Loading...
1/*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41#include <linux/sched.h>
42#include <linux/highmem.h>
43#include <linux/debugfs.h>
44#include <linux/bug.h>
45#include <linux/vmalloc.h>
46#include <linux/module.h>
47#include <linux/gfp.h>
48#include <linux/memblock.h>
49#include <linux/seq_file.h>
50
51#include <trace/events/xen.h>
52
53#include <asm/pgtable.h>
54#include <asm/tlbflush.h>
55#include <asm/fixmap.h>
56#include <asm/mmu_context.h>
57#include <asm/setup.h>
58#include <asm/paravirt.h>
59#include <asm/e820.h>
60#include <asm/linkage.h>
61#include <asm/page.h>
62#include <asm/init.h>
63#include <asm/pat.h>
64#include <asm/smp.h>
65
66#include <asm/xen/hypercall.h>
67#include <asm/xen/hypervisor.h>
68
69#include <xen/xen.h>
70#include <xen/page.h>
71#include <xen/interface/xen.h>
72#include <xen/interface/hvm/hvm_op.h>
73#include <xen/interface/version.h>
74#include <xen/interface/memory.h>
75#include <xen/hvc-console.h>
76
77#include "multicalls.h"
78#include "mmu.h"
79#include "debugfs.h"
80
81/*
82 * Protects atomic reservation decrease/increase against concurrent increases.
83 * Also protects non-atomic updates of current_pages and balloon lists.
84 */
85DEFINE_SPINLOCK(xen_reservation_lock);
86
87/*
88 * Identity map, in addition to plain kernel map. This needs to be
89 * large enough to allocate page table pages to allocate the rest.
90 * Each page can map 2MB.
91 */
92#define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
93static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
94
95#ifdef CONFIG_X86_64
96/* l3 pud for userspace vsyscall mapping */
97static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
98#endif /* CONFIG_X86_64 */
99
100/*
101 * Note about cr3 (pagetable base) values:
102 *
103 * xen_cr3 contains the current logical cr3 value; it contains the
104 * last set cr3. This may not be the current effective cr3, because
105 * its update may be being lazily deferred. However, a vcpu looking
106 * at its own cr3 can use this value knowing that it everything will
107 * be self-consistent.
108 *
109 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
110 * hypercall to set the vcpu cr3 is complete (so it may be a little
111 * out of date, but it will never be set early). If one vcpu is
112 * looking at another vcpu's cr3 value, it should use this variable.
113 */
114DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
115DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
116
117
118/*
119 * Just beyond the highest usermode address. STACK_TOP_MAX has a
120 * redzone above it, so round it up to a PGD boundary.
121 */
122#define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
123
124unsigned long arbitrary_virt_to_mfn(void *vaddr)
125{
126 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
127
128 return PFN_DOWN(maddr.maddr);
129}
130
131xmaddr_t arbitrary_virt_to_machine(void *vaddr)
132{
133 unsigned long address = (unsigned long)vaddr;
134 unsigned int level;
135 pte_t *pte;
136 unsigned offset;
137
138 /*
139 * if the PFN is in the linear mapped vaddr range, we can just use
140 * the (quick) virt_to_machine() p2m lookup
141 */
142 if (virt_addr_valid(vaddr))
143 return virt_to_machine(vaddr);
144
145 /* otherwise we have to do a (slower) full page-table walk */
146
147 pte = lookup_address(address, &level);
148 BUG_ON(pte == NULL);
149 offset = address & ~PAGE_MASK;
150 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
151}
152EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
153
154void make_lowmem_page_readonly(void *vaddr)
155{
156 pte_t *pte, ptev;
157 unsigned long address = (unsigned long)vaddr;
158 unsigned int level;
159
160 pte = lookup_address(address, &level);
161 if (pte == NULL)
162 return; /* vaddr missing */
163
164 ptev = pte_wrprotect(*pte);
165
166 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
167 BUG();
168}
169
170void make_lowmem_page_readwrite(void *vaddr)
171{
172 pte_t *pte, ptev;
173 unsigned long address = (unsigned long)vaddr;
174 unsigned int level;
175
176 pte = lookup_address(address, &level);
177 if (pte == NULL)
178 return; /* vaddr missing */
179
180 ptev = pte_mkwrite(*pte);
181
182 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
183 BUG();
184}
185
186
187static bool xen_page_pinned(void *ptr)
188{
189 struct page *page = virt_to_page(ptr);
190
191 return PagePinned(page);
192}
193
194void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
195{
196 struct multicall_space mcs;
197 struct mmu_update *u;
198
199 trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
200
201 mcs = xen_mc_entry(sizeof(*u));
202 u = mcs.args;
203
204 /* ptep might be kmapped when using 32-bit HIGHPTE */
205 u->ptr = virt_to_machine(ptep).maddr;
206 u->val = pte_val_ma(pteval);
207
208 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
209
210 xen_mc_issue(PARAVIRT_LAZY_MMU);
211}
212EXPORT_SYMBOL_GPL(xen_set_domain_pte);
213
214static void xen_extend_mmu_update(const struct mmu_update *update)
215{
216 struct multicall_space mcs;
217 struct mmu_update *u;
218
219 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
220
221 if (mcs.mc != NULL) {
222 mcs.mc->args[1]++;
223 } else {
224 mcs = __xen_mc_entry(sizeof(*u));
225 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
226 }
227
228 u = mcs.args;
229 *u = *update;
230}
231
232static void xen_extend_mmuext_op(const struct mmuext_op *op)
233{
234 struct multicall_space mcs;
235 struct mmuext_op *u;
236
237 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
238
239 if (mcs.mc != NULL) {
240 mcs.mc->args[1]++;
241 } else {
242 mcs = __xen_mc_entry(sizeof(*u));
243 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
244 }
245
246 u = mcs.args;
247 *u = *op;
248}
249
250static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
251{
252 struct mmu_update u;
253
254 preempt_disable();
255
256 xen_mc_batch();
257
258 /* ptr may be ioremapped for 64-bit pagetable setup */
259 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
260 u.val = pmd_val_ma(val);
261 xen_extend_mmu_update(&u);
262
263 xen_mc_issue(PARAVIRT_LAZY_MMU);
264
265 preempt_enable();
266}
267
268static void xen_set_pmd(pmd_t *ptr, pmd_t val)
269{
270 trace_xen_mmu_set_pmd(ptr, val);
271
272 /* If page is not pinned, we can just update the entry
273 directly */
274 if (!xen_page_pinned(ptr)) {
275 *ptr = val;
276 return;
277 }
278
279 xen_set_pmd_hyper(ptr, val);
280}
281
282/*
283 * Associate a virtual page frame with a given physical page frame
284 * and protection flags for that frame.
285 */
286void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
287{
288 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
289}
290
291static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
292{
293 struct mmu_update u;
294
295 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
296 return false;
297
298 xen_mc_batch();
299
300 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
301 u.val = pte_val_ma(pteval);
302 xen_extend_mmu_update(&u);
303
304 xen_mc_issue(PARAVIRT_LAZY_MMU);
305
306 return true;
307}
308
309static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
310{
311 if (!xen_batched_set_pte(ptep, pteval))
312 native_set_pte(ptep, pteval);
313}
314
315static void xen_set_pte(pte_t *ptep, pte_t pteval)
316{
317 trace_xen_mmu_set_pte(ptep, pteval);
318 __xen_set_pte(ptep, pteval);
319}
320
321static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
322 pte_t *ptep, pte_t pteval)
323{
324 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
325 __xen_set_pte(ptep, pteval);
326}
327
328pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
329 unsigned long addr, pte_t *ptep)
330{
331 /* Just return the pte as-is. We preserve the bits on commit */
332 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
333 return *ptep;
334}
335
336void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
337 pte_t *ptep, pte_t pte)
338{
339 struct mmu_update u;
340
341 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
342 xen_mc_batch();
343
344 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
345 u.val = pte_val_ma(pte);
346 xen_extend_mmu_update(&u);
347
348 xen_mc_issue(PARAVIRT_LAZY_MMU);
349}
350
351/* Assume pteval_t is equivalent to all the other *val_t types. */
352static pteval_t pte_mfn_to_pfn(pteval_t val)
353{
354 if (val & _PAGE_PRESENT) {
355 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
356 unsigned long pfn = mfn_to_pfn(mfn);
357
358 pteval_t flags = val & PTE_FLAGS_MASK;
359 if (unlikely(pfn == ~0))
360 val = flags & ~_PAGE_PRESENT;
361 else
362 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
363 }
364
365 return val;
366}
367
368static pteval_t pte_pfn_to_mfn(pteval_t val)
369{
370 if (val & _PAGE_PRESENT) {
371 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
372 pteval_t flags = val & PTE_FLAGS_MASK;
373 unsigned long mfn;
374
375 if (!xen_feature(XENFEAT_auto_translated_physmap))
376 mfn = get_phys_to_machine(pfn);
377 else
378 mfn = pfn;
379 /*
380 * If there's no mfn for the pfn, then just create an
381 * empty non-present pte. Unfortunately this loses
382 * information about the original pfn, so
383 * pte_mfn_to_pfn is asymmetric.
