1176 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1177 ret = -EINVAL;
1178 goto restore;
1179 }
1180
1181 ret = btrfs_cleanup_fs_roots(fs_info);
1182 if (ret)
1183 goto restore;
1184
1185 /* recover relocation */
1186 ret = btrfs_recover_relocation(root);
1187 if (ret)
1188 goto restore;
1189
1190 ret = btrfs_resume_balance_async(fs_info);
1191 if (ret)
1192 goto restore;
1193
1194 sb->s_flags &= ~MS_RDONLY;
1195 }
1196
1197 return 0;
1198
1199restore:
1200 /* We've hit an error - don't reset MS_RDONLY */
1201 if (sb->s_flags & MS_RDONLY)
1202 old_flags |= MS_RDONLY;
1203 sb->s_flags = old_flags;
1204 fs_info->mount_opt = old_opts;
1205 fs_info->compress_type = old_compress_type;
1206 fs_info->max_inline = old_max_inline;
1207 fs_info->alloc_start = old_alloc_start;
1208 btrfs_resize_thread_pool(fs_info,
1209 old_thread_pool_size, fs_info->thread_pool_size);
1210 fs_info->metadata_ratio = old_metadata_ratio;
1211 return ret;
1212}
1213
1214/* Used to sort the devices by max_avail(descending sort) */
1215static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1216 const void *dev_info2)
1217{
1218 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1219 ((struct btrfs_device_info *)dev_info2)->max_avail)
1220 return -1;
1221 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1222 ((struct btrfs_device_info *)dev_info2)->max_avail)
1223 return 1;
1224 else
1225 return 0;
1226}
1227
1228/*
1229 * sort the devices by max_avail, in which max free extent size of each device
1230 * is stored.(Descending Sort)
1231 */
1232static inline void btrfs_descending_sort_devices(
1233 struct btrfs_device_info *devices,
1234 size_t nr_devices)
1235{
1236 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1237 btrfs_cmp_device_free_bytes, NULL);
1238}
1239
1240/*
1241 * The helper to calc the free space on the devices that can be used to store
1242 * file data.
1243 */
1244static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1245{
1246 struct btrfs_fs_info *fs_info = root->fs_info;
1247 struct btrfs_device_info *devices_info;
1248 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1249 struct btrfs_device *device;
1250 u64 skip_space;
1251 u64 type;
1252 u64 avail_space;
1253 u64 used_space;
1254 u64 min_stripe_size;
1255 int min_stripes = 1, num_stripes = 1;
1256 int i = 0, nr_devices;
1257 int ret;
1258
1259 nr_devices = fs_info->fs_devices->open_devices;
1260 BUG_ON(!nr_devices);
1261
1262 devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1263 GFP_NOFS);
1264 if (!devices_info)
1265 return -ENOMEM;
1266
1267 /* calc min stripe number for data space alloction */
1268 type = btrfs_get_alloc_profile(root, 1);
1269 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1270 min_stripes = 2;
1271 num_stripes = nr_devices;
1272 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1273 min_stripes = 2;
1274 num_stripes = 2;
1275 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1276 min_stripes = 4;
1277 num_stripes = 4;
1278 }
1279
1280 if (type & BTRFS_BLOCK_GROUP_DUP)
1281 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1282 else
1283 min_stripe_size = BTRFS_STRIPE_LEN;
1284
1285 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1286 if (!device->in_fs_metadata || !device->bdev)
1287 continue;
1288
1289 avail_space = device->total_bytes - device->bytes_used;
1290
1291 /* align with stripe_len */
1292 do_div(avail_space, BTRFS_STRIPE_LEN);
1293 avail_space *= BTRFS_STRIPE_LEN;
1294
1295 /*
1296 * In order to avoid overwritting the superblock on the drive,
1297 * btrfs starts at an offset of at least 1MB when doing chunk
1298 * allocation.
1299 */
1300 skip_space = 1024 * 1024;
1301
1302 /* user can set the offset in fs_info->alloc_start. */
1303 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1304 device->total_bytes)
1305 skip_space = max(fs_info->alloc_start, skip_space);
1306
1307 /*
1308 * btrfs can not use the free space in [0, skip_space - 1],
1309 * we must subtract it from the total. In order to implement
1310 * it, we account the used space in this range first.
1311 */
1312 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1313 &used_space);
1314 if (ret) {
1315 kfree(devices_info);
1316 return ret;
1317 }
1318
1319 /* calc the free space in [0, skip_space - 1] */
1320 skip_space -= used_space;
1321
1322 /*
1323 * we can use the free space in [0, skip_space - 1], subtract
1324 * it from the total.
1325 */
1326 if (avail_space && avail_space >= skip_space)
1327 avail_space -= skip_space;
1328 else
1329 avail_space = 0;
1330
1331 if (avail_space < min_stripe_size)
1332 continue;
1333
1334 devices_info[i].dev = device;
1335 devices_info[i].max_avail = avail_space;
1336
1337 i++;
1338 }
1339
1340 nr_devices = i;
1341
1342 btrfs_descending_sort_devices(devices_info, nr_devices);
1343
1344 i = nr_devices - 1;
1345 avail_space = 0;
1346 while (nr_devices >= min_stripes) {
1347 if (num_stripes > nr_devices)
1348 num_stripes = nr_devices;
1349
1350 if (devices_info[i].max_avail >= min_stripe_size) {
1351 int j;
1352 u64 alloc_size;
1353
1354 avail_space += devices_info[i].max_avail * num_stripes;
1355 alloc_size = devices_info[i].max_avail;
1356 for (j = i + 1 - num_stripes; j <= i; j++)
1357 devices_info[j].max_avail -= alloc_size;
1358 }
1359 i--;
1360 nr_devices--;
1361 }
1362
1363 kfree(devices_info);
1364 *free_bytes = avail_space;
1365 return 0;
1366}
1367
1368static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1369{
1370 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1371 struct btrfs_super_block *disk_super = fs_info->super_copy;
1372 struct list_head *head = &fs_info->space_info;
1373 struct btrfs_space_info *found;
1374 u64 total_used = 0;
1375 u64 total_free_data = 0;
1376 int bits = dentry->d_sb->s_blocksize_bits;
1377 __be32 *fsid = (__be32 *)fs_info->fsid;
1378 int ret;
1379
1380 /* holding chunk_muext to avoid allocating new chunks */
1381 mutex_lock(&fs_info->chunk_mutex);
1382 rcu_read_lock();
1383 list_for_each_entry_rcu(found, head, list) {
1384 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1385 total_free_data += found->disk_total - found->disk_used;
1386 total_free_data -=
1387 btrfs_account_ro_block_groups_free_space(found);
1388 }
1389
1390 total_used += found->disk_used;
1391 }
1392 rcu_read_unlock();
1393
1394 buf->f_namelen = BTRFS_NAME_LEN;
1395 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1396 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1397 buf->f_bsize = dentry->d_sb->s_blocksize;
1398 buf->f_type = BTRFS_SUPER_MAGIC;
1399 buf->f_bavail = total_free_data;
1400 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1401 if (ret) {
1402 mutex_unlock(&fs_info->chunk_mutex);
1403 return ret;
1404 }
1405 buf->f_bavail += total_free_data;
1406 buf->f_bavail = buf->f_bavail >> bits;
1407 mutex_unlock(&fs_info->chunk_mutex);
1408
1409 /* We treat it as constant endianness (it doesn't matter _which_)
1410 because we want the fsid to come out the same whether mounted
1411 on a big-endian or little-endian host */
1412 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1413 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1414 /* Mask in the root object ID too, to disambiguate subvols */
1415 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1416 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1417
1418 return 0;
1419}
1420
1421static void btrfs_kill_super(struct super_block *sb)
1422{
1423 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1424 kill_anon_super(sb);
1425 free_fs_info(fs_info);
1426}
1427
1428static struct file_system_type btrfs_fs_type = {
1429 .owner = THIS_MODULE,
1430 .name = "btrfs",
1431 .mount = btrfs_mount,
1432 .kill_sb = btrfs_kill_super,
1433 .fs_flags = FS_REQUIRES_DEV,
1434};
1435
1436/*
1437 * used by btrfsctl to scan devices when no FS is mounted
1438 */
1439static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1440 unsigned long arg)
1441{
1442 struct btrfs_ioctl_vol_args *vol;
1443 struct btrfs_fs_devices *fs_devices;
1444 int ret = -ENOTTY;
1445
1446 if (!capable(CAP_SYS_ADMIN))
1447 return -EPERM;
1448
1449 vol = memdup_user((void __user *)arg, sizeof(*vol));
1450 if (IS_ERR(vol))
1451 return PTR_ERR(vol);
1452
1453 switch (cmd) {
1454 case BTRFS_IOC_SCAN_DEV:
1455 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1456 &btrfs_fs_type, &fs_devices);
1457 break;
1458 }
1459
1460 kfree(vol);
1461 return ret;
1462}
1463
1464static int btrfs_freeze(struct super_block *sb)
1465{
1466 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1467 mutex_lock(&fs_info->transaction_kthread_mutex);
1468 mutex_lock(&fs_info->cleaner_mutex);
1469 return 0;
1470}
1471
1472static int btrfs_unfreeze(struct super_block *sb)
1473{
1474 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1475 mutex_unlock(&fs_info->cleaner_mutex);
1476 mutex_unlock(&fs_info->transaction_kthread_mutex);
1477 return 0;
1478}
1479
1480static void btrfs_fs_dirty_inode(struct inode *inode, int flags)
1481{
1482 int ret;
1483
1484 ret = btrfs_dirty_inode(inode);
1485 if (ret)
1486 printk_ratelimited(KERN_ERR "btrfs: fail to dirty inode %Lu "
1487 "error %d\n", btrfs_ino(inode), ret);
1488}
1489
1490static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1491{
1492 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1493 struct btrfs_fs_devices *cur_devices;
1494 struct btrfs_device *dev, *first_dev = NULL;
1495 struct list_head *head;
1496 struct rcu_string *name;
1497
1498 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1499 cur_devices = fs_info->fs_devices;
1500 while (cur_devices) {
1501 head = &cur_devices->devices;
1502 list_for_each_entry(dev, head, dev_list) {
1503 if (!first_dev || dev->devid < first_dev->devid)
1504 first_dev = dev;
1505 }
1506 cur_devices = cur_devices->seed;
1507 }
1508
1509 if (first_dev) {
