Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * Machine specific setup for xen
  3 *
  4 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  5 */
  6
  7#include <linux/module.h>
  8#include <linux/sched.h>
  9#include <linux/mm.h>
 10#include <linux/pm.h>
 11#include <linux/memblock.h>
 12#include <linux/cpuidle.h>
 13#include <linux/cpufreq.h>
 14
 15#include <asm/elf.h>
 16#include <asm/vdso.h>
 17#include <asm/e820.h>
 18#include <asm/setup.h>
 19#include <asm/acpi.h>
 20#include <asm/numa.h>
 21#include <asm/xen/hypervisor.h>
 22#include <asm/xen/hypercall.h>
 23
 24#include <xen/xen.h>
 25#include <xen/page.h>
 26#include <xen/interface/callback.h>
 27#include <xen/interface/memory.h>
 28#include <xen/interface/physdev.h>
 29#include <xen/features.h>
 
 30#include "xen-ops.h"
 31#include "vdso.h"
 
 32
 33/* These are code, but not functions.  Defined in entry.S */
 34extern const char xen_hypervisor_callback[];
 35extern const char xen_failsafe_callback[];
 36extern void xen_sysenter_target(void);
 37extern void xen_syscall_target(void);
 38extern void xen_syscall32_target(void);
 39
 40/* Amount of extra memory space we add to the e820 ranges */
 41struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata;
 42
 43/* Number of pages released from the initial allocation. */
 44unsigned long xen_released_pages;
 45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 46/* 
 47 * The maximum amount of extra memory compared to the base size.  The
 48 * main scaling factor is the size of struct page.  At extreme ratios
 49 * of base:extra, all the base memory can be filled with page
 50 * structures for the extra memory, leaving no space for anything
 51 * else.
 52 * 
 53 * 10x seems like a reasonable balance between scaling flexibility and
 54 * leaving a practically usable system.
 55 */
 56#define EXTRA_MEM_RATIO		(10)
 57
 58static void __init xen_add_extra_mem(u64 start, u64 size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 59{
 60	unsigned long pfn;
 61	int i;
 62
 
 
 
 
 63	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
 64		/* Add new region. */
 65		if (xen_extra_mem[i].size == 0) {
 66			xen_extra_mem[i].start = start;
 67			xen_extra_mem[i].size  = size;
 68			break;
 69		}
 70		/* Append to existing region. */
 71		if (xen_extra_mem[i].start + xen_extra_mem[i].size == start) {
 72			xen_extra_mem[i].size += size;
 
 73			break;
 74		}
 75	}
 76	if (i == XEN_EXTRA_MEM_MAX_REGIONS)
 77		printk(KERN_WARNING "Warning: not enough extra memory regions\n");
 78
 79	memblock_reserve(start, size);
 
 80
 81	xen_max_p2m_pfn = PFN_DOWN(start + size);
 82	for (pfn = PFN_DOWN(start); pfn < xen_max_p2m_pfn; pfn++) {
 83		unsigned long mfn = pfn_to_mfn(pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 84
 85		if (WARN(mfn == pfn, "Trying to over-write 1-1 mapping (pfn: %lx)\n", pfn))
 
 86			continue;
 87		WARN(mfn != INVALID_P2M_ENTRY, "Trying to remove %lx which has %lx mfn!\n",
 88			pfn, mfn);
 
 
 
 
 89
 90		__set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 91	}
 
 
 92}
 93
 94static unsigned long __init xen_do_chunk(unsigned long start,
 95					 unsigned long end, bool release)
 96{
 97	struct xen_memory_reservation reservation = {
 98		.address_bits = 0,
 99		.extent_order = 0,
100		.domid        = DOMID_SELF
101	};
102	unsigned long len = 0;
103	unsigned long pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
104	int ret;
105
106	for (pfn = start; pfn < end; pfn++) {
107		unsigned long frame;
 
 
 
108		unsigned long mfn = pfn_to_mfn(pfn);
109
110		if (release) {
111			/* Make sure pfn exists to start with */
112			if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn)
113				continue;
114			frame = mfn;
115		} else {
116			if (mfn != INVALID_P2M_ENTRY)
117				continue;
118			frame = pfn;
119		}
120		set_xen_guest_handle(reservation.extent_start, &frame);
121		reservation.nr_extents = 1;
122
123		ret = HYPERVISOR_memory_op(release ? XENMEM_decrease_reservation : XENMEM_populate_physmap,
124					   &reservation);
125		WARN(ret != 1, "Failed to %s pfn %lx err=%d\n",
126		     release ? "release" : "populate", pfn, ret);
127
128		if (ret == 1) {
129			if (!early_set_phys_to_machine(pfn, release ? INVALID_P2M_ENTRY : frame)) {
130				if (release)
131					break;
132				set_xen_guest_handle(reservation.extent_start, &frame);
133				reservation.nr_extents = 1;
134				ret = HYPERVISOR_memory_op(XENMEM_decrease_reservation,
135							   &reservation);
136				break;
137			}
138			len++;
139		} else
140			break;
141	}
142	if (len)
143		printk(KERN_INFO "%s %lx-%lx pfn range: %lu pages %s\n",
144		       release ? "Freeing" : "Populating",
145		       start, end, len,
146		       release ? "freed" : "added");
147
148	return len;
149}
150
151static unsigned long __init xen_release_chunk(unsigned long start,
152					      unsigned long end)
153{
154	return xen_do_chunk(start, end, true);
155}
156
157static unsigned long __init xen_populate_chunk(
158	const struct e820entry *list, size_t map_size,
159	unsigned long max_pfn, unsigned long *last_pfn,
160	unsigned long credits_left)
161{
162	const struct e820entry *entry;
163	unsigned int i;
164	unsigned long done = 0;
165	unsigned long dest_pfn;
166
167	for (i = 0, entry = list; i < map_size; i++, entry++) {
168		unsigned long credits = credits_left;
169		unsigned long s_pfn;
170		unsigned long e_pfn;
171		unsigned long pfns;
172		long capacity;
173
174		if (credits <= 0)
175			break;
 
 
 
 
176
177		if (entry->type != E820_RAM)
178			continue;
 
179
180		e_pfn = PFN_UP(entry->addr + entry->size);
 
 
 
 
 
 
181
182		/* We only care about E820 after the xen_start_info->nr_pages */
183		if (e_pfn <= max_pfn)
184			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185
186		s_pfn = PFN_DOWN(entry->addr);
187		/* If the E820 falls within the nr_pages, we want to start
188		 * at the nr_pages PFN.
189		 * If that would mean going past the E820 entry, skip it
190		 */
191		if (s_pfn <= max_pfn) {
192			capacity = e_pfn - max_pfn;
193			dest_pfn = max_pfn;
194		} else {
195			/* last_pfn MUST be within E820_RAM regions */
196			if (*last_pfn && e_pfn >= *last_pfn)
197				s_pfn = *last_pfn;
198			capacity = e_pfn - s_pfn;
199			dest_pfn = s_pfn;
200		}
201		/* If we had filled this E820_RAM entry, go to the next one. */
202		if (capacity <= 0)
203			continue;
204
205		if (credits > capacity)
206			credits = capacity;
207
208		pfns = xen_do_chunk(dest_pfn, dest_pfn + credits, false);
209		done += pfns;
210		credits_left -= pfns;
211		*last_pfn = (dest_pfn + pfns);
212	}
213	return done;
 
