Linux Audio

Check our new training course

Loading...
v3.5.6
  1
  2#include <linux/device.h>
  3#include <linux/io.h>
  4#include <linux/ioport.h>
  5#include <linux/module.h>
  6#include <linux/of_address.h>
  7#include <linux/pci_regs.h>
 
 
  8#include <linux/string.h>
  9
 10/* Max address size we deal with */
 11#define OF_MAX_ADDR_CELLS	4
 12#define OF_CHECK_COUNTS(na, ns)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS && \
 13			(ns) > 0)
 14
 15static struct of_bus *of_match_bus(struct device_node *np);
 16static int __of_address_to_resource(struct device_node *dev,
 17		const __be32 *addrp, u64 size, unsigned int flags,
 18		const char *name, struct resource *r);
 19
 20/* Debug utility */
 21#ifdef DEBUG
 22static void of_dump_addr(const char *s, const __be32 *addr, int na)
 23{
 24	printk(KERN_DEBUG "%s", s);
 25	while (na--)
 26		printk(" %08x", be32_to_cpu(*(addr++)));
 27	printk("\n");
 28}
 29#else
 30static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
 31#endif
 32
 33/* Callbacks for bus specific translators */
 34struct of_bus {
 35	const char	*name;
 36	const char	*addresses;
 37	int		(*match)(struct device_node *parent);
 38	void		(*count_cells)(struct device_node *child,
 39				       int *addrc, int *sizec);
 40	u64		(*map)(u32 *addr, const __be32 *range,
 41				int na, int ns, int pna);
 42	int		(*translate)(u32 *addr, u64 offset, int na);
 43	unsigned int	(*get_flags)(const __be32 *addr);
 44};
 45
 46/*
 47 * Default translator (generic bus)
 48 */
 49
 50static void of_bus_default_count_cells(struct device_node *dev,
 51				       int *addrc, int *sizec)
 52{
 53	if (addrc)
 54		*addrc = of_n_addr_cells(dev);
 55	if (sizec)
 56		*sizec = of_n_size_cells(dev);
 57}
 58
 59static u64 of_bus_default_map(u32 *addr, const __be32 *range,
 60		int na, int ns, int pna)
 61{
 62	u64 cp, s, da;
 63
 64	cp = of_read_number(range, na);
 65	s  = of_read_number(range + na + pna, ns);
 66	da = of_read_number(addr, na);
 67
 68	pr_debug("OF: default map, cp=%llx, s=%llx, da=%llx\n",
 69		 (unsigned long long)cp, (unsigned long long)s,
 70		 (unsigned long long)da);
 71
 72	if (da < cp || da >= (cp + s))
 73		return OF_BAD_ADDR;
 74	return da - cp;
 75}
 76
 77static int of_bus_default_translate(u32 *addr, u64 offset, int na)
 78{
 79	u64 a = of_read_number(addr, na);
 80	memset(addr, 0, na * 4);
 81	a += offset;
 82	if (na > 1)
 83		addr[na - 2] = cpu_to_be32(a >> 32);
 84	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
 85
 86	return 0;
 87}
 88
 89static unsigned int of_bus_default_get_flags(const __be32 *addr)
 90{
 91	return IORESOURCE_MEM;
 92}
 93
 94#ifdef CONFIG_PCI
 95/*
 96 * PCI bus specific translator
 97 */
 98
 99static int of_bus_pci_match(struct device_node *np)
100{
101	/* "vci" is for the /chaos bridge on 1st-gen PCI powermacs */
102	return !strcmp(np->type, "pci") || !strcmp(np->type, "vci");
 
 
 
 
 
103}
104
105static void of_bus_pci_count_cells(struct device_node *np,
106				   int *addrc, int *sizec)
107{
108	if (addrc)
109		*addrc = 3;
110	if (sizec)
111		*sizec = 2;
112}
113
114static unsigned int of_bus_pci_get_flags(const __be32 *addr)
115{
116	unsigned int flags = 0;
117	u32 w = be32_to_cpup(addr);
118
119	switch((w >> 24) & 0x03) {
120	case 0x01:
121		flags |= IORESOURCE_IO;
122		break;
123	case 0x02: /* 32 bits */
124	case 0x03: /* 64 bits */
125		flags |= IORESOURCE_MEM;
126		break;
127	}
128	if (w & 0x40000000)
129		flags |= IORESOURCE_PREFETCH;
130	return flags;
131}
132
133static u64 of_bus_pci_map(u32 *addr, const __be32 *range, int na, int ns,
134		int pna)
135{
136	u64 cp, s, da;
137	unsigned int af, rf;
138
139	af = of_bus_pci_get_flags(addr);
140	rf = of_bus_pci_get_flags(range);
141
142	/* Check address type match */
143	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
144		return OF_BAD_ADDR;
145
146	/* Read address values, skipping high cell */
147	cp = of_read_number(range + 1, na - 1);
148	s  = of_read_number(range + na + pna, ns);
149	da = of_read_number(addr + 1, na - 1);
150
151	pr_debug("OF: PCI map, cp=%llx, s=%llx, da=%llx\n",
152		 (unsigned long long)cp, (unsigned long long)s,
153		 (unsigned long long)da);
154
155	if (da < cp || da >= (cp + s))
156		return OF_BAD_ADDR;
157	return da - cp;
158}
159
160static int of_bus_pci_translate(u32 *addr, u64 offset, int na)
161{
162	return of_bus_default_translate(addr + 1, offset, na - 1);
163}
 
164
 
165const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
166			unsigned int *flags)
167{
168	const __be32 *prop;
169	unsigned int psize;
170	struct device_node *parent;
171	struct of_bus *bus;
172	int onesize, i, na, ns;
173
174	/* Get parent & match bus type */
175	parent = of_get_parent(dev);
176	if (parent == NULL)
177		return NULL;
178	bus = of_match_bus(parent);
179	if (strcmp(bus->name, "pci")) {
180		of_node_put(parent);
181		return NULL;
182	}
183	bus->count_cells(dev, &na, &ns);
184	of_node_put(parent);
185	if (!OF_CHECK_COUNTS(na, ns))
186		return NULL;
187
188	/* Get "reg" or "assigned-addresses" property */
189	prop = of_get_property(dev, bus->addresses, &psize);
190	if (prop == NULL)
191		return NULL;
192	psize /= 4;
193
194	onesize = na + ns;
195	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
196		u32 val = be32_to_cpu(prop[0]);
197		if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
198			if (size)
199				*size = of_read_number(prop + na, ns);
200			if (flags)
201				*flags = bus->get_flags(prop);
202			return prop;
203		}
204	}
205	return NULL;