1510 rcu_read_lock();
1511 name = rcu_dereference(first_dev->name);
1512 seq_escape(m, name->str, " \t\n\\");
1513 rcu_read_unlock();
1514 } else {
1515 WARN_ON(1);
1516 }
1517 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1518 return 0;
1519}
1520
1521static const struct super_operations btrfs_super_ops = {
1522 .drop_inode = btrfs_drop_inode,
1523 .evict_inode = btrfs_evict_inode,
1524 .put_super = btrfs_put_super,
1525 .sync_fs = btrfs_sync_fs,
1526 .show_options = btrfs_show_options,
1527 .show_devname = btrfs_show_devname,
1528 .write_inode = btrfs_write_inode,
1529 .dirty_inode = btrfs_fs_dirty_inode,
1530 .alloc_inode = btrfs_alloc_inode,
1531 .destroy_inode = btrfs_destroy_inode,
1532 .statfs = btrfs_statfs,
1533 .remount_fs = btrfs_remount,
1534 .freeze_fs = btrfs_freeze,
1535 .unfreeze_fs = btrfs_unfreeze,
1536};
1537
1538static const struct file_operations btrfs_ctl_fops = {
1539 .unlocked_ioctl = btrfs_control_ioctl,
1540 .compat_ioctl = btrfs_control_ioctl,
1541 .owner = THIS_MODULE,
1542 .llseek = noop_llseek,
1543};
1544
1545static struct miscdevice btrfs_misc = {
1546 .minor = BTRFS_MINOR,
1547 .name = "btrfs-control",
1548 .fops = &btrfs_ctl_fops
1549};
1550
1551MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1552MODULE_ALIAS("devname:btrfs-control");
1553
1554static int btrfs_interface_init(void)
1555{
1556 return misc_register(&btrfs_misc);
1557}
1558
1559static void btrfs_interface_exit(void)
1560{
1561 if (misc_deregister(&btrfs_misc) < 0)
1562 printk(KERN_INFO "misc_deregister failed for control device");
1563}
1564
1565static int __init init_btrfs_fs(void)
1566{
1567 int err;
1568
1569 err = btrfs_init_sysfs();
1570 if (err)
1571 return err;
1572
1573 btrfs_init_compress();
1574
1575 err = btrfs_init_cachep();
1576 if (err)
1577 goto free_compress;
1578
1579 err = extent_io_init();
1580 if (err)
1581 goto free_cachep;
1582
1583 err = extent_map_init();
1584 if (err)
1585 goto free_extent_io;
1586
1587 err = btrfs_delayed_inode_init();
1588 if (err)
1589 goto free_extent_map;
1590
1591 err = btrfs_interface_init();
1592 if (err)
1593 goto free_delayed_inode;
1594
1595 err = register_filesystem(&btrfs_fs_type);
1596 if (err)
1597 goto unregister_ioctl;
1598
1599 btrfs_init_lockdep();
1600
1601 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1602 return 0;
1603
1604unregister_ioctl:
1605 btrfs_interface_exit();
1606free_delayed_inode:
1607 btrfs_delayed_inode_exit();
1608free_extent_map:
1609 extent_map_exit();
1610free_extent_io:
1611 extent_io_exit();
1612free_cachep:
1613 btrfs_destroy_cachep();
1614free_compress:
1615 btrfs_exit_compress();
1616 btrfs_exit_sysfs();
1617 return err;
1618}
1619
1620static void __exit exit_btrfs_fs(void)
1621{
1622 btrfs_destroy_cachep();
1623 btrfs_delayed_inode_exit();
1624 extent_map_exit();
1625 extent_io_exit();
1626 btrfs_interface_exit();
1627 unregister_filesystem(&btrfs_fs_type);
1628 btrfs_exit_sysfs();
1629 btrfs_cleanup_fs_uuids();
1630 btrfs_exit_compress();
1631}
1632
1633module_init(init_btrfs_fs)
1634module_exit(exit_btrfs_fs)
1635
1636MODULE_LICENSE("GPL");
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/blkdev.h>
20#include <linux/module.h>
21#include <linux/buffer_head.h>
22#include <linux/fs.h>
23#include <linux/pagemap.h>
24#include <linux/highmem.h>
25#include <linux/time.h>
26#include <linux/init.h>
27#include <linux/seq_file.h>
28#include <linux/string.h>
29#include <linux/backing-dev.h>
30#include <linux/mount.h>
31#include <linux/mpage.h>
32#include <linux/swap.h>
33#include <linux/writeback.h>
34#include <linux/statfs.h>
35#include <linux/compat.h>
36#include <linux/parser.h>
37#include <linux/ctype.h>
38#include <linux/namei.h>
39#include <linux/miscdevice.h>
40#include <linux/magic.h>
41#include <linux/slab.h>
42#include <linux/cleancache.h>
43#include <linux/ratelimit.h>
44#include <linux/btrfs.h>
45#include "delayed-inode.h"
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
50#include "print-tree.h"
51#include "hash.h"
52#include "props.h"
53#include "xattr.h"
54#include "volumes.h"
55#include "export.h"
56#include "compression.h"
57#include "rcu-string.h"
58#include "dev-replace.h"
59#include "free-space-cache.h"
60#include "backref.h"
61#include "tests/btrfs-tests.h"
62
63#include "qgroup.h"
64#define CREATE_TRACE_POINTS
65#include <trace/events/btrfs.h>
66
67static const struct super_operations btrfs_super_ops;
68static struct file_system_type btrfs_fs_type;
69
70static int btrfs_remount(struct super_block *sb, int *flags, char *data);
71
72const char *btrfs_decode_error(int errno)
73{
74 char *errstr = "unknown";
75
76 switch (errno) {
77 case -EIO:
78 errstr = "IO failure";
79 break;
80 case -ENOMEM:
81 errstr = "Out of memory";
82 break;
83 case -EROFS:
84 errstr = "Readonly filesystem";
85 break;
86 case -EEXIST:
87 errstr = "Object already exists";
88 break;
89 case -ENOSPC:
90 errstr = "No space left";
91 break;
92 case -ENOENT:
93 errstr = "No such entry";
94 break;
95 }
96
97 return errstr;
98}
99
100static void save_error_info(struct btrfs_fs_info *fs_info)
101{
102 /*
103 * today we only save the error info into ram. Long term we'll
104 * also send it down to the disk
105 */
106 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
107}
108
109/* btrfs handle error by forcing the filesystem readonly */
110static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
111{
112 struct super_block *sb = fs_info->sb;
113
114 if (sb->s_flags & MS_RDONLY)
115 return;
116
117 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
118 sb->s_flags |= MS_RDONLY;
119 btrfs_info(fs_info, "forced readonly");
120 /*
121 * Note that a running device replace operation is not
122 * canceled here although there is no way to update
123 * the progress. It would add the risk of a deadlock,
124 * therefore the canceling is ommited. The only penalty
125 * is that some I/O remains active until the procedure
126 * completes. The next time when the filesystem is
127 * mounted writeable again, the device replace
128 * operation continues.
129 */
130 }
131}
132
133/*
134 * __btrfs_std_error decodes expected errors from the caller and
135 * invokes the approciate error response.
136 */
137__cold
138void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
139 unsigned int line, int errno, const char *fmt, ...)
140{
141 struct super_block *sb = fs_info->sb;
142#ifdef CONFIG_PRINTK
143 const char *errstr;
144#endif
145
146 /*
147 * Special case: if the error is EROFS, and we're already
148 * under MS_RDONLY, then it is safe here.
149 */
150 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
151 return;
152
153#ifdef CONFIG_PRINTK
154 errstr = btrfs_decode_error(errno);
155 if (fmt) {
156 struct va_format vaf;
157 va_list args;
158
159 va_start(args, fmt);
160 vaf.fmt = fmt;
161 vaf.va = &args;
162
163 printk(KERN_CRIT
164 "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
165 sb->s_id, function, line, errno, errstr, &vaf);
166 va_end(args);
167 } else {
168 printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
169 sb->s_id, function, line, errno, errstr);
170 }
171#endif
172
173 /* Don't go through full error handling during mount */
174 save_error_info(fs_info);
175 if (sb->s_flags & MS_BORN)
176 btrfs_handle_error(fs_info);
177}
178
179#ifdef CONFIG_PRINTK
180static const char * const logtypes[] = {
181 "emergency",
182 "alert",
183 "critical",
184 "error",
185 "warning",
186 "notice",
187 "info",
188 "debug",
189};
190
191void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
192{
193 struct super_block *sb = fs_info->sb;
194 char lvl[4];
195 struct va_format vaf;
196 va_list args;
197 const char *type = logtypes[4];
198 int kern_level;
199
200 va_start(args, fmt);
201
202 kern_level = printk_get_level(fmt);
203 if (kern_level) {
204 size_t size = printk_skip_level(fmt) - fmt;
205 memcpy(lvl, fmt, size);
206 lvl[size] = '\0';
207 fmt += size;
208 type = logtypes[kern_level - '0'];
209 } else
210 *lvl = '\0';
211
212 vaf.fmt = fmt;
213 vaf.va = &args;
214
215 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
216
217 va_end(args);
218}
219#endif
220
221/*
222 * We only mark the transaction aborted and then set the file system read-only.
223 * This will prevent new transactions from starting or trying to join this
224 * one.
225 *
226 * This means that error recovery at the call site is limited to freeing
227 * any local memory allocations and passing the error code up without
228 * further cleanup. The transaction should complete as it normally would
229 * in the call path but will return -EIO.
230 *
231 * We'll complete the cleanup in btrfs_end_transaction and
232 * btrfs_commit_transaction.
233 */
234__cold
235void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
236 struct btrfs_root *root, const char *function,
237 unsigned int line, int errno)
238{
239 trans->aborted = errno;
240 /* Nothing used. The other threads that have joined this
241 * transaction may be able to continue. */
242 if (!trans->blocks_used && list_empty(&trans->new_bgs)) {
243 const char *errstr;
244
245 errstr = btrfs_decode_error(errno);
246 btrfs_warn(root->fs_info,
247 "%s:%d: Aborting unused transaction(%s).",
248 function, line, errstr);
249 return;
250 }
251 ACCESS_ONCE(trans->transaction->aborted) = errno;
252 /* Wake up anybody who may be waiting on this transaction */
253 wake_up(&root->fs_info->transaction_wait);
254 wake_up(&root->fs_info->transaction_blocked_wait);
255 __btrfs_std_error(root->fs_info, function, line, errno, NULL);
256}
257/*
258 * __btrfs_panic decodes unexpected, fatal errors from the caller,
259 * issues an alert, and either panics or BUGs, depending on mount options.
260 */
261__cold
262void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
263 unsigned int line, int errno, const char *fmt, ...)
