Loading...
1/*
2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
3 *
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13/*
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
20 *
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
26 *
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
30 */
31#include <linux/kernel.h>
32#include <linux/module.h>
33#include <linux/init.h>
34#include <linux/interrupt.h>
35#include <linux/spinlock.h>
36#include <linux/platform_device.h>
37#include <linux/mod_devicetable.h>
38#include <linux/log2.h>
39#include <linux/pm.h>
40#include <linux/of.h>
41#include <linux/of_platform.h>
42
43/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
44#include <asm-generic/rtc.h>
45
46struct cmos_rtc {
47 struct rtc_device *rtc;
48 struct device *dev;
49 int irq;
50 struct resource *iomem;
51
52 void (*wake_on)(struct device *);
53 void (*wake_off)(struct device *);
54
55 u8 enabled_wake;
56 u8 suspend_ctrl;
57
58 /* newer hardware extends the original register set */
59 u8 day_alrm;
60 u8 mon_alrm;
61 u8 century;
62};
63
64/* both platform and pnp busses use negative numbers for invalid irqs */
65#define is_valid_irq(n) ((n) > 0)
66
67static const char driver_name[] = "rtc_cmos";
68
69/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
70 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
71 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
72 */
73#define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
74
75static inline int is_intr(u8 rtc_intr)
76{
77 if (!(rtc_intr & RTC_IRQF))
78 return 0;
79 return rtc_intr & RTC_IRQMASK;
80}
81
82/*----------------------------------------------------------------*/
83
84/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
85 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
86 * used in a broken "legacy replacement" mode. The breakage includes
87 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
88 * other (better) use.
89 *
90 * When that broken mode is in use, platform glue provides a partial
91 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
92 * want to use HPET for anything except those IRQs though...
93 */
94#ifdef CONFIG_HPET_EMULATE_RTC
95#include <asm/hpet.h>
96#else
97
98static inline int is_hpet_enabled(void)
99{
100 return 0;
101}
102
103static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
104{
105 return 0;
106}
107
108static inline int hpet_set_rtc_irq_bit(unsigned long mask)
109{
110 return 0;
111}
112
113static inline int
114hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
115{
116 return 0;
117}
118
119static inline int hpet_set_periodic_freq(unsigned long freq)
120{
121 return 0;
122}
123
124static inline int hpet_rtc_dropped_irq(void)
125{
126 return 0;
127}
128
129static inline int hpet_rtc_timer_init(void)
130{
131 return 0;
132}
133
134extern irq_handler_t hpet_rtc_interrupt;
135
136static inline int hpet_register_irq_handler(irq_handler_t handler)
137{
138 return 0;
139}
140
141static inline int hpet_unregister_irq_handler(irq_handler_t handler)
142{
143 return 0;
144}
145
146#endif
147
148/*----------------------------------------------------------------*/
149
150#ifdef RTC_PORT
151
152/* Most newer x86 systems have two register banks, the first used
153 * for RTC and NVRAM and the second only for NVRAM. Caller must
154 * own rtc_lock ... and we won't worry about access during NMI.
155 */
156#define can_bank2 true
157
158static inline unsigned char cmos_read_bank2(unsigned char addr)
159{
160 outb(addr, RTC_PORT(2));
161 return inb(RTC_PORT(3));
162}
163
164static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
165{
166 outb(addr, RTC_PORT(2));
167 outb(val, RTC_PORT(3));
168}
169
170#else
171
172#define can_bank2 false
173
174static inline unsigned char cmos_read_bank2(unsigned char addr)
175{
176 return 0;
177}
178
179static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
180{
181}
182
183#endif
184
185/*----------------------------------------------------------------*/
186
187static int cmos_read_time(struct device *dev, struct rtc_time *t)
188{
189 /* REVISIT: if the clock has a "century" register, use
190 * that instead of the heuristic in get_rtc_time().
191 * That'll make Y3K compatility (year > 2070) easy!
192 */
193 get_rtc_time(t);
194 return 0;
195}
196
197static int cmos_set_time(struct device *dev, struct rtc_time *t)
198{
199 /* REVISIT: set the "century" register if available
200 *
201 * NOTE: this ignores the issue whereby updating the seconds
202 * takes effect exactly 500ms after we write the register.
203 * (Also queueing and other delays before we get this far.)
204 */
205 return set_rtc_time(t);
206}
207
208static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
209{
210 struct cmos_rtc *cmos = dev_get_drvdata(dev);
211 unsigned char rtc_control;
212
213 if (!is_valid_irq(cmos->irq))
214 return -EIO;
215
216 /* Basic alarms only support hour, minute, and seconds fields.
217 * Some also support day and month, for alarms up to a year in
218 * the future.
219 */
220 t->time.tm_mday = -1;
221 t->time.tm_mon = -1;
222
223 spin_lock_irq(&rtc_lock);
224 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
225 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
226 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
227
228 if (cmos->day_alrm) {
229 /* ignore upper bits on readback per ACPI spec */
230 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
231 if (!t->time.tm_mday)
232 t->time.tm_mday = -1;
233
234 if (cmos->mon_alrm) {
235 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
236 if (!t->time.tm_mon)
237 t->time.tm_mon = -1;
238 }
239 }
240
241 rtc_control = CMOS_READ(RTC_CONTROL);
242 spin_unlock_irq(&rtc_lock);
243
244 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
245 if (((unsigned)t->time.tm_sec) < 0x60)
246 t->time.tm_sec = bcd2bin(t->time.tm_sec);
247 else
248 t->time.tm_sec = -1;
249 if (((unsigned)t->time.tm_min) < 0x60)
250 t->time.tm_min = bcd2bin(t->time.tm_min);
251 else
252 t->time.tm_min = -1;
253 if (((unsigned)t->time.tm_hour) < 0x24)
254 t->time.tm_hour = bcd2bin(t->time.tm_hour);
255 else
256 t->time.tm_hour = -1;
257
258 if (cmos->day_alrm) {
259 if (((unsigned)t->time.tm_mday) <= 0x31)
260 t->time.tm_mday = bcd2bin(t->time.tm_mday);
261 else
262 t->time.tm_mday = -1;
263
264 if (cmos->mon_alrm) {
265 if (((unsigned)t->time.tm_mon) <= 0x12)
266 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
267 else
268 t->time.tm_mon = -1;
269 }
270 }
271 }
272 t->time.tm_year = -1;
273
274 t->enabled = !!(rtc_control & RTC_AIE);
275 t->pending = 0;
276
277 return 0;
278}
279
280static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
281{
282 unsigned char rtc_intr;
283
284 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
285 * allegedly some older rtcs need that to handle irqs properly
286 */
287 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
288
289 if (is_hpet_enabled())
290 return;
291
292 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
293 if (is_intr(rtc_intr))
294 rtc_update_irq(cmos->rtc, 1, rtc_intr);
295}
296
297static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
298{
299 unsigned char rtc_control;
300
301 /* flush any pending IRQ status, notably for update irqs,
302 * before we enable new IRQs
303 */
304 rtc_control = CMOS_READ(RTC_CONTROL);
305 cmos_checkintr(cmos, rtc_control);
306
307 rtc_control |= mask;
308 CMOS_WRITE(rtc_control, RTC_CONTROL);
309 hpet_set_rtc_irq_bit(mask);
310
311 cmos_checkintr(cmos, rtc_control);
312}
313
314static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
315{
316 unsigned char rtc_control;
317
318 rtc_control = CMOS_READ(RTC_CONTROL);
319 rtc_control &= ~mask;
320 CMOS_WRITE(rtc_control, RTC_CONTROL);
321 hpet_mask_rtc_irq_bit(mask);
322
323 cmos_checkintr(cmos, rtc_control);
324}
325
326static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
327{
328 struct cmos_rtc *cmos = dev_get_drvdata(dev);
329 unsigned char mon, mday, hrs, min, sec, rtc_control;
330
331 if (!is_valid_irq(cmos->irq))
332 return -EIO;
333
334 mon = t->time.tm_mon + 1;
335 mday = t->time.tm_mday;
336 hrs = t->time.tm_hour;
337 min = t->time.tm_min;
338 sec = t->time.tm_sec;
339
340 rtc_control = CMOS_READ(RTC_CONTROL);
341 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
342 /* Writing 0xff means "don't care" or "match all". */
343 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
344 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
345 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
346 min = (min < 60) ? bin2bcd(min) : 0xff;
347 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
348 }
349
350 spin_lock_irq(&rtc_lock);
351
352 /* next rtc irq must not be from previous alarm setting */
353 cmos_irq_disable(cmos, RTC_AIE);
354
355 /* update alarm */
356 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
357 CMOS_WRITE(min, RTC_MINUTES_ALARM);
358 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
359
360 /* the system may support an "enhanced" alarm */
361 if (cmos->day_alrm) {
362 CMOS_WRITE(mday, cmos->day_alrm);
363 if (cmos->mon_alrm)
364 CMOS_WRITE(mon, cmos->mon_alrm);
365 }
366
367 /* FIXME the HPET alarm glue currently ignores day_alrm
368 * and mon_alrm ...
