Loading...
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/buffer_head.h>
22#include <linux/file.h>
23#include <linux/fs.h>
24#include <linux/fsnotify.h>
25#include <linux/pagemap.h>
26#include <linux/highmem.h>
27#include <linux/time.h>
28#include <linux/init.h>
29#include <linux/string.h>
30#include <linux/backing-dev.h>
31#include <linux/mount.h>
32#include <linux/mpage.h>
33#include <linux/namei.h>
34#include <linux/swap.h>
35#include <linux/writeback.h>
36#include <linux/statfs.h>
37#include <linux/compat.h>
38#include <linux/bit_spinlock.h>
39#include <linux/security.h>
40#include <linux/xattr.h>
41#include <linux/vmalloc.h>
42#include <linux/slab.h>
43#include <linux/blkdev.h>
44#include "compat.h"
45#include "ctree.h"
46#include "disk-io.h"
47#include "transaction.h"
48#include "btrfs_inode.h"
49#include "ioctl.h"
50#include "print-tree.h"
51#include "volumes.h"
52#include "locking.h"
53#include "inode-map.h"
54#include "backref.h"
55#include "rcu-string.h"
56
57/* Mask out flags that are inappropriate for the given type of inode. */
58static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
59{
60 if (S_ISDIR(mode))
61 return flags;
62 else if (S_ISREG(mode))
63 return flags & ~FS_DIRSYNC_FL;
64 else
65 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
66}
67
68/*
69 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
70 */
71static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
72{
73 unsigned int iflags = 0;
74
75 if (flags & BTRFS_INODE_SYNC)
76 iflags |= FS_SYNC_FL;
77 if (flags & BTRFS_INODE_IMMUTABLE)
78 iflags |= FS_IMMUTABLE_FL;
79 if (flags & BTRFS_INODE_APPEND)
80 iflags |= FS_APPEND_FL;
81 if (flags & BTRFS_INODE_NODUMP)
82 iflags |= FS_NODUMP_FL;
83 if (flags & BTRFS_INODE_NOATIME)
84 iflags |= FS_NOATIME_FL;
85 if (flags & BTRFS_INODE_DIRSYNC)
86 iflags |= FS_DIRSYNC_FL;
87 if (flags & BTRFS_INODE_NODATACOW)
88 iflags |= FS_NOCOW_FL;
89
90 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
91 iflags |= FS_COMPR_FL;
92 else if (flags & BTRFS_INODE_NOCOMPRESS)
93 iflags |= FS_NOCOMP_FL;
94
95 return iflags;
96}
97
98/*
99 * Update inode->i_flags based on the btrfs internal flags.
100 */
101void btrfs_update_iflags(struct inode *inode)
102{
103 struct btrfs_inode *ip = BTRFS_I(inode);
104
105 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
106
107 if (ip->flags & BTRFS_INODE_SYNC)
108 inode->i_flags |= S_SYNC;
109 if (ip->flags & BTRFS_INODE_IMMUTABLE)
110 inode->i_flags |= S_IMMUTABLE;
111 if (ip->flags & BTRFS_INODE_APPEND)
112 inode->i_flags |= S_APPEND;
113 if (ip->flags & BTRFS_INODE_NOATIME)
114 inode->i_flags |= S_NOATIME;
115 if (ip->flags & BTRFS_INODE_DIRSYNC)
116 inode->i_flags |= S_DIRSYNC;
117}
118
119/*
120 * Inherit flags from the parent inode.
121 *
122 * Currently only the compression flags and the cow flags are inherited.
123 */
124void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
125{
126 unsigned int flags;
127
128 if (!dir)
129 return;
130
131 flags = BTRFS_I(dir)->flags;
132
133 if (flags & BTRFS_INODE_NOCOMPRESS) {
134 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
135 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
136 } else if (flags & BTRFS_INODE_COMPRESS) {
137 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
138 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
139 }
140
141 if (flags & BTRFS_INODE_NODATACOW)
142 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
143
144 btrfs_update_iflags(inode);
145}
146
147static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
148{
149 struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
150 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
151
152 if (copy_to_user(arg, &flags, sizeof(flags)))
153 return -EFAULT;
154 return 0;
155}
156
157static int check_flags(unsigned int flags)
158{
159 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
160 FS_NOATIME_FL | FS_NODUMP_FL | \
161 FS_SYNC_FL | FS_DIRSYNC_FL | \
162 FS_NOCOMP_FL | FS_COMPR_FL |
163 FS_NOCOW_FL))
164 return -EOPNOTSUPP;
165
166 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
167 return -EINVAL;
168
169 return 0;
170}
171
172static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
173{
174 struct inode *inode = file->f_path.dentry->d_inode;
175 struct btrfs_inode *ip = BTRFS_I(inode);
176 struct btrfs_root *root = ip->root;
177 struct btrfs_trans_handle *trans;
178 unsigned int flags, oldflags;
179 int ret;
180 u64 ip_oldflags;
181 unsigned int i_oldflags;
182
183 if (btrfs_root_readonly(root))
184 return -EROFS;
185
186 if (copy_from_user(&flags, arg, sizeof(flags)))
187 return -EFAULT;
188
189 ret = check_flags(flags);
190 if (ret)
191 return ret;
192
193 if (!inode_owner_or_capable(inode))
194 return -EACCES;
195
196 mutex_lock(&inode->i_mutex);
197
198 ip_oldflags = ip->flags;
199 i_oldflags = inode->i_flags;
200
201 flags = btrfs_mask_flags(inode->i_mode, flags);
202 oldflags = btrfs_flags_to_ioctl(ip->flags);
203 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
204 if (!capable(CAP_LINUX_IMMUTABLE)) {
205 ret = -EPERM;
206 goto out_unlock;
207 }
208 }
209
210 ret = mnt_want_write_file(file);
211 if (ret)
212 goto out_unlock;
213
214 if (flags & FS_SYNC_FL)
215 ip->flags |= BTRFS_INODE_SYNC;
216 else
217 ip->flags &= ~BTRFS_INODE_SYNC;
218 if (flags & FS_IMMUTABLE_FL)
219 ip->flags |= BTRFS_INODE_IMMUTABLE;
220 else
221 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
222 if (flags & FS_APPEND_FL)
223 ip->flags |= BTRFS_INODE_APPEND;
224 else
225 ip->flags &= ~BTRFS_INODE_APPEND;
226 if (flags & FS_NODUMP_FL)
227 ip->flags |= BTRFS_INODE_NODUMP;
228 else
229 ip->flags &= ~BTRFS_INODE_NODUMP;
230 if (flags & FS_NOATIME_FL)
231 ip->flags |= BTRFS_INODE_NOATIME;
232 else
233 ip->flags &= ~BTRFS_INODE_NOATIME;
234 if (flags & FS_DIRSYNC_FL)
235 ip->flags |= BTRFS_INODE_DIRSYNC;
236 else
237 ip->flags &= ~BTRFS_INODE_DIRSYNC;
238 if (flags & FS_NOCOW_FL)
239 ip->flags |= BTRFS_INODE_NODATACOW;
240 else
241 ip->flags &= ~BTRFS_INODE_NODATACOW;
242
243 /*
244 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
245 * flag may be changed automatically if compression code won't make
246 * things smaller.
247 */
248 if (flags & FS_NOCOMP_FL) {
249 ip->flags &= ~BTRFS_INODE_COMPRESS;
250 ip->flags |= BTRFS_INODE_NOCOMPRESS;
251 } else if (flags & FS_COMPR_FL) {
252 ip->flags |= BTRFS_INODE_COMPRESS;
253 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
254 } else {
255 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
256 }
257
258 trans = btrfs_start_transaction(root, 1);
259 if (IS_ERR(trans)) {
260 ret = PTR_ERR(trans);
261 goto out_drop;
262 }
263
264 btrfs_update_iflags(inode);
265 inode_inc_iversion(inode);
266 inode->i_ctime = CURRENT_TIME;
267 ret = btrfs_update_inode(trans, root, inode);
268
269 btrfs_end_transaction(trans, root);
270 out_drop:
271 if (ret) {
272 ip->flags = ip_oldflags;
273 inode->i_flags = i_oldflags;
274 }
275
276 mnt_drop_write_file(file);
277 out_unlock:
278 mutex_unlock(&inode->i_mutex);
279 return ret;
280}
281
282static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
283{
284 struct inode *inode = file->f_path.dentry->d_inode;
285
286 return put_user(inode->i_generation, arg);
287}
288
289static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
290{
291 struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb);
292 struct btrfs_device *device;
293 struct request_queue *q;
294 struct fstrim_range range;
295 u64 minlen = ULLONG_MAX;
296 u64 num_devices = 0;
297 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
298 int ret;
299
300 if (!capable(CAP_SYS_ADMIN))
301 return -EPERM;
302
303 rcu_read_lock();
304 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
305 dev_list) {
306 if (!device->bdev)
307 continue;
308 q = bdev_get_queue(device->bdev);
309 if (blk_queue_discard(q)) {
310 num_devices++;
311 minlen = min((u64)q->limits.discard_granularity,
312 minlen);
313 }
314 }
315 rcu_read_unlock();
316
317 if (!num_devices)
318 return -EOPNOTSUPP;
319 if (copy_from_user(&range, arg, sizeof(range)))
320 return -EFAULT;
321 if (range.start > total_bytes)
322 return -EINVAL;
323
324 range.len = min(range.len, total_bytes - range.start);
325 range.minlen = max(range.minlen, minlen);
326 ret = btrfs_trim_fs(fs_info->tree_root, &range);
327 if (ret < 0)
328 return ret;
329
330 if (copy_to_user(arg, &range, sizeof(range)))
331 return -EFAULT;
332
333 return 0;
334}
335
336static noinline int create_subvol(struct btrfs_root *root,
337 struct dentry *dentry,
338 char *name, int namelen,
339 u64 *async_transid)
340{
341 struct btrfs_trans_handle *trans;
342 struct btrfs_key key;
343 struct btrfs_root_item root_item;
344 struct btrfs_inode_item *inode_item;
345 struct extent_buffer *leaf;
346 struct btrfs_root *new_root;
347 struct dentry *parent = dentry->d_parent;
348 struct inode *dir;
349 int ret;
350 int err;
351 u64 objectid;
352 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
353 u64 index = 0;
354
355 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
356 if (ret)
357 return ret;
358
359 dir = parent->d_inode;
360
361 /*
362 * 1 - inode item
363 * 2 - refs
364 * 1 - root item
365 * 2 - dir items
366 */
367 trans = btrfs_start_transaction(root, 6);
368 if (IS_ERR(trans))
369 return PTR_ERR(trans);
370
371 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
372 0, objectid, NULL, 0, 0, 0);
373 if (IS_ERR(leaf)) {
374 ret = PTR_ERR(leaf);
375 goto fail;
376 }
377
378 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
379 btrfs_set_header_bytenr(leaf, leaf->start);
380 btrfs_set_header_generation(leaf, trans->transid);
381 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
382 btrfs_set_header_owner(leaf, objectid);
383
384 write_extent_buffer(leaf, root->fs_info->fsid,
385 (unsigned long)btrfs_header_fsid(leaf),
386 BTRFS_FSID_SIZE);
387 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
388 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
389 BTRFS_UUID_SIZE);
390 btrfs_mark_buffer_dirty(leaf);
391
392 inode_item = &root_item.inode;
393 memset(inode_item, 0, sizeof(*inode_item));
394 inode_item->generation = cpu_to_le64(1);
395 inode_item->size = cpu_to_le64(3);
396 inode_item->nlink = cpu_to_le32(1);
397 inode_item->nbytes = cpu_to_le64(root->leafsize);
398 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
399
400 root_item.flags = 0;
401 root_item.byte_limit = 0;
402 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
403
404 btrfs_set_root_bytenr(&root_item, leaf->start);
405 btrfs_set_root_generation(&root_item, trans->transid);
406 btrfs_set_root_level(&root_item, 0);
407 btrfs_set_root_refs(&root_item, 1);
408 btrfs_set_root_used(&root_item, leaf->len);
409 btrfs_set_root_last_snapshot(&root_item, 0);
410
411 memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
412 root_item.drop_level = 0;
413
414 btrfs_tree_unlock(leaf);
415 free_extent_buffer(leaf);
416 leaf = NULL;
417
418 btrfs_set_root_dirid(&root_item, new_dirid);
419
420 key.objectid = objectid;
421 key.offset = 0;
422 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
423 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
424 &root_item);
425 if (ret)
426 goto fail;
427
428 key.offset = (u64)-1;
429 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
430 if (IS_ERR(new_root)) {
431 btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
432 ret = PTR_ERR(new_root);
433 goto fail;
434 }
435
436 btrfs_record_root_in_trans(trans, new_root);
437
438 ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
439 if (ret) {
440 /* We potentially lose an unused inode item here */
441 btrfs_abort_transaction(trans, root, ret);
442 goto fail;
443 }
444
445 /*
446 * insert the directory item
447 */
448 ret = btrfs_set_inode_index(dir, &index);
449 if (ret) {
450 btrfs_abort_transaction(trans, root, ret);
451 goto fail;
452 }
453
454 ret = btrfs_insert_dir_item(trans, root,
455 name, namelen, dir, &key,
456 BTRFS_FT_DIR, index);
457 if (ret) {
458 btrfs_abort_transaction(trans, root, ret);
459 goto fail;
460 }
461
462 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
463 ret = btrfs_update_inode(trans, root, dir);
464 BUG_ON(ret);
465
466 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
467 objectid, root->root_key.objectid,
468 btrfs_ino(dir), index, name, namelen);
469
470 BUG_ON(ret);
471
472 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
473fail:
474 if (async_transid) {
475 *async_transid = trans->transid;
476 err = btrfs_commit_transaction_async(trans, root, 1);
477 } else {
478 err = btrfs_commit_transaction(trans, root);
479 }
480 if (err && !ret)
481 ret = err;
482 return ret;
483}
484
485static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
486 char *name, int namelen, u64 *async_transid,
487 bool readonly)
488{
489 struct inode *inode;
490 struct btrfs_pending_snapshot *pending_snapshot;
491 struct btrfs_trans_handle *trans;
492 int ret;
493
494 if (!root->ref_cows)
495 return -EINVAL;
496
497 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
498 if (!pending_snapshot)
499 return -ENOMEM;
500
501 btrfs_init_block_rsv(&pending_snapshot->block_rsv);
502 pending_snapshot->dentry = dentry;
503 pending_snapshot->root = root;
504 pending_snapshot->readonly = readonly;
505
506 trans = btrfs_start_transaction(root->fs_info->extent_root, 5);
507 if (IS_ERR(trans)) {
508 ret = PTR_ERR(trans);
509 goto fail;
510 }
511
512 ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
513 BUG_ON(ret);
514
515 spin_lock(&root->fs_info->trans_lock);
516 list_add(&pending_snapshot->list,
517 &trans->transaction->pending_snapshots);
518 spin_unlock(&root->fs_info->trans_lock);
519 if (async_transid) {
520 *async_transid = trans->transid;
521 ret = btrfs_commit_transaction_async(trans,
522 root->fs_info->extent_root, 1);
523 } else {
524 ret = btrfs_commit_transaction(trans,
525 root->fs_info->extent_root);
526 }
527 BUG_ON(ret);
528
529 ret = pending_snapshot->error;
530 if (ret)
531 goto fail;
532
533 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
534 if (ret)
535 goto fail;
536
537 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
538 if (IS_ERR(inode)) {
539 ret = PTR_ERR(inode);
540 goto fail;
541 }
542 BUG_ON(!inode);
543 d_instantiate(dentry, inode);
544 ret = 0;
545fail:
546 kfree(pending_snapshot);
547 return ret;
548}
549
550/* copy of check_sticky in fs/namei.c()
551* It's inline, so penalty for filesystems that don't use sticky bit is
552* minimal.
553*/
554static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
555{
556 uid_t fsuid = current_fsuid();
557
558 if (!(dir->i_mode & S_ISVTX))
559 return 0;
560 if (inode->i_uid == fsuid)
561 return 0;
562 if (dir->i_uid == fsuid)
563 return 0;
564 return !capable(CAP_FOWNER);
565}
566
567/* copy of may_delete in fs/namei.c()
568 * Check whether we can remove a link victim from directory dir, check
569 * whether the type of victim is right.
570 * 1. We can't do it if dir is read-only (done in permission())
571 * 2. We should have write and exec permissions on dir
572 * 3. We can't remove anything from append-only dir
573 * 4. We can't do anything with immutable dir (done in permission())
574 * 5. If the sticky bit on dir is set we should either
575 * a. be owner of dir, or
576 * b. be owner of victim, or
577 * c. have CAP_FOWNER capability
578 * 6. If the victim is append-only or immutable we can't do antyhing with
579 * links pointing to it.
580 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
581 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
582 * 9. We can't remove a root or mountpoint.
583 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
584 * nfs_async_unlink().
585 */
586
587static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
588{
589 int error;
590
591 if (!victim->d_inode)
592 return -ENOENT;
593
594 BUG_ON(victim->d_parent->d_inode != dir);
595 audit_inode_child(victim, dir);
596
597 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
598 if (error)
599 return error;
600 if (IS_APPEND(dir))
601 return -EPERM;
602 if (btrfs_check_sticky(dir, victim->d_inode)||
603 IS_APPEND(victim->d_inode)||
604 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
605 return -EPERM;
606 if (isdir) {
607 if (!S_ISDIR(victim->d_inode->i_mode))
608 return -ENOTDIR;
609 if (IS_ROOT(victim))
610 return -EBUSY;
611 } else if (S_ISDIR(victim->d_inode->i_mode))
612 return -EISDIR;
613 if (IS_DEADDIR(dir))
614 return -ENOENT;
615 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
616 return -EBUSY;
617 return 0;
618}
619
620/* copy of may_create in fs/namei.c() */
621static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
622{
623 if (child->d_inode)
624 return -EEXIST;
625 if (IS_DEADDIR(dir))
626 return -ENOENT;
627 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
628}
629
630/*
631 * Create a new subvolume below @parent. This is largely modeled after
632 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
633 * inside this filesystem so it's quite a bit simpler.
634 */
635static noinline int btrfs_mksubvol(struct path *parent,
636 char *name, int namelen,
637 struct btrfs_root *snap_src,
638 u64 *async_transid, bool readonly)
639{
640 struct inode *dir = parent->dentry->d_inode;
641 struct dentry *dentry;
642 int error;
643
644 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
645
646 dentry = lookup_one_len(name, parent->dentry, namelen);
647 error = PTR_ERR(dentry);
648 if (IS_ERR(dentry))
649 goto out_unlock;
650
651 error = -EEXIST;
652 if (dentry->d_inode)
653 goto out_dput;
654
655 error = mnt_want_write(parent->mnt);
656 if (error)
657 goto out_dput;
658
659 error = btrfs_may_create(dir, dentry);
660 if (error)
661 goto out_drop_write;
662
663 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
664
665 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
666 goto out_up_read;
667
668 if (snap_src) {
669 error = create_snapshot(snap_src, dentry,
670 name, namelen, async_transid, readonly);
671 } else {
672 error = create_subvol(BTRFS_I(dir)->root, dentry,
673 name, namelen, async_transid);
674 }
675 if (!error)
676 fsnotify_mkdir(dir, dentry);
677out_up_read:
678 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
679out_drop_write:
680 mnt_drop_write(parent->mnt);
681out_dput:
682 dput(dentry);
683out_unlock:
684 mutex_unlock(&dir->i_mutex);
685 return error;
686}
687
688/*
689 * When we're defragging a range, we don't want to kick it off again
690 * if it is really just waiting for delalloc to send it down.
691 * If we find a nice big extent or delalloc range for the bytes in the
692 * file you want to defrag, we return 0 to let you know to skip this
693 * part of the file
694 */
695static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
696{
697 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
698 struct extent_map *em = NULL;
699 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
700 u64 end;
701
702 read_lock(&em_tree->lock);
703 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
704 read_unlock(&em_tree->lock);
705
706 if (em) {
707 end = extent_map_end(em);
708 free_extent_map(em);
709 if (end - offset > thresh)
710 return 0;
711 }
712 /* if we already have a nice delalloc here, just stop */
713 thresh /= 2;
714 end = count_range_bits(io_tree, &offset, offset + thresh,
715 thresh, EXTENT_DELALLOC, 1);
716 if (end >= thresh)
717 return 0;
718 return 1;
719}
720
721/*
722 * helper function to walk through a file and find extents
723 * newer than a specific transid, and smaller than thresh.
724 *
725 * This is used by the defragging code to find new and small
726 * extents
727 */
728static int find_new_extents(struct btrfs_root *root,
729 struct inode *inode, u64 newer_than,
730 u64 *off, int thresh)
731{
732 struct btrfs_path *path;
733 struct btrfs_key min_key;
734 struct btrfs_key max_key;
735 struct extent_buffer *leaf;
736 struct btrfs_file_extent_item *extent;
737 int type;
738 int ret;
739 u64 ino = btrfs_ino(inode);
740
741 path = btrfs_alloc_path();
742 if (!path)
743 return -ENOMEM;
744
745 min_key.objectid = ino;
746 min_key.type = BTRFS_EXTENT_DATA_KEY;
747 min_key.offset = *off;
748
749 max_key.objectid = ino;
750 max_key.type = (u8)-1;
751 max_key.offset = (u64)-1;
752
753 path->keep_locks = 1;
754
755 while(1) {
756 ret = btrfs_search_forward(root, &min_key, &max_key,
757 path, 0, newer_than);
758 if (ret != 0)
759 goto none;
760 if (min_key.objectid != ino)
761 goto none;
762 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
763 goto none;
764
765 leaf = path->nodes[0];
766 extent = btrfs_item_ptr(leaf, path->slots[0],
767 struct btrfs_file_extent_item);
768
769 type = btrfs_file_extent_type(leaf, extent);
770 if (type == BTRFS_FILE_EXTENT_REG &&
771 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
772 check_defrag_in_cache(inode, min_key.offset, thresh)) {
773 *off = min_key.offset;
774 btrfs_free_path(path);
775 return 0;
776 }
777
778 if (min_key.offset == (u64)-1)
779 goto none;
780
781 min_key.offset++;
782 btrfs_release_path(path);
783 }
784none:
785 btrfs_free_path(path);
786 return -ENOENT;
787}
788
789static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
790{
791 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
792 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
793 struct extent_map *em;
794 u64 len = PAGE_CACHE_SIZE;
795
796 /*
797 * hopefully we have this extent in the tree already, try without
798 * the full extent lock
799 */
800 read_lock(&em_tree->lock);
801 em = lookup_extent_mapping(em_tree, start, len);
802 read_unlock(&em_tree->lock);
803
804 if (!em) {
805 /* get the big lock and read metadata off disk */
806 lock_extent(io_tree, start, start + len - 1);
807 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
808 unlock_extent(io_tree, start, start + len - 1);
809
810 if (IS_ERR(em))
811 return NULL;
812 }
813
814 return em;
815}
816
817static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
818{
819 struct extent_map *next;
820 bool ret = true;
821
822 /* this is the last extent */
823 if (em->start + em->len >= i_size_read(inode))
824 return false;
825
826 next = defrag_lookup_extent(inode, em->start + em->len);
827 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
828 ret = false;
829
830 free_extent_map(next);
831 return ret;
832}
833
834static int should_defrag_range(struct inode *inode, u64 start, int thresh,
835 u64 *last_len, u64 *skip, u64 *defrag_end)
836{
837 struct extent_map *em;
838 int ret = 1;
839 bool next_mergeable = true;
840
841 /*
842 * make sure that once we start defragging an extent, we keep on
843 * defragging it
844 */
845 if (start < *defrag_end)
846 return 1;
847
848 *skip = 0;
849
850 em = defrag_lookup_extent(inode, start);
851 if (!em)
852 return 0;
853
854 /* this will cover holes, and inline extents */
855 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
856 ret = 0;
857 goto out;
858 }
859
860 next_mergeable = defrag_check_next_extent(inode, em);
861
862 /*
863 * we hit a real extent, if it is big or the next extent is not a
864 * real extent, don't bother defragging it
865 */
866 if ((*last_len == 0 || *last_len >= thresh) &&
867 (em->len >= thresh || !next_mergeable))
868 ret = 0;
869out:
870 /*
871 * last_len ends up being a counter of how many bytes we've defragged.
872 * every time we choose not to defrag an extent, we reset *last_len
873 * so that the next tiny extent will force a defrag.
874 *
875 * The end result of this is that tiny extents before a single big
876 * extent will force at least part of that big extent to be defragged.
877 */
878 if (ret) {
879 *defrag_end = extent_map_end(em);
880 } else {
881 *last_len = 0;
882 *skip = extent_map_end(em);
883 *defrag_end = 0;
884 }
885
886 free_extent_map(em);
887 return ret;
888}
889
890/*
891 * it doesn't do much good to defrag one or two pages
892 * at a time. This pulls in a nice chunk of pages
893 * to COW and defrag.
894 *
895 * It also makes sure the delalloc code has enough
896 * dirty data to avoid making new small extents as part
897 * of the defrag
898 *
899 * It's a good idea to start RA on this range
900 * before calling this.
901 */
902static int cluster_pages_for_defrag(struct inode *inode,
903 struct page **pages,
904 unsigned long start_index,
905 int num_pages)
906{
907 unsigned long file_end;
908 u64 isize = i_size_read(inode);
909 u64 page_start;
910 u64 page_end;
911 u64 page_cnt;
912 int ret;
913 int i;
914 int i_done;
915 struct btrfs_ordered_extent *ordered;
916 struct extent_state *cached_state = NULL;
917 struct extent_io_tree *tree;
918 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
919
920 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
921 if (!isize || start_index > file_end)
922 return 0;
923
924 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
925
926 ret = btrfs_delalloc_reserve_space(inode,
927 page_cnt << PAGE_CACHE_SHIFT);
928 if (ret)
929 return ret;
930 i_done = 0;
931 tree = &BTRFS_I(inode)->io_tree;
932
933 /* step one, lock all the pages */
934 for (i = 0; i < page_cnt; i++) {
935 struct page *page;
936again:
937 page = find_or_create_page(inode->i_mapping,
938 start_index + i, mask);
939 if (!page)
940 break;
941
942 page_start = page_offset(page);
943 page_end = page_start + PAGE_CACHE_SIZE - 1;
944 while (1) {
945 lock_extent(tree, page_start, page_end);
946 ordered = btrfs_lookup_ordered_extent(inode,
947 page_start);
948 unlock_extent(tree, page_start, page_end);
949 if (!ordered)
950 break;
951
952 unlock_page(page);
953 btrfs_start_ordered_extent(inode, ordered, 1);
954 btrfs_put_ordered_extent(ordered);
955 lock_page(page);
956 /*
957 * we unlocked the page above, so we need check if
958 * it was released or not.
959 */
960 if (page->mapping != inode->i_mapping) {
961 unlock_page(page);
962 page_cache_release(page);
963 goto again;
964 }
965 }
966
967 if (!PageUptodate(page)) {
968 btrfs_readpage(NULL, page);
969 lock_page(page);
970 if (!PageUptodate(page)) {
971 unlock_page(page);
972 page_cache_release(page);
973 ret = -EIO;
974 break;
975 }
976 }
977
978 if (page->mapping != inode->i_mapping) {
979 unlock_page(page);
980 page_cache_release(page);
981 goto again;
982 }
983
984 pages[i] = page;
985 i_done++;
986 }
987 if (!i_done || ret)
988 goto out;
989
990 if (!(inode->i_sb->s_flags & MS_ACTIVE))
991 goto out;
992
993 /*
994 * so now we have a nice long stream of locked
995 * and up to date pages, lets wait on them
996 */
997 for (i = 0; i < i_done; i++)
998 wait_on_page_writeback(pages[i]);
999
1000 page_start = page_offset(pages[0]);
1001 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1002
1003 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1004 page_start, page_end - 1, 0, &cached_state);
1005 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1006 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1007 EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
1008 GFP_NOFS);
1009
1010 if (i_done != page_cnt) {
1011 spin_lock(&BTRFS_I(inode)->lock);
1012 BTRFS_I(inode)->outstanding_extents++;
1013 spin_unlock(&BTRFS_I(inode)->lock);
1014 btrfs_delalloc_release_space(inode,
1015 (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1016 }
1017
1018
1019 btrfs_set_extent_delalloc(inode, page_start, page_end - 1,
1020 &cached_state);
1021
1022 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1023 page_start, page_end - 1, &cached_state,
1024 GFP_NOFS);
1025
1026 for (i = 0; i < i_done; i++) {
1027 clear_page_dirty_for_io(pages[i]);
1028 ClearPageChecked(pages[i]);
1029 set_page_extent_mapped(pages[i]);
1030 set_page_dirty(pages[i]);
1031 unlock_page(pages[i]);
1032 page_cache_release(pages[i]);
1033 }
1034 return i_done;
1035out:
1036 for (i = 0; i < i_done; i++) {
1037 unlock_page(pages[i]);
1038 page_cache_release(pages[i]);
1039 }
1040 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1041 return ret;
1042
1043}
1044
1045int btrfs_defrag_file(struct inode *inode, struct file *file,
1046 struct btrfs_ioctl_defrag_range_args *range,
1047 u64 newer_than, unsigned long max_to_defrag)
1048{
1049 struct btrfs_root *root = BTRFS_I(inode)->root;
1050 struct btrfs_super_block *disk_super;
1051 struct file_ra_state *ra = NULL;
1052 unsigned long last_index;
1053 u64 isize = i_size_read(inode);
1054 u64 features;
1055 u64 last_len = 0;
1056 u64 skip = 0;
1057 u64 defrag_end = 0;
1058 u64 newer_off = range->start;
1059 unsigned long i;
1060 unsigned long ra_index = 0;
1061 int ret;
1062 int defrag_count = 0;
1063 int compress_type = BTRFS_COMPRESS_ZLIB;
1064 int extent_thresh = range->extent_thresh;
1065 int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1066 int cluster = max_cluster;
1067 u64 new_align = ~((u64)128 * 1024 - 1);
1068 struct page **pages = NULL;
1069
1070 if (extent_thresh == 0)
1071 extent_thresh = 256 * 1024;
1072
1073 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1074 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1075 return -EINVAL;
1076 if (range->compress_type)
1077 compress_type = range->compress_type;
1078 }
1079
1080 if (isize == 0)
1081 return 0;
1082
1083 /*
1084 * if we were not given a file, allocate a readahead
1085 * context
1086 */
1087 if (!file) {
1088 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1089 if (!ra)
1090 return -ENOMEM;
1091 file_ra_state_init(ra, inode->i_mapping);
1092 } else {
1093 ra = &file->f_ra;
1094 }
1095
1096 pages = kmalloc(sizeof(struct page *) * max_cluster,
1097 GFP_NOFS);
1098 if (!pages) {
1099 ret = -ENOMEM;
1100 goto out_ra;
1101 }
1102
1103 /* find the last page to defrag */
1104 if (range->start + range->len > range->start) {
1105 last_index = min_t(u64, isize - 1,
1106 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1107 } else {
1108 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1109 }
1110
1111 if (newer_than) {
1112 ret = find_new_extents(root, inode, newer_than,
1113 &newer_off, 64 * 1024);
1114 if (!ret) {
1115 range->start = newer_off;
1116 /*
1117 * we always align our defrag to help keep
1118 * the extents in the file evenly spaced
1119 */
1120 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1121 } else
1122 goto out_ra;
1123 } else {
1124 i = range->start >> PAGE_CACHE_SHIFT;
1125 }
1126 if (!max_to_defrag)
1127 max_to_defrag = last_index + 1;
1128
1129 /*
1130 * make writeback starts from i, so the defrag range can be
1131 * written sequentially.