384 */
385 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
386 mfn = 0;
387 flags = 0;
388 } else {
389 /*
390 * Paramount to do this test _after_ the
391 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
392 * IDENTITY_FRAME_BIT resolves to true.
393 */
394 mfn &= ~FOREIGN_FRAME_BIT;
395 if (mfn & IDENTITY_FRAME_BIT) {
396 mfn &= ~IDENTITY_FRAME_BIT;
397 flags |= _PAGE_IOMAP;
398 }
399 }
400 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
401 }
402
403 return val;
404}
405
406static pteval_t iomap_pte(pteval_t val)
407{
408 if (val & _PAGE_PRESENT) {
409 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
410 pteval_t flags = val & PTE_FLAGS_MASK;
411
412 /* We assume the pte frame number is a MFN, so
413 just use it as-is. */
414 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
415 }
416
417 return val;
418}
419
420static pteval_t xen_pte_val(pte_t pte)
421{
422 pteval_t pteval = pte.pte;
423#if 0
424 /* If this is a WC pte, convert back from Xen WC to Linux WC */
425 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
426 WARN_ON(!pat_enabled);
427 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
428 }
429#endif
430 if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
431 return pteval;
432
433 return pte_mfn_to_pfn(pteval);
434}
435PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
436
437static pgdval_t xen_pgd_val(pgd_t pgd)
438{
439 return pte_mfn_to_pfn(pgd.pgd);
440}
441PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
442
443/*
444 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
445 * are reserved for now, to correspond to the Intel-reserved PAT
446 * types.
447 *
448 * We expect Linux's PAT set as follows:
449 *
450 * Idx PTE flags Linux Xen Default
451 * 0 WB WB WB
452 * 1 PWT WC WT WT
453 * 2 PCD UC- UC- UC-
454 * 3 PCD PWT UC UC UC
455 * 4 PAT WB WC WB
456 * 5 PAT PWT WC WP WT
457 * 6 PAT PCD UC- UC UC-
458 * 7 PAT PCD PWT UC UC UC
459 */
460
461void xen_set_pat(u64 pat)
462{
463 /* We expect Linux to use a PAT setting of
464 * UC UC- WC WB (ignoring the PAT flag) */
465 WARN_ON(pat != 0x0007010600070106ull);
466}
467
468static pte_t xen_make_pte(pteval_t pte)
469{
470 phys_addr_t addr = (pte & PTE_PFN_MASK);
471#if 0
472 /* If Linux is trying to set a WC pte, then map to the Xen WC.
473 * If _PAGE_PAT is set, then it probably means it is really
474 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
475 * things work out OK...
476 *
477 * (We should never see kernel mappings with _PAGE_PSE set,
478 * but we could see hugetlbfs mappings, I think.).
479 */
480 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
481 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
482 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
483 }
484#endif
485 /*
486 * Unprivileged domains are allowed to do IOMAPpings for
487 * PCI passthrough, but not map ISA space. The ISA
488 * mappings are just dummy local mappings to keep other
489 * parts of the kernel happy.
490 */
491 if (unlikely(pte & _PAGE_IOMAP) &&
492 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
493 pte = iomap_pte(pte);
494 } else {
495 pte &= ~_PAGE_IOMAP;
496 pte = pte_pfn_to_mfn(pte);
497 }
498
499 return native_make_pte(pte);
500}
501PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
502
503static pgd_t xen_make_pgd(pgdval_t pgd)
504{
505 pgd = pte_pfn_to_mfn(pgd);
506 return native_make_pgd(pgd);
507}
508PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
509
510static pmdval_t xen_pmd_val(pmd_t pmd)
511{
512 return pte_mfn_to_pfn(pmd.pmd);
513}
514PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
515
516static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
517{
518 struct mmu_update u;
519
520 preempt_disable();
521
522 xen_mc_batch();
523
524 /* ptr may be ioremapped for 64-bit pagetable setup */
525 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
526 u.val = pud_val_ma(val);
527 xen_extend_mmu_update(&u);
528
529 xen_mc_issue(PARAVIRT_LAZY_MMU);
530
531 preempt_enable();
532}
533
534static void xen_set_pud(pud_t *ptr, pud_t val)
535{
536 trace_xen_mmu_set_pud(ptr, val);
537
538 /* If page is not pinned, we can just update the entry
539 directly */
540 if (!xen_page_pinned(ptr)) {
541 *ptr = val;
542 return;
543 }
544
545 xen_set_pud_hyper(ptr, val);
546}
547
548#ifdef CONFIG_X86_PAE
549static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
550{
551 trace_xen_mmu_set_pte_atomic(ptep, pte);
552 set_64bit((u64 *)ptep, native_pte_val(pte));
553}
554
555static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
556{
557 trace_xen_mmu_pte_clear(mm, addr, ptep);
558 if (!xen_batched_set_pte(ptep, native_make_pte(0)))
559 native_pte_clear(mm, addr, ptep);
560}
561
562static void xen_pmd_clear(pmd_t *pmdp)
563{
564 trace_xen_mmu_pmd_clear(pmdp);
565 set_pmd(pmdp, __pmd(0));
566}
567#endif /* CONFIG_X86_PAE */
568
569static pmd_t xen_make_pmd(pmdval_t pmd)
570{
571 pmd = pte_pfn_to_mfn(pmd);
572 return native_make_pmd(pmd);
573}
574PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
575
576#if PAGETABLE_LEVELS == 4
577static pudval_t xen_pud_val(pud_t pud)
578{
579 return pte_mfn_to_pfn(pud.pud);
580}
581PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
582
583static pud_t xen_make_pud(pudval_t pud)
584{
585 pud = pte_pfn_to_mfn(pud);
586
587 return native_make_pud(pud);
588}
589PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
590
591static pgd_t *xen_get_user_pgd(pgd_t *pgd)
592{
593 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
594 unsigned offset = pgd - pgd_page;
595 pgd_t *user_ptr = NULL;
596
597 if (offset < pgd_index(USER_LIMIT)) {
598 struct page *page = virt_to_page(pgd_page);
599 user_ptr = (pgd_t *)page->private;
600 if (user_ptr)
601 user_ptr += offset;
602 }
603
604 return user_ptr;
605}
606
607static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
608{
609 struct mmu_update u;
610
611 u.ptr = virt_to_machine(ptr).maddr;
612 u.val = pgd_val_ma(val);
613 xen_extend_mmu_update(&u);
614}
615
616/*
617 * Raw hypercall-based set_pgd, intended for in early boot before
618 * there's a page structure. This implies:
619 * 1. The only existing pagetable is the kernel's
620 * 2. It is always pinned
621 * 3. It has no user pagetable attached to it
622 */
623static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
624{
625 preempt_disable();
626
627 xen_mc_batch();
628
629 __xen_set_pgd_hyper(ptr, val);
630
631 xen_mc_issue(PARAVIRT_LAZY_MMU);
632
633 preempt_enable();
634}
635
636static void xen_set_pgd(pgd_t *ptr, pgd_t val)
637{
638 pgd_t *user_ptr = xen_get_user_pgd(ptr);
639
640 trace_xen_mmu_set_pgd(ptr, user_ptr, val);
641
642 /* If page is not pinned, we can just update the entry
643 directly */
644 if (!xen_page_pinned(ptr)) {
645 *ptr = val;
646 if (user_ptr) {
647 WARN_ON(xen_page_pinned(user_ptr));
648 *user_ptr = val;
649 }
650 return;
651 }
652
653 /* If it's pinned, then we can at least batch the kernel and
654 user updates together. */
655 xen_mc_batch();
656
657 __xen_set_pgd_hyper(ptr, val);
658 if (user_ptr)
659 __xen_set_pgd_hyper(user_ptr, val);
660
661 xen_mc_issue(PARAVIRT_LAZY_MMU);
662}
663#endif /* PAGETABLE_LEVELS == 4 */
664
665/*
666 * (Yet another) pagetable walker. This one is intended for pinning a
667 * pagetable. This means that it walks a pagetable and calls the
668 * callback function on each page it finds making up the page table,
669 * at every level. It walks the entire pagetable, but it only bothers
670 * pinning pte pages which are below limit. In the normal case this
671 * will be STACK_TOP_MAX, but at boot we need to pin up to
672 * FIXADDR_TOP.