369 */
370 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
371
372 if (t->enabled)
373 cmos_irq_enable(cmos, RTC_AIE);
374
375 spin_unlock_irq(&rtc_lock);
376
377 return 0;
378}
379
380static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
381{
382 struct cmos_rtc *cmos = dev_get_drvdata(dev);
383 unsigned long flags;
384
385 if (!is_valid_irq(cmos->irq))
386 return -EINVAL;
387
388 spin_lock_irqsave(&rtc_lock, flags);
389
390 if (enabled)
391 cmos_irq_enable(cmos, RTC_AIE);
392 else
393 cmos_irq_disable(cmos, RTC_AIE);
394
395 spin_unlock_irqrestore(&rtc_lock, flags);
396 return 0;
397}
398
399#if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
400
401static int cmos_procfs(struct device *dev, struct seq_file *seq)
402{
403 struct cmos_rtc *cmos = dev_get_drvdata(dev);
404 unsigned char rtc_control, valid;
405
406 spin_lock_irq(&rtc_lock);
407 rtc_control = CMOS_READ(RTC_CONTROL);
408 valid = CMOS_READ(RTC_VALID);
409 spin_unlock_irq(&rtc_lock);
410
411 /* NOTE: at least ICH6 reports battery status using a different
412 * (non-RTC) bit; and SQWE is ignored on many current systems.
413 */
414 return seq_printf(seq,
415 "periodic_IRQ\t: %s\n"
416 "update_IRQ\t: %s\n"
417 "HPET_emulated\t: %s\n"
418 // "square_wave\t: %s\n"
419 "BCD\t\t: %s\n"
420 "DST_enable\t: %s\n"
421 "periodic_freq\t: %d\n"
422 "batt_status\t: %s\n",
423 (rtc_control & RTC_PIE) ? "yes" : "no",
424 (rtc_control & RTC_UIE) ? "yes" : "no",
425 is_hpet_enabled() ? "yes" : "no",
426 // (rtc_control & RTC_SQWE) ? "yes" : "no",
427 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
428 (rtc_control & RTC_DST_EN) ? "yes" : "no",
429 cmos->rtc->irq_freq,
430 (valid & RTC_VRT) ? "okay" : "dead");
431}
432
433#else
434#define cmos_procfs NULL
435#endif
436
437static const struct rtc_class_ops cmos_rtc_ops = {
438 .read_time = cmos_read_time,
439 .set_time = cmos_set_time,
440 .read_alarm = cmos_read_alarm,
441 .set_alarm = cmos_set_alarm,
442 .proc = cmos_procfs,
443 .alarm_irq_enable = cmos_alarm_irq_enable,
444};
445
446/*----------------------------------------------------------------*/
447
448/*
449 * All these chips have at least 64 bytes of address space, shared by
450 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
451 * by boot firmware. Modern chips have 128 or 256 bytes.
452 */
453
454#define NVRAM_OFFSET (RTC_REG_D + 1)
455
456static ssize_t
457cmos_nvram_read(struct file *filp, struct kobject *kobj,
458 struct bin_attribute *attr,
459 char *buf, loff_t off, size_t count)
460{
461 int retval;
462
463 if (unlikely(off >= attr->size))
464 return 0;
465 if (unlikely(off < 0))
466 return -EINVAL;
467 if ((off + count) > attr->size)
468 count = attr->size - off;
469
470 off += NVRAM_OFFSET;
471 spin_lock_irq(&rtc_lock);
472 for (retval = 0; count; count--, off++, retval++) {
473 if (off < 128)
474 *buf++ = CMOS_READ(off);
475 else if (can_bank2)
476 *buf++ = cmos_read_bank2(off);
477 else
478 break;
479 }
480 spin_unlock_irq(&rtc_lock);
481
482 return retval;
483}
484
485static ssize_t
486cmos_nvram_write(struct file *filp, struct kobject *kobj,
487 struct bin_attribute *attr,
488 char *buf, loff_t off, size_t count)
489{
490 struct cmos_rtc *cmos;
491 int retval;
492
493 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
494 if (unlikely(off >= attr->size))
495 return -EFBIG;
496 if (unlikely(off < 0))
497 return -EINVAL;
498 if ((off + count) > attr->size)
499 count = attr->size - off;
500
501 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
502 * checksum on part of the NVRAM data. That's currently ignored
503 * here. If userspace is smart enough to know what fields of
504 * NVRAM to update, updating checksums is also part of its job.
505 */
506 off += NVRAM_OFFSET;
507 spin_lock_irq(&rtc_lock);
508 for (retval = 0; count; count--, off++, retval++) {
509 /* don't trash RTC registers */
510 if (off == cmos->day_alrm
511 || off == cmos->mon_alrm
512 || off == cmos->century)
513 buf++;
514 else if (off < 128)
515 CMOS_WRITE(*buf++, off);
516 else if (can_bank2)
517 cmos_write_bank2(*buf++, off);
518 else
519 break;
520 }
521 spin_unlock_irq(&rtc_lock);
522
523 return retval;
524}
525
526static struct bin_attribute nvram = {
527 .attr = {
528 .name = "nvram",
529 .mode = S_IRUGO | S_IWUSR,
530 },
531
532 .read = cmos_nvram_read,
533 .write = cmos_nvram_write,
534 /* size gets set up later */
535};
536
537/*----------------------------------------------------------------*/
538
539static struct cmos_rtc cmos_rtc;
540
541static irqreturn_t cmos_interrupt(int irq, void *p)
542{
543 u8 irqstat;
544 u8 rtc_control;
545
546 spin_lock(&rtc_lock);
547
548 /* When the HPET interrupt handler calls us, the interrupt
549 * status is passed as arg1 instead of the irq number. But
550 * always clear irq status, even when HPET is in the way.
551 *
552 * Note that HPET and RTC are almost certainly out of phase,
553 * giving different IRQ status ...
554 */
555 irqstat = CMOS_READ(RTC_INTR_FLAGS);
556 rtc_control = CMOS_READ(RTC_CONTROL);
557 if (is_hpet_enabled())
558 irqstat = (unsigned long)irq & 0xF0;
559 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
560
561 /* All Linux RTC alarms should be treated as if they were oneshot.
562 * Similar code may be needed in system wakeup paths, in case the
563 * alarm woke the system.
564 */
565 if (irqstat & RTC_AIE) {
566 rtc_control &= ~RTC_AIE;
567 CMOS_WRITE(rtc_control, RTC_CONTROL);
568 hpet_mask_rtc_irq_bit(RTC_AIE);
569
570 CMOS_READ(RTC_INTR_FLAGS);
571 }
572 spin_unlock(&rtc_lock);
573
574 if (is_intr(irqstat)) {
575 rtc_update_irq(p, 1, irqstat);
576 return IRQ_HANDLED;
577 } else
578 return IRQ_NONE;
579}
580
581#ifdef CONFIG_PNP
582#define INITSECTION
583
584#else
585#define INITSECTION __init
586#endif
587
588static int INITSECTION
589cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
590{
591 struct cmos_rtc_board_info *info = dev->platform_data;
592 int retval = 0;
593 unsigned char rtc_control;
594 unsigned address_space;
595
596 /* there can be only one ... */
597 if (cmos_rtc.dev)
598 return -EBUSY;
599
600 if (!ports)
601 return -ENODEV;
602
603 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
604 *
605 * REVISIT non-x86 systems may instead use memory space resources
606 * (needing ioremap etc), not i/o space resources like this ...
607 */
608 ports = request_region(ports->start,
609 resource_size(ports),
610 driver_name);
611 if (!ports) {
612 dev_dbg(dev, "i/o registers already in use\n");
613 return -EBUSY;
614 }
615
616 cmos_rtc.irq = rtc_irq;
617 cmos_rtc.iomem = ports;
618
619 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
620 * driver did, but don't reject unknown configs. Old hardware
621 * won't address 128 bytes. Newer chips have multiple banks,
622 * though they may not be listed in one I/O resource.
623 */
624#if defined(CONFIG_ATARI)
625 address_space = 64;
626#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
627 || defined(__sparc__) || defined(__mips__) \
628 || defined(__powerpc__)
629 address_space = 128;
630#else
631#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
632 address_space = 128;
633#endif
634 if (can_bank2 && ports->end > (ports->start + 1))
635 address_space = 256;
636
637 /* For ACPI systems extension info comes from the FADT. On others,
638 * board specific setup provides it as appropriate. Systems where
639 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
640 * some almost-clones) can provide hooks to make that behave.
