Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1/*
   2 * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
   3 *
   4 * MCP2510 support and bug fixes by Christian Pellegrin
   5 * <chripell@evolware.org>
   6 *
   7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
   8 *
   9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10 * Written under contract by:
  11 *   Chris Elston, Katalix Systems, Ltd.
  12 *
  13 * Based on Microchip MCP251x CAN controller driver written by
  14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15 *
  16 * Based on CAN bus driver for the CCAN controller written by
  17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18 * - Simon Kallweit, intefo AG
  19 * Copyright 2007
  20 *
  21 * This program is free software; you can redistribute it and/or modify
  22 * it under the terms of the version 2 of the GNU General Public License
  23 * as published by the Free Software Foundation
  24 *
  25 * This program is distributed in the hope that it will be useful,
  26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  28 * GNU General Public License for more details.
  29 *
  30 * You should have received a copy of the GNU General Public License
  31 * along with this program; if not, write to the Free Software
  32 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  33 *
  34 *
  35 *
  36 * Your platform definition file should specify something like:
  37 *
  38 * static struct mcp251x_platform_data mcp251x_info = {
  39 *         .oscillator_frequency = 8000000,
  40 *         .board_specific_setup = &mcp251x_setup,
  41 *         .power_enable = mcp251x_power_enable,
  42 *         .transceiver_enable = NULL,
  43 * };
  44 *
  45 * static struct spi_board_info spi_board_info[] = {
  46 *         {
  47 *                 .modalias = "mcp2510",
  48 *			// or "mcp2515" depending on your controller
  49 *                 .platform_data = &mcp251x_info,
  50 *                 .irq = IRQ_EINT13,
  51 *                 .max_speed_hz = 2*1000*1000,
  52 *                 .chip_select = 2,
  53 *         },
  54 * };
  55 *
  56 * Please see mcp251x.h for a description of the fields in
  57 * struct mcp251x_platform_data.
  58 *
  59 */
  60
  61#include <linux/can/core.h>
  62#include <linux/can/dev.h>
  63#include <linux/can/platform/mcp251x.h>
  64#include <linux/completion.h>
  65#include <linux/delay.h>
  66#include <linux/device.h>
  67#include <linux/dma-mapping.h>
  68#include <linux/freezer.h>
  69#include <linux/interrupt.h>
  70#include <linux/io.h>
  71#include <linux/kernel.h>
  72#include <linux/module.h>
  73#include <linux/netdevice.h>
  74#include <linux/platform_device.h>
  75#include <linux/slab.h>
  76#include <linux/spi/spi.h>
  77#include <linux/uaccess.h>
  78
  79/* SPI interface instruction set */
  80#define INSTRUCTION_WRITE	0x02
  81#define INSTRUCTION_READ	0x03
  82#define INSTRUCTION_BIT_MODIFY	0x05
  83#define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
  84#define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
  85#define INSTRUCTION_RESET	0xC0
  86#define RTS_TXB0		0x01
  87#define RTS_TXB1		0x02
  88#define RTS_TXB2		0x04
  89#define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))
  90
  91
  92/* MPC251x registers */
  93#define CANSTAT	      0x0e
  94#define CANCTRL	      0x0f
  95#  define CANCTRL_REQOP_MASK	    0xe0
  96#  define CANCTRL_REQOP_CONF	    0x80
  97#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
  98#  define CANCTRL_REQOP_LOOPBACK    0x40
  99#  define CANCTRL_REQOP_SLEEP	    0x20
 100#  define CANCTRL_REQOP_NORMAL	    0x00
 101#  define CANCTRL_OSM		    0x08
 102#  define CANCTRL_ABAT		    0x10
 103#define TEC	      0x1c
 104#define REC	      0x1d
 105#define CNF1	      0x2a
 106#  define CNF1_SJW_SHIFT   6
 107#define CNF2	      0x29
 108#  define CNF2_BTLMODE	   0x80
 109#  define CNF2_SAM         0x40
 110#  define CNF2_PS1_SHIFT   3
 111#define CNF3	      0x28
 112#  define CNF3_SOF	   0x08
 113#  define CNF3_WAKFIL	   0x04
 114#  define CNF3_PHSEG2_MASK 0x07
 115#define CANINTE	      0x2b
 116#  define CANINTE_MERRE 0x80
 117#  define CANINTE_WAKIE 0x40
 118#  define CANINTE_ERRIE 0x20
 119#  define CANINTE_TX2IE 0x10
 120#  define CANINTE_TX1IE 0x08
 121#  define CANINTE_TX0IE 0x04
 122#  define CANINTE_RX1IE 0x02
 123#  define CANINTE_RX0IE 0x01
 124#define CANINTF	      0x2c
 125#  define CANINTF_MERRF 0x80
 126#  define CANINTF_WAKIF 0x40
 127#  define CANINTF_ERRIF 0x20
 128#  define CANINTF_TX2IF 0x10
 129#  define CANINTF_TX1IF 0x08
 130#  define CANINTF_TX0IF 0x04
 131#  define CANINTF_RX1IF 0x02
 132#  define CANINTF_RX0IF 0x01
 133#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
 134#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
 135#  define CANINTF_ERR (CANINTF_ERRIF)
 136#define EFLG	      0x2d
 137#  define EFLG_EWARN	0x01
 138#  define EFLG_RXWAR	0x02
 139#  define EFLG_TXWAR	0x04
 140#  define EFLG_RXEP	0x08
 141#  define EFLG_TXEP	0x10
 142#  define EFLG_TXBO	0x20
 143#  define EFLG_RX0OVR	0x40
 144#  define EFLG_RX1OVR	0x80
 145#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