206}
207EXPORT_SYMBOL(of_get_pci_address);
208
209int of_pci_address_to_resource(struct device_node *dev, int bar,
210			       struct resource *r)
211{
212	const __be32	*addrp;
213	u64		size;
214	unsigned int	flags;
215
216	addrp = of_get_pci_address(dev, bar, &size, &flags);
217	if (addrp == NULL)
218		return -EINVAL;
219	return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
220}
221EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222#endif /* CONFIG_PCI */
223
224/*
225 * ISA bus specific translator
226 */
227
228static int of_bus_isa_match(struct device_node *np)
229{
230	return !strcmp(np->name, "isa");
231}
232
233static void of_bus_isa_count_cells(struct device_node *child,
234				   int *addrc, int *sizec)
235{
236	if (addrc)
237		*addrc = 2;
238	if (sizec)
239		*sizec = 1;
240}
241
242static u64 of_bus_isa_map(u32 *addr, const __be32 *range, int na, int ns,
243		int pna)
244{
245	u64 cp, s, da;
246
247	/* Check address type match */
248	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
249		return OF_BAD_ADDR;
250
251	/* Read address values, skipping high cell */
252	cp = of_read_number(range + 1, na - 1);
253	s  = of_read_number(range + na + pna, ns);
254	da = of_read_number(addr + 1, na - 1);
255
256	pr_debug("OF: ISA map, cp=%llx, s=%llx, da=%llx\n",
257		 (unsigned long long)cp, (unsigned long long)s,
258		 (unsigned long long)da);
259
260	if (da < cp || da >= (cp + s))
261		return OF_BAD_ADDR;
262	return da - cp;
263}
264
265static int of_bus_isa_translate(u32 *addr, u64 offset, int na)
266{
267	return of_bus_default_translate(addr + 1, offset, na - 1);
268}
269
270static unsigned int of_bus_isa_get_flags(const __be32 *addr)
271{
272	unsigned int flags = 0;
273	u32 w = be32_to_cpup(addr);
274
275	if (w & 1)
276		flags |= IORESOURCE_IO;
277	else
278		flags |= IORESOURCE_MEM;
279	return flags;
280}
281
282/*
283 * Array of bus specific translators
284 */
285
286static struct of_bus of_busses[] = {
287#ifdef CONFIG_PCI
288	/* PCI */
289	{
290		.name = "pci",
291		.addresses = "assigned-addresses",
292		.match = of_bus_pci_match,
293		.count_cells = of_bus_pci_count_cells,
294		.map = of_bus_pci_map,
295		.translate = of_bus_pci_translate,
296		.get_flags = of_bus_pci_get_flags,
297	},
298#endif /* CONFIG_PCI */
299	/* ISA */
300	{
301		.name = "isa",
302		.addresses = "reg",
303		.match = of_bus_isa_match,
304		.count_cells = of_bus_isa_count_cells,
305		.map = of_bus_isa_map,
306		.translate = of_bus_isa_translate,
307		.get_flags = of_bus_isa_get_flags,
308	},
309	/* Default */
310	{
311		.name = "default",
312		.addresses = "reg",
313		.match = NULL,
314		.count_cells = of_bus_default_count_cells,
315		.map = of_bus_default_map,
316		.translate = of_bus_default_translate,
317		.get_flags = of_bus_default_get_flags,
318	},
319};
320
321static struct of_bus *of_match_bus(struct device_node *np)
322{
323	int i;
324
325	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
326		if (!of_busses[i].match || of_busses[i].match(np))
327			return &of_busses[i];
328	BUG();
329	return NULL;
330}
331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
332static int of_translate_one(struct device_node *parent, struct of_bus *bus,
333			    struct of_bus *pbus, u32 *addr,
334			    int na, int ns, int pna, const char *rprop)
335{
336	const __be32 *ranges;
337	unsigned int rlen;
338	int rone;
339	u64 offset = OF_BAD_ADDR;
340
341	/* Normally, an absence of a "ranges" property means we are
 
342	 * crossing a non-translatable boundary, and thus the addresses
343	 * below the current not cannot be converted to CPU physical ones.
344	 * Unfortunately, while this is very clear in the spec, it's not
345	 * what Apple understood, and they do have things like /uni-n or
346	 * /ht nodes with no "ranges" property and a lot of perfectly
347	 * useable mapped devices below them. Thus we treat the absence of
348	 * "ranges" as equivalent to an empty "ranges" property which means
349	 * a 1:1 translation at that level. It's up to the caller not to try
350	 * to translate addresses that aren't supposed to be translated in
351	 * the first place. --BenH.
352	 *
353	 * As far as we know, this damage only exists on Apple machines, so
354	 * This code is only enabled on powerpc. --gcl
355	 */
356	ranges = of_get_property(parent, rprop, &rlen);
357#if !defined(CONFIG_PPC)
358	if (ranges == NULL) {
359		pr_err("OF: no ranges; cannot translate\n");
360		return 1;
361	}
362#endif /* !defined(CONFIG_PPC) */
363	if (ranges == NULL || rlen == 0) {
364		offset = of_read_number(addr, na);
365		memset(addr, 0, pna * 4);
366		pr_debug("OF: empty ranges; 1:1 translation\n");
367		goto finish;
368	}
369
370	pr_debug("OF: walking ranges...\n");
371
372	/* Now walk through the ranges */
373	rlen /= 4;
374	rone = na + pna + ns;
375	for (; rlen >= rone; rlen -= rone, ranges += rone) {
376		offset = bus->map(addr, ranges, na, ns, pna);
377		if (offset != OF_BAD_ADDR)
378			break;
379	}
380	if (offset == OF_BAD_ADDR) {
381		pr_debug("OF: not found !\n");
382		return 1;
383	}
384	memcpy(addr, ranges + na, 4 * pna);
385
386 finish:
387	of_dump_addr("OF: parent translation for:", addr, pna);
388	pr_debug("OF: with offset: %llx\n", (unsigned long long)offset);
389
390	/* Translate it into parent bus space */
391	return pbus->translate(addr, offset, pna);
392}
393
394/*
395 * Translate an address from the device-tree into a CPU physical address,
396 * this walks up the tree and applies the various bus mappings on the
397 * way.