641 *
642 * Note that ACPI doesn't preclude putting these registers into
643 * "extended" areas of the chip, including some that we won't yet
644 * expect CMOS_READ and friends to handle.
645 */
646 if (info) {
647 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
648 cmos_rtc.day_alrm = info->rtc_day_alarm;
649 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
650 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
651 if (info->rtc_century && info->rtc_century < 128)
652 cmos_rtc.century = info->rtc_century;
653
654 if (info->wake_on && info->wake_off) {
655 cmos_rtc.wake_on = info->wake_on;
656 cmos_rtc.wake_off = info->wake_off;
657 }
658 }
659
660 cmos_rtc.dev = dev;
661 dev_set_drvdata(dev, &cmos_rtc);
662
663 cmos_rtc.rtc = rtc_device_register(driver_name, dev,
664 &cmos_rtc_ops, THIS_MODULE);
665 if (IS_ERR(cmos_rtc.rtc)) {
666 retval = PTR_ERR(cmos_rtc.rtc);
667 goto cleanup0;
668 }
669
670 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
671
672 spin_lock_irq(&rtc_lock);
673
674 /* force periodic irq to CMOS reset default of 1024Hz;
675 *
676 * REVISIT it's been reported that at least one x86_64 ALI mobo
677 * doesn't use 32KHz here ... for portability we might need to
678 * do something about other clock frequencies.
679 */
680 cmos_rtc.rtc->irq_freq = 1024;
681 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
682 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
683
684 /* disable irqs */
685 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
686
687 rtc_control = CMOS_READ(RTC_CONTROL);
688
689 spin_unlock_irq(&rtc_lock);
690
691 /* FIXME:
692 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
693 */
694 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
695 dev_warn(dev, "only 24-hr supported\n");
696 retval = -ENXIO;
697 goto cleanup1;
698 }
699
700 if (is_valid_irq(rtc_irq)) {
701 irq_handler_t rtc_cmos_int_handler;
702
703 if (is_hpet_enabled()) {
704 int err;
705
706 rtc_cmos_int_handler = hpet_rtc_interrupt;
707 err = hpet_register_irq_handler(cmos_interrupt);
708 if (err != 0) {
709 printk(KERN_WARNING "hpet_register_irq_handler "
710 " failed in rtc_init().");
711 goto cleanup1;
712 }
713 } else
714 rtc_cmos_int_handler = cmos_interrupt;
715
716 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
717 0, dev_name(&cmos_rtc.rtc->dev),
718 cmos_rtc.rtc);
719 if (retval < 0) {
720 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
721 goto cleanup1;
722 }
723 }
724 hpet_rtc_timer_init();
725
726 /* export at least the first block of NVRAM */
727 nvram.size = address_space - NVRAM_OFFSET;
728 retval = sysfs_create_bin_file(&dev->kobj, &nvram);
729 if (retval < 0) {
730 dev_dbg(dev, "can't create nvram file? %d\n", retval);
731 goto cleanup2;
732 }
733
734 pr_info("%s: %s%s, %zd bytes nvram%s\n",
735 dev_name(&cmos_rtc.rtc->dev),
736 !is_valid_irq(rtc_irq) ? "no alarms" :
737 cmos_rtc.mon_alrm ? "alarms up to one year" :
738 cmos_rtc.day_alrm ? "alarms up to one month" :
739 "alarms up to one day",
740 cmos_rtc.century ? ", y3k" : "",
741 nvram.size,
742 is_hpet_enabled() ? ", hpet irqs" : "");
743
744 return 0;
745
746cleanup2:
747 if (is_valid_irq(rtc_irq))
748 free_irq(rtc_irq, cmos_rtc.rtc);
749cleanup1:
750 cmos_rtc.dev = NULL;
751 rtc_device_unregister(cmos_rtc.rtc);
752cleanup0:
753 release_region(ports->start, resource_size(ports));
754 return retval;
755}
756
757static void cmos_do_shutdown(void)
758{
759 spin_lock_irq(&rtc_lock);
760 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
761 spin_unlock_irq(&rtc_lock);
762}
763
764static void __exit cmos_do_remove(struct device *dev)
765{
766 struct cmos_rtc *cmos = dev_get_drvdata(dev);
767 struct resource *ports;
768
769 cmos_do_shutdown();
770
771 sysfs_remove_bin_file(&dev->kobj, &nvram);
772
773 if (is_valid_irq(cmos->irq)) {
774 free_irq(cmos->irq, cmos->rtc);
775 hpet_unregister_irq_handler(cmos_interrupt);
776 }
777
778 rtc_device_unregister(cmos->rtc);
779 cmos->rtc = NULL;
780
781 ports = cmos->iomem;
782 release_region(ports->start, resource_size(ports));
783 cmos->iomem = NULL;
784
785 cmos->dev = NULL;
786 dev_set_drvdata(dev, NULL);
787}
788
789#ifdef CONFIG_PM
790
791static int cmos_suspend(struct device *dev)
792{
793 struct cmos_rtc *cmos = dev_get_drvdata(dev);
794 unsigned char tmp;
795
796 /* only the alarm might be a wakeup event source */
797 spin_lock_irq(&rtc_lock);
798 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
799 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
800 unsigned char mask;
801
802 if (device_may_wakeup(dev))
803 mask = RTC_IRQMASK & ~RTC_AIE;
804 else
805 mask = RTC_IRQMASK;
806 tmp &= ~mask;
807 CMOS_WRITE(tmp, RTC_CONTROL);
808
809 /* shut down hpet emulation - we don't need it for alarm */
810 hpet_mask_rtc_irq_bit(RTC_PIE|RTC_AIE|RTC_UIE);
811 cmos_checkintr(cmos, tmp);
812 }
813 spin_unlock_irq(&rtc_lock);
814
815 if (tmp & RTC_AIE) {
816 cmos->enabled_wake = 1;
817 if (cmos->wake_on)
818 cmos->wake_on(dev);
819 else
820 enable_irq_wake(cmos->irq);
821 }
822
823 pr_debug("%s: suspend%s, ctrl %02x\n",
824 dev_name(&cmos_rtc.rtc->dev),
825 (tmp & RTC_AIE) ? ", alarm may wake" : "",
826 tmp);
827
828 return 0;
829}
830
831/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
832 * after a detour through G3 "mechanical off", although the ACPI spec
833 * says wakeup should only work from G1/S4 "hibernate". To most users,
834 * distinctions between S4 and S5 are pointless. So when the hardware
835 * allows, don't draw that distinction.
836 */
837static inline int cmos_poweroff(struct device *dev)
838{
839 return cmos_suspend(dev);
840}
841
842static int cmos_resume(struct device *dev)
843{
844 struct cmos_rtc *cmos = dev_get_drvdata(dev);
845 unsigned char tmp = cmos->suspend_ctrl;
846
847 /* re-enable any irqs previously active */
848 if (tmp & RTC_IRQMASK) {
849 unsigned char mask;
850
851 if (cmos->enabled_wake) {
852 if (cmos->wake_off)
853 cmos->wake_off(dev);
854 else
855 disable_irq_wake(cmos->irq);
856 cmos->enabled_wake = 0;
857 }
858
859 spin_lock_irq(&rtc_lock);
860 do {
861 CMOS_WRITE(tmp, RTC_CONTROL);
862 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
863
864 mask = CMOS_READ(RTC_INTR_FLAGS);
865 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
866 if (!is_hpet_enabled() || !is_intr(mask))
867 break;
868
869 /* force one-shot behavior if HPET blocked
870 * the wake alarm's irq
871 */
872 rtc_update_irq(cmos->rtc, 1, mask);
873 tmp &= ~RTC_AIE;
874 hpet_mask_rtc_irq_bit(RTC_AIE);
875 } while (mask & RTC_AIE);
876 spin_unlock_irq(&rtc_lock);
877 }
878
879 pr_debug("%s: resume, ctrl %02x\n",
880 dev_name(&cmos_rtc.rtc->dev),
881 tmp);
882
883 return 0;
884}
885
886static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
887
888#else
889
890static inline int cmos_poweroff(struct device *dev)
891{
892 return -ENOSYS;
893}
894
895#endif
896
897/*----------------------------------------------------------------*/
898
899/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
900 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
901 * probably list them in similar PNPBIOS tables; so PNP is more common.
902 *
903 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
904 * predate even PNPBIOS should set up platform_bus devices.
905 */
906
907#ifdef CONFIG_ACPI
908
909#include <linux/acpi.h>
910
911static u32 rtc_handler(void *context)
912{
913 struct device *dev = context;
914
915 pm_wakeup_event(dev, 0);
916 acpi_clear_event(ACPI_EVENT_RTC);
917 acpi_disable_event(ACPI_EVENT_RTC, 0);
918 return ACPI_INTERRUPT_HANDLED;
919}
920
921static inline void rtc_wake_setup(struct device *dev)
922{
923 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
924 /*
925 * After the RTC handler is installed, the Fixed_RTC event should
926 * be disabled. Only when the RTC alarm is set will it be enabled.