673 *
674 * For 32-bit the important bit is that we don't pin beyond there,
675 * because then we start getting into Xen's ptes.
676 *
677 * For 64-bit, we must skip the Xen hole in the middle of the address
678 * space, just after the big x86-64 virtual hole.
679 */
680static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
681 int (*func)(struct mm_struct *mm, struct page *,
682 enum pt_level),
683 unsigned long limit)
684{
685 int flush = 0;
686 unsigned hole_low, hole_high;
687 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
688 unsigned pgdidx, pudidx, pmdidx;
689
690 /* The limit is the last byte to be touched */
691 limit--;
692 BUG_ON(limit >= FIXADDR_TOP);
693
694 if (xen_feature(XENFEAT_auto_translated_physmap))
695 return 0;
696
697 /*
698 * 64-bit has a great big hole in the middle of the address
699 * space, which contains the Xen mappings. On 32-bit these
700 * will end up making a zero-sized hole and so is a no-op.
701 */
702 hole_low = pgd_index(USER_LIMIT);
703 hole_high = pgd_index(PAGE_OFFSET);
704
705 pgdidx_limit = pgd_index(limit);
706#if PTRS_PER_PUD > 1
707 pudidx_limit = pud_index(limit);
708#else
709 pudidx_limit = 0;
710#endif
711#if PTRS_PER_PMD > 1
712 pmdidx_limit = pmd_index(limit);
713#else
714 pmdidx_limit = 0;
715#endif
716
717 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
718 pud_t *pud;
719
720 if (pgdidx >= hole_low && pgdidx < hole_high)
721 continue;
722
723 if (!pgd_val(pgd[pgdidx]))
724 continue;
725
726 pud = pud_offset(&pgd[pgdidx], 0);
727
728 if (PTRS_PER_PUD > 1) /* not folded */
729 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
730
731 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
732 pmd_t *pmd;
733
734 if (pgdidx == pgdidx_limit &&
735 pudidx > pudidx_limit)
736 goto out;
737
738 if (pud_none(pud[pudidx]))
739 continue;
740
741 pmd = pmd_offset(&pud[pudidx], 0);
742
743 if (PTRS_PER_PMD > 1) /* not folded */
744 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
745
746 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
747 struct page *pte;
748
749 if (pgdidx == pgdidx_limit &&
750 pudidx == pudidx_limit &&
751 pmdidx > pmdidx_limit)
752 goto out;
753
754 if (pmd_none(pmd[pmdidx]))
755 continue;
756
757 pte = pmd_page(pmd[pmdidx]);
758 flush |= (*func)(mm, pte, PT_PTE);
759 }
760 }
761 }
762
763out:
764 /* Do the top level last, so that the callbacks can use it as
765 a cue to do final things like tlb flushes. */
766 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
767
768 return flush;
769}
770
771static int xen_pgd_walk(struct mm_struct *mm,
772 int (*func)(struct mm_struct *mm, struct page *,
773 enum pt_level),
774 unsigned long limit)
775{
776 return __xen_pgd_walk(mm, mm->pgd, func, limit);
777}
778
779/* If we're using split pte locks, then take the page's lock and
780 return a pointer to it. Otherwise return NULL. */
781static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
782{
783 spinlock_t *ptl = NULL;
784
785#if USE_SPLIT_PTLOCKS
786 ptl = __pte_lockptr(page);
787 spin_lock_nest_lock(ptl, &mm->page_table_lock);
788#endif
789
790 return ptl;
791}
792
793static void xen_pte_unlock(void *v)
794{
795 spinlock_t *ptl = v;
796 spin_unlock(ptl);
797}
798
799static void xen_do_pin(unsigned level, unsigned long pfn)
800{
801 struct mmuext_op op;
802
803 op.cmd = level;
804 op.arg1.mfn = pfn_to_mfn(pfn);
805
806 xen_extend_mmuext_op(&op);
807}
808
809static int xen_pin_page(struct mm_struct *mm, struct page *page,
810 enum pt_level level)
811{
812 unsigned pgfl = TestSetPagePinned(page);
813 int flush;
814
815 if (pgfl)
816 flush = 0; /* already pinned */
817 else if (PageHighMem(page))
818 /* kmaps need flushing if we found an unpinned
819 highpage */
820 flush = 1;
821 else {
822 void *pt = lowmem_page_address(page);
823 unsigned long pfn = page_to_pfn(page);
824 struct multicall_space mcs = __xen_mc_entry(0);
825 spinlock_t *ptl;
826
827 flush = 0;
828
829 /*
830 * We need to hold the pagetable lock between the time
831 * we make the pagetable RO and when we actually pin
832 * it. If we don't, then other users may come in and
833 * attempt to update the pagetable by writing it,
834 * which will fail because the memory is RO but not
835 * pinned, so Xen won't do the trap'n'emulate.
836 *
837 * If we're using split pte locks, we can't hold the
838 * entire pagetable's worth of locks during the
839 * traverse, because we may wrap the preempt count (8
840 * bits). The solution is to mark RO and pin each PTE
841 * page while holding the lock. This means the number
842 * of locks we end up holding is never more than a
843 * batch size (~32 entries, at present).
844 *
845 * If we're not using split pte locks, we needn't pin
846 * the PTE pages independently, because we're
847 * protected by the overall pagetable lock.
848 */
849 ptl = NULL;
850 if (level == PT_PTE)
851 ptl = xen_pte_lock(page, mm);
852
853 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
854 pfn_pte(pfn, PAGE_KERNEL_RO),
855 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
856
857 if (ptl) {
858 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
859
860 /* Queue a deferred unlock for when this batch
861 is completed. */
862 xen_mc_callback(xen_pte_unlock, ptl);
863 }
864 }
865
866 return flush;
867}
868
869/* This is called just after a mm has been created, but it has not
870 been used yet. We need to make sure that its pagetable is all
871 read-only, and can be pinned. */
872static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
873{
874 trace_xen_mmu_pgd_pin(mm, pgd);
875
876 xen_mc_batch();
877
878 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
879 /* re-enable interrupts for flushing */
880 xen_mc_issue(0);
881
882 kmap_flush_unused();
883
884 xen_mc_batch();
885 }
886
887#ifdef CONFIG_X86_64
888 {
889 pgd_t *user_pgd = xen_get_user_pgd(pgd);
890
891 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
892
893 if (user_pgd) {
894 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
895 xen_do_pin(MMUEXT_PIN_L4_TABLE,
896 PFN_DOWN(__pa(user_pgd)));
897 }
898 }
899#else /* CONFIG_X86_32 */
900#ifdef CONFIG_X86_PAE
901 /* Need to make sure unshared kernel PMD is pinnable */
902 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
903 PT_PMD);
904#endif
905 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
906#endif /* CONFIG_X86_64 */
907 xen_mc_issue(0);
908}
909
910static void xen_pgd_pin(struct mm_struct *mm)
911{
912 __xen_pgd_pin(mm, mm->pgd);
913}
914
915/*
916 * On save, we need to pin all pagetables to make sure they get their
917 * mfns turned into pfns. Search the list for any unpinned pgds and pin
918 * them (unpinned pgds are not currently in use, probably because the
919 * process is under construction or destruction).