 
214}
215
216static void __init xen_set_identity_and_release_chunk(
 
 
 
 
 
 
 
 
 
 
 
217	unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages,
218	unsigned long *released, unsigned long *identity)
219{
220	unsigned long pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221
222	/*
223	 * If the PFNs are currently mapped, the VA mapping also needs
224	 * to be updated to be 1:1.
225	 */
226	for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++)
227		(void)HYPERVISOR_update_va_mapping(
228			(unsigned long)__va(pfn << PAGE_SHIFT),
229			mfn_pte(pfn, PAGE_KERNEL_IO), 0);
230
231	if (start_pfn < nr_pages)
232		*released += xen_release_chunk(
233			start_pfn, min(end_pfn, nr_pages));
234
235	*identity += set_phys_range_identity(start_pfn, end_pfn);
236}
237
238static unsigned long __init xen_set_identity_and_release(
239	const struct e820entry *list, size_t map_size, unsigned long nr_pages)
240{
241	phys_addr_t start = 0;
242	unsigned long released = 0;
243	unsigned long identity = 0;
244	const struct e820entry *entry;
245	int i;
246
247	/*
248	 * Combine non-RAM regions and gaps until a RAM region (or the
249	 * end of the map) is reached, then set the 1:1 map and
250	 * release the pages (if available) in those non-RAM regions.
251	 *
252	 * The combined non-RAM regions are rounded to a whole number
253	 * of pages so any partial pages are accessible via the 1:1
254	 * mapping.  This is needed for some BIOSes that put (for
255	 * example) the DMI tables in a reserved region that begins on
256	 * a non-page boundary.
257	 */
258	for (i = 0, entry = list; i < map_size; i++, entry++) {
259		phys_addr_t end = entry->addr + entry->size;
260		if (entry->type == E820_RAM || i == map_size - 1) {
261			unsigned long start_pfn = PFN_DOWN(start);
262			unsigned long end_pfn = PFN_UP(end);
263
264			if (entry->type == E820_RAM)
265				end_pfn = PFN_UP(entry->addr);
266
267			if (start_pfn < end_pfn)
268				xen_set_identity_and_release_chunk(
269					start_pfn, end_pfn, nr_pages,
270					&released, &identity);
271
272			start = end;
273		}
274	}
275
276	if (released)
277		printk(KERN_INFO "Released %lu pages of unused memory\n", released);
278	if (identity)
279		printk(KERN_INFO "Set %ld page(s) to 1-1 mapping\n", identity);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280
281	return released;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
282}
283
284static unsigned long __init xen_get_max_pages(void)
285{
286	unsigned long max_pages = MAX_DOMAIN_PAGES;
287	domid_t domid = DOMID_SELF;
288	int ret;
 
 
 
289
290	/*
291	 * For the initial domain we use the maximum reservation as
292	 * the maximum page.
293	 *
294	 * For guest domains the current maximum reservation reflects
295	 * the current maximum rather than the static maximum. In this
296	 * case the e820 map provided to us will cover the static
297	 * maximum region.
298	 */
299	if (xen_initial_domain()) {
300		ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid);
301		if (ret > 0)
302			max_pages = ret;
303	}
304
305	return min(max_pages, MAX_DOMAIN_PAGES);
306}
307
308static void xen_align_and_add_e820_region(u64 start, u64 size, int type)
 
309{
310	u64 end = start + size;
311
312	/* Align RAM regions to page boundaries. */
313	if (type == E820_RAM) {
314		start = PAGE_ALIGN(start);
315		end &= ~((u64)PAGE_SIZE - 1);
316	}
317
318	e820_add_region(start, end - start, type);
319}
320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321/**
322 * machine_specific_memory_setup - Hook for machine specific memory setup.
323 **/
324char * __init xen_memory_setup(void)
325{
326	static struct e820entry map[E820MAX] __initdata;
327
328	unsigned long max_pfn = xen_start_info->nr_pages;
329	unsigned long long mem_end;
330	int rc;
331	struct xen_memory_map memmap;
332	unsigned long max_pages;
333	unsigned long last_pfn = 0;
334	unsigned long extra_pages = 0;
335	unsigned long populated;
336	int i;
337	int op;
338
339	max_pfn = min(MAX_DOMAIN_PAGES, max_pfn);
 
 
340	mem_end = PFN_PHYS(max_pfn);
341
342	memmap.nr_entries = E820MAX;
343	set_xen_guest_handle(memmap.buffer, map);
344
345	op = xen_initial_domain() ?
346		XENMEM_machine_memory_map :
347		XENMEM_memory_map;
348	rc = HYPERVISOR_memory_op(op, &memmap);
349	if (rc == -ENOSYS) {
350		BUG_ON(xen_initial_domain());
351		memmap.nr_entries = 1;
352		map[0].addr = 0ULL;
353		map[0].size = mem_end;
354		/* 8MB slack (to balance backend allocations). */
355		map[0].size += 8ULL << 20;
356		map[0].type = E820_RAM;
357		rc = 0;
358	}
359	BUG_ON(rc);
 
 
 
 
 
 
 
 
 
 
 
 
 
360
361	/* Make sure the Xen-supplied memory map is well-ordered. */
362	sanitize_e820_map(map, memmap.nr_entries, &memmap.nr_entries);
 
363
364	max_pages = xen_get_max_pages();
365	if (max_pages > max_pfn)
366		extra_pages += max_pages - max_pfn;
367
368	/*
369	 * Set P2M for all non-RAM pages and E820 gaps to be identity
370	 * type PFNs.  Any RAM pages that would be made inaccesible by
371	 * this are first released.
372	 */
373	xen_released_pages = xen_set_identity_and_release(
374		map, memmap.nr_entries, max_pfn);
375
376	/*
377	 * Populate back the non-RAM pages and E820 gaps that had been
378	 * released. */
379	populated = xen_populate_chunk(map, memmap.nr_entries,
380			max_pfn, &last_pfn, xen_released_pages);
381
382	xen_released_pages -= populated;
383	extra_pages += xen_released_pages;
384
385	if (last_pfn > max_pfn) {
386		max_pfn = min(MAX_DOMAIN_PAGES, last_pfn);
387		mem_end = PFN_PHYS(max_pfn);
388	}
389	/*
390	 * Clamp the amount of extra memory to a EXTRA_MEM_RATIO
391	 * factor the base size.  On non-highmem systems, the base
392	 * size is the full initial memory allocation; on highmem it
393	 * is limited to the max size of lowmem, so that it doesn't
394	 * get completely filled.
395	 *
 
 
 
396	 * In principle there could be a problem in lowmem systems if
397	 * the initial memory is also very large with respect to
398	 * lowmem, but we won't try to deal with that here.
399	 */
400	extra_pages = min(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)),
401			  extra_pages);
402	i = 0;
403	while (i < memmap.nr_entries) {
404		u64 addr = map[i].addr;
405		u64 size = map[i].size;
406		u32 type = map[i].type;
 
 
 
407
408		if (type == E820_RAM) {
409			if (addr < mem_end) {
410				size = min(size, mem_end - addr);
411			} else if (extra_pages) {
412				size = min(size, (u64)extra_pages * PAGE_SIZE);
413				extra_pages -= size / PAGE_SIZE;
414				xen_add_extra_mem(addr, size);
 