927 */
928 acpi_clear_event(ACPI_EVENT_RTC);
929 acpi_disable_event(ACPI_EVENT_RTC, 0);
930}
931
932static void rtc_wake_on(struct device *dev)
933{
934 acpi_clear_event(ACPI_EVENT_RTC);
935 acpi_enable_event(ACPI_EVENT_RTC, 0);
936}
937
938static void rtc_wake_off(struct device *dev)
939{
940 acpi_disable_event(ACPI_EVENT_RTC, 0);
941}
942
943/* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
944 * its device node and pass extra config data. This helps its driver use
945 * capabilities that the now-obsolete mc146818 didn't have, and informs it
946 * that this board's RTC is wakeup-capable (per ACPI spec).
947 */
948static struct cmos_rtc_board_info acpi_rtc_info;
949
950static void __devinit
951cmos_wake_setup(struct device *dev)
952{
953 if (acpi_disabled)
954 return;
955
956 rtc_wake_setup(dev);
957 acpi_rtc_info.wake_on = rtc_wake_on;
958 acpi_rtc_info.wake_off = rtc_wake_off;
959
960 /* workaround bug in some ACPI tables */
961 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
962 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
963 acpi_gbl_FADT.month_alarm);
964 acpi_gbl_FADT.month_alarm = 0;
965 }
966
967 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
968 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
969 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
970
971 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
972 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
973 dev_info(dev, "RTC can wake from S4\n");
974
975 dev->platform_data = &acpi_rtc_info;
976
977 /* RTC always wakes from S1/S2/S3, and often S4/STD */
978 device_init_wakeup(dev, 1);
979}
980
981#else
982
983static void __devinit
984cmos_wake_setup(struct device *dev)
985{
986}
987
988#endif
989
990#ifdef CONFIG_PNP
991
992#include <linux/pnp.h>
993
994static int __devinit
995cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
996{
997 cmos_wake_setup(&pnp->dev);
998
999 if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
1000 /* Some machines contain a PNP entry for the RTC, but
1001 * don't define the IRQ. It should always be safe to
1002 * hardcode it in these cases
1003 */
1004 return cmos_do_probe(&pnp->dev,
1005 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1006 else
1007 return cmos_do_probe(&pnp->dev,
1008 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1009 pnp_irq(pnp, 0));
1010}
1011
1012static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1013{
1014 cmos_do_remove(&pnp->dev);
1015}
1016
1017#ifdef CONFIG_PM
1018
1019static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
1020{
1021 return cmos_suspend(&pnp->dev);
1022}
1023
1024static int cmos_pnp_resume(struct pnp_dev *pnp)
1025{
1026 return cmos_resume(&pnp->dev);
1027}
1028
1029#else
1030#define cmos_pnp_suspend NULL
1031#define cmos_pnp_resume NULL
1032#endif
1033
1034static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1035{
1036 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev))
1037 return;
1038
1039 cmos_do_shutdown();
1040}
1041
1042static const struct pnp_device_id rtc_ids[] = {
1043 { .id = "PNP0b00", },
1044 { .id = "PNP0b01", },
1045 { .id = "PNP0b02", },
1046 { },
1047};
1048MODULE_DEVICE_TABLE(pnp, rtc_ids);
1049
1050static struct pnp_driver cmos_pnp_driver = {
1051 .name = (char *) driver_name,
1052 .id_table = rtc_ids,
1053 .probe = cmos_pnp_probe,
1054 .remove = __exit_p(cmos_pnp_remove),
1055 .shutdown = cmos_pnp_shutdown,
1056
1057 /* flag ensures resume() gets called, and stops syslog spam */
1058 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1059 .suspend = cmos_pnp_suspend,
1060 .resume = cmos_pnp_resume,
1061};
1062
1063#endif /* CONFIG_PNP */
1064
1065#ifdef CONFIG_OF
1066static const struct of_device_id of_cmos_match[] = {
1067 {
1068 .compatible = "motorola,mc146818",
1069 },
1070 { },
1071};
1072MODULE_DEVICE_TABLE(of, of_cmos_match);
1073
1074static __init void cmos_of_init(struct platform_device *pdev)
1075{
1076 struct device_node *node = pdev->dev.of_node;
1077 struct rtc_time time;
1078 int ret;
1079 const __be32 *val;
1080
1081 if (!node)
1082 return;
1083
1084 val = of_get_property(node, "ctrl-reg", NULL);
1085 if (val)
1086 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1087
1088 val = of_get_property(node, "freq-reg", NULL);
1089 if (val)
1090 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1091
1092 get_rtc_time(&time);
1093 ret = rtc_valid_tm(&time);
1094 if (ret) {
1095 struct rtc_time def_time = {
1096 .tm_year = 1,
1097 .tm_mday = 1,
1098 };
1099 set_rtc_time(&def_time);
1100 }
1101}
1102#else
1103static inline void cmos_of_init(struct platform_device *pdev) {}
1104#define of_cmos_match NULL
1105#endif
1106/*----------------------------------------------------------------*/
1107
1108/* Platform setup should have set up an RTC device, when PNP is
1109 * unavailable ... this could happen even on (older) PCs.
1110 */
1111
1112static int __init cmos_platform_probe(struct platform_device *pdev)
1113{
1114 cmos_of_init(pdev);
1115 cmos_wake_setup(&pdev->dev);
1116 return cmos_do_probe(&pdev->dev,
1117 platform_get_resource(pdev, IORESOURCE_IO, 0),
1118 platform_get_irq(pdev, 0));
1119}
1120
1121static int __exit cmos_platform_remove(struct platform_device *pdev)
1122{
1123 cmos_do_remove(&pdev->dev);
1124 return 0;
1125}
1126
1127static void cmos_platform_shutdown(struct platform_device *pdev)
1128{
1129 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
1130 return;
1131
1132 cmos_do_shutdown();
1133}
1134
1135/* work with hotplug and coldplug */
1136MODULE_ALIAS("platform:rtc_cmos");
1137
1138static struct platform_driver cmos_platform_driver = {
1139 .remove = __exit_p(cmos_platform_remove),
1140 .shutdown = cmos_platform_shutdown,
1141 .driver = {
1142 .name = (char *) driver_name,
1143#ifdef CONFIG_PM
1144 .pm = &cmos_pm_ops,
1145#endif
1146 .of_match_table = of_cmos_match,
1147 }
1148};
1149
1150#ifdef CONFIG_PNP
1151static bool pnp_driver_registered;
1152#endif
1153static bool platform_driver_registered;
1154
1155static int __init cmos_init(void)
1156{
1157 int retval = 0;
1158
1159#ifdef CONFIG_PNP
1160 retval = pnp_register_driver(&cmos_pnp_driver);
1161 if (retval == 0)
1162 pnp_driver_registered = true;
1163#endif
1164
1165 if (!cmos_rtc.dev) {
1166 retval = platform_driver_probe(&cmos_platform_driver,
1167 cmos_platform_probe);
1168 if (retval == 0)
1169 platform_driver_registered = true;
1170 }
1171
1172 if (retval == 0)
1173 return 0;
1174
1175#ifdef CONFIG_PNP
1176 if (pnp_driver_registered)
1177 pnp_unregister_driver(&cmos_pnp_driver);
1178#endif
1179 return retval;
1180}
1181module_init(cmos_init);
1182
1183static void __exit cmos_exit(void)
1184{
1185#ifdef CONFIG_PNP
1186 if (pnp_driver_registered)
1187 pnp_unregister_driver(&cmos_pnp_driver);
1188#endif
1189 if (platform_driver_registered)
1190 platform_driver_unregister(&cmos_platform_driver);
1191}
1192module_exit(cmos_exit);
1193
1194
1195MODULE_AUTHOR("David Brownell");
1196MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1197MODULE_LICENSE("GPL");
1/*
2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
3 *
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13/*
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
20 *
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
26 *
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
30 */
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/kernel.h>
35#include <linux/module.h>
36#include <linux/init.h>
37#include <linux/interrupt.h>
38#include <linux/spinlock.h>
39#include <linux/platform_device.h>
40#include <linux/log2.h>
41#include <linux/pm.h>
42#include <linux/of.h>
43#include <linux/of_platform.h>
44
45/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
46#include <asm-generic/rtc.h>
47
48struct cmos_rtc {
49 struct rtc_device *rtc;
50 struct device *dev;
51 int irq;
52 struct resource *iomem;
53 time64_t alarm_expires;
54
55 void (*wake_on)(struct device *);
56 void (*wake_off)(struct device *);
57
58 u8 enabled_wake;
59 u8 suspend_ctrl;
60
61 /* newer hardware extends the original register set */
62 u8 day_alrm;
63 u8 mon_alrm;
64 u8 century;
65};
66
67/* both platform and pnp busses use negative numbers for invalid irqs */
68#define is_valid_irq(n) ((n) > 0)
69
70static const char driver_name[] = "rtc_cmos";
71
72/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
73 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
74 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
75 */
76#define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
77
78static inline int is_intr(u8 rtc_intr)
79{
80 if (!(rtc_intr & RTC_IRQF))
81 return 0;
82 return rtc_intr & RTC_IRQMASK;
83}
84
85/*----------------------------------------------------------------*/
86
87/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
88 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
89 * used in a broken "legacy replacement" mode. The breakage includes
90 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
91 * other (better) use.