264{
265 char *s_id = "<unknown>";
266 const char *errstr;
267 struct va_format vaf = { .fmt = fmt };
268 va_list args;
269
270 if (fs_info)
271 s_id = fs_info->sb->s_id;
272
273 va_start(args, fmt);
274 vaf.va = &args;
275
276 errstr = btrfs_decode_error(errno);
277 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
278 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
279 s_id, function, line, &vaf, errno, errstr);
280
281 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
282 function, line, &vaf, errno, errstr);
283 va_end(args);
284 /* Caller calls BUG() */
285}
286
287static void btrfs_put_super(struct super_block *sb)
288{
289 close_ctree(btrfs_sb(sb)->tree_root);
290}
291
292enum {
293 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
294 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
295 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
296 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
297 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
298 Opt_space_cache, Opt_space_cache_version, Opt_clear_cache,
299 Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid,
300 Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery,
301 Opt_skip_balance, Opt_check_integrity,
302 Opt_check_integrity_including_extent_data,
303 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
304 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
305 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
306 Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot,
307 Opt_nologreplay, Opt_norecovery,
308#ifdef CONFIG_BTRFS_DEBUG
309 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
310#endif
311 Opt_err,
312};
313
314static const match_table_t tokens = {
315 {Opt_degraded, "degraded"},
316 {Opt_subvol, "subvol=%s"},
317 {Opt_subvolid, "subvolid=%s"},
318 {Opt_device, "device=%s"},
319 {Opt_nodatasum, "nodatasum"},
320 {Opt_datasum, "datasum"},
321 {Opt_nodatacow, "nodatacow"},
322 {Opt_datacow, "datacow"},
323 {Opt_nobarrier, "nobarrier"},
324 {Opt_barrier, "barrier"},
325 {Opt_max_inline, "max_inline=%s"},
326 {Opt_alloc_start, "alloc_start=%s"},
327 {Opt_thread_pool, "thread_pool=%d"},
328 {Opt_compress, "compress"},
329 {Opt_compress_type, "compress=%s"},
330 {Opt_compress_force, "compress-force"},
331 {Opt_compress_force_type, "compress-force=%s"},
332 {Opt_ssd, "ssd"},
333 {Opt_ssd_spread, "ssd_spread"},
334 {Opt_nossd, "nossd"},
335 {Opt_acl, "acl"},
336 {Opt_noacl, "noacl"},
337 {Opt_notreelog, "notreelog"},
338 {Opt_treelog, "treelog"},
339 {Opt_nologreplay, "nologreplay"},
340 {Opt_norecovery, "norecovery"},
341 {Opt_flushoncommit, "flushoncommit"},
342 {Opt_noflushoncommit, "noflushoncommit"},
343 {Opt_ratio, "metadata_ratio=%d"},
344 {Opt_discard, "discard"},
345 {Opt_nodiscard, "nodiscard"},
346 {Opt_space_cache, "space_cache"},
347 {Opt_space_cache_version, "space_cache=%s"},
348 {Opt_clear_cache, "clear_cache"},
349 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
350 {Opt_enospc_debug, "enospc_debug"},
351 {Opt_noenospc_debug, "noenospc_debug"},
352 {Opt_subvolrootid, "subvolrootid=%d"},
353 {Opt_defrag, "autodefrag"},
354 {Opt_nodefrag, "noautodefrag"},
355 {Opt_inode_cache, "inode_cache"},
356 {Opt_noinode_cache, "noinode_cache"},
357 {Opt_no_space_cache, "nospace_cache"},
358 {Opt_recovery, "recovery"}, /* deprecated */
359 {Opt_usebackuproot, "usebackuproot"},
360 {Opt_skip_balance, "skip_balance"},
361 {Opt_check_integrity, "check_int"},
362 {Opt_check_integrity_including_extent_data, "check_int_data"},
363 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
364 {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
365 {Opt_fatal_errors, "fatal_errors=%s"},
366 {Opt_commit_interval, "commit=%d"},
367#ifdef CONFIG_BTRFS_DEBUG
368 {Opt_fragment_data, "fragment=data"},
369 {Opt_fragment_metadata, "fragment=metadata"},
370 {Opt_fragment_all, "fragment=all"},
371#endif
372 {Opt_err, NULL},
373};
374
375/*
376 * Regular mount options parser. Everything that is needed only when
377 * reading in a new superblock is parsed here.
378 * XXX JDM: This needs to be cleaned up for remount.
379 */
380int btrfs_parse_options(struct btrfs_root *root, char *options,
381 unsigned long new_flags)
382{
383 struct btrfs_fs_info *info = root->fs_info;
384 substring_t args[MAX_OPT_ARGS];
385 char *p, *num, *orig = NULL;
386 u64 cache_gen;
387 int intarg;
388 int ret = 0;
389 char *compress_type;
390 bool compress_force = false;
391 enum btrfs_compression_type saved_compress_type;
392 bool saved_compress_force;
393 int no_compress = 0;
394
395 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
396 if (btrfs_fs_compat_ro(root->fs_info, FREE_SPACE_TREE))
397 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
398 else if (cache_gen)
399 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
400
401 /*
402 * Even the options are empty, we still need to do extra check
403 * against new flags
404 */
405 if (!options)
406 goto check;
407
408 /*
409 * strsep changes the string, duplicate it because parse_options
410 * gets called twice
411 */
412 options = kstrdup(options, GFP_NOFS);
413 if (!options)
414 return -ENOMEM;
415
416 orig = options;
417
418 while ((p = strsep(&options, ",")) != NULL) {
419 int token;
420 if (!*p)
421 continue;
422
423 token = match_token(p, tokens, args);
424 switch (token) {
425 case Opt_degraded:
426 btrfs_info(root->fs_info, "allowing degraded mounts");
427 btrfs_set_opt(info->mount_opt, DEGRADED);
428 break;
429 case Opt_subvol:
430 case Opt_subvolid:
431 case Opt_subvolrootid:
432 case Opt_device:
433 /*
434 * These are parsed by btrfs_parse_early_options
435 * and can be happily ignored here.
436 */
437 break;
438 case Opt_nodatasum:
439 btrfs_set_and_info(root, NODATASUM,
440 "setting nodatasum");
441 break;
442 case Opt_datasum:
443 if (btrfs_test_opt(root, NODATASUM)) {
444 if (btrfs_test_opt(root, NODATACOW))
445 btrfs_info(root->fs_info, "setting datasum, datacow enabled");
446 else
447 btrfs_info(root->fs_info, "setting datasum");
448 }
449 btrfs_clear_opt(info->mount_opt, NODATACOW);
450 btrfs_clear_opt(info->mount_opt, NODATASUM);
451 break;
452 case Opt_nodatacow:
453 if (!btrfs_test_opt(root, NODATACOW)) {
454 if (!btrfs_test_opt(root, COMPRESS) ||
455 !btrfs_test_opt(root, FORCE_COMPRESS)) {
456 btrfs_info(root->fs_info,
457 "setting nodatacow, compression disabled");
458 } else {
459 btrfs_info(root->fs_info, "setting nodatacow");
460 }
461 }
462 btrfs_clear_opt(info->mount_opt, COMPRESS);
463 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
464 btrfs_set_opt(info->mount_opt, NODATACOW);
465 btrfs_set_opt(info->mount_opt, NODATASUM);
466 break;
467 case Opt_datacow:
468 btrfs_clear_and_info(root, NODATACOW,
469 "setting datacow");
470 break;
471 case Opt_compress_force:
472 case Opt_compress_force_type:
473 compress_force = true;
474 /* Fallthrough */
475 case Opt_compress:
476 case Opt_compress_type:
477 saved_compress_type = btrfs_test_opt(root, COMPRESS) ?
478 info->compress_type : BTRFS_COMPRESS_NONE;
479 saved_compress_force =
480 btrfs_test_opt(root, FORCE_COMPRESS);
481 if (token == Opt_compress ||
482 token == Opt_compress_force ||
483 strcmp(args[0].from, "zlib") == 0) {
484 compress_type = "zlib";
485 info->compress_type = BTRFS_COMPRESS_ZLIB;
486 btrfs_set_opt(info->mount_opt, COMPRESS);
487 btrfs_clear_opt(info->mount_opt, NODATACOW);
488 btrfs_clear_opt(info->mount_opt, NODATASUM);
489 no_compress = 0;
490 } else if (strcmp(args[0].from, "lzo") == 0) {
491 compress_type = "lzo";
492 info->compress_type = BTRFS_COMPRESS_LZO;
493 btrfs_set_opt(info->mount_opt, COMPRESS);
494 btrfs_clear_opt(info->mount_opt, NODATACOW);
495 btrfs_clear_opt(info->mount_opt, NODATASUM);
496 btrfs_set_fs_incompat(info, COMPRESS_LZO);
497 no_compress = 0;
498 } else if (strncmp(args[0].from, "no", 2) == 0) {
499 compress_type = "no";
500 btrfs_clear_opt(info->mount_opt, COMPRESS);
501 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
502 compress_force = false;
503 no_compress++;
504 } else {
505 ret = -EINVAL;
506 goto out;
507 }
508
509 if (compress_force) {
510 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
511 } else {
512 /*
513 * If we remount from compress-force=xxx to
514 * compress=xxx, we need clear FORCE_COMPRESS
515 * flag, otherwise, there is no way for users
516 * to disable forcible compression separately.
517 */
518 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
519 }
520 if ((btrfs_test_opt(root, COMPRESS) &&
521 (info->compress_type != saved_compress_type ||
522 compress_force != saved_compress_force)) ||
523 (!btrfs_test_opt(root, COMPRESS) &&
524 no_compress == 1)) {
525 btrfs_info(root->fs_info,
526 "%s %s compression",
527 (compress_force) ? "force" : "use",
528 compress_type);
529 }
530 compress_force = false;
531 break;
532 case Opt_ssd:
533 btrfs_set_and_info(root, SSD,
534 "use ssd allocation scheme");
535 break;
536 case Opt_ssd_spread:
537 btrfs_set_and_info(root, SSD_SPREAD,
538 "use spread ssd allocation scheme");
539 btrfs_set_opt(info->mount_opt, SSD);
540 break;
541 case Opt_nossd:
542 btrfs_set_and_info(root, NOSSD,
543 "not using ssd allocation scheme");
544 btrfs_clear_opt(info->mount_opt, SSD);
545 break;
546 case Opt_barrier:
547 btrfs_clear_and_info(root, NOBARRIER,
548 "turning on barriers");
549 break;
550 case Opt_nobarrier:
551 btrfs_set_and_info(root, NOBARRIER,
552 "turning off barriers");
553 break;
554 case Opt_thread_pool:
555 ret = match_int(&args[0], &intarg);
556 if (ret) {
557 goto out;
558 } else if (intarg > 0) {
559 info->thread_pool_size = intarg;
560 } else {
561 ret = -EINVAL;
562 goto out;
563 }
564 break;
565 case Opt_max_inline:
566 num = match_strdup(&args[0]);
567 if (num) {
568 info->max_inline = memparse(num, NULL);
569 kfree(num);
570
571 if (info->max_inline) {
572 info->max_inline = min_t(u64,
573 info->max_inline,
574 root->sectorsize);
575 }
576 btrfs_info(root->fs_info, "max_inline at %llu",
577 info->max_inline);
578 } else {
579 ret = -ENOMEM;
580 goto out;
581 }
582 break;
583 case Opt_alloc_start:
584 num = match_strdup(&args[0]);
585 if (num) {
586 mutex_lock(&info->chunk_mutex);
587 info->alloc_start = memparse(num, NULL);
588 mutex_unlock(&info->chunk_mutex);
589 kfree(num);
590 btrfs_info(root->fs_info, "allocations start at %llu",
591 info->alloc_start);
592 } else {
593 ret = -ENOMEM;
594 goto out;
595 }
596 break;
597 case Opt_acl:
598#ifdef CONFIG_BTRFS_FS_POSIX_ACL
599 root->fs_info->sb->s_flags |= MS_POSIXACL;
600 break;
601#else
602 btrfs_err(root->fs_info,
603 "support for ACL not compiled in!");
604 ret = -EINVAL;
605 goto out;
606#endif
607 case Opt_noacl:
608 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
609 break;
610 case Opt_notreelog:
611 btrfs_set_and_info(root, NOTREELOG,