 
 
415			} else
416				type = E820_UNUSABLE;
417		}
418
419		xen_align_and_add_e820_region(addr, size, type);
 
420
421		map[i].addr += size;
422		map[i].size -= size;
423		if (map[i].size == 0)
424			i++;
 
 
 
 
 
425	}
426
427	/*
 
 
 
 
 
 
428	 * In domU, the ISA region is normal, usable memory, but we
429	 * reserve ISA memory anyway because too many things poke
430	 * about in there.
431	 */
432	e820_add_region(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS,
433			E820_RESERVED);
434
 
 
435	/*
436	 * Reserve Xen bits:
437	 *  - mfn_list
438	 *  - xen_start_info
439	 * See comment above "struct start_info" in <xen/interface/xen.h>
440	 */
441	memblock_reserve(__pa(xen_start_info->mfn_list),
442			 xen_start_info->pt_base - xen_start_info->mfn_list);
 
 
 
443
444	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
445
446	return "Xen";
447}
448
449/*
450 * Set the bit indicating "nosegneg" library variants should be used.
451 * We only need to bother in pure 32-bit mode; compat 32-bit processes
452 * can have un-truncated segments, so wrapping around is allowed.
453 */
454static void __init fiddle_vdso(void)
455{
456#ifdef CONFIG_X86_32
457	u32 *mask;
458	mask = VDSO32_SYMBOL(&vdso32_int80_start, NOTE_MASK);
459	*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
460	mask = VDSO32_SYMBOL(&vdso32_sysenter_start, NOTE_MASK);
461	*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
462#endif
463}
464
465static int __cpuinit register_callback(unsigned type, const void *func)
466{
467	struct callback_register callback = {
468		.type = type,
469		.address = XEN_CALLBACK(__KERNEL_CS, func),
470		.flags = CALLBACKF_mask_events,
471	};
472
473	return HYPERVISOR_callback_op(CALLBACKOP_register, &callback);
474}
475
476void __cpuinit xen_enable_sysenter(void)
477{
478	int ret;
479	unsigned sysenter_feature;
480
481#ifdef CONFIG_X86_32
482	sysenter_feature = X86_FEATURE_SEP;
483#else
484	sysenter_feature = X86_FEATURE_SYSENTER32;
485#endif
486
487	if (!boot_cpu_has(sysenter_feature))
488		return;
489
490	ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target);
491	if(ret != 0)
492		setup_clear_cpu_cap(sysenter_feature);
493}
494
495void __cpuinit xen_enable_syscall(void)
496{
497#ifdef CONFIG_X86_64
498	int ret;
499
500	ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target);
501	if (ret != 0) {
502		printk(KERN_ERR "Failed to set syscall callback: %d\n", ret);
503		/* Pretty fatal; 64-bit userspace has no other
504		   mechanism for syscalls. */
505	}
506
507	if (boot_cpu_has(X86_FEATURE_SYSCALL32)) {
508		ret = register_callback(CALLBACKTYPE_syscall32,
509					xen_syscall32_target);
510		if (ret != 0)
511			setup_clear_cpu_cap(X86_FEATURE_SYSCALL32);
512	}
513#endif /* CONFIG_X86_64 */
514}
515
516void __init xen_arch_setup(void)
517{
518	xen_panic_handler_init();
519
520	HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
521	HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables);
522
523	if (!xen_feature(XENFEAT_auto_translated_physmap))
524		HYPERVISOR_vm_assist(VMASST_CMD_enable,
525				     VMASST_TYPE_pae_extended_cr3);
526
527	if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) ||
528	    register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback))
529		BUG();
530
531	xen_enable_sysenter();
532	xen_enable_syscall();
 
 
 
 
 
 
 
 
533
534#ifdef CONFIG_ACPI
535	if (!(xen_start_info->flags & SIF_INITDOMAIN)) {
536		printk(KERN_INFO "ACPI in unprivileged domain disabled\n");
537		disable_acpi();
538	}
539#endif
540
541	memcpy(boot_command_line, xen_start_info->cmd_line,
542	       MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ?
543	       COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE);
544
545	/* Set up idle, making sure it calls safe_halt() pvop */
546#ifdef CONFIG_X86_32
547	boot_cpu_data.hlt_works_ok = 1;
548#endif
549	disable_cpuidle();
550	disable_cpufreq();
551	WARN_ON(set_pm_idle_to_default());
552	fiddle_vdso();
553#ifdef CONFIG_NUMA
554	numa_off = 1;
555#endif
556}
v4.6
   1/*
   2 * Machine specific setup for xen
   3 *
   4 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
   5 */
   6
   7#include <linux/module.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/pm.h>
  11#include <linux/memblock.h>
  12#include <linux/cpuidle.h>
  13#include <linux/cpufreq.h>
  14
  15#include <asm/elf.h>
  16#include <asm/vdso.h>
  17#include <asm/e820.h>
  18#include <asm/setup.h>
  19#include <asm/acpi.h>
  20#include <asm/numa.h>
  21#include <asm/xen/hypervisor.h>
  22#include <asm/xen/hypercall.h>
  23
  24#include <xen/xen.h>
  25#include <xen/page.h>
  26#include <xen/interface/callback.h>
  27#include <xen/interface/memory.h>
  28#include <xen/interface/physdev.h>
  29#include <xen/features.h>
  30#include <xen/hvc-console.h>
  31#include "xen-ops.h"
  32#include "vdso.h"
  33#include "mmu.h"
  34
  35#define GB(x) ((uint64_t)(x) * 1024 * 1024 * 1024)
 
 
 
 
 
  36
  37/* Amount of extra memory space we add to the e820 ranges */
  38struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata;
  39
  40/* Number of pages released from the initial allocation. */
  41unsigned long xen_released_pages;
  42
  43/* E820 map used during setting up memory. */
  44static struct e820entry xen_e820_map[E820MAX] __initdata;
  45static u32 xen_e820_map_entries __initdata;
  46
  47/*
  48 * Buffer used to remap identity mapped pages. We only need the virtual space.
  49 * The physical page behind this address is remapped as needed to different
  50 * buffer pages.
  51 */
  52#define REMAP_SIZE	(P2M_PER_PAGE - 3)
  53static struct {
  54	unsigned long	next_area_mfn;
  55	unsigned long	target_pfn;
  56	unsigned long	size;
  57	unsigned long	mfns[REMAP_SIZE];
  58} xen_remap_buf __initdata __aligned(PAGE_SIZE);
  59static unsigned long xen_remap_mfn __initdata = INVALID_P2M_ENTRY;
  60
  61/* 
  62 * The maximum amount of extra memory compared to the base size.  The
  63 * main scaling factor is the size of struct page.  At extreme ratios
  64 * of base:extra, all the base memory can be filled with page
  65 * structures for the extra memory, leaving no space for anything
  66 * else.
  67 * 
  68 * 10x seems like a reasonable balance between scaling flexibility and
  69 * leaving a practically usable system.
  70 */
  71#define EXTRA_MEM_RATIO		(10)
  72
  73static bool xen_512gb_limit __initdata = IS_ENABLED(CONFIG_XEN_512GB);
  74
  75static void __init xen_parse_512gb(void)
  76{
  77	bool val = false;
  78	char *arg;
  79
  80	arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit");
  81	if (!arg)
  82		return;
  83
  84	arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit=");
  85	if (!arg)
  86		val = true;
  87	else if (strtobool(arg + strlen("xen_512gb_limit="), &val))
  88		return;
  89
  90	xen_512gb_limit = val;
  91}
  92
  93static void __init xen_add_extra_mem(unsigned long start_pfn,
  94				     unsigned long n_pfns)
  95{
 