398 *
399 * Note: We consider that crossing any level with #size-cells == 0 to mean
400 * that translation is impossible (that is we are not dealing with a value
401 * that can be mapped to a cpu physical address). This is not really specified
402 * that way, but this is traditionally the way IBM at least do things
403 */
404u64 __of_translate_address(struct device_node *dev, const __be32 *in_addr,
405			   const char *rprop)
406{
407	struct device_node *parent = NULL;
408	struct of_bus *bus, *pbus;
409	u32 addr[OF_MAX_ADDR_CELLS];
410	int na, ns, pna, pns;
411	u64 result = OF_BAD_ADDR;
412
413	pr_debug("OF: ** translation for device %s **\n", dev->full_name);
414
415	/* Increase refcount at current level */
416	of_node_get(dev);
417
418	/* Get parent & match bus type */
419	parent = of_get_parent(dev);
420	if (parent == NULL)
421		goto bail;
422	bus = of_match_bus(parent);
423
424	/* Cound address cells & copy address locally */
425	bus->count_cells(dev, &na, &ns);
426	if (!OF_CHECK_COUNTS(na, ns)) {
427		printk(KERN_ERR "prom_parse: Bad cell count for %s\n",
428		       dev->full_name);
429		goto bail;
430	}
431	memcpy(addr, in_addr, na * 4);
432
433	pr_debug("OF: bus is %s (na=%d, ns=%d) on %s\n",
434	    bus->name, na, ns, parent->full_name);
435	of_dump_addr("OF: translating address:", addr, na);
436
437	/* Translate */
438	for (;;) {
439		/* Switch to parent bus */
440		of_node_put(dev);
441		dev = parent;
442		parent = of_get_parent(dev);
443
444		/* If root, we have finished */
445		if (parent == NULL) {
446			pr_debug("OF: reached root node\n");
447			result = of_read_number(addr, na);
448			break;
449		}
450
451		/* Get new parent bus and counts */
452		pbus = of_match_bus(parent);
453		pbus->count_cells(dev, &pna, &pns);
454		if (!OF_CHECK_COUNTS(pna, pns)) {
455			printk(KERN_ERR "prom_parse: Bad cell count for %s\n",
456			       dev->full_name);
457			break;
458		}
459
460		pr_debug("OF: parent bus is %s (na=%d, ns=%d) on %s\n",
461		    pbus->name, pna, pns, parent->full_name);
462
463		/* Apply bus translation */
464		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
465			break;
466
467		/* Complete the move up one level */
468		na = pna;
469		ns = pns;
470		bus = pbus;
471
472		of_dump_addr("OF: one level translation:", addr, na);
473	}
474 bail:
475	of_node_put(parent);
476	of_node_put(dev);
477
478	return result;
479}
480
481u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
482{
483	return __of_translate_address(dev, in_addr, "ranges");
484}
485EXPORT_SYMBOL(of_translate_address);
486
487u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
488{
489	return __of_translate_address(dev, in_addr, "dma-ranges");
490}
491EXPORT_SYMBOL(of_translate_dma_address);
492
493const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
494		    unsigned int *flags)
495{
496	const __be32 *prop;
497	unsigned int psize;
498	struct device_node *parent;
499	struct of_bus *bus;
500	int onesize, i, na, ns;
501
502	/* Get parent & match bus type */
503	parent = of_get_parent(dev);
504	if (parent == NULL)
505		return NULL;
506	bus = of_match_bus(parent);
507	bus->count_cells(dev, &na, &ns);
508	of_node_put(parent);
509	if (!OF_CHECK_COUNTS(na, ns))
510		return NULL;
511
512	/* Get "reg" or "assigned-addresses" property */
513	prop = of_get_property(dev, bus->addresses, &psize);
514	if (prop == NULL)
515		return NULL;
516	psize /= 4;
517
518	onesize = na + ns;
519	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
520		if (i == index) {
521			if (size)
522				*size = of_read_number(prop + na, ns);
523			if (flags)
524				*flags = bus->get_flags(prop);
525			return prop;
526		}
527	return NULL;
528}
529EXPORT_SYMBOL(of_get_address);
530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
531static int __of_address_to_resource(struct device_node *dev,
532		const __be32 *addrp, u64 size, unsigned int flags,
533		const char *name, struct resource *r)
534{
535	u64 taddr;
536
537	if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0)
538		return -EINVAL;
539	taddr = of_translate_address(dev, addrp);
540	if (taddr == OF_BAD_ADDR)
541		return -EINVAL;
542	memset(r, 0, sizeof(struct resource));
543	if (flags & IORESOURCE_IO) {
544		unsigned long port;
545		port = pci_address_to_pio(taddr);
546		if (port == (unsigned long)-1)
547			return -EINVAL;
548		r->start = port;
549		r->end = port + size - 1;
550	} else {
551		r->start = taddr;
552		r->end = taddr + size - 1;
553	}
554	r->flags = flags;
555	r->name = name ? name : dev->full_name;
556
557	return 0;
558}
559
560/**
561 * of_address_to_resource - Translate device tree address and return as resource
562 *
563 * Note that if your address is a PIO address, the conversion will fail if
564 * the physical address can't be internally converted to an IO token with
565 * pci_address_to_pio(), that is because it's either called to early or it
566 * can't be matched to any host bridge IO space
567 */
568int of_address_to_resource(struct device_node *dev, int index,
569			   struct resource *r)
570{
571	const __be32	*addrp;
572	u64		size;
573	unsigned int	flags;
574	const char	*name = NULL;
575
576	addrp = of_get_address(dev, index, &size, &flags);
577	if (addrp == NULL)
578		return -EINVAL;
579
580	/* Get optional "reg-names" property to add a name to a resource */
581	of_property_read_string_index(dev, "reg-names",	index, &name);
582
583	return __of_address_to_resource(dev, addrp, size, flags, name, r);
584}
585EXPORT_SYMBOL_GPL(of_address_to_resource);
586
587struct device_node *of_find_matching_node_by_address(struct device_node *from,
588					const struct of_device_id *matches,
589					u64 base_address)
590{
591	struct device_node *dn = of_find_matching_node(from, matches);
592	struct resource res;
593
594	while (dn) {
595		if (of_address_to_resource(dn, 0, &res))
596			continue;
597		if (res.start == base_address)
598			return dn;
 
599		dn = of_find_matching_node(dn, matches);
600	}
601
602	return NULL;
603}
604
605
606/**