 146#  define TXBCTRL_ABTF	0x40
 147#  define TXBCTRL_MLOA	0x20
 148#  define TXBCTRL_TXERR 0x10
 149#  define TXBCTRL_TXREQ 0x08
 150#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
 151#  define SIDH_SHIFT    3
 152#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
 153#  define SIDL_SID_MASK    7
 154#  define SIDL_SID_SHIFT   5
 155#  define SIDL_EXIDE_SHIFT 3
 156#  define SIDL_EID_SHIFT   16
 157#  define SIDL_EID_MASK    3
 158#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
 159#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
 160#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
 161#  define DLC_RTR_SHIFT    6
 162#define TXBCTRL_OFF 0
 163#define TXBSIDH_OFF 1
 164#define TXBSIDL_OFF 2
 165#define TXBEID8_OFF 3
 166#define TXBEID0_OFF 4
 167#define TXBDLC_OFF  5
 168#define TXBDAT_OFF  6
 169#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
 170#  define RXBCTRL_BUKT	0x04
 171#  define RXBCTRL_RXM0	0x20
 172#  define RXBCTRL_RXM1	0x40
 173#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
 174#  define RXBSIDH_SHIFT 3
 175#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
 176#  define RXBSIDL_IDE   0x08
 177#  define RXBSIDL_SRR   0x10
 178#  define RXBSIDL_EID   3
 179#  define RXBSIDL_SHIFT 5
 180#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
 181#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
 182#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
 183#  define RXBDLC_LEN_MASK  0x0f
 184#  define RXBDLC_RTR       0x40
 185#define RXBCTRL_OFF 0
 186#define RXBSIDH_OFF 1
 187#define RXBSIDL_OFF 2
 188#define RXBEID8_OFF 3
 189#define RXBEID0_OFF 4
 190#define RXBDLC_OFF  5
 191#define RXBDAT_OFF  6
 192#define RXFSIDH(n) ((n) * 4)
 193#define RXFSIDL(n) ((n) * 4 + 1)
 194#define RXFEID8(n) ((n) * 4 + 2)
 195#define RXFEID0(n) ((n) * 4 + 3)
 196#define RXMSIDH(n) ((n) * 4 + 0x20)
 197#define RXMSIDL(n) ((n) * 4 + 0x21)
 198#define RXMEID8(n) ((n) * 4 + 0x22)
 199#define RXMEID0(n) ((n) * 4 + 0x23)
 200
 201#define GET_BYTE(val, byte)			\
 202	(((val) >> ((byte) * 8)) & 0xff)
 203#define SET_BYTE(val, byte)			\
 204	(((val) & 0xff) << ((byte) * 8))
 205
 206/*
 207 * Buffer size required for the largest SPI transfer (i.e., reading a
 208 * frame)
 209 */
 210#define CAN_FRAME_MAX_DATA_LEN	8
 211#define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
 212#define CAN_FRAME_MAX_BITS	128
 213
 214#define TX_ECHO_SKB_MAX	1
 215
 216#define DEVICE_NAME "mcp251x"
 217
 218static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
 219module_param(mcp251x_enable_dma, int, S_IRUGO);
 220MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
 221
 222static struct can_bittiming_const mcp251x_bittiming_const = {
 223	.name = DEVICE_NAME,
 224	.tseg1_min = 3,
 225	.tseg1_max = 16,
 226	.tseg2_min = 2,
 227	.tseg2_max = 8,
 228	.sjw_max = 4,
 229	.brp_min = 1,
 230	.brp_max = 64,
 231	.brp_inc = 1,
 232};
 233
 234enum mcp251x_model {
 235	CAN_MCP251X_MCP2510	= 0x2510,
 236	CAN_MCP251X_MCP2515	= 0x2515,
 237};
 238
 239struct mcp251x_priv {
 240	struct can_priv	   can;
 241	struct net_device *net;
 242	struct spi_device *spi;
 243	enum mcp251x_model model;
 244
 245	struct mutex mcp_lock; /* SPI device lock */
 246
 247	u8 *spi_tx_buf;
 248	u8 *spi_rx_buf;
 249	dma_addr_t spi_tx_dma;
 250	dma_addr_t spi_rx_dma;
 251
 252	struct sk_buff *tx_skb;
 253	int tx_len;
 254
 255	struct workqueue_struct *wq;
 256	struct work_struct tx_work;
 257	struct work_struct restart_work;
 258
 259	int force_quit;
 260	int after_suspend;
 261#define AFTER_SUSPEND_UP 1
 262#define AFTER_SUSPEND_DOWN 2
 263#define AFTER_SUSPEND_POWER 4
 264#define AFTER_SUSPEND_RESTART 8
 265	int restart_tx;
 266};
 267
 268#define MCP251X_IS(_model) \
 269static inline int mcp251x_is_##_model(struct spi_device *spi) \
 270{ \
 271	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev); \
 272	return priv->model == CAN_MCP251X_MCP##_model; \
 273}
 274
 275MCP251X_IS(2510);
 276MCP251X_IS(2515);
 277
 278static void mcp251x_clean(struct net_device *net)
 279{
 280	struct mcp251x_priv *priv = netdev_priv(net);
 281
 282	if (priv->tx_skb || priv->tx_len)
 283		net->stats.tx_errors++;
 284	if (priv->tx_skb)
 285		dev_kfree_skb(priv->tx_skb);
 286	if (priv->tx_len)
 287		can_free_echo_skb(priv->net, 0);
 288	priv->tx_skb = NULL;
 289	priv->tx_len = 0;
 290}
 291
 292/*
 293 * Note about handling of error return of mcp251x_spi_trans: accessing
 294 * registers via SPI is not really different conceptually than using
 295 * normal I/O assembler instructions, although it's much more
 296 * complicated from a practical POV. So it's not advisable to always
 297 * check the return value of this function. Imagine that every
 298 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
 299 * error();", it would be a great mess (well there are some situation
 300 * when exception handling C++ like could be useful after all). So we
 301 * just check that transfers are OK at the beginning of our
 302 * conversation with the chip and to avoid doing really nasty things
 303 * (like injecting bogus packets in the network stack).
 304 */
 305static int mcp251x_spi_trans(struct spi_device *spi, int len)