920 *
921 * Expected to be called in stop_machine() ("equivalent to taking
922 * every spinlock in the system"), so the locking doesn't really
923 * matter all that much.
924 */
925void xen_mm_pin_all(void)
926{
927 struct page *page;
928
929 spin_lock(&pgd_lock);
930
931 list_for_each_entry(page, &pgd_list, lru) {
932 if (!PagePinned(page)) {
933 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
934 SetPageSavePinned(page);
935 }
936 }
937
938 spin_unlock(&pgd_lock);
939}
940
941/*
942 * The init_mm pagetable is really pinned as soon as its created, but
943 * that's before we have page structures to store the bits. So do all
944 * the book-keeping now.
945 */
946static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
947 enum pt_level level)
948{
949 SetPagePinned(page);
950 return 0;
951}
952
953static void __init xen_mark_init_mm_pinned(void)
954{
955 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
956}
957
958static int xen_unpin_page(struct mm_struct *mm, struct page *page,
959 enum pt_level level)
960{
961 unsigned pgfl = TestClearPagePinned(page);
962
963 if (pgfl && !PageHighMem(page)) {
964 void *pt = lowmem_page_address(page);
965 unsigned long pfn = page_to_pfn(page);
966 spinlock_t *ptl = NULL;
967 struct multicall_space mcs;
968
969 /*
970 * Do the converse to pin_page. If we're using split
971 * pte locks, we must be holding the lock for while
972 * the pte page is unpinned but still RO to prevent
973 * concurrent updates from seeing it in this
974 * partially-pinned state.
975 */
976 if (level == PT_PTE) {
977 ptl = xen_pte_lock(page, mm);
978
979 if (ptl)
980 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
981 }
982
983 mcs = __xen_mc_entry(0);
984
985 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
986 pfn_pte(pfn, PAGE_KERNEL),
987 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
988
989 if (ptl) {
990 /* unlock when batch completed */
991 xen_mc_callback(xen_pte_unlock, ptl);
992 }
993 }
994
995 return 0; /* never need to flush on unpin */
996}
997
998/* Release a pagetables pages back as normal RW */
999static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1000{
1001 trace_xen_mmu_pgd_unpin(mm, pgd);
1002
1003 xen_mc_batch();
1004
1005 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1006
1007#ifdef CONFIG_X86_64
1008 {
1009 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1010
1011 if (user_pgd) {
1012 xen_do_pin(MMUEXT_UNPIN_TABLE,
1013 PFN_DOWN(__pa(user_pgd)));
1014 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1015 }
1016 }
1017#endif
1018
1019#ifdef CONFIG_X86_PAE
1020 /* Need to make sure unshared kernel PMD is unpinned */
1021 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1022 PT_PMD);
1023#endif
1024
1025 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1026
1027 xen_mc_issue(0);
1028}
1029
1030static void xen_pgd_unpin(struct mm_struct *mm)
1031{
1032 __xen_pgd_unpin(mm, mm->pgd);
1033}
1034
1035/*
1036 * On resume, undo any pinning done at save, so that the rest of the
1037 * kernel doesn't see any unexpected pinned pagetables.
1038 */
1039void xen_mm_unpin_all(void)
1040{
1041 struct page *page;
1042
1043 spin_lock(&pgd_lock);
1044
1045 list_for_each_entry(page, &pgd_list, lru) {
1046 if (PageSavePinned(page)) {
1047 BUG_ON(!PagePinned(page));
1048 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1049 ClearPageSavePinned(page);
1050 }
1051 }
1052
1053 spin_unlock(&pgd_lock);
1054}
1055
1056static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1057{
1058 spin_lock(&next->page_table_lock);
1059 xen_pgd_pin(next);
1060 spin_unlock(&next->page_table_lock);
1061}
1062
1063static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1064{
1065 spin_lock(&mm->page_table_lock);
1066 xen_pgd_pin(mm);
1067 spin_unlock(&mm->page_table_lock);
1068}
1069
1070
1071#ifdef CONFIG_SMP
1072/* Another cpu may still have their %cr3 pointing at the pagetable, so
1073 we need to repoint it somewhere else before we can unpin it. */
1074static void drop_other_mm_ref(void *info)
1075{
1076 struct mm_struct *mm = info;
1077 struct mm_struct *active_mm;
1078
1079 active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1080
1081 if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1082 leave_mm(smp_processor_id());
1083
1084 /* If this cpu still has a stale cr3 reference, then make sure
1085 it has been flushed. */
1086 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1087 load_cr3(swapper_pg_dir);
1088}
1089
1090static void xen_drop_mm_ref(struct mm_struct *mm)
1091{
1092 cpumask_var_t mask;
1093 unsigned cpu;
1094
1095 if (current->active_mm == mm) {
1096 if (current->mm == mm)
1097 load_cr3(swapper_pg_dir);
1098 else
1099 leave_mm(smp_processor_id());
1100 }
1101
1102 /* Get the "official" set of cpus referring to our pagetable. */
1103 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1104 for_each_online_cpu(cpu) {
1105 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1106 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1107 continue;
1108 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1109 }
1110 return;
1111 }
1112 cpumask_copy(mask, mm_cpumask(mm));
1113
1114 /* It's possible that a vcpu may have a stale reference to our
1115 cr3, because its in lazy mode, and it hasn't yet flushed
1116 its set of pending hypercalls yet. In this case, we can
1117 look at its actual current cr3 value, and force it to flush
1118 if needed. */
1119 for_each_online_cpu(cpu) {
1120 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1121 cpumask_set_cpu(cpu, mask);
1122 }
1123
1124 if (!cpumask_empty(mask))
1125 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1126 free_cpumask_var(mask);
1127}
1128#else
1129static void xen_drop_mm_ref(struct mm_struct *mm)
1130{
1131 if (current->active_mm == mm)
1132 load_cr3(swapper_pg_dir);
1133}
1134#endif
1135
1136/*
1137 * While a process runs, Xen pins its pagetables, which means that the
1138 * hypervisor forces it to be read-only, and it controls all updates
1139 * to it. This means that all pagetable updates have to go via the
1140 * hypervisor, which is moderately expensive.
1141 *
1142 * Since we're pulling the pagetable down, we switch to use init_mm,
1143 * unpin old process pagetable and mark it all read-write, which
1144 * allows further operations on it to be simple memory accesses.
1145 *
1146 * The only subtle point is that another CPU may be still using the
1147 * pagetable because of lazy tlb flushing. This means we need need to
1148 * switch all CPUs off this pagetable before we can unpin it.