607 * of_iomap - Maps the memory mapped IO for a given device_node
608 * @device:	the device whose io range will be mapped
609 * @index:	index of the io range
610 *
611 * Returns a pointer to the mapped memory
612 */
613void __iomem *of_iomap(struct device_node *np, int index)
614{
615	struct resource res;
616
617	if (of_address_to_resource(np, index, &res))
618		return NULL;
619
620	return ioremap(res.start, resource_size(&res));
621}
622EXPORT_SYMBOL(of_iomap);
v4.6
   1
   2#include <linux/device.h>
   3#include <linux/io.h>
   4#include <linux/ioport.h>
   5#include <linux/module.h>
   6#include <linux/of_address.h>
   7#include <linux/pci_regs.h>
   8#include <linux/sizes.h>
   9#include <linux/slab.h>
  10#include <linux/string.h>
  11
  12/* Max address size we deal with */
  13#define OF_MAX_ADDR_CELLS	4
  14#define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
  15#define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
  16
  17static struct of_bus *of_match_bus(struct device_node *np);
  18static int __of_address_to_resource(struct device_node *dev,
  19		const __be32 *addrp, u64 size, unsigned int flags,
  20		const char *name, struct resource *r);
  21
  22/* Debug utility */
  23#ifdef DEBUG
  24static void of_dump_addr(const char *s, const __be32 *addr, int na)
  25{
  26	printk(KERN_DEBUG "%s", s);
  27	while (na--)
  28		printk(" %08x", be32_to_cpu(*(addr++)));
  29	printk("\n");
  30}
  31#else
  32static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
  33#endif
  34
  35/* Callbacks for bus specific translators */
  36struct of_bus {
  37	const char	*name;
  38	const char	*addresses;
  39	int		(*match)(struct device_node *parent);
  40	void		(*count_cells)(struct device_node *child,
  41				       int *addrc, int *sizec);
  42	u64		(*map)(__be32 *addr, const __be32 *range,
  43				int na, int ns, int pna);
  44	int		(*translate)(__be32 *addr, u64 offset, int na);
  45	unsigned int	(*get_flags)(const __be32 *addr);
  46};
  47
  48/*
  49 * Default translator (generic bus)
  50 */
  51
  52static void of_bus_default_count_cells(struct device_node *dev,
  53				       int *addrc, int *sizec)
  54{
  55	if (addrc)
  56		*addrc = of_n_addr_cells(dev);
  57	if (sizec)
  58		*sizec = of_n_size_cells(dev);
  59}
  60
  61static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
  62		int na, int ns, int pna)
  63{
  64	u64 cp, s, da;
  65
  66	cp = of_read_number(range, na);
  67	s  = of_read_number(range + na + pna, ns);
  68	da = of_read_number(addr, na);
  69
  70	pr_debug("OF: default map, cp=%llx, s=%llx, da=%llx\n",
  71		 (unsigned long long)cp, (unsigned long long)s,
  72		 (unsigned long long)da);
  73
  74	if (da < cp || da >= (cp + s))
  75		return OF_BAD_ADDR;
  76	return da - cp;
  77}
  78
  79static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
  80{
  81	u64 a = of_read_number(addr, na);
  82	memset(addr, 0, na * 4);
  83	a += offset;
  84	if (na > 1)
  85		addr[na - 2] = cpu_to_be32(a >> 32);
  86	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
  87
  88	return 0;
  89}
  90
  91static unsigned int of_bus_default_get_flags(const __be32 *addr)
  92{
  93	return IORESOURCE_MEM;
  94}
  95
  96#ifdef CONFIG_OF_ADDRESS_PCI
  97/*
  98 * PCI bus specific translator
  99 */
 100
 101static int of_bus_pci_match(struct device_node *np)
 102{
 103	/*
 104 	 * "pciex" is PCI Express
 105	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
 106	 * "ht" is hypertransport
 107	 */
 108	return !strcmp(np->type, "pci") || !strcmp(np->type, "pciex") ||
 109		!strcmp(np->type, "vci") || !strcmp(np->type, "ht");
 110}
 111
 112static void of_bus_pci_count_cells(struct device_node *np,
 113				   int *addrc, int *sizec)
 114{
 115	if (addrc)
 116		*addrc = 3;
 117	if (sizec)
 118		*sizec = 2;
 119}
 120
 121static unsigned int of_bus_pci_get_flags(const __be32 *addr)
 122{
 123	unsigned int flags = 0;
 124	u32 w = be32_to_cpup(addr);
 125
 126	switch((w >> 24) & 0x03) {
 127	case 0x01:
 128		flags |= IORESOURCE_IO;
 129		break;
 130	case 0x02: /* 32 bits */
 131	case 0x03: /* 64 bits */
 132		flags |= IORESOURCE_MEM;
 133		break;
 134	}
 135	if (w & 0x40000000)
 136		flags |= IORESOURCE_PREFETCH;
 137	return flags;
 138}
 139
 140static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
 141		int pna)
 142{
 143	u64 cp, s, da;
 144	unsigned int af, rf;
 145
 146	af = of_bus_pci_get_flags(addr);
 147	rf = of_bus_pci_get_flags(range);
 148
 149	/* Check address type match */
 150	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
 151		return OF_BAD_ADDR;
 152
 153	/* Read address values, skipping high cell */
 154	cp = of_read_number(range + 1, na - 1);
 155	s  = of_read_number(range + na + pna, ns);
 156	da = of_read_number(addr + 1, na - 1);
 157
 158	pr_debug("OF: PCI map, cp=%llx, s=%llx, da=%llx\n",
 159		 (unsigned long long)cp, (unsigned long long)s,
 160		 (unsigned long long)da);
 161
 162	if (da < cp || da >= (cp + s))
 163		return OF_BAD_ADDR;
 164	return da - cp;
 165}
 166
 167static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
 168{
 169	return of_bus_default_translate(addr + 1, offset, na - 1);
 170}
 171#endif /* CONFIG_OF_ADDRESS_PCI */
 172
 173#ifdef CONFIG_PCI
 174const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
 175			unsigned int *flags)
 176{
 177	const __be32 *prop;
 178	unsigned int psize;
 179	struct device_node *parent;
 180	struct of_bus *bus;
 181	int onesize, i, na, ns;
 182
 183	/* Get parent & match bus type */
 184	parent = of_get_parent(dev);
 185	if (parent == NULL)
 186		return NULL;
 187	bus = of_match_bus(parent);
 188	if (strcmp(bus->name, "pci")) {
 189		of_node_put(parent);
 190		return NULL;
 191	}
 192	bus->count_cells(dev, &na, &ns);
 193	of_node_put(parent);
 194	if (!OF_CHECK_ADDR_COUNT(na))
 195		return NULL;
 196
 197	/* Get "reg" or "assigned-addresses" property */
 198	prop = of_get_property(dev, bus->addresses, &psize);
 199	if (prop == NULL)
 200		return NULL;
 201	psize /= 4;
 202