 306{
 307	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
 308	struct spi_transfer t = {
 309		.tx_buf = priv->spi_tx_buf,
 310		.rx_buf = priv->spi_rx_buf,
 311		.len = len,
 312		.cs_change = 0,
 313	};
 314	struct spi_message m;
 315	int ret;
 316
 317	spi_message_init(&m);
 318
 319	if (mcp251x_enable_dma) {
 320		t.tx_dma = priv->spi_tx_dma;
 321		t.rx_dma = priv->spi_rx_dma;
 322		m.is_dma_mapped = 1;
 323	}
 324
 325	spi_message_add_tail(&t, &m);
 326
 327	ret = spi_sync(spi, &m);
 328	if (ret)
 329		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
 330	return ret;
 331}
 332
 333static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
 334{
 335	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
 336	u8 val = 0;
 337
 338	priv->spi_tx_buf[0] = INSTRUCTION_READ;
 339	priv->spi_tx_buf[1] = reg;
 340
 341	mcp251x_spi_trans(spi, 3);
 342	val = priv->spi_rx_buf[2];
 343
 344	return val;
 345}
 346
 347static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
 348		uint8_t *v1, uint8_t *v2)
 349{
 350	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
 351
 352	priv->spi_tx_buf[0] = INSTRUCTION_READ;
 353	priv->spi_tx_buf[1] = reg;
 354
 355	mcp251x_spi_trans(spi, 4);
 356
 357	*v1 = priv->spi_rx_buf[2];
 358	*v2 = priv->spi_rx_buf[3];
 359}
 360
 361static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
 362{
 363	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
 364
 365	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
 366	priv->spi_tx_buf[1] = reg;
 367	priv->spi_tx_buf[2] = val;
 368
 369	mcp251x_spi_trans(spi, 3);
 370}
 371
 372static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
 373			       u8 mask, uint8_t val)
 374{
 375	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
 376
 377	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
 378	priv->spi_tx_buf[1] = reg;
 379	priv->spi_tx_buf[2] = mask;
 380	priv->spi_tx_buf[3] = val;
 381
 382	mcp251x_spi_trans(spi, 4);
 383}
 384
 385static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
 386				int len, int tx_buf_idx)
 387{
 388	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
 389
 390	if (mcp251x_is_2510(spi)) {
 391		int i;
 392
 393		for (i = 1; i < TXBDAT_OFF + len; i++)
 394			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
 395					  buf[i]);
 396	} else {
 397		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
 398		mcp251x_spi_trans(spi, TXBDAT_OFF + len);
 399	}
 400}
 401
 402static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
 403			  int tx_buf_idx)
 404{
 405	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
 406	u32 sid, eid, exide, rtr;
 407	u8 buf[SPI_TRANSFER_BUF_LEN];
 408
 409	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
 410	if (exide)
 411		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
 412	else
 413		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
 414	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
 415	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
 416
 417	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
 418	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
 419	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
 420		(exide << SIDL_EXIDE_SHIFT) |
 421		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
 422	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
 423	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
 424	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
 425	memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
 426	mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
 427
 428	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
 429	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
 430	mcp251x_spi_trans(priv->spi, 1);
 431}
 432
 433static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
 434				int buf_idx)
 435{
 436	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
 437
 438	if (mcp251x_is_2510(spi)) {
 439		int i, len;
 440
 441		for (i = 1; i < RXBDAT_OFF; i++)
 442			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 443
 444		len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 445		for (; i < (RXBDAT_OFF + len); i++)
 446			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 447	} else {
 448		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
 449		mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
 450		memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
 451	}
 452}
 453
 454static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
 455{
 456	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
 457	struct sk_buff *skb;
 458	struct can_frame *frame;
 459	u8 buf[SPI_TRANSFER_BUF_LEN];
 460
 461	skb = alloc_can_skb(priv->net, &frame);
 462	if (!skb) {
 463		dev_err(&spi->dev, "cannot allocate RX skb\n");
 464		priv->net->stats.rx_dropped++;
 465		return;
 466	}
 467
 468	mcp251x_hw_rx_frame(spi, buf, buf_idx);
 469	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
 470		/* Extended ID format */
 471		frame->can_id = CAN_EFF_FLAG;
 472		frame->can_id |=
 473			/* Extended ID part */
 474			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