  96	int i;
  97
  98	/*
  99	 * No need to check for zero size, should happen rarely and will only
 100	 * write a new entry regarded to be unused due to zero size.
 101	 */
 102	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
 103		/* Add new region. */
 104		if (xen_extra_mem[i].n_pfns == 0) {
 105			xen_extra_mem[i].start_pfn = start_pfn;
 106			xen_extra_mem[i].n_pfns = n_pfns;
 107			break;
 108		}
 109		/* Append to existing region. */
 110		if (xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns ==
 111		    start_pfn) {
 112			xen_extra_mem[i].n_pfns += n_pfns;
 113			break;
 114		}
 115	}
 116	if (i == XEN_EXTRA_MEM_MAX_REGIONS)
 117		printk(KERN_WARNING "Warning: not enough extra memory regions\n");
 118
 119	memblock_reserve(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns));
 120}
 121
 122static void __init xen_del_extra_mem(unsigned long start_pfn,
 123				     unsigned long n_pfns)
 124{
 125	int i;
 126	unsigned long start_r, size_r;
 127
 128	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
 129		start_r = xen_extra_mem[i].start_pfn;
 130		size_r = xen_extra_mem[i].n_pfns;
 131
 132		/* Start of region. */
 133		if (start_r == start_pfn) {
 134			BUG_ON(n_pfns > size_r);
 135			xen_extra_mem[i].start_pfn += n_pfns;
 136			xen_extra_mem[i].n_pfns -= n_pfns;
 137			break;
 138		}
 139		/* End of region. */
 140		if (start_r + size_r == start_pfn + n_pfns) {
 141			BUG_ON(n_pfns > size_r);
 142			xen_extra_mem[i].n_pfns -= n_pfns;
 143			break;
 144		}
 145		/* Mid of region. */
 146		if (start_pfn > start_r && start_pfn < start_r + size_r) {
 147			BUG_ON(start_pfn + n_pfns > start_r + size_r);
 148			xen_extra_mem[i].n_pfns = start_pfn - start_r;
 149			/* Calling memblock_reserve() again is okay. */
 150			xen_add_extra_mem(start_pfn + n_pfns, start_r + size_r -
 151					  (start_pfn + n_pfns));
 152			break;
 153		}
 154	}
 155	memblock_free(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns));
 156}
 157
 158/*
 159 * Called during boot before the p2m list can take entries beyond the
 160 * hypervisor supplied p2m list. Entries in extra mem are to be regarded as
 161 * invalid.
 162 */
 163unsigned long __ref xen_chk_extra_mem(unsigned long pfn)
 164{
 165	int i;
 166
 167	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
 168		if (pfn >= xen_extra_mem[i].start_pfn &&
 169		    pfn < xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns)
 170			return INVALID_P2M_ENTRY;
 171	}
 172
 173	return IDENTITY_FRAME(pfn);
 174}
 175
 176/*
 177 * Mark all pfns of extra mem as invalid in p2m list.
 178 */
 179void __init xen_inv_extra_mem(void)
 180{
 181	unsigned long pfn, pfn_s, pfn_e;
 182	int i;
 183
 184	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
 185		if (!xen_extra_mem[i].n_pfns)
 186			continue;
 187		pfn_s = xen_extra_mem[i].start_pfn;
 188		pfn_e = pfn_s + xen_extra_mem[i].n_pfns;
 189		for (pfn = pfn_s; pfn < pfn_e; pfn++)
 190			set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
 191	}
 192}
 193
 194/*
 195 * Finds the next RAM pfn available in the E820 map after min_pfn.
 196 * This function updates min_pfn with the pfn found and returns
 197 * the size of that range or zero if not found.
 198 */
 199static unsigned long __init xen_find_pfn_range(unsigned long *min_pfn)
 200{
 201	const struct e820entry *entry = xen_e820_map;
 202	unsigned int i;
 203	unsigned long done = 0;
 204
 205	for (i = 0; i < xen_e820_map_entries; i++, entry++) {
 206		unsigned long s_pfn;
 207		unsigned long e_pfn;
 208
 209		if (entry->type != E820_RAM)
 210			continue;
 211
 212		e_pfn = PFN_DOWN(entry->addr + entry->size);
 213
 214		/* We only care about E820 after this */
 215		if (e_pfn <= *min_pfn)
 216			continue;
 217
 218		s_pfn = PFN_UP(entry->addr);
 219
 220		/* If min_pfn falls within the E820 entry, we want to start
 221		 * at the min_pfn PFN.
 222		 */
 223		if (s_pfn <= *min_pfn) {
 224			done = e_pfn - *min_pfn;
 225		} else {
 226			done = e_pfn - s_pfn;
 227			*min_pfn = s_pfn;
 228		}
 229		break;
 230	}
 231
 232	return done;
 233}
 234
 235static int __init xen_free_mfn(unsigned long mfn)
 
 236{
 237	struct xen_memory_reservation reservation = {
 238		.address_bits = 0,
 239		.extent_order = 0,
 240		.domid        = DOMID_SELF
 241	};
 242
 243	set_xen_guest_handle(reservation.extent_start, &mfn);
 244	reservation.nr_extents = 1;
 245
 246	return HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation);
 247}
 248
 249/*
 250 * This releases a chunk of memory and then does the identity map. It's used
 251 * as a fallback if the remapping fails.
 252 */
 253static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn,
 254			unsigned long end_pfn, unsigned long nr_pages)
 255{
 256	unsigned long pfn, end;
 257	int ret;
 258
 259	WARN_ON(start_pfn > end_pfn);
 260
 261	/* Release pages first. */
 262	end = min(end_pfn, nr_pages);
 263	for (pfn = start_pfn; pfn < end; pfn++) {
 264		unsigned long mfn = pfn_to_mfn(pfn);
 265
 266		/* Make sure pfn exists to start with */
 267		if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn)
 268			continue;
 
 
 
 
 
 
 
 
 
 269
 270		ret = xen_free_mfn(mfn);
 271		WARN(ret != 1, "Failed to release pfn %lx err=%d\n", pfn, ret);
 
 
 272
 273		if (ret == 1) {
 274			xen_released_pages++;
 275			if (!__set_phys_to_machine(pfn, INVALID_P2M_ENTRY))
 
 
 
 
 
 276				break;
 
 
 277		} else
 278			break;
 279	}
 
 
 
 
 
 280
 281	set_phys_range_identity(start_pfn, end_pfn);
 282}
 283
 284/*
 285 * Helper function to update the p2m and m2p tables and kernel mapping.
 286 */
 287static void __init xen_update_mem_tables(unsigned long pfn, unsigned long mfn)
 
 
 
 
 