1132 */
1133 if (i < inode->i_mapping->writeback_index)
1134 inode->i_mapping->writeback_index = i;
1135
1136 while (i <= last_index && defrag_count < max_to_defrag &&
1137 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1138 PAGE_CACHE_SHIFT)) {
1139 /*
1140 * make sure we stop running if someone unmounts
1141 * the FS
1142 */
1143 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1144 break;
1145
1146 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1147 extent_thresh, &last_len, &skip,
1148 &defrag_end)) {
1149 unsigned long next;
1150 /*
1151 * the should_defrag function tells us how much to skip
1152 * bump our counter by the suggested amount
1153 */
1154 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1155 i = max(i + 1, next);
1156 continue;
1157 }
1158
1159 if (!newer_than) {
1160 cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1161 PAGE_CACHE_SHIFT) - i;
1162 cluster = min(cluster, max_cluster);
1163 } else {
1164 cluster = max_cluster;
1165 }
1166
1167 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1168 BTRFS_I(inode)->force_compress = compress_type;
1169
1170 if (i + cluster > ra_index) {
1171 ra_index = max(i, ra_index);
1172 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1173 cluster);
1174 ra_index += max_cluster;
1175 }
1176
1177 mutex_lock(&inode->i_mutex);
1178 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1179 if (ret < 0) {
1180 mutex_unlock(&inode->i_mutex);
1181 goto out_ra;
1182 }
1183
1184 defrag_count += ret;
1185 balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret);
1186 mutex_unlock(&inode->i_mutex);
1187
1188 if (newer_than) {
1189 if (newer_off == (u64)-1)
1190 break;
1191
1192 if (ret > 0)
1193 i += ret;
1194
1195 newer_off = max(newer_off + 1,
1196 (u64)i << PAGE_CACHE_SHIFT);
1197
1198 ret = find_new_extents(root, inode,
1199 newer_than, &newer_off,
1200 64 * 1024);
1201 if (!ret) {
1202 range->start = newer_off;
1203 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1204 } else {
1205 break;
1206 }
1207 } else {
1208 if (ret > 0) {
1209 i += ret;
1210 last_len += ret << PAGE_CACHE_SHIFT;
1211 } else {
1212 i++;
1213 last_len = 0;
1214 }
1215 }
1216 }
1217
1218 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1219 filemap_flush(inode->i_mapping);
1220
1221 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1222 /* the filemap_flush will queue IO into the worker threads, but
1223 * we have to make sure the IO is actually started and that
1224 * ordered extents get created before we return
1225 */
1226 atomic_inc(&root->fs_info->async_submit_draining);
1227 while (atomic_read(&root->fs_info->nr_async_submits) ||
1228 atomic_read(&root->fs_info->async_delalloc_pages)) {
1229 wait_event(root->fs_info->async_submit_wait,
1230 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1231 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1232 }
1233 atomic_dec(&root->fs_info->async_submit_draining);
1234
1235 mutex_lock(&inode->i_mutex);
1236 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1237 mutex_unlock(&inode->i_mutex);
1238 }
1239
1240 disk_super = root->fs_info->super_copy;
1241 features = btrfs_super_incompat_flags(disk_super);
1242 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1243 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1244 btrfs_set_super_incompat_flags(disk_super, features);
1245 }
1246
1247 ret = defrag_count;
1248
1249out_ra:
1250 if (!file)
1251 kfree(ra);
1252 kfree(pages);
1253 return ret;
1254}
1255
1256static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
1257 void __user *arg)
1258{
1259 u64 new_size;
1260 u64 old_size;
1261 u64 devid = 1;
1262 struct btrfs_ioctl_vol_args *vol_args;
1263 struct btrfs_trans_handle *trans;
1264 struct btrfs_device *device = NULL;
1265 char *sizestr;
1266 char *devstr = NULL;
1267 int ret = 0;
1268 int mod = 0;
1269
1270 if (root->fs_info->sb->s_flags & MS_RDONLY)
1271 return -EROFS;
1272
1273 if (!capable(CAP_SYS_ADMIN))
1274 return -EPERM;
1275
1276 mutex_lock(&root->fs_info->volume_mutex);
1277 if (root->fs_info->balance_ctl) {
1278 printk(KERN_INFO "btrfs: balance in progress\n");
1279 ret = -EINVAL;
1280 goto out;
1281 }
1282
1283 vol_args = memdup_user(arg, sizeof(*vol_args));
1284 if (IS_ERR(vol_args)) {
1285 ret = PTR_ERR(vol_args);
1286 goto out;
1287 }
1288
1289 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1290
1291 sizestr = vol_args->name;
1292 devstr = strchr(sizestr, ':');
1293 if (devstr) {
1294 char *end;
1295 sizestr = devstr + 1;
1296 *devstr = '\0';
1297 devstr = vol_args->name;
1298 devid = simple_strtoull(devstr, &end, 10);
1299 printk(KERN_INFO "btrfs: resizing devid %llu\n",
1300 (unsigned long long)devid);
1301 }
1302 device = btrfs_find_device(root, devid, NULL, NULL);
1303 if (!device) {
1304 printk(KERN_INFO "btrfs: resizer unable to find device %llu\n",
1305 (unsigned long long)devid);
1306 ret = -EINVAL;
1307 goto out_free;
1308 }
1309 if (device->fs_devices && device->fs_devices->seeding) {
1310 printk(KERN_INFO "btrfs: resizer unable to apply on "
1311 "seeding device %llu\n",
1312 (unsigned long long)devid);
1313 ret = -EINVAL;
1314 goto out_free;
1315 }
1316
1317 if (!strcmp(sizestr, "max"))
1318 new_size = device->bdev->bd_inode->i_size;
1319 else {
1320 if (sizestr[0] == '-') {
1321 mod = -1;
1322 sizestr++;
1323 } else if (sizestr[0] == '+') {
1324 mod = 1;
1325 sizestr++;
1326 }
1327 new_size = memparse(sizestr, NULL);
1328 if (new_size == 0) {
1329 ret = -EINVAL;
1330 goto out_free;
1331 }
1332 }
1333
1334 old_size = device->total_bytes;
1335
1336 if (mod < 0) {
1337 if (new_size > old_size) {
1338 ret = -EINVAL;
1339 goto out_free;
1340 }
1341 new_size = old_size - new_size;
1342 } else if (mod > 0) {
1343 new_size = old_size + new_size;
1344 }
1345
1346 if (new_size < 256 * 1024 * 1024) {
1347 ret = -EINVAL;
1348 goto out_free;
1349 }
1350 if (new_size > device->bdev->bd_inode->i_size) {
1351 ret = -EFBIG;
1352 goto out_free;
1353 }
1354
1355 do_div(new_size, root->sectorsize);
1356 new_size *= root->sectorsize;
1357
1358 printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n",
1359 rcu_str_deref(device->name),
1360 (unsigned long long)new_size);
1361
1362 if (new_size > old_size) {
1363 trans = btrfs_start_transaction(root, 0);
1364 if (IS_ERR(trans)) {
1365 ret = PTR_ERR(trans);
1366 goto out_free;
1367 }
1368 ret = btrfs_grow_device(trans, device, new_size);
1369 btrfs_commit_transaction(trans, root);
1370 } else if (new_size < old_size) {
1371 ret = btrfs_shrink_device(device, new_size);
1372 }
1373
1374out_free:
1375 kfree(vol_args);
1376out:
1377 mutex_unlock(&root->fs_info->volume_mutex);
1378 return ret;
1379}
1380
1381static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1382 char *name,
1383 unsigned long fd,
1384 int subvol,
1385 u64 *transid,
1386 bool readonly)
1387{
1388 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
1389 struct file *src_file;
1390 int namelen;
1391 int ret = 0;
1392
1393 if (root->fs_info->sb->s_flags & MS_RDONLY)
1394 return -EROFS;
1395
1396 namelen = strlen(name);
1397 if (strchr(name, '/')) {
1398 ret = -EINVAL;
1399 goto out;
1400 }
1401
1402 if (name[0] == '.' &&
1403 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1404 ret = -EEXIST;
1405 goto out;
1406 }
1407
1408 if (subvol) {
1409 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1410 NULL, transid, readonly);
1411 } else {
1412 struct inode *src_inode;
1413 src_file = fget(fd);
1414 if (!src_file) {
1415 ret = -EINVAL;
1416 goto out;
1417 }
1418
1419 src_inode = src_file->f_path.dentry->d_inode;
1420 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
1421 printk(KERN_INFO "btrfs: Snapshot src from "
1422 "another FS\n");
1423 ret = -EINVAL;
1424 fput(src_file);
1425 goto out;
1426 }
1427 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1428 BTRFS_I(src_inode)->root,
1429 transid, readonly);
1430 fput(src_file);
1431 }
1432out:
1433 return ret;
1434}
1435
1436static noinline int btrfs_ioctl_snap_create(struct file *file,
1437 void __user *arg, int subvol)
1438{
1439 struct btrfs_ioctl_vol_args *vol_args;
1440 int ret;
1441
1442 vol_args = memdup_user(arg, sizeof(*vol_args));
1443 if (IS_ERR(vol_args))
1444 return PTR_ERR(vol_args);
1445 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1446
1447 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1448 vol_args->fd, subvol,
1449 NULL, false);
1450
1451 kfree(vol_args);
1452 return ret;
1453}
1454
1455static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1456 void __user *arg, int subvol)
1457{
1458 struct btrfs_ioctl_vol_args_v2 *vol_args;
1459 int ret;
1460 u64 transid = 0;
1461 u64 *ptr = NULL;
1462 bool readonly = false;
1463
1464 vol_args = memdup_user(arg, sizeof(*vol_args));
1465 if (IS_ERR(vol_args))
1466 return PTR_ERR(vol_args);
1467 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1468
1469 if (vol_args->flags &
1470 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY)) {
1471 ret = -EOPNOTSUPP;
1472 goto out;
1473 }
1474
1475 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1476 ptr = &transid;
1477 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1478 readonly = true;
1479
1480 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1481 vol_args->fd, subvol,
1482 ptr, readonly);
1483
1484 if (ret == 0 && ptr &&
1485 copy_to_user(arg +
1486 offsetof(struct btrfs_ioctl_vol_args_v2,
1487 transid), ptr, sizeof(*ptr)))
1488 ret = -EFAULT;
1489out:
1490 kfree(vol_args);
1491 return ret;
1492}
1493
1494static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1495 void __user *arg)
1496{
1497 struct inode *inode = fdentry(file)->d_inode;
1498 struct btrfs_root *root = BTRFS_I(inode)->root;
1499 int ret = 0;
1500 u64 flags = 0;
1501
1502 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1503 return -EINVAL;
1504
1505 down_read(&root->fs_info->subvol_sem);
1506 if (btrfs_root_readonly(root))
1507 flags |= BTRFS_SUBVOL_RDONLY;
1508 up_read(&root->fs_info->subvol_sem);
1509
1510 if (copy_to_user(arg, &flags, sizeof(flags)))
1511 ret = -EFAULT;
1512
1513 return ret;
1514}
1515
1516static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1517 void __user *arg)
1518{
1519 struct inode *inode = fdentry(file)->d_inode;
1520 struct btrfs_root *root = BTRFS_I(inode)->root;
1521 struct btrfs_trans_handle *trans;
1522 u64 root_flags;
1523 u64 flags;
1524 int ret = 0;
1525
1526 if (root->fs_info->sb->s_flags & MS_RDONLY)
1527 return -EROFS;
1528
1529 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1530 return -EINVAL;
1531
1532 if (copy_from_user(&flags, arg, sizeof(flags)))
1533 return -EFAULT;
1534
1535 if (flags & BTRFS_SUBVOL_CREATE_ASYNC)
1536 return -EINVAL;
1537
1538 if (flags & ~BTRFS_SUBVOL_RDONLY)
1539 return -EOPNOTSUPP;
1540
1541 if (!inode_owner_or_capable(inode))
1542 return -EACCES;
1543
1544 down_write(&root->fs_info->subvol_sem);
1545
1546 /* nothing to do */
1547 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1548 goto out;
1549
1550 root_flags = btrfs_root_flags(&root->root_item);
1551 if (flags & BTRFS_SUBVOL_RDONLY)
1552 btrfs_set_root_flags(&root->root_item,
1553 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1554 else
1555 btrfs_set_root_flags(&root->root_item,
1556 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1557
1558 trans = btrfs_start_transaction(root, 1);
1559 if (IS_ERR(trans)) {
1560 ret = PTR_ERR(trans);
1561 goto out_reset;
1562 }
1563
1564 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1565 &root->root_key, &root->root_item);
1566
1567 btrfs_commit_transaction(trans, root);
1568out_reset:
1569 if (ret)
1570 btrfs_set_root_flags(&root->root_item, root_flags);
1571out:
1572 up_write(&root->fs_info->subvol_sem);
1573 return ret;
1574}
1575
1576/*
1577 * helper to check if the subvolume references other subvolumes
1578 */
1579static noinline int may_destroy_subvol(struct btrfs_root *root)
1580{
1581 struct btrfs_path *path;
1582 struct btrfs_key key;
1583 int ret;
1584
1585 path = btrfs_alloc_path();
1586 if (!path)
1587 return -ENOMEM;
1588
1589 key.objectid = root->root_key.objectid;
1590 key.type = BTRFS_ROOT_REF_KEY;
1591 key.offset = (u64)-1;
1592
1593 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1594 &key, path, 0, 0);
1595 if (ret < 0)
1596 goto out;
1597 BUG_ON(ret == 0);
1598
1599 ret = 0;
1600 if (path->slots[0] > 0) {
1601 path->slots[0]--;
1602 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1603 if (key.objectid == root->root_key.objectid &&
1604 key.type == BTRFS_ROOT_REF_KEY)
1605 ret = -ENOTEMPTY;
1606 }
1607out:
1608 btrfs_free_path(path);
1609 return ret;
1610}
1611
1612static noinline int key_in_sk(struct btrfs_key *key,
1613 struct btrfs_ioctl_search_key *sk)
1614{
1615 struct btrfs_key test;
1616 int ret;
1617
1618 test.objectid = sk->min_objectid;
1619 test.type = sk->min_type;
1620 test.offset = sk->min_offset;
1621
1622 ret = btrfs_comp_cpu_keys(key, &test);
1623 if (ret < 0)
1624 return 0;
1625
1626 test.objectid = sk->max_objectid;
1627 test.type = sk->max_type;
1628 test.offset = sk->max_offset;
1629
1630 ret = btrfs_comp_cpu_keys(key, &test);
1631 if (ret > 0)
1632 return 0;
1633 return 1;
1634}
1635
1636static noinline int copy_to_sk(struct btrfs_root *root,
1637 struct btrfs_path *path,
1638 struct btrfs_key *key,
1639 struct btrfs_ioctl_search_key *sk,
1640 char *buf,
1641 unsigned long *sk_offset,
1642 int *num_found)
1643{
1644 u64 found_transid;
1645 struct extent_buffer *leaf;
1646 struct btrfs_ioctl_search_header sh;
1647 unsigned long item_off;
1648 unsigned long item_len;
1649 int nritems;
1650 int i;
1651 int slot;
1652 int ret = 0;
1653
1654 leaf = path->nodes[0];
1655 slot = path->slots[0];
1656 nritems = btrfs_header_nritems(leaf);
1657
1658 if (btrfs_header_generation(leaf) > sk->max_transid) {
1659 i = nritems;
1660 goto advance_key;
1661 }
1662 found_transid = btrfs_header_generation(leaf);
1663
1664 for (i = slot; i < nritems; i++) {
1665 item_off = btrfs_item_ptr_offset(leaf, i);
1666 item_len = btrfs_item_size_nr(leaf, i);
1667
1668 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1669 item_len = 0;
1670
1671 if (sizeof(sh) + item_len + *sk_offset >
1672 BTRFS_SEARCH_ARGS_BUFSIZE) {
1673 ret = 1;
1674 goto overflow;
1675 }
1676
1677 btrfs_item_key_to_cpu(leaf, key, i);
1678 if (!key_in_sk(key, sk))
1679 continue;
1680
1681 sh.objectid = key->objectid;
1682 sh.offset = key->offset;
1683 sh.type = key->type;
1684 sh.len = item_len;
1685 sh.transid = found_transid;
1686
1687 /* copy search result header */
1688 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1689 *sk_offset += sizeof(sh);
1690
1691 if (item_len) {
1692 char *p = buf + *sk_offset;
1693 /* copy the item */
1694 read_extent_buffer(leaf, p,
1695 item_off, item_len);
1696 *sk_offset += item_len;
1697 }
1698 (*num_found)++;
1699
1700 if (*num_found >= sk->nr_items)
1701 break;
1702 }
1703advance_key:
1704 ret = 0;
1705 if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1706 key->offset++;
1707 else if (key->type < (u8)-1 && key->type < sk->max_type) {
1708 key->offset = 0;
1709 key->type++;
1710 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1711 key->offset = 0;
1712 key->type = 0;
1713 key->objectid++;
1714 } else
1715 ret = 1;
1716overflow:
1717 return ret;
1718}
1719
1720static noinline int search_ioctl(struct inode *inode,
1721 struct btrfs_ioctl_search_args *args)
1722{
1723 struct btrfs_root *root;
1724 struct btrfs_key key;
1725 struct btrfs_key max_key;
1726 struct btrfs_path *path;
1727 struct btrfs_ioctl_search_key *sk = &args->key;
1728 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1729 int ret;
1730 int num_found = 0;
1731 unsigned long sk_offset = 0;
1732
1733 path = btrfs_alloc_path();
1734 if (!path)
1735 return -ENOMEM;
1736
1737 if (sk->tree_id == 0) {
1738 /* search the root of the inode that was passed */
1739 root = BTRFS_I(inode)->root;
1740 } else {
1741 key.objectid = sk->tree_id;
1742 key.type = BTRFS_ROOT_ITEM_KEY;
1743 key.offset = (u64)-1;
1744 root = btrfs_read_fs_root_no_name(info, &key);
1745 if (IS_ERR(root)) {
1746 printk(KERN_ERR "could not find root %llu\n",
1747 sk->tree_id);
1748 btrfs_free_path(path);
1749 return -ENOENT;
1750 }
1751 }
1752
1753 key.objectid = sk->min_objectid;
1754 key.type = sk->min_type;
1755 key.offset = sk->min_offset;
1756
1757 max_key.objectid = sk->max_objectid;
1758 max_key.type = sk->max_type;
1759 max_key.offset = sk->max_offset;
1760
1761 path->keep_locks = 1;
1762
1763 while(1) {
1764 ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1765 sk->min_transid);
1766 if (ret != 0) {
1767 if (ret > 0)
1768 ret = 0;
1769 goto err;
1770 }
1771 ret = copy_to_sk(root, path, &key, sk, args->buf,
1772 &sk_offset, &num_found);
1773 btrfs_release_path(path);
1774 if (ret || num_found >= sk->nr_items)
1775 break;
1776
1777 }
1778 ret = 0;
1779err:
1780 sk->nr_items = num_found;
1781 btrfs_free_path(path);
1782 return ret;
1783}
1784
1785static noinline int btrfs_ioctl_tree_search(struct file *file,
1786 void __user *argp)
1787{
1788 struct btrfs_ioctl_search_args *args;
1789 struct inode *inode;
1790 int ret;
1791
1792 if (!capable(CAP_SYS_ADMIN))
1793 return -EPERM;
1794
1795 args = memdup_user(argp, sizeof(*args));
1796 if (IS_ERR(args))
1797 return PTR_ERR(args);
1798
1799 inode = fdentry(file)->d_inode;
1800 ret = search_ioctl(inode, args);
1801 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1802 ret = -EFAULT;
1803 kfree(args);
1804 return ret;
1805}
1806
1807/*
1808 * Search INODE_REFs to identify path name of 'dirid' directory
1809 * in a 'tree_id' tree. and sets path name to 'name'.
1810 */
1811static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1812 u64 tree_id, u64 dirid, char *name)
1813{
1814 struct btrfs_root *root;
1815 struct btrfs_key key;
1816 char *ptr;
1817 int ret = -1;
1818 int slot;
1819 int len;
1820 int total_len = 0;
1821 struct btrfs_inode_ref *iref;
1822 struct extent_buffer *l;
1823 struct btrfs_path *path;
1824
1825 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1826 name[0]='\0';
1827 return 0;
1828 }
1829
1830 path = btrfs_alloc_path();
1831 if (!path)
1832 return -ENOMEM;
1833
1834 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1835
1836 key.objectid = tree_id;
1837 key.type = BTRFS_ROOT_ITEM_KEY;
1838 key.offset = (u64)-1;
1839 root = btrfs_read_fs_root_no_name(info, &key);
1840 if (IS_ERR(root)) {
1841 printk(KERN_ERR "could not find root %llu\n", tree_id);
1842 ret = -ENOENT;
1843 goto out;
1844 }
1845
1846 key.objectid = dirid;
1847 key.type = BTRFS_INODE_REF_KEY;
1848 key.offset = (u64)-1;
1849
1850 while(1) {
1851 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1852 if (ret < 0)
1853 goto out;
1854
1855 l = path->nodes[0];
1856 slot = path->slots[0];
1857 if (ret > 0 && slot > 0)
1858 slot--;
1859 btrfs_item_key_to_cpu(l, &key, slot);
1860
1861 if (ret > 0 && (key.objectid != dirid ||
1862 key.type != BTRFS_INODE_REF_KEY)) {
1863 ret = -ENOENT;
1864 goto out;
1865 }
1866
1867 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1868 len = btrfs_inode_ref_name_len(l, iref);
1869 ptr -= len + 1;
1870 total_len += len + 1;
1871 if (ptr < name)
1872 goto out;
1873
1874 *(ptr + len) = '/';
1875 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1876
1877 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1878 break;
1879
1880 btrfs_release_path(path);
1881 key.objectid = key.offset;
1882 key.offset = (u64)-1;
1883 dirid = key.objectid;
1884 }
1885 if (ptr < name)
1886 goto out;
1887 memmove(name, ptr, total_len);
1888 name[total_len]='\0';
1889 ret = 0;
1890out:
1891 btrfs_free_path(path);
1892 return ret;
1893}
1894
1895static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1896 void __user *argp)
1897{
1898 struct btrfs_ioctl_ino_lookup_args *args;
1899 struct inode *inode;
1900 int ret;
1901
1902 if (!capable(CAP_SYS_ADMIN))
1903 return -EPERM;
1904
1905 args = memdup_user(argp, sizeof(*args));
1906 if (IS_ERR(args))
1907 return PTR_ERR(args);
1908
1909 inode = fdentry(file)->d_inode;
1910
1911 if (args->treeid == 0)
1912 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
1913
1914 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
1915 args->treeid, args->objectid,
1916 args->name);
1917
1918 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1919 ret = -EFAULT;
1920
1921 kfree(args);
1922 return ret;
1923}
1924
1925static noinline int btrfs_ioctl_snap_destroy(struct file *file,
1926 void __user *arg)
1927{
1928 struct dentry *parent = fdentry(file);
1929 struct dentry *dentry;
1930 struct inode *dir = parent->d_inode;
1931 struct inode *inode;
1932 struct btrfs_root *root = BTRFS_I(dir)->root;
1933 struct btrfs_root *dest = NULL;
1934 struct btrfs_ioctl_vol_args *vol_args;
1935 struct btrfs_trans_handle *trans;
1936 int namelen;
1937 int ret;
1938 int err = 0;
1939
1940 vol_args = memdup_user(arg, sizeof(*vol_args));
1941 if (IS_ERR(vol_args))
1942 return PTR_ERR(vol_args);
1943
1944 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1945 namelen = strlen(vol_args->name);
1946 if (strchr(vol_args->name, '/') ||
1947 strncmp(vol_args->name, "..", namelen) == 0) {
1948 err = -EINVAL;
1949 goto out;
1950 }
1951
1952 err = mnt_want_write_file(file);
1953 if (err)
1954 goto out;
1955
1956 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
1957 dentry = lookup_one_len(vol_args->name, parent, namelen);
1958 if (IS_ERR(dentry)) {
1959 err = PTR_ERR(dentry);
1960 goto out_unlock_dir;
1961 }
1962
1963 if (!dentry->d_inode) {
1964 err = -ENOENT;
1965 goto out_dput;
1966 }
1967
1968 inode = dentry->d_inode;
1969 dest = BTRFS_I(inode)->root;
1970 if (!capable(CAP_SYS_ADMIN)){
1971 /*
1972 * Regular user. Only allow this with a special mount
1973 * option, when the user has write+exec access to the
1974 * subvol root, and when rmdir(2) would have been
1975 * allowed.
1976 *
1977 * Note that this is _not_ check that the subvol is
1978 * empty or doesn't contain data that we wouldn't
1979 * otherwise be able to delete.
1980 *
1981 * Users who want to delete empty subvols should try
1982 * rmdir(2).
1983 */
1984 err = -EPERM;
1985 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1986 goto out_dput;
1987
1988 /*
1989 * Do not allow deletion if the parent dir is the same
1990 * as the dir to be deleted. That means the ioctl
1991 * must be called on the dentry referencing the root
1992 * of the subvol, not a random directory contained
1993 * within it.
1994 */
1995 err = -EINVAL;
1996 if (root == dest)
1997 goto out_dput;
1998
1999 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2000 if (err)
2001 goto out_dput;
2002
2003 /* check if subvolume may be deleted by a non-root user */
2004 err = btrfs_may_delete(dir, dentry, 1);
2005 if (err)
2006 goto out_dput;
2007 }
2008
2009 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2010 err = -EINVAL;
2011 goto out_dput;
2012 }
2013
2014 mutex_lock(&inode->i_mutex);
2015 err = d_invalidate(dentry);
2016 if (err)
2017 goto out_unlock;
2018
2019 down_write(&root->fs_info->subvol_sem);
2020
2021 err = may_destroy_subvol(dest);
2022 if (err)
2023 goto out_up_write;
2024
2025 trans = btrfs_start_transaction(root, 0);
2026 if (IS_ERR(trans)) {
2027 err = PTR_ERR(trans);
2028 goto out_up_write;
2029 }
2030 trans->block_rsv = &root->fs_info->global_block_rsv;
2031
2032 ret = btrfs_unlink_subvol(trans, root, dir,
2033 dest->root_key.objectid,
2034 dentry->d_name.name,
2035 dentry->d_name.len);
2036 if (ret) {
2037 err = ret;
2038 btrfs_abort_transaction(trans, root, ret);
2039 goto out_end_trans;
2040 }
2041
2042 btrfs_record_root_in_trans(trans, dest);
2043
2044 memset(&dest->root_item.drop_progress, 0,
2045 sizeof(dest->root_item.drop_progress));
2046 dest->root_item.drop_level = 0;
2047 btrfs_set_root_refs(&dest->root_item, 0);
2048
2049 if (!xchg(&dest->orphan_item_inserted, 1)) {
2050 ret = btrfs_insert_orphan_item(trans,
2051 root->fs_info->tree_root,
2052 dest->root_key.objectid);
2053 if (ret) {
2054 btrfs_abort_transaction(trans, root, ret);
2055 err = ret;
2056 goto out_end_trans;
2057 }
2058 }
2059out_end_trans:
2060 ret = btrfs_end_transaction(trans, root);
2061 if (ret && !err)
2062 err = ret;
2063 inode->i_flags |= S_DEAD;
2064out_up_write:
2065 up_write(&root->fs_info->subvol_sem);
2066out_unlock:
2067 mutex_unlock(&inode->i_mutex);
2068 if (!err) {
2069 shrink_dcache_sb(root->fs_info->sb);
2070 btrfs_invalidate_inodes(dest);
2071 d_delete(dentry);
2072 }
2073out_dput:
2074 dput(dentry);
2075out_unlock_dir:
2076 mutex_unlock(&dir->i_mutex);
2077 mnt_drop_write_file(file);
2078out:
2079 kfree(vol_args);
2080 return err;
2081}
2082
2083static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2084{
2085 struct inode *inode = fdentry(file)->d_inode;
2086 struct btrfs_root *root = BTRFS_I(inode)->root;
2087 struct btrfs_ioctl_defrag_range_args *range;
2088 int ret;
2089
2090 if (btrfs_root_readonly(root))
2091 return -EROFS;
2092
2093 ret = mnt_want_write_file(file);
2094 if (ret)
2095 return ret;
2096
2097 switch (inode->i_mode & S_IFMT) {
2098 case S_IFDIR:
2099 if (!capable(CAP_SYS_ADMIN)) {
2100 ret = -EPERM;
2101 goto out;
2102 }
2103 ret = btrfs_defrag_root(root, 0);
2104 if (ret)
2105 goto out;
2106 ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
2107 break;
2108 case S_IFREG:
2109 if (!(file->f_mode & FMODE_WRITE)) {
2110 ret = -EINVAL;
2111 goto out;
2112 }
2113
2114 range = kzalloc(sizeof(*range), GFP_KERNEL);
2115 if (!range) {
2116 ret = -ENOMEM;
2117 goto out;
2118 }
2119
2120 if (argp) {
2121 if (copy_from_user(range, argp,
2122 sizeof(*range))) {
2123 ret = -EFAULT;
2124 kfree(range);
2125 goto out;
2126 }
2127 /* compression requires us to start the IO */
2128 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2129 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2130 range->extent_thresh = (u32)-1;
2131 }
2132 } else {
2133 /* the rest are all set to zero by kzalloc */
2134 range->len = (u64)-1;
2135 }
2136 ret = btrfs_defrag_file(fdentry(file)->d_inode, file,
2137 range, 0, 0);
2138 if (ret > 0)
2139 ret = 0;
2140 kfree(range);
2141 break;
2142 default:
2143 ret = -EINVAL;
2144 }
2145out:
2146 mnt_drop_write_file(file);
2147 return ret;
2148}
2149
2150static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2151{
2152 struct btrfs_ioctl_vol_args *vol_args;
2153 int ret;
2154
2155 if (!capable(CAP_SYS_ADMIN))
2156 return -EPERM;
2157
2158 mutex_lock(&root->fs_info->volume_mutex);
2159 if (root->fs_info->balance_ctl) {
2160 printk(KERN_INFO "btrfs: balance in progress\n");
2161 ret = -EINVAL;
2162 goto out;
2163 }
2164
2165 vol_args = memdup_user(arg, sizeof(*vol_args));
2166 if (IS_ERR(vol_args)) {
2167 ret = PTR_ERR(vol_args);
2168 goto out;
2169 }
2170
2171 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2172 ret = btrfs_init_new_device(root, vol_args->name);
2173
2174 kfree(vol_args);
2175out:
2176 mutex_unlock(&root->fs_info->volume_mutex);
2177 return ret;
2178}
2179
2180static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
2181{
2182 struct btrfs_ioctl_vol_args *vol_args;
2183 int ret;
2184
2185 if (!capable(CAP_SYS_ADMIN))
2186 return -EPERM;
2187
2188 if (root->fs_info->sb->s_flags & MS_RDONLY)
2189 return -EROFS;
2190
2191 mutex_lock(&root->fs_info->volume_mutex);
2192 if (root->fs_info->balance_ctl) {
2193 printk(KERN_INFO "btrfs: balance in progress\n");
2194 ret = -EINVAL;
2195 goto out;
2196 }
2197
2198 vol_args = memdup_user(arg, sizeof(*vol_args));
2199 if (IS_ERR(vol_args)) {
2200 ret = PTR_ERR(vol_args);
2201 goto out;
2202 }
2203
2204 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2205 ret = btrfs_rm_device(root, vol_args->name);
2206
2207 kfree(vol_args);
2208out:
2209 mutex_unlock(&root->fs_info->volume_mutex);
2210 return ret;
2211}
2212
2213static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2214{
2215 struct btrfs_ioctl_fs_info_args *fi_args;
2216 struct btrfs_device *device;
2217 struct btrfs_device *next;
2218 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2219 int ret = 0;
2220
2221 if (!capable(CAP_SYS_ADMIN))
2222 return -EPERM;
2223
2224 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2225 if (!fi_args)
2226 return -ENOMEM;
2227
2228 fi_args->num_devices = fs_devices->num_devices;
2229 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2230
2231 mutex_lock(&fs_devices->device_list_mutex);
2232 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2233 if (device->devid > fi_args->max_id)
2234 fi_args->max_id = device->devid;
2235 }
2236 mutex_unlock(&fs_devices->device_list_mutex);
2237
2238 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2239 ret = -EFAULT;
2240
2241 kfree(fi_args);
2242 return ret;
2243}
2244
2245static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2246{
2247 struct btrfs_ioctl_dev_info_args *di_args;
2248 struct btrfs_device *dev;
2249 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2250 int ret = 0;
2251 char *s_uuid = NULL;
2252 char empty_uuid[BTRFS_UUID_SIZE] = {0};
2253
2254 if (!capable(CAP_SYS_ADMIN))
2255 return -EPERM;
2256
2257 di_args = memdup_user(arg, sizeof(*di_args));
2258 if (IS_ERR(di_args))
2259 return PTR_ERR(di_args);
2260
2261 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2262 s_uuid = di_args->uuid;
2263
2264 mutex_lock(&fs_devices->device_list_mutex);
2265 dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL);
2266 mutex_unlock(&fs_devices->device_list_mutex);
2267
2268 if (!dev) {
2269 ret = -ENODEV;
2270 goto out;
2271 }
2272
2273 di_args->devid = dev->devid;
2274 di_args->bytes_used = dev->bytes_used;
2275 di_args->total_bytes = dev->total_bytes;
2276 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2277 if (dev->name) {
2278 struct rcu_string *name;
2279
2280 rcu_read_lock();
2281 name = rcu_dereference(dev->name);
2282 strncpy(di_args->path, name->str, sizeof(di_args->path));
2283 rcu_read_unlock();
2284 di_args->path[sizeof(di_args->path) - 1] = 0;
2285 } else {
2286 di_args->path[0] = '\0';
2287 }
2288
2289out:
2290 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2291 ret = -EFAULT;
2292
2293 kfree(di_args);
2294 return ret;
2295}
2296
2297static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2298 u64 off, u64 olen, u64 destoff)
2299{
2300 struct inode *inode = fdentry(file)->d_inode;
2301 struct btrfs_root *root = BTRFS_I(inode)->root;
2302 struct file *src_file;
2303 struct inode *src;
2304 struct btrfs_trans_handle *trans;
2305 struct btrfs_path *path;
2306 struct extent_buffer *leaf;
2307 char *buf;
2308 struct btrfs_key key;
2309 u32 nritems;
2310 int slot;
2311 int ret;
2312 u64 len = olen;
2313 u64 bs = root->fs_info->sb->s_blocksize;
2314 u64 hint_byte;
2315
2316 /*
2317 * TODO:
2318 * - split compressed inline extents. annoying: we need to
2319 * decompress into destination's address_space (the file offset
2320 * may change, so source mapping won't do), then recompress (or
2321 * otherwise reinsert) a subrange.