 475			SET_BYTE(buf[RXBEID8_OFF], 1) |
 476			SET_BYTE(buf[RXBEID0_OFF], 0) |
 477			/* Standard ID part */
 478			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 479			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
 480		/* Remote transmission request */
 481		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
 482			frame->can_id |= CAN_RTR_FLAG;
 483	} else {
 484		/* Standard ID format */
 485		frame->can_id =
 486			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 487			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
 488		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
 489			frame->can_id |= CAN_RTR_FLAG;
 490	}
 491	/* Data length */
 492	frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 493	memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
 494
 495	priv->net->stats.rx_packets++;
 496	priv->net->stats.rx_bytes += frame->can_dlc;
 497	netif_rx_ni(skb);
 498}
 499
 500static void mcp251x_hw_sleep(struct spi_device *spi)
 501{
 502	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
 503}
 504
 505static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
 506					   struct net_device *net)
 507{
 508	struct mcp251x_priv *priv = netdev_priv(net);
 509	struct spi_device *spi = priv->spi;
 510
 511	if (priv->tx_skb || priv->tx_len) {
 512		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
 513		return NETDEV_TX_BUSY;
 514	}
 515
 516	if (can_dropped_invalid_skb(net, skb))
 517		return NETDEV_TX_OK;
 518
 519	netif_stop_queue(net);
 520	priv->tx_skb = skb;
 521	queue_work(priv->wq, &priv->tx_work);
 522
 523	return NETDEV_TX_OK;
 524}
 525
 526static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
 527{
 528	struct mcp251x_priv *priv = netdev_priv(net);
 529
 530	switch (mode) {
 531	case CAN_MODE_START:
 532		mcp251x_clean(net);
 533		/* We have to delay work since SPI I/O may sleep */
 534		priv->can.state = CAN_STATE_ERROR_ACTIVE;
 535		priv->restart_tx = 1;
 536		if (priv->can.restart_ms == 0)
 537			priv->after_suspend = AFTER_SUSPEND_RESTART;
 538		queue_work(priv->wq, &priv->restart_work);
 539		break;
 540	default:
 541		return -EOPNOTSUPP;
 542	}
 543
 544	return 0;
 545}
 546
 547static int mcp251x_set_normal_mode(struct spi_device *spi)
 548{
 549	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
 550	unsigned long timeout;
 551
 552	/* Enable interrupts */
 553	mcp251x_write_reg(spi, CANINTE,
 554			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
 555			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
 556
 557	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 558		/* Put device into loopback mode */
 559		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
 560	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
 561		/* Put device into listen-only mode */
 562		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
 563	} else {
 564		/* Put device into normal mode */
 565		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
 566
 567		/* Wait for the device to enter normal mode */
 568		timeout = jiffies + HZ;
 569		while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
 570			schedule();
 571			if (time_after(jiffies, timeout)) {
 572				dev_err(&spi->dev, "MCP251x didn't"
 573					" enter in normal mode\n");
 574				return -EBUSY;
 575			}
 576		}
 577	}
 578	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 579	return 0;
 580}
 581
 582static int mcp251x_do_set_bittiming(struct net_device *net)
 583{
 584	struct mcp251x_priv *priv = netdev_priv(net);
 585	struct can_bittiming *bt = &priv->can.bittiming;
 586	struct spi_device *spi = priv->spi;
 587
 588	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
 589			  (bt->brp - 1));
 590	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
 591			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
 592			   CNF2_SAM : 0) |
 593			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
 594			  (bt->prop_seg - 1));
 595	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
 596			   (bt->phase_seg2 - 1));
 597	dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
 598		 mcp251x_read_reg(spi, CNF1),
 599		 mcp251x_read_reg(spi, CNF2),
 600		 mcp251x_read_reg(spi, CNF3));
 601
 602	return 0;
 603}
 604
 605static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
 606			 struct spi_device *spi)
 607{
 608	mcp251x_do_set_bittiming(net);
 609
 610	mcp251x_write_reg(spi, RXBCTRL(0),
 611			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
 612	mcp251x_write_reg(spi, RXBCTRL(1),
 613			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
 614	return 0;
 615}
 616
 617static int mcp251x_hw_reset(struct spi_device *spi)
 618{
 619	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
 620	int ret;
 621	unsigned long timeout;
 622
 623	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
 624	ret = spi_write(spi, priv->spi_tx_buf, 1);
 625	if (ret) {
 626		dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
 627		return -EIO;
 628	}
 629
 630	/* Wait for reset to finish */
 631	timeout = jiffies + HZ;
 632	mdelay(10);
 633	while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK)