1149 */
1150static void xen_exit_mmap(struct mm_struct *mm)
1151{
1152 get_cpu(); /* make sure we don't move around */
1153 xen_drop_mm_ref(mm);
1154 put_cpu();
1155
1156 spin_lock(&mm->page_table_lock);
1157
1158 /* pgd may not be pinned in the error exit path of execve */
1159 if (xen_page_pinned(mm->pgd))
1160 xen_pgd_unpin(mm);
1161
1162 spin_unlock(&mm->page_table_lock);
1163}
1164
1165static void __init xen_pagetable_setup_start(pgd_t *base)
1166{
1167}
1168
1169static __init void xen_mapping_pagetable_reserve(u64 start, u64 end)
1170{
1171 /* reserve the range used */
1172 native_pagetable_reserve(start, end);
1173
1174 /* set as RW the rest */
1175 printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end,
1176 PFN_PHYS(pgt_buf_top));
1177 while (end < PFN_PHYS(pgt_buf_top)) {
1178 make_lowmem_page_readwrite(__va(end));
1179 end += PAGE_SIZE;
1180 }
1181}
1182
1183static void xen_post_allocator_init(void);
1184
1185static void __init xen_pagetable_setup_done(pgd_t *base)
1186{
1187 xen_setup_shared_info();
1188 xen_post_allocator_init();
1189}
1190
1191static void xen_write_cr2(unsigned long cr2)
1192{
1193 this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1194}
1195
1196static unsigned long xen_read_cr2(void)
1197{
1198 return this_cpu_read(xen_vcpu)->arch.cr2;
1199}
1200
1201unsigned long xen_read_cr2_direct(void)
1202{
1203 return this_cpu_read(xen_vcpu_info.arch.cr2);
1204}
1205
1206static void xen_flush_tlb(void)
1207{
1208 struct mmuext_op *op;
1209 struct multicall_space mcs;
1210
1211 trace_xen_mmu_flush_tlb(0);
1212
1213 preempt_disable();
1214
1215 mcs = xen_mc_entry(sizeof(*op));
1216
1217 op = mcs.args;
1218 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1219 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1220
1221 xen_mc_issue(PARAVIRT_LAZY_MMU);
1222
1223 preempt_enable();
1224}
1225
1226static void xen_flush_tlb_single(unsigned long addr)
1227{
1228 struct mmuext_op *op;
1229 struct multicall_space mcs;
1230
1231 trace_xen_mmu_flush_tlb_single(addr);
1232
1233 preempt_disable();
1234
1235 mcs = xen_mc_entry(sizeof(*op));
1236 op = mcs.args;
1237 op->cmd = MMUEXT_INVLPG_LOCAL;
1238 op->arg1.linear_addr = addr & PAGE_MASK;
1239 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1240
1241 xen_mc_issue(PARAVIRT_LAZY_MMU);
1242
1243 preempt_enable();
1244}
1245
1246static void xen_flush_tlb_others(const struct cpumask *cpus,
1247 struct mm_struct *mm, unsigned long va)
1248{
1249 struct {
1250 struct mmuext_op op;
1251#ifdef CONFIG_SMP
1252 DECLARE_BITMAP(mask, num_processors);
1253#else
1254 DECLARE_BITMAP(mask, NR_CPUS);
1255#endif
1256 } *args;
1257 struct multicall_space mcs;
1258
1259 trace_xen_mmu_flush_tlb_others(cpus, mm, va);
1260
1261 if (cpumask_empty(cpus))
1262 return; /* nothing to do */
1263
1264 mcs = xen_mc_entry(sizeof(*args));
1265 args = mcs.args;
1266 args->op.arg2.vcpumask = to_cpumask(args->mask);
1267
1268 /* Remove us, and any offline CPUS. */
1269 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1270 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1271
1272 if (va == TLB_FLUSH_ALL) {
1273 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1274 } else {
1275 args->op.cmd = MMUEXT_INVLPG_MULTI;
1276 args->op.arg1.linear_addr = va;
1277 }
1278
1279 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1280
1281 xen_mc_issue(PARAVIRT_LAZY_MMU);
1282}
1283
1284static unsigned long xen_read_cr3(void)
1285{
1286 return this_cpu_read(xen_cr3);
1287}
1288
1289static void set_current_cr3(void *v)
1290{
1291 this_cpu_write(xen_current_cr3, (unsigned long)v);
1292}
1293
1294static void __xen_write_cr3(bool kernel, unsigned long cr3)
1295{
1296 struct mmuext_op op;
1297 unsigned long mfn;
1298
1299 trace_xen_mmu_write_cr3(kernel, cr3);
1300
1301 if (cr3)
1302 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1303 else
1304 mfn = 0;
1305
1306 WARN_ON(mfn == 0 && kernel);
1307
1308 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1309 op.arg1.mfn = mfn;
1310
1311 xen_extend_mmuext_op(&op);
1312
1313 if (kernel) {
1314 this_cpu_write(xen_cr3, cr3);
1315
1316 /* Update xen_current_cr3 once the batch has actually
1317 been submitted. */
1318 xen_mc_callback(set_current_cr3, (void *)cr3);
1319 }
1320}
1321
1322static void xen_write_cr3(unsigned long cr3)
1323{
1324 BUG_ON(preemptible());
1325
1326 xen_mc_batch(); /* disables interrupts */
1327
1328 /* Update while interrupts are disabled, so its atomic with
1329 respect to ipis */
1330 this_cpu_write(xen_cr3, cr3);
1331
1332 __xen_write_cr3(true, cr3);
1333
1334#ifdef CONFIG_X86_64
1335 {
1336 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1337 if (user_pgd)
1338 __xen_write_cr3(false, __pa(user_pgd));
1339 else
1340 __xen_write_cr3(false, 0);
1341 }
1342#endif
1343
1344 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1345}
1346
1347static int xen_pgd_alloc(struct mm_struct *mm)
1348{
1349 pgd_t *pgd = mm->pgd;
1350 int ret = 0;
1351
1352 BUG_ON(PagePinned(virt_to_page(pgd)));
1353
1354#ifdef CONFIG_X86_64
1355 {
1356 struct page *page = virt_to_page(pgd);
1357 pgd_t *user_pgd;
1358
1359 BUG_ON(page->private != 0);
1360
1361 ret = -ENOMEM;
1362
1363 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1364 page->private = (unsigned long)user_pgd;
1365
1366 if (user_pgd != NULL) {
1367 user_pgd[pgd_index(VSYSCALL_START)] =
1368 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1369 ret = 0;
1370 }
1371
1372 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1373 }
1374#endif
1375
1376 return ret;
1377}
1378
1379static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1380{
1381#ifdef CONFIG_X86_64
1382 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1383
1384 if (user_pgd)
1385 free_page((unsigned long)user_pgd);
1386#endif
1387}
1388
1389#ifdef CONFIG_X86_32
1390static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1391{
1392 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1393 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1394 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1395 pte_val_ma(pte));
1396
1397 return pte;
1398}
1399#else /* CONFIG_X86_64 */
1400static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1401{
1402 unsigned long pfn = pte_pfn(pte);
1403
1404 /*
1405 * If the new pfn is within the range of the newly allocated
1406 * kernel pagetable, and it isn't being mapped into an
1407 * early_ioremap fixmap slot as a freshly allocated page, make sure
1408 * it is RO.