612 "disabling tree log");
613 break;
614 case Opt_treelog:
615 btrfs_clear_and_info(root, NOTREELOG,
616 "enabling tree log");
617 break;
618 case Opt_norecovery:
619 case Opt_nologreplay:
620 btrfs_set_and_info(root, NOLOGREPLAY,
621 "disabling log replay at mount time");
622 break;
623 case Opt_flushoncommit:
624 btrfs_set_and_info(root, FLUSHONCOMMIT,
625 "turning on flush-on-commit");
626 break;
627 case Opt_noflushoncommit:
628 btrfs_clear_and_info(root, FLUSHONCOMMIT,
629 "turning off flush-on-commit");
630 break;
631 case Opt_ratio:
632 ret = match_int(&args[0], &intarg);
633 if (ret) {
634 goto out;
635 } else if (intarg >= 0) {
636 info->metadata_ratio = intarg;
637 btrfs_info(root->fs_info, "metadata ratio %d",
638 info->metadata_ratio);
639 } else {
640 ret = -EINVAL;
641 goto out;
642 }
643 break;
644 case Opt_discard:
645 btrfs_set_and_info(root, DISCARD,
646 "turning on discard");
647 break;
648 case Opt_nodiscard:
649 btrfs_clear_and_info(root, DISCARD,
650 "turning off discard");
651 break;
652 case Opt_space_cache:
653 case Opt_space_cache_version:
654 if (token == Opt_space_cache ||
655 strcmp(args[0].from, "v1") == 0) {
656 btrfs_clear_opt(root->fs_info->mount_opt,
657 FREE_SPACE_TREE);
658 btrfs_set_and_info(root, SPACE_CACHE,
659 "enabling disk space caching");
660 } else if (strcmp(args[0].from, "v2") == 0) {
661 btrfs_clear_opt(root->fs_info->mount_opt,
662 SPACE_CACHE);
663 btrfs_set_and_info(root, FREE_SPACE_TREE,
664 "enabling free space tree");
665 } else {
666 ret = -EINVAL;
667 goto out;
668 }
669 break;
670 case Opt_rescan_uuid_tree:
671 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
672 break;
673 case Opt_no_space_cache:
674 if (btrfs_test_opt(root, SPACE_CACHE)) {
675 btrfs_clear_and_info(root, SPACE_CACHE,
676 "disabling disk space caching");
677 }
678 if (btrfs_test_opt(root, FREE_SPACE_TREE)) {
679 btrfs_clear_and_info(root, FREE_SPACE_TREE,
680 "disabling free space tree");
681 }
682 break;
683 case Opt_inode_cache:
684 btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
685 "enabling inode map caching");
686 break;
687 case Opt_noinode_cache:
688 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
689 "disabling inode map caching");
690 break;
691 case Opt_clear_cache:
692 btrfs_set_and_info(root, CLEAR_CACHE,
693 "force clearing of disk cache");
694 break;
695 case Opt_user_subvol_rm_allowed:
696 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
697 break;
698 case Opt_enospc_debug:
699 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
700 break;
701 case Opt_noenospc_debug:
702 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
703 break;
704 case Opt_defrag:
705 btrfs_set_and_info(root, AUTO_DEFRAG,
706 "enabling auto defrag");
707 break;
708 case Opt_nodefrag:
709 btrfs_clear_and_info(root, AUTO_DEFRAG,
710 "disabling auto defrag");
711 break;
712 case Opt_recovery:
713 btrfs_warn(root->fs_info,
714 "'recovery' is deprecated, use 'usebackuproot' instead");
715 case Opt_usebackuproot:
716 btrfs_info(root->fs_info,
717 "trying to use backup root at mount time");
718 btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
719 break;
720 case Opt_skip_balance:
721 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
722 break;
723#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
724 case Opt_check_integrity_including_extent_data:
725 btrfs_info(root->fs_info,
726 "enabling check integrity including extent data");
727 btrfs_set_opt(info->mount_opt,
728 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
729 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
730 break;
731 case Opt_check_integrity:
732 btrfs_info(root->fs_info, "enabling check integrity");
733 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
734 break;
735 case Opt_check_integrity_print_mask:
736 ret = match_int(&args[0], &intarg);
737 if (ret) {
738 goto out;
739 } else if (intarg >= 0) {
740 info->check_integrity_print_mask = intarg;
741 btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
742 info->check_integrity_print_mask);
743 } else {
744 ret = -EINVAL;
745 goto out;
746 }
747 break;
748#else
749 case Opt_check_integrity_including_extent_data:
750 case Opt_check_integrity:
751 case Opt_check_integrity_print_mask:
752 btrfs_err(root->fs_info,
753 "support for check_integrity* not compiled in!");
754 ret = -EINVAL;
755 goto out;
756#endif
757 case Opt_fatal_errors:
758 if (strcmp(args[0].from, "panic") == 0)
759 btrfs_set_opt(info->mount_opt,
760 PANIC_ON_FATAL_ERROR);
761 else if (strcmp(args[0].from, "bug") == 0)
762 btrfs_clear_opt(info->mount_opt,
763 PANIC_ON_FATAL_ERROR);
764 else {
765 ret = -EINVAL;
766 goto out;
767 }
768 break;
769 case Opt_commit_interval:
770 intarg = 0;
771 ret = match_int(&args[0], &intarg);
772 if (ret < 0) {
773 btrfs_err(root->fs_info, "invalid commit interval");
774 ret = -EINVAL;
775 goto out;
776 }
777 if (intarg > 0) {
778 if (intarg > 300) {
779 btrfs_warn(root->fs_info, "excessive commit interval %d",
780 intarg);
781 }
782 info->commit_interval = intarg;
783 } else {
784 btrfs_info(root->fs_info, "using default commit interval %ds",
785 BTRFS_DEFAULT_COMMIT_INTERVAL);
786 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
787 }
788 break;
789#ifdef CONFIG_BTRFS_DEBUG
790 case Opt_fragment_all:
791 btrfs_info(root->fs_info, "fragmenting all space");
792 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
793 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
794 break;
795 case Opt_fragment_metadata:
796 btrfs_info(root->fs_info, "fragmenting metadata");
797 btrfs_set_opt(info->mount_opt,
798 FRAGMENT_METADATA);
799 break;
800 case Opt_fragment_data:
801 btrfs_info(root->fs_info, "fragmenting data");
802 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
803 break;
804#endif
805 case Opt_err:
806 btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
807 ret = -EINVAL;
808 goto out;
809 default:
810 break;
811 }
812 }
813check:
814 /*
815 * Extra check for current option against current flag
816 */
817 if (btrfs_test_opt(root, NOLOGREPLAY) && !(new_flags & MS_RDONLY)) {
818 btrfs_err(root->fs_info,
819 "nologreplay must be used with ro mount option");
820 ret = -EINVAL;
821 }
822out:
823 if (btrfs_fs_compat_ro(root->fs_info, FREE_SPACE_TREE) &&
824 !btrfs_test_opt(root, FREE_SPACE_TREE) &&
825 !btrfs_test_opt(root, CLEAR_CACHE)) {
826 btrfs_err(root->fs_info, "cannot disable free space tree");
827 ret = -EINVAL;
828
829 }
830 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
831 btrfs_info(root->fs_info, "disk space caching is enabled");
832 if (!ret && btrfs_test_opt(root, FREE_SPACE_TREE))
833 btrfs_info(root->fs_info, "using free space tree");
834 kfree(orig);
835 return ret;
836}
837
838/*
839 * Parse mount options that are required early in the mount process.
840 *
841 * All other options will be parsed on much later in the mount process and
842 * only when we need to allocate a new super block.
843 */
844static int btrfs_parse_early_options(const char *options, fmode_t flags,
845 void *holder, char **subvol_name, u64 *subvol_objectid,
846 struct btrfs_fs_devices **fs_devices)
847{
848 substring_t args[MAX_OPT_ARGS];
849 char *device_name, *opts, *orig, *p;
850 char *num = NULL;
851 int error = 0;
852
853 if (!options)
854 return 0;
855
856 /*
857 * strsep changes the string, duplicate it because parse_options
858 * gets called twice
859 */
860 opts = kstrdup(options, GFP_KERNEL);
861 if (!opts)
862 return -ENOMEM;
863 orig = opts;
864
865 while ((p = strsep(&opts, ",")) != NULL) {
866 int token;
867 if (!*p)
868 continue;
869
870 token = match_token(p, tokens, args);
871 switch (token) {
872 case Opt_subvol:
873 kfree(*subvol_name);
874 *subvol_name = match_strdup(&args[0]);
875 if (!*subvol_name) {
876 error = -ENOMEM;
877 goto out;
878 }
879 break;
880 case Opt_subvolid:
881 num = match_strdup(&args[0]);
882 if (num) {
883 *subvol_objectid = memparse(num, NULL);
884 kfree(num);
885 /* we want the original fs_tree */
886 if (!*subvol_objectid)
887 *subvol_objectid =
888 BTRFS_FS_TREE_OBJECTID;
889 } else {
890 error = -EINVAL;
891 goto out;
892 }
893 break;
894 case Opt_subvolrootid:
895 printk(KERN_WARNING
896 "BTRFS: 'subvolrootid' mount option is deprecated and has "
897 "no effect\n");
898 break;
899 case Opt_device:
900 device_name = match_strdup(&args[0]);
901 if (!device_name) {
902 error = -ENOMEM;
903 goto out;
904 }
905 error = btrfs_scan_one_device(device_name,
906 flags, holder, fs_devices);
907 kfree(device_name);
908 if (error)
909 goto out;
910 break;
911 default:
912 break;
913 }
914 }
915
916out:
917 kfree(orig);
918 return error;
919}
920
921static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
922 u64 subvol_objectid)
923{
924 struct btrfs_root *root = fs_info->tree_root;
925 struct btrfs_root *fs_root;
926 struct btrfs_root_ref *root_ref;
927 struct btrfs_inode_ref *inode_ref;
928 struct btrfs_key key;
929 struct btrfs_path *path = NULL;
930 char *name = NULL, *ptr;
931 u64 dirid;
932 int len;
933 int ret;
934
935 path = btrfs_alloc_path();
936 if (!path) {
937 ret = -ENOMEM;
938 goto err;
939 }
940 path->leave_spinning = 1;
941
942 name = kmalloc(PATH_MAX, GFP_NOFS);
943 if (!name) {
944 ret = -ENOMEM;
945 goto err;
946 }
947 ptr = name + PATH_MAX - 1;
948 ptr[0] = '\0';
949
950 /*
951 * Walk up the subvolume trees in the tree of tree roots by root
952 * backrefs until we hit the top-level subvolume.
953 */
954 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
955 key.objectid = subvol_objectid;
956 key.type = BTRFS_ROOT_BACKREF_KEY;
957 key.offset = (u64)-1;
958
959 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
960 if (ret < 0) {
961 goto err;
962 } else if (ret > 0) {
963 ret = btrfs_previous_item(root, path, subvol_objectid,
964 BTRFS_ROOT_BACKREF_KEY);
965 if (ret < 0) {
966 goto err;
967 } else if (ret > 0) {
968 ret = -ENOENT;
969 goto err;
970 }
971 }
972
973 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
974 subvol_objectid = key.offset;
975
976 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
977 struct btrfs_root_ref);
978 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
979 ptr -= len + 1;
980 if (ptr < name) {
981 ret = -ENAMETOOLONG;
982 goto err;
983 }
984 read_extent_buffer(path->nodes[0], ptr + 1,
985 (unsigned long)(root_ref + 1), len);
986 ptr[0] = '/';
987 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
988 btrfs_release_path(path);
989
990 key.objectid = subvol_objectid;
991 key.type = BTRFS_ROOT_ITEM_KEY;
992 key.offset = (u64)-1;
993 fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
994 if (IS_ERR(fs_root)) {
995 ret = PTR_ERR(fs_root);
996 goto err;
997 }
998
999 /*
1000 * Walk up the filesystem tree by inode refs until we hit the
1001 * root directory.