 634	       != CANCTRL_REQOP_CONF) {
 635		schedule();
 636		if (time_after(jiffies, timeout)) {
 637			dev_err(&spi->dev, "MCP251x didn't"
 638				" enter in conf mode after reset\n");
 639			return -EBUSY;
 640		}
 641	}
 642	return 0;
 643}
 644
 645static int mcp251x_hw_probe(struct spi_device *spi)
 646{
 647	int st1, st2;
 648
 649	mcp251x_hw_reset(spi);
 650
 651	/*
 652	 * Please note that these are "magic values" based on after
 653	 * reset defaults taken from data sheet which allows us to see
 654	 * if we really have a chip on the bus (we avoid common all
 655	 * zeroes or all ones situations)
 656	 */
 657	st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
 658	st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;
 659
 660	dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
 661
 662	/* Check for power up default values */
 663	return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
 664}
 665
 666static void mcp251x_open_clean(struct net_device *net)
 667{
 668	struct mcp251x_priv *priv = netdev_priv(net);
 669	struct spi_device *spi = priv->spi;
 670	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
 671
 672	free_irq(spi->irq, priv);
 673	mcp251x_hw_sleep(spi);
 674	if (pdata->transceiver_enable)
 675		pdata->transceiver_enable(0);
 676	close_candev(net);
 677}
 678
 679static int mcp251x_stop(struct net_device *net)
 680{
 681	struct mcp251x_priv *priv = netdev_priv(net);
 682	struct spi_device *spi = priv->spi;
 683	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
 684
 685	close_candev(net);
 686
 687	priv->force_quit = 1;
 688	free_irq(spi->irq, priv);
 689	destroy_workqueue(priv->wq);
 690	priv->wq = NULL;
 691
 692	mutex_lock(&priv->mcp_lock);
 693
 694	/* Disable and clear pending interrupts */
 695	mcp251x_write_reg(spi, CANINTE, 0x00);
 696	mcp251x_write_reg(spi, CANINTF, 0x00);
 697
 698	mcp251x_write_reg(spi, TXBCTRL(0), 0);
 699	mcp251x_clean(net);
 700
 701	mcp251x_hw_sleep(spi);
 702
 703	if (pdata->transceiver_enable)
 704		pdata->transceiver_enable(0);
 705
 706	priv->can.state = CAN_STATE_STOPPED;
 707
 708	mutex_unlock(&priv->mcp_lock);
 709
 710	return 0;
 711}
 712
 713static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
 714{
 715	struct sk_buff *skb;
 716	struct can_frame *frame;
 717
 718	skb = alloc_can_err_skb(net, &frame);
 719	if (skb) {
 720		frame->can_id |= can_id;
 721		frame->data[1] = data1;
 722		netif_rx_ni(skb);
 723	} else {
 724		netdev_err(net, "cannot allocate error skb\n");
 725	}
 726}
 727
 728static void mcp251x_tx_work_handler(struct work_struct *ws)
 729{
 730	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
 731						 tx_work);
 732	struct spi_device *spi = priv->spi;
 733	struct net_device *net = priv->net;
 734	struct can_frame *frame;
 735
 736	mutex_lock(&priv->mcp_lock);
 737	if (priv->tx_skb) {
 738		if (priv->can.state == CAN_STATE_BUS_OFF) {
 739			mcp251x_clean(net);
 740		} else {
 741			frame = (struct can_frame *)priv->tx_skb->data;
 742
 743			if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
 744				frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
 745			mcp251x_hw_tx(spi, frame, 0);
 746			priv->tx_len = 1 + frame->can_dlc;
 747			can_put_echo_skb(priv->tx_skb, net, 0);
 748			priv->tx_skb = NULL;
 749		}
 750	}
 751	mutex_unlock(&priv->mcp_lock);
 752}
 753
 754static void mcp251x_restart_work_handler(struct work_struct *ws)
 755{
 756	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
 757						 restart_work);
 758	struct spi_device *spi = priv->spi;
 759	struct net_device *net = priv->net;
 760
 761	mutex_lock(&priv->mcp_lock);
 762	if (priv->after_suspend) {
 763		mdelay(10);
 764		mcp251x_hw_reset(spi);
 765		mcp251x_setup(net, priv, spi);
 766		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
 767			mcp251x_set_normal_mode(spi);
 768		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
 769			netif_device_attach(net);
 770			mcp251x_clean(net);
 771			mcp251x_set_normal_mode(spi);
 772			netif_wake_queue(net);
 773		} else {
 774			mcp251x_hw_sleep(spi);
 775		}
 776		priv->after_suspend = 0;
 777		priv->force_quit = 0;
 778	}
 779
 780	if (priv->restart_tx) {
 781		priv->restart_tx = 0;
 782		mcp251x_write_reg(spi, TXBCTRL(0), 0);
 783		mcp251x_clean(net);
 784		netif_wake_queue(net);
 785		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
 786	}
 787	mutex_unlock(&priv->mcp_lock);
 788}
 789
 790static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
 791{
 792	struct mcp251x_priv *priv = dev_id;
 793	struct spi_device *spi = priv->spi;
 794	struct net_device *net = priv->net;
 795
 796	mutex_lock(&priv->mcp_lock);
 797	while (!priv->force_quit) {
 798		enum can_state new_state;
 799		u8 intf, eflag;
 800		u8 clear_intf = 0;
 801		int can_id = 0, data1 = 0;
 802
 803		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
 804
 805		/* mask out flags we don't care about */
 806		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
 807
 808		/* receive buffer 0 */
 809		if (intf & CANINTF_RX0IF) {
 810			mcp251x_hw_rx(spi, 0);
 811			/*
 812			 * Free one buffer ASAP
 813			 * (The MCP2515 does this automatically.)