92 *
93 * When that broken mode is in use, platform glue provides a partial
94 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
95 * want to use HPET for anything except those IRQs though...
96 */
97#ifdef CONFIG_HPET_EMULATE_RTC
98#include <asm/hpet.h>
99#else
100
101static inline int is_hpet_enabled(void)
102{
103 return 0;
104}
105
106static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
107{
108 return 0;
109}
110
111static inline int hpet_set_rtc_irq_bit(unsigned long mask)
112{
113 return 0;
114}
115
116static inline int
117hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
118{
119 return 0;
120}
121
122static inline int hpet_set_periodic_freq(unsigned long freq)
123{
124 return 0;
125}
126
127static inline int hpet_rtc_dropped_irq(void)
128{
129 return 0;
130}
131
132static inline int hpet_rtc_timer_init(void)
133{
134 return 0;
135}
136
137extern irq_handler_t hpet_rtc_interrupt;
138
139static inline int hpet_register_irq_handler(irq_handler_t handler)
140{
141 return 0;
142}
143
144static inline int hpet_unregister_irq_handler(irq_handler_t handler)
145{
146 return 0;
147}
148
149#endif
150
151/*----------------------------------------------------------------*/
152
153#ifdef RTC_PORT
154
155/* Most newer x86 systems have two register banks, the first used
156 * for RTC and NVRAM and the second only for NVRAM. Caller must
157 * own rtc_lock ... and we won't worry about access during NMI.
158 */
159#define can_bank2 true
160
161static inline unsigned char cmos_read_bank2(unsigned char addr)
162{
163 outb(addr, RTC_PORT(2));
164 return inb(RTC_PORT(3));
165}
166
167static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
168{
169 outb(addr, RTC_PORT(2));
170 outb(val, RTC_PORT(3));
171}
172
173#else
174
175#define can_bank2 false
176
177static inline unsigned char cmos_read_bank2(unsigned char addr)
178{
179 return 0;
180}
181
182static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
183{
184}
185
186#endif
187
188/*----------------------------------------------------------------*/
189
190static int cmos_read_time(struct device *dev, struct rtc_time *t)
191{
192 /* REVISIT: if the clock has a "century" register, use
193 * that instead of the heuristic in get_rtc_time().
194 * That'll make Y3K compatility (year > 2070) easy!
195 */
196 get_rtc_time(t);
197 return 0;
198}
199
200static int cmos_set_time(struct device *dev, struct rtc_time *t)
201{
202 /* REVISIT: set the "century" register if available
203 *
204 * NOTE: this ignores the issue whereby updating the seconds
205 * takes effect exactly 500ms after we write the register.
206 * (Also queueing and other delays before we get this far.)
207 */
208 return set_rtc_time(t);
209}
210
211static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
212{
213 struct cmos_rtc *cmos = dev_get_drvdata(dev);
214 unsigned char rtc_control;
215
216 if (!is_valid_irq(cmos->irq))
217 return -EIO;
218
219 /* Basic alarms only support hour, minute, and seconds fields.
220 * Some also support day and month, for alarms up to a year in
221 * the future.
222 */
223 t->time.tm_mday = -1;
224 t->time.tm_mon = -1;
225
226 spin_lock_irq(&rtc_lock);
227 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
228 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
229 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
230
231 if (cmos->day_alrm) {
232 /* ignore upper bits on readback per ACPI spec */
233 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
234 if (!t->time.tm_mday)
235 t->time.tm_mday = -1;
236
237 if (cmos->mon_alrm) {
238 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
239 if (!t->time.tm_mon)
240 t->time.tm_mon = -1;
241 }
242 }
243
244 rtc_control = CMOS_READ(RTC_CONTROL);
245 spin_unlock_irq(&rtc_lock);
246
247 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
248 if (((unsigned)t->time.tm_sec) < 0x60)
249 t->time.tm_sec = bcd2bin(t->time.tm_sec);
250 else
251 t->time.tm_sec = -1;
252 if (((unsigned)t->time.tm_min) < 0x60)
253 t->time.tm_min = bcd2bin(t->time.tm_min);
254 else
255 t->time.tm_min = -1;
256 if (((unsigned)t->time.tm_hour) < 0x24)
257 t->time.tm_hour = bcd2bin(t->time.tm_hour);
258 else
259 t->time.tm_hour = -1;
260
261 if (cmos->day_alrm) {
262 if (((unsigned)t->time.tm_mday) <= 0x31)
263 t->time.tm_mday = bcd2bin(t->time.tm_mday);
264 else
265 t->time.tm_mday = -1;
266
267 if (cmos->mon_alrm) {
268 if (((unsigned)t->time.tm_mon) <= 0x12)
269 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
270 else
271 t->time.tm_mon = -1;
272 }
273 }
274 }
275 t->time.tm_year = -1;
276
277 t->enabled = !!(rtc_control & RTC_AIE);
278 t->pending = 0;
279
280 return 0;
281}
282
283static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
284{
285 unsigned char rtc_intr;
286
287 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
288 * allegedly some older rtcs need that to handle irqs properly
289 */
290 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
291
292 if (is_hpet_enabled())
293 return;
294
295 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
296 if (is_intr(rtc_intr))
297 rtc_update_irq(cmos->rtc, 1, rtc_intr);
298}
299
300static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
301{
302 unsigned char rtc_control;
303
304 /* flush any pending IRQ status, notably for update irqs,
305 * before we enable new IRQs
306 */
307 rtc_control = CMOS_READ(RTC_CONTROL);
308 cmos_checkintr(cmos, rtc_control);
309
310 rtc_control |= mask;
311 CMOS_WRITE(rtc_control, RTC_CONTROL);
312 hpet_set_rtc_irq_bit(mask);
313
314 cmos_checkintr(cmos, rtc_control);
315}
316
317static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
318{
319 unsigned char rtc_control;
320
321 rtc_control = CMOS_READ(RTC_CONTROL);
322 rtc_control &= ~mask;
323 CMOS_WRITE(rtc_control, RTC_CONTROL);
324 hpet_mask_rtc_irq_bit(mask);
325
326 cmos_checkintr(cmos, rtc_control);
327}
328
329static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
330{
331 struct cmos_rtc *cmos = dev_get_drvdata(dev);
332 unsigned char mon, mday, hrs, min, sec, rtc_control;
333
334 if (!is_valid_irq(cmos->irq))
335 return -EIO;
336
337 mon = t->time.tm_mon + 1;
338 mday = t->time.tm_mday;
339 hrs = t->time.tm_hour;
340 min = t->time.tm_min;
341 sec = t->time.tm_sec;
342
343 rtc_control = CMOS_READ(RTC_CONTROL);
344 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
345 /* Writing 0xff means "don't care" or "match all". */
346 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
347 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
348 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
349 min = (min < 60) ? bin2bcd(min) : 0xff;
350 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
351 }
352
353 spin_lock_irq(&rtc_lock);
354
355 /* next rtc irq must not be from previous alarm setting */
356 cmos_irq_disable(cmos, RTC_AIE);
357
358 /* update alarm */
359 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
360 CMOS_WRITE(min, RTC_MINUTES_ALARM);
361 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
362
363 /* the system may support an "enhanced" alarm */
364 if (cmos->day_alrm) {
365 CMOS_WRITE(mday, cmos->day_alrm);
366 if (cmos->mon_alrm)
367 CMOS_WRITE(mon, cmos->mon_alrm);
368 }
369
370 /* FIXME the HPET alarm glue currently ignores day_alrm
371 * and mon_alrm ...
372 */
373 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
374
375 if (t->enabled)
376 cmos_irq_enable(cmos, RTC_AIE);
377
378 spin_unlock_irq(&rtc_lock);
379
380 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
381
382 return 0;
383}
384
385static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
386{
387 struct cmos_rtc *cmos = dev_get_drvdata(dev);
388 unsigned long flags;
389
390 if (!is_valid_irq(cmos->irq))
391 return -EINVAL;
392
393 spin_lock_irqsave(&rtc_lock, flags);
394
395 if (enabled)
396 cmos_irq_enable(cmos, RTC_AIE);
397 else
398 cmos_irq_disable(cmos, RTC_AIE);
399
400 spin_unlock_irqrestore(&rtc_lock, flags);
401 return 0;
402}
403
404#if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
405
406static int cmos_procfs(struct device *dev, struct seq_file *seq)
407{
408 struct cmos_rtc *cmos = dev_get_drvdata(dev);
409 unsigned char rtc_control, valid;
410
411 spin_lock_irq(&rtc_lock);
412 rtc_control = CMOS_READ(RTC_CONTROL);
413 valid = CMOS_READ(RTC_VALID);
414 spin_unlock_irq(&rtc_lock);
415
416 /* NOTE: at least ICH6 reports battery status using a different
417 * (non-RTC) bit; and SQWE is ignored on many current systems.