2322 * - allow ranges within the same file to be cloned (provided
2323 * they don't overlap)?
2324 */
2325
2326 /* the destination must be opened for writing */
2327 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2328 return -EINVAL;
2329
2330 if (btrfs_root_readonly(root))
2331 return -EROFS;
2332
2333 ret = mnt_want_write_file(file);
2334 if (ret)
2335 return ret;
2336
2337 src_file = fget(srcfd);
2338 if (!src_file) {
2339 ret = -EBADF;
2340 goto out_drop_write;
2341 }
2342
2343 src = src_file->f_dentry->d_inode;
2344
2345 ret = -EINVAL;
2346 if (src == inode)
2347 goto out_fput;
2348
2349 /* the src must be open for reading */
2350 if (!(src_file->f_mode & FMODE_READ))
2351 goto out_fput;
2352
2353 /* don't make the dst file partly checksummed */
2354 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2355 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
2356 goto out_fput;
2357
2358 ret = -EISDIR;
2359 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2360 goto out_fput;
2361
2362 ret = -EXDEV;
2363 if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
2364 goto out_fput;
2365
2366 ret = -ENOMEM;
2367 buf = vmalloc(btrfs_level_size(root, 0));
2368 if (!buf)
2369 goto out_fput;
2370
2371 path = btrfs_alloc_path();
2372 if (!path) {
2373 vfree(buf);
2374 goto out_fput;
2375 }
2376 path->reada = 2;
2377
2378 if (inode < src) {
2379 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2380 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2381 } else {
2382 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2383 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2384 }
2385
2386 /* determine range to clone */
2387 ret = -EINVAL;
2388 if (off + len > src->i_size || off + len < off)
2389 goto out_unlock;
2390 if (len == 0)
2391 olen = len = src->i_size - off;
2392 /* if we extend to eof, continue to block boundary */
2393 if (off + len == src->i_size)
2394 len = ALIGN(src->i_size, bs) - off;
2395
2396 /* verify the end result is block aligned */
2397 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2398 !IS_ALIGNED(destoff, bs))
2399 goto out_unlock;
2400
2401 if (destoff > inode->i_size) {
2402 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
2403 if (ret)
2404 goto out_unlock;
2405 }
2406
2407 /* truncate page cache pages from target inode range */
2408 truncate_inode_pages_range(&inode->i_data, destoff,
2409 PAGE_CACHE_ALIGN(destoff + len) - 1);
2410
2411 /* do any pending delalloc/csum calc on src, one way or
2412 another, and lock file content */
2413 while (1) {
2414 struct btrfs_ordered_extent *ordered;
2415 lock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2416 ordered = btrfs_lookup_first_ordered_extent(src, off+len);
2417 if (!ordered &&
2418 !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len,
2419 EXTENT_DELALLOC, 0, NULL))
2420 break;
2421 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2422 if (ordered)
2423 btrfs_put_ordered_extent(ordered);
2424 btrfs_wait_ordered_range(src, off, len);
2425 }
2426
2427 /* clone data */
2428 key.objectid = btrfs_ino(src);
2429 key.type = BTRFS_EXTENT_DATA_KEY;
2430 key.offset = 0;
2431
2432 while (1) {
2433 /*
2434 * note the key will change type as we walk through the
2435 * tree.
2436 */
2437 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2438 if (ret < 0)
2439 goto out;
2440
2441 nritems = btrfs_header_nritems(path->nodes[0]);
2442 if (path->slots[0] >= nritems) {
2443 ret = btrfs_next_leaf(root, path);
2444 if (ret < 0)
2445 goto out;
2446 if (ret > 0)
2447 break;
2448 nritems = btrfs_header_nritems(path->nodes[0]);
2449 }
2450 leaf = path->nodes[0];
2451 slot = path->slots[0];
2452
2453 btrfs_item_key_to_cpu(leaf, &key, slot);
2454 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2455 key.objectid != btrfs_ino(src))
2456 break;
2457
2458 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2459 struct btrfs_file_extent_item *extent;
2460 int type;
2461 u32 size;
2462 struct btrfs_key new_key;
2463 u64 disko = 0, diskl = 0;
2464 u64 datao = 0, datal = 0;
2465 u8 comp;
2466 u64 endoff;
2467
2468 size = btrfs_item_size_nr(leaf, slot);
2469 read_extent_buffer(leaf, buf,
2470 btrfs_item_ptr_offset(leaf, slot),
2471 size);
2472
2473 extent = btrfs_item_ptr(leaf, slot,
2474 struct btrfs_file_extent_item);
2475 comp = btrfs_file_extent_compression(leaf, extent);
2476 type = btrfs_file_extent_type(leaf, extent);
2477 if (type == BTRFS_FILE_EXTENT_REG ||
2478 type == BTRFS_FILE_EXTENT_PREALLOC) {
2479 disko = btrfs_file_extent_disk_bytenr(leaf,
2480 extent);
2481 diskl = btrfs_file_extent_disk_num_bytes(leaf,
2482 extent);
2483 datao = btrfs_file_extent_offset(leaf, extent);
2484 datal = btrfs_file_extent_num_bytes(leaf,
2485 extent);
2486 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2487 /* take upper bound, may be compressed */
2488 datal = btrfs_file_extent_ram_bytes(leaf,
2489 extent);
2490 }
2491 btrfs_release_path(path);
2492
2493 if (key.offset + datal <= off ||
2494 key.offset >= off+len)
2495 goto next;
2496
2497 memcpy(&new_key, &key, sizeof(new_key));
2498 new_key.objectid = btrfs_ino(inode);
2499 if (off <= key.offset)
2500 new_key.offset = key.offset + destoff - off;
2501 else
2502 new_key.offset = destoff;
2503
2504 /*
2505 * 1 - adjusting old extent (we may have to split it)
2506 * 1 - add new extent
2507 * 1 - inode update
2508 */
2509 trans = btrfs_start_transaction(root, 3);
2510 if (IS_ERR(trans)) {
2511 ret = PTR_ERR(trans);
2512 goto out;
2513 }
2514
2515 if (type == BTRFS_FILE_EXTENT_REG ||
2516 type == BTRFS_FILE_EXTENT_PREALLOC) {
2517 /*
2518 * a | --- range to clone ---| b
2519 * | ------------- extent ------------- |
2520 */
2521
2522 /* substract range b */
2523 if (key.offset + datal > off + len)
2524 datal = off + len - key.offset;
2525
2526 /* substract range a */
2527 if (off > key.offset) {
2528 datao += off - key.offset;
2529 datal -= off - key.offset;
2530 }
2531
2532 ret = btrfs_drop_extents(trans, inode,
2533 new_key.offset,
2534 new_key.offset + datal,
2535 &hint_byte, 1);
2536 if (ret) {
2537 btrfs_abort_transaction(trans, root,
2538 ret);
2539 btrfs_end_transaction(trans, root);
2540 goto out;
2541 }
2542
2543 ret = btrfs_insert_empty_item(trans, root, path,
2544 &new_key, size);
2545 if (ret) {
2546 btrfs_abort_transaction(trans, root,
2547 ret);
2548 btrfs_end_transaction(trans, root);
2549 goto out;
2550 }
2551
2552 leaf = path->nodes[0];
2553 slot = path->slots[0];
2554 write_extent_buffer(leaf, buf,
2555 btrfs_item_ptr_offset(leaf, slot),
2556 size);
2557
2558 extent = btrfs_item_ptr(leaf, slot,
2559 struct btrfs_file_extent_item);
2560
2561 /* disko == 0 means it's a hole */
2562 if (!disko)
2563 datao = 0;
2564
2565 btrfs_set_file_extent_offset(leaf, extent,
2566 datao);
2567 btrfs_set_file_extent_num_bytes(leaf, extent,
2568 datal);
2569 if (disko) {
2570 inode_add_bytes(inode, datal);
2571 ret = btrfs_inc_extent_ref(trans, root,
2572 disko, diskl, 0,
2573 root->root_key.objectid,
2574 btrfs_ino(inode),
2575 new_key.offset - datao,
2576 0);
2577 if (ret) {
2578 btrfs_abort_transaction(trans,
2579 root,
2580 ret);
2581 btrfs_end_transaction(trans,
2582 root);
2583 goto out;
2584
2585 }
2586 }
2587 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2588 u64 skip = 0;
2589 u64 trim = 0;
2590 if (off > key.offset) {
2591 skip = off - key.offset;
2592 new_key.offset += skip;
2593 }
2594
2595 if (key.offset + datal > off+len)
2596 trim = key.offset + datal - (off+len);
2597
2598 if (comp && (skip || trim)) {
2599 ret = -EINVAL;
2600 btrfs_end_transaction(trans, root);
2601 goto out;
2602 }
2603 size -= skip + trim;
2604 datal -= skip + trim;
2605
2606 ret = btrfs_drop_extents(trans, inode,
2607 new_key.offset,
2608 new_key.offset + datal,
2609 &hint_byte, 1);
2610 if (ret) {
2611 btrfs_abort_transaction(trans, root,
2612 ret);
2613 btrfs_end_transaction(trans, root);
2614 goto out;
2615 }
2616
2617 ret = btrfs_insert_empty_item(trans, root, path,
2618 &new_key, size);
2619 if (ret) {
2620 btrfs_abort_transaction(trans, root,
2621 ret);
2622 btrfs_end_transaction(trans, root);
2623 goto out;
2624 }
2625
2626 if (skip) {
2627 u32 start =
2628 btrfs_file_extent_calc_inline_size(0);
2629 memmove(buf+start, buf+start+skip,
2630 datal);
2631 }
2632
2633 leaf = path->nodes[0];
2634 slot = path->slots[0];
2635 write_extent_buffer(leaf, buf,
2636 btrfs_item_ptr_offset(leaf, slot),
2637 size);
2638 inode_add_bytes(inode, datal);
2639 }
2640
2641 btrfs_mark_buffer_dirty(leaf);
2642 btrfs_release_path(path);
2643
2644 inode_inc_iversion(inode);
2645 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2646
2647 /*
2648 * we round up to the block size at eof when
2649 * determining which extents to clone above,
2650 * but shouldn't round up the file size
2651 */
2652 endoff = new_key.offset + datal;
2653 if (endoff > destoff+olen)
2654 endoff = destoff+olen;
2655 if (endoff > inode->i_size)
2656 btrfs_i_size_write(inode, endoff);
2657
2658 ret = btrfs_update_inode(trans, root, inode);
2659 if (ret) {
2660 btrfs_abort_transaction(trans, root, ret);
2661 btrfs_end_transaction(trans, root);
2662 goto out;
2663 }
2664 ret = btrfs_end_transaction(trans, root);
2665 }
2666next:
2667 btrfs_release_path(path);
2668 key.offset++;
2669 }
2670 ret = 0;
2671out:
2672 btrfs_release_path(path);
2673 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2674out_unlock:
2675 mutex_unlock(&src->i_mutex);
2676 mutex_unlock(&inode->i_mutex);
2677 vfree(buf);
2678 btrfs_free_path(path);
2679out_fput:
2680 fput(src_file);
2681out_drop_write:
2682 mnt_drop_write_file(file);
2683 return ret;
2684}
2685
2686static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2687{
2688 struct btrfs_ioctl_clone_range_args args;
2689
2690 if (copy_from_user(&args, argp, sizeof(args)))
2691 return -EFAULT;
2692 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2693 args.src_length, args.dest_offset);
2694}
2695
2696/*
2697 * there are many ways the trans_start and trans_end ioctls can lead
2698 * to deadlocks. They should only be used by applications that
2699 * basically own the machine, and have a very in depth understanding
2700 * of all the possible deadlocks and enospc problems.
2701 */
2702static long btrfs_ioctl_trans_start(struct file *file)
2703{
2704 struct inode *inode = fdentry(file)->d_inode;
2705 struct btrfs_root *root = BTRFS_I(inode)->root;
2706 struct btrfs_trans_handle *trans;
2707 int ret;
2708
2709 ret = -EPERM;
2710 if (!capable(CAP_SYS_ADMIN))
2711 goto out;
2712
2713 ret = -EINPROGRESS;
2714 if (file->private_data)
2715 goto out;
2716
2717 ret = -EROFS;
2718 if (btrfs_root_readonly(root))
2719 goto out;
2720
2721 ret = mnt_want_write_file(file);
2722 if (ret)
2723 goto out;
2724
2725 atomic_inc(&root->fs_info->open_ioctl_trans);
2726
2727 ret = -ENOMEM;
2728 trans = btrfs_start_ioctl_transaction(root);
2729 if (IS_ERR(trans))
2730 goto out_drop;
2731
2732 file->private_data = trans;
2733 return 0;
2734
2735out_drop:
2736 atomic_dec(&root->fs_info->open_ioctl_trans);
2737 mnt_drop_write_file(file);
2738out:
2739 return ret;
2740}
2741
2742static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2743{
2744 struct inode *inode = fdentry(file)->d_inode;
2745 struct btrfs_root *root = BTRFS_I(inode)->root;
2746 struct btrfs_root *new_root;
2747 struct btrfs_dir_item *di;
2748 struct btrfs_trans_handle *trans;
2749 struct btrfs_path *path;
2750 struct btrfs_key location;
2751 struct btrfs_disk_key disk_key;
2752 struct btrfs_super_block *disk_super;
2753 u64 features;
2754 u64 objectid = 0;
2755 u64 dir_id;
2756
2757 if (!capable(CAP_SYS_ADMIN))
2758 return -EPERM;
2759
2760 if (copy_from_user(&objectid, argp, sizeof(objectid)))
2761 return -EFAULT;
2762
2763 if (!objectid)
2764 objectid = root->root_key.objectid;
2765
2766 location.objectid = objectid;
2767 location.type = BTRFS_ROOT_ITEM_KEY;
2768 location.offset = (u64)-1;
2769
2770 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2771 if (IS_ERR(new_root))
2772 return PTR_ERR(new_root);
2773
2774 if (btrfs_root_refs(&new_root->root_item) == 0)
2775 return -ENOENT;
2776
2777 path = btrfs_alloc_path();
2778 if (!path)
2779 return -ENOMEM;
2780 path->leave_spinning = 1;
2781
2782 trans = btrfs_start_transaction(root, 1);
2783 if (IS_ERR(trans)) {
2784 btrfs_free_path(path);
2785 return PTR_ERR(trans);
2786 }
2787
2788 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
2789 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2790 dir_id, "default", 7, 1);
2791 if (IS_ERR_OR_NULL(di)) {
2792 btrfs_free_path(path);
2793 btrfs_end_transaction(trans, root);
2794 printk(KERN_ERR "Umm, you don't have the default dir item, "
2795 "this isn't going to work\n");
2796 return -ENOENT;
2797 }
2798
2799 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2800 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2801 btrfs_mark_buffer_dirty(path->nodes[0]);
2802 btrfs_free_path(path);
2803
2804 disk_super = root->fs_info->super_copy;
2805 features = btrfs_super_incompat_flags(disk_super);
2806 if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) {
2807 features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL;
2808 btrfs_set_super_incompat_flags(disk_super, features);
2809 }
2810 btrfs_end_transaction(trans, root);
2811
2812 return 0;
2813}
2814
2815static void get_block_group_info(struct list_head *groups_list,
2816 struct btrfs_ioctl_space_info *space)
2817{
2818 struct btrfs_block_group_cache *block_group;
2819
2820 space->total_bytes = 0;
2821 space->used_bytes = 0;
2822 space->flags = 0;
2823 list_for_each_entry(block_group, groups_list, list) {
2824 space->flags = block_group->flags;
2825 space->total_bytes += block_group->key.offset;
2826 space->used_bytes +=
2827 btrfs_block_group_used(&block_group->item);
2828 }
2829}
2830
2831long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
2832{
2833 struct btrfs_ioctl_space_args space_args;
2834 struct btrfs_ioctl_space_info space;
2835 struct btrfs_ioctl_space_info *dest;
2836 struct btrfs_ioctl_space_info *dest_orig;
2837 struct btrfs_ioctl_space_info __user *user_dest;
2838 struct btrfs_space_info *info;
2839 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2840 BTRFS_BLOCK_GROUP_SYSTEM,
2841 BTRFS_BLOCK_GROUP_METADATA,
2842 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2843 int num_types = 4;
2844 int alloc_size;
2845 int ret = 0;
2846 u64 slot_count = 0;
2847 int i, c;
2848
2849 if (copy_from_user(&space_args,
2850 (struct btrfs_ioctl_space_args __user *)arg,
2851 sizeof(space_args)))
2852 return -EFAULT;
2853
2854 for (i = 0; i < num_types; i++) {
2855 struct btrfs_space_info *tmp;
2856
2857 info = NULL;
2858 rcu_read_lock();
2859 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2860 list) {
2861 if (tmp->flags == types[i]) {
2862 info = tmp;
2863 break;
2864 }
2865 }
2866 rcu_read_unlock();
2867
2868 if (!info)
2869 continue;
2870
2871 down_read(&info->groups_sem);
2872 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2873 if (!list_empty(&info->block_groups[c]))
2874 slot_count++;
2875 }
2876 up_read(&info->groups_sem);
2877 }
2878
2879 /* space_slots == 0 means they are asking for a count */
2880 if (space_args.space_slots == 0) {
2881 space_args.total_spaces = slot_count;
2882 goto out;
2883 }
2884
2885 slot_count = min_t(u64, space_args.space_slots, slot_count);
2886
2887 alloc_size = sizeof(*dest) * slot_count;
2888
2889 /* we generally have at most 6 or so space infos, one for each raid
2890 * level. So, a whole page should be more than enough for everyone
2891 */
2892 if (alloc_size > PAGE_CACHE_SIZE)
2893 return -ENOMEM;
2894
2895 space_args.total_spaces = 0;
2896 dest = kmalloc(alloc_size, GFP_NOFS);
2897 if (!dest)
2898 return -ENOMEM;
2899 dest_orig = dest;
2900
2901 /* now we have a buffer to copy into */
2902 for (i = 0; i < num_types; i++) {
2903 struct btrfs_space_info *tmp;
2904
2905 if (!slot_count)
2906 break;
2907
2908 info = NULL;
2909 rcu_read_lock();
2910 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2911 list) {
2912 if (tmp->flags == types[i]) {
2913 info = tmp;
2914 break;
2915 }
2916 }
2917 rcu_read_unlock();
2918
2919 if (!info)
2920 continue;
2921 down_read(&info->groups_sem);
2922 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2923 if (!list_empty(&info->block_groups[c])) {
2924 get_block_group_info(&info->block_groups[c],
2925 &space);
2926 memcpy(dest, &space, sizeof(space));
2927 dest++;
2928 space_args.total_spaces++;
2929 slot_count--;
2930 }
2931 if (!slot_count)
2932 break;
2933 }
2934 up_read(&info->groups_sem);
2935 }
2936
2937 user_dest = (struct btrfs_ioctl_space_info __user *)
2938 (arg + sizeof(struct btrfs_ioctl_space_args));
2939
2940 if (copy_to_user(user_dest, dest_orig, alloc_size))
2941 ret = -EFAULT;
2942
2943 kfree(dest_orig);
2944out:
2945 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
2946 ret = -EFAULT;
2947
2948 return ret;
2949}
2950
2951/*
2952 * there are many ways the trans_start and trans_end ioctls can lead
2953 * to deadlocks. They should only be used by applications that
2954 * basically own the machine, and have a very in depth understanding
2955 * of all the possible deadlocks and enospc problems.
2956 */
2957long btrfs_ioctl_trans_end(struct file *file)
2958{
2959 struct inode *inode = fdentry(file)->d_inode;
2960 struct btrfs_root *root = BTRFS_I(inode)->root;
2961 struct btrfs_trans_handle *trans;
2962
2963 trans = file->private_data;
2964 if (!trans)
2965 return -EINVAL;
2966 file->private_data = NULL;
2967
2968 btrfs_end_transaction(trans, root);
2969
2970 atomic_dec(&root->fs_info->open_ioctl_trans);
2971
2972 mnt_drop_write_file(file);
2973 return 0;
2974}
2975
2976static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp)
2977{
2978 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2979 struct btrfs_trans_handle *trans;
2980 u64 transid;
2981 int ret;
2982
2983 trans = btrfs_start_transaction(root, 0);
2984 if (IS_ERR(trans))
2985 return PTR_ERR(trans);
2986 transid = trans->transid;
2987 ret = btrfs_commit_transaction_async(trans, root, 0);
2988 if (ret) {
2989 btrfs_end_transaction(trans, root);
2990 return ret;
2991 }
2992
2993 if (argp)
2994 if (copy_to_user(argp, &transid, sizeof(transid)))
2995 return -EFAULT;
2996 return 0;
2997}
2998
2999static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp)
3000{
3001 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
3002 u64 transid;
3003
3004 if (argp) {
3005 if (copy_from_user(&transid, argp, sizeof(transid)))
3006 return -EFAULT;
3007 } else {
3008 transid = 0; /* current trans */
3009 }
3010 return btrfs_wait_for_commit(root, transid);
3011}
3012
3013static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg)
3014{
3015 int ret;
3016 struct btrfs_ioctl_scrub_args *sa;
3017
3018 if (!capable(CAP_SYS_ADMIN))
3019 return -EPERM;
3020
3021 sa = memdup_user(arg, sizeof(*sa));
3022 if (IS_ERR(sa))
3023 return PTR_ERR(sa);
3024
3025 ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end,
3026 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY);
3027
3028 if (copy_to_user(arg, sa, sizeof(*sa)))
3029 ret = -EFAULT;
3030
3031 kfree(sa);
3032 return ret;
3033}
3034
3035static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3036{
3037 if (!capable(CAP_SYS_ADMIN))
3038 return -EPERM;
3039
3040 return btrfs_scrub_cancel(root);
3041}
3042
3043static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3044 void __user *arg)
3045{
3046 struct btrfs_ioctl_scrub_args *sa;
3047 int ret;
3048
3049 if (!capable(CAP_SYS_ADMIN))
3050 return -EPERM;
3051
3052 sa = memdup_user(arg, sizeof(*sa));
3053 if (IS_ERR(sa))
3054 return PTR_ERR(sa);
3055
3056 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3057
3058 if (copy_to_user(arg, sa, sizeof(*sa)))
3059 ret = -EFAULT;
3060
3061 kfree(sa);
3062 return ret;
3063}
3064
3065static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3066 void __user *arg, int reset_after_read)
3067{
3068 struct btrfs_ioctl_get_dev_stats *sa;
3069 int ret;
3070
3071 if (reset_after_read && !capable(CAP_SYS_ADMIN))
3072 return -EPERM;
3073
3074 sa = memdup_user(arg, sizeof(*sa));
3075 if (IS_ERR(sa))
3076 return PTR_ERR(sa);
3077
3078 ret = btrfs_get_dev_stats(root, sa, reset_after_read);
3079
3080 if (copy_to_user(arg, sa, sizeof(*sa)))
3081 ret = -EFAULT;
3082
3083 kfree(sa);
3084 return ret;
3085}
3086
3087static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3088{
3089 int ret = 0;
3090 int i;
3091 u64 rel_ptr;
3092 int size;
3093 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3094 struct inode_fs_paths *ipath = NULL;
3095 struct btrfs_path *path;
3096
3097 if (!capable(CAP_SYS_ADMIN))
3098 return -EPERM;
3099
3100 path = btrfs_alloc_path();
3101 if (!path) {
3102 ret = -ENOMEM;
3103 goto out;
3104 }
3105
3106 ipa = memdup_user(arg, sizeof(*ipa));
3107 if (IS_ERR(ipa)) {
3108 ret = PTR_ERR(ipa);
3109 ipa = NULL;
3110 goto out;
3111 }
3112
3113 size = min_t(u32, ipa->size, 4096);
3114 ipath = init_ipath(size, root, path);
3115 if (IS_ERR(ipath)) {
3116 ret = PTR_ERR(ipath);
3117 ipath = NULL;
3118 goto out;
3119 }
3120
3121 ret = paths_from_inode(ipa->inum, ipath);
3122 if (ret < 0)
3123 goto out;
3124
3125 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3126 rel_ptr = ipath->fspath->val[i] -
3127 (u64)(unsigned long)ipath->fspath->val;
3128 ipath->fspath->val[i] = rel_ptr;
3129 }
3130
3131 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3132 (void *)(unsigned long)ipath->fspath, size);
3133 if (ret) {
3134 ret = -EFAULT;
3135 goto out;
3136 }
3137
3138out:
3139 btrfs_free_path(path);
3140 free_ipath(ipath);
3141 kfree(ipa);
3142
3143 return ret;
3144}
3145
3146static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3147{
3148 struct btrfs_data_container *inodes = ctx;
3149 const size_t c = 3 * sizeof(u64);
3150
3151 if (inodes->bytes_left >= c) {
3152 inodes->bytes_left -= c;
3153 inodes->val[inodes->elem_cnt] = inum;
3154 inodes->val[inodes->elem_cnt + 1] = offset;
3155 inodes->val[inodes->elem_cnt + 2] = root;
3156 inodes->elem_cnt += 3;
3157 } else {
3158 inodes->bytes_missing += c - inodes->bytes_left;
3159 inodes->bytes_left = 0;
3160 inodes->elem_missed += 3;
3161 }
3162
3163 return 0;
3164}
3165
3166static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3167 void __user *arg)
3168{
3169 int ret = 0;
3170 int size;
3171 u64 extent_item_pos;
3172 struct btrfs_ioctl_logical_ino_args *loi;
3173 struct btrfs_data_container *inodes = NULL;
3174 struct btrfs_path *path = NULL;
3175 struct btrfs_key key;
3176
3177 if (!capable(CAP_SYS_ADMIN))
3178 return -EPERM;
3179
3180 loi = memdup_user(arg, sizeof(*loi));
3181 if (IS_ERR(loi)) {
3182 ret = PTR_ERR(loi);
3183 loi = NULL;
3184 goto out;
3185 }
3186
3187 path = btrfs_alloc_path();
3188 if (!path) {
3189 ret = -ENOMEM;
3190 goto out;
3191 }
3192
3193 size = min_t(u32, loi->size, 4096);
3194 inodes = init_data_container(size);
3195 if (IS_ERR(inodes)) {
3196 ret = PTR_ERR(inodes);
3197 inodes = NULL;
3198 goto out;
3199 }
3200
3201 ret = extent_from_logical(root->fs_info, loi->logical, path, &key);
3202 btrfs_release_path(path);
3203
3204 if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3205 ret = -ENOENT;
3206 if (ret < 0)
3207 goto out;
3208
3209 extent_item_pos = loi->logical - key.objectid;
3210 ret = iterate_extent_inodes(root->fs_info, key.objectid,
3211 extent_item_pos, 0, build_ino_list,
3212 inodes);
3213
3214 if (ret < 0)
3215 goto out;
3216
3217 ret = copy_to_user((void *)(unsigned long)loi->inodes,
3218 (void *)(unsigned long)inodes, size);
3219 if (ret)
3220 ret = -EFAULT;
3221
3222out:
3223 btrfs_free_path(path);
3224 kfree(inodes);
3225 kfree(loi);
3226
3227 return ret;
3228}
3229
3230void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3231 struct btrfs_ioctl_balance_args *bargs)
3232{
3233 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3234
3235 bargs->flags = bctl->flags;
3236
3237 if (atomic_read(&fs_info->balance_running))
3238 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3239 if (atomic_read(&fs_info->balance_pause_req))
3240 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3241 if (atomic_read(&fs_info->balance_cancel_req))
3242 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3243
3244 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3245 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3246 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3247
3248 if (lock) {
3249 spin_lock(&fs_info->balance_lock);
3250 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3251 spin_unlock(&fs_info->balance_lock);
3252 } else {
3253 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3254 }
3255}
3256
3257static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3258{
3259 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3260 struct btrfs_fs_info *fs_info = root->fs_info;
3261 struct btrfs_ioctl_balance_args *bargs;
3262 struct btrfs_balance_control *bctl;
3263 int ret;
3264
3265 if (!capable(CAP_SYS_ADMIN))
3266 return -EPERM;
3267
3268 if (fs_info->sb->s_flags & MS_RDONLY)
3269 return -EROFS;
3270
3271 ret = mnt_want_write(file->f_path.mnt);
3272 if (ret)
3273 return ret;
3274
3275 mutex_lock(&fs_info->volume_mutex);
3276 mutex_lock(&fs_info->balance_mutex);
3277
3278 if (arg) {
3279 bargs = memdup_user(arg, sizeof(*bargs));
3280 if (IS_ERR(bargs)) {
3281 ret = PTR_ERR(bargs);
3282 goto out;
3283 }
3284
3285 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3286 if (!fs_info->balance_ctl) {
3287 ret = -ENOTCONN;
3288 goto out_bargs;
3289 }
3290
3291 bctl = fs_info->balance_ctl;
3292 spin_lock(&fs_info->balance_lock);
3293 bctl->flags |= BTRFS_BALANCE_RESUME;
3294 spin_unlock(&fs_info->balance_lock);
3295
3296 goto do_balance;
3297 }
3298 } else {
3299 bargs = NULL;
3300 }
3301
3302 if (fs_info->balance_ctl) {
3303 ret = -EINPROGRESS;
3304 goto out_bargs;
3305 }
3306
3307 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3308 if (!bctl) {
3309 ret = -ENOMEM;
3310 goto out_bargs;
3311 }
3312
3313 bctl->fs_info = fs_info;
3314 if (arg) {
3315 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3316 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3317 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3318
3319 bctl->flags = bargs->flags;
3320 } else {
3321 /* balance everything - no filters */
3322 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
3323 }
3324
3325do_balance:
3326 ret = btrfs_balance(bctl, bargs);
3327 /*
3328 * bctl is freed in __cancel_balance or in free_fs_info if
3329 * restriper was paused all the way until unmount
3330 */
3331 if (arg) {
3332 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3333 ret = -EFAULT;
3334 }
3335
3336out_bargs:
3337 kfree(bargs);
3338out:
3339 mutex_unlock(&fs_info->balance_mutex);
3340 mutex_unlock(&fs_info->volume_mutex);
3341 mnt_drop_write(file->f_path.mnt);
3342 return ret;
3343}
3344
3345static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
3346{
3347 if (!capable(CAP_SYS_ADMIN))
3348 return -EPERM;
3349
3350 switch (cmd) {
3351 case BTRFS_BALANCE_CTL_PAUSE:
3352 return btrfs_pause_balance(root->fs_info);
3353 case BTRFS_BALANCE_CTL_CANCEL:
3354 return btrfs_cancel_balance(root->fs_info);
3355 }
3356
3357 return -EINVAL;
3358}
3359
3360static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
3361 void __user *arg)
3362{
3363 struct btrfs_fs_info *fs_info = root->fs_info;
3364 struct btrfs_ioctl_balance_args *bargs;
3365 int ret = 0;
3366
3367 if (!capable(CAP_SYS_ADMIN))
3368 return -EPERM;
3369
3370 mutex_lock(&fs_info->balance_mutex);
3371 if (!fs_info->balance_ctl) {
3372 ret = -ENOTCONN;
3373 goto out;
3374 }
3375
3376 bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
3377 if (!bargs) {
3378 ret = -ENOMEM;
3379 goto out;
3380 }
3381
3382 update_ioctl_balance_args(fs_info, 1, bargs);
3383
3384 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3385 ret = -EFAULT;
3386
3387 kfree(bargs);
3388out:
3389 mutex_unlock(&fs_info->balance_mutex);
3390 return ret;
3391}
3392
3393long btrfs_ioctl(struct file *file, unsigned int
3394 cmd, unsigned long arg)
3395{
3396 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3397 void __user *argp = (void __user *)arg;
3398
3399 switch (cmd) {
3400 case FS_IOC_GETFLAGS:
3401 return btrfs_ioctl_getflags(file, argp);
3402 case FS_IOC_SETFLAGS:
3403 return btrfs_ioctl_setflags(file, argp);
3404 case FS_IOC_GETVERSION:
3405 return btrfs_ioctl_getversion(file, argp);
3406 case FITRIM:
3407 return btrfs_ioctl_fitrim(file, argp);
3408 case BTRFS_IOC_SNAP_CREATE:
3409 return btrfs_ioctl_snap_create(file, argp, 0);
3410 case BTRFS_IOC_SNAP_CREATE_V2:
3411 return btrfs_ioctl_snap_create_v2(file, argp, 0);
3412 case BTRFS_IOC_SUBVOL_CREATE:
3413 return btrfs_ioctl_snap_create(file, argp, 1);
3414 case BTRFS_IOC_SNAP_DESTROY:
3415 return btrfs_ioctl_snap_destroy(file, argp);
3416 case BTRFS_IOC_SUBVOL_GETFLAGS:
3417 return btrfs_ioctl_subvol_getflags(file, argp);
3418 case BTRFS_IOC_SUBVOL_SETFLAGS:
3419 return btrfs_ioctl_subvol_setflags(file, argp);
3420 case BTRFS_IOC_DEFAULT_SUBVOL:
3421 return btrfs_ioctl_default_subvol(file, argp);
3422 case BTRFS_IOC_DEFRAG:
3423 return btrfs_ioctl_defrag(file, NULL);
3424 case BTRFS_IOC_DEFRAG_RANGE:
3425 return btrfs_ioctl_defrag(file, argp);
3426 case BTRFS_IOC_RESIZE:
3427 return btrfs_ioctl_resize(root, argp);
3428 case BTRFS_IOC_ADD_DEV:
3429 return btrfs_ioctl_add_dev(root, argp);
3430 case BTRFS_IOC_RM_DEV:
3431 return btrfs_ioctl_rm_dev(root, argp);
3432 case BTRFS_IOC_FS_INFO:
3433 return btrfs_ioctl_fs_info(root, argp);
3434 case BTRFS_IOC_DEV_INFO:
3435 return btrfs_ioctl_dev_info(root, argp);
3436 case BTRFS_IOC_BALANCE:
3437 return btrfs_ioctl_balance(file, NULL);
3438 case BTRFS_IOC_CLONE:
3439 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
3440 case BTRFS_IOC_CLONE_RANGE:
3441 return btrfs_ioctl_clone_range(file, argp);
3442 case BTRFS_IOC_TRANS_START:
3443 return btrfs_ioctl_trans_start(file);
3444 case BTRFS_IOC_TRANS_END:
3445 return btrfs_ioctl_trans_end(file);
3446 case BTRFS_IOC_TREE_SEARCH:
3447 return btrfs_ioctl_tree_search(file, argp);
3448 case BTRFS_IOC_INO_LOOKUP:
3449 return btrfs_ioctl_ino_lookup(file, argp);
3450 case BTRFS_IOC_INO_PATHS:
3451 return btrfs_ioctl_ino_to_path(root, argp);
3452 case BTRFS_IOC_LOGICAL_INO:
3453 return btrfs_ioctl_logical_to_ino(root, argp);
3454 case BTRFS_IOC_SPACE_INFO:
3455 return btrfs_ioctl_space_info(root, argp);
3456 case BTRFS_IOC_SYNC:
3457 btrfs_sync_fs(file->f_dentry->d_sb, 1);
3458 return 0;
3459 case BTRFS_IOC_START_SYNC:
3460 return btrfs_ioctl_start_sync(file, argp);
3461 case BTRFS_IOC_WAIT_SYNC:
3462 return btrfs_ioctl_wait_sync(file, argp);
3463 case BTRFS_IOC_SCRUB:
3464 return btrfs_ioctl_scrub(root, argp);
3465 case BTRFS_IOC_SCRUB_CANCEL:
3466 return btrfs_ioctl_scrub_cancel(root, argp);
3467 case BTRFS_IOC_SCRUB_PROGRESS:
3468 return btrfs_ioctl_scrub_progress(root, argp);
3469 case BTRFS_IOC_BALANCE_V2:
3470 return btrfs_ioctl_balance(file, argp);
3471 case BTRFS_IOC_BALANCE_CTL:
3472 return btrfs_ioctl_balance_ctl(root, arg);
3473 case BTRFS_IOC_BALANCE_PROGRESS:
3474 return btrfs_ioctl_balance_progress(root, argp);
3475 case BTRFS_IOC_GET_DEV_STATS:
3476 return btrfs_ioctl_get_dev_stats(root, argp, 0);
3477 case BTRFS_IOC_GET_AND_RESET_DEV_STATS:
3478 return btrfs_ioctl_get_dev_stats(root, argp, 1);
3479 }
3480
3481 return -ENOTTY;
3482}
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/buffer_head.h>
22#include <linux/file.h>
23#include <linux/fs.h>
24#include <linux/fsnotify.h>
25#include <linux/pagemap.h>
26#include <linux/highmem.h>
27#include <linux/time.h>
28#include <linux/init.h>
29#include <linux/string.h>
30#include <linux/backing-dev.h>
31#include <linux/mount.h>
32#include <linux/mpage.h>
33#include <linux/namei.h>
34#include <linux/swap.h>
35#include <linux/writeback.h>
36#include <linux/statfs.h>
37#include <linux/compat.h>
38#include <linux/bit_spinlock.h>
39#include <linux/security.h>
40#include <linux/xattr.h>
41#include <linux/vmalloc.h>
42#include <linux/slab.h>
43#include <linux/blkdev.h>
44#include <linux/uuid.h>
45#include <linux/btrfs.h>
46#include <linux/uaccess.h>
47#include "ctree.h"
48#include "disk-io.h"
49#include "transaction.h"
50#include "btrfs_inode.h"
51#include "print-tree.h"
52#include "volumes.h"
53#include "locking.h"
54#include "inode-map.h"
55#include "backref.h"
56#include "rcu-string.h"
57#include "send.h"
58#include "dev-replace.h"
59#include "props.h"
60#include "sysfs.h"
61#include "qgroup.h"
62#include "tree-log.h"
63#include "compression.h"
64
65#ifdef CONFIG_64BIT
66/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67 * structures are incorrect, as the timespec structure from userspace
68 * is 4 bytes too small. We define these alternatives here to teach
69 * the kernel about the 32-bit struct packing.