 814			 */
 815			if (mcp251x_is_2510(spi))
 816				mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
 817		}
 818
 819		/* receive buffer 1 */
 820		if (intf & CANINTF_RX1IF) {
 821			mcp251x_hw_rx(spi, 1);
 822			/* the MCP2515 does this automatically */
 823			if (mcp251x_is_2510(spi))
 824				clear_intf |= CANINTF_RX1IF;
 825		}
 826
 827		/* any error or tx interrupt we need to clear? */
 828		if (intf & (CANINTF_ERR | CANINTF_TX))
 829			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
 830		if (clear_intf)
 831			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
 832
 833		if (eflag)
 834			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
 835
 836		/* Update can state */
 837		if (eflag & EFLG_TXBO) {
 838			new_state = CAN_STATE_BUS_OFF;
 839			can_id |= CAN_ERR_BUSOFF;
 840		} else if (eflag & EFLG_TXEP) {
 841			new_state = CAN_STATE_ERROR_PASSIVE;
 842			can_id |= CAN_ERR_CRTL;
 843			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
 844		} else if (eflag & EFLG_RXEP) {
 845			new_state = CAN_STATE_ERROR_PASSIVE;
 846			can_id |= CAN_ERR_CRTL;
 847			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
 848		} else if (eflag & EFLG_TXWAR) {
 849			new_state = CAN_STATE_ERROR_WARNING;
 850			can_id |= CAN_ERR_CRTL;
 851			data1 |= CAN_ERR_CRTL_TX_WARNING;
 852		} else if (eflag & EFLG_RXWAR) {
 853			new_state = CAN_STATE_ERROR_WARNING;
 854			can_id |= CAN_ERR_CRTL;
 855			data1 |= CAN_ERR_CRTL_RX_WARNING;
 856		} else {
 857			new_state = CAN_STATE_ERROR_ACTIVE;
 858		}
 859
 860		/* Update can state statistics */
 861		switch (priv->can.state) {
 862		case CAN_STATE_ERROR_ACTIVE:
 863			if (new_state >= CAN_STATE_ERROR_WARNING &&
 864			    new_state <= CAN_STATE_BUS_OFF)
 865				priv->can.can_stats.error_warning++;
 866		case CAN_STATE_ERROR_WARNING:	/* fallthrough */
 867			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
 868			    new_state <= CAN_STATE_BUS_OFF)
 869				priv->can.can_stats.error_passive++;
 870			break;
 871		default:
 872			break;
 873		}
 874		priv->can.state = new_state;
 875
 876		if (intf & CANINTF_ERRIF) {
 877			/* Handle overflow counters */
 878			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
 879				if (eflag & EFLG_RX0OVR) {
 880					net->stats.rx_over_errors++;
 881					net->stats.rx_errors++;
 882				}
 883				if (eflag & EFLG_RX1OVR) {
 884					net->stats.rx_over_errors++;
 885					net->stats.rx_errors++;
 886				}
 887				can_id |= CAN_ERR_CRTL;
 888				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
 889			}
 890			mcp251x_error_skb(net, can_id, data1);
 891		}
 892
 893		if (priv->can.state == CAN_STATE_BUS_OFF) {
 894			if (priv->can.restart_ms == 0) {
 895				priv->force_quit = 1;
 896				can_bus_off(net);
 897				mcp251x_hw_sleep(spi);
 898				break;
 899			}
 900		}
 901
 902		if (intf == 0)
 903			break;
 904
 905		if (intf & CANINTF_TX) {
 906			net->stats.tx_packets++;
 907			net->stats.tx_bytes += priv->tx_len - 1;
 908			if (priv->tx_len) {
 909				can_get_echo_skb(net, 0);
 910				priv->tx_len = 0;
 911			}
 912			netif_wake_queue(net);
 913		}
 914
 915	}