418 */
419 seq_printf(seq,
420 "periodic_IRQ\t: %s\n"
421 "update_IRQ\t: %s\n"
422 "HPET_emulated\t: %s\n"
423 // "square_wave\t: %s\n"
424 "BCD\t\t: %s\n"
425 "DST_enable\t: %s\n"
426 "periodic_freq\t: %d\n"
427 "batt_status\t: %s\n",
428 (rtc_control & RTC_PIE) ? "yes" : "no",
429 (rtc_control & RTC_UIE) ? "yes" : "no",
430 is_hpet_enabled() ? "yes" : "no",
431 // (rtc_control & RTC_SQWE) ? "yes" : "no",
432 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
433 (rtc_control & RTC_DST_EN) ? "yes" : "no",
434 cmos->rtc->irq_freq,
435 (valid & RTC_VRT) ? "okay" : "dead");
436
437 return 0;
438}
439
440#else
441#define cmos_procfs NULL
442#endif
443
444static const struct rtc_class_ops cmos_rtc_ops = {
445 .read_time = cmos_read_time,
446 .set_time = cmos_set_time,
447 .read_alarm = cmos_read_alarm,
448 .set_alarm = cmos_set_alarm,
449 .proc = cmos_procfs,
450 .alarm_irq_enable = cmos_alarm_irq_enable,
451};
452
453/*----------------------------------------------------------------*/
454
455/*
456 * All these chips have at least 64 bytes of address space, shared by
457 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
458 * by boot firmware. Modern chips have 128 or 256 bytes.
459 */
460
461#define NVRAM_OFFSET (RTC_REG_D + 1)
462
463static ssize_t
464cmos_nvram_read(struct file *filp, struct kobject *kobj,
465 struct bin_attribute *attr,
466 char *buf, loff_t off, size_t count)
467{
468 int retval;
469
470 off += NVRAM_OFFSET;
471 spin_lock_irq(&rtc_lock);
472 for (retval = 0; count; count--, off++, retval++) {
473 if (off < 128)
474 *buf++ = CMOS_READ(off);
475 else if (can_bank2)
476 *buf++ = cmos_read_bank2(off);
477 else
478 break;
479 }
480 spin_unlock_irq(&rtc_lock);
481
482 return retval;
483}
484
485static ssize_t
486cmos_nvram_write(struct file *filp, struct kobject *kobj,
487 struct bin_attribute *attr,
488 char *buf, loff_t off, size_t count)
489{
490 struct cmos_rtc *cmos;
491 int retval;
492
493 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
494
495 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
496 * checksum on part of the NVRAM data. That's currently ignored
497 * here. If userspace is smart enough to know what fields of
498 * NVRAM to update, updating checksums is also part of its job.
499 */
500 off += NVRAM_OFFSET;
501 spin_lock_irq(&rtc_lock);
502 for (retval = 0; count; count--, off++, retval++) {
503 /* don't trash RTC registers */
504 if (off == cmos->day_alrm
505 || off == cmos->mon_alrm
506 || off == cmos->century)
507 buf++;
508 else if (off < 128)
509 CMOS_WRITE(*buf++, off);
510 else if (can_bank2)
511 cmos_write_bank2(*buf++, off);
512 else
513 break;
514 }
515 spin_unlock_irq(&rtc_lock);
516
517 return retval;
518}
519
520static struct bin_attribute nvram = {
521 .attr = {
522 .name = "nvram",
523 .mode = S_IRUGO | S_IWUSR,
524 },
525
526 .read = cmos_nvram_read,
527 .write = cmos_nvram_write,
528 /* size gets set up later */
529};
530
531/*----------------------------------------------------------------*/
532
533static struct cmos_rtc cmos_rtc;
534
535static irqreturn_t cmos_interrupt(int irq, void *p)
536{
537 u8 irqstat;
538 u8 rtc_control;
539
540 spin_lock(&rtc_lock);
541
542 /* When the HPET interrupt handler calls us, the interrupt
543 * status is passed as arg1 instead of the irq number. But
544 * always clear irq status, even when HPET is in the way.
545 *
546 * Note that HPET and RTC are almost certainly out of phase,
547 * giving different IRQ status ...
548 */
549 irqstat = CMOS_READ(RTC_INTR_FLAGS);
550 rtc_control = CMOS_READ(RTC_CONTROL);
551 if (is_hpet_enabled())
552 irqstat = (unsigned long)irq & 0xF0;
553
554 /* If we were suspended, RTC_CONTROL may not be accurate since the
555 * bios may have cleared it.
556 */
557 if (!cmos_rtc.suspend_ctrl)
558 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
559 else
560 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
561
562 /* All Linux RTC alarms should be treated as if they were oneshot.
563 * Similar code may be needed in system wakeup paths, in case the
564 * alarm woke the system.
565 */
566 if (irqstat & RTC_AIE) {
567 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
568 rtc_control &= ~RTC_AIE;
569 CMOS_WRITE(rtc_control, RTC_CONTROL);
570 hpet_mask_rtc_irq_bit(RTC_AIE);
571 CMOS_READ(RTC_INTR_FLAGS);
572 }
573 spin_unlock(&rtc_lock);
574
575 if (is_intr(irqstat)) {
576 rtc_update_irq(p, 1, irqstat);
577 return IRQ_HANDLED;
578 } else
579 return IRQ_NONE;
580}
581
582#ifdef CONFIG_PNP
583#define INITSECTION
584
585#else
586#define INITSECTION __init
587#endif
588
589static int INITSECTION
590cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
591{
592 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
593 int retval = 0;
594 unsigned char rtc_control;
595 unsigned address_space;
596 u32 flags = 0;
597
598 /* there can be only one ... */
599 if (cmos_rtc.dev)
600 return -EBUSY;
601
602 if (!ports)
603 return -ENODEV;
604
605 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
606 *
607 * REVISIT non-x86 systems may instead use memory space resources
608 * (needing ioremap etc), not i/o space resources like this ...
609 */
610 if (RTC_IOMAPPED)
611 ports = request_region(ports->start, resource_size(ports),
612 driver_name);
613 else
614 ports = request_mem_region(ports->start, resource_size(ports),
615 driver_name);
616 if (!ports) {
617 dev_dbg(dev, "i/o registers already in use\n");
618 return -EBUSY;
619 }
620
621 cmos_rtc.irq = rtc_irq;
622 cmos_rtc.iomem = ports;
623
624 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
625 * driver did, but don't reject unknown configs. Old hardware
626 * won't address 128 bytes. Newer chips have multiple banks,
627 * though they may not be listed in one I/O resource.
628 */
629#if defined(CONFIG_ATARI)
630 address_space = 64;
631#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
632 || defined(__sparc__) || defined(__mips__) \
633 || defined(__powerpc__)
634 address_space = 128;
635#else
636#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
637 address_space = 128;
638#endif
639 if (can_bank2 && ports->end > (ports->start + 1))
640 address_space = 256;
641
642 /* For ACPI systems extension info comes from the FADT. On others,
643 * board specific setup provides it as appropriate. Systems where
644 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
645 * some almost-clones) can provide hooks to make that behave.
646 *
647 * Note that ACPI doesn't preclude putting these registers into
648 * "extended" areas of the chip, including some that we won't yet
649 * expect CMOS_READ and friends to handle.
650 */
651 if (info) {
652 if (info->flags)
653 flags = info->flags;
654 if (info->address_space)
655 address_space = info->address_space;
656
657 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
658 cmos_rtc.day_alrm = info->rtc_day_alarm;
659 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
660 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
661 if (info->rtc_century && info->rtc_century < 128)
662 cmos_rtc.century = info->rtc_century;
663
664 if (info->wake_on && info->wake_off) {
665 cmos_rtc.wake_on = info->wake_on;
666 cmos_rtc.wake_off = info->wake_off;
667 }
668 }
669
670 cmos_rtc.dev = dev;
671 dev_set_drvdata(dev, &cmos_rtc);
672
673 cmos_rtc.rtc = rtc_device_register(driver_name, dev,
674 &cmos_rtc_ops, THIS_MODULE);
675 if (IS_ERR(cmos_rtc.rtc)) {
676 retval = PTR_ERR(cmos_rtc.rtc);
677 goto cleanup0;
678 }
679
680 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
681
682 spin_lock_irq(&rtc_lock);
683
684 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
685 /* force periodic irq to CMOS reset default of 1024Hz;
686 *
687 * REVISIT it's been reported that at least one x86_64 ALI
688 * mobo doesn't use 32KHz here ... for portability we might
689 * need to do something about other clock frequencies.