1409 */
1410 if (((!is_early_ioremap_ptep(ptep) &&
1411 pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
1412 (is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1413 pte = pte_wrprotect(pte);
1414
1415 return pte;
1416}
1417#endif /* CONFIG_X86_64 */
1418
1419/* Init-time set_pte while constructing initial pagetables, which
1420 doesn't allow RO pagetable pages to be remapped RW */
1421static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1422{
1423 pte = mask_rw_pte(ptep, pte);
1424
1425 xen_set_pte(ptep, pte);
1426}
1427
1428static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1429{
1430 struct mmuext_op op;
1431 op.cmd = cmd;
1432 op.arg1.mfn = pfn_to_mfn(pfn);
1433 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1434 BUG();
1435}
1436
1437/* Early in boot, while setting up the initial pagetable, assume
1438 everything is pinned. */
1439static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1440{
1441#ifdef CONFIG_FLATMEM
1442 BUG_ON(mem_map); /* should only be used early */
1443#endif
1444 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1445 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1446}
1447
1448/* Used for pmd and pud */
1449static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1450{
1451#ifdef CONFIG_FLATMEM
1452 BUG_ON(mem_map); /* should only be used early */
1453#endif
1454 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1455}
1456
1457/* Early release_pte assumes that all pts are pinned, since there's
1458 only init_mm and anything attached to that is pinned. */
1459static void __init xen_release_pte_init(unsigned long pfn)
1460{
1461 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1462 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1463}
1464
1465static void __init xen_release_pmd_init(unsigned long pfn)
1466{
1467 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1468}
1469
1470static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1471{
1472 struct multicall_space mcs;
1473 struct mmuext_op *op;
1474
1475 mcs = __xen_mc_entry(sizeof(*op));
1476 op = mcs.args;
1477 op->cmd = cmd;
1478 op->arg1.mfn = pfn_to_mfn(pfn);
1479
1480 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1481}
1482
1483static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1484{
1485 struct multicall_space mcs;
1486 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1487
1488 mcs = __xen_mc_entry(0);
1489 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1490 pfn_pte(pfn, prot), 0);
1491}
1492
1493/* This needs to make sure the new pte page is pinned iff its being
1494 attached to a pinned pagetable. */
1495static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1496 unsigned level)
1497{
1498 bool pinned = PagePinned(virt_to_page(mm->pgd));
1499
1500 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1501
1502 if (pinned) {
1503 struct page *page = pfn_to_page(pfn);
1504
1505 SetPagePinned(page);
1506
1507 if (!PageHighMem(page)) {
1508 xen_mc_batch();
1509
1510 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1511
1512 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1513 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1514
1515 xen_mc_issue(PARAVIRT_LAZY_MMU);
1516 } else {
1517 /* make sure there are no stray mappings of
1518 this page */
1519 kmap_flush_unused();
1520 }
1521 }
1522}
1523
1524static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1525{
1526 xen_alloc_ptpage(mm, pfn, PT_PTE);
1527}
1528
1529static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1530{
1531 xen_alloc_ptpage(mm, pfn, PT_PMD);
1532}
1533
1534/* This should never happen until we're OK to use struct page */
1535static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1536{
1537 struct page *page = pfn_to_page(pfn);
1538 bool pinned = PagePinned(page);
1539
1540 trace_xen_mmu_release_ptpage(pfn, level, pinned);
1541
1542 if (pinned) {
1543 if (!PageHighMem(page)) {
1544 xen_mc_batch();
1545
1546 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1547 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1548
1549 __set_pfn_prot(pfn, PAGE_KERNEL);
1550
1551 xen_mc_issue(PARAVIRT_LAZY_MMU);
1552 }
1553 ClearPagePinned(page);
1554 }
1555}
1556
1557static void xen_release_pte(unsigned long pfn)
1558{
1559 xen_release_ptpage(pfn, PT_PTE);
1560}
1561
1562static void xen_release_pmd(unsigned long pfn)
1563{
1564 xen_release_ptpage(pfn, PT_PMD);
1565}
1566
1567#if PAGETABLE_LEVELS == 4
1568static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1569{
1570 xen_alloc_ptpage(mm, pfn, PT_PUD);
1571}
1572
1573static void xen_release_pud(unsigned long pfn)
1574{
1575 xen_release_ptpage(pfn, PT_PUD);
1576}
1577#endif
1578
1579void __init xen_reserve_top(void)
1580{
1581#ifdef CONFIG_X86_32
1582 unsigned long top = HYPERVISOR_VIRT_START;
1583 struct xen_platform_parameters pp;
1584
1585 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1586 top = pp.virt_start;
1587
1588 reserve_top_address(-top);
1589#endif /* CONFIG_X86_32 */
1590}
1591
1592/*
1593 * Like __va(), but returns address in the kernel mapping (which is
1594 * all we have until the physical memory mapping has been set up.
1595 */
1596static void *__ka(phys_addr_t paddr)
1597{
1598#ifdef CONFIG_X86_64
1599 return (void *)(paddr + __START_KERNEL_map);
1600#else
1601 return __va(paddr);
1602#endif
1603}
1604
1605/* Convert a machine address to physical address */
1606static unsigned long m2p(phys_addr_t maddr)
1607{
1608 phys_addr_t paddr;
1609
1610 maddr &= PTE_PFN_MASK;
1611 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1612
1613 return paddr;
1614}
1615
1616/* Convert a machine address to kernel virtual */
1617static void *m2v(phys_addr_t maddr)
1618{
1619 return __ka(m2p(maddr));
1620}
1621
1622/* Set the page permissions on an identity-mapped pages */
1623static void set_page_prot(void *addr, pgprot_t prot)
1624{
1625 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1626 pte_t pte = pfn_pte(pfn, prot);
1627
1628 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1629 BUG();
1630}
1631
1632static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1633{
1634 unsigned pmdidx, pteidx;
1635 unsigned ident_pte;
1636 unsigned long pfn;
1637
1638 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1639 PAGE_SIZE);
1640
1641 ident_pte = 0;
1642 pfn = 0;
1643 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1644 pte_t *pte_page;
1645
1646 /* Reuse or allocate a page of ptes */
1647 if (pmd_present(pmd[pmdidx]))
1648 pte_page = m2v(pmd[pmdidx].pmd);
1649 else {
1650 /* Check for free pte pages */
1651 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1652 break;
1653
1654 pte_page = &level1_ident_pgt[ident_pte];
1655 ident_pte += PTRS_PER_PTE;
1656
1657 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1658 }
1659
1660 /* Install mappings */
1661 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1662 pte_t pte;
1663
1664#ifdef CONFIG_X86_32
1665 if (pfn > max_pfn_mapped)
1666 max_pfn_mapped = pfn;
1667#endif
1668
1669 if (!pte_none(pte_page[pteidx]))
1670 continue;
1671
1672 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1673 pte_page[pteidx] = pte;
1674 }
1675 }
1676
1677 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1678 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1679
1680 set_page_prot(pmd, PAGE_KERNEL_RO);
1681}
1682
1683void __init xen_setup_machphys_mapping(void)
1684{
1685 struct xen_machphys_mapping mapping;
1686
1687 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1688 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1689 machine_to_phys_nr = mapping.max_mfn + 1;
1690 } else {
1691 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1692 }
1693#ifdef CONFIG_X86_32
1694 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1695 < machine_to_phys_mapping);
1696#endif
1697}
1698
1699#ifdef CONFIG_X86_64
1700static void convert_pfn_mfn(void *v)
1701{
1702 pte_t *pte = v;
1703 int i;
1704
1705 /* All levels are converted the same way, so just treat them
1706 as ptes. */
1707 for (i = 0; i < PTRS_PER_PTE; i++)
1708 pte[i] = xen_make_pte(pte[i].pte);
1709}
1710
1711/*
1712 * Set up the initial kernel pagetable.
1713 *
1714 * We can construct this by grafting the Xen provided pagetable into
1715 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1716 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1717 * means that only the kernel has a physical mapping to start with -
1718 * but that's enough to get __va working. We need to fill in the rest
1719 * of the physical mapping once some sort of allocator has been set
1720 * up.
1721 */
1722pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1723 unsigned long max_pfn)
1724{
1725 pud_t *l3;
1726 pmd_t *l2;
1727
1728 /* max_pfn_mapped is the last pfn mapped in the initial memory
1729 * mappings. Considering that on Xen after the kernel mappings we
1730 * have the mappings of some pages that don't exist in pfn space, we
1731 * set max_pfn_mapped to the last real pfn mapped. */
1732 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1733
1734 /* Zap identity mapping */
1735 init_level4_pgt[0] = __pgd(0);
1736
1737 /* Pre-constructed entries are in pfn, so convert to mfn */
1738 convert_pfn_mfn(init_level4_pgt);
1739 convert_pfn_mfn(level3_ident_pgt);
1740 convert_pfn_mfn(level3_kernel_pgt);
1741
1742 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1743 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1744
1745 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1746 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1747
1748 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1749 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1750 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1751
1752 /* Set up identity map */
1753 xen_map_identity_early(level2_ident_pgt, max_pfn);
1754
1755 /* Make pagetable pieces RO */
1756 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1757 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1758 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1759 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1760 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1761 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1762
1763 /* Pin down new L4 */
1764 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1765 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1766
1767 /* Unpin Xen-provided one */
1768 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1769
1770 /* Switch over */
1771 pgd = init_level4_pgt;
1772
1773 /*
1774 * At this stage there can be no user pgd, and no page
1775 * structure to attach it to, so make sure we just set kernel
1776 * pgd.
1777 */
1778 xen_mc_batch();
1779 __xen_write_cr3(true, __pa(pgd));
1780 xen_mc_issue(PARAVIRT_LAZY_CPU);
1781
1782 memblock_reserve(__pa(xen_start_info->pt_base),
1783 xen_start_info->nr_pt_frames * PAGE_SIZE);
1784
1785 return pgd;
1786}
1787#else /* !CONFIG_X86_64 */
1788static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1789static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1790
1791static void __init xen_write_cr3_init(unsigned long cr3)
1792{
1793 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1794
1795 BUG_ON(read_cr3() != __pa(initial_page_table));
1796 BUG_ON(cr3 != __pa(swapper_pg_dir));
1797
1798 /*
1799 * We are switching to swapper_pg_dir for the first time (from
1800 * initial_page_table) and therefore need to mark that page
1801 * read-only and then pin it.