 203	onesize = na + ns;
 204	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
 205		u32 val = be32_to_cpu(prop[0]);
 206		if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
 207			if (size)
 208				*size = of_read_number(prop + na, ns);
 209			if (flags)
 210				*flags = bus->get_flags(prop);
 211			return prop;
 212		}
 213	}
 214	return NULL;
 215}
 216EXPORT_SYMBOL(of_get_pci_address);
 217
 218int of_pci_address_to_resource(struct device_node *dev, int bar,
 219			       struct resource *r)
 220{
 221	const __be32	*addrp;
 222	u64		size;
 223	unsigned int	flags;
 224
 225	addrp = of_get_pci_address(dev, bar, &size, &flags);
 226	if (addrp == NULL)
 227		return -EINVAL;
 228	return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
 229}
 230EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
 231
 232int of_pci_range_parser_init(struct of_pci_range_parser *parser,
 233				struct device_node *node)
 234{
 235	const int na = 3, ns = 2;
 236	int rlen;
 237
 238	parser->node = node;
 239	parser->pna = of_n_addr_cells(node);
 240	parser->np = parser->pna + na + ns;
 241
 242	parser->range = of_get_property(node, "ranges", &rlen);
 243	if (parser->range == NULL)
 244		return -ENOENT;
 245
 246	parser->end = parser->range + rlen / sizeof(__be32);
 247
 248	return 0;
 249}
 250EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
 251
 252struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
 253						struct of_pci_range *range)
 254{
 255	const int na = 3, ns = 2;
 256
 257	if (!range)
 258		return NULL;
 259
 260	if (!parser->range || parser->range + parser->np > parser->end)
 261		return NULL;
 262
 263	range->pci_space = parser->range[0];
 264	range->flags = of_bus_pci_get_flags(parser->range);
 265	range->pci_addr = of_read_number(parser->range + 1, ns);
 266	range->cpu_addr = of_translate_address(parser->node,
 267				parser->range + na);
 268	range->size = of_read_number(parser->range + parser->pna + na, ns);
 269
 270	parser->range += parser->np;
 271
 272	/* Now consume following elements while they are contiguous */
 273	while (parser->range + parser->np <= parser->end) {
 274		u32 flags, pci_space;
 275		u64 pci_addr, cpu_addr, size;
 276
 277		pci_space = be32_to_cpup(parser->range);
 278		flags = of_bus_pci_get_flags(parser->range);
 279		pci_addr = of_read_number(parser->range + 1, ns);
 280		cpu_addr = of_translate_address(parser->node,
 281				parser->range + na);
 282		size = of_read_number(parser->range + parser->pna + na, ns);
 283
 284		if (flags != range->flags)
 285			break;
 286		if (pci_addr != range->pci_addr + range->size ||
 287		    cpu_addr != range->cpu_addr + range->size)
 288			break;
 289
 290		range->size += size;
 291		parser->range += parser->np;
 292	}
 293
 294	return range;
 295}
 296EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
 297
 298/*
 299 * of_pci_range_to_resource - Create a resource from an of_pci_range
 300 * @range:	the PCI range that describes the resource
 301 * @np:		device node where the range belongs to
 302 * @res:	pointer to a valid resource that will be updated to
 303 *              reflect the values contained in the range.
 304 *
 305 * Returns EINVAL if the range cannot be converted to resource.
 306 *
 307 * Note that if the range is an IO range, the resource will be converted
 308 * using pci_address_to_pio() which can fail if it is called too early or
 309 * if the range cannot be matched to any host bridge IO space (our case here).
 310 * To guard against that we try to register the IO range first.
 311 * If that fails we know that pci_address_to_pio() will do too.
 312 */
 313int of_pci_range_to_resource(struct of_pci_range *range,
 314			     struct device_node *np, struct resource *res)
 315{
 316	int err;
 317	res->flags = range->flags;
 318	res->parent = res->child = res->sibling = NULL;
 319	res->name = np->full_name;
 320
 321	if (res->flags & IORESOURCE_IO) {
 322		unsigned long port;
 323		err = pci_register_io_range(range->cpu_addr, range->size);
 324		if (err)
 325			goto invalid_range;
 326		port = pci_address_to_pio(range->cpu_addr);
 327		if (port == (unsigned long)-1) {
 328			err = -EINVAL;
 329			goto invalid_range;
 330		}
 331		res->start = port;
 332	} else {
 333		if ((sizeof(resource_size_t) < 8) &&
 334		    upper_32_bits(range->cpu_addr)) {
 335			err = -EINVAL;
 336			goto invalid_range;
 337		}
 338
 339		res->start = range->cpu_addr;
 340	}
 341	res->end = res->start + range->size - 1;
 342	return 0;
 343
 344invalid_range:
 345	res->start = (resource_size_t)OF_BAD_ADDR;
 346	res->end = (resource_size_t)OF_BAD_ADDR;
 347	return err;
 348}
 349#endif /* CONFIG_PCI */
 350
 351/*
 352 * ISA bus specific translator
 353 */
 354
 355static int of_bus_isa_match(struct device_node *np)
 356{
 357	return !strcmp(np->name, "isa");
 358}
 359
 360static void of_bus_isa_count_cells(struct device_node *child,
 361				   int *addrc, int *sizec)
 362{
 363	if (addrc)
 364		*addrc = 2;
 365	if (sizec)
 366		*sizec = 1;
 367}
 368
 369static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
 370		int pna)
 371{
 372	u64 cp, s, da;
 373
 374	/* Check address type match */
 375	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
 376		return OF_BAD_ADDR;
 377
 378	/* Read address values, skipping high cell */
 379	cp = of_read_number(range + 1, na - 1);
 380	s  = of_read_number(range + na + pna, ns);
 381	da = of_read_number(addr + 1, na - 1);
 382
 383	pr_debug("OF: ISA map, cp=%llx, s=%llx, da=%llx\n",
 384		 (unsigned long long)cp, (unsigned long long)s,
 385		 (unsigned long long)da);
 386
 387	if (da < cp || da >= (cp + s))
 388		return OF_BAD_ADDR;
 389	return da - cp;
 390}
 391
 392static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
 393{
 394	return of_bus_default_translate(addr + 1, offset, na - 1);
 395}
 396
 397static unsigned int of_bus_isa_get_flags(const __be32 *addr)
 398{
 399	unsigned int flags = 0;
 400	u32 w = be32_to_cpup(addr);
 401
 402	if (w & 1)