690 */
691 cmos_rtc.rtc->irq_freq = 1024;
692 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
693 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
694 }
695
696 /* disable irqs */
697 if (is_valid_irq(rtc_irq))
698 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
699
700 rtc_control = CMOS_READ(RTC_CONTROL);
701
702 spin_unlock_irq(&rtc_lock);
703
704 /* FIXME:
705 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
706 */
707 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
708 dev_warn(dev, "only 24-hr supported\n");
709 retval = -ENXIO;
710 goto cleanup1;
711 }
712
713 if (is_valid_irq(rtc_irq)) {
714 irq_handler_t rtc_cmos_int_handler;
715
716 if (is_hpet_enabled()) {
717 rtc_cmos_int_handler = hpet_rtc_interrupt;
718 retval = hpet_register_irq_handler(cmos_interrupt);
719 if (retval) {
720 dev_warn(dev, "hpet_register_irq_handler "
721 " failed in rtc_init().");
722 goto cleanup1;
723 }
724 } else
725 rtc_cmos_int_handler = cmos_interrupt;
726
727 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
728 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
729 cmos_rtc.rtc);
730 if (retval < 0) {
731 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
732 goto cleanup1;
733 }
734 }
735 hpet_rtc_timer_init();
736
737 /* export at least the first block of NVRAM */
738 nvram.size = address_space - NVRAM_OFFSET;
739 retval = sysfs_create_bin_file(&dev->kobj, &nvram);
740 if (retval < 0) {
741 dev_dbg(dev, "can't create nvram file? %d\n", retval);
742 goto cleanup2;
743 }
744
745 dev_info(dev, "%s%s, %zd bytes nvram%s\n",
746 !is_valid_irq(rtc_irq) ? "no alarms" :
747 cmos_rtc.mon_alrm ? "alarms up to one year" :
748 cmos_rtc.day_alrm ? "alarms up to one month" :
749 "alarms up to one day",
750 cmos_rtc.century ? ", y3k" : "",
751 nvram.size,
752 is_hpet_enabled() ? ", hpet irqs" : "");
753
754 return 0;
755
756cleanup2:
757 if (is_valid_irq(rtc_irq))
758 free_irq(rtc_irq, cmos_rtc.rtc);
759cleanup1:
760 cmos_rtc.dev = NULL;
761 rtc_device_unregister(cmos_rtc.rtc);
762cleanup0:
763 if (RTC_IOMAPPED)
764 release_region(ports->start, resource_size(ports));
765 else
766 release_mem_region(ports->start, resource_size(ports));
767 return retval;
768}
769
770static void cmos_do_shutdown(int rtc_irq)
771{
772 spin_lock_irq(&rtc_lock);
773 if (is_valid_irq(rtc_irq))
774 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
775 spin_unlock_irq(&rtc_lock);
776}
777
778static void __exit cmos_do_remove(struct device *dev)
779{
780 struct cmos_rtc *cmos = dev_get_drvdata(dev);
781 struct resource *ports;
782
783 cmos_do_shutdown(cmos->irq);
784
785 sysfs_remove_bin_file(&dev->kobj, &nvram);
786
787 if (is_valid_irq(cmos->irq)) {
788 free_irq(cmos->irq, cmos->rtc);
789 hpet_unregister_irq_handler(cmos_interrupt);
790 }
791
792 rtc_device_unregister(cmos->rtc);
793 cmos->rtc = NULL;
794
795 ports = cmos->iomem;
796 if (RTC_IOMAPPED)
797 release_region(ports->start, resource_size(ports));
798 else
799 release_mem_region(ports->start, resource_size(ports));
800 cmos->iomem = NULL;
801
802 cmos->dev = NULL;
803}
804
805static int cmos_aie_poweroff(struct device *dev)
806{
807 struct cmos_rtc *cmos = dev_get_drvdata(dev);
808 struct rtc_time now;
809 time64_t t_now;
810 int retval = 0;
811 unsigned char rtc_control;
812
813 if (!cmos->alarm_expires)
814 return -EINVAL;
815
816 spin_lock_irq(&rtc_lock);
817 rtc_control = CMOS_READ(RTC_CONTROL);
818 spin_unlock_irq(&rtc_lock);
819
820 /* We only care about the situation where AIE is disabled. */
821 if (rtc_control & RTC_AIE)
822 return -EBUSY;
823
824 cmos_read_time(dev, &now);
825 t_now = rtc_tm_to_time64(&now);
826
827 /*
828 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
829 * automatically right after shutdown on some buggy boxes.
830 * This automatic rebooting issue won't happen when the alarm
831 * time is larger than now+1 seconds.
832 *
833 * If the alarm time is equal to now+1 seconds, the issue can be
834 * prevented by cancelling the alarm.
835 */
836 if (cmos->alarm_expires == t_now + 1) {
837 struct rtc_wkalrm alarm;
838
839 /* Cancel the AIE timer by configuring the past time. */
840 rtc_time64_to_tm(t_now - 1, &alarm.time);
841 alarm.enabled = 0;
842 retval = cmos_set_alarm(dev, &alarm);
843 } else if (cmos->alarm_expires > t_now + 1) {
844 retval = -EBUSY;
845 }
846
847 return retval;
848}
849
850#ifdef CONFIG_PM
851
852static int cmos_suspend(struct device *dev)
853{
854 struct cmos_rtc *cmos = dev_get_drvdata(dev);
855 unsigned char tmp;
856
857 /* only the alarm might be a wakeup event source */
858 spin_lock_irq(&rtc_lock);
859 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
860 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
861 unsigned char mask;
862
863 if (device_may_wakeup(dev))
864 mask = RTC_IRQMASK & ~RTC_AIE;
865 else
866 mask = RTC_IRQMASK;
867 tmp &= ~mask;
868 CMOS_WRITE(tmp, RTC_CONTROL);
869 hpet_mask_rtc_irq_bit(mask);
870
871 cmos_checkintr(cmos, tmp);
872 }
873 spin_unlock_irq(&rtc_lock);
874
875 if (tmp & RTC_AIE) {
876 cmos->enabled_wake = 1;
877 if (cmos->wake_on)
878 cmos->wake_on(dev);
879 else
880 enable_irq_wake(cmos->irq);
881 }
882
883 dev_dbg(dev, "suspend%s, ctrl %02x\n",
884 (tmp & RTC_AIE) ? ", alarm may wake" : "",
885 tmp);
886
887 return 0;
888}
889
890/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
891 * after a detour through G3 "mechanical off", although the ACPI spec
892 * says wakeup should only work from G1/S4 "hibernate". To most users,
893 * distinctions between S4 and S5 are pointless. So when the hardware
894 * allows, don't draw that distinction.
895 */
896static inline int cmos_poweroff(struct device *dev)
897{
898 return cmos_suspend(dev);
899}
900
901#ifdef CONFIG_PM_SLEEP
902
903static int cmos_resume(struct device *dev)
904{
905 struct cmos_rtc *cmos = dev_get_drvdata(dev);
906 unsigned char tmp;
907
908 if (cmos->enabled_wake) {
909 if (cmos->wake_off)
910 cmos->wake_off(dev);
911 else
912 disable_irq_wake(cmos->irq);
913 cmos->enabled_wake = 0;
914 }
915
916 spin_lock_irq(&rtc_lock);
917 tmp = cmos->suspend_ctrl;
918 cmos->suspend_ctrl = 0;
919 /* re-enable any irqs previously active */
920 if (tmp & RTC_IRQMASK) {
921 unsigned char mask;
922
923 if (device_may_wakeup(dev))
924 hpet_rtc_timer_init();
925
926 do {
927 CMOS_WRITE(tmp, RTC_CONTROL);
928 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
929
930 mask = CMOS_READ(RTC_INTR_FLAGS);
931 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
932 if (!is_hpet_enabled() || !is_intr(mask))
933 break;
934
935 /* force one-shot behavior if HPET blocked
936 * the wake alarm's irq
937 */
938 rtc_update_irq(cmos->rtc, 1, mask);
939 tmp &= ~RTC_AIE;
940 hpet_mask_rtc_irq_bit(RTC_AIE);
941 } while (mask & RTC_AIE);
942 }
943 spin_unlock_irq(&rtc_lock);
944
945 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
946
947 return 0;
948}
949
950#endif
951#else
952
953static inline int cmos_poweroff(struct device *dev)
954{
955 return -ENOSYS;
956}
957
958#endif
959
960static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
961
962/*----------------------------------------------------------------*/
963
964/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
965 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
966 * probably list them in similar PNPBIOS tables; so PNP is more common.