70 */
71struct btrfs_ioctl_timespec_32 {
72 __u64 sec;
73 __u32 nsec;
74} __attribute__ ((__packed__));
75
76struct btrfs_ioctl_received_subvol_args_32 {
77 char uuid[BTRFS_UUID_SIZE]; /* in */
78 __u64 stransid; /* in */
79 __u64 rtransid; /* out */
80 struct btrfs_ioctl_timespec_32 stime; /* in */
81 struct btrfs_ioctl_timespec_32 rtime; /* out */
82 __u64 flags; /* in */
83 __u64 reserved[16]; /* in */
84} __attribute__ ((__packed__));
85
86#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 struct btrfs_ioctl_received_subvol_args_32)
88#endif
89
90
91static int btrfs_clone(struct inode *src, struct inode *inode,
92 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
93 int no_time_update);
94
95/* Mask out flags that are inappropriate for the given type of inode. */
96static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
97{
98 if (S_ISDIR(mode))
99 return flags;
100 else if (S_ISREG(mode))
101 return flags & ~FS_DIRSYNC_FL;
102 else
103 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
104}
105
106/*
107 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
108 */
109static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
110{
111 unsigned int iflags = 0;
112
113 if (flags & BTRFS_INODE_SYNC)
114 iflags |= FS_SYNC_FL;
115 if (flags & BTRFS_INODE_IMMUTABLE)
116 iflags |= FS_IMMUTABLE_FL;
117 if (flags & BTRFS_INODE_APPEND)
118 iflags |= FS_APPEND_FL;
119 if (flags & BTRFS_INODE_NODUMP)
120 iflags |= FS_NODUMP_FL;
121 if (flags & BTRFS_INODE_NOATIME)
122 iflags |= FS_NOATIME_FL;
123 if (flags & BTRFS_INODE_DIRSYNC)
124 iflags |= FS_DIRSYNC_FL;
125 if (flags & BTRFS_INODE_NODATACOW)
126 iflags |= FS_NOCOW_FL;
127
128 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
129 iflags |= FS_COMPR_FL;
130 else if (flags & BTRFS_INODE_NOCOMPRESS)
131 iflags |= FS_NOCOMP_FL;
132
133 return iflags;
134}
135
136/*
137 * Update inode->i_flags based on the btrfs internal flags.
138 */
139void btrfs_update_iflags(struct inode *inode)
140{
141 struct btrfs_inode *ip = BTRFS_I(inode);
142 unsigned int new_fl = 0;
143
144 if (ip->flags & BTRFS_INODE_SYNC)
145 new_fl |= S_SYNC;
146 if (ip->flags & BTRFS_INODE_IMMUTABLE)
147 new_fl |= S_IMMUTABLE;
148 if (ip->flags & BTRFS_INODE_APPEND)
149 new_fl |= S_APPEND;
150 if (ip->flags & BTRFS_INODE_NOATIME)
151 new_fl |= S_NOATIME;
152 if (ip->flags & BTRFS_INODE_DIRSYNC)
153 new_fl |= S_DIRSYNC;
154
155 set_mask_bits(&inode->i_flags,
156 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
157 new_fl);
158}
159
160/*
161 * Inherit flags from the parent inode.
162 *
163 * Currently only the compression flags and the cow flags are inherited.
164 */
165void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
166{
167 unsigned int flags;
168
169 if (!dir)
170 return;
171
172 flags = BTRFS_I(dir)->flags;
173
174 if (flags & BTRFS_INODE_NOCOMPRESS) {
175 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
176 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
177 } else if (flags & BTRFS_INODE_COMPRESS) {
178 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
179 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
180 }
181
182 if (flags & BTRFS_INODE_NODATACOW) {
183 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
184 if (S_ISREG(inode->i_mode))
185 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
186 }
187
188 btrfs_update_iflags(inode);
189}
190
191static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
192{
193 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
194 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
195
196 if (copy_to_user(arg, &flags, sizeof(flags)))
197 return -EFAULT;
198 return 0;
199}
200
201static int check_flags(unsigned int flags)
202{
203 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
204 FS_NOATIME_FL | FS_NODUMP_FL | \
205 FS_SYNC_FL | FS_DIRSYNC_FL | \
206 FS_NOCOMP_FL | FS_COMPR_FL |
207 FS_NOCOW_FL))
208 return -EOPNOTSUPP;
209
210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
211 return -EINVAL;
212
213 return 0;
214}
215
216static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
217{
218 struct inode *inode = file_inode(file);
219 struct btrfs_inode *ip = BTRFS_I(inode);
220 struct btrfs_root *root = ip->root;
221 struct btrfs_trans_handle *trans;
222 unsigned int flags, oldflags;
223 int ret;
224 u64 ip_oldflags;
225 unsigned int i_oldflags;
226 umode_t mode;
227
228 if (!inode_owner_or_capable(inode))
229 return -EPERM;
230
231 if (btrfs_root_readonly(root))
232 return -EROFS;
233
234 if (copy_from_user(&flags, arg, sizeof(flags)))
235 return -EFAULT;
236
237 ret = check_flags(flags);
238 if (ret)
239 return ret;
240
241 ret = mnt_want_write_file(file);
242 if (ret)
243 return ret;
244
245 inode_lock(inode);
246
247 ip_oldflags = ip->flags;
248 i_oldflags = inode->i_flags;
249 mode = inode->i_mode;
250
251 flags = btrfs_mask_flags(inode->i_mode, flags);
252 oldflags = btrfs_flags_to_ioctl(ip->flags);
253 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
254 if (!capable(CAP_LINUX_IMMUTABLE)) {
255 ret = -EPERM;
256 goto out_unlock;
257 }
258 }
259
260 if (flags & FS_SYNC_FL)
261 ip->flags |= BTRFS_INODE_SYNC;
262 else
263 ip->flags &= ~BTRFS_INODE_SYNC;
264 if (flags & FS_IMMUTABLE_FL)
265 ip->flags |= BTRFS_INODE_IMMUTABLE;
266 else
267 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
268 if (flags & FS_APPEND_FL)
269 ip->flags |= BTRFS_INODE_APPEND;
270 else
271 ip->flags &= ~BTRFS_INODE_APPEND;
272 if (flags & FS_NODUMP_FL)
273 ip->flags |= BTRFS_INODE_NODUMP;
274 else
275 ip->flags &= ~BTRFS_INODE_NODUMP;
276 if (flags & FS_NOATIME_FL)
277 ip->flags |= BTRFS_INODE_NOATIME;
278 else
279 ip->flags &= ~BTRFS_INODE_NOATIME;
280 if (flags & FS_DIRSYNC_FL)
281 ip->flags |= BTRFS_INODE_DIRSYNC;
282 else
283 ip->flags &= ~BTRFS_INODE_DIRSYNC;
284 if (flags & FS_NOCOW_FL) {
285 if (S_ISREG(mode)) {
286 /*
287 * It's safe to turn csums off here, no extents exist.
288 * Otherwise we want the flag to reflect the real COW
289 * status of the file and will not set it.
290 */
291 if (inode->i_size == 0)
292 ip->flags |= BTRFS_INODE_NODATACOW
293 | BTRFS_INODE_NODATASUM;
294 } else {
295 ip->flags |= BTRFS_INODE_NODATACOW;
296 }
297 } else {
298 /*
299 * Revert back under same assuptions as above
300 */
301 if (S_ISREG(mode)) {
302 if (inode->i_size == 0)
303 ip->flags &= ~(BTRFS_INODE_NODATACOW
304 | BTRFS_INODE_NODATASUM);
305 } else {
306 ip->flags &= ~BTRFS_INODE_NODATACOW;
307 }
308 }
309
310 /*
311 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
312 * flag may be changed automatically if compression code won't make
313 * things smaller.
314 */
315 if (flags & FS_NOCOMP_FL) {
316 ip->flags &= ~BTRFS_INODE_COMPRESS;
317 ip->flags |= BTRFS_INODE_NOCOMPRESS;
318
319 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
320 if (ret && ret != -ENODATA)
321 goto out_drop;
322 } else if (flags & FS_COMPR_FL) {
323 const char *comp;
324
325 ip->flags |= BTRFS_INODE_COMPRESS;
326 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
327
328 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
329 comp = "lzo";
330 else
331 comp = "zlib";
332 ret = btrfs_set_prop(inode, "btrfs.compression",
333 comp, strlen(comp), 0);
334 if (ret)
335 goto out_drop;
336
337 } else {
338 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
339 if (ret && ret != -ENODATA)
340 goto out_drop;
341 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
342 }
343
344 trans = btrfs_start_transaction(root, 1);
345 if (IS_ERR(trans)) {
346 ret = PTR_ERR(trans);
347 goto out_drop;
348 }
349
350 btrfs_update_iflags(inode);
351 inode_inc_iversion(inode);
352 inode->i_ctime = current_fs_time(inode->i_sb);
353 ret = btrfs_update_inode(trans, root, inode);
354
355 btrfs_end_transaction(trans, root);
356 out_drop:
357 if (ret) {
358 ip->flags = ip_oldflags;
359 inode->i_flags = i_oldflags;
360 }
361
362 out_unlock:
363 inode_unlock(inode);
364 mnt_drop_write_file(file);
365 return ret;
366}
367
368static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
369{
370 struct inode *inode = file_inode(file);
371
372 return put_user(inode->i_generation, arg);
373}
374
375static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
376{
377 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
378 struct btrfs_device *device;
379 struct request_queue *q;
380 struct fstrim_range range;
381 u64 minlen = ULLONG_MAX;
382 u64 num_devices = 0;
383 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
384 int ret;
385
386 if (!capable(CAP_SYS_ADMIN))
387 return -EPERM;
388
389 rcu_read_lock();
390 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
391 dev_list) {
392 if (!device->bdev)
393 continue;
394 q = bdev_get_queue(device->bdev);
395 if (blk_queue_discard(q)) {
396 num_devices++;
397 minlen = min((u64)q->limits.discard_granularity,
398 minlen);
399 }
400 }
401 rcu_read_unlock();
402
403 if (!num_devices)
404 return -EOPNOTSUPP;
405 if (copy_from_user(&range, arg, sizeof(range)))
406 return -EFAULT;
407 if (range.start > total_bytes ||
408 range.len < fs_info->sb->s_blocksize)
409 return -EINVAL;
410
411 range.len = min(range.len, total_bytes - range.start);
412 range.minlen = max(range.minlen, minlen);
413 ret = btrfs_trim_fs(fs_info->tree_root, &range);
414 if (ret < 0)
415 return ret;
416
417 if (copy_to_user(arg, &range, sizeof(range)))
418 return -EFAULT;
419
420 return 0;
421}
422
423int btrfs_is_empty_uuid(u8 *uuid)
424{
425 int i;
426
427 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
428 if (uuid[i])
429 return 0;
430 }
431 return 1;
432}
433
434static noinline int create_subvol(struct inode *dir,
435 struct dentry *dentry,
436 char *name, int namelen,
437 u64 *async_transid,
438 struct btrfs_qgroup_inherit *inherit)
439{
440 struct btrfs_trans_handle *trans;
441 struct btrfs_key key;
442 struct btrfs_root_item root_item;
443 struct btrfs_inode_item *inode_item;
444 struct extent_buffer *leaf;
445 struct btrfs_root *root = BTRFS_I(dir)->root;
446 struct btrfs_root *new_root;
447 struct btrfs_block_rsv block_rsv;
448 struct timespec cur_time = current_fs_time(dir->i_sb);
449 struct inode *inode;
450 int ret;
451 int err;
452 u64 objectid;
453 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
454 u64 index = 0;
455 u64 qgroup_reserved;
456 uuid_le new_uuid;
457
458 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
459 if (ret)
460 return ret;
461
462 /*
463 * Don't create subvolume whose level is not zero. Or qgroup will be
464 * screwed up since it assume subvolme qgroup's level to be 0.
465 */
466 if (btrfs_qgroup_level(objectid))
467 return -ENOSPC;
468
469 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
470 /*
471 * The same as the snapshot creation, please see the comment
472 * of create_snapshot().
473 */
474 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
475 8, &qgroup_reserved, false);
476 if (ret)
477 return ret;
478
479 trans = btrfs_start_transaction(root, 0);
480 if (IS_ERR(trans)) {
481 ret = PTR_ERR(trans);
482 btrfs_subvolume_release_metadata(root, &block_rsv,
483 qgroup_reserved);
484 return ret;
485 }
486 trans->block_rsv = &block_rsv;
487 trans->bytes_reserved = block_rsv.size;
488
489 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
490 if (ret)
491 goto fail;
492
493 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
494 if (IS_ERR(leaf)) {
495 ret = PTR_ERR(leaf);
496 goto fail;
497 }
498
499 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
500 btrfs_set_header_bytenr(leaf, leaf->start);
501 btrfs_set_header_generation(leaf, trans->transid);
502 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
503 btrfs_set_header_owner(leaf, objectid);
504
505 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
506 BTRFS_FSID_SIZE);
507 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
508 btrfs_header_chunk_tree_uuid(leaf),
509 BTRFS_UUID_SIZE);
510 btrfs_mark_buffer_dirty(leaf);
511
512 memset(&root_item, 0, sizeof(root_item));
513
514 inode_item = &root_item.inode;
515 btrfs_set_stack_inode_generation(inode_item, 1);
516 btrfs_set_stack_inode_size(inode_item, 3);
517 btrfs_set_stack_inode_nlink(inode_item, 1);
518 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
519 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
520
521 btrfs_set_root_flags(&root_item, 0);
522 btrfs_set_root_limit(&root_item, 0);
523 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
524
525 btrfs_set_root_bytenr(&root_item, leaf->start);
526 btrfs_set_root_generation(&root_item, trans->transid);
527 btrfs_set_root_level(&root_item, 0);
528 btrfs_set_root_refs(&root_item, 1);
529 btrfs_set_root_used(&root_item, leaf->len);
530 btrfs_set_root_last_snapshot(&root_item, 0);
531
532 btrfs_set_root_generation_v2(&root_item,
533 btrfs_root_generation(&root_item));
534 uuid_le_gen(&new_uuid);
535 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
536 btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
537 btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
538 root_item.ctime = root_item.otime;
539 btrfs_set_root_ctransid(&root_item, trans->transid);
540 btrfs_set_root_otransid(&root_item, trans->transid);
541
542 btrfs_tree_unlock(leaf);
543 free_extent_buffer(leaf);
544 leaf = NULL;
545
546 btrfs_set_root_dirid(&root_item, new_dirid);
547
548 key.objectid = objectid;
549 key.offset = 0;
550 key.type = BTRFS_ROOT_ITEM_KEY;
551 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
552 &root_item);
553 if (ret)
554 goto fail;
555
556 key.offset = (u64)-1;
557 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
558 if (IS_ERR(new_root)) {
559 ret = PTR_ERR(new_root);
560 btrfs_abort_transaction(trans, root, ret);
561 goto fail;
562 }
563
564 btrfs_record_root_in_trans(trans, new_root);
565
566 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
567 if (ret) {
568 /* We potentially lose an unused inode item here */
569 btrfs_abort_transaction(trans, root, ret);
570 goto fail;
571 }
572
573 mutex_lock(&new_root->objectid_mutex);
574 new_root->highest_objectid = new_dirid;
575 mutex_unlock(&new_root->objectid_mutex);
576
577 /*
578 * insert the directory item
579 */
580 ret = btrfs_set_inode_index(dir, &index);
581 if (ret) {
582 btrfs_abort_transaction(trans, root, ret);
583 goto fail;
584 }
585
586 ret = btrfs_insert_dir_item(trans, root,
587 name, namelen, dir, &key,
588 BTRFS_FT_DIR, index);
589 if (ret) {
590 btrfs_abort_transaction(trans, root, ret);
591 goto fail;
592 }
593
594 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
595 ret = btrfs_update_inode(trans, root, dir);
596 BUG_ON(ret);
597
598 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
599 objectid, root->root_key.objectid,
600 btrfs_ino(dir), index, name, namelen);
601 BUG_ON(ret);
602
603 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
604 root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
605 objectid);
606 if (ret)
607 btrfs_abort_transaction(trans, root, ret);
608
609fail:
610 trans->block_rsv = NULL;
611 trans->bytes_reserved = 0;
612 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
613
614 if (async_transid) {
615 *async_transid = trans->transid;
616 err = btrfs_commit_transaction_async(trans, root, 1);
617 if (err)
618 err = btrfs_commit_transaction(trans, root);
619 } else {
620 err = btrfs_commit_transaction(trans, root);
621 }
622 if (err && !ret)
623 ret = err;
624
625 if (!ret) {
626 inode = btrfs_lookup_dentry(dir, dentry);
627 if (IS_ERR(inode))
628 return PTR_ERR(inode);
629 d_instantiate(dentry, inode);
630 }
631 return ret;
632}
633
634static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
635{
636 s64 writers;
637 DEFINE_WAIT(wait);
638
639 do {
640 prepare_to_wait(&root->subv_writers->wait, &wait,
641 TASK_UNINTERRUPTIBLE);
642
643 writers = percpu_counter_sum(&root->subv_writers->counter);
644 if (writers)
645 schedule();
646
647 finish_wait(&root->subv_writers->wait, &wait);
648 } while (writers);
649}
650
651static int create_snapshot(struct btrfs_root *root, struct inode *dir,
652 struct dentry *dentry, char *name, int namelen,
653 u64 *async_transid, bool readonly,
654 struct btrfs_qgroup_inherit *inherit)
655{
656 struct inode *inode;
657 struct btrfs_pending_snapshot *pending_snapshot;
658 struct btrfs_trans_handle *trans;
659 int ret;
660
661 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
662 return -EINVAL;
663
664 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
665 if (!pending_snapshot)
666 return -ENOMEM;
667
668 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
669 GFP_NOFS);
670 pending_snapshot->path = btrfs_alloc_path();
671 if (!pending_snapshot->root_item || !pending_snapshot->path) {
672 ret = -ENOMEM;
673 goto free_pending;
674 }
675
676 atomic_inc(&root->will_be_snapshoted);
677 smp_mb__after_atomic();
678 btrfs_wait_for_no_snapshoting_writes(root);
679
680 ret = btrfs_start_delalloc_inodes(root, 0);
681 if (ret)
682 goto dec_and_free;
683
684 btrfs_wait_ordered_extents(root, -1);
685
686 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
687 BTRFS_BLOCK_RSV_TEMP);
688 /*
689 * 1 - parent dir inode
690 * 2 - dir entries
691 * 1 - root item
692 * 2 - root ref/backref
693 * 1 - root of snapshot
694 * 1 - UUID item
695 */
696 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
697 &pending_snapshot->block_rsv, 8,
698 &pending_snapshot->qgroup_reserved,
699 false);
700 if (ret)
701 goto dec_and_free;
702
703 pending_snapshot->dentry = dentry;
704 pending_snapshot->root = root;
705 pending_snapshot->readonly = readonly;
706 pending_snapshot->dir = dir;
707 pending_snapshot->inherit = inherit;
708
709 trans = btrfs_start_transaction(root, 0);
710 if (IS_ERR(trans)) {
711 ret = PTR_ERR(trans);
712 goto fail;
713 }
714
715 spin_lock(&root->fs_info->trans_lock);
716 list_add(&pending_snapshot->list,
717 &trans->transaction->pending_snapshots);
718 spin_unlock(&root->fs_info->trans_lock);
719 if (async_transid) {
720 *async_transid = trans->transid;
721 ret = btrfs_commit_transaction_async(trans,
722 root->fs_info->extent_root, 1);
723 if (ret)
724 ret = btrfs_commit_transaction(trans, root);
725 } else {
726 ret = btrfs_commit_transaction(trans,
727 root->fs_info->extent_root);
728 }
729 if (ret)
730 goto fail;
731
732 ret = pending_snapshot->error;
733 if (ret)
734 goto fail;
735
736 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
737 if (ret)
738 goto fail;
739
740 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
741 if (IS_ERR(inode)) {
742 ret = PTR_ERR(inode);
743 goto fail;
744 }
745
746 d_instantiate(dentry, inode);
747 ret = 0;
748fail:
749 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
750 &pending_snapshot->block_rsv,
751 pending_snapshot->qgroup_reserved);
752dec_and_free:
753 if (atomic_dec_and_test(&root->will_be_snapshoted))
754 wake_up_atomic_t(&root->will_be_snapshoted);
755free_pending:
756 kfree(pending_snapshot->root_item);
757 btrfs_free_path(pending_snapshot->path);
758 kfree(pending_snapshot);
759
760 return ret;
761}
762
763/* copy of may_delete in fs/namei.c()
764 * Check whether we can remove a link victim from directory dir, check
765 * whether the type of victim is right.
766 * 1. We can't do it if dir is read-only (done in permission())
767 * 2. We should have write and exec permissions on dir
768 * 3. We can't remove anything from append-only dir
769 * 4. We can't do anything with immutable dir (done in permission())
770 * 5. If the sticky bit on dir is set we should either
771 * a. be owner of dir, or
772 * b. be owner of victim, or
773 * c. have CAP_FOWNER capability
774 * 6. If the victim is append-only or immutable we can't do antyhing with
775 * links pointing to it.
776 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
777 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
778 * 9. We can't remove a root or mountpoint.
779 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
780 * nfs_async_unlink().
781 */
782
783static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
784{
785 int error;
786
787 if (d_really_is_negative(victim))
788 return -ENOENT;
789
790 BUG_ON(d_inode(victim->d_parent) != dir);
791 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
792
793 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
794 if (error)
795 return error;
796 if (IS_APPEND(dir))
797 return -EPERM;
798 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
799 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
800 return -EPERM;
801 if (isdir) {
802 if (!d_is_dir(victim))
803 return -ENOTDIR;
804 if (IS_ROOT(victim))
805 return -EBUSY;
806 } else if (d_is_dir(victim))
807 return -EISDIR;
808 if (IS_DEADDIR(dir))
809 return -ENOENT;
810 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
811 return -EBUSY;
812 return 0;
813}
814
815/* copy of may_create in fs/namei.c() */
816static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
817{
818 if (d_really_is_positive(child))
819 return -EEXIST;
820 if (IS_DEADDIR(dir))
821 return -ENOENT;
822 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
823}
824
825/*
826 * Create a new subvolume below @parent. This is largely modeled after
827 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
828 * inside this filesystem so it's quite a bit simpler.
829 */
830static noinline int btrfs_mksubvol(struct path *parent,
831 char *name, int namelen,
832 struct btrfs_root *snap_src,
833 u64 *async_transid, bool readonly,
834 struct btrfs_qgroup_inherit *inherit)
835{
836 struct inode *dir = d_inode(parent->dentry);
837 struct dentry *dentry;
838 int error;
839
840 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
841 if (error == -EINTR)
842 return error;
843
844 dentry = lookup_one_len(name, parent->dentry, namelen);
845 error = PTR_ERR(dentry);
846 if (IS_ERR(dentry))
847 goto out_unlock;
848
849 error = btrfs_may_create(dir, dentry);
850 if (error)
851 goto out_dput;
852
853 /*
854 * even if this name doesn't exist, we may get hash collisions.
855 * check for them now when we can safely fail
856 */
857 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
858 dir->i_ino, name,
859 namelen);
860 if (error)
861 goto out_dput;
862
863 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
864
865 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
866 goto out_up_read;
867
868 if (snap_src) {
869 error = create_snapshot(snap_src, dir, dentry, name, namelen,
870 async_transid, readonly, inherit);
871 } else {
872 error = create_subvol(dir, dentry, name, namelen,
873 async_transid, inherit);
874 }
875 if (!error)
876 fsnotify_mkdir(dir, dentry);
877out_up_read:
878 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
879out_dput:
880 dput(dentry);
881out_unlock:
882 inode_unlock(dir);
883 return error;
884}
885
886/*
887 * When we're defragging a range, we don't want to kick it off again
888 * if it is really just waiting for delalloc to send it down.
889 * If we find a nice big extent or delalloc range for the bytes in the
890 * file you want to defrag, we return 0 to let you know to skip this
891 * part of the file
892 */
893static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
894{
895 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
896 struct extent_map *em = NULL;
897 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
898 u64 end;
899
900 read_lock(&em_tree->lock);
901 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
902 read_unlock(&em_tree->lock);
903
904 if (em) {
905 end = extent_map_end(em);
906 free_extent_map(em);
907 if (end - offset > thresh)
908 return 0;
909 }
910 /* if we already have a nice delalloc here, just stop */
911 thresh /= 2;
912 end = count_range_bits(io_tree, &offset, offset + thresh,
913 thresh, EXTENT_DELALLOC, 1);
914 if (end >= thresh)
915 return 0;
916 return 1;
917}
918
919/*
920 * helper function to walk through a file and find extents
921 * newer than a specific transid, and smaller than thresh.
922 *
923 * This is used by the defragging code to find new and small
924 * extents
925 */
926static int find_new_extents(struct btrfs_root *root,
927 struct inode *inode, u64 newer_than,
928 u64 *off, u32 thresh)
929{
930 struct btrfs_path *path;
931 struct btrfs_key min_key;
932 struct extent_buffer *leaf;
933 struct btrfs_file_extent_item *extent;
934 int type;
935 int ret;
936 u64 ino = btrfs_ino(inode);
937
938 path = btrfs_alloc_path();
939 if (!path)
940 return -ENOMEM;
941
942 min_key.objectid = ino;
943 min_key.type = BTRFS_EXTENT_DATA_KEY;
944 min_key.offset = *off;
945
946 while (1) {
947 ret = btrfs_search_forward(root, &min_key, path, newer_than);
948 if (ret != 0)
949 goto none;
950process_slot:
951 if (min_key.objectid != ino)
952 goto none;
953 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
954 goto none;
955
956 leaf = path->nodes[0];
957 extent = btrfs_item_ptr(leaf, path->slots[0],
958 struct btrfs_file_extent_item);
959
960 type = btrfs_file_extent_type(leaf, extent);
961 if (type == BTRFS_FILE_EXTENT_REG &&
962 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
963 check_defrag_in_cache(inode, min_key.offset, thresh)) {
964 *off = min_key.offset;
965 btrfs_free_path(path);
966 return 0;
967 }
968
969 path->slots[0]++;
970 if (path->slots[0] < btrfs_header_nritems(leaf)) {
971 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
972 goto process_slot;
973 }
974
975 if (min_key.offset == (u64)-1)
976 goto none;
977
978 min_key.offset++;
979 btrfs_release_path(path);
980 }
981none:
982 btrfs_free_path(path);
983 return -ENOENT;
984}
985
986static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
987{
988 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
989 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
990 struct extent_map *em;
991 u64 len = PAGE_SIZE;
992
993 /*
994 * hopefully we have this extent in the tree already, try without
995 * the full extent lock
996 */
997 read_lock(&em_tree->lock);
998 em = lookup_extent_mapping(em_tree, start, len);
999 read_unlock(&em_tree->lock);
1000
1001 if (!em) {
1002 struct extent_state *cached = NULL;
1003 u64 end = start + len - 1;
1004
1005 /* get the big lock and read metadata off disk */
1006 lock_extent_bits(io_tree, start, end, &cached);
1007 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1008 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1009
1010 if (IS_ERR(em))
1011 return NULL;
1012 }
1013
1014 return em;
1015}
1016
1017static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1018{
1019 struct extent_map *next;
1020 bool ret = true;
1021
1022 /* this is the last extent */
1023 if (em->start + em->len >= i_size_read(inode))
1024 return false;
1025
1026 next = defrag_lookup_extent(inode, em->start + em->len);
1027 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1028 ret = false;
1029 else if ((em->block_start + em->block_len == next->block_start) &&
1030 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1031 ret = false;
1032
1033 free_extent_map(next);
1034 return ret;
1035}
1036
1037static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1038 u64 *last_len, u64 *skip, u64 *defrag_end,
1039 int compress)
1040{
1041 struct extent_map *em;
1042 int ret = 1;
1043 bool next_mergeable = true;
1044 bool prev_mergeable = true;
1045
1046 /*
1047 * make sure that once we start defragging an extent, we keep on
1048 * defragging it
1049 */
1050 if (start < *defrag_end)
1051 return 1;
1052
1053 *skip = 0;
1054
1055 em = defrag_lookup_extent(inode, start);
1056 if (!em)
1057 return 0;
1058
1059 /* this will cover holes, and inline extents */
1060 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1061 ret = 0;
1062 goto out;
1063 }
1064
1065 if (!*defrag_end)
1066 prev_mergeable = false;
1067
1068 next_mergeable = defrag_check_next_extent(inode, em);
1069 /*
1070 * we hit a real extent, if it is big or the next extent is not a
1071 * real extent, don't bother defragging it
1072 */
1073 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1074 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1075 ret = 0;
1076out:
1077 /*
1078 * last_len ends up being a counter of how many bytes we've defragged.