 403		flags |= IORESOURCE_IO;
 404	else
 405		flags |= IORESOURCE_MEM;
 406	return flags;
 407}
 408
 409/*
 410 * Array of bus specific translators
 411 */
 412
 413static struct of_bus of_busses[] = {
 414#ifdef CONFIG_OF_ADDRESS_PCI
 415	/* PCI */
 416	{
 417		.name = "pci",
 418		.addresses = "assigned-addresses",
 419		.match = of_bus_pci_match,
 420		.count_cells = of_bus_pci_count_cells,
 421		.map = of_bus_pci_map,
 422		.translate = of_bus_pci_translate,
 423		.get_flags = of_bus_pci_get_flags,
 424	},
 425#endif /* CONFIG_OF_ADDRESS_PCI */
 426	/* ISA */
 427	{
 428		.name = "isa",
 429		.addresses = "reg",
 430		.match = of_bus_isa_match,
 431		.count_cells = of_bus_isa_count_cells,
 432		.map = of_bus_isa_map,
 433		.translate = of_bus_isa_translate,
 434		.get_flags = of_bus_isa_get_flags,
 435	},
 436	/* Default */
 437	{
 438		.name = "default",
 439		.addresses = "reg",
 440		.match = NULL,
 441		.count_cells = of_bus_default_count_cells,
 442		.map = of_bus_default_map,
 443		.translate = of_bus_default_translate,
 444		.get_flags = of_bus_default_get_flags,
 445	},
 446};
 447
 448static struct of_bus *of_match_bus(struct device_node *np)
 449{
 450	int i;
 451
 452	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
 453		if (!of_busses[i].match || of_busses[i].match(np))
 454			return &of_busses[i];
 455	BUG();
 456	return NULL;
 457}
 458
 459static int of_empty_ranges_quirk(struct device_node *np)
 460{
 461	if (IS_ENABLED(CONFIG_PPC)) {
 462		/* To save cycles, we cache the result for global "Mac" setting */
 463		static int quirk_state = -1;
 464
 465		/* PA-SEMI sdc DT bug */
 466		if (of_device_is_compatible(np, "1682m-sdc"))
 467			return true;
 468
 469		/* Make quirk cached */
 470		if (quirk_state < 0)
 471			quirk_state =
 472				of_machine_is_compatible("Power Macintosh") ||
 473				of_machine_is_compatible("MacRISC");
 474		return quirk_state;
 475	}
 476	return false;
 477}
 478
 479static int of_translate_one(struct device_node *parent, struct of_bus *bus,
 480			    struct of_bus *pbus, __be32 *addr,
 481			    int na, int ns, int pna, const char *rprop)
 482{
 483	const __be32 *ranges;
 484	unsigned int rlen;
 485	int rone;
 486	u64 offset = OF_BAD_ADDR;
 487
 488	/*
 489	 * Normally, an absence of a "ranges" property means we are
 490	 * crossing a non-translatable boundary, and thus the addresses
 491	 * below the current cannot be converted to CPU physical ones.
 492	 * Unfortunately, while this is very clear in the spec, it's not
 493	 * what Apple understood, and they do have things like /uni-n or
 494	 * /ht nodes with no "ranges" property and a lot of perfectly
 495	 * useable mapped devices below them. Thus we treat the absence of
 496	 * "ranges" as equivalent to an empty "ranges" property which means
 497	 * a 1:1 translation at that level. It's up to the caller not to try
 498	 * to translate addresses that aren't supposed to be translated in
 499	 * the first place. --BenH.
 500	 *
 501	 * As far as we know, this damage only exists on Apple machines, so
 502	 * This code is only enabled on powerpc. --gcl
 503	 */
 504	ranges = of_get_property(parent, rprop, &rlen);
 505	if (ranges == NULL && !of_empty_ranges_quirk(parent)) {
 506		pr_debug("OF: no ranges; cannot translate\n");
 
 507		return 1;
 508	}
 
 509	if (ranges == NULL || rlen == 0) {
 510		offset = of_read_number(addr, na);
 511		memset(addr, 0, pna * 4);
 512		pr_debug("OF: empty ranges; 1:1 translation\n");
 513		goto finish;
 514	}
 515
 516	pr_debug("OF: walking ranges...\n");
 517
 518	/* Now walk through the ranges */
 519	rlen /= 4;
 520	rone = na + pna + ns;
 521	for (; rlen >= rone; rlen -= rone, ranges += rone) {
 522		offset = bus->map(addr, ranges, na, ns, pna);
 523		if (offset != OF_BAD_ADDR)
 524			break;
 525	}
 526	if (offset == OF_BAD_ADDR) {
 527		pr_debug("OF: not found !\n");
 528		return 1;
 529	}
 530	memcpy(addr, ranges + na, 4 * pna);
 531
 532 finish:
 533	of_dump_addr("OF: parent translation for:", addr, pna);
 534	pr_debug("OF: with offset: %llx\n", (unsigned long long)offset);
 535
 536	/* Translate it into parent bus space */
 537	return pbus->translate(addr, offset, pna);
 538}
 539
 540/*
 541 * Translate an address from the device-tree into a CPU physical address,
 542 * this walks up the tree and applies the various bus mappings on the
 543 * way.
 544 *
 545 * Note: We consider that crossing any level with #size-cells == 0 to mean
 546 * that translation is impossible (that is we are not dealing with a value
 547 * that can be mapped to a cpu physical address). This is not really specified
 548 * that way, but this is traditionally the way IBM at least do things
 549 */
 550static u64 __of_translate_address(struct device_node *dev,
 551				  const __be32 *in_addr, const char *rprop)
 552{
 553	struct device_node *parent = NULL;
 554	struct of_bus *bus, *pbus;
 555	__be32 addr[OF_MAX_ADDR_CELLS];
 556	int na, ns, pna, pns;
 557	u64 result = OF_BAD_ADDR;
 558
 559	pr_debug("OF: ** translation for device %s **\n", of_node_full_name(dev));
 560
 561	/* Increase refcount at current level */
 562	of_node_get(dev);
 563
 564	/* Get parent & match bus type */
 565	parent = of_get_parent(dev);
 566	if (parent == NULL)
 567		goto bail;
 568	bus = of_match_bus(parent);
 569
 570	/* Count address cells & copy address locally */
 571	bus->count_cells(dev, &na, &ns);
 572	if (!OF_CHECK_COUNTS(na, ns)) {
 573		pr_debug("OF: Bad cell count for %s\n", of_node_full_name(dev));
 
 574		goto bail;
 575	}
 576	memcpy(addr, in_addr, na * 4);
 577
 578	pr_debug("OF: bus is %s (na=%d, ns=%d) on %s\n",
 579	    bus->name, na, ns, of_node_full_name(parent));
 580	of_dump_addr("OF: translating address:", addr, na);
 581
 582	/* Translate */
 583	for (;;) {
 584		/* Switch to parent bus */
 585		of_node_put(dev);
 586		dev = parent;
 587		parent = of_get_parent(dev);
 588
 589		/* If root, we have finished */
 590		if (parent == NULL) {
 591			pr_debug("OF: reached root node\n");