1002 */
1003 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1004 key.objectid = dirid;
1005 key.type = BTRFS_INODE_REF_KEY;
1006 key.offset = (u64)-1;
1007
1008 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1009 if (ret < 0) {
1010 goto err;
1011 } else if (ret > 0) {
1012 ret = btrfs_previous_item(fs_root, path, dirid,
1013 BTRFS_INODE_REF_KEY);
1014 if (ret < 0) {
1015 goto err;
1016 } else if (ret > 0) {
1017 ret = -ENOENT;
1018 goto err;
1019 }
1020 }
1021
1022 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1023 dirid = key.offset;
1024
1025 inode_ref = btrfs_item_ptr(path->nodes[0],
1026 path->slots[0],
1027 struct btrfs_inode_ref);
1028 len = btrfs_inode_ref_name_len(path->nodes[0],
1029 inode_ref);
1030 ptr -= len + 1;
1031 if (ptr < name) {
1032 ret = -ENAMETOOLONG;
1033 goto err;
1034 }
1035 read_extent_buffer(path->nodes[0], ptr + 1,
1036 (unsigned long)(inode_ref + 1), len);
1037 ptr[0] = '/';
1038 btrfs_release_path(path);
1039 }
1040 }
1041
1042 btrfs_free_path(path);
1043 if (ptr == name + PATH_MAX - 1) {
1044 name[0] = '/';
1045 name[1] = '\0';
1046 } else {
1047 memmove(name, ptr, name + PATH_MAX - ptr);
1048 }
1049 return name;
1050
1051err:
1052 btrfs_free_path(path);
1053 kfree(name);
1054 return ERR_PTR(ret);
1055}
1056
1057static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1058{
1059 struct btrfs_root *root = fs_info->tree_root;
1060 struct btrfs_dir_item *di;
1061 struct btrfs_path *path;
1062 struct btrfs_key location;
1063 u64 dir_id;
1064
1065 path = btrfs_alloc_path();
1066 if (!path)
1067 return -ENOMEM;
1068 path->leave_spinning = 1;
1069
1070 /*
1071 * Find the "default" dir item which points to the root item that we
1072 * will mount by default if we haven't been given a specific subvolume
1073 * to mount.
1074 */
1075 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1076 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1077 if (IS_ERR(di)) {
1078 btrfs_free_path(path);
1079 return PTR_ERR(di);
1080 }
1081 if (!di) {
1082 /*
1083 * Ok the default dir item isn't there. This is weird since
1084 * it's always been there, but don't freak out, just try and
1085 * mount the top-level subvolume.
1086 */
1087 btrfs_free_path(path);
1088 *objectid = BTRFS_FS_TREE_OBJECTID;
1089 return 0;
1090 }
1091
1092 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1093 btrfs_free_path(path);
1094 *objectid = location.objectid;
1095 return 0;
1096}
1097
1098static int btrfs_fill_super(struct super_block *sb,
1099 struct btrfs_fs_devices *fs_devices,
1100 void *data, int silent)
1101{
1102 struct inode *inode;
1103 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1104 struct btrfs_key key;
1105 int err;
1106
1107 sb->s_maxbytes = MAX_LFS_FILESIZE;
1108 sb->s_magic = BTRFS_SUPER_MAGIC;
1109 sb->s_op = &btrfs_super_ops;
1110 sb->s_d_op = &btrfs_dentry_operations;
1111 sb->s_export_op = &btrfs_export_ops;
1112 sb->s_xattr = btrfs_xattr_handlers;
1113 sb->s_time_gran = 1;
1114#ifdef CONFIG_BTRFS_FS_POSIX_ACL
1115 sb->s_flags |= MS_POSIXACL;
1116#endif
1117 sb->s_flags |= MS_I_VERSION;
1118 sb->s_iflags |= SB_I_CGROUPWB;
1119 err = open_ctree(sb, fs_devices, (char *)data);
1120 if (err) {
1121 printk(KERN_ERR "BTRFS: open_ctree failed\n");
1122 return err;
1123 }
1124
1125 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1126 key.type = BTRFS_INODE_ITEM_KEY;
1127 key.offset = 0;
1128 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1129 if (IS_ERR(inode)) {
1130 err = PTR_ERR(inode);
1131 goto fail_close;
1132 }
1133
1134 sb->s_root = d_make_root(inode);
1135 if (!sb->s_root) {
1136 err = -ENOMEM;
1137 goto fail_close;
1138 }
1139
1140 save_mount_options(sb, data);
1141 cleancache_init_fs(sb);
1142 sb->s_flags |= MS_ACTIVE;
1143 return 0;
1144
1145fail_close:
1146 close_ctree(fs_info->tree_root);
1147 return err;
1148}
1149
1150int btrfs_sync_fs(struct super_block *sb, int wait)
1151{
1152 struct btrfs_trans_handle *trans;
1153 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1154 struct btrfs_root *root = fs_info->tree_root;
1155
1156 trace_btrfs_sync_fs(wait);
1157
1158 if (!wait) {
1159 filemap_flush(fs_info->btree_inode->i_mapping);
1160 return 0;
1161 }
1162
1163 btrfs_wait_ordered_roots(fs_info, -1);
1164
1165 trans = btrfs_attach_transaction_barrier(root);
1166 if (IS_ERR(trans)) {
1167 /* no transaction, don't bother */
1168 if (PTR_ERR(trans) == -ENOENT) {
1169 /*
1170 * Exit unless we have some pending changes
1171 * that need to go through commit
1172 */
1173 if (fs_info->pending_changes == 0)
1174 return 0;
1175 /*
1176 * A non-blocking test if the fs is frozen. We must not
1177 * start a new transaction here otherwise a deadlock
1178 * happens. The pending operations are delayed to the
1179 * next commit after thawing.
1180 */
1181 if (__sb_start_write(sb, SB_FREEZE_WRITE, false))
1182 __sb_end_write(sb, SB_FREEZE_WRITE);
1183 else
1184 return 0;
1185 trans = btrfs_start_transaction(root, 0);
1186 }
1187 if (IS_ERR(trans))
1188 return PTR_ERR(trans);
1189 }
1190 return btrfs_commit_transaction(trans, root);
1191}
1192
1193static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1194{
1195 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1196 struct btrfs_root *root = info->tree_root;
1197 char *compress_type;
1198
1199 if (btrfs_test_opt(root, DEGRADED))
1200 seq_puts(seq, ",degraded");
1201 if (btrfs_test_opt(root, NODATASUM))
1202 seq_puts(seq, ",nodatasum");
1203 if (btrfs_test_opt(root, NODATACOW))
1204 seq_puts(seq, ",nodatacow");
1205 if (btrfs_test_opt(root, NOBARRIER))
1206 seq_puts(seq, ",nobarrier");
1207 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1208 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1209 if (info->alloc_start != 0)
1210 seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1211 if (info->thread_pool_size != min_t(unsigned long,
1212 num_online_cpus() + 2, 8))
1213 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1214 if (btrfs_test_opt(root, COMPRESS)) {
1215 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1216 compress_type = "zlib";
1217 else
1218 compress_type = "lzo";
1219 if (btrfs_test_opt(root, FORCE_COMPRESS))
1220 seq_printf(seq, ",compress-force=%s", compress_type);
1221 else
1222 seq_printf(seq, ",compress=%s", compress_type);
1223 }
1224 if (btrfs_test_opt(root, NOSSD))
1225 seq_puts(seq, ",nossd");
1226 if (btrfs_test_opt(root, SSD_SPREAD))
1227 seq_puts(seq, ",ssd_spread");
1228 else if (btrfs_test_opt(root, SSD))
1229 seq_puts(seq, ",ssd");
1230 if (btrfs_test_opt(root, NOTREELOG))
1231 seq_puts(seq, ",notreelog");
1232 if (btrfs_test_opt(root, NOLOGREPLAY))
1233 seq_puts(seq, ",nologreplay");
1234 if (btrfs_test_opt(root, FLUSHONCOMMIT))
1235 seq_puts(seq, ",flushoncommit");
1236 if (btrfs_test_opt(root, DISCARD))
1237 seq_puts(seq, ",discard");
1238 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1239 seq_puts(seq, ",noacl");
1240 if (btrfs_test_opt(root, SPACE_CACHE))
1241 seq_puts(seq, ",space_cache");
1242 else if (btrfs_test_opt(root, FREE_SPACE_TREE))
1243 seq_puts(seq, ",space_cache=v2");
1244 else
1245 seq_puts(seq, ",nospace_cache");
1246 if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1247 seq_puts(seq, ",rescan_uuid_tree");
1248 if (btrfs_test_opt(root, CLEAR_CACHE))
1249 seq_puts(seq, ",clear_cache");
1250 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1251 seq_puts(seq, ",user_subvol_rm_allowed");
1252 if (btrfs_test_opt(root, ENOSPC_DEBUG))
1253 seq_puts(seq, ",enospc_debug");
1254 if (btrfs_test_opt(root, AUTO_DEFRAG))
1255 seq_puts(seq, ",autodefrag");
1256 if (btrfs_test_opt(root, INODE_MAP_CACHE))
1257 seq_puts(seq, ",inode_cache");
1258 if (btrfs_test_opt(root, SKIP_BALANCE))
1259 seq_puts(seq, ",skip_balance");
1260#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1261 if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1262 seq_puts(seq, ",check_int_data");
1263 else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1264 seq_puts(seq, ",check_int");
1265 if (info->check_integrity_print_mask)
1266 seq_printf(seq, ",check_int_print_mask=%d",
1267 info->check_integrity_print_mask);
1268#endif
1269 if (info->metadata_ratio)
1270 seq_printf(seq, ",metadata_ratio=%d",
1271 info->metadata_ratio);
1272 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1273 seq_puts(seq, ",fatal_errors=panic");
1274 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1275 seq_printf(seq, ",commit=%d", info->commit_interval);
1276#ifdef CONFIG_BTRFS_DEBUG
1277 if (btrfs_test_opt(root, FRAGMENT_DATA))
1278 seq_puts(seq, ",fragment=data");
1279 if (btrfs_test_opt(root, FRAGMENT_METADATA))
1280 seq_puts(seq, ",fragment=metadata");
1281#endif
1282 seq_printf(seq, ",subvolid=%llu",
1283 BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1284 seq_puts(seq, ",subvol=");
1285 seq_dentry(seq, dentry, " \t\n\\");
1286 return 0;
1287}
1288
1289static int btrfs_test_super(struct super_block *s, void *data)
1290{
1291 struct btrfs_fs_info *p = data;
1292 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1293
1294 return fs_info->fs_devices == p->fs_devices;
1295}
1296
1297static int btrfs_set_super(struct super_block *s, void *data)
1298{
1299 int err = set_anon_super(s, data);
1300 if (!err)
1301 s->s_fs_info = data;
1302 return err;
1303}
1304
1305/*
1306 * subvolumes are identified by ino 256
1307 */
1308static inline int is_subvolume_inode(struct inode *inode)
1309{
1310 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1311 return 1;
1312 return 0;
1313}
1314
1315/*
1316 * This will add subvolid=0 to the argument string while removing any subvol=
1317 * and subvolid= arguments to make sure we get the top-level root for path
1318 * walking to the subvol we want.