1079 * every time we choose not to defrag an extent, we reset *last_len
1080 * so that the next tiny extent will force a defrag.
1081 *
1082 * The end result of this is that tiny extents before a single big
1083 * extent will force at least part of that big extent to be defragged.
1084 */
1085 if (ret) {
1086 *defrag_end = extent_map_end(em);
1087 } else {
1088 *last_len = 0;
1089 *skip = extent_map_end(em);
1090 *defrag_end = 0;
1091 }
1092
1093 free_extent_map(em);
1094 return ret;
1095}
1096
1097/*
1098 * it doesn't do much good to defrag one or two pages
1099 * at a time. This pulls in a nice chunk of pages
1100 * to COW and defrag.
1101 *
1102 * It also makes sure the delalloc code has enough
1103 * dirty data to avoid making new small extents as part
1104 * of the defrag
1105 *
1106 * It's a good idea to start RA on this range
1107 * before calling this.
1108 */
1109static int cluster_pages_for_defrag(struct inode *inode,
1110 struct page **pages,
1111 unsigned long start_index,
1112 unsigned long num_pages)
1113{
1114 unsigned long file_end;
1115 u64 isize = i_size_read(inode);
1116 u64 page_start;
1117 u64 page_end;
1118 u64 page_cnt;
1119 int ret;
1120 int i;
1121 int i_done;
1122 struct btrfs_ordered_extent *ordered;
1123 struct extent_state *cached_state = NULL;
1124 struct extent_io_tree *tree;
1125 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1126
1127 file_end = (isize - 1) >> PAGE_SHIFT;
1128 if (!isize || start_index > file_end)
1129 return 0;
1130
1131 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1132
1133 ret = btrfs_delalloc_reserve_space(inode,
1134 start_index << PAGE_SHIFT,
1135 page_cnt << PAGE_SHIFT);
1136 if (ret)
1137 return ret;
1138 i_done = 0;
1139 tree = &BTRFS_I(inode)->io_tree;
1140
1141 /* step one, lock all the pages */
1142 for (i = 0; i < page_cnt; i++) {
1143 struct page *page;
1144again:
1145 page = find_or_create_page(inode->i_mapping,
1146 start_index + i, mask);
1147 if (!page)
1148 break;
1149
1150 page_start = page_offset(page);
1151 page_end = page_start + PAGE_SIZE - 1;
1152 while (1) {
1153 lock_extent_bits(tree, page_start, page_end,
1154 &cached_state);
1155 ordered = btrfs_lookup_ordered_extent(inode,
1156 page_start);
1157 unlock_extent_cached(tree, page_start, page_end,
1158 &cached_state, GFP_NOFS);
1159 if (!ordered)
1160 break;
1161
1162 unlock_page(page);
1163 btrfs_start_ordered_extent(inode, ordered, 1);
1164 btrfs_put_ordered_extent(ordered);
1165 lock_page(page);
1166 /*
1167 * we unlocked the page above, so we need check if
1168 * it was released or not.
1169 */
1170 if (page->mapping != inode->i_mapping) {
1171 unlock_page(page);
1172 put_page(page);
1173 goto again;
1174 }
1175 }
1176
1177 if (!PageUptodate(page)) {
1178 btrfs_readpage(NULL, page);
1179 lock_page(page);
1180 if (!PageUptodate(page)) {
1181 unlock_page(page);
1182 put_page(page);
1183 ret = -EIO;
1184 break;
1185 }
1186 }
1187
1188 if (page->mapping != inode->i_mapping) {
1189 unlock_page(page);
1190 put_page(page);
1191 goto again;
1192 }
1193
1194 pages[i] = page;
1195 i_done++;
1196 }
1197 if (!i_done || ret)
1198 goto out;
1199
1200 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1201 goto out;
1202
1203 /*
1204 * so now we have a nice long stream of locked
1205 * and up to date pages, lets wait on them
1206 */
1207 for (i = 0; i < i_done; i++)
1208 wait_on_page_writeback(pages[i]);
1209
1210 page_start = page_offset(pages[0]);
1211 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1212
1213 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1214 page_start, page_end - 1, &cached_state);
1215 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1216 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1217 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1218 &cached_state, GFP_NOFS);
1219
1220 if (i_done != page_cnt) {
1221 spin_lock(&BTRFS_I(inode)->lock);
1222 BTRFS_I(inode)->outstanding_extents++;
1223 spin_unlock(&BTRFS_I(inode)->lock);
1224 btrfs_delalloc_release_space(inode,
1225 start_index << PAGE_SHIFT,
1226 (page_cnt - i_done) << PAGE_SHIFT);
1227 }
1228
1229
1230 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1231 &cached_state, GFP_NOFS);
1232
1233 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1234 page_start, page_end - 1, &cached_state,
1235 GFP_NOFS);
1236
1237 for (i = 0; i < i_done; i++) {
1238 clear_page_dirty_for_io(pages[i]);
1239 ClearPageChecked(pages[i]);
1240 set_page_extent_mapped(pages[i]);
1241 set_page_dirty(pages[i]);
1242 unlock_page(pages[i]);
1243 put_page(pages[i]);
1244 }
1245 return i_done;
1246out:
1247 for (i = 0; i < i_done; i++) {
1248 unlock_page(pages[i]);
1249 put_page(pages[i]);
1250 }
1251 btrfs_delalloc_release_space(inode,
1252 start_index << PAGE_SHIFT,
1253 page_cnt << PAGE_SHIFT);
1254 return ret;
1255
1256}
1257
1258int btrfs_defrag_file(struct inode *inode, struct file *file,
1259 struct btrfs_ioctl_defrag_range_args *range,
1260 u64 newer_than, unsigned long max_to_defrag)
1261{
1262 struct btrfs_root *root = BTRFS_I(inode)->root;
1263 struct file_ra_state *ra = NULL;
1264 unsigned long last_index;
1265 u64 isize = i_size_read(inode);
1266 u64 last_len = 0;
1267 u64 skip = 0;
1268 u64 defrag_end = 0;
1269 u64 newer_off = range->start;
1270 unsigned long i;
1271 unsigned long ra_index = 0;
1272 int ret;
1273 int defrag_count = 0;
1274 int compress_type = BTRFS_COMPRESS_ZLIB;
1275 u32 extent_thresh = range->extent_thresh;
1276 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1277 unsigned long cluster = max_cluster;
1278 u64 new_align = ~((u64)SZ_128K - 1);
1279 struct page **pages = NULL;
1280
1281 if (isize == 0)
1282 return 0;
1283
1284 if (range->start >= isize)
1285 return -EINVAL;
1286
1287 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1288 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1289 return -EINVAL;
1290 if (range->compress_type)
1291 compress_type = range->compress_type;
1292 }
1293
1294 if (extent_thresh == 0)
1295 extent_thresh = SZ_256K;
1296
1297 /*
1298 * if we were not given a file, allocate a readahead
1299 * context
1300 */
1301 if (!file) {
1302 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1303 if (!ra)
1304 return -ENOMEM;
1305 file_ra_state_init(ra, inode->i_mapping);
1306 } else {
1307 ra = &file->f_ra;
1308 }
1309
1310 pages = kmalloc_array(max_cluster, sizeof(struct page *),
1311 GFP_NOFS);
1312 if (!pages) {
1313 ret = -ENOMEM;
1314 goto out_ra;
1315 }
1316
1317 /* find the last page to defrag */
1318 if (range->start + range->len > range->start) {
1319 last_index = min_t(u64, isize - 1,
1320 range->start + range->len - 1) >> PAGE_SHIFT;
1321 } else {
1322 last_index = (isize - 1) >> PAGE_SHIFT;
1323 }
1324
1325 if (newer_than) {
1326 ret = find_new_extents(root, inode, newer_than,
1327 &newer_off, SZ_64K);
1328 if (!ret) {
1329 range->start = newer_off;
1330 /*
1331 * we always align our defrag to help keep
1332 * the extents in the file evenly spaced
1333 */
1334 i = (newer_off & new_align) >> PAGE_SHIFT;
1335 } else
1336 goto out_ra;
1337 } else {
1338 i = range->start >> PAGE_SHIFT;
1339 }
1340 if (!max_to_defrag)
1341 max_to_defrag = last_index - i + 1;
1342
1343 /*
1344 * make writeback starts from i, so the defrag range can be
1345 * written sequentially.
1346 */
1347 if (i < inode->i_mapping->writeback_index)
1348 inode->i_mapping->writeback_index = i;
1349
1350 while (i <= last_index && defrag_count < max_to_defrag &&
1351 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1352 /*
1353 * make sure we stop running if someone unmounts
1354 * the FS
1355 */
1356 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1357 break;
1358
1359 if (btrfs_defrag_cancelled(root->fs_info)) {
1360 btrfs_debug(root->fs_info, "defrag_file cancelled");
1361 ret = -EAGAIN;
1362 break;
1363 }
1364
1365 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1366 extent_thresh, &last_len, &skip,
1367 &defrag_end, range->flags &
1368 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1369 unsigned long next;
1370 /*
1371 * the should_defrag function tells us how much to skip
1372 * bump our counter by the suggested amount
1373 */
1374 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1375 i = max(i + 1, next);
1376 continue;
1377 }
1378
1379 if (!newer_than) {
1380 cluster = (PAGE_ALIGN(defrag_end) >>
1381 PAGE_SHIFT) - i;
1382 cluster = min(cluster, max_cluster);
1383 } else {
1384 cluster = max_cluster;
1385 }
1386
1387 if (i + cluster > ra_index) {
1388 ra_index = max(i, ra_index);
1389 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1390 cluster);
1391 ra_index += cluster;
1392 }
1393
1394 inode_lock(inode);
1395 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1396 BTRFS_I(inode)->force_compress = compress_type;
1397 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1398 if (ret < 0) {
1399 inode_unlock(inode);
1400 goto out_ra;
1401 }
1402
1403 defrag_count += ret;
1404 balance_dirty_pages_ratelimited(inode->i_mapping);
1405 inode_unlock(inode);
1406
1407 if (newer_than) {
1408 if (newer_off == (u64)-1)
1409 break;
1410
1411 if (ret > 0)
1412 i += ret;
1413
1414 newer_off = max(newer_off + 1,
1415 (u64)i << PAGE_SHIFT);
1416
1417 ret = find_new_extents(root, inode, newer_than,
1418 &newer_off, SZ_64K);
1419 if (!ret) {
1420 range->start = newer_off;
1421 i = (newer_off & new_align) >> PAGE_SHIFT;
1422 } else {
1423 break;
1424 }
1425 } else {
1426 if (ret > 0) {
1427 i += ret;
1428 last_len += ret << PAGE_SHIFT;
1429 } else {
1430 i++;
1431 last_len = 0;
1432 }
1433 }
1434 }
1435
1436 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1437 filemap_flush(inode->i_mapping);
1438 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1439 &BTRFS_I(inode)->runtime_flags))
1440 filemap_flush(inode->i_mapping);
1441 }
1442
1443 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1444 /* the filemap_flush will queue IO into the worker threads, but
1445 * we have to make sure the IO is actually started and that
1446 * ordered extents get created before we return
1447 */
1448 atomic_inc(&root->fs_info->async_submit_draining);
1449 while (atomic_read(&root->fs_info->nr_async_submits) ||
1450 atomic_read(&root->fs_info->async_delalloc_pages)) {
1451 wait_event(root->fs_info->async_submit_wait,
1452 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1453 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1454 }
1455 atomic_dec(&root->fs_info->async_submit_draining);
1456 }
1457
1458 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1459 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1460 }
1461
1462 ret = defrag_count;
1463
1464out_ra:
1465 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1466 inode_lock(inode);
1467 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1468 inode_unlock(inode);
1469 }
1470 if (!file)
1471 kfree(ra);
1472 kfree(pages);
1473 return ret;
1474}
1475
1476static noinline int btrfs_ioctl_resize(struct file *file,
1477 void __user *arg)
1478{
1479 u64 new_size;
1480 u64 old_size;
1481 u64 devid = 1;
1482 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1483 struct btrfs_ioctl_vol_args *vol_args;
1484 struct btrfs_trans_handle *trans;
1485 struct btrfs_device *device = NULL;
1486 char *sizestr;
1487 char *retptr;
1488 char *devstr = NULL;
1489 int ret = 0;
1490 int mod = 0;
1491
1492 if (!capable(CAP_SYS_ADMIN))
1493 return -EPERM;
1494
1495 ret = mnt_want_write_file(file);
1496 if (ret)
1497 return ret;
1498
1499 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1500 1)) {
1501 mnt_drop_write_file(file);
1502 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1503 }
1504
1505 mutex_lock(&root->fs_info->volume_mutex);
1506 vol_args = memdup_user(arg, sizeof(*vol_args));
1507 if (IS_ERR(vol_args)) {
1508 ret = PTR_ERR(vol_args);
1509 goto out;
1510 }
1511
1512 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1513
1514 sizestr = vol_args->name;
1515 devstr = strchr(sizestr, ':');
1516 if (devstr) {
1517 sizestr = devstr + 1;
1518 *devstr = '\0';
1519 devstr = vol_args->name;
1520 ret = kstrtoull(devstr, 10, &devid);
1521 if (ret)
1522 goto out_free;
1523 if (!devid) {
1524 ret = -EINVAL;
1525 goto out_free;
1526 }
1527 btrfs_info(root->fs_info, "resizing devid %llu", devid);
1528 }
1529
1530 device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1531 if (!device) {
1532 btrfs_info(root->fs_info, "resizer unable to find device %llu",
1533 devid);
1534 ret = -ENODEV;
1535 goto out_free;
1536 }
1537
1538 if (!device->writeable) {
1539 btrfs_info(root->fs_info,
1540 "resizer unable to apply on readonly device %llu",
1541 devid);
1542 ret = -EPERM;
1543 goto out_free;
1544 }
1545
1546 if (!strcmp(sizestr, "max"))
1547 new_size = device->bdev->bd_inode->i_size;
1548 else {
1549 if (sizestr[0] == '-') {
1550 mod = -1;
1551 sizestr++;
1552 } else if (sizestr[0] == '+') {
1553 mod = 1;
1554 sizestr++;
1555 }
1556 new_size = memparse(sizestr, &retptr);
1557 if (*retptr != '\0' || new_size == 0) {
1558 ret = -EINVAL;
1559 goto out_free;
1560 }
1561 }
1562
1563 if (device->is_tgtdev_for_dev_replace) {
1564 ret = -EPERM;
1565 goto out_free;
1566 }
1567
1568 old_size = btrfs_device_get_total_bytes(device);
1569
1570 if (mod < 0) {
1571 if (new_size > old_size) {
1572 ret = -EINVAL;
1573 goto out_free;
1574 }
1575 new_size = old_size - new_size;
1576 } else if (mod > 0) {
1577 if (new_size > ULLONG_MAX - old_size) {
1578 ret = -ERANGE;
1579 goto out_free;
1580 }
1581 new_size = old_size + new_size;
1582 }
1583
1584 if (new_size < SZ_256M) {
1585 ret = -EINVAL;
1586 goto out_free;
1587 }
1588 if (new_size > device->bdev->bd_inode->i_size) {
1589 ret = -EFBIG;
1590 goto out_free;
1591 }
1592
1593 new_size = div_u64(new_size, root->sectorsize);
1594 new_size *= root->sectorsize;
1595
1596 btrfs_info_in_rcu(root->fs_info, "new size for %s is %llu",
1597 rcu_str_deref(device->name), new_size);
1598
1599 if (new_size > old_size) {
1600 trans = btrfs_start_transaction(root, 0);
1601 if (IS_ERR(trans)) {
1602 ret = PTR_ERR(trans);
1603 goto out_free;
1604 }
1605 ret = btrfs_grow_device(trans, device, new_size);
1606 btrfs_commit_transaction(trans, root);
1607 } else if (new_size < old_size) {
1608 ret = btrfs_shrink_device(device, new_size);
1609 } /* equal, nothing need to do */
1610
1611out_free:
1612 kfree(vol_args);
1613out:
1614 mutex_unlock(&root->fs_info->volume_mutex);
1615 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1616 mnt_drop_write_file(file);
1617 return ret;
1618}
1619
1620static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1621 char *name, unsigned long fd, int subvol,
1622 u64 *transid, bool readonly,
1623 struct btrfs_qgroup_inherit *inherit)
1624{
1625 int namelen;
1626 int ret = 0;
1627
1628 ret = mnt_want_write_file(file);
1629 if (ret)
1630 goto out;
1631
1632 namelen = strlen(name);
1633 if (strchr(name, '/')) {
1634 ret = -EINVAL;
1635 goto out_drop_write;
1636 }
1637
1638 if (name[0] == '.' &&
1639 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1640 ret = -EEXIST;
1641 goto out_drop_write;
1642 }
1643
1644 if (subvol) {
1645 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1646 NULL, transid, readonly, inherit);
1647 } else {
1648 struct fd src = fdget(fd);
1649 struct inode *src_inode;
1650 if (!src.file) {
1651 ret = -EINVAL;
1652 goto out_drop_write;
1653 }
1654
1655 src_inode = file_inode(src.file);
1656 if (src_inode->i_sb != file_inode(file)->i_sb) {
1657 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1658 "Snapshot src from another FS");
1659 ret = -EXDEV;
1660 } else if (!inode_owner_or_capable(src_inode)) {
1661 /*
1662 * Subvolume creation is not restricted, but snapshots
1663 * are limited to own subvolumes only
1664 */
1665 ret = -EPERM;
1666 } else {
1667 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1668 BTRFS_I(src_inode)->root,
1669 transid, readonly, inherit);
1670 }
1671 fdput(src);
1672 }
1673out_drop_write:
1674 mnt_drop_write_file(file);
1675out:
1676 return ret;
1677}
1678
1679static noinline int btrfs_ioctl_snap_create(struct file *file,
1680 void __user *arg, int subvol)
1681{
1682 struct btrfs_ioctl_vol_args *vol_args;
1683 int ret;
1684
1685 vol_args = memdup_user(arg, sizeof(*vol_args));
1686 if (IS_ERR(vol_args))
1687 return PTR_ERR(vol_args);
1688 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1689
1690 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1691 vol_args->fd, subvol,
1692 NULL, false, NULL);
1693
1694 kfree(vol_args);
1695 return ret;
1696}
1697
1698static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1699 void __user *arg, int subvol)
1700{
1701 struct btrfs_ioctl_vol_args_v2 *vol_args;
1702 int ret;
1703 u64 transid = 0;
1704 u64 *ptr = NULL;
1705 bool readonly = false;
1706 struct btrfs_qgroup_inherit *inherit = NULL;
1707
1708 vol_args = memdup_user(arg, sizeof(*vol_args));
1709 if (IS_ERR(vol_args))
1710 return PTR_ERR(vol_args);
1711 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1712
1713 if (vol_args->flags &
1714 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1715 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1716 ret = -EOPNOTSUPP;
1717 goto free_args;
1718 }
1719
1720 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1721 ptr = &transid;
1722 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1723 readonly = true;
1724 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1725 if (vol_args->size > PAGE_SIZE) {
1726 ret = -EINVAL;
1727 goto free_args;
1728 }
1729 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1730 if (IS_ERR(inherit)) {
1731 ret = PTR_ERR(inherit);
1732 goto free_args;
1733 }
1734 }
1735
1736 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1737 vol_args->fd, subvol, ptr,
1738 readonly, inherit);
1739 if (ret)
1740 goto free_inherit;
1741
1742 if (ptr && copy_to_user(arg +
1743 offsetof(struct btrfs_ioctl_vol_args_v2,
1744 transid),
1745 ptr, sizeof(*ptr)))
1746 ret = -EFAULT;
1747
1748free_inherit:
1749 kfree(inherit);
1750free_args:
1751 kfree(vol_args);
1752 return ret;
1753}
1754
1755static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1756 void __user *arg)
1757{
1758 struct inode *inode = file_inode(file);
1759 struct btrfs_root *root = BTRFS_I(inode)->root;
1760 int ret = 0;
1761 u64 flags = 0;
1762
1763 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1764 return -EINVAL;
1765
1766 down_read(&root->fs_info->subvol_sem);
1767 if (btrfs_root_readonly(root))
1768 flags |= BTRFS_SUBVOL_RDONLY;
1769 up_read(&root->fs_info->subvol_sem);
1770
1771 if (copy_to_user(arg, &flags, sizeof(flags)))
1772 ret = -EFAULT;
1773
1774 return ret;
1775}
1776
1777static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1778 void __user *arg)
1779{
1780 struct inode *inode = file_inode(file);
1781 struct btrfs_root *root = BTRFS_I(inode)->root;
1782 struct btrfs_trans_handle *trans;
1783 u64 root_flags;
1784 u64 flags;
1785 int ret = 0;
1786
1787 if (!inode_owner_or_capable(inode))
1788 return -EPERM;
1789
1790 ret = mnt_want_write_file(file);
1791 if (ret)
1792 goto out;
1793
1794 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1795 ret = -EINVAL;
1796 goto out_drop_write;
1797 }
1798
1799 if (copy_from_user(&flags, arg, sizeof(flags))) {
1800 ret = -EFAULT;
1801 goto out_drop_write;
1802 }
1803
1804 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1805 ret = -EINVAL;
1806 goto out_drop_write;
1807 }
1808
1809 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1810 ret = -EOPNOTSUPP;
1811 goto out_drop_write;
1812 }
1813
1814 down_write(&root->fs_info->subvol_sem);
1815
1816 /* nothing to do */
1817 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1818 goto out_drop_sem;
1819
1820 root_flags = btrfs_root_flags(&root->root_item);
1821 if (flags & BTRFS_SUBVOL_RDONLY) {
1822 btrfs_set_root_flags(&root->root_item,
1823 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1824 } else {
1825 /*
1826 * Block RO -> RW transition if this subvolume is involved in
1827 * send
1828 */
1829 spin_lock(&root->root_item_lock);
1830 if (root->send_in_progress == 0) {
1831 btrfs_set_root_flags(&root->root_item,
1832 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1833 spin_unlock(&root->root_item_lock);
1834 } else {
1835 spin_unlock(&root->root_item_lock);
1836 btrfs_warn(root->fs_info,
1837 "Attempt to set subvolume %llu read-write during send",
1838 root->root_key.objectid);
1839 ret = -EPERM;
1840 goto out_drop_sem;
1841 }
1842 }
1843
1844 trans = btrfs_start_transaction(root, 1);
1845 if (IS_ERR(trans)) {
1846 ret = PTR_ERR(trans);
1847 goto out_reset;
1848 }
1849
1850 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1851 &root->root_key, &root->root_item);
1852
1853 btrfs_commit_transaction(trans, root);
1854out_reset:
1855 if (ret)
1856 btrfs_set_root_flags(&root->root_item, root_flags);
1857out_drop_sem:
1858 up_write(&root->fs_info->subvol_sem);
1859out_drop_write:
1860 mnt_drop_write_file(file);
1861out:
1862 return ret;
1863}
1864
1865/*
1866 * helper to check if the subvolume references other subvolumes
1867 */
1868static noinline int may_destroy_subvol(struct btrfs_root *root)
1869{
1870 struct btrfs_path *path;
1871 struct btrfs_dir_item *di;
1872 struct btrfs_key key;
1873 u64 dir_id;
1874 int ret;
1875
1876 path = btrfs_alloc_path();
1877 if (!path)
1878 return -ENOMEM;
1879
1880 /* Make sure this root isn't set as the default subvol */
1881 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1882 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1883 dir_id, "default", 7, 0);
1884 if (di && !IS_ERR(di)) {
1885 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1886 if (key.objectid == root->root_key.objectid) {
1887 ret = -EPERM;
1888 btrfs_err(root->fs_info, "deleting default subvolume "
1889 "%llu is not allowed", key.objectid);
1890 goto out;
1891 }
1892 btrfs_release_path(path);
1893 }
1894
1895 key.objectid = root->root_key.objectid;
1896 key.type = BTRFS_ROOT_REF_KEY;
1897 key.offset = (u64)-1;
1898
1899 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1900 &key, path, 0, 0);
1901 if (ret < 0)
1902 goto out;
1903 BUG_ON(ret == 0);
1904
1905 ret = 0;
1906 if (path->slots[0] > 0) {
1907 path->slots[0]--;
1908 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1909 if (key.objectid == root->root_key.objectid &&
1910 key.type == BTRFS_ROOT_REF_KEY)
1911 ret = -ENOTEMPTY;
1912 }
1913out:
1914 btrfs_free_path(path);
1915 return ret;
1916}
1917
1918static noinline int key_in_sk(struct btrfs_key *key,
1919 struct btrfs_ioctl_search_key *sk)
1920{
1921 struct btrfs_key test;
1922 int ret;
1923
1924 test.objectid = sk->min_objectid;
1925 test.type = sk->min_type;
1926 test.offset = sk->min_offset;
1927
1928 ret = btrfs_comp_cpu_keys(key, &test);
1929 if (ret < 0)
1930 return 0;
1931
1932 test.objectid = sk->max_objectid;
1933 test.type = sk->max_type;
1934 test.offset = sk->max_offset;
1935
1936 ret = btrfs_comp_cpu_keys(key, &test);
1937 if (ret > 0)
1938 return 0;
1939 return 1;
1940}
1941
1942static noinline int copy_to_sk(struct btrfs_root *root,
1943 struct btrfs_path *path,
1944 struct btrfs_key *key,
1945 struct btrfs_ioctl_search_key *sk,
1946 size_t *buf_size,
1947 char __user *ubuf,
1948 unsigned long *sk_offset,
1949 int *num_found)
1950{
1951 u64 found_transid;
1952 struct extent_buffer *leaf;
1953 struct btrfs_ioctl_search_header sh;
1954 struct btrfs_key test;
1955 unsigned long item_off;
1956 unsigned long item_len;
1957 int nritems;
1958 int i;
1959 int slot;
1960 int ret = 0;
1961
1962 leaf = path->nodes[0];
1963 slot = path->slots[0];
1964 nritems = btrfs_header_nritems(leaf);
1965
1966 if (btrfs_header_generation(leaf) > sk->max_transid) {
1967 i = nritems;
1968 goto advance_key;
1969 }
1970 found_transid = btrfs_header_generation(leaf);
1971
1972 for (i = slot; i < nritems; i++) {
1973 item_off = btrfs_item_ptr_offset(leaf, i);
1974 item_len = btrfs_item_size_nr(leaf, i);
1975
1976 btrfs_item_key_to_cpu(leaf, key, i);
1977 if (!key_in_sk(key, sk))
1978 continue;
1979
1980 if (sizeof(sh) + item_len > *buf_size) {
1981 if (*num_found) {
1982 ret = 1;
1983 goto out;
1984 }
1985
1986 /*
1987 * return one empty item back for v1, which does not
1988 * handle -EOVERFLOW
1989 */
1990
1991 *buf_size = sizeof(sh) + item_len;
1992 item_len = 0;
1993 ret = -EOVERFLOW;
1994 }
1995
1996 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1997 ret = 1;
1998 goto out;
1999 }
2000
2001 sh.objectid = key->objectid;
2002 sh.offset = key->offset;
2003 sh.type = key->type;
2004 sh.len = item_len;
2005 sh.transid = found_transid;
2006
2007 /* copy search result header */
2008 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2009 ret = -EFAULT;
2010 goto out;
2011 }
2012
2013 *sk_offset += sizeof(sh);
2014
2015 if (item_len) {
2016 char __user *up = ubuf + *sk_offset;
2017 /* copy the item */
2018 if (read_extent_buffer_to_user(leaf, up,
2019 item_off, item_len)) {
2020 ret = -EFAULT;
2021 goto out;
2022 }
2023
2024 *sk_offset += item_len;
2025 }
2026 (*num_found)++;
2027
2028 if (ret) /* -EOVERFLOW from above */
2029 goto out;
2030
2031 if (*num_found >= sk->nr_items) {
2032 ret = 1;
2033 goto out;
2034 }
2035 }
2036advance_key:
2037 ret = 0;
2038 test.objectid = sk->max_objectid;
2039 test.type = sk->max_type;
2040 test.offset = sk->max_offset;
2041 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2042 ret = 1;
2043 else if (key->offset < (u64)-1)
2044 key->offset++;
2045 else if (key->type < (u8)-1) {
2046 key->offset = 0;
2047 key->type++;
2048 } else if (key->objectid < (u64)-1) {
2049 key->offset = 0;
2050 key->type = 0;
2051 key->objectid++;
2052 } else
2053 ret = 1;
2054out:
2055 /*
2056 * 0: all items from this leaf copied, continue with next
2057 * 1: * more items can be copied, but unused buffer is too small
2058 * * all items were found
2059 * Either way, it will stops the loop which iterates to the next
2060 * leaf
2061 * -EOVERFLOW: item was to large for buffer
2062 * -EFAULT: could not copy extent buffer back to userspace
2063 */
2064 return ret;
2065}
2066
2067static noinline int search_ioctl(struct inode *inode,
2068 struct btrfs_ioctl_search_key *sk,
2069 size_t *buf_size,
2070 char __user *ubuf)
2071{
2072 struct btrfs_root *root;
2073 struct btrfs_key key;
2074 struct btrfs_path *path;
2075 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2076 int ret;
2077 int num_found = 0;
2078 unsigned long sk_offset = 0;
2079
2080 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2081 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2082 return -EOVERFLOW;
2083 }
2084
2085 path = btrfs_alloc_path();
2086 if (!path)
2087 return -ENOMEM;
2088
2089 if (sk->tree_id == 0) {
2090 /* search the root of the inode that was passed */
2091 root = BTRFS_I(inode)->root;
2092 } else {
2093 key.objectid = sk->tree_id;
2094 key.type = BTRFS_ROOT_ITEM_KEY;
2095 key.offset = (u64)-1;
2096 root = btrfs_read_fs_root_no_name(info, &key);
2097 if (IS_ERR(root)) {
2098 btrfs_free_path(path);
2099 return -ENOENT;
2100 }
2101 }
2102
2103 key.objectid = sk->min_objectid;
2104 key.type = sk->min_type;
2105 key.offset = sk->min_offset;
2106
2107 while (1) {
2108 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2109 if (ret != 0) {
2110 if (ret > 0)
2111 ret = 0;
2112 goto err;
2113 }
2114 ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
2115 &sk_offset, &num_found);
2116 btrfs_release_path(path);
2117 if (ret)
2118 break;
2119
2120 }
2121 if (ret > 0)
2122 ret = 0;
2123err:
2124 sk->nr_items = num_found;
2125 btrfs_free_path(path);
2126 return ret;
2127}
2128
2129static noinline int btrfs_ioctl_tree_search(struct file *file,
2130 void __user *argp)
2131{
2132 struct btrfs_ioctl_search_args __user *uargs;
2133 struct btrfs_ioctl_search_key sk;
2134 struct inode *inode;
2135 int ret;
2136 size_t buf_size;
2137
2138 if (!capable(CAP_SYS_ADMIN))
2139 return -EPERM;
2140
2141 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2142
2143 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2144 return -EFAULT;
2145
2146 buf_size = sizeof(uargs->buf);
2147
2148 inode = file_inode(file);
2149 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2150
2151 /*
2152 * In the origin implementation an overflow is handled by returning a
2153 * search header with a len of zero, so reset ret.
2154 */
2155 if (ret == -EOVERFLOW)
2156 ret = 0;
2157
2158 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2159 ret = -EFAULT;
2160 return ret;
2161}
2162
2163static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2164 void __user *argp)
2165{
2166 struct btrfs_ioctl_search_args_v2 __user *uarg;
2167 struct btrfs_ioctl_search_args_v2 args;
2168 struct inode *inode;
2169 int ret;
2170 size_t buf_size;
2171 const size_t buf_limit = SZ_16M;
2172
2173 if (!capable(CAP_SYS_ADMIN))
2174 return -EPERM;
2175
2176 /* copy search header and buffer size */
2177 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2178 if (copy_from_user(&args, uarg, sizeof(args)))
2179 return -EFAULT;
2180
2181 buf_size = args.buf_size;
2182
2183 if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2184 return -EOVERFLOW;
2185
2186 /* limit result size to 16MB */
2187 if (buf_size > buf_limit)
2188 buf_size = buf_limit;
2189
2190 inode = file_inode(file);
2191 ret = search_ioctl(inode, &args.key, &buf_size,
2192 (char *)(&uarg->buf[0]));
2193 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2194 ret = -EFAULT;
2195 else if (ret == -EOVERFLOW &&
2196 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2197 ret = -EFAULT;
2198
2199 return ret;
2200}
2201
2202/*
2203 * Search INODE_REFs to identify path name of 'dirid' directory
2204 * in a 'tree_id' tree. and sets path name to 'name'.