 592			result = of_read_number(addr, na);
 593			break;
 594		}
 595
 596		/* Get new parent bus and counts */
 597		pbus = of_match_bus(parent);
 598		pbus->count_cells(dev, &pna, &pns);
 599		if (!OF_CHECK_COUNTS(pna, pns)) {
 600			pr_err("prom_parse: Bad cell count for %s\n",
 601			       of_node_full_name(dev));
 602			break;
 603		}
 604
 605		pr_debug("OF: parent bus is %s (na=%d, ns=%d) on %s\n",
 606		    pbus->name, pna, pns, of_node_full_name(parent));
 607
 608		/* Apply bus translation */
 609		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
 610			break;
 611
 612		/* Complete the move up one level */
 613		na = pna;
 614		ns = pns;
 615		bus = pbus;
 616
 617		of_dump_addr("OF: one level translation:", addr, na);
 618	}
 619 bail:
 620	of_node_put(parent);
 621	of_node_put(dev);
 622
 623	return result;
 624}
 625
 626u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
 627{
 628	return __of_translate_address(dev, in_addr, "ranges");
 629}
 630EXPORT_SYMBOL(of_translate_address);
 631
 632u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
 633{
 634	return __of_translate_address(dev, in_addr, "dma-ranges");
 635}
 636EXPORT_SYMBOL(of_translate_dma_address);
 637
 638const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
 639		    unsigned int *flags)
 640{
 641	const __be32 *prop;
 642	unsigned int psize;
 643	struct device_node *parent;
 644	struct of_bus *bus;
 645	int onesize, i, na, ns;
 646
 647	/* Get parent & match bus type */
 648	parent = of_get_parent(dev);
 649	if (parent == NULL)
 650		return NULL;
 651	bus = of_match_bus(parent);
 652	bus->count_cells(dev, &na, &ns);
 653	of_node_put(parent);
 654	if (!OF_CHECK_ADDR_COUNT(na))
 655		return NULL;
 656
 657	/* Get "reg" or "assigned-addresses" property */
 658	prop = of_get_property(dev, bus->addresses, &psize);
 659	if (prop == NULL)
 660		return NULL;
 661	psize /= 4;
 662
 663	onesize = na + ns;
 664	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
 665		if (i == index) {
 666			if (size)
 667				*size = of_read_number(prop + na, ns);
 668			if (flags)
 669				*flags = bus->get_flags(prop);
 670			return prop;
 671		}
 672	return NULL;
 673}
 674EXPORT_SYMBOL(of_get_address);
 675
 676#ifdef PCI_IOBASE
 677struct io_range {
 678	struct list_head list;
 679	phys_addr_t start;
 680	resource_size_t size;
 681};
 682
 683static LIST_HEAD(io_range_list);
 684static DEFINE_SPINLOCK(io_range_lock);
 685#endif
 686
 687/*
 688 * Record the PCI IO range (expressed as CPU physical address + size).
 689 * Return a negative value if an error has occured, zero otherwise
 690 */
 691int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
 692{
 693	int err = 0;
 694
 695#ifdef PCI_IOBASE
 696	struct io_range *range;
 697	resource_size_t allocated_size = 0;
 698
 699	/* check if the range hasn't been previously recorded */
 700	spin_lock(&io_range_lock);
 701	list_for_each_entry(range, &io_range_list, list) {
 702		if (addr >= range->start && addr + size <= range->start + size) {
 703			/* range already registered, bail out */
 704			goto end_register;
 705		}
 706		allocated_size += range->size;
 707	}
 708
 709	/* range not registed yet, check for available space */
 710	if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
 711		/* if it's too big check if 64K space can be reserved */
 712		if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
 713			err = -E2BIG;
 714			goto end_register;
 715		}
 716
 717		size = SZ_64K;
 718		pr_warn("Requested IO range too big, new size set to 64K\n");
 719	}
 720
 721	/* add the range to the list */
 722	range = kzalloc(sizeof(*range), GFP_ATOMIC);
 723	if (!range) {
 724		err = -ENOMEM;
 725		goto end_register;
 726	}
 727
 728	range->start = addr;
 729	range->size = size;
 730
 731	list_add_tail(&range->list, &io_range_list);
 732
 733end_register:
 734	spin_unlock(&io_range_lock);
 735#endif
 736
 737	return err;
 738}
 739
 740phys_addr_t pci_pio_to_address(unsigned long pio)
 741{
 742	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
 743
 744#ifdef PCI_IOBASE
 745	struct io_range *range;
 746	resource_size_t allocated_size = 0;
 747
 748	if (pio > IO_SPACE_LIMIT)
 749		return address;
 750
 751	spin_lock(&io_range_lock);
 752	list_for_each_entry(range, &io_range_list, list) {
 753		if (pio >= allocated_size && pio < allocated_size + range->size) {
 754			address = range->start + pio - allocated_size;
 755			break;
 756		}
 757		allocated_size += range->size;
 758	}
 759	spin_unlock(&io_range_lock);
 760#endif
 761
 762	return address;
 763}
 764
 765unsigned long __weak pci_address_to_pio(phys_addr_t address)
 766{
 767#ifdef PCI_IOBASE
 768	struct io_range *res;
 769	resource_size_t offset = 0;
 770	unsigned long addr = -1;
 771
 772	spin_lock(&io_range_lock);
 773	list_for_each_entry(res, &io_range_list, list) {
 774		if (address >= res->start && address < res->start + res->size) {
 775			addr = address - res->start + offset;
 776			break;
 777		}
 778		offset += res->size;
 779	}
 780	spin_unlock(&io_range_lock);
 781
 782	return addr;
 783#else
 784	if (address > IO_SPACE_LIMIT)
 785		return (unsigned long)-1;
 786
 787	return (unsigned long) address;
 788#endif
 789}
 790
 791static int __of_address_to_resource(struct device_node *dev,
 792		const __be32 *addrp, u64 size, unsigned int flags,
 793		const char *name, struct resource *r)
 794{
 795	u64 taddr;
 796
 797	if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0)
 798		return -EINVAL;
 799	taddr = of_translate_address(dev, addrp);
 800	if (taddr == OF_BAD_ADDR)
 801		return -EINVAL;
 802	memset(r, 0, sizeof(struct resource));
 803	if (flags & IORESOURCE_IO) {
 804		unsigned long port;
 805		port = pci_address_to_pio(taddr);
 806		if (port == (unsigned long)-1)
 807			return -EINVAL;
 808		r->start = port;
 809		r->end = port + size - 1;
 810	} else {
 811		r->start = taddr;
 812		r->end = taddr + size - 1;
 813	}
 814	r->flags = flags;
 815	r->name = name ? name : dev->full_name;
 816