1319 */
1320static char *setup_root_args(char *args)
1321{
1322 char *buf, *dst, *sep;
1323
1324 if (!args)
1325 return kstrdup("subvolid=0", GFP_NOFS);
1326
1327 /* The worst case is that we add ",subvolid=0" to the end. */
1328 buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, GFP_NOFS);
1329 if (!buf)
1330 return NULL;
1331
1332 while (1) {
1333 sep = strchrnul(args, ',');
1334 if (!strstarts(args, "subvol=") &&
1335 !strstarts(args, "subvolid=")) {
1336 memcpy(dst, args, sep - args);
1337 dst += sep - args;
1338 *dst++ = ',';
1339 }
1340 if (*sep)
1341 args = sep + 1;
1342 else
1343 break;
1344 }
1345 strcpy(dst, "subvolid=0");
1346
1347 return buf;
1348}
1349
1350static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1351 int flags, const char *device_name,
1352 char *data)
1353{
1354 struct dentry *root;
1355 struct vfsmount *mnt = NULL;
1356 char *newargs;
1357 int ret;
1358
1359 newargs = setup_root_args(data);
1360 if (!newargs) {
1361 root = ERR_PTR(-ENOMEM);
1362 goto out;
1363 }
1364
1365 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs);
1366 if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) {
1367 if (flags & MS_RDONLY) {
1368 mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY,
1369 device_name, newargs);
1370 } else {
1371 mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY,
1372 device_name, newargs);
1373 if (IS_ERR(mnt)) {
1374 root = ERR_CAST(mnt);
1375 mnt = NULL;
1376 goto out;
1377 }
1378
1379 down_write(&mnt->mnt_sb->s_umount);
1380 ret = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1381 up_write(&mnt->mnt_sb->s_umount);
1382 if (ret < 0) {
1383 root = ERR_PTR(ret);
1384 goto out;
1385 }
1386 }
1387 }
1388 if (IS_ERR(mnt)) {
1389 root = ERR_CAST(mnt);
1390 mnt = NULL;
1391 goto out;
1392 }
1393
1394 if (!subvol_name) {
1395 if (!subvol_objectid) {
1396 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1397 &subvol_objectid);
1398 if (ret) {
1399 root = ERR_PTR(ret);
1400 goto out;
1401 }
1402 }
1403 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1404 subvol_objectid);
1405 if (IS_ERR(subvol_name)) {
1406 root = ERR_CAST(subvol_name);
1407 subvol_name = NULL;
1408 goto out;
1409 }
1410
1411 }
1412
1413 root = mount_subtree(mnt, subvol_name);
1414 /* mount_subtree() drops our reference on the vfsmount. */
1415 mnt = NULL;
1416
1417 if (!IS_ERR(root)) {
1418 struct super_block *s = root->d_sb;
1419 struct inode *root_inode = d_inode(root);
1420 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1421
1422 ret = 0;
1423 if (!is_subvolume_inode(root_inode)) {
1424 pr_err("BTRFS: '%s' is not a valid subvolume\n",
1425 subvol_name);
1426 ret = -EINVAL;
1427 }
1428 if (subvol_objectid && root_objectid != subvol_objectid) {
1429 /*
1430 * This will also catch a race condition where a
1431 * subvolume which was passed by ID is renamed and
1432 * another subvolume is renamed over the old location.
1433 */
1434 pr_err("BTRFS: subvol '%s' does not match subvolid %llu\n",
1435 subvol_name, subvol_objectid);
1436 ret = -EINVAL;
1437 }
1438 if (ret) {
1439 dput(root);
1440 root = ERR_PTR(ret);
1441 deactivate_locked_super(s);
1442 }
1443 }
1444
1445out:
1446 mntput(mnt);
1447 kfree(newargs);
1448 kfree(subvol_name);
1449 return root;
1450}
1451
1452static int parse_security_options(char *orig_opts,
1453 struct security_mnt_opts *sec_opts)
1454{
1455 char *secdata = NULL;
1456 int ret = 0;
1457
1458 secdata = alloc_secdata();
1459 if (!secdata)
1460 return -ENOMEM;
1461 ret = security_sb_copy_data(orig_opts, secdata);
1462 if (ret) {
1463 free_secdata(secdata);
1464 return ret;
1465 }
1466 ret = security_sb_parse_opts_str(secdata, sec_opts);
1467 free_secdata(secdata);
1468 return ret;
1469}
1470
1471static int setup_security_options(struct btrfs_fs_info *fs_info,
1472 struct super_block *sb,
1473 struct security_mnt_opts *sec_opts)
1474{
1475 int ret = 0;
1476
1477 /*
1478 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1479 * is valid.
1480 */
1481 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1482 if (ret)
1483 return ret;
1484
1485#ifdef CONFIG_SECURITY
1486 if (!fs_info->security_opts.num_mnt_opts) {
1487 /* first time security setup, copy sec_opts to fs_info */
1488 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1489 } else {
1490 /*
1491 * Since SELinux(the only one supports security_mnt_opts) does
1492 * NOT support changing context during remount/mount same sb,
1493 * This must be the same or part of the same security options,
1494 * just free it.
1495 */
1496 security_free_mnt_opts(sec_opts);
1497 }
1498#endif
1499 return ret;
1500}
1501
1502/*
1503 * Find a superblock for the given device / mount point.
1504 *
1505 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1506 * for multiple device setup. Make sure to keep it in sync.
1507 */
1508static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1509 const char *device_name, void *data)
1510{
1511 struct block_device *bdev = NULL;
1512 struct super_block *s;
1513 struct btrfs_fs_devices *fs_devices = NULL;
1514 struct btrfs_fs_info *fs_info = NULL;
1515 struct security_mnt_opts new_sec_opts;
1516 fmode_t mode = FMODE_READ;
1517 char *subvol_name = NULL;
1518 u64 subvol_objectid = 0;
1519 int error = 0;
1520
1521 if (!(flags & MS_RDONLY))
1522 mode |= FMODE_WRITE;
1523
1524 error = btrfs_parse_early_options(data, mode, fs_type,
1525 &subvol_name, &subvol_objectid,
1526 &fs_devices);
1527 if (error) {
1528 kfree(subvol_name);
1529 return ERR_PTR(error);
1530 }
1531
1532 if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1533 /* mount_subvol() will free subvol_name. */
1534 return mount_subvol(subvol_name, subvol_objectid, flags,
1535 device_name, data);
1536 }
1537
1538 security_init_mnt_opts(&new_sec_opts);
1539 if (data) {
1540 error = parse_security_options(data, &new_sec_opts);
1541 if (error)
1542 return ERR_PTR(error);
1543 }
1544
1545 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1546 if (error)
1547 goto error_sec_opts;
1548
1549 /*
1550 * Setup a dummy root and fs_info for test/set super. This is because
1551 * we don't actually fill this stuff out until open_ctree, but we need
1552 * it for searching for existing supers, so this lets us do that and
1553 * then open_ctree will properly initialize everything later.
1554 */
1555 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1556 if (!fs_info) {
1557 error = -ENOMEM;
1558 goto error_sec_opts;
1559 }
1560
1561 fs_info->fs_devices = fs_devices;
1562
1563 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1564 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1565 security_init_mnt_opts(&fs_info->security_opts);
1566 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1567 error = -ENOMEM;
1568 goto error_fs_info;
1569 }
1570
1571 error = btrfs_open_devices(fs_devices, mode, fs_type);
1572 if (error)
1573 goto error_fs_info;
1574
1575 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1576 error = -EACCES;
1577 goto error_close_devices;
1578 }
1579
1580 bdev = fs_devices->latest_bdev;
1581 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1582 fs_info);
1583 if (IS_ERR(s)) {
1584 error = PTR_ERR(s);
1585 goto error_close_devices;
1586 }
1587
1588 if (s->s_root) {
1589 btrfs_close_devices(fs_devices);
1590 free_fs_info(fs_info);
1591 if ((flags ^ s->s_flags) & MS_RDONLY)
1592 error = -EBUSY;
1593 } else {
1594 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1595 btrfs_sb(s)->bdev_holder = fs_type;
1596 error = btrfs_fill_super(s, fs_devices, data,
1597 flags & MS_SILENT ? 1 : 0);
1598 }
1599 if (error) {
1600 deactivate_locked_super(s);
1601 goto error_sec_opts;
1602 }
1603
1604 fs_info = btrfs_sb(s);
1605 error = setup_security_options(fs_info, s, &new_sec_opts);
1606 if (error) {
1607 deactivate_locked_super(s);
1608 goto error_sec_opts;
1609 }
1610
1611 return dget(s->s_root);
1612
1613error_close_devices:
1614 btrfs_close_devices(fs_devices);
1615error_fs_info:
1616 free_fs_info(fs_info);
1617error_sec_opts:
1618 security_free_mnt_opts(&new_sec_opts);
1619 return ERR_PTR(error);
1620}
1621
1622static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1623 int new_pool_size, int old_pool_size)
1624{
1625 if (new_pool_size == old_pool_size)
1626 return;
1627
1628 fs_info->thread_pool_size = new_pool_size;
1629
1630 btrfs_info(fs_info, "resize thread pool %d -> %d",
1631 old_pool_size, new_pool_size);
1632
1633 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1634 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1635 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1636 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1637 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1638 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1639 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1640 new_pool_size);
1641 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1642 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1643 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1644 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1645 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1646 new_pool_size);
1647}
1648
1649static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1650{
1651 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1652}
1653
1654static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1655 unsigned long old_opts, int flags)
1656{
1657 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1658 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1659 (flags & MS_RDONLY))) {
1660 /* wait for any defraggers to finish */
1661 wait_event(fs_info->transaction_wait,
1662 (atomic_read(&fs_info->defrag_running) == 0));
1663 if (flags & MS_RDONLY)
1664 sync_filesystem(fs_info->sb);
1665 }
1666}
1667
1668static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1669 unsigned long old_opts)
1670{
1671 /*
1672 * We need cleanup all defragable inodes if the autodefragment is
1673 * close or the fs is R/O.
1674 */
1675 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1676 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1677 (fs_info->sb->s_flags & MS_RDONLY))) {
1678 btrfs_cleanup_defrag_inodes(fs_info);
1679 }
1680
1681 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1682}
1683
1684static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1685{
1686 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1687 struct btrfs_root *root = fs_info->tree_root;
1688 unsigned old_flags = sb->s_flags;
1689 unsigned long old_opts = fs_info->mount_opt;
1690 unsigned long old_compress_type = fs_info->compress_type;
1691 u64 old_max_inline = fs_info->max_inline;
1692 u64 old_alloc_start = fs_info->alloc_start;
1693 int old_thread_pool_size = fs_info->thread_pool_size;
1694 unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1695 int ret;
1696
1697 sync_filesystem(sb);
1698 btrfs_remount_prepare(fs_info);
1699
1700 if (data) {
1701 struct security_mnt_opts new_sec_opts;
1702
1703 security_init_mnt_opts(&new_sec_opts);
1704 ret = parse_security_options(data, &new_sec_opts);
1705 if (ret)
1706 goto restore;
1707 ret = setup_security_options(fs_info, sb,
1708 &new_sec_opts);
1709 if (ret) {
1710 security_free_mnt_opts(&new_sec_opts);
1711 goto restore;
1712 }
1713 }
1714
1715 ret = btrfs_parse_options(root, data, *flags);
1716 if (ret) {
1717 ret = -EINVAL;
1718 goto restore;
1719 }
1720
1721 btrfs_remount_begin(fs_info, old_opts, *flags);
1722 btrfs_resize_thread_pool(fs_info,
1723 fs_info->thread_pool_size, old_thread_pool_size);
1724
1725 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1726 goto out;
1727
1728 if (*flags & MS_RDONLY) {
1729 /*
1730 * this also happens on 'umount -rf' or on shutdown, when
1731 * the filesystem is busy.