2205 */
2206static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2207 u64 tree_id, u64 dirid, char *name)
2208{
2209 struct btrfs_root *root;
2210 struct btrfs_key key;
2211 char *ptr;
2212 int ret = -1;
2213 int slot;
2214 int len;
2215 int total_len = 0;
2216 struct btrfs_inode_ref *iref;
2217 struct extent_buffer *l;
2218 struct btrfs_path *path;
2219
2220 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2221 name[0]='\0';
2222 return 0;
2223 }
2224
2225 path = btrfs_alloc_path();
2226 if (!path)
2227 return -ENOMEM;
2228
2229 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2230
2231 key.objectid = tree_id;
2232 key.type = BTRFS_ROOT_ITEM_KEY;
2233 key.offset = (u64)-1;
2234 root = btrfs_read_fs_root_no_name(info, &key);
2235 if (IS_ERR(root)) {
2236 btrfs_err(info, "could not find root %llu", tree_id);
2237 ret = -ENOENT;
2238 goto out;
2239 }
2240
2241 key.objectid = dirid;
2242 key.type = BTRFS_INODE_REF_KEY;
2243 key.offset = (u64)-1;
2244
2245 while (1) {
2246 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2247 if (ret < 0)
2248 goto out;
2249 else if (ret > 0) {
2250 ret = btrfs_previous_item(root, path, dirid,
2251 BTRFS_INODE_REF_KEY);
2252 if (ret < 0)
2253 goto out;
2254 else if (ret > 0) {
2255 ret = -ENOENT;
2256 goto out;
2257 }
2258 }
2259
2260 l = path->nodes[0];
2261 slot = path->slots[0];
2262 btrfs_item_key_to_cpu(l, &key, slot);
2263
2264 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2265 len = btrfs_inode_ref_name_len(l, iref);
2266 ptr -= len + 1;
2267 total_len += len + 1;
2268 if (ptr < name) {
2269 ret = -ENAMETOOLONG;
2270 goto out;
2271 }
2272
2273 *(ptr + len) = '/';
2274 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2275
2276 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2277 break;
2278
2279 btrfs_release_path(path);
2280 key.objectid = key.offset;
2281 key.offset = (u64)-1;
2282 dirid = key.objectid;
2283 }
2284 memmove(name, ptr, total_len);
2285 name[total_len] = '\0';
2286 ret = 0;
2287out:
2288 btrfs_free_path(path);
2289 return ret;
2290}
2291
2292static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2293 void __user *argp)
2294{
2295 struct btrfs_ioctl_ino_lookup_args *args;
2296 struct inode *inode;
2297 int ret = 0;
2298
2299 args = memdup_user(argp, sizeof(*args));
2300 if (IS_ERR(args))
2301 return PTR_ERR(args);
2302
2303 inode = file_inode(file);
2304
2305 /*
2306 * Unprivileged query to obtain the containing subvolume root id. The
2307 * path is reset so it's consistent with btrfs_search_path_in_tree.
2308 */
2309 if (args->treeid == 0)
2310 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2311
2312 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2313 args->name[0] = 0;
2314 goto out;
2315 }
2316
2317 if (!capable(CAP_SYS_ADMIN)) {
2318 ret = -EPERM;
2319 goto out;
2320 }
2321
2322 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2323 args->treeid, args->objectid,
2324 args->name);
2325
2326out:
2327 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2328 ret = -EFAULT;
2329
2330 kfree(args);
2331 return ret;
2332}
2333
2334static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2335 void __user *arg)
2336{
2337 struct dentry *parent = file->f_path.dentry;
2338 struct dentry *dentry;
2339 struct inode *dir = d_inode(parent);
2340 struct inode *inode;
2341 struct btrfs_root *root = BTRFS_I(dir)->root;
2342 struct btrfs_root *dest = NULL;
2343 struct btrfs_ioctl_vol_args *vol_args;
2344 struct btrfs_trans_handle *trans;
2345 struct btrfs_block_rsv block_rsv;
2346 u64 root_flags;
2347 u64 qgroup_reserved;
2348 int namelen;
2349 int ret;
2350 int err = 0;
2351
2352 vol_args = memdup_user(arg, sizeof(*vol_args));
2353 if (IS_ERR(vol_args))
2354 return PTR_ERR(vol_args);
2355
2356 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2357 namelen = strlen(vol_args->name);
2358 if (strchr(vol_args->name, '/') ||
2359 strncmp(vol_args->name, "..", namelen) == 0) {
2360 err = -EINVAL;
2361 goto out;
2362 }
2363
2364 err = mnt_want_write_file(file);
2365 if (err)
2366 goto out;
2367
2368
2369 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2370 if (err == -EINTR)
2371 goto out_drop_write;
2372 dentry = lookup_one_len(vol_args->name, parent, namelen);
2373 if (IS_ERR(dentry)) {
2374 err = PTR_ERR(dentry);
2375 goto out_unlock_dir;
2376 }
2377
2378 if (d_really_is_negative(dentry)) {
2379 err = -ENOENT;
2380 goto out_dput;
2381 }
2382
2383 inode = d_inode(dentry);
2384 dest = BTRFS_I(inode)->root;
2385 if (!capable(CAP_SYS_ADMIN)) {
2386 /*
2387 * Regular user. Only allow this with a special mount
2388 * option, when the user has write+exec access to the
2389 * subvol root, and when rmdir(2) would have been
2390 * allowed.
2391 *
2392 * Note that this is _not_ check that the subvol is
2393 * empty or doesn't contain data that we wouldn't
2394 * otherwise be able to delete.
2395 *
2396 * Users who want to delete empty subvols should try
2397 * rmdir(2).
2398 */
2399 err = -EPERM;
2400 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2401 goto out_dput;
2402
2403 /*
2404 * Do not allow deletion if the parent dir is the same
2405 * as the dir to be deleted. That means the ioctl
2406 * must be called on the dentry referencing the root
2407 * of the subvol, not a random directory contained
2408 * within it.
2409 */
2410 err = -EINVAL;
2411 if (root == dest)
2412 goto out_dput;
2413
2414 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2415 if (err)
2416 goto out_dput;
2417 }
2418
2419 /* check if subvolume may be deleted by a user */
2420 err = btrfs_may_delete(dir, dentry, 1);
2421 if (err)
2422 goto out_dput;
2423
2424 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2425 err = -EINVAL;
2426 goto out_dput;
2427 }
2428
2429 inode_lock(inode);
2430
2431 /*
2432 * Don't allow to delete a subvolume with send in progress. This is
2433 * inside the i_mutex so the error handling that has to drop the bit
2434 * again is not run concurrently.
2435 */
2436 spin_lock(&dest->root_item_lock);
2437 root_flags = btrfs_root_flags(&dest->root_item);
2438 if (dest->send_in_progress == 0) {
2439 btrfs_set_root_flags(&dest->root_item,
2440 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2441 spin_unlock(&dest->root_item_lock);
2442 } else {
2443 spin_unlock(&dest->root_item_lock);
2444 btrfs_warn(root->fs_info,
2445 "Attempt to delete subvolume %llu during send",
2446 dest->root_key.objectid);
2447 err = -EPERM;
2448 goto out_unlock_inode;
2449 }
2450
2451 down_write(&root->fs_info->subvol_sem);
2452
2453 err = may_destroy_subvol(dest);
2454 if (err)
2455 goto out_up_write;
2456
2457 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2458 /*
2459 * One for dir inode, two for dir entries, two for root
2460 * ref/backref.
2461 */
2462 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2463 5, &qgroup_reserved, true);
2464 if (err)
2465 goto out_up_write;
2466
2467 trans = btrfs_start_transaction(root, 0);
2468 if (IS_ERR(trans)) {
2469 err = PTR_ERR(trans);
2470 goto out_release;
2471 }
2472 trans->block_rsv = &block_rsv;
2473 trans->bytes_reserved = block_rsv.size;
2474
2475 btrfs_record_snapshot_destroy(trans, dir);
2476
2477 ret = btrfs_unlink_subvol(trans, root, dir,
2478 dest->root_key.objectid,
2479 dentry->d_name.name,
2480 dentry->d_name.len);
2481 if (ret) {
2482 err = ret;
2483 btrfs_abort_transaction(trans, root, ret);
2484 goto out_end_trans;
2485 }
2486
2487 btrfs_record_root_in_trans(trans, dest);
2488
2489 memset(&dest->root_item.drop_progress, 0,
2490 sizeof(dest->root_item.drop_progress));
2491 dest->root_item.drop_level = 0;
2492 btrfs_set_root_refs(&dest->root_item, 0);
2493
2494 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2495 ret = btrfs_insert_orphan_item(trans,
2496 root->fs_info->tree_root,
2497 dest->root_key.objectid);
2498 if (ret) {
2499 btrfs_abort_transaction(trans, root, ret);
2500 err = ret;
2501 goto out_end_trans;
2502 }
2503 }
2504
2505 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2506 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2507 dest->root_key.objectid);
2508 if (ret && ret != -ENOENT) {
2509 btrfs_abort_transaction(trans, root, ret);
2510 err = ret;
2511 goto out_end_trans;
2512 }
2513 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2514 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2515 dest->root_item.received_uuid,
2516 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2517 dest->root_key.objectid);
2518 if (ret && ret != -ENOENT) {
2519 btrfs_abort_transaction(trans, root, ret);
2520 err = ret;
2521 goto out_end_trans;
2522 }
2523 }
2524
2525out_end_trans:
2526 trans->block_rsv = NULL;
2527 trans->bytes_reserved = 0;
2528 ret = btrfs_end_transaction(trans, root);
2529 if (ret && !err)
2530 err = ret;
2531 inode->i_flags |= S_DEAD;
2532out_release:
2533 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2534out_up_write:
2535 up_write(&root->fs_info->subvol_sem);
2536 if (err) {
2537 spin_lock(&dest->root_item_lock);
2538 root_flags = btrfs_root_flags(&dest->root_item);
2539 btrfs_set_root_flags(&dest->root_item,
2540 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2541 spin_unlock(&dest->root_item_lock);
2542 }
2543out_unlock_inode:
2544 inode_unlock(inode);
2545 if (!err) {
2546 d_invalidate(dentry);
2547 btrfs_invalidate_inodes(dest);
2548 d_delete(dentry);
2549 ASSERT(dest->send_in_progress == 0);
2550
2551 /* the last ref */
2552 if (dest->ino_cache_inode) {
2553 iput(dest->ino_cache_inode);
2554 dest->ino_cache_inode = NULL;
2555 }
2556 }
2557out_dput:
2558 dput(dentry);
2559out_unlock_dir:
2560 inode_unlock(dir);
2561out_drop_write:
2562 mnt_drop_write_file(file);
2563out:
2564 kfree(vol_args);
2565 return err;
2566}
2567
2568static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2569{
2570 struct inode *inode = file_inode(file);
2571 struct btrfs_root *root = BTRFS_I(inode)->root;
2572 struct btrfs_ioctl_defrag_range_args *range;
2573 int ret;
2574
2575 ret = mnt_want_write_file(file);
2576 if (ret)
2577 return ret;
2578
2579 if (btrfs_root_readonly(root)) {
2580 ret = -EROFS;
2581 goto out;
2582 }
2583
2584 switch (inode->i_mode & S_IFMT) {
2585 case S_IFDIR:
2586 if (!capable(CAP_SYS_ADMIN)) {
2587 ret = -EPERM;
2588 goto out;
2589 }
2590 ret = btrfs_defrag_root(root);
2591 if (ret)
2592 goto out;
2593 ret = btrfs_defrag_root(root->fs_info->extent_root);
2594 break;
2595 case S_IFREG:
2596 if (!(file->f_mode & FMODE_WRITE)) {
2597 ret = -EINVAL;
2598 goto out;
2599 }
2600
2601 range = kzalloc(sizeof(*range), GFP_KERNEL);
2602 if (!range) {
2603 ret = -ENOMEM;
2604 goto out;
2605 }
2606
2607 if (argp) {
2608 if (copy_from_user(range, argp,
2609 sizeof(*range))) {
2610 ret = -EFAULT;
2611 kfree(range);
2612 goto out;
2613 }
2614 /* compression requires us to start the IO */
2615 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2616 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2617 range->extent_thresh = (u32)-1;
2618 }
2619 } else {
2620 /* the rest are all set to zero by kzalloc */
2621 range->len = (u64)-1;
2622 }
2623 ret = btrfs_defrag_file(file_inode(file), file,
2624 range, 0, 0);
2625 if (ret > 0)
2626 ret = 0;
2627 kfree(range);
2628 break;
2629 default:
2630 ret = -EINVAL;
2631 }
2632out:
2633 mnt_drop_write_file(file);
2634 return ret;
2635}
2636
2637static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2638{
2639 struct btrfs_ioctl_vol_args *vol_args;
2640 int ret;
2641
2642 if (!capable(CAP_SYS_ADMIN))
2643 return -EPERM;
2644
2645 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2646 1)) {
2647 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2648 }
2649
2650 mutex_lock(&root->fs_info->volume_mutex);
2651 vol_args = memdup_user(arg, sizeof(*vol_args));
2652 if (IS_ERR(vol_args)) {
2653 ret = PTR_ERR(vol_args);
2654 goto out;
2655 }
2656
2657 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2658 ret = btrfs_init_new_device(root, vol_args->name);
2659
2660 if (!ret)
2661 btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2662
2663 kfree(vol_args);
2664out:
2665 mutex_unlock(&root->fs_info->volume_mutex);
2666 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2667 return ret;
2668}
2669
2670static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2671{
2672 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2673 struct btrfs_ioctl_vol_args *vol_args;
2674 int ret;
2675
2676 if (!capable(CAP_SYS_ADMIN))
2677 return -EPERM;
2678
2679 ret = mnt_want_write_file(file);
2680 if (ret)
2681 return ret;
2682
2683 vol_args = memdup_user(arg, sizeof(*vol_args));
2684 if (IS_ERR(vol_args)) {
2685 ret = PTR_ERR(vol_args);
2686 goto err_drop;
2687 }
2688
2689 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2690
2691 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2692 1)) {
2693 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2694 goto out;
2695 }
2696
2697 mutex_lock(&root->fs_info->volume_mutex);
2698 ret = btrfs_rm_device(root, vol_args->name);
2699 mutex_unlock(&root->fs_info->volume_mutex);
2700 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2701
2702 if (!ret)
2703 btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
2704
2705out:
2706 kfree(vol_args);
2707err_drop:
2708 mnt_drop_write_file(file);
2709 return ret;
2710}
2711
2712static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2713{
2714 struct btrfs_ioctl_fs_info_args *fi_args;
2715 struct btrfs_device *device;
2716 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2717 int ret = 0;
2718
2719 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2720 if (!fi_args)
2721 return -ENOMEM;
2722
2723 mutex_lock(&fs_devices->device_list_mutex);
2724 fi_args->num_devices = fs_devices->num_devices;
2725 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2726
2727 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2728 if (device->devid > fi_args->max_id)
2729 fi_args->max_id = device->devid;
2730 }
2731 mutex_unlock(&fs_devices->device_list_mutex);
2732
2733 fi_args->nodesize = root->fs_info->super_copy->nodesize;
2734 fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2735 fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2736
2737 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2738 ret = -EFAULT;
2739
2740 kfree(fi_args);
2741 return ret;
2742}
2743
2744static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2745{
2746 struct btrfs_ioctl_dev_info_args *di_args;
2747 struct btrfs_device *dev;
2748 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2749 int ret = 0;
2750 char *s_uuid = NULL;
2751
2752 di_args = memdup_user(arg, sizeof(*di_args));
2753 if (IS_ERR(di_args))
2754 return PTR_ERR(di_args);
2755
2756 if (!btrfs_is_empty_uuid(di_args->uuid))
2757 s_uuid = di_args->uuid;
2758
2759 mutex_lock(&fs_devices->device_list_mutex);
2760 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2761
2762 if (!dev) {
2763 ret = -ENODEV;
2764 goto out;
2765 }
2766
2767 di_args->devid = dev->devid;
2768 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2769 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2770 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2771 if (dev->name) {
2772 struct rcu_string *name;
2773
2774 rcu_read_lock();
2775 name = rcu_dereference(dev->name);
2776 strncpy(di_args->path, name->str, sizeof(di_args->path));
2777 rcu_read_unlock();
2778 di_args->path[sizeof(di_args->path) - 1] = 0;
2779 } else {
2780 di_args->path[0] = '\0';
2781 }
2782
2783out:
2784 mutex_unlock(&fs_devices->device_list_mutex);
2785 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2786 ret = -EFAULT;
2787
2788 kfree(di_args);
2789 return ret;
2790}
2791
2792static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2793{
2794 struct page *page;
2795
2796 page = grab_cache_page(inode->i_mapping, index);
2797 if (!page)
2798 return ERR_PTR(-ENOMEM);
2799
2800 if (!PageUptodate(page)) {
2801 int ret;
2802
2803 ret = btrfs_readpage(NULL, page);
2804 if (ret)
2805 return ERR_PTR(ret);
2806 lock_page(page);
2807 if (!PageUptodate(page)) {
2808 unlock_page(page);
2809 put_page(page);
2810 return ERR_PTR(-EIO);
2811 }
2812 if (page->mapping != inode->i_mapping) {
2813 unlock_page(page);
2814 put_page(page);
2815 return ERR_PTR(-EAGAIN);
2816 }
2817 }
2818
2819 return page;
2820}
2821
2822static int gather_extent_pages(struct inode *inode, struct page **pages,
2823 int num_pages, u64 off)
2824{
2825 int i;
2826 pgoff_t index = off >> PAGE_SHIFT;
2827
2828 for (i = 0; i < num_pages; i++) {
2829again:
2830 pages[i] = extent_same_get_page(inode, index + i);
2831 if (IS_ERR(pages[i])) {
2832 int err = PTR_ERR(pages[i]);
2833
2834 if (err == -EAGAIN)
2835 goto again;
2836 pages[i] = NULL;
2837 return err;
2838 }
2839 }
2840 return 0;
2841}
2842
2843static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2844 bool retry_range_locking)
2845{
2846 /*
2847 * Do any pending delalloc/csum calculations on inode, one way or
2848 * another, and lock file content.
2849 * The locking order is:
2850 *
2851 * 1) pages
2852 * 2) range in the inode's io tree
2853 */
2854 while (1) {
2855 struct btrfs_ordered_extent *ordered;
2856 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2857 ordered = btrfs_lookup_first_ordered_extent(inode,
2858 off + len - 1);
2859 if ((!ordered ||
2860 ordered->file_offset + ordered->len <= off ||
2861 ordered->file_offset >= off + len) &&
2862 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2863 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2864 if (ordered)
2865 btrfs_put_ordered_extent(ordered);
2866 break;
2867 }
2868 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2869 if (ordered)
2870 btrfs_put_ordered_extent(ordered);
2871 if (!retry_range_locking)
2872 return -EAGAIN;
2873 btrfs_wait_ordered_range(inode, off, len);
2874 }
2875 return 0;
2876}
2877
2878static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2879{
2880 inode_unlock(inode1);
2881 inode_unlock(inode2);
2882}
2883
2884static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2885{
2886 if (inode1 < inode2)
2887 swap(inode1, inode2);
2888
2889 inode_lock_nested(inode1, I_MUTEX_PARENT);
2890 inode_lock_nested(inode2, I_MUTEX_CHILD);
2891}
2892
2893static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2894 struct inode *inode2, u64 loff2, u64 len)
2895{
2896 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2897 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2898}
2899
2900static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2901 struct inode *inode2, u64 loff2, u64 len,
2902 bool retry_range_locking)
2903{
2904 int ret;
2905
2906 if (inode1 < inode2) {
2907 swap(inode1, inode2);
2908 swap(loff1, loff2);
2909 }
2910 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2911 if (ret)
2912 return ret;
2913 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2914 if (ret)
2915 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2916 loff1 + len - 1);
2917 return ret;
2918}
2919
2920struct cmp_pages {
2921 int num_pages;
2922 struct page **src_pages;
2923 struct page **dst_pages;
2924};
2925
2926static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2927{
2928 int i;
2929 struct page *pg;
2930
2931 for (i = 0; i < cmp->num_pages; i++) {
2932 pg = cmp->src_pages[i];
2933 if (pg) {
2934 unlock_page(pg);
2935 put_page(pg);
2936 }
2937 pg = cmp->dst_pages[i];
2938 if (pg) {
2939 unlock_page(pg);
2940 put_page(pg);
2941 }
2942 }
2943 kfree(cmp->src_pages);
2944 kfree(cmp->dst_pages);
2945}
2946
2947static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2948 struct inode *dst, u64 dst_loff,
2949 u64 len, struct cmp_pages *cmp)
2950{
2951 int ret;
2952 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
2953 struct page **src_pgarr, **dst_pgarr;
2954
2955 /*
2956 * We must gather up all the pages before we initiate our
2957 * extent locking. We use an array for the page pointers. Size
2958 * of the array is bounded by len, which is in turn bounded by
2959 * BTRFS_MAX_DEDUPE_LEN.
2960 */
2961 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2962 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2963 if (!src_pgarr || !dst_pgarr) {
2964 kfree(src_pgarr);
2965 kfree(dst_pgarr);
2966 return -ENOMEM;
2967 }
2968 cmp->num_pages = num_pages;
2969 cmp->src_pages = src_pgarr;
2970 cmp->dst_pages = dst_pgarr;
2971
2972 ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff);
2973 if (ret)
2974 goto out;
2975
2976 ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff);
2977
2978out:
2979 if (ret)
2980 btrfs_cmp_data_free(cmp);
2981 return 0;
2982}
2983
2984static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2985 u64 dst_loff, u64 len, struct cmp_pages *cmp)
2986{
2987 int ret = 0;
2988 int i;
2989 struct page *src_page, *dst_page;
2990 unsigned int cmp_len = PAGE_SIZE;
2991 void *addr, *dst_addr;
2992
2993 i = 0;
2994 while (len) {
2995 if (len < PAGE_SIZE)
2996 cmp_len = len;
2997
2998 BUG_ON(i >= cmp->num_pages);
2999
3000 src_page = cmp->src_pages[i];
3001 dst_page = cmp->dst_pages[i];
3002 ASSERT(PageLocked(src_page));
3003 ASSERT(PageLocked(dst_page));
3004
3005 addr = kmap_atomic(src_page);
3006 dst_addr = kmap_atomic(dst_page);
3007
3008 flush_dcache_page(src_page);
3009 flush_dcache_page(dst_page);
3010
3011 if (memcmp(addr, dst_addr, cmp_len))
3012 ret = -EBADE;
3013
3014 kunmap_atomic(addr);
3015 kunmap_atomic(dst_addr);
3016
3017 if (ret)
3018 break;
3019
3020 len -= cmp_len;
3021 i++;
3022 }
3023
3024 return ret;
3025}
3026
3027static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3028 u64 olen)
3029{
3030 u64 len = *plen;
3031 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3032
3033 if (off + olen > inode->i_size || off + olen < off)
3034 return -EINVAL;
3035
3036 /* if we extend to eof, continue to block boundary */
3037 if (off + len == inode->i_size)
3038 *plen = len = ALIGN(inode->i_size, bs) - off;
3039
3040 /* Check that we are block aligned - btrfs_clone() requires this */
3041 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3042 return -EINVAL;
3043
3044 return 0;
3045}
3046
3047static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3048 struct inode *dst, u64 dst_loff)
3049{
3050 int ret;
3051 u64 len = olen;
3052 struct cmp_pages cmp;
3053 int same_inode = 0;
3054 u64 same_lock_start = 0;
3055 u64 same_lock_len = 0;
3056
3057 if (src == dst)
3058 same_inode = 1;
3059
3060 if (len == 0)
3061 return 0;
3062
3063 if (same_inode) {
3064 inode_lock(src);
3065
3066 ret = extent_same_check_offsets(src, loff, &len, olen);
3067 if (ret)
3068 goto out_unlock;
3069 ret = extent_same_check_offsets(src, dst_loff, &len, olen);
3070 if (ret)
3071 goto out_unlock;
3072
3073 /*
3074 * Single inode case wants the same checks, except we
3075 * don't want our length pushed out past i_size as
3076 * comparing that data range makes no sense.
3077 *
3078 * extent_same_check_offsets() will do this for an
3079 * unaligned length at i_size, so catch it here and
3080 * reject the request.
3081 *
3082 * This effectively means we require aligned extents
3083 * for the single-inode case, whereas the other cases
3084 * allow an unaligned length so long as it ends at
3085 * i_size.
3086 */
3087 if (len != olen) {
3088 ret = -EINVAL;
3089 goto out_unlock;
3090 }
3091
3092 /* Check for overlapping ranges */
3093 if (dst_loff + len > loff && dst_loff < loff + len) {
3094 ret = -EINVAL;
3095 goto out_unlock;
3096 }
3097
3098 same_lock_start = min_t(u64, loff, dst_loff);
3099 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3100 } else {
3101 btrfs_double_inode_lock(src, dst);
3102
3103 ret = extent_same_check_offsets(src, loff, &len, olen);
3104 if (ret)
3105 goto out_unlock;
3106
3107 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3108 if (ret)
3109 goto out_unlock;
3110 }
3111
3112 /* don't make the dst file partly checksummed */
3113 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3114 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3115 ret = -EINVAL;
3116 goto out_unlock;
3117 }
3118
3119again:
3120 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3121 if (ret)
3122 goto out_unlock;
3123
3124 if (same_inode)
3125 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3126 false);
3127 else
3128 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3129 false);
3130 /*
3131 * If one of the inodes has dirty pages in the respective range or
3132 * ordered extents, we need to flush dellaloc and wait for all ordered
3133 * extents in the range. We must unlock the pages and the ranges in the
3134 * io trees to avoid deadlocks when flushing delalloc (requires locking
3135 * pages) and when waiting for ordered extents to complete (they require
3136 * range locking).
3137 */
3138 if (ret == -EAGAIN) {
3139 /*
3140 * Ranges in the io trees already unlocked. Now unlock all
3141 * pages before waiting for all IO to complete.
3142 */
3143 btrfs_cmp_data_free(&cmp);
3144 if (same_inode) {
3145 btrfs_wait_ordered_range(src, same_lock_start,
3146 same_lock_len);
3147 } else {
3148 btrfs_wait_ordered_range(src, loff, len);
3149 btrfs_wait_ordered_range(dst, dst_loff, len);
3150 }
3151 goto again;
3152 }
3153 ASSERT(ret == 0);
3154 if (WARN_ON(ret)) {
3155 /* ranges in the io trees already unlocked */
3156 btrfs_cmp_data_free(&cmp);
3157 return ret;
3158 }
3159
3160 /* pass original length for comparison so we stay within i_size */
3161 ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp);
3162 if (ret == 0)
3163 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3164
3165 if (same_inode)
3166 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3167 same_lock_start + same_lock_len - 1);
3168 else
3169 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3170
3171 btrfs_cmp_data_free(&cmp);
3172out_unlock:
3173 if (same_inode)
3174 inode_unlock(src);
3175 else
3176 btrfs_double_inode_unlock(src, dst);
3177
3178 return ret;
3179}
3180
3181#define BTRFS_MAX_DEDUPE_LEN SZ_16M
3182
3183ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3184 struct file *dst_file, u64 dst_loff)
3185{
3186 struct inode *src = file_inode(src_file);
3187 struct inode *dst = file_inode(dst_file);
3188 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3189 ssize_t res;
3190
3191 if (olen > BTRFS_MAX_DEDUPE_LEN)
3192 olen = BTRFS_MAX_DEDUPE_LEN;
3193
3194 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3195 /*
3196 * Btrfs does not support blocksize < page_size. As a
3197 * result, btrfs_cmp_data() won't correctly handle
3198 * this situation without an update.
3199 */
3200 return -EINVAL;
3201 }
3202
3203 res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3204 if (res)
3205 return res;
3206 return olen;
3207}
3208
3209static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3210 struct inode *inode,
3211 u64 endoff,
3212 const u64 destoff,
3213 const u64 olen,
3214 int no_time_update)
3215{
3216 struct btrfs_root *root = BTRFS_I(inode)->root;
3217 int ret;
3218
3219 inode_inc_iversion(inode);
3220 if (!no_time_update)
3221 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
3222 /*
3223 * We round up to the block size at eof when determining which
3224 * extents to clone above, but shouldn't round up the file size.
3225 */
3226 if (endoff > destoff + olen)
3227 endoff = destoff + olen;
3228 if (endoff > inode->i_size)
3229 btrfs_i_size_write(inode, endoff);
3230
3231 ret = btrfs_update_inode(trans, root, inode);
3232 if (ret) {
3233 btrfs_abort_transaction(trans, root, ret);
3234 btrfs_end_transaction(trans, root);
3235 goto out;
3236 }
3237 ret = btrfs_end_transaction(trans, root);
3238out:
3239 return ret;
3240}
3241
3242static void clone_update_extent_map(struct inode *inode,
3243 const struct btrfs_trans_handle *trans,
3244 const struct btrfs_path *path,
3245 const u64 hole_offset,
3246 const u64 hole_len)
3247{
3248 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3249 struct extent_map *em;
3250 int ret;
3251
3252 em = alloc_extent_map();
3253 if (!em) {
3254 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3255 &BTRFS_I(inode)->runtime_flags);
3256 return;
3257 }
3258
3259 if (path) {
3260 struct btrfs_file_extent_item *fi;
3261
3262 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3263 struct btrfs_file_extent_item);
3264 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3265 em->generation = -1;
3266 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3267 BTRFS_FILE_EXTENT_INLINE)
3268 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3269 &BTRFS_I(inode)->runtime_flags);
3270 } else {
3271 em->start = hole_offset;
3272 em->len = hole_len;
3273 em->ram_bytes = em->len;
3274 em->orig_start = hole_offset;
3275 em->block_start = EXTENT_MAP_HOLE;
3276 em->block_len = 0;
3277 em->orig_block_len = 0;
3278 em->compress_type = BTRFS_COMPRESS_NONE;
3279 em->generation = trans->transid;
3280 }
3281
3282 while (1) {
3283 write_lock(&em_tree->lock);
3284 ret = add_extent_mapping(em_tree, em, 1);
3285 write_unlock(&em_tree->lock);
3286 if (ret != -EEXIST) {
3287 free_extent_map(em);
3288 break;
3289 }
3290 btrfs_drop_extent_cache(inode, em->start,
3291 em->start + em->len - 1, 0);
3292 }
3293
3294 if (ret)
3295 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3296 &BTRFS_I(inode)->runtime_flags);
3297}
3298
3299/*
3300 * Make sure we do not end up inserting an inline extent into a file that has
3301 * already other (non-inline) extents. If a file has an inline extent it can
3302 * not have any other extents and the (single) inline extent must start at the
3303 * file offset 0. Failing to respect these rules will lead to file corruption,
3304 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3305 *
3306 * We can have extents that have been already written to disk or we can have
3307 * dirty ranges still in delalloc, in which case the extent maps and items are
3308 * created only when we run delalloc, and the delalloc ranges might fall outside
3309 * the range we are currently locking in the inode's io tree. So we check the
3310 * inode's i_size because of that (i_size updates are done while holding the
3311 * i_mutex, which we are holding here).
3312 * We also check to see if the inode has a size not greater than "datal" but has
3313 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3314 * protected against such concurrent fallocate calls by the i_mutex).
3315 *
3316 * If the file has no extents but a size greater than datal, do not allow the
3317 * copy because we would need turn the inline extent into a non-inline one (even
3318 * with NO_HOLES enabled). If we find our destination inode only has one inline
3319 * extent, just overwrite it with the source inline extent if its size is less
3320 * than the source extent's size, or we could copy the source inline extent's
3321 * data into the destination inode's inline extent if the later is greater then
3322 * the former.
3323 */
3324static int clone_copy_inline_extent(struct inode *src,
3325 struct inode *dst,
3326 struct btrfs_trans_handle *trans,
3327 struct btrfs_path *path,
3328 struct btrfs_key *new_key,
3329 const u64 drop_start,
3330 const u64 datal,
3331 const u64 skip,
3332 const u64 size,
3333 char *inline_data)
3334{
3335 struct btrfs_root *root = BTRFS_I(dst)->root;
3336 const u64 aligned_end = ALIGN(new_key->offset + datal,
3337 root->sectorsize);
3338 int ret;
3339 struct btrfs_key key;
3340
3341 if (new_key->offset > 0)
3342 return -EOPNOTSUPP;
3343
3344 key.objectid = btrfs_ino(dst);
3345 key.type = BTRFS_EXTENT_DATA_KEY;
3346 key.offset = 0;
3347 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3348 if (ret < 0) {
3349 return ret;
3350 } else if (ret > 0) {
3351 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3352 ret = btrfs_next_leaf(root, path);
3353 if (ret < 0)
3354 return ret;
3355 else if (ret > 0)
3356 goto copy_inline_extent;
3357 }
3358 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3359 if (key.objectid == btrfs_ino(dst) &&
3360 key.type == BTRFS_EXTENT_DATA_KEY) {
3361 ASSERT(key.offset > 0);
3362 return -EOPNOTSUPP;
3363 }
3364 } else if (i_size_read(dst) <= datal) {
3365 struct btrfs_file_extent_item *ei;
3366 u64 ext_len;
3367
3368 /*
3369 * If the file size is <= datal, make sure there are no other
3370 * extents following (can happen do to an fallocate call with
3371 * the flag FALLOC_FL_KEEP_SIZE).
3372 */
3373 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3374 struct btrfs_file_extent_item);
3375 /*
3376 * If it's an inline extent, it can not have other extents
3377 * following it.