1802 *
1803 * Xen disallows sharing of kernel PMDs for PAE
1804 * guests. Therefore we must copy the kernel PMD from
1805 * initial_page_table into a new kernel PMD to be used in
1806 * swapper_pg_dir.
1807 */
1808 swapper_kernel_pmd =
1809 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1810 memcpy(swapper_kernel_pmd, initial_kernel_pmd,
1811 sizeof(pmd_t) * PTRS_PER_PMD);
1812 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1813 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1814 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1815
1816 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1817 xen_write_cr3(cr3);
1818 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1819
1820 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1821 PFN_DOWN(__pa(initial_page_table)));
1822 set_page_prot(initial_page_table, PAGE_KERNEL);
1823 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1824
1825 pv_mmu_ops.write_cr3 = &xen_write_cr3;
1826}
1827
1828pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1829 unsigned long max_pfn)
1830{
1831 pmd_t *kernel_pmd;
1832
1833 initial_kernel_pmd =
1834 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1835
1836 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1837 xen_start_info->nr_pt_frames * PAGE_SIZE +
1838 512*1024);
1839
1840 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1841 memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1842
1843 xen_map_identity_early(initial_kernel_pmd, max_pfn);
1844
1845 memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1846 initial_page_table[KERNEL_PGD_BOUNDARY] =
1847 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1848
1849 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1850 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1851 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1852
1853 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1854
1855 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1856 PFN_DOWN(__pa(initial_page_table)));
1857 xen_write_cr3(__pa(initial_page_table));
1858
1859 memblock_reserve(__pa(xen_start_info->pt_base),
1860 xen_start_info->nr_pt_frames * PAGE_SIZE);
1861
1862 return initial_page_table;
1863}
1864#endif /* CONFIG_X86_64 */
1865
1866static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
1867
1868static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1869{
1870 pte_t pte;
1871
1872 phys >>= PAGE_SHIFT;
1873
1874 switch (idx) {
1875 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1876#ifdef CONFIG_X86_F00F_BUG
1877 case FIX_F00F_IDT:
1878#endif
1879#ifdef CONFIG_X86_32
1880 case FIX_WP_TEST:
1881 case FIX_VDSO:
1882# ifdef CONFIG_HIGHMEM
1883 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1884# endif
1885#else
1886 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1887 case VVAR_PAGE:
1888#endif
1889 case FIX_TEXT_POKE0:
1890 case FIX_TEXT_POKE1:
1891 /* All local page mappings */
1892 pte = pfn_pte(phys, prot);
1893 break;
1894
1895#ifdef CONFIG_X86_LOCAL_APIC
1896 case FIX_APIC_BASE: /* maps dummy local APIC */
1897 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1898 break;
1899#endif
1900
1901#ifdef CONFIG_X86_IO_APIC
1902 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
1903 /*
1904 * We just don't map the IO APIC - all access is via
1905 * hypercalls. Keep the address in the pte for reference.
1906 */
1907 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1908 break;
1909#endif
1910
1911 case FIX_PARAVIRT_BOOTMAP:
1912 /* This is an MFN, but it isn't an IO mapping from the
1913 IO domain */
1914 pte = mfn_pte(phys, prot);
1915 break;
1916
1917 default:
1918 /* By default, set_fixmap is used for hardware mappings */
1919 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1920 break;
1921 }
1922
1923 __native_set_fixmap(idx, pte);
1924
1925#ifdef CONFIG_X86_64
1926 /* Replicate changes to map the vsyscall page into the user
1927 pagetable vsyscall mapping. */
1928 if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) ||
1929 idx == VVAR_PAGE) {
1930 unsigned long vaddr = __fix_to_virt(idx);
1931 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1932 }
1933#endif
1934}
1935
1936static void __init xen_post_allocator_init(void)
1937{
1938 pv_mmu_ops.set_pte = xen_set_pte;
1939 pv_mmu_ops.set_pmd = xen_set_pmd;
1940 pv_mmu_ops.set_pud = xen_set_pud;
1941#if PAGETABLE_LEVELS == 4
1942 pv_mmu_ops.set_pgd = xen_set_pgd;
1943#endif
1944
1945 /* This will work as long as patching hasn't happened yet
1946 (which it hasn't) */
1947 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1948 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1949 pv_mmu_ops.release_pte = xen_release_pte;
1950 pv_mmu_ops.release_pmd = xen_release_pmd;
1951#if PAGETABLE_LEVELS == 4
1952 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1953 pv_mmu_ops.release_pud = xen_release_pud;
1954#endif
1955
1956#ifdef CONFIG_X86_64
1957 SetPagePinned(virt_to_page(level3_user_vsyscall));
1958#endif
1959 xen_mark_init_mm_pinned();
1960}
1961
1962static void xen_leave_lazy_mmu(void)
1963{
1964 preempt_disable();
1965 xen_mc_flush();
1966 paravirt_leave_lazy_mmu();
1967 preempt_enable();
1968}
1969
1970static const struct pv_mmu_ops xen_mmu_ops __initconst = {
1971 .read_cr2 = xen_read_cr2,
1972 .write_cr2 = xen_write_cr2,
1973
1974 .read_cr3 = xen_read_cr3,
1975#ifdef CONFIG_X86_32
1976 .write_cr3 = xen_write_cr3_init,
1977#else
1978 .write_cr3 = xen_write_cr3,
1979#endif
1980
1981 .flush_tlb_user = xen_flush_tlb,
1982 .flush_tlb_kernel = xen_flush_tlb,
1983 .flush_tlb_single = xen_flush_tlb_single,
1984 .flush_tlb_others = xen_flush_tlb_others,
1985
1986 .pte_update = paravirt_nop,
1987 .pte_update_defer = paravirt_nop,
1988
1989 .pgd_alloc = xen_pgd_alloc,
1990 .pgd_free = xen_pgd_free,
1991
1992 .alloc_pte = xen_alloc_pte_init,
1993 .release_pte = xen_release_pte_init,
1994 .alloc_pmd = xen_alloc_pmd_init,
1995 .release_pmd = xen_release_pmd_init,
1996
1997 .set_pte = xen_set_pte_init,
1998 .set_pte_at = xen_set_pte_at,
1999 .set_pmd = xen_set_pmd_hyper,
2000
2001 .ptep_modify_prot_start = __ptep_modify_prot_start,
2002 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2003
2004 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2005 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2006
2007 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2008 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2009
2010#ifdef CONFIG_X86_PAE
2011 .set_pte_atomic = xen_set_pte_atomic,
2012 .pte_clear = xen_pte_clear,
2013 .pmd_clear = xen_pmd_clear,
2014#endif /* CONFIG_X86_PAE */
2015 .set_pud = xen_set_pud_hyper,
2016
2017 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2018 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2019
2020#if PAGETABLE_LEVELS == 4
2021 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2022 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2023 .set_pgd = xen_set_pgd_hyper,
2024
2025 .alloc_pud = xen_alloc_pmd_init,
2026 .release_pud = xen_release_pmd_init,
2027#endif /* PAGETABLE_LEVELS == 4 */
2028
2029 .activate_mm = xen_activate_mm,
2030 .dup_mmap = xen_dup_mmap,
2031 .exit_mmap = xen_exit_mmap,
2032
2033 .lazy_mode = {
2034 .enter = paravirt_enter_lazy_mmu,
2035 .leave = xen_leave_lazy_mmu,
2036 },
2037
2038 .set_fixmap = xen_set_fixmap,
2039};
2040
2041void __init xen_init_mmu_ops(void)
2042{
2043 x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve;
2044 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2045 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2046 pv_mmu_ops = xen_mmu_ops;
2047
2048 memset(dummy_mapping, 0xff, PAGE_SIZE);
2049}
2050
2051/* Protected by xen_reservation_lock. */
2052#define MAX_CONTIG_ORDER 9 /* 2MB */
2053static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2054
2055#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2056static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2057 unsigned long *in_frames,
2058 unsigned long *out_frames)
2059{
2060 int i;
2061 struct multicall_space mcs;
2062
2063 xen_mc_batch();
2064 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2065 mcs = __xen_mc_entry(0);
2066
2067 if (in_frames)
2068 in_frames[i] = virt_to_mfn(vaddr);
2069
2070 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2071 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2072
2073 if (out_frames)
2074 out_frames[i] = virt_to_pfn(vaddr);
2075 }
2076 xen_mc_issue(0);
2077}
2078
2079/*
2080 * Update the pfn-to-mfn mappings for a virtual address range, either to
2081 * point to an array of mfns, or contiguously from a single starting
2082 * mfn.