1732 */
1733 cancel_work_sync(&fs_info->async_reclaim_work);
1734
1735 /* wait for the uuid_scan task to finish */
1736 down(&fs_info->uuid_tree_rescan_sem);
1737 /* avoid complains from lockdep et al. */
1738 up(&fs_info->uuid_tree_rescan_sem);
1739
1740 sb->s_flags |= MS_RDONLY;
1741
1742 /*
1743 * Setting MS_RDONLY will put the cleaner thread to
1744 * sleep at the next loop if it's already active.
1745 * If it's already asleep, we'll leave unused block
1746 * groups on disk until we're mounted read-write again
1747 * unless we clean them up here.
1748 */
1749 btrfs_delete_unused_bgs(fs_info);
1750
1751 btrfs_dev_replace_suspend_for_unmount(fs_info);
1752 btrfs_scrub_cancel(fs_info);
1753 btrfs_pause_balance(fs_info);
1754
1755 ret = btrfs_commit_super(root);
1756 if (ret)
1757 goto restore;
1758 } else {
1759 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1760 btrfs_err(fs_info,
1761 "Remounting read-write after error is not allowed");
1762 ret = -EINVAL;
1763 goto restore;
1764 }
1765 if (fs_info->fs_devices->rw_devices == 0) {
1766 ret = -EACCES;
1767 goto restore;
1768 }
1769
1770 if (fs_info->fs_devices->missing_devices >
1771 fs_info->num_tolerated_disk_barrier_failures &&
1772 !(*flags & MS_RDONLY)) {
1773 btrfs_warn(fs_info,
1774 "too many missing devices, writeable remount is not allowed");
1775 ret = -EACCES;
1776 goto restore;
1777 }
1778
1779 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1780 ret = -EINVAL;
1781 goto restore;
1782 }
1783
1784 ret = btrfs_cleanup_fs_roots(fs_info);
1785 if (ret)
1786 goto restore;
1787
1788 /* recover relocation */
1789 mutex_lock(&fs_info->cleaner_mutex);
1790 ret = btrfs_recover_relocation(root);
1791 mutex_unlock(&fs_info->cleaner_mutex);
1792 if (ret)
1793 goto restore;
1794
1795 ret = btrfs_resume_balance_async(fs_info);
1796 if (ret)
1797 goto restore;
1798
1799 ret = btrfs_resume_dev_replace_async(fs_info);
1800 if (ret) {
1801 btrfs_warn(fs_info, "failed to resume dev_replace");
1802 goto restore;
1803 }
1804
1805 if (!fs_info->uuid_root) {
1806 btrfs_info(fs_info, "creating UUID tree");
1807 ret = btrfs_create_uuid_tree(fs_info);
1808 if (ret) {
1809 btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1810 goto restore;
1811 }
1812 }
1813 sb->s_flags &= ~MS_RDONLY;
1814 }
1815out:
1816 wake_up_process(fs_info->transaction_kthread);
1817 btrfs_remount_cleanup(fs_info, old_opts);
1818 return 0;
1819
1820restore:
1821 /* We've hit an error - don't reset MS_RDONLY */
1822 if (sb->s_flags & MS_RDONLY)
1823 old_flags |= MS_RDONLY;
1824 sb->s_flags = old_flags;
1825 fs_info->mount_opt = old_opts;
1826 fs_info->compress_type = old_compress_type;
1827 fs_info->max_inline = old_max_inline;
1828 mutex_lock(&fs_info->chunk_mutex);
1829 fs_info->alloc_start = old_alloc_start;
1830 mutex_unlock(&fs_info->chunk_mutex);
1831 btrfs_resize_thread_pool(fs_info,
1832 old_thread_pool_size, fs_info->thread_pool_size);
1833 fs_info->metadata_ratio = old_metadata_ratio;
1834 btrfs_remount_cleanup(fs_info, old_opts);
1835 return ret;
1836}
1837
1838/* Used to sort the devices by max_avail(descending sort) */
1839static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1840 const void *dev_info2)
1841{
1842 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1843 ((struct btrfs_device_info *)dev_info2)->max_avail)
1844 return -1;
1845 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1846 ((struct btrfs_device_info *)dev_info2)->max_avail)
1847 return 1;
1848 else
1849 return 0;
1850}
1851
1852/*
1853 * sort the devices by max_avail, in which max free extent size of each device
1854 * is stored.(Descending Sort)
1855 */
1856static inline void btrfs_descending_sort_devices(
1857 struct btrfs_device_info *devices,
1858 size_t nr_devices)
1859{
1860 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1861 btrfs_cmp_device_free_bytes, NULL);
1862}
1863
1864/*
1865 * The helper to calc the free space on the devices that can be used to store
1866 * file data.
1867 */
1868static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1869{
1870 struct btrfs_fs_info *fs_info = root->fs_info;
1871 struct btrfs_device_info *devices_info;
1872 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1873 struct btrfs_device *device;
1874 u64 skip_space;
1875 u64 type;
1876 u64 avail_space;
1877 u64 used_space;
1878 u64 min_stripe_size;
1879 int min_stripes = 1, num_stripes = 1;
1880 int i = 0, nr_devices;
1881 int ret;
1882
1883 /*
1884 * We aren't under the device list lock, so this is racey-ish, but good
1885 * enough for our purposes.
1886 */
1887 nr_devices = fs_info->fs_devices->open_devices;
1888 if (!nr_devices) {
1889 smp_mb();
1890 nr_devices = fs_info->fs_devices->open_devices;
1891 ASSERT(nr_devices);
1892 if (!nr_devices) {
1893 *free_bytes = 0;
1894 return 0;
1895 }
1896 }
1897
1898 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1899 GFP_NOFS);
1900 if (!devices_info)
1901 return -ENOMEM;
1902
1903 /* calc min stripe number for data space alloction */
1904 type = btrfs_get_alloc_profile(root, 1);
1905 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1906 min_stripes = 2;
1907 num_stripes = nr_devices;
1908 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1909 min_stripes = 2;
1910 num_stripes = 2;
1911 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1912 min_stripes = 4;
1913 num_stripes = 4;
1914 }
1915
1916 if (type & BTRFS_BLOCK_GROUP_DUP)
1917 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1918 else
1919 min_stripe_size = BTRFS_STRIPE_LEN;
1920
1921 if (fs_info->alloc_start)
1922 mutex_lock(&fs_devices->device_list_mutex);
1923 rcu_read_lock();
1924 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1925 if (!device->in_fs_metadata || !device->bdev ||
1926 device->is_tgtdev_for_dev_replace)
1927 continue;
1928
1929 if (i >= nr_devices)
1930 break;
1931
1932 avail_space = device->total_bytes - device->bytes_used;
1933
1934 /* align with stripe_len */
1935 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
1936 avail_space *= BTRFS_STRIPE_LEN;
1937
1938 /*
1939 * In order to avoid overwritting the superblock on the drive,
1940 * btrfs starts at an offset of at least 1MB when doing chunk
1941 * allocation.
1942 */
1943 skip_space = SZ_1M;
1944
1945 /* user can set the offset in fs_info->alloc_start. */
1946 if (fs_info->alloc_start &&
1947 fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1948 device->total_bytes) {
1949 rcu_read_unlock();
1950 skip_space = max(fs_info->alloc_start, skip_space);
1951
1952 /*
1953 * btrfs can not use the free space in
1954 * [0, skip_space - 1], we must subtract it from the
1955 * total. In order to implement it, we account the used
1956 * space in this range first.
1957 */
1958 ret = btrfs_account_dev_extents_size(device, 0,
1959 skip_space - 1,
1960 &used_space);
1961 if (ret) {
1962 kfree(devices_info);
1963 mutex_unlock(&fs_devices->device_list_mutex);
1964 return ret;
1965 }
1966
1967 rcu_read_lock();
1968
1969 /* calc the free space in [0, skip_space - 1] */
1970 skip_space -= used_space;
1971 }
1972
1973 /*
1974 * we can use the free space in [0, skip_space - 1], subtract
1975 * it from the total.
1976 */
1977 if (avail_space && avail_space >= skip_space)
1978 avail_space -= skip_space;
1979 else
1980 avail_space = 0;
1981
1982 if (avail_space < min_stripe_size)
1983 continue;
1984
1985 devices_info[i].dev = device;
1986 devices_info[i].max_avail = avail_space;
1987
1988 i++;
1989 }
1990 rcu_read_unlock();
1991 if (fs_info->alloc_start)
1992 mutex_unlock(&fs_devices->device_list_mutex);
1993
1994 nr_devices = i;
1995
1996 btrfs_descending_sort_devices(devices_info, nr_devices);
1997
1998 i = nr_devices - 1;
1999 avail_space = 0;
2000 while (nr_devices >= min_stripes) {
2001 if (num_stripes > nr_devices)
2002 num_stripes = nr_devices;
2003
2004 if (devices_info[i].max_avail >= min_stripe_size) {
2005 int j;
2006 u64 alloc_size;
2007
2008 avail_space += devices_info[i].max_avail * num_stripes;
2009 alloc_size = devices_info[i].max_avail;
2010 for (j = i + 1 - num_stripes; j <= i; j++)
2011 devices_info[j].max_avail -= alloc_size;
2012 }
2013 i--;
2014 nr_devices--;
2015 }
2016
2017 kfree(devices_info);
2018 *free_bytes = avail_space;
2019 return 0;
2020}
2021
2022/*
2023 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2024 *
2025 * If there's a redundant raid level at DATA block groups, use the respective
2026 * multiplier to scale the sizes.
2027 *
2028 * Unused device space usage is based on simulating the chunk allocator
2029 * algorithm that respects the device sizes, order of allocations and the
2030 * 'alloc_start' value, this is a close approximation of the actual use but
2031 * there are other factors that may change the result (like a new metadata
2032 * chunk).
2033 *
2034 * If metadata is exhausted, f_bavail will be 0.
2035 *
2036 * FIXME: not accurate for mixed block groups, total and free/used are ok,
2037 * available appears slightly larger.
2038 */
2039static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2040{
2041 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2042 struct btrfs_super_block *disk_super = fs_info->super_copy;
2043 struct list_head *head = &fs_info->space_info;
2044 struct btrfs_space_info *found;
2045 u64 total_used = 0;
2046 u64 total_free_data = 0;
2047 u64 total_free_meta = 0;
2048 int bits = dentry->d_sb->s_blocksize_bits;
2049 __be32 *fsid = (__be32 *)fs_info->fsid;
2050 unsigned factor = 1;
2051 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2052 int ret;
2053 u64 thresh = 0;
2054
2055 /*
2056 * holding chunk_muext to avoid allocating new chunks, holding
2057 * device_list_mutex to avoid the device being removed
2058 */
2059 rcu_read_lock();
2060 list_for_each_entry_rcu(found, head, list) {
2061 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2062 int i;
2063
2064 total_free_data += found->disk_total - found->disk_used;
2065 total_free_data -=
2066 btrfs_account_ro_block_groups_free_space(found);
2067
2068 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2069 if (!list_empty(&found->block_groups[i])) {
2070 switch (i) {
2071 case BTRFS_RAID_DUP:
2072 case BTRFS_RAID_RAID1:
2073 case BTRFS_RAID_RAID10:
2074 factor = 2;
2075 }
2076 }
2077 }
2078 }
2079 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
2080 total_free_meta += found->disk_total - found->disk_used;
2081
2082 total_used += found->disk_used;
2083 }
2084
2085 rcu_read_unlock();
2086
2087 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2088 buf->f_blocks >>= bits;
2089 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2090
2091 /* Account global block reserve as used, it's in logical size already */
2092 spin_lock(&block_rsv->lock);
2093 buf->f_bfree -= block_rsv->size >> bits;
2094 spin_unlock(&block_rsv->lock);
2095
2096 buf->f_bavail = div_u64(total_free_data, factor);
2097 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
2098 if (ret)
2099 return ret;
2100 buf->f_bavail += div_u64(total_free_data, factor);
2101 buf->f_bavail = buf->f_bavail >> bits;
2102
2103 /*
2104 * We calculate the remaining metadata space minus global reserve. If
2105 * this is (supposedly) smaller than zero, there's no space. But this
2106 * does not hold in practice, the exhausted state happens where's still
2107 * some positive delta. So we apply some guesswork and compare the
2108 * delta to a 4M threshold. (Practically observed delta was ~2M.)