 916	mutex_unlock(&priv->mcp_lock);
 917	return IRQ_HANDLED;
 918}
 919
 920static int mcp251x_open(struct net_device *net)
 921{
 922	struct mcp251x_priv *priv = netdev_priv(net);
 923	struct spi_device *spi = priv->spi;
 924	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
 925	int ret;
 926
 927	ret = open_candev(net);
 928	if (ret) {
 929		dev_err(&spi->dev, "unable to set initial baudrate!\n");
 930		return ret;
 931	}
 932
 933	mutex_lock(&priv->mcp_lock);
 934	if (pdata->transceiver_enable)
 935		pdata->transceiver_enable(1);
 936
 937	priv->force_quit = 0;
 938	priv->tx_skb = NULL;
 939	priv->tx_len = 0;
 940
 941	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
 942		  pdata->irq_flags ? pdata->irq_flags : IRQF_TRIGGER_FALLING,
 943		  DEVICE_NAME, priv);
 944	if (ret) {
 945		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
 946		if (pdata->transceiver_enable)
 947			pdata->transceiver_enable(0);
 948		close_candev(net);
 949		goto open_unlock;
 950	}
 951
 952	priv->wq = create_freezable_workqueue("mcp251x_wq");
 953	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
 954	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
 955
 956	ret = mcp251x_hw_reset(spi);
 957	if (ret) {
 958		mcp251x_open_clean(net);
 959		goto open_unlock;
 960	}
 961	ret = mcp251x_setup(net, priv, spi);
 962	if (ret) {
 963		mcp251x_open_clean(net);
 964		goto open_unlock;
 965	}
 966	ret = mcp251x_set_normal_mode(spi);
 967	if (ret) {
 968		mcp251x_open_clean(net);
 969		goto open_unlock;
 970	}
 971	netif_wake_queue(net);
 972
 973open_unlock:
 974	mutex_unlock(&priv->mcp_lock);
 975	return ret;
 976}
 977
 978static const struct net_device_ops mcp251x_netdev_ops = {
 979	.ndo_open = mcp251x_open,
 980	.ndo_stop = mcp251x_stop,
 981	.ndo_start_xmit = mcp251x_hard_start_xmit,
 982};
 983
 984static int __devinit mcp251x_can_probe(struct spi_device *spi)
 985{
 986	struct net_device *net;
 987	struct mcp251x_priv *priv;
 988	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
 989	int ret = -ENODEV;
 990
 991	if (!pdata)
 992		/* Platform data is required for osc freq */
 993		goto error_out;
 994
 995	/* Allocate can/net device */
 996	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
 997	if (!net) {
 998		ret = -ENOMEM;
 999		goto error_alloc;
1000	}
1001
1002	net->netdev_ops = &mcp251x_netdev_ops;
1003	net->flags |= IFF_ECHO;
1004
1005	priv = netdev_priv(net);
1006	priv->can.bittiming_const = &mcp251x_bittiming_const;
1007	priv->can.do_set_mode = mcp251x_do_set_mode;
1008	priv->can.clock.freq = pdata->oscillator_frequency / 2;
1009	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1010		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1011	priv->model = spi_get_device_id(spi)->driver_data;
1012	priv->net = net;
1013	dev_set_drvdata(&spi->dev, priv);
1014
1015	priv->spi = spi;
1016	mutex_init(&priv->mcp_lock);
1017
1018	/* If requested, allocate DMA buffers */
1019	if (mcp251x_enable_dma) {
1020		spi->dev.coherent_dma_mask = ~0;
1021
1022		/*
1023		 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
1024		 * that much and share it between Tx and Rx DMA buffers.