967 *
968 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
969 * predate even PNPBIOS should set up platform_bus devices.
970 */
971
972#ifdef CONFIG_ACPI
973
974#include <linux/acpi.h>
975
976static u32 rtc_handler(void *context)
977{
978 struct device *dev = context;
979
980 pm_wakeup_event(dev, 0);
981 acpi_clear_event(ACPI_EVENT_RTC);
982 acpi_disable_event(ACPI_EVENT_RTC, 0);
983 return ACPI_INTERRUPT_HANDLED;
984}
985
986static inline void rtc_wake_setup(struct device *dev)
987{
988 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
989 /*
990 * After the RTC handler is installed, the Fixed_RTC event should
991 * be disabled. Only when the RTC alarm is set will it be enabled.
992 */
993 acpi_clear_event(ACPI_EVENT_RTC);
994 acpi_disable_event(ACPI_EVENT_RTC, 0);
995}
996
997static void rtc_wake_on(struct device *dev)
998{
999 acpi_clear_event(ACPI_EVENT_RTC);
1000 acpi_enable_event(ACPI_EVENT_RTC, 0);
1001}
1002
1003static void rtc_wake_off(struct device *dev)
1004{
1005 acpi_disable_event(ACPI_EVENT_RTC, 0);
1006}
1007
1008/* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1009 * its device node and pass extra config data. This helps its driver use
1010 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1011 * that this board's RTC is wakeup-capable (per ACPI spec).
1012 */
1013static struct cmos_rtc_board_info acpi_rtc_info;
1014
1015static void cmos_wake_setup(struct device *dev)
1016{
1017 if (acpi_disabled)
1018 return;
1019
1020 rtc_wake_setup(dev);
1021 acpi_rtc_info.wake_on = rtc_wake_on;
1022 acpi_rtc_info.wake_off = rtc_wake_off;
1023
1024 /* workaround bug in some ACPI tables */
1025 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1026 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1027 acpi_gbl_FADT.month_alarm);
1028 acpi_gbl_FADT.month_alarm = 0;
1029 }
1030
1031 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1032 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1033 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1034
1035 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1036 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1037 dev_info(dev, "RTC can wake from S4\n");
1038
1039 dev->platform_data = &acpi_rtc_info;
1040
1041 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1042 device_init_wakeup(dev, 1);
1043}
1044
1045#else
1046
1047static void cmos_wake_setup(struct device *dev)
1048{
1049}
1050
1051#endif
1052
1053#ifdef CONFIG_PNP
1054
1055#include <linux/pnp.h>
1056
1057static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1058{
1059 cmos_wake_setup(&pnp->dev);
1060
1061 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
1062 /* Some machines contain a PNP entry for the RTC, but
1063 * don't define the IRQ. It should always be safe to
1064 * hardcode it in these cases
1065 */
1066 return cmos_do_probe(&pnp->dev,
1067 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1068 else
1069 return cmos_do_probe(&pnp->dev,
1070 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1071 pnp_irq(pnp, 0));
1072}
1073
1074static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1075{
1076 cmos_do_remove(&pnp->dev);
1077}
1078
1079static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1080{
1081 struct device *dev = &pnp->dev;
1082 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1083
1084 if (system_state == SYSTEM_POWER_OFF) {
1085 int retval = cmos_poweroff(dev);
1086
1087 if (cmos_aie_poweroff(dev) < 0 && !retval)
1088 return;
1089 }
1090
1091 cmos_do_shutdown(cmos->irq);
1092}
1093
1094static const struct pnp_device_id rtc_ids[] = {
1095 { .id = "PNP0b00", },
1096 { .id = "PNP0b01", },
1097 { .id = "PNP0b02", },
1098 { },
1099};
1100MODULE_DEVICE_TABLE(pnp, rtc_ids);
1101
1102static struct pnp_driver cmos_pnp_driver = {
1103 .name = (char *) driver_name,
1104 .id_table = rtc_ids,
1105 .probe = cmos_pnp_probe,
1106 .remove = __exit_p(cmos_pnp_remove),
1107 .shutdown = cmos_pnp_shutdown,
1108
1109 /* flag ensures resume() gets called, and stops syslog spam */
1110 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1111 .driver = {
1112 .pm = &cmos_pm_ops,
1113 },
1114};
1115
1116#endif /* CONFIG_PNP */
1117
1118#ifdef CONFIG_OF
1119static const struct of_device_id of_cmos_match[] = {
1120 {
1121 .compatible = "motorola,mc146818",
1122 },
1123 { },
1124};
1125MODULE_DEVICE_TABLE(of, of_cmos_match);
1126
1127static __init void cmos_of_init(struct platform_device *pdev)
1128{
1129 struct device_node *node = pdev->dev.of_node;
1130 struct rtc_time time;
1131 int ret;
1132 const __be32 *val;
1133
1134 if (!node)
1135 return;
1136
1137 val = of_get_property(node, "ctrl-reg", NULL);
1138 if (val)
1139 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1140
1141 val = of_get_property(node, "freq-reg", NULL);
1142 if (val)
1143 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1144
1145 get_rtc_time(&time);
1146 ret = rtc_valid_tm(&time);
1147 if (ret) {
1148 struct rtc_time def_time = {
1149 .tm_year = 1,
1150 .tm_mday = 1,
1151 };
1152 set_rtc_time(&def_time);
1153 }
1154}
1155#else
1156static inline void cmos_of_init(struct platform_device *pdev) {}
1157#endif
1158/*----------------------------------------------------------------*/
1159
1160/* Platform setup should have set up an RTC device, when PNP is
1161 * unavailable ... this could happen even on (older) PCs.
1162 */
1163
1164static int __init cmos_platform_probe(struct platform_device *pdev)
1165{
1166 struct resource *resource;
1167 int irq;
1168
1169 cmos_of_init(pdev);
1170 cmos_wake_setup(&pdev->dev);
1171
1172 if (RTC_IOMAPPED)
1173 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1174 else
1175 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1176 irq = platform_get_irq(pdev, 0);
1177 if (irq < 0)
1178 irq = -1;
1179
1180 return cmos_do_probe(&pdev->dev, resource, irq);
1181}
1182
1183static int __exit cmos_platform_remove(struct platform_device *pdev)
1184{
1185 cmos_do_remove(&pdev->dev);
1186 return 0;
1187}
1188
1189static void cmos_platform_shutdown(struct platform_device *pdev)
1190{
1191 struct device *dev = &pdev->dev;
1192 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1193
1194 if (system_state == SYSTEM_POWER_OFF) {
1195 int retval = cmos_poweroff(dev);
1196
1197 if (cmos_aie_poweroff(dev) < 0 && !retval)
1198 return;
1199 }
1200
1201 cmos_do_shutdown(cmos->irq);
1202}
1203
1204/* work with hotplug and coldplug */
1205MODULE_ALIAS("platform:rtc_cmos");
1206
1207static struct platform_driver cmos_platform_driver = {
1208 .remove = __exit_p(cmos_platform_remove),
1209 .shutdown = cmos_platform_shutdown,
1210 .driver = {
1211 .name = driver_name,
1212#ifdef CONFIG_PM
1213 .pm = &cmos_pm_ops,
1214#endif
1215 .of_match_table = of_match_ptr(of_cmos_match),
1216 }
1217};
1218
1219#ifdef CONFIG_PNP
1220static bool pnp_driver_registered;
1221#endif
1222static bool platform_driver_registered;
1223
1224static int __init cmos_init(void)
1225{
1226 int retval = 0;
1227
1228#ifdef CONFIG_PNP
1229 retval = pnp_register_driver(&cmos_pnp_driver);
1230 if (retval == 0)
1231 pnp_driver_registered = true;
1232#endif
1233
1234 if (!cmos_rtc.dev) {
1235 retval = platform_driver_probe(&cmos_platform_driver,
1236 cmos_platform_probe);
1237 if (retval == 0)
1238 platform_driver_registered = true;
1239 }
1240
1241 if (retval == 0)
1242 return 0;
1243
1244#ifdef CONFIG_PNP
1245 if (pnp_driver_registered)
1246 pnp_unregister_driver(&cmos_pnp_driver);
1247#endif
1248 return retval;
1249}
1250module_init(cmos_init);
1251
1252static void __exit cmos_exit(void)
1253{
1254#ifdef CONFIG_PNP
1255 if (pnp_driver_registered)
1256 pnp_unregister_driver(&cmos_pnp_driver);
1257#endif
1258 if (platform_driver_registered)
1259 platform_driver_unregister(&cmos_platform_driver);
1260}
1261module_exit(cmos_exit);
1262
1263
1264MODULE_AUTHOR("David Brownell");
1265MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1266MODULE_LICENSE("GPL");