3378 */
3379 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3380 BTRFS_FILE_EXTENT_INLINE)
3381 goto copy_inline_extent;
3382
3383 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3384 if (ext_len > aligned_end)
3385 return -EOPNOTSUPP;
3386
3387 ret = btrfs_next_item(root, path);
3388 if (ret < 0) {
3389 return ret;
3390 } else if (ret == 0) {
3391 btrfs_item_key_to_cpu(path->nodes[0], &key,
3392 path->slots[0]);
3393 if (key.objectid == btrfs_ino(dst) &&
3394 key.type == BTRFS_EXTENT_DATA_KEY)
3395 return -EOPNOTSUPP;
3396 }
3397 }
3398
3399copy_inline_extent:
3400 /*
3401 * We have no extent items, or we have an extent at offset 0 which may
3402 * or may not be inlined. All these cases are dealt the same way.
3403 */
3404 if (i_size_read(dst) > datal) {
3405 /*
3406 * If the destination inode has an inline extent...
3407 * This would require copying the data from the source inline
3408 * extent into the beginning of the destination's inline extent.
3409 * But this is really complex, both extents can be compressed
3410 * or just one of them, which would require decompressing and
3411 * re-compressing data (which could increase the new compressed
3412 * size, not allowing the compressed data to fit anymore in an
3413 * inline extent).
3414 * So just don't support this case for now (it should be rare,
3415 * we are not really saving space when cloning inline extents).
3416 */
3417 return -EOPNOTSUPP;
3418 }
3419
3420 btrfs_release_path(path);
3421 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3422 if (ret)
3423 return ret;
3424 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3425 if (ret)
3426 return ret;
3427
3428 if (skip) {
3429 const u32 start = btrfs_file_extent_calc_inline_size(0);
3430
3431 memmove(inline_data + start, inline_data + start + skip, datal);
3432 }
3433
3434 write_extent_buffer(path->nodes[0], inline_data,
3435 btrfs_item_ptr_offset(path->nodes[0],
3436 path->slots[0]),
3437 size);
3438 inode_add_bytes(dst, datal);
3439
3440 return 0;
3441}
3442
3443/**
3444 * btrfs_clone() - clone a range from inode file to another
3445 *
3446 * @src: Inode to clone from
3447 * @inode: Inode to clone to
3448 * @off: Offset within source to start clone from
3449 * @olen: Original length, passed by user, of range to clone
3450 * @olen_aligned: Block-aligned value of olen
3451 * @destoff: Offset within @inode to start clone
3452 * @no_time_update: Whether to update mtime/ctime on the target inode
3453 */
3454static int btrfs_clone(struct inode *src, struct inode *inode,
3455 const u64 off, const u64 olen, const u64 olen_aligned,
3456 const u64 destoff, int no_time_update)
3457{
3458 struct btrfs_root *root = BTRFS_I(inode)->root;
3459 struct btrfs_path *path = NULL;
3460 struct extent_buffer *leaf;
3461 struct btrfs_trans_handle *trans;
3462 char *buf = NULL;
3463 struct btrfs_key key;
3464 u32 nritems;
3465 int slot;
3466 int ret;
3467 const u64 len = olen_aligned;
3468 u64 last_dest_end = destoff;
3469
3470 ret = -ENOMEM;
3471 buf = vmalloc(root->nodesize);
3472 if (!buf)
3473 return ret;
3474
3475 path = btrfs_alloc_path();
3476 if (!path) {
3477 vfree(buf);
3478 return ret;
3479 }
3480
3481 path->reada = READA_FORWARD;
3482 /* clone data */
3483 key.objectid = btrfs_ino(src);
3484 key.type = BTRFS_EXTENT_DATA_KEY;
3485 key.offset = off;
3486
3487 while (1) {
3488 u64 next_key_min_offset = key.offset + 1;
3489
3490 /*
3491 * note the key will change type as we walk through the
3492 * tree.
3493 */
3494 path->leave_spinning = 1;
3495 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3496 0, 0);
3497 if (ret < 0)
3498 goto out;
3499 /*
3500 * First search, if no extent item that starts at offset off was
3501 * found but the previous item is an extent item, it's possible
3502 * it might overlap our target range, therefore process it.
3503 */
3504 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3505 btrfs_item_key_to_cpu(path->nodes[0], &key,
3506 path->slots[0] - 1);
3507 if (key.type == BTRFS_EXTENT_DATA_KEY)
3508 path->slots[0]--;
3509 }
3510
3511 nritems = btrfs_header_nritems(path->nodes[0]);
3512process_slot:
3513 if (path->slots[0] >= nritems) {
3514 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3515 if (ret < 0)
3516 goto out;
3517 if (ret > 0)
3518 break;
3519 nritems = btrfs_header_nritems(path->nodes[0]);
3520 }
3521 leaf = path->nodes[0];
3522 slot = path->slots[0];
3523
3524 btrfs_item_key_to_cpu(leaf, &key, slot);
3525 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3526 key.objectid != btrfs_ino(src))
3527 break;
3528
3529 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3530 struct btrfs_file_extent_item *extent;
3531 int type;
3532 u32 size;
3533 struct btrfs_key new_key;
3534 u64 disko = 0, diskl = 0;
3535 u64 datao = 0, datal = 0;
3536 u8 comp;
3537 u64 drop_start;
3538
3539 extent = btrfs_item_ptr(leaf, slot,
3540 struct btrfs_file_extent_item);
3541 comp = btrfs_file_extent_compression(leaf, extent);
3542 type = btrfs_file_extent_type(leaf, extent);
3543 if (type == BTRFS_FILE_EXTENT_REG ||
3544 type == BTRFS_FILE_EXTENT_PREALLOC) {
3545 disko = btrfs_file_extent_disk_bytenr(leaf,
3546 extent);
3547 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3548 extent);
3549 datao = btrfs_file_extent_offset(leaf, extent);
3550 datal = btrfs_file_extent_num_bytes(leaf,
3551 extent);
3552 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3553 /* take upper bound, may be compressed */
3554 datal = btrfs_file_extent_ram_bytes(leaf,
3555 extent);
3556 }
3557
3558 /*
3559 * The first search might have left us at an extent
3560 * item that ends before our target range's start, can
3561 * happen if we have holes and NO_HOLES feature enabled.
3562 */
3563 if (key.offset + datal <= off) {
3564 path->slots[0]++;
3565 goto process_slot;
3566 } else if (key.offset >= off + len) {
3567 break;
3568 }
3569 next_key_min_offset = key.offset + datal;
3570 size = btrfs_item_size_nr(leaf, slot);
3571 read_extent_buffer(leaf, buf,
3572 btrfs_item_ptr_offset(leaf, slot),
3573 size);
3574
3575 btrfs_release_path(path);
3576 path->leave_spinning = 0;
3577
3578 memcpy(&new_key, &key, sizeof(new_key));
3579 new_key.objectid = btrfs_ino(inode);
3580 if (off <= key.offset)
3581 new_key.offset = key.offset + destoff - off;
3582 else
3583 new_key.offset = destoff;
3584
3585 /*
3586 * Deal with a hole that doesn't have an extent item
3587 * that represents it (NO_HOLES feature enabled).
3588 * This hole is either in the middle of the cloning
3589 * range or at the beginning (fully overlaps it or
3590 * partially overlaps it).
3591 */
3592 if (new_key.offset != last_dest_end)
3593 drop_start = last_dest_end;
3594 else
3595 drop_start = new_key.offset;
3596
3597 /*
3598 * 1 - adjusting old extent (we may have to split it)
3599 * 1 - add new extent
3600 * 1 - inode update
3601 */
3602 trans = btrfs_start_transaction(root, 3);
3603 if (IS_ERR(trans)) {
3604 ret = PTR_ERR(trans);
3605 goto out;
3606 }
3607
3608 if (type == BTRFS_FILE_EXTENT_REG ||
3609 type == BTRFS_FILE_EXTENT_PREALLOC) {
3610 /*
3611 * a | --- range to clone ---| b
3612 * | ------------- extent ------------- |
3613 */
3614
3615 /* subtract range b */
3616 if (key.offset + datal > off + len)
3617 datal = off + len - key.offset;
3618
3619 /* subtract range a */
3620 if (off > key.offset) {
3621 datao += off - key.offset;
3622 datal -= off - key.offset;
3623 }
3624
3625 ret = btrfs_drop_extents(trans, root, inode,
3626 drop_start,
3627 new_key.offset + datal,
3628 1);
3629 if (ret) {
3630 if (ret != -EOPNOTSUPP)
3631 btrfs_abort_transaction(trans,
3632 root, ret);
3633 btrfs_end_transaction(trans, root);
3634 goto out;
3635 }
3636
3637 ret = btrfs_insert_empty_item(trans, root, path,
3638 &new_key, size);
3639 if (ret) {
3640 btrfs_abort_transaction(trans, root,
3641 ret);
3642 btrfs_end_transaction(trans, root);
3643 goto out;
3644 }
3645
3646 leaf = path->nodes[0];
3647 slot = path->slots[0];
3648 write_extent_buffer(leaf, buf,
3649 btrfs_item_ptr_offset(leaf, slot),
3650 size);
3651
3652 extent = btrfs_item_ptr(leaf, slot,
3653 struct btrfs_file_extent_item);
3654
3655 /* disko == 0 means it's a hole */
3656 if (!disko)
3657 datao = 0;
3658
3659 btrfs_set_file_extent_offset(leaf, extent,
3660 datao);
3661 btrfs_set_file_extent_num_bytes(leaf, extent,
3662 datal);
3663
3664 if (disko) {
3665 inode_add_bytes(inode, datal);
3666 ret = btrfs_inc_extent_ref(trans, root,
3667 disko, diskl, 0,
3668 root->root_key.objectid,
3669 btrfs_ino(inode),
3670 new_key.offset - datao);
3671 if (ret) {
3672 btrfs_abort_transaction(trans,
3673 root,
3674 ret);
3675 btrfs_end_transaction(trans,
3676 root);
3677 goto out;
3678
3679 }
3680 }
3681 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3682 u64 skip = 0;
3683 u64 trim = 0;
3684
3685 if (off > key.offset) {
3686 skip = off - key.offset;
3687 new_key.offset += skip;
3688 }
3689
3690 if (key.offset + datal > off + len)
3691 trim = key.offset + datal - (off + len);
3692
3693 if (comp && (skip || trim)) {
3694 ret = -EINVAL;
3695 btrfs_end_transaction(trans, root);
3696 goto out;
3697 }
3698 size -= skip + trim;
3699 datal -= skip + trim;
3700
3701 ret = clone_copy_inline_extent(src, inode,
3702 trans, path,
3703 &new_key,
3704 drop_start,
3705 datal,
3706 skip, size, buf);
3707 if (ret) {
3708 if (ret != -EOPNOTSUPP)
3709 btrfs_abort_transaction(trans,
3710 root,
3711 ret);
3712 btrfs_end_transaction(trans, root);
3713 goto out;
3714 }
3715 leaf = path->nodes[0];
3716 slot = path->slots[0];
3717 }
3718
3719 /* If we have an implicit hole (NO_HOLES feature). */
3720 if (drop_start < new_key.offset)
3721 clone_update_extent_map(inode, trans,
3722 NULL, drop_start,
3723 new_key.offset - drop_start);
3724
3725 clone_update_extent_map(inode, trans, path, 0, 0);
3726
3727 btrfs_mark_buffer_dirty(leaf);
3728 btrfs_release_path(path);
3729
3730 last_dest_end = ALIGN(new_key.offset + datal,
3731 root->sectorsize);
3732 ret = clone_finish_inode_update(trans, inode,
3733 last_dest_end,
3734 destoff, olen,
3735 no_time_update);
3736 if (ret)
3737 goto out;
3738 if (new_key.offset + datal >= destoff + len)
3739 break;
3740 }
3741 btrfs_release_path(path);
3742 key.offset = next_key_min_offset;
3743 }
3744 ret = 0;
3745
3746 if (last_dest_end < destoff + len) {
3747 /*
3748 * We have an implicit hole (NO_HOLES feature is enabled) that
3749 * fully or partially overlaps our cloning range at its end.
3750 */
3751 btrfs_release_path(path);
3752
3753 /*
3754 * 1 - remove extent(s)
3755 * 1 - inode update
3756 */
3757 trans = btrfs_start_transaction(root, 2);
3758 if (IS_ERR(trans)) {
3759 ret = PTR_ERR(trans);
3760 goto out;
3761 }
3762 ret = btrfs_drop_extents(trans, root, inode,
3763 last_dest_end, destoff + len, 1);
3764 if (ret) {
3765 if (ret != -EOPNOTSUPP)
3766 btrfs_abort_transaction(trans, root, ret);
3767 btrfs_end_transaction(trans, root);
3768 goto out;
3769 }
3770 clone_update_extent_map(inode, trans, NULL, last_dest_end,
3771 destoff + len - last_dest_end);
3772 ret = clone_finish_inode_update(trans, inode, destoff + len,
3773 destoff, olen, no_time_update);
3774 }
3775
3776out:
3777 btrfs_free_path(path);
3778 vfree(buf);
3779 return ret;
3780}
3781
3782static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3783 u64 off, u64 olen, u64 destoff)
3784{
3785 struct inode *inode = file_inode(file);
3786 struct inode *src = file_inode(file_src);
3787 struct btrfs_root *root = BTRFS_I(inode)->root;
3788 int ret;
3789 u64 len = olen;
3790 u64 bs = root->fs_info->sb->s_blocksize;
3791 int same_inode = src == inode;
3792
3793 /*
3794 * TODO:
3795 * - split compressed inline extents. annoying: we need to
3796 * decompress into destination's address_space (the file offset
3797 * may change, so source mapping won't do), then recompress (or
3798 * otherwise reinsert) a subrange.
3799 *
3800 * - split destination inode's inline extents. The inline extents can
3801 * be either compressed or non-compressed.
3802 */
3803
3804 if (btrfs_root_readonly(root))
3805 return -EROFS;
3806
3807 if (file_src->f_path.mnt != file->f_path.mnt ||
3808 src->i_sb != inode->i_sb)
3809 return -EXDEV;
3810
3811 /* don't make the dst file partly checksummed */
3812 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3813 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3814 return -EINVAL;
3815
3816 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3817 return -EISDIR;
3818
3819 if (!same_inode) {
3820 btrfs_double_inode_lock(src, inode);
3821 } else {
3822 inode_lock(src);
3823 }
3824
3825 /* determine range to clone */
3826 ret = -EINVAL;
3827 if (off + len > src->i_size || off + len < off)
3828 goto out_unlock;
3829 if (len == 0)
3830 olen = len = src->i_size - off;
3831 /* if we extend to eof, continue to block boundary */
3832 if (off + len == src->i_size)
3833 len = ALIGN(src->i_size, bs) - off;
3834
3835 if (len == 0) {
3836 ret = 0;
3837 goto out_unlock;
3838 }
3839
3840 /* verify the end result is block aligned */
3841 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3842 !IS_ALIGNED(destoff, bs))
3843 goto out_unlock;
3844
3845 /* verify if ranges are overlapped within the same file */
3846 if (same_inode) {
3847 if (destoff + len > off && destoff < off + len)
3848 goto out_unlock;
3849 }
3850
3851 if (destoff > inode->i_size) {
3852 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3853 if (ret)
3854 goto out_unlock;
3855 }
3856
3857 /*
3858 * Lock the target range too. Right after we replace the file extent
3859 * items in the fs tree (which now point to the cloned data), we might
3860 * have a worker replace them with extent items relative to a write
3861 * operation that was issued before this clone operation (i.e. confront
3862 * with inode.c:btrfs_finish_ordered_io).
3863 */
3864 if (same_inode) {
3865 u64 lock_start = min_t(u64, off, destoff);
3866 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3867
3868 ret = lock_extent_range(src, lock_start, lock_len, true);
3869 } else {
3870 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3871 true);
3872 }
3873 ASSERT(ret == 0);
3874 if (WARN_ON(ret)) {
3875 /* ranges in the io trees already unlocked */
3876 goto out_unlock;
3877 }
3878
3879 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3880
3881 if (same_inode) {
3882 u64 lock_start = min_t(u64, off, destoff);
3883 u64 lock_end = max_t(u64, off, destoff) + len - 1;
3884
3885 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3886 } else {
3887 btrfs_double_extent_unlock(src, off, inode, destoff, len);
3888 }
3889 /*
3890 * Truncate page cache pages so that future reads will see the cloned
3891 * data immediately and not the previous data.
3892 */
3893 truncate_inode_pages_range(&inode->i_data,
3894 round_down(destoff, PAGE_SIZE),
3895 round_up(destoff + len, PAGE_SIZE) - 1);
3896out_unlock:
3897 if (!same_inode)
3898 btrfs_double_inode_unlock(src, inode);
3899 else
3900 inode_unlock(src);
3901 return ret;
3902}
3903
3904ssize_t btrfs_copy_file_range(struct file *file_in, loff_t pos_in,
3905 struct file *file_out, loff_t pos_out,
3906 size_t len, unsigned int flags)
3907{
3908 ssize_t ret;
3909
3910 ret = btrfs_clone_files(file_out, file_in, pos_in, len, pos_out);
3911 if (ret == 0)
3912 ret = len;
3913 return ret;
3914}
3915
3916int btrfs_clone_file_range(struct file *src_file, loff_t off,
3917 struct file *dst_file, loff_t destoff, u64 len)
3918{
3919 return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3920}
3921
3922/*
3923 * there are many ways the trans_start and trans_end ioctls can lead
3924 * to deadlocks. They should only be used by applications that
3925 * basically own the machine, and have a very in depth understanding
3926 * of all the possible deadlocks and enospc problems.
3927 */
3928static long btrfs_ioctl_trans_start(struct file *file)
3929{
3930 struct inode *inode = file_inode(file);
3931 struct btrfs_root *root = BTRFS_I(inode)->root;
3932 struct btrfs_trans_handle *trans;
3933 int ret;
3934
3935 ret = -EPERM;
3936 if (!capable(CAP_SYS_ADMIN))
3937 goto out;
3938
3939 ret = -EINPROGRESS;
3940 if (file->private_data)
3941 goto out;
3942
3943 ret = -EROFS;
3944 if (btrfs_root_readonly(root))
3945 goto out;
3946
3947 ret = mnt_want_write_file(file);
3948 if (ret)
3949 goto out;
3950
3951 atomic_inc(&root->fs_info->open_ioctl_trans);
3952
3953 ret = -ENOMEM;
3954 trans = btrfs_start_ioctl_transaction(root);
3955 if (IS_ERR(trans))
3956 goto out_drop;
3957
3958 file->private_data = trans;
3959 return 0;
3960
3961out_drop:
3962 atomic_dec(&root->fs_info->open_ioctl_trans);
3963 mnt_drop_write_file(file);
3964out:
3965 return ret;
3966}
3967
3968static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3969{
3970 struct inode *inode = file_inode(file);
3971 struct btrfs_root *root = BTRFS_I(inode)->root;
3972 struct btrfs_root *new_root;
3973 struct btrfs_dir_item *di;
3974 struct btrfs_trans_handle *trans;
3975 struct btrfs_path *path;
3976 struct btrfs_key location;
3977 struct btrfs_disk_key disk_key;
3978 u64 objectid = 0;
3979 u64 dir_id;
3980 int ret;
3981
3982 if (!capable(CAP_SYS_ADMIN))
3983 return -EPERM;
3984
3985 ret = mnt_want_write_file(file);
3986 if (ret)
3987 return ret;
3988
3989 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3990 ret = -EFAULT;
3991 goto out;
3992 }
3993
3994 if (!objectid)
3995 objectid = BTRFS_FS_TREE_OBJECTID;
3996
3997 location.objectid = objectid;
3998 location.type = BTRFS_ROOT_ITEM_KEY;
3999 location.offset = (u64)-1;
4000
4001 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
4002 if (IS_ERR(new_root)) {
4003 ret = PTR_ERR(new_root);
4004 goto out;
4005 }
4006
4007 path = btrfs_alloc_path();
4008 if (!path) {
4009 ret = -ENOMEM;
4010 goto out;
4011 }
4012 path->leave_spinning = 1;
4013
4014 trans = btrfs_start_transaction(root, 1);
4015 if (IS_ERR(trans)) {
4016 btrfs_free_path(path);
4017 ret = PTR_ERR(trans);
4018 goto out;
4019 }
4020
4021 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
4022 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
4023 dir_id, "default", 7, 1);
4024 if (IS_ERR_OR_NULL(di)) {
4025 btrfs_free_path(path);
4026 btrfs_end_transaction(trans, root);
4027 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
4028 "item, this isn't going to work");
4029 ret = -ENOENT;
4030 goto out;
4031 }
4032
4033 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4034 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4035 btrfs_mark_buffer_dirty(path->nodes[0]);
4036 btrfs_free_path(path);
4037
4038 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
4039 btrfs_end_transaction(trans, root);
4040out:
4041 mnt_drop_write_file(file);
4042 return ret;
4043}
4044
4045void btrfs_get_block_group_info(struct list_head *groups_list,
4046 struct btrfs_ioctl_space_info *space)
4047{
4048 struct btrfs_block_group_cache *block_group;
4049
4050 space->total_bytes = 0;
4051 space->used_bytes = 0;
4052 space->flags = 0;
4053 list_for_each_entry(block_group, groups_list, list) {
4054 space->flags = block_group->flags;
4055 space->total_bytes += block_group->key.offset;
4056 space->used_bytes +=
4057 btrfs_block_group_used(&block_group->item);
4058 }
4059}
4060
4061static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
4062{
4063 struct btrfs_ioctl_space_args space_args;
4064 struct btrfs_ioctl_space_info space;
4065 struct btrfs_ioctl_space_info *dest;
4066 struct btrfs_ioctl_space_info *dest_orig;
4067 struct btrfs_ioctl_space_info __user *user_dest;
4068 struct btrfs_space_info *info;
4069 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4070 BTRFS_BLOCK_GROUP_SYSTEM,
4071 BTRFS_BLOCK_GROUP_METADATA,
4072 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4073 int num_types = 4;
4074 int alloc_size;
4075 int ret = 0;
4076 u64 slot_count = 0;
4077 int i, c;
4078
4079 if (copy_from_user(&space_args,
4080 (struct btrfs_ioctl_space_args __user *)arg,
4081 sizeof(space_args)))
4082 return -EFAULT;
4083
4084 for (i = 0; i < num_types; i++) {
4085 struct btrfs_space_info *tmp;
4086
4087 info = NULL;
4088 rcu_read_lock();
4089 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4090 list) {
4091 if (tmp->flags == types[i]) {
4092 info = tmp;
4093 break;
4094 }
4095 }
4096 rcu_read_unlock();
4097
4098 if (!info)
4099 continue;
4100
4101 down_read(&info->groups_sem);
4102 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4103 if (!list_empty(&info->block_groups[c]))
4104 slot_count++;
4105 }
4106 up_read(&info->groups_sem);
4107 }
4108
4109 /*
4110 * Global block reserve, exported as a space_info
4111 */
4112 slot_count++;
4113
4114 /* space_slots == 0 means they are asking for a count */
4115 if (space_args.space_slots == 0) {
4116 space_args.total_spaces = slot_count;
4117 goto out;
4118 }
4119
4120 slot_count = min_t(u64, space_args.space_slots, slot_count);
4121
4122 alloc_size = sizeof(*dest) * slot_count;
4123
4124 /* we generally have at most 6 or so space infos, one for each raid
4125 * level. So, a whole page should be more than enough for everyone
4126 */
4127 if (alloc_size > PAGE_SIZE)
4128 return -ENOMEM;
4129
4130 space_args.total_spaces = 0;
4131 dest = kmalloc(alloc_size, GFP_KERNEL);
4132 if (!dest)
4133 return -ENOMEM;
4134 dest_orig = dest;
4135
4136 /* now we have a buffer to copy into */
4137 for (i = 0; i < num_types; i++) {
4138 struct btrfs_space_info *tmp;
4139
4140 if (!slot_count)
4141 break;
4142
4143 info = NULL;
4144 rcu_read_lock();
4145 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4146 list) {
4147 if (tmp->flags == types[i]) {
4148 info = tmp;
4149 break;
4150 }
4151 }
4152 rcu_read_unlock();
4153
4154 if (!info)
4155 continue;
4156 down_read(&info->groups_sem);
4157 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4158 if (!list_empty(&info->block_groups[c])) {
4159 btrfs_get_block_group_info(
4160 &info->block_groups[c], &space);
4161 memcpy(dest, &space, sizeof(space));
4162 dest++;
4163 space_args.total_spaces++;
4164 slot_count--;
4165 }
4166 if (!slot_count)
4167 break;
4168 }
4169 up_read(&info->groups_sem);
4170 }
4171
4172 /*
4173 * Add global block reserve
4174 */
4175 if (slot_count) {
4176 struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
4177
4178 spin_lock(&block_rsv->lock);
4179 space.total_bytes = block_rsv->size;
4180 space.used_bytes = block_rsv->size - block_rsv->reserved;
4181 spin_unlock(&block_rsv->lock);
4182 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4183 memcpy(dest, &space, sizeof(space));
4184 space_args.total_spaces++;
4185 }
4186
4187 user_dest = (struct btrfs_ioctl_space_info __user *)
4188 (arg + sizeof(struct btrfs_ioctl_space_args));
4189
4190 if (copy_to_user(user_dest, dest_orig, alloc_size))
4191 ret = -EFAULT;
4192
4193 kfree(dest_orig);
4194out:
4195 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4196 ret = -EFAULT;
4197
4198 return ret;
4199}
4200
4201/*
4202 * there are many ways the trans_start and trans_end ioctls can lead
4203 * to deadlocks. They should only be used by applications that
4204 * basically own the machine, and have a very in depth understanding
4205 * of all the possible deadlocks and enospc problems.
4206 */
4207long btrfs_ioctl_trans_end(struct file *file)
4208{
4209 struct inode *inode = file_inode(file);
4210 struct btrfs_root *root = BTRFS_I(inode)->root;
4211 struct btrfs_trans_handle *trans;
4212
4213 trans = file->private_data;
4214 if (!trans)
4215 return -EINVAL;
4216 file->private_data = NULL;
4217
4218 btrfs_end_transaction(trans, root);
4219
4220 atomic_dec(&root->fs_info->open_ioctl_trans);
4221
4222 mnt_drop_write_file(file);
4223 return 0;
4224}
4225
4226static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4227 void __user *argp)
4228{
4229 struct btrfs_trans_handle *trans;
4230 u64 transid;
4231 int ret;
4232
4233 trans = btrfs_attach_transaction_barrier(root);
4234 if (IS_ERR(trans)) {
4235 if (PTR_ERR(trans) != -ENOENT)
4236 return PTR_ERR(trans);
4237
4238 /* No running transaction, don't bother */
4239 transid = root->fs_info->last_trans_committed;
4240 goto out;
4241 }
4242 transid = trans->transid;
4243 ret = btrfs_commit_transaction_async(trans, root, 0);
4244 if (ret) {
4245 btrfs_end_transaction(trans, root);
4246 return ret;
4247 }
4248out:
4249 if (argp)
4250 if (copy_to_user(argp, &transid, sizeof(transid)))
4251 return -EFAULT;
4252 return 0;
4253}
4254
4255static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4256 void __user *argp)
4257{
4258 u64 transid;
4259
4260 if (argp) {
4261 if (copy_from_user(&transid, argp, sizeof(transid)))
4262 return -EFAULT;
4263 } else {
4264 transid = 0; /* current trans */
4265 }
4266 return btrfs_wait_for_commit(root, transid);
4267}
4268
4269static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4270{
4271 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4272 struct btrfs_ioctl_scrub_args *sa;
4273 int ret;
4274
4275 if (!capable(CAP_SYS_ADMIN))
4276 return -EPERM;
4277
4278 sa = memdup_user(arg, sizeof(*sa));
4279 if (IS_ERR(sa))
4280 return PTR_ERR(sa);
4281
4282 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4283 ret = mnt_want_write_file(file);
4284 if (ret)
4285 goto out;
4286 }
4287
4288 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4289 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4290 0);
4291
4292 if (copy_to_user(arg, sa, sizeof(*sa)))
4293 ret = -EFAULT;
4294
4295 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4296 mnt_drop_write_file(file);
4297out:
4298 kfree(sa);
4299 return ret;
4300}
4301
4302static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4303{
4304 if (!capable(CAP_SYS_ADMIN))
4305 return -EPERM;
4306
4307 return btrfs_scrub_cancel(root->fs_info);
4308}
4309
4310static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4311 void __user *arg)
4312{
4313 struct btrfs_ioctl_scrub_args *sa;
4314 int ret;
4315
4316 if (!capable(CAP_SYS_ADMIN))
4317 return -EPERM;
4318
4319 sa = memdup_user(arg, sizeof(*sa));
4320 if (IS_ERR(sa))
4321 return PTR_ERR(sa);
4322
4323 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4324
4325 if (copy_to_user(arg, sa, sizeof(*sa)))
4326 ret = -EFAULT;
4327
4328 kfree(sa);
4329 return ret;
4330}
4331
4332static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4333 void __user *arg)
4334{
4335 struct btrfs_ioctl_get_dev_stats *sa;
4336 int ret;
4337
4338 sa = memdup_user(arg, sizeof(*sa));
4339 if (IS_ERR(sa))
4340 return PTR_ERR(sa);
4341
4342 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4343 kfree(sa);
4344 return -EPERM;
4345 }
4346
4347 ret = btrfs_get_dev_stats(root, sa);
4348
4349 if (copy_to_user(arg, sa, sizeof(*sa)))
4350 ret = -EFAULT;
4351
4352 kfree(sa);
4353 return ret;
4354}
4355
4356static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
4357{
4358 struct btrfs_ioctl_dev_replace_args *p;
4359 int ret;
4360
4361 if (!capable(CAP_SYS_ADMIN))
4362 return -EPERM;
4363
4364 p = memdup_user(arg, sizeof(*p));
4365 if (IS_ERR(p))
4366 return PTR_ERR(p);
4367
4368 switch (p->cmd) {
4369 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4370 if (root->fs_info->sb->s_flags & MS_RDONLY) {
4371 ret = -EROFS;
4372 goto out;
4373 }
4374 if (atomic_xchg(
4375 &root->fs_info->mutually_exclusive_operation_running,
4376 1)) {
4377 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4378 } else {
4379 ret = btrfs_dev_replace_start(root, p);
4380 atomic_set(
4381 &root->fs_info->mutually_exclusive_operation_running,
4382 0);
4383 }
4384 break;
4385 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4386 btrfs_dev_replace_status(root->fs_info, p);
4387 ret = 0;
4388 break;
4389 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4390 ret = btrfs_dev_replace_cancel(root->fs_info, p);
4391 break;
4392 default:
4393 ret = -EINVAL;
4394 break;
4395 }
4396
4397 if (copy_to_user(arg, p, sizeof(*p)))
4398 ret = -EFAULT;
4399out:
4400 kfree(p);
4401 return ret;
4402}
4403
4404static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4405{
4406 int ret = 0;
4407 int i;
4408 u64 rel_ptr;
4409 int size;
4410 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4411 struct inode_fs_paths *ipath = NULL;
4412 struct btrfs_path *path;
4413
4414 if (!capable(CAP_DAC_READ_SEARCH))
4415 return -EPERM;
4416
4417 path = btrfs_alloc_path();
4418 if (!path) {
4419 ret = -ENOMEM;
4420 goto out;
4421 }
4422
4423 ipa = memdup_user(arg, sizeof(*ipa));
4424 if (IS_ERR(ipa)) {
4425 ret = PTR_ERR(ipa);
4426 ipa = NULL;
4427 goto out;
4428 }
4429
4430 size = min_t(u32, ipa->size, 4096);
4431 ipath = init_ipath(size, root, path);
4432 if (IS_ERR(ipath)) {
4433 ret = PTR_ERR(ipath);
4434 ipath = NULL;
4435 goto out;
4436 }
4437
4438 ret = paths_from_inode(ipa->inum, ipath);
4439 if (ret < 0)
4440 goto out;
4441
4442 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4443 rel_ptr = ipath->fspath->val[i] -
4444 (u64)(unsigned long)ipath->fspath->val;
4445 ipath->fspath->val[i] = rel_ptr;
4446 }
4447
4448 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4449 (void *)(unsigned long)ipath->fspath, size);
4450 if (ret) {
4451 ret = -EFAULT;
4452 goto out;
4453 }
4454
4455out:
4456 btrfs_free_path(path);
4457 free_ipath(ipath);
4458 kfree(ipa);
4459
4460 return ret;
4461}
4462
4463static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4464{
4465 struct btrfs_data_container *inodes = ctx;
4466 const size_t c = 3 * sizeof(u64);
4467
4468 if (inodes->bytes_left >= c) {
4469 inodes->bytes_left -= c;
4470 inodes->val[inodes->elem_cnt] = inum;
4471 inodes->val[inodes->elem_cnt + 1] = offset;
4472 inodes->val[inodes->elem_cnt + 2] = root;
4473 inodes->elem_cnt += 3;
4474 } else {
4475 inodes->bytes_missing += c - inodes->bytes_left;
4476 inodes->bytes_left = 0;
4477 inodes->elem_missed += 3;
4478 }
4479
4480 return 0;
4481}
4482
4483static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4484 void __user *arg)
4485{
4486 int ret = 0;
4487 int size;
4488 struct btrfs_ioctl_logical_ino_args *loi;
4489 struct btrfs_data_container *inodes = NULL;
4490 struct btrfs_path *path = NULL;
4491
4492 if (!capable(CAP_SYS_ADMIN))
4493 return -EPERM;
4494
4495 loi = memdup_user(arg, sizeof(*loi));
4496 if (IS_ERR(loi)) {
4497 ret = PTR_ERR(loi);
4498 loi = NULL;
4499 goto out;
4500 }
4501
4502 path = btrfs_alloc_path();
4503 if (!path) {
4504 ret = -ENOMEM;
4505 goto out;
4506 }
4507
4508 size = min_t(u32, loi->size, SZ_64K);
4509 inodes = init_data_container(size);
4510 if (IS_ERR(inodes)) {
4511 ret = PTR_ERR(inodes);
4512 inodes = NULL;
4513 goto out;
4514 }
4515
4516 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4517 build_ino_list, inodes);
4518 if (ret == -EINVAL)
4519 ret = -ENOENT;
4520 if (ret < 0)
4521 goto out;
4522
4523 ret = copy_to_user((void *)(unsigned long)loi->inodes,
4524 (void *)(unsigned long)inodes, size);
4525 if (ret)
4526 ret = -EFAULT;
4527
4528out:
4529 btrfs_free_path(path);
4530 vfree(inodes);
4531 kfree(loi);
4532
4533 return ret;
4534}
4535
4536void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4537 struct btrfs_ioctl_balance_args *bargs)
4538{
4539 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4540
4541 bargs->flags = bctl->flags;
4542
4543 if (atomic_read(&fs_info->balance_running))
4544 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4545 if (atomic_read(&fs_info->balance_pause_req))
4546 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4547 if (atomic_read(&fs_info->balance_cancel_req))
4548 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4549
4550 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4551 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4552 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4553
4554 if (lock) {
4555 spin_lock(&fs_info->balance_lock);
4556 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4557 spin_unlock(&fs_info->balance_lock);
4558 } else {
4559 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4560 }
4561}
4562
4563static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4564{
4565 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4566 struct btrfs_fs_info *fs_info = root->fs_info;
4567 struct btrfs_ioctl_balance_args *bargs;
4568 struct btrfs_balance_control *bctl;
4569 bool need_unlock; /* for mut. excl. ops lock */
4570 int ret;
4571
4572 if (!capable(CAP_SYS_ADMIN))
4573 return -EPERM;
4574
4575 ret = mnt_want_write_file(file);
4576 if (ret)
4577 return ret;
4578
4579again:
4580 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4581 mutex_lock(&fs_info->volume_mutex);
4582 mutex_lock(&fs_info->balance_mutex);
4583 need_unlock = true;
4584 goto locked;
4585 }
4586
4587 /*
4588 * mut. excl. ops lock is locked. Three possibilites:
4589 * (1) some other op is running
4590 * (2) balance is running
4591 * (3) balance is paused -- special case (think resume)
4592 */
4593 mutex_lock(&fs_info->balance_mutex);
4594 if (fs_info->balance_ctl) {
4595 /* this is either (2) or (3) */
4596 if (!atomic_read(&fs_info->balance_running)) {
4597 mutex_unlock(&fs_info->balance_mutex);
4598 if (!mutex_trylock(&fs_info->volume_mutex))
4599 goto again;
4600 mutex_lock(&fs_info->balance_mutex);
4601
4602 if (fs_info->balance_ctl &&
4603 !atomic_read(&fs_info->balance_running)) {
4604 /* this is (3) */
4605 need_unlock = false;
4606 goto locked;
4607 }
4608
4609 mutex_unlock(&fs_info->balance_mutex);
4610 mutex_unlock(&fs_info->volume_mutex);
4611 goto again;
4612 } else {
4613 /* this is (2) */
4614 mutex_unlock(&fs_info->balance_mutex);
4615 ret = -EINPROGRESS;
4616 goto out;
4617 }
4618 } else {
4619 /* this is (1) */
4620 mutex_unlock(&fs_info->balance_mutex);
4621 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4622 goto out;
4623 }
4624
4625locked:
4626 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4627
4628 if (arg) {
4629 bargs = memdup_user(arg, sizeof(*bargs));
4630 if (IS_ERR(bargs)) {
4631 ret = PTR_ERR(bargs);
4632 goto out_unlock;
4633 }
4634
4635 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4636 if (!fs_info->balance_ctl) {
4637 ret = -ENOTCONN;
4638 goto out_bargs;
4639 }
4640
4641 bctl = fs_info->balance_ctl;
4642 spin_lock(&fs_info->balance_lock);
4643 bctl->flags |= BTRFS_BALANCE_RESUME;
4644 spin_unlock(&fs_info->balance_lock);
4645
4646 goto do_balance;
4647 }
4648 } else {
4649 bargs = NULL;
4650 }
4651
4652 if (fs_info->balance_ctl) {
4653 ret = -EINPROGRESS;
4654 goto out_bargs;
4655 }
4656
4657 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4658 if (!bctl) {
4659 ret = -ENOMEM;
4660 goto out_bargs;
4661 }
4662
4663 bctl->fs_info = fs_info;
4664 if (arg) {
4665 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4666 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4667 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4668
4669 bctl->flags = bargs->flags;
4670 } else {
4671 /* balance everything - no filters */
4672 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4673 }
4674
4675 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4676 ret = -EINVAL;
4677 goto out_bctl;
4678 }
4679
4680do_balance:
4681 /*
4682 * Ownership of bctl and mutually_exclusive_operation_running
4683 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4684 * or, if restriper was paused all the way until unmount, in
4685 * free_fs_info. mutually_exclusive_operation_running is
4686 * cleared in __cancel_balance.