1025		 */
1026		priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
1027						      PAGE_SIZE,
1028						      &priv->spi_tx_dma,
1029						      GFP_DMA);
1030
1031		if (priv->spi_tx_buf) {
1032			priv->spi_rx_buf = (u8 *)(priv->spi_tx_buf +
1033						  (PAGE_SIZE / 2));
1034			priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
1035							(PAGE_SIZE / 2));
1036		} else {
1037			/* Fall back to non-DMA */
1038			mcp251x_enable_dma = 0;
1039		}
1040	}
1041
1042	/* Allocate non-DMA buffers */
1043	if (!mcp251x_enable_dma) {
1044		priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
1045		if (!priv->spi_tx_buf) {
1046			ret = -ENOMEM;
1047			goto error_tx_buf;
1048		}
1049		priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
1050		if (!priv->spi_rx_buf) {
1051			ret = -ENOMEM;
1052			goto error_rx_buf;
1053		}
1054	}
1055
1056	if (pdata->power_enable)
1057		pdata->power_enable(1);
1058
1059	/* Call out to platform specific setup */
1060	if (pdata->board_specific_setup)
1061		pdata->board_specific_setup(spi);
1062
1063	SET_NETDEV_DEV(net, &spi->dev);
1064
1065	/* Configure the SPI bus */
1066	spi->mode = SPI_MODE_0;
1067	spi->bits_per_word = 8;
1068	spi_setup(spi);
1069
1070	/* Here is OK to not lock the MCP, no one knows about it yet */
1071	if (!mcp251x_hw_probe(spi)) {
1072		dev_info(&spi->dev, "Probe failed\n");
1073		goto error_probe;
1074	}
1075	mcp251x_hw_sleep(spi);
1076
1077	if (pdata->transceiver_enable)
1078		pdata->transceiver_enable(0);
1079
1080	ret = register_candev(net);
1081	if (!ret) {
1082		dev_info(&spi->dev, "probed\n");
1083		return ret;
1084	}
1085error_probe:
1086	if (!mcp251x_enable_dma)
1087		kfree(priv->spi_rx_buf);
1088error_rx_buf:
1089	if (!mcp251x_enable_dma)
1090		kfree(priv->spi_tx_buf);
1091error_tx_buf:
1092	free_candev(net);
1093	if (mcp251x_enable_dma)
1094		dma_free_coherent(&spi->dev, PAGE_SIZE,
1095				  priv->spi_tx_buf, priv->spi_tx_dma);
1096error_alloc:
1097	if (pdata->power_enable)
1098		pdata->power_enable(0);
1099	dev_err(&spi->dev, "probe failed\n");
1100error_out:
1101	return ret;
1102}
1103
1104static int __devexit mcp251x_can_remove(struct spi_device *spi)
1105{
1106	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1107	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1108	struct net_device *net = priv->net;
1109
1110	unregister_candev(net);
1111	free_candev(net);
1112
1113	if (mcp251x_enable_dma) {
1114		dma_free_coherent(&spi->dev, PAGE_SIZE,
1115				  priv->spi_tx_buf, priv->spi_tx_dma);
1116	} else {
1117		kfree(priv->spi_tx_buf);
1118		kfree(priv->spi_rx_buf);
1119	}
1120
1121	if (pdata->power_enable)
1122		pdata->power_enable(0);
1123
1124	return 0;
1125}
1126
1127#ifdef CONFIG_PM
1128static int mcp251x_can_suspend(struct spi_device *spi, pm_message_t state)
1129{
1130	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1131	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1132	struct net_device *net = priv->net;
1133
1134	priv->force_quit = 1;
1135	disable_irq(spi->irq);
1136	/*
1137	 * Note: at this point neither IST nor workqueues are running.
1138	 * open/stop cannot be called anyway so locking is not needed
1139	 */
1140	if (netif_running(net)) {
1141		netif_device_detach(net);
1142
1143		mcp251x_hw_sleep(spi);
1144		if (pdata->transceiver_enable)
1145			pdata->transceiver_enable(0);
1146		priv->after_suspend = AFTER_SUSPEND_UP;
1147	} else {
1148		priv->after_suspend = AFTER_SUSPEND_DOWN;
1149	}
1150
1151	if (pdata->power_enable) {
1152		pdata->power_enable(0);
1153		priv->after_suspend |= AFTER_SUSPEND_POWER;
1154	}
1155
1156	return 0;
1157}
1158
1159static int mcp251x_can_resume(struct spi_device *spi)
1160{
1161	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1162	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1163
1164	if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1165		pdata->power_enable(1);
1166		queue_work(priv->wq, &priv->restart_work);
1167	} else {
1168		if (priv->after_suspend & AFTER_SUSPEND_UP) {
1169			if (pdata->transceiver_enable)
1170				pdata->transceiver_enable(1);
1171			queue_work(priv->wq, &priv->restart_work);
1172		} else {
1173			priv->after_suspend = 0;
1174		}
1175	}
1176	priv->force_quit = 0;
1177	enable_irq(spi->irq);
1178	return 0;
1179}
1180#else
1181#define mcp251x_can_suspend NULL
1182#define mcp251x_can_resume NULL
1183#endif
1184
1185static const struct spi_device_id mcp251x_id_table[] = {
1186	{ "mcp2510",	CAN_MCP251X_MCP2510 },
1187	{ "mcp2515",	CAN_MCP251X_MCP2515 },
1188	{ },
1189};
1190
1191MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1192
1193static struct spi_driver mcp251x_can_driver = {
1194	.driver = {
1195		.name = DEVICE_NAME,
1196		.bus = &spi_bus_type,
1197		.owner = THIS_MODULE,
1198	},
1199
1200	.id_table = mcp251x_id_table,
1201	.probe = mcp251x_can_probe,
1202	.remove = __devexit_p(mcp251x_can_remove),
1203	.suspend = mcp251x_can_suspend,
1204	.resume = mcp251x_can_resume,
1205};
1206
1207static int __init mcp251x_can_init(void)
1208{
1209	return spi_register_driver(&mcp251x_can_driver);
1210}
1211
1212static void __exit mcp251x_can_exit(void)
1213{
1214	spi_unregister_driver(&mcp251x_can_driver);
1215}
1216
1217module_init(mcp251x_can_init);
1218module_exit(mcp251x_can_exit);
1219
1220MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1221	      "Christian Pellegrin <chripell@evolware.org>");
1222MODULE_DESCRIPTION("Microchip 251x CAN driver");
1223MODULE_LICENSE("GPL v2");