 
 288{
 289	struct mmu_update update = {
 290		.ptr = ((uint64_t)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE,
 291		.val = pfn
 292	};
 293
 294	/* Update p2m */
 295	if (!set_phys_to_machine(pfn, mfn)) {
 296		WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n",
 297		     pfn, mfn);
 298		BUG();
 299	}
 300
 301	/* Update m2p */
 302	if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) {
 303		WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n",
 304		     mfn, pfn);
 305		BUG();
 306	}
 307
 308	/* Update kernel mapping, but not for highmem. */
 309	if (pfn >= PFN_UP(__pa(high_memory - 1)))
 310		return;
 311
 312	if (HYPERVISOR_update_va_mapping((unsigned long)__va(pfn << PAGE_SHIFT),
 313					 mfn_pte(mfn, PAGE_KERNEL), 0)) {
 314		WARN(1, "Failed to update kernel mapping for mfn=%ld pfn=%ld\n",
 315		      mfn, pfn);
 316		BUG();
 317	}
 318}
 319
 320/*
 321 * This function updates the p2m and m2p tables with an identity map from
 322 * start_pfn to start_pfn+size and prepares remapping the underlying RAM of the
 323 * original allocation at remap_pfn. The information needed for remapping is
 324 * saved in the memory itself to avoid the need for allocating buffers. The
 325 * complete remap information is contained in a list of MFNs each containing
 326 * up to REMAP_SIZE MFNs and the start target PFN for doing the remap.
 327 * This enables us to preserve the original mfn sequence while doing the
 328 * remapping at a time when the memory management is capable of allocating
 329 * virtual and physical memory in arbitrary amounts, see 'xen_remap_memory' and
 330 * its callers.
 331 */
 332static void __init xen_do_set_identity_and_remap_chunk(
 333        unsigned long start_pfn, unsigned long size, unsigned long remap_pfn)
 334{
 335	unsigned long buf = (unsigned long)&xen_remap_buf;
 336	unsigned long mfn_save, mfn;
 337	unsigned long ident_pfn_iter, remap_pfn_iter;
 338	unsigned long ident_end_pfn = start_pfn + size;
 339	unsigned long left = size;
 340	unsigned int i, chunk;
 341
 342	WARN_ON(size == 0);
 343
 344	BUG_ON(xen_feature(XENFEAT_auto_translated_physmap));
 345
 346	mfn_save = virt_to_mfn(buf);
 347
 348	for (ident_pfn_iter = start_pfn, remap_pfn_iter = remap_pfn;
 349	     ident_pfn_iter < ident_end_pfn;
 350	     ident_pfn_iter += REMAP_SIZE, remap_pfn_iter += REMAP_SIZE) {
 351		chunk = (left < REMAP_SIZE) ? left : REMAP_SIZE;
 352
 353		/* Map first pfn to xen_remap_buf */
 354		mfn = pfn_to_mfn(ident_pfn_iter);
 355		set_pte_mfn(buf, mfn, PAGE_KERNEL);
 356
 357		/* Save mapping information in page */
 358		xen_remap_buf.next_area_mfn = xen_remap_mfn;
 359		xen_remap_buf.target_pfn = remap_pfn_iter;
 360		xen_remap_buf.size = chunk;
 361		for (i = 0; i < chunk; i++)
 362			xen_remap_buf.mfns[i] = pfn_to_mfn(ident_pfn_iter + i);
 363
 364		/* Put remap buf into list. */
 365		xen_remap_mfn = mfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366
 367		/* Set identity map */
 368		set_phys_range_identity(ident_pfn_iter, ident_pfn_iter + chunk);
 369
 370		left -= chunk;
 
 
 
 371	}
 372
 373	/* Restore old xen_remap_buf mapping */
 374	set_pte_mfn(buf, mfn_save, PAGE_KERNEL);
 375}
 376
 377/*
 378 * This function takes a contiguous pfn range that needs to be identity mapped
 379 * and:
 380 *
 381 *  1) Finds a new range of pfns to use to remap based on E820 and remap_pfn.
 382 *  2) Calls the do_ function to actually do the mapping/remapping work.
 383 *
 384 * The goal is to not allocate additional memory but to remap the existing
 385 * pages. In the case of an error the underlying memory is simply released back
 386 * to Xen and not remapped.
 387 */
 388static unsigned long __init xen_set_identity_and_remap_chunk(
 389	unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages,
 390	unsigned long remap_pfn)
 391{
 392	unsigned long pfn;
 393	unsigned long i = 0;
 394	unsigned long n = end_pfn - start_pfn;
 395
 396	while (i < n) {
 397		unsigned long cur_pfn = start_pfn + i;
 398		unsigned long left = n - i;
 399		unsigned long size = left;
 400		unsigned long remap_range_size;
 401
 402		/* Do not remap pages beyond the current allocation */
 403		if (cur_pfn >= nr_pages) {
 404			/* Identity map remaining pages */
 405			set_phys_range_identity(cur_pfn, cur_pfn + size);
 406			break;
 407		}
 408		if (cur_pfn + size > nr_pages)
 409			size = nr_pages - cur_pfn;
 410
 411		remap_range_size = xen_find_pfn_range(&remap_pfn);
 412		if (!remap_range_size) {
 413			pr_warning("Unable to find available pfn range, not remapping identity pages\n");
 414			xen_set_identity_and_release_chunk(cur_pfn,
 415						cur_pfn + left, nr_pages);
 416			break;
 417		}
 418		/* Adjust size to fit in current e820 RAM region */
 419		if (size > remap_range_size)
 420			size = remap_range_size;
 421
 422		xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn);
 423
 424		/* Update variables to reflect new mappings. */
 425		i += size;
 426		remap_pfn += size;
 427	}
 428
 429	/*
 430	 * If the PFNs are currently mapped, the VA mapping also needs
 431	 * to be updated to be 1:1.
 432	 */
 433	for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++)
 434		(void)HYPERVISOR_update_va_mapping(
 435			(unsigned long)__va(pfn << PAGE_SHIFT),
 436			mfn_pte(pfn, PAGE_KERNEL_IO), 0);
 437
 438	return remap_pfn;
 
 
 
 
 439}
 440
 441static void __init xen_set_identity_and_remap(unsigned long nr_pages)
 
 442{
 443	phys_addr_t start = 0;
 444	unsigned long last_pfn = nr_pages;
 445	const struct e820entry *entry = xen_e820_map;
 
 446	int i;
 447
 448	/*
 449	 * Combine non-RAM regions and gaps until a RAM region (or the
 450	 * end of the map) is reached, then set the 1:1 map and
 451	 * remap the memory in those non-RAM regions.
 452	 *
 453	 * The combined non-RAM regions are rounded to a whole number
 454	 * of pages so any partial pages are accessible via the 1:1
 455	 * mapping.  This is needed for some BIOSes that put (for
 456	 * example) the DMI tables in a reserved region that begins on
 457	 * a non-page boundary.
 458	 */
 459	for (i = 0; i < xen_e820_map_entries; i++, entry++) {
 460		phys_addr_t end = entry->addr + entry->size;
 461		if (entry->type == E820_RAM || i == xen_e820_map_entries - 1) {
 462			unsigned long start_pfn = PFN_DOWN(start);
 463			unsigned long end_pfn = PFN_UP(end);
 464
 465			if (entry->type == E820_RAM)
 466				end_pfn = PFN_UP(entry->addr);
 467
 468			if (start_pfn < end_pfn)
 469				last_pfn = xen_set_identity_and_remap_chunk(
 470						start_pfn, end_pfn, nr_pages,
 471						last_pfn);
 