 817	return 0;
 818}
 819
 820/**
 821 * of_address_to_resource - Translate device tree address and return as resource
 822 *
 823 * Note that if your address is a PIO address, the conversion will fail if
 824 * the physical address can't be internally converted to an IO token with
 825 * pci_address_to_pio(), that is because it's either called to early or it
 826 * can't be matched to any host bridge IO space
 827 */
 828int of_address_to_resource(struct device_node *dev, int index,
 829			   struct resource *r)
 830{
 831	const __be32	*addrp;
 832	u64		size;
 833	unsigned int	flags;
 834	const char	*name = NULL;
 835
 836	addrp = of_get_address(dev, index, &size, &flags);
 837	if (addrp == NULL)
 838		return -EINVAL;
 839
 840	/* Get optional "reg-names" property to add a name to a resource */
 841	of_property_read_string_index(dev, "reg-names",	index, &name);
 842
 843	return __of_address_to_resource(dev, addrp, size, flags, name, r);
 844}
 845EXPORT_SYMBOL_GPL(of_address_to_resource);
 846
 847struct device_node *of_find_matching_node_by_address(struct device_node *from,
 848					const struct of_device_id *matches,
 849					u64 base_address)
 850{
 851	struct device_node *dn = of_find_matching_node(from, matches);
 852	struct resource res;
 853
 854	while (dn) {
 855		if (!of_address_to_resource(dn, 0, &res) &&
 856		    res.start == base_address)
 
 857			return dn;
 858
 859		dn = of_find_matching_node(dn, matches);
 860	}
 861
 862	return NULL;
 863}
 864
 865
 866/**
 867 * of_iomap - Maps the memory mapped IO for a given device_node
 868 * @device:	the device whose io range will be mapped
 869 * @index:	index of the io range
 870 *
 871 * Returns a pointer to the mapped memory
 872 */
 873void __iomem *of_iomap(struct device_node *np, int index)
 874{
 875	struct resource res;
 876
 877	if (of_address_to_resource(np, index, &res))
 878		return NULL;
 879
 880	return ioremap(res.start, resource_size(&res));
 881}
 882EXPORT_SYMBOL(of_iomap);
 883
 884/*
 885 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
 886 *			   for a given device_node
 887 * @device:	the device whose io range will be mapped
 888 * @index:	index of the io range
 889 * @name:	name of the resource
 890 *
 891 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
 892 * error code on failure. Usage example:
 893 *
 894 *	base = of_io_request_and_map(node, 0, "foo");
 895 *	if (IS_ERR(base))
 896 *		return PTR_ERR(base);
 897 */
 898void __iomem *of_io_request_and_map(struct device_node *np, int index,
 899					const char *name)
 900{
 901	struct resource res;
 902	void __iomem *mem;
 903
 904	if (of_address_to_resource(np, index, &res))
 905		return IOMEM_ERR_PTR(-EINVAL);
 906
 907	if (!request_mem_region(res.start, resource_size(&res), name))
 908		return IOMEM_ERR_PTR(-EBUSY);
 909
 910	mem = ioremap(res.start, resource_size(&res));
 911	if (!mem) {
 912		release_mem_region(res.start, resource_size(&res));
 913		return IOMEM_ERR_PTR(-ENOMEM);
 914	}
 915
 916	return mem;
 917}
 918EXPORT_SYMBOL(of_io_request_and_map);
 919
 920/**
 921 * of_dma_get_range - Get DMA range info
 922 * @np:		device node to get DMA range info
 923 * @dma_addr:	pointer to store initial DMA address of DMA range
 924 * @paddr:	pointer to store initial CPU address of DMA range
 925 * @size:	pointer to store size of DMA range
 926 *
 927 * Look in bottom up direction for the first "dma-ranges" property
 928 * and parse it.
 929 *  dma-ranges format:
 930 *	DMA addr (dma_addr)	: naddr cells
 931 *	CPU addr (phys_addr_t)	: pna cells
 932 *	size			: nsize cells
 933 *
 934 * It returns -ENODEV if "dma-ranges" property was not found
 935 * for this device in DT.
 936 */
 937int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
 938{
 939	struct device_node *node = of_node_get(np);
 940	const __be32 *ranges = NULL;
 941	int len, naddr, nsize, pna;
 942	int ret = 0;
 943	u64 dmaaddr;
 944
 945	if (!node)
 946		return -EINVAL;
 947
 948	while (1) {
 949		naddr = of_n_addr_cells(node);
 950		nsize = of_n_size_cells(node);
 951		node = of_get_next_parent(node);
 952		if (!node)
 953			break;
 954
 955		ranges = of_get_property(node, "dma-ranges", &len);
 956
 957		/* Ignore empty ranges, they imply no translation required */
 958		if (ranges && len > 0)
 959			break;
 960
 961		/*
 962		 * At least empty ranges has to be defined for parent node if
 963		 * DMA is supported
 964		 */
 965		if (!ranges)
 966			break;
 967	}
 968
 969	if (!ranges) {
 970		pr_debug("%s: no dma-ranges found for node(%s)\n",
 971			 __func__, np->full_name);
 972		ret = -ENODEV;
 973		goto out;
 974	}
 975
 976	len /= sizeof(u32);
 977
 978	pna = of_n_addr_cells(node);
 979
 980	/* dma-ranges format:
 981	 * DMA addr	: naddr cells
 982	 * CPU addr	: pna cells
 983	 * size		: nsize cells
 984	 */
 985	dmaaddr = of_read_number(ranges, naddr);
 986	*paddr = of_translate_dma_address(np, ranges);
 987	if (*paddr == OF_BAD_ADDR) {
 988		pr_err("%s: translation of DMA address(%pad) to CPU address failed node(%s)\n",
 989		       __func__, dma_addr, np->full_name);
 990		ret = -EINVAL;
 991		goto out;
 992	}
 993	*dma_addr = dmaaddr;
 994
 995	*size = of_read_number(ranges + naddr + pna, nsize);
 996
 997	pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
 998		 *dma_addr, *paddr, *size);
 999
1000out:
1001	of_node_put(node);
1002
1003	return ret;
1004}
1005EXPORT_SYMBOL_GPL(of_dma_get_range);
1006
1007/**
1008 * of_dma_is_coherent - Check if device is coherent
1009 * @np:	device node
1010 *
1011 * It returns true if "dma-coherent" property was found
1012 * for this device in DT.
1013 */
1014bool of_dma_is_coherent(struct device_node *np)
1015{
1016	struct device_node *node = of_node_get(np);
1017
1018	while (node) {
1019		if (of_property_read_bool(node, "dma-coherent")) {
1020			of_node_put(node);
1021			return true;
1022		}
1023		node = of_get_next_parent(node);
1024	}
1025	of_node_put(node);
1026	return false;
1027}
1028EXPORT_SYMBOL_GPL(of_dma_is_coherent);