4687 */
4688 need_unlock = false;
4689
4690 ret = btrfs_balance(bctl, bargs);
4691 bctl = NULL;
4692
4693 if (arg) {
4694 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4695 ret = -EFAULT;
4696 }
4697
4698out_bctl:
4699 kfree(bctl);
4700out_bargs:
4701 kfree(bargs);
4702out_unlock:
4703 mutex_unlock(&fs_info->balance_mutex);
4704 mutex_unlock(&fs_info->volume_mutex);
4705 if (need_unlock)
4706 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4707out:
4708 mnt_drop_write_file(file);
4709 return ret;
4710}
4711
4712static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4713{
4714 if (!capable(CAP_SYS_ADMIN))
4715 return -EPERM;
4716
4717 switch (cmd) {
4718 case BTRFS_BALANCE_CTL_PAUSE:
4719 return btrfs_pause_balance(root->fs_info);
4720 case BTRFS_BALANCE_CTL_CANCEL:
4721 return btrfs_cancel_balance(root->fs_info);
4722 }
4723
4724 return -EINVAL;
4725}
4726
4727static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4728 void __user *arg)
4729{
4730 struct btrfs_fs_info *fs_info = root->fs_info;
4731 struct btrfs_ioctl_balance_args *bargs;
4732 int ret = 0;
4733
4734 if (!capable(CAP_SYS_ADMIN))
4735 return -EPERM;
4736
4737 mutex_lock(&fs_info->balance_mutex);
4738 if (!fs_info->balance_ctl) {
4739 ret = -ENOTCONN;
4740 goto out;
4741 }
4742
4743 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4744 if (!bargs) {
4745 ret = -ENOMEM;
4746 goto out;
4747 }
4748
4749 update_ioctl_balance_args(fs_info, 1, bargs);
4750
4751 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4752 ret = -EFAULT;
4753
4754 kfree(bargs);
4755out:
4756 mutex_unlock(&fs_info->balance_mutex);
4757 return ret;
4758}
4759
4760static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4761{
4762 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4763 struct btrfs_ioctl_quota_ctl_args *sa;
4764 struct btrfs_trans_handle *trans = NULL;
4765 int ret;
4766 int err;
4767
4768 if (!capable(CAP_SYS_ADMIN))
4769 return -EPERM;
4770
4771 ret = mnt_want_write_file(file);
4772 if (ret)
4773 return ret;
4774
4775 sa = memdup_user(arg, sizeof(*sa));
4776 if (IS_ERR(sa)) {
4777 ret = PTR_ERR(sa);
4778 goto drop_write;
4779 }
4780
4781 down_write(&root->fs_info->subvol_sem);
4782 trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4783 if (IS_ERR(trans)) {
4784 ret = PTR_ERR(trans);
4785 goto out;
4786 }
4787
4788 switch (sa->cmd) {
4789 case BTRFS_QUOTA_CTL_ENABLE:
4790 ret = btrfs_quota_enable(trans, root->fs_info);
4791 break;
4792 case BTRFS_QUOTA_CTL_DISABLE:
4793 ret = btrfs_quota_disable(trans, root->fs_info);
4794 break;
4795 default:
4796 ret = -EINVAL;
4797 break;
4798 }
4799
4800 err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4801 if (err && !ret)
4802 ret = err;
4803out:
4804 kfree(sa);
4805 up_write(&root->fs_info->subvol_sem);
4806drop_write:
4807 mnt_drop_write_file(file);
4808 return ret;
4809}
4810
4811static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4812{
4813 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4814 struct btrfs_ioctl_qgroup_assign_args *sa;
4815 struct btrfs_trans_handle *trans;
4816 int ret;
4817 int err;
4818
4819 if (!capable(CAP_SYS_ADMIN))
4820 return -EPERM;
4821
4822 ret = mnt_want_write_file(file);
4823 if (ret)
4824 return ret;
4825
4826 sa = memdup_user(arg, sizeof(*sa));
4827 if (IS_ERR(sa)) {
4828 ret = PTR_ERR(sa);
4829 goto drop_write;
4830 }
4831
4832 trans = btrfs_join_transaction(root);
4833 if (IS_ERR(trans)) {
4834 ret = PTR_ERR(trans);
4835 goto out;
4836 }
4837
4838 /* FIXME: check if the IDs really exist */
4839 if (sa->assign) {
4840 ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4841 sa->src, sa->dst);
4842 } else {
4843 ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4844 sa->src, sa->dst);
4845 }
4846
4847 /* update qgroup status and info */
4848 err = btrfs_run_qgroups(trans, root->fs_info);
4849 if (err < 0)
4850 btrfs_std_error(root->fs_info, ret,
4851 "failed to update qgroup status and info\n");
4852 err = btrfs_end_transaction(trans, root);
4853 if (err && !ret)
4854 ret = err;
4855
4856out:
4857 kfree(sa);
4858drop_write:
4859 mnt_drop_write_file(file);
4860 return ret;
4861}
4862
4863static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4864{
4865 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4866 struct btrfs_ioctl_qgroup_create_args *sa;
4867 struct btrfs_trans_handle *trans;
4868 int ret;
4869 int err;
4870
4871 if (!capable(CAP_SYS_ADMIN))
4872 return -EPERM;
4873
4874 ret = mnt_want_write_file(file);
4875 if (ret)
4876 return ret;
4877
4878 sa = memdup_user(arg, sizeof(*sa));
4879 if (IS_ERR(sa)) {
4880 ret = PTR_ERR(sa);
4881 goto drop_write;
4882 }
4883
4884 if (!sa->qgroupid) {
4885 ret = -EINVAL;
4886 goto out;
4887 }
4888
4889 trans = btrfs_join_transaction(root);
4890 if (IS_ERR(trans)) {
4891 ret = PTR_ERR(trans);
4892 goto out;
4893 }
4894
4895 /* FIXME: check if the IDs really exist */
4896 if (sa->create) {
4897 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid);
4898 } else {
4899 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4900 }
4901
4902 err = btrfs_end_transaction(trans, root);
4903 if (err && !ret)
4904 ret = err;
4905
4906out:
4907 kfree(sa);
4908drop_write:
4909 mnt_drop_write_file(file);
4910 return ret;
4911}
4912
4913static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4914{
4915 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4916 struct btrfs_ioctl_qgroup_limit_args *sa;
4917 struct btrfs_trans_handle *trans;
4918 int ret;
4919 int err;
4920 u64 qgroupid;
4921
4922 if (!capable(CAP_SYS_ADMIN))
4923 return -EPERM;
4924
4925 ret = mnt_want_write_file(file);
4926 if (ret)
4927 return ret;
4928
4929 sa = memdup_user(arg, sizeof(*sa));
4930 if (IS_ERR(sa)) {
4931 ret = PTR_ERR(sa);
4932 goto drop_write;
4933 }
4934
4935 trans = btrfs_join_transaction(root);
4936 if (IS_ERR(trans)) {
4937 ret = PTR_ERR(trans);
4938 goto out;
4939 }
4940
4941 qgroupid = sa->qgroupid;
4942 if (!qgroupid) {
4943 /* take the current subvol as qgroup */
4944 qgroupid = root->root_key.objectid;
4945 }
4946
4947 /* FIXME: check if the IDs really exist */
4948 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4949
4950 err = btrfs_end_transaction(trans, root);
4951 if (err && !ret)
4952 ret = err;
4953
4954out:
4955 kfree(sa);
4956drop_write:
4957 mnt_drop_write_file(file);
4958 return ret;
4959}
4960
4961static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4962{
4963 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4964 struct btrfs_ioctl_quota_rescan_args *qsa;
4965 int ret;
4966
4967 if (!capable(CAP_SYS_ADMIN))
4968 return -EPERM;
4969
4970 ret = mnt_want_write_file(file);
4971 if (ret)
4972 return ret;
4973
4974 qsa = memdup_user(arg, sizeof(*qsa));
4975 if (IS_ERR(qsa)) {
4976 ret = PTR_ERR(qsa);
4977 goto drop_write;
4978 }
4979
4980 if (qsa->flags) {
4981 ret = -EINVAL;
4982 goto out;
4983 }
4984
4985 ret = btrfs_qgroup_rescan(root->fs_info);
4986
4987out:
4988 kfree(qsa);
4989drop_write:
4990 mnt_drop_write_file(file);
4991 return ret;
4992}
4993
4994static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4995{
4996 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4997 struct btrfs_ioctl_quota_rescan_args *qsa;
4998 int ret = 0;
4999
5000 if (!capable(CAP_SYS_ADMIN))
5001 return -EPERM;
5002
5003 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5004 if (!qsa)
5005 return -ENOMEM;
5006
5007 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5008 qsa->flags = 1;
5009 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
5010 }
5011
5012 if (copy_to_user(arg, qsa, sizeof(*qsa)))
5013 ret = -EFAULT;
5014
5015 kfree(qsa);
5016 return ret;
5017}
5018
5019static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5020{
5021 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5022
5023 if (!capable(CAP_SYS_ADMIN))
5024 return -EPERM;
5025
5026 return btrfs_qgroup_wait_for_completion(root->fs_info);
5027}
5028
5029static long _btrfs_ioctl_set_received_subvol(struct file *file,
5030 struct btrfs_ioctl_received_subvol_args *sa)
5031{
5032 struct inode *inode = file_inode(file);
5033 struct btrfs_root *root = BTRFS_I(inode)->root;
5034 struct btrfs_root_item *root_item = &root->root_item;
5035 struct btrfs_trans_handle *trans;
5036 struct timespec ct = current_fs_time(inode->i_sb);
5037 int ret = 0;
5038 int received_uuid_changed;
5039
5040 if (!inode_owner_or_capable(inode))
5041 return -EPERM;
5042
5043 ret = mnt_want_write_file(file);
5044 if (ret < 0)
5045 return ret;
5046
5047 down_write(&root->fs_info->subvol_sem);
5048
5049 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
5050 ret = -EINVAL;
5051 goto out;
5052 }
5053
5054 if (btrfs_root_readonly(root)) {
5055 ret = -EROFS;
5056 goto out;
5057 }
5058
5059 /*
5060 * 1 - root item
5061 * 2 - uuid items (received uuid + subvol uuid)
5062 */
5063 trans = btrfs_start_transaction(root, 3);
5064 if (IS_ERR(trans)) {
5065 ret = PTR_ERR(trans);
5066 trans = NULL;
5067 goto out;
5068 }
5069
5070 sa->rtransid = trans->transid;
5071 sa->rtime.sec = ct.tv_sec;
5072 sa->rtime.nsec = ct.tv_nsec;
5073
5074 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5075 BTRFS_UUID_SIZE);
5076 if (received_uuid_changed &&
5077 !btrfs_is_empty_uuid(root_item->received_uuid))
5078 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
5079 root_item->received_uuid,
5080 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5081 root->root_key.objectid);
5082 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5083 btrfs_set_root_stransid(root_item, sa->stransid);
5084 btrfs_set_root_rtransid(root_item, sa->rtransid);
5085 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5086 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5087 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5088 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5089
5090 ret = btrfs_update_root(trans, root->fs_info->tree_root,
5091 &root->root_key, &root->root_item);
5092 if (ret < 0) {
5093 btrfs_end_transaction(trans, root);
5094 goto out;
5095 }
5096 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5097 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
5098 sa->uuid,
5099 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5100 root->root_key.objectid);
5101 if (ret < 0 && ret != -EEXIST) {
5102 btrfs_abort_transaction(trans, root, ret);
5103 goto out;
5104 }
5105 }
5106 ret = btrfs_commit_transaction(trans, root);
5107 if (ret < 0) {
5108 btrfs_abort_transaction(trans, root, ret);
5109 goto out;
5110 }
5111
5112out:
5113 up_write(&root->fs_info->subvol_sem);
5114 mnt_drop_write_file(file);
5115 return ret;
5116}
5117
5118#ifdef CONFIG_64BIT
5119static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5120 void __user *arg)
5121{
5122 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5123 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5124 int ret = 0;
5125
5126 args32 = memdup_user(arg, sizeof(*args32));
5127 if (IS_ERR(args32)) {
5128 ret = PTR_ERR(args32);
5129 args32 = NULL;
5130 goto out;
5131 }
5132
5133 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5134 if (!args64) {
5135 ret = -ENOMEM;
5136 goto out;
5137 }
5138
5139 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5140 args64->stransid = args32->stransid;
5141 args64->rtransid = args32->rtransid;
5142 args64->stime.sec = args32->stime.sec;
5143 args64->stime.nsec = args32->stime.nsec;
5144 args64->rtime.sec = args32->rtime.sec;
5145 args64->rtime.nsec = args32->rtime.nsec;
5146 args64->flags = args32->flags;
5147
5148 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5149 if (ret)
5150 goto out;
5151
5152 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5153 args32->stransid = args64->stransid;
5154 args32->rtransid = args64->rtransid;
5155 args32->stime.sec = args64->stime.sec;
5156 args32->stime.nsec = args64->stime.nsec;
5157 args32->rtime.sec = args64->rtime.sec;
5158 args32->rtime.nsec = args64->rtime.nsec;
5159 args32->flags = args64->flags;
5160
5161 ret = copy_to_user(arg, args32, sizeof(*args32));
5162 if (ret)
5163 ret = -EFAULT;
5164
5165out:
5166 kfree(args32);
5167 kfree(args64);
5168 return ret;
5169}
5170#endif
5171
5172static long btrfs_ioctl_set_received_subvol(struct file *file,
5173 void __user *arg)
5174{
5175 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5176 int ret = 0;
5177
5178 sa = memdup_user(arg, sizeof(*sa));
5179 if (IS_ERR(sa)) {
5180 ret = PTR_ERR(sa);
5181 sa = NULL;
5182 goto out;
5183 }
5184
5185 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5186
5187 if (ret)
5188 goto out;
5189
5190 ret = copy_to_user(arg, sa, sizeof(*sa));
5191 if (ret)
5192 ret = -EFAULT;
5193
5194out:
5195 kfree(sa);
5196 return ret;
5197}
5198
5199static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5200{
5201 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5202 size_t len;
5203 int ret;
5204 char label[BTRFS_LABEL_SIZE];
5205
5206 spin_lock(&root->fs_info->super_lock);
5207 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5208 spin_unlock(&root->fs_info->super_lock);
5209
5210 len = strnlen(label, BTRFS_LABEL_SIZE);
5211
5212 if (len == BTRFS_LABEL_SIZE) {
5213 btrfs_warn(root->fs_info,
5214 "label is too long, return the first %zu bytes", --len);
5215 }
5216
5217 ret = copy_to_user(arg, label, len);
5218
5219 return ret ? -EFAULT : 0;
5220}
5221
5222static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5223{
5224 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5225 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5226 struct btrfs_trans_handle *trans;
5227 char label[BTRFS_LABEL_SIZE];
5228 int ret;
5229
5230 if (!capable(CAP_SYS_ADMIN))
5231 return -EPERM;
5232
5233 if (copy_from_user(label, arg, sizeof(label)))
5234 return -EFAULT;
5235
5236 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5237 btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5238 BTRFS_LABEL_SIZE - 1);
5239 return -EINVAL;
5240 }
5241
5242 ret = mnt_want_write_file(file);
5243 if (ret)
5244 return ret;
5245
5246 trans = btrfs_start_transaction(root, 0);
5247 if (IS_ERR(trans)) {
5248 ret = PTR_ERR(trans);
5249 goto out_unlock;
5250 }
5251
5252 spin_lock(&root->fs_info->super_lock);
5253 strcpy(super_block->label, label);
5254 spin_unlock(&root->fs_info->super_lock);
5255 ret = btrfs_commit_transaction(trans, root);
5256
5257out_unlock:
5258 mnt_drop_write_file(file);
5259 return ret;
5260}
5261
5262#define INIT_FEATURE_FLAGS(suffix) \
5263 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5264 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5265 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5266
5267int btrfs_ioctl_get_supported_features(void __user *arg)
5268{
5269 static const struct btrfs_ioctl_feature_flags features[3] = {
5270 INIT_FEATURE_FLAGS(SUPP),
5271 INIT_FEATURE_FLAGS(SAFE_SET),
5272 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5273 };
5274
5275 if (copy_to_user(arg, &features, sizeof(features)))
5276 return -EFAULT;
5277
5278 return 0;
5279}
5280
5281static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5282{
5283 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5284 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5285 struct btrfs_ioctl_feature_flags features;
5286
5287 features.compat_flags = btrfs_super_compat_flags(super_block);
5288 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5289 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5290
5291 if (copy_to_user(arg, &features, sizeof(features)))
5292 return -EFAULT;
5293
5294 return 0;
5295}
5296
5297static int check_feature_bits(struct btrfs_root *root,
5298 enum btrfs_feature_set set,
5299 u64 change_mask, u64 flags, u64 supported_flags,
5300 u64 safe_set, u64 safe_clear)
5301{
5302 const char *type = btrfs_feature_set_names[set];
5303 char *names;
5304 u64 disallowed, unsupported;
5305 u64 set_mask = flags & change_mask;
5306 u64 clear_mask = ~flags & change_mask;
5307
5308 unsupported = set_mask & ~supported_flags;
5309 if (unsupported) {
5310 names = btrfs_printable_features(set, unsupported);
5311 if (names) {
5312 btrfs_warn(root->fs_info,
5313 "this kernel does not support the %s feature bit%s",
5314 names, strchr(names, ',') ? "s" : "");
5315 kfree(names);
5316 } else
5317 btrfs_warn(root->fs_info,
5318 "this kernel does not support %s bits 0x%llx",
5319 type, unsupported);
5320 return -EOPNOTSUPP;
5321 }
5322
5323 disallowed = set_mask & ~safe_set;
5324 if (disallowed) {
5325 names = btrfs_printable_features(set, disallowed);
5326 if (names) {
5327 btrfs_warn(root->fs_info,
5328 "can't set the %s feature bit%s while mounted",
5329 names, strchr(names, ',') ? "s" : "");
5330 kfree(names);
5331 } else
5332 btrfs_warn(root->fs_info,
5333 "can't set %s bits 0x%llx while mounted",
5334 type, disallowed);
5335 return -EPERM;
5336 }
5337
5338 disallowed = clear_mask & ~safe_clear;
5339 if (disallowed) {
5340 names = btrfs_printable_features(set, disallowed);
5341 if (names) {
5342 btrfs_warn(root->fs_info,
5343 "can't clear the %s feature bit%s while mounted",
5344 names, strchr(names, ',') ? "s" : "");
5345 kfree(names);
5346 } else
5347 btrfs_warn(root->fs_info,
5348 "can't clear %s bits 0x%llx while mounted",
5349 type, disallowed);
5350 return -EPERM;
5351 }
5352
5353 return 0;
5354}
5355
5356#define check_feature(root, change_mask, flags, mask_base) \
5357check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \
5358 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5359 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5360 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5361
5362static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5363{
5364 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5365 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5366 struct btrfs_ioctl_feature_flags flags[2];
5367 struct btrfs_trans_handle *trans;
5368 u64 newflags;
5369 int ret;
5370
5371 if (!capable(CAP_SYS_ADMIN))
5372 return -EPERM;
5373
5374 if (copy_from_user(flags, arg, sizeof(flags)))
5375 return -EFAULT;
5376
5377 /* Nothing to do */
5378 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5379 !flags[0].incompat_flags)
5380 return 0;
5381
5382 ret = check_feature(root, flags[0].compat_flags,
5383 flags[1].compat_flags, COMPAT);
5384 if (ret)
5385 return ret;
5386
5387 ret = check_feature(root, flags[0].compat_ro_flags,
5388 flags[1].compat_ro_flags, COMPAT_RO);
5389 if (ret)
5390 return ret;
5391
5392 ret = check_feature(root, flags[0].incompat_flags,
5393 flags[1].incompat_flags, INCOMPAT);
5394 if (ret)
5395 return ret;
5396
5397 trans = btrfs_start_transaction(root, 0);
5398 if (IS_ERR(trans))
5399 return PTR_ERR(trans);
5400
5401 spin_lock(&root->fs_info->super_lock);
5402 newflags = btrfs_super_compat_flags(super_block);
5403 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5404 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5405 btrfs_set_super_compat_flags(super_block, newflags);
5406
5407 newflags = btrfs_super_compat_ro_flags(super_block);
5408 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5409 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5410 btrfs_set_super_compat_ro_flags(super_block, newflags);
5411
5412 newflags = btrfs_super_incompat_flags(super_block);
5413 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5414 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5415 btrfs_set_super_incompat_flags(super_block, newflags);
5416 spin_unlock(&root->fs_info->super_lock);
5417
5418 return btrfs_commit_transaction(trans, root);
5419}
5420
5421long btrfs_ioctl(struct file *file, unsigned int
5422 cmd, unsigned long arg)
5423{
5424 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5425 void __user *argp = (void __user *)arg;
5426
5427 switch (cmd) {
5428 case FS_IOC_GETFLAGS:
5429 return btrfs_ioctl_getflags(file, argp);
5430 case FS_IOC_SETFLAGS:
5431 return btrfs_ioctl_setflags(file, argp);
5432 case FS_IOC_GETVERSION:
5433 return btrfs_ioctl_getversion(file, argp);
5434 case FITRIM:
5435 return btrfs_ioctl_fitrim(file, argp);
5436 case BTRFS_IOC_SNAP_CREATE:
5437 return btrfs_ioctl_snap_create(file, argp, 0);
5438 case BTRFS_IOC_SNAP_CREATE_V2:
5439 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5440 case BTRFS_IOC_SUBVOL_CREATE:
5441 return btrfs_ioctl_snap_create(file, argp, 1);
5442 case BTRFS_IOC_SUBVOL_CREATE_V2:
5443 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5444 case BTRFS_IOC_SNAP_DESTROY:
5445 return btrfs_ioctl_snap_destroy(file, argp);
5446 case BTRFS_IOC_SUBVOL_GETFLAGS:
5447 return btrfs_ioctl_subvol_getflags(file, argp);
5448 case BTRFS_IOC_SUBVOL_SETFLAGS:
5449 return btrfs_ioctl_subvol_setflags(file, argp);
5450 case BTRFS_IOC_DEFAULT_SUBVOL:
5451 return btrfs_ioctl_default_subvol(file, argp);
5452 case BTRFS_IOC_DEFRAG:
5453 return btrfs_ioctl_defrag(file, NULL);
5454 case BTRFS_IOC_DEFRAG_RANGE:
5455 return btrfs_ioctl_defrag(file, argp);
5456 case BTRFS_IOC_RESIZE:
5457 return btrfs_ioctl_resize(file, argp);
5458 case BTRFS_IOC_ADD_DEV:
5459 return btrfs_ioctl_add_dev(root, argp);
5460 case BTRFS_IOC_RM_DEV:
5461 return btrfs_ioctl_rm_dev(file, argp);
5462 case BTRFS_IOC_FS_INFO:
5463 return btrfs_ioctl_fs_info(root, argp);
5464 case BTRFS_IOC_DEV_INFO:
5465 return btrfs_ioctl_dev_info(root, argp);
5466 case BTRFS_IOC_BALANCE:
5467 return btrfs_ioctl_balance(file, NULL);
5468 case BTRFS_IOC_TRANS_START:
5469 return btrfs_ioctl_trans_start(file);
5470 case BTRFS_IOC_TRANS_END:
5471 return btrfs_ioctl_trans_end(file);
5472 case BTRFS_IOC_TREE_SEARCH:
5473 return btrfs_ioctl_tree_search(file, argp);
5474 case BTRFS_IOC_TREE_SEARCH_V2:
5475 return btrfs_ioctl_tree_search_v2(file, argp);
5476 case BTRFS_IOC_INO_LOOKUP:
5477 return btrfs_ioctl_ino_lookup(file, argp);
5478 case BTRFS_IOC_INO_PATHS:
5479 return btrfs_ioctl_ino_to_path(root, argp);
5480 case BTRFS_IOC_LOGICAL_INO:
5481 return btrfs_ioctl_logical_to_ino(root, argp);
5482 case BTRFS_IOC_SPACE_INFO:
5483 return btrfs_ioctl_space_info(root, argp);
5484 case BTRFS_IOC_SYNC: {
5485 int ret;
5486
5487 ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5488 if (ret)
5489 return ret;
5490 ret = btrfs_sync_fs(file_inode(file)->i_sb, 1);
5491 /*
5492 * The transaction thread may want to do more work,
5493 * namely it pokes the cleaner ktread that will start
5494 * processing uncleaned subvols.
5495 */
5496 wake_up_process(root->fs_info->transaction_kthread);
5497 return ret;
5498 }
5499 case BTRFS_IOC_START_SYNC:
5500 return btrfs_ioctl_start_sync(root, argp);
5501 case BTRFS_IOC_WAIT_SYNC:
5502 return btrfs_ioctl_wait_sync(root, argp);
5503 case BTRFS_IOC_SCRUB:
5504 return btrfs_ioctl_scrub(file, argp);
5505 case BTRFS_IOC_SCRUB_CANCEL:
5506 return btrfs_ioctl_scrub_cancel(root, argp);
5507 case BTRFS_IOC_SCRUB_PROGRESS:
5508 return btrfs_ioctl_scrub_progress(root, argp);
5509 case BTRFS_IOC_BALANCE_V2:
5510 return btrfs_ioctl_balance(file, argp);
5511 case BTRFS_IOC_BALANCE_CTL:
5512 return btrfs_ioctl_balance_ctl(root, arg);
5513 case BTRFS_IOC_BALANCE_PROGRESS:
5514 return btrfs_ioctl_balance_progress(root, argp);
5515 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5516 return btrfs_ioctl_set_received_subvol(file, argp);
5517#ifdef CONFIG_64BIT
5518 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5519 return btrfs_ioctl_set_received_subvol_32(file, argp);
5520#endif
5521 case BTRFS_IOC_SEND:
5522 return btrfs_ioctl_send(file, argp);
5523 case BTRFS_IOC_GET_DEV_STATS:
5524 return btrfs_ioctl_get_dev_stats(root, argp);
5525 case BTRFS_IOC_QUOTA_CTL:
5526 return btrfs_ioctl_quota_ctl(file, argp);
5527 case BTRFS_IOC_QGROUP_ASSIGN:
5528 return btrfs_ioctl_qgroup_assign(file, argp);
5529 case BTRFS_IOC_QGROUP_CREATE:
5530 return btrfs_ioctl_qgroup_create(file, argp);
5531 case BTRFS_IOC_QGROUP_LIMIT:
5532 return btrfs_ioctl_qgroup_limit(file, argp);
5533 case BTRFS_IOC_QUOTA_RESCAN:
5534 return btrfs_ioctl_quota_rescan(file, argp);
5535 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5536 return btrfs_ioctl_quota_rescan_status(file, argp);
5537 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5538 return btrfs_ioctl_quota_rescan_wait(file, argp);
5539 case BTRFS_IOC_DEV_REPLACE:
5540 return btrfs_ioctl_dev_replace(root, argp);
5541 case BTRFS_IOC_GET_FSLABEL:
5542 return btrfs_ioctl_get_fslabel(file, argp);
5543 case BTRFS_IOC_SET_FSLABEL:
5544 return btrfs_ioctl_set_fslabel(file, argp);
5545 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5546 return btrfs_ioctl_get_supported_features(argp);
5547 case BTRFS_IOC_GET_FEATURES:
5548 return btrfs_ioctl_get_features(file, argp);
5549 case BTRFS_IOC_SET_FEATURES:
5550 return btrfs_ioctl_set_features(file, argp);
5551 }
5552
5553 return -ENOTTY;
5554}