 472			start = end;
 473		}
 474	}
 475
 476	pr_info("Released %ld page(s)\n", xen_released_pages);
 477}
 478
 479/*
 480 * Remap the memory prepared in xen_do_set_identity_and_remap_chunk().
 481 * The remap information (which mfn remap to which pfn) is contained in the
 482 * to be remapped memory itself in a linked list anchored at xen_remap_mfn.
 483 * This scheme allows to remap the different chunks in arbitrary order while
 484 * the resulting mapping will be independant from the order.
 485 */
 486void __init xen_remap_memory(void)
 487{
 488	unsigned long buf = (unsigned long)&xen_remap_buf;
 489	unsigned long mfn_save, mfn, pfn;
 490	unsigned long remapped = 0;
 491	unsigned int i;
 492	unsigned long pfn_s = ~0UL;
 493	unsigned long len = 0;
 494
 495	mfn_save = virt_to_mfn(buf);
 496
 497	while (xen_remap_mfn != INVALID_P2M_ENTRY) {
 498		/* Map the remap information */
 499		set_pte_mfn(buf, xen_remap_mfn, PAGE_KERNEL);
 500
 501		BUG_ON(xen_remap_mfn != xen_remap_buf.mfns[0]);
 502
 503		pfn = xen_remap_buf.target_pfn;
 504		for (i = 0; i < xen_remap_buf.size; i++) {
 505			mfn = xen_remap_buf.mfns[i];
 506			xen_update_mem_tables(pfn, mfn);
 507			remapped++;
 508			pfn++;
 509		}
 510		if (pfn_s == ~0UL || pfn == pfn_s) {
 511			pfn_s = xen_remap_buf.target_pfn;
 512			len += xen_remap_buf.size;
 513		} else if (pfn_s + len == xen_remap_buf.target_pfn) {
 514			len += xen_remap_buf.size;
 515		} else {
 516			xen_del_extra_mem(pfn_s, len);
 517			pfn_s = xen_remap_buf.target_pfn;
 518			len = xen_remap_buf.size;
 519		}
 520
 521		mfn = xen_remap_mfn;
 522		xen_remap_mfn = xen_remap_buf.next_area_mfn;
 523	}
 524
 525	if (pfn_s != ~0UL && len)
 526		xen_del_extra_mem(pfn_s, len);
 527
 528	set_pte_mfn(buf, mfn_save, PAGE_KERNEL);
 529
 530	pr_info("Remapped %ld page(s)\n", remapped);
 531}
 532
 533static unsigned long __init xen_get_pages_limit(void)
 534{
 535	unsigned long limit;
 536
 537#ifdef CONFIG_X86_32
 538	limit = GB(64) / PAGE_SIZE;
 539#else
 540	limit = MAXMEM / PAGE_SIZE;
 541	if (!xen_initial_domain() && xen_512gb_limit)
 542		limit = GB(512) / PAGE_SIZE;
 543#endif
 544	return limit;
 545}
 546
 547static unsigned long __init xen_get_max_pages(void)
 548{
 549	unsigned long max_pages, limit;
 550	domid_t domid = DOMID_SELF;
 551	long ret;
 552
 553	limit = xen_get_pages_limit();
 554	max_pages = limit;
 555
 556	/*
 557	 * For the initial domain we use the maximum reservation as
 558	 * the maximum page.
 559	 *
 560	 * For guest domains the current maximum reservation reflects
 561	 * the current maximum rather than the static maximum. In this
 562	 * case the e820 map provided to us will cover the static
 563	 * maximum region.
 564	 */
 565	if (xen_initial_domain()) {
 566		ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid);
 567		if (ret > 0)
 568			max_pages = ret;
 569	}
 570
 571	return min(max_pages, limit);
 572}
 573
 574static void __init xen_align_and_add_e820_region(phys_addr_t start,
 575						 phys_addr_t size, int type)
 576{
 577	phys_addr_t end = start + size;
 578
 579	/* Align RAM regions to page boundaries. */
 580	if (type == E820_RAM) {
 581		start = PAGE_ALIGN(start);
 582		end &= ~((phys_addr_t)PAGE_SIZE - 1);
 583	}
 584
 585	e820_add_region(start, end - start, type);
 586}
 587
 588static void __init xen_ignore_unusable(void)
 589{
 590	struct e820entry *entry = xen_e820_map;
 591	unsigned int i;
 592
 593	for (i = 0; i < xen_e820_map_entries; i++, entry++) {
 594		if (entry->type == E820_UNUSABLE)
 595			entry->type = E820_RAM;
 596	}
 597}
 598
 599static unsigned long __init xen_count_remap_pages(unsigned long max_pfn)
 600{
 601	unsigned long extra = 0;
 602	unsigned long start_pfn, end_pfn;
 603	const struct e820entry *entry = xen_e820_map;
 604	int i;
 605
 606	end_pfn = 0;
 607	for (i = 0; i < xen_e820_map_entries; i++, entry++) {
 608		start_pfn = PFN_DOWN(entry->addr);
 609		/* Adjacent regions on non-page boundaries handling! */
 610		end_pfn = min(end_pfn, start_pfn);
 611
 612		if (start_pfn >= max_pfn)
 613			return extra + max_pfn - end_pfn;
 614
 615		/* Add any holes in map to result. */
 616		extra += start_pfn - end_pfn;
 617
 618		end_pfn = PFN_UP(entry->addr + entry->size);
 619		end_pfn = min(end_pfn, max_pfn);
 620
 621		if (entry->type != E820_RAM)
 622			extra += end_pfn - start_pfn;
 623	}
 624
 625	return extra;
 626}
 627
 628bool __init xen_is_e820_reserved(phys_addr_t start, phys_addr_t size)
 629{
 630	struct e820entry *entry;
 631	unsigned mapcnt;
 632	phys_addr_t end;
 633
 634	if (!size)
 635		return false;
 636
 637	end = start + size;
 638	entry = xen_e820_map;
 639
 640	for (mapcnt = 0; mapcnt < xen_e820_map_entries; mapcnt++) {
 641		if (entry->type == E820_RAM && entry->addr <= start &&
 642		    (entry->addr + entry->size) >= end)
 643			return false;
 644
 645		entry++;
 646	}
 647
 648	return true;
 649}
 650
 651/*
 652 * Find a free area in physical memory not yet reserved and compliant with
 653 * E820 map.
 654 * Used to relocate pre-allocated areas like initrd or p2m list which are in
 655 * conflict with the to be used E820 map.
 656 * In case no area is found, return 0. Otherwise return the physical address
 657 * of the area which is already reserved for convenience.
 658 */
 659phys_addr_t __init xen_find_free_area(phys_addr_t size)
 660{
 661	unsigned mapcnt;
 662	phys_addr_t addr, start;
 663	struct e820entry *entry = xen_e820_map;
 664
 665	for (mapcnt = 0; mapcnt < xen_e820_map_entries; mapcnt++, entry++) {
 666		if (entry->type != E820_RAM || entry->size < size)
 667			continue;
 668		start = entry->addr;
 669		for (addr = start; addr < start + size; addr += PAGE_SIZE) {
 670			if (!memblock_is_reserved(addr))
 671				continue;
 672			start = addr + PAGE_SIZE;
 673			if (start + size > entry->addr + entry->size)
 674				break;
 675		}
 676		if (addr >= start + size) {
 677			memblock_reserve(start, size);
 678			return start;
 679		}
 680	}
 681
 682	return 0;
 683}
 684
 685/*
 686 * Like memcpy, but with physical addresses for dest and src.
 687 */
 688static void __init xen_phys_memcpy(phys_addr_t dest, phys_addr_t src,
 689				   phys_addr_t n)
 690{
 691	phys_addr_t dest_off, src_off, dest_len, src_len, len;
 692	void *from, *to;
 693
 694	while (n) {
 695		dest_off = dest & ~PAGE_MASK;
 696		src_off = src & ~PAGE_MASK;
 697		dest_len = n;
 698		if (dest_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off)
 699			dest_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off;
 700		src_len = n;
 701		if (src_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off)
 702			src_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off;
 703		len = min(dest_len, src_len);
 704		to = early_memremap(dest - dest_off, dest_len + dest_off);
 705		from = early_memremap(src - src_off, src_len + src_off);
 706		memcpy(to, from, len);
 707		early_memunmap(to, dest_len + dest_off);
 708		early_memunmap(from, src_len + src_off);
 709		n -= len;
 710		dest += len;
 711		src += len;
 712	}
 713}
 714
 715/*
 716 * Reserve Xen mfn_list.
 717 */
 718static void __init xen_reserve_xen_mfnlist(void)
 719{
 720	phys_addr_t start, size;
 721
 722	if (xen_start_info->mfn_list >= __START_KERNEL_map) {
 723		start = __pa(xen_start_info->mfn_list);
 724		size = PFN_ALIGN(xen_start_info->nr_pages *
 725				 sizeof(unsigned long));
 726	} else {
 727		start = PFN_PHYS(xen_start_info->first_p2m_pfn);
 728		size = PFN_PHYS(xen_start_info->nr_p2m_frames);
 729	}
 730
 731	if (!xen_is_e820_reserved(start, size)) {
 732		memblock_reserve(start, size);
 733		return;
 734	}
 735
 736#ifdef CONFIG_X86_32
 737	/*
 738	 * Relocating the p2m on 32 bit system to an arbitrary virtual address
 739	 * is not supported, so just give up.
 740	 */
 741	xen_raw_console_write("Xen hypervisor allocated p2m list conflicts with E820 map\n");
 742	BUG();
 743#else
 744	xen_relocate_p2m();
 745#endif
 746}
 747
 748/**
 749 * machine_specific_memory_setup - Hook for machine specific memory setup.
 750 **/
 751char * __init xen_memory_setup(void)
 752{
 753	unsigned long max_pfn, pfn_s, n_pfns;
 754	phys_addr_t mem_end, addr, size, chunk_size;
 755	u32 type;
 