2109 *
2110 * We probably cannot calculate the exact threshold value because this
2111 * depends on the internal reservations requested by various
2112 * operations, so some operations that consume a few metadata will
2113 * succeed even if the Avail is zero. But this is better than the other
2114 * way around.
2115 */
2116 thresh = 4 * 1024 * 1024;
2117
2118 if (total_free_meta - thresh < block_rsv->size)
2119 buf->f_bavail = 0;
2120
2121 buf->f_type = BTRFS_SUPER_MAGIC;
2122 buf->f_bsize = dentry->d_sb->s_blocksize;
2123 buf->f_namelen = BTRFS_NAME_LEN;
2124
2125 /* We treat it as constant endianness (it doesn't matter _which_)
2126 because we want the fsid to come out the same whether mounted
2127 on a big-endian or little-endian host */
2128 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2129 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2130 /* Mask in the root object ID too, to disambiguate subvols */
2131 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2132 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2133
2134 return 0;
2135}
2136
2137static void btrfs_kill_super(struct super_block *sb)
2138{
2139 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2140 kill_anon_super(sb);
2141 free_fs_info(fs_info);
2142}
2143
2144static struct file_system_type btrfs_fs_type = {
2145 .owner = THIS_MODULE,
2146 .name = "btrfs",
2147 .mount = btrfs_mount,
2148 .kill_sb = btrfs_kill_super,
2149 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2150};
2151MODULE_ALIAS_FS("btrfs");
2152
2153static int btrfs_control_open(struct inode *inode, struct file *file)
2154{
2155 /*
2156 * The control file's private_data is used to hold the
2157 * transaction when it is started and is used to keep
2158 * track of whether a transaction is already in progress.
2159 */
2160 file->private_data = NULL;
2161 return 0;
2162}
2163
2164/*
2165 * used by btrfsctl to scan devices when no FS is mounted
2166 */
2167static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2168 unsigned long arg)
2169{
2170 struct btrfs_ioctl_vol_args *vol;
2171 struct btrfs_fs_devices *fs_devices;
2172 int ret = -ENOTTY;
2173
2174 if (!capable(CAP_SYS_ADMIN))
2175 return -EPERM;
2176
2177 vol = memdup_user((void __user *)arg, sizeof(*vol));
2178 if (IS_ERR(vol))
2179 return PTR_ERR(vol);
2180
2181 switch (cmd) {
2182 case BTRFS_IOC_SCAN_DEV:
2183 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2184 &btrfs_fs_type, &fs_devices);
2185 break;
2186 case BTRFS_IOC_DEVICES_READY:
2187 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2188 &btrfs_fs_type, &fs_devices);
2189 if (ret)
2190 break;
2191 ret = !(fs_devices->num_devices == fs_devices->total_devices);
2192 break;
2193 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2194 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2195 break;
2196 }
2197
2198 kfree(vol);
2199 return ret;
2200}
2201
2202static int btrfs_freeze(struct super_block *sb)
2203{
2204 struct btrfs_trans_handle *trans;
2205 struct btrfs_root *root = btrfs_sb(sb)->tree_root;
2206
2207 trans = btrfs_attach_transaction_barrier(root);
2208 if (IS_ERR(trans)) {
2209 /* no transaction, don't bother */
2210 if (PTR_ERR(trans) == -ENOENT)
2211 return 0;
2212 return PTR_ERR(trans);
2213 }
2214 return btrfs_commit_transaction(trans, root);
2215}
2216
2217static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2218{
2219 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2220 struct btrfs_fs_devices *cur_devices;
2221 struct btrfs_device *dev, *first_dev = NULL;
2222 struct list_head *head;
2223 struct rcu_string *name;
2224
2225 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2226 cur_devices = fs_info->fs_devices;
2227 while (cur_devices) {
2228 head = &cur_devices->devices;
2229 list_for_each_entry(dev, head, dev_list) {
2230 if (dev->missing)
2231 continue;
2232 if (!dev->name)
2233 continue;
2234 if (!first_dev || dev->devid < first_dev->devid)
2235 first_dev = dev;
2236 }
2237 cur_devices = cur_devices->seed;
2238 }
2239
2240 if (first_dev) {
2241 rcu_read_lock();
2242 name = rcu_dereference(first_dev->name);
2243 seq_escape(m, name->str, " \t\n\\");
2244 rcu_read_unlock();
2245 } else {
2246 WARN_ON(1);
2247 }
2248 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2249 return 0;
2250}
2251
2252static const struct super_operations btrfs_super_ops = {
2253 .drop_inode = btrfs_drop_inode,
2254 .evict_inode = btrfs_evict_inode,
2255 .put_super = btrfs_put_super,
2256 .sync_fs = btrfs_sync_fs,
2257 .show_options = btrfs_show_options,
2258 .show_devname = btrfs_show_devname,
2259 .write_inode = btrfs_write_inode,
2260 .alloc_inode = btrfs_alloc_inode,
2261 .destroy_inode = btrfs_destroy_inode,
2262 .statfs = btrfs_statfs,
2263 .remount_fs = btrfs_remount,
2264 .freeze_fs = btrfs_freeze,
2265};
2266
2267static const struct file_operations btrfs_ctl_fops = {
2268 .open = btrfs_control_open,
2269 .unlocked_ioctl = btrfs_control_ioctl,
2270 .compat_ioctl = btrfs_control_ioctl,
2271 .owner = THIS_MODULE,
2272 .llseek = noop_llseek,
2273};
2274
2275static struct miscdevice btrfs_misc = {
2276 .minor = BTRFS_MINOR,
2277 .name = "btrfs-control",
2278 .fops = &btrfs_ctl_fops
2279};
2280
2281MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2282MODULE_ALIAS("devname:btrfs-control");
2283
2284static int btrfs_interface_init(void)
2285{
2286 return misc_register(&btrfs_misc);
2287}
2288
2289static void btrfs_interface_exit(void)
2290{
2291 misc_deregister(&btrfs_misc);
2292}
2293
2294static void btrfs_print_mod_info(void)
2295{
2296 printk(KERN_INFO "Btrfs loaded"
2297#ifdef CONFIG_BTRFS_DEBUG
2298 ", debug=on"
2299#endif
2300#ifdef CONFIG_BTRFS_ASSERT
2301 ", assert=on"
2302#endif
2303#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2304 ", integrity-checker=on"
2305#endif
2306 "\n");
2307}
2308
2309static int btrfs_run_sanity_tests(void)
2310{
2311 int ret;
2312
2313 ret = btrfs_init_test_fs();
2314 if (ret)
2315 return ret;
2316
2317 ret = btrfs_test_free_space_cache();
2318 if (ret)
2319 goto out;
2320 ret = btrfs_test_extent_buffer_operations();
2321 if (ret)
2322 goto out;
2323 ret = btrfs_test_extent_io();
2324 if (ret)
2325 goto out;
2326 ret = btrfs_test_inodes();
2327 if (ret)
2328 goto out;
2329 ret = btrfs_test_qgroups();
2330 if (ret)
2331 goto out;
2332 ret = btrfs_test_free_space_tree();
2333out:
2334 btrfs_destroy_test_fs();
2335 return ret;
2336}
2337
2338static int __init init_btrfs_fs(void)
2339{
2340 int err;
2341
2342 err = btrfs_hash_init();
2343 if (err)
2344 return err;
2345
2346 btrfs_props_init();
2347
2348 err = btrfs_init_sysfs();
2349 if (err)
2350 goto free_hash;
2351
2352 btrfs_init_compress();
2353
2354 err = btrfs_init_cachep();
2355 if (err)
2356 goto free_compress;
2357
2358 err = extent_io_init();
2359 if (err)
2360 goto free_cachep;
2361
2362 err = extent_map_init();
2363 if (err)
2364 goto free_extent_io;
2365
2366 err = ordered_data_init();
2367 if (err)
2368 goto free_extent_map;
2369
2370 err = btrfs_delayed_inode_init();
2371 if (err)
2372 goto free_ordered_data;
2373
2374 err = btrfs_auto_defrag_init();
2375 if (err)
2376 goto free_delayed_inode;
2377
2378 err = btrfs_delayed_ref_init();
2379 if (err)
2380 goto free_auto_defrag;
2381
2382 err = btrfs_prelim_ref_init();
2383 if (err)
2384 goto free_delayed_ref;
2385
2386 err = btrfs_end_io_wq_init();
2387 if (err)
2388 goto free_prelim_ref;
2389
2390 err = btrfs_interface_init();
2391 if (err)
2392 goto free_end_io_wq;
2393
2394 btrfs_init_lockdep();
2395
2396 btrfs_print_mod_info();
2397
2398 err = btrfs_run_sanity_tests();
2399 if (err)
2400 goto unregister_ioctl;
2401
2402 err = register_filesystem(&btrfs_fs_type);
2403 if (err)
2404 goto unregister_ioctl;
2405
2406 return 0;
2407
2408unregister_ioctl:
2409 btrfs_interface_exit();
2410free_end_io_wq:
2411 btrfs_end_io_wq_exit();
2412free_prelim_ref:
2413 btrfs_prelim_ref_exit();
2414free_delayed_ref:
2415 btrfs_delayed_ref_exit();
2416free_auto_defrag:
2417 btrfs_auto_defrag_exit();
2418free_delayed_inode:
2419 btrfs_delayed_inode_exit();
2420free_ordered_data:
2421 ordered_data_exit();
2422free_extent_map:
2423 extent_map_exit();
2424free_extent_io:
2425 extent_io_exit();
2426free_cachep:
2427 btrfs_destroy_cachep();
2428free_compress:
2429 btrfs_exit_compress();
2430 btrfs_exit_sysfs();
2431free_hash:
2432 btrfs_hash_exit();
2433 return err;
2434}
2435
2436static void __exit exit_btrfs_fs(void)
2437{
2438 btrfs_destroy_cachep();
2439 btrfs_delayed_ref_exit();
2440 btrfs_auto_defrag_exit();
2441 btrfs_delayed_inode_exit();
2442 btrfs_prelim_ref_exit();
2443 ordered_data_exit();
2444 extent_map_exit();
2445 extent_io_exit();
2446 btrfs_interface_exit();
2447 btrfs_end_io_wq_exit();
2448 unregister_filesystem(&btrfs_fs_type);
2449 btrfs_exit_sysfs();
2450 btrfs_cleanup_fs_uuids();
2451 btrfs_exit_compress();
2452 btrfs_hash_exit();
2453}
2454
2455late_initcall(init_btrfs_fs);
2456module_exit(exit_btrfs_fs)
2457
2458MODULE_LICENSE("GPL");