 756	int rc;
 757	struct xen_memory_map memmap;
 758	unsigned long max_pages;
 
 759	unsigned long extra_pages = 0;
 
 760	int i;
 761	int op;
 762
 763	xen_parse_512gb();
 764	max_pfn = xen_get_pages_limit();
 765	max_pfn = min(max_pfn, xen_start_info->nr_pages);
 766	mem_end = PFN_PHYS(max_pfn);
 767
 768	memmap.nr_entries = E820MAX;
 769	set_xen_guest_handle(memmap.buffer, xen_e820_map);
 770
 771	op = xen_initial_domain() ?
 772		XENMEM_machine_memory_map :
 773		XENMEM_memory_map;
 774	rc = HYPERVISOR_memory_op(op, &memmap);
 775	if (rc == -ENOSYS) {
 776		BUG_ON(xen_initial_domain());
 777		memmap.nr_entries = 1;
 778		xen_e820_map[0].addr = 0ULL;
 779		xen_e820_map[0].size = mem_end;
 780		/* 8MB slack (to balance backend allocations). */
 781		xen_e820_map[0].size += 8ULL << 20;
 782		xen_e820_map[0].type = E820_RAM;
 783		rc = 0;
 784	}
 785	BUG_ON(rc);
 786	BUG_ON(memmap.nr_entries == 0);
 787	xen_e820_map_entries = memmap.nr_entries;
 788
 789	/*
 790	 * Xen won't allow a 1:1 mapping to be created to UNUSABLE
 791	 * regions, so if we're using the machine memory map leave the
 792	 * region as RAM as it is in the pseudo-physical map.
 793	 *
 794	 * UNUSABLE regions in domUs are not handled and will need
 795	 * a patch in the future.
 796	 */
 797	if (xen_initial_domain())
 798		xen_ignore_unusable();
 799
 800	/* Make sure the Xen-supplied memory map is well-ordered. */
 801	sanitize_e820_map(xen_e820_map, ARRAY_SIZE(xen_e820_map),
 802			  &xen_e820_map_entries);
 803
 804	max_pages = xen_get_max_pages();
 
 
 805
 806	/* How many extra pages do we need due to remapping? */
 807	max_pages += xen_count_remap_pages(max_pfn);
 
 
 
 
 
 
 
 
 
 
 
 808
 809	if (max_pages > max_pfn)
 810		extra_pages += max_pages - max_pfn;
 811
 
 
 
 
 812	/*
 813	 * Clamp the amount of extra memory to a EXTRA_MEM_RATIO
 814	 * factor the base size.  On non-highmem systems, the base
 815	 * size is the full initial memory allocation; on highmem it
 816	 * is limited to the max size of lowmem, so that it doesn't
 817	 * get completely filled.
 818	 *
 819	 * Make sure we have no memory above max_pages, as this area
 820	 * isn't handled by the p2m management.
 821	 *
 822	 * In principle there could be a problem in lowmem systems if
 823	 * the initial memory is also very large with respect to
 824	 * lowmem, but we won't try to deal with that here.
 825	 */
 826	extra_pages = min3(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)),
 827			   extra_pages, max_pages - max_pfn);
 828	i = 0;
 829	addr = xen_e820_map[0].addr;
 830	size = xen_e820_map[0].size;
 831	while (i < xen_e820_map_entries) {
 832		bool discard = false;
 833
 834		chunk_size = size;
 835		type = xen_e820_map[i].type;
 836
 837		if (type == E820_RAM) {
 838			if (addr < mem_end) {
 839				chunk_size = min(size, mem_end - addr);
 840			} else if (extra_pages) {
 841				chunk_size = min(size, PFN_PHYS(extra_pages));
 842				pfn_s = PFN_UP(addr);
 843				n_pfns = PFN_DOWN(addr + chunk_size) - pfn_s;
 844				extra_pages -= n_pfns;
 845				xen_add_extra_mem(pfn_s, n_pfns);
 846				xen_max_p2m_pfn = pfn_s + n_pfns;
 847			} else
 848				discard = true;
 849		}
 850
 851		if (!discard)
 852			xen_align_and_add_e820_region(addr, chunk_size, type);
 853
 854		addr += chunk_size;
 855		size -= chunk_size;
 856		if (size == 0) {
 857			i++;
 858			if (i < xen_e820_map_entries) {
 859				addr = xen_e820_map[i].addr;
 860				size = xen_e820_map[i].size;
 861			}
 862		}
 863	}
 864
 865	/*
 866	 * Set the rest as identity mapped, in case PCI BARs are
 867	 * located here.
 868	 */
 869	set_phys_range_identity(addr / PAGE_SIZE, ~0ul);
 870
 871	/*
 872	 * In domU, the ISA region is normal, usable memory, but we
 873	 * reserve ISA memory anyway because too many things poke
 874	 * about in there.
 875	 */
 876	e820_add_region(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS,
 877			E820_RESERVED);
 878
 879	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
 880
 881	/*
 882	 * Check whether the kernel itself conflicts with the target E820 map.
 883	 * Failing now is better than running into weird problems later due
 884	 * to relocating (and even reusing) pages with kernel text or data.
 
 885	 */
 886	if (xen_is_e820_reserved(__pa_symbol(_text),
 887			__pa_symbol(__bss_stop) - __pa_symbol(_text))) {
 888		xen_raw_console_write("Xen hypervisor allocated kernel memory conflicts with E820 map\n");
 889		BUG();
 890	}
 891
 892	/*
 893	 * Check for a conflict of the hypervisor supplied page tables with
 894	 * the target E820 map.
 895	 */
 896	xen_pt_check_e820();
 897
 898	xen_reserve_xen_mfnlist();
 899
 900	/* Check for a conflict of the initrd with the target E820 map. */
 901	if (xen_is_e820_reserved(boot_params.hdr.ramdisk_image,
 902				 boot_params.hdr.ramdisk_size)) {
 903		phys_addr_t new_area, start, size;
 904
 905		new_area = xen_find_free_area(boot_params.hdr.ramdisk_size);
 906		if (!new_area) {
 907			xen_raw_console_write("Can't find new memory area for initrd needed due to E820 map conflict\n");
 908			BUG();
 909		}
 910
 911		start = boot_params.hdr.ramdisk_image;
 912		size = boot_params.hdr.ramdisk_size;
 913		xen_phys_memcpy(new_area, start, size);
 914		pr_info("initrd moved from [mem %#010llx-%#010llx] to [mem %#010llx-%#010llx]\n",
 915			start, start + size, new_area, new_area + size);
 916		memblock_free(start, size);
 917		boot_params.hdr.ramdisk_image = new_area;
 918		boot_params.ext_ramdisk_image = new_area >> 32;
 919	}
 920
 921	/*
 922	 * Set identity map on non-RAM pages and prepare remapping the
 923	 * underlying RAM.
 924	 */
 925	xen_set_identity_and_remap(max_pfn);
 926
 927	return "Xen";
 928}
 929
 930/*
 931 * Machine specific memory setup for auto-translated guests.
 932 */
 933char * __init xen_auto_xlated_memory_setup(void)
 934{
 935	struct xen_memory_map memmap;
 936	int i;
 937	int rc;
 938
 939	memmap.nr_entries = E820MAX;
 940	set_xen_guest_handle(memmap.buffer, xen_e820_map);
 941
 942	rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap);
 943	if (rc < 0)
 944		panic("No memory map (%d)\n", rc);
 945
 946	xen_e820_map_entries = memmap.nr_entries;
 947
 948	sanitize_e820_map(xen_e820_map, ARRAY_SIZE(xen_e820_map),
 949			  &xen_e820_map_entries);
 950
 951	for (i = 0; i < xen_e820_map_entries; i++)
 952		e820_add_region(xen_e820_map[i].addr, xen_e820_map[i].size,
 953				xen_e820_map[i].type);
 954
 955	/* Remove p2m info, it is not needed. */
 956	xen_start_info->mfn_list = 0;
 957	xen_start_info->first_p2m_pfn = 0;
 958	xen_start_info->nr_p2m_frames = 0;
 959
 960	return "Xen";
 961}
 962
 963/*
 964 * Set the bit indicating "nosegneg" library variants should be used.
 965 * We only need to bother in pure 32-bit mode; compat 32-bit processes
 966 * can have un-truncated segments, so wrapping around is allowed.
 967 */
 968static void __init fiddle_vdso(void)
 969{
 970#ifdef CONFIG_X86_32
 971	u32 *mask = vdso_image_32.data +
 972		vdso_image_32.sym_VDSO32_NOTE_MASK;
 
 
 973	*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
 974#endif
 975}
 976
 977static int register_callback(unsigned type, const void *func)
 978{
 979	struct callback_register callback = {
 980		.type = type,
 981		.address = XEN_CALLBACK(__KERNEL_CS, func),
 982		.flags = CALLBACKF_mask_events,
 983	};
 984
 985	return HYPERVISOR_callback_op(CALLBACKOP_register, &callback);
 986}
 987
 988void xen_enable_sysenter(void)
 989{
 990	int ret;
 991	unsigned sysenter_feature;
 992
 993#ifdef CONFIG_X86_32
 994	sysenter_feature = X86_FEATURE_SEP;
 995#else
 996	sysenter_feature = X86_FEATURE_SYSENTER32;
 997#endif
 998
 999	if (!boot_cpu_has(sysenter_feature))
1000		return;
1001
1002	ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target);
1003	if(ret != 0)
1004		setup_clear_cpu_cap(sysenter_feature);
1005}
1006
1007void xen_enable_syscall(void)
1008{
1009#ifdef CONFIG_X86_64
1010	int ret;
1011
1012	ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target);
1013	if (ret != 0) {
1014		printk(KERN_ERR "Failed to set syscall callback: %d\n", ret);
1015		/* Pretty fatal; 64-bit userspace has no other
1016		   mechanism for syscalls. */
1017	}
1018
1019	if (boot_cpu_has(X86_FEATURE_SYSCALL32)) {
1020		ret = register_callback(CALLBACKTYPE_syscall32,
1021					xen_syscall32_target);
1022		if (ret != 0)
1023			setup_clear_cpu_cap(X86_FEATURE_SYSCALL32);
1024	}
1025#endif /* CONFIG_X86_64 */
1026}
1027
1028void __init xen_pvmmu_arch_setup(void)
1029{
 
 
1030	HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
1031	HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables);
1032
1033	HYPERVISOR_vm_assist(VMASST_CMD_enable,
1034			     VMASST_TYPE_pae_extended_cr3);
 
1035
1036	if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) ||
1037	    register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback))
1038		BUG();
1039
1040	xen_enable_sysenter();
1041	xen_enable_syscall();
1042}
1043
1044/* This function is not called for HVM domains */
1045void __init xen_arch_setup(void)
1046{
1047	xen_panic_handler_init();
1048	if (!xen_feature(XENFEAT_auto_translated_physmap))
1049		xen_pvmmu_arch_setup();
1050
1051#ifdef CONFIG_ACPI
1052	if (!(xen_start_info->flags & SIF_INITDOMAIN)) {
1053		printk(KERN_INFO "ACPI in unprivileged domain disabled\n");
1054		disable_acpi();
1055	}
1056#endif
1057
1058	memcpy(boot_command_line, xen_start_info->cmd_line,
1059	       MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ?
1060	       COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE);
1061
1062	/* Set up idle, making sure it calls safe_halt() pvop */
 
 
 
1063	disable_cpuidle();
1064	disable_cpufreq();
1065	WARN_ON(xen_set_default_idle());
1066	fiddle_vdso();
1067#ifdef CONFIG_NUMA
1068	numa_off = 1;
1069#endif
1070}