2083 */
2084static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2085 unsigned long *mfns,
2086 unsigned long first_mfn)
2087{
2088 unsigned i, limit;
2089 unsigned long mfn;
2090
2091 xen_mc_batch();
2092
2093 limit = 1u << order;
2094 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2095 struct multicall_space mcs;
2096 unsigned flags;
2097
2098 mcs = __xen_mc_entry(0);
2099 if (mfns)
2100 mfn = mfns[i];
2101 else
2102 mfn = first_mfn + i;
2103
2104 if (i < (limit - 1))
2105 flags = 0;
2106 else {
2107 if (order == 0)
2108 flags = UVMF_INVLPG | UVMF_ALL;
2109 else
2110 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2111 }
2112
2113 MULTI_update_va_mapping(mcs.mc, vaddr,
2114 mfn_pte(mfn, PAGE_KERNEL), flags);
2115
2116 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2117 }
2118
2119 xen_mc_issue(0);
2120}
2121
2122/*
2123 * Perform the hypercall to exchange a region of our pfns to point to
2124 * memory with the required contiguous alignment. Takes the pfns as
2125 * input, and populates mfns as output.
2126 *
2127 * Returns a success code indicating whether the hypervisor was able to
2128 * satisfy the request or not.
2129 */
2130static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2131 unsigned long *pfns_in,
2132 unsigned long extents_out,
2133 unsigned int order_out,
2134 unsigned long *mfns_out,
2135 unsigned int address_bits)
2136{
2137 long rc;
2138 int success;
2139
2140 struct xen_memory_exchange exchange = {
2141 .in = {
2142 .nr_extents = extents_in,
2143 .extent_order = order_in,
2144 .extent_start = pfns_in,
2145 .domid = DOMID_SELF
2146 },
2147 .out = {
2148 .nr_extents = extents_out,
2149 .extent_order = order_out,
2150 .extent_start = mfns_out,
2151 .address_bits = address_bits,
2152 .domid = DOMID_SELF
2153 }
2154 };
2155
2156 BUG_ON(extents_in << order_in != extents_out << order_out);
2157
2158 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2159 success = (exchange.nr_exchanged == extents_in);
2160
2161 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2162 BUG_ON(success && (rc != 0));
2163
2164 return success;
2165}
2166
2167int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2168 unsigned int address_bits)
2169{
2170 unsigned long *in_frames = discontig_frames, out_frame;
2171 unsigned long flags;
2172 int success;
2173
2174 /*
2175 * Currently an auto-translated guest will not perform I/O, nor will
2176 * it require PAE page directories below 4GB. Therefore any calls to
2177 * this function are redundant and can be ignored.
2178 */
2179
2180 if (xen_feature(XENFEAT_auto_translated_physmap))
2181 return 0;
2182
2183 if (unlikely(order > MAX_CONTIG_ORDER))
2184 return -ENOMEM;
2185
2186 memset((void *) vstart, 0, PAGE_SIZE << order);
2187
2188 spin_lock_irqsave(&xen_reservation_lock, flags);
2189
2190 /* 1. Zap current PTEs, remembering MFNs. */
2191 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2192
2193 /* 2. Get a new contiguous memory extent. */
2194 out_frame = virt_to_pfn(vstart);
2195 success = xen_exchange_memory(1UL << order, 0, in_frames,
2196 1, order, &out_frame,
2197 address_bits);
2198
2199 /* 3. Map the new extent in place of old pages. */
2200 if (success)
2201 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2202 else
2203 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2204
2205 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2206
2207 return success ? 0 : -ENOMEM;
2208}
2209EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2210
2211void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2212{
2213 unsigned long *out_frames = discontig_frames, in_frame;
2214 unsigned long flags;
2215 int success;
2216
2217 if (xen_feature(XENFEAT_auto_translated_physmap))
2218 return;
2219
2220 if (unlikely(order > MAX_CONTIG_ORDER))
2221 return;
2222
2223 memset((void *) vstart, 0, PAGE_SIZE << order);
2224
2225 spin_lock_irqsave(&xen_reservation_lock, flags);
2226
2227 /* 1. Find start MFN of contiguous extent. */
2228 in_frame = virt_to_mfn(vstart);
2229
2230 /* 2. Zap current PTEs. */
2231 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2232
2233 /* 3. Do the exchange for non-contiguous MFNs. */
2234 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2235 0, out_frames, 0);
2236
2237 /* 4. Map new pages in place of old pages. */
2238 if (success)
2239 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2240 else
2241 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2242
2243 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2244}
2245EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2246
2247#ifdef CONFIG_XEN_PVHVM
2248static void xen_hvm_exit_mmap(struct mm_struct *mm)
2249{
2250 struct xen_hvm_pagetable_dying a;
2251 int rc;
2252
2253 a.domid = DOMID_SELF;
2254 a.gpa = __pa(mm->pgd);
2255 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2256 WARN_ON_ONCE(rc < 0);
2257}
2258
2259static int is_pagetable_dying_supported(void)
2260{
2261 struct xen_hvm_pagetable_dying a;
2262 int rc = 0;
2263
2264 a.domid = DOMID_SELF;
2265 a.gpa = 0x00;
2266 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2267 if (rc < 0) {
2268 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2269 return 0;
2270 }
2271 return 1;
2272}
2273
2274void __init xen_hvm_init_mmu_ops(void)
2275{
2276 if (is_pagetable_dying_supported())
2277 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2278}
2279#endif
2280
2281#define REMAP_BATCH_SIZE 16
2282
2283struct remap_data {
2284 unsigned long mfn;
2285 pgprot_t prot;
2286 struct mmu_update *mmu_update;
2287};
2288
2289static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2290 unsigned long addr, void *data)
2291{
2292 struct remap_data *rmd = data;
2293 pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2294
2295 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2296 rmd->mmu_update->val = pte_val_ma(pte);
2297 rmd->mmu_update++;
2298
2299 return 0;
2300}
2301
2302int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2303 unsigned long addr,
2304 unsigned long mfn, int nr,
2305 pgprot_t prot, unsigned domid)
2306{
2307 struct remap_data rmd;
2308 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2309 int batch;
2310 unsigned long range;
2311 int err = 0;
2312
2313 prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2314
2315 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
2316 (VM_PFNMAP | VM_RESERVED | VM_IO)));
2317
2318 rmd.mfn = mfn;
2319 rmd.prot = prot;
2320
2321 while (nr) {
2322 batch = min(REMAP_BATCH_SIZE, nr);
2323 range = (unsigned long)batch << PAGE_SHIFT;
2324
2325 rmd.mmu_update = mmu_update;
2326 err = apply_to_page_range(vma->vm_mm, addr, range,
2327 remap_area_mfn_pte_fn, &rmd);
2328 if (err)
2329 goto out;
2330
2331 err = -EFAULT;
2332 if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
2333 goto out;
2334
2335 nr -= batch;
2336 addr += range;
2337 }
2338
2339 err = 0;
2340out:
2341
2342 flush_tlb_all();
2343
2344 return err;
2345}
2346EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
1/*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41#include <linux/sched.h>
42#include <linux/highmem.h>
43#include <linux/debugfs.h>
44#include <linux/bug.h>
45#include <linux/vmalloc.h>
46#include <linux/module.h>
47#include <linux/gfp.h>
48#include <linux/memblock.h>
49#include <linux/seq_file.h>
50#include <linux/crash_dump.h>
51
52#include <trace/events/xen.h>
53
54#include <asm/pgtable.h>
55#include <asm/tlbflush.h>
56#include <asm/fixmap.h>
57#include <asm/mmu_context.h>
58#include <asm/setup.h>
59#include <asm/paravirt.h>
60#include <asm/e820.h>
61#include <asm/linkage.h>
62#include <asm/page.h>
63#include <asm/init.h>
64#include <asm/pat.h>
65#include <asm/smp.h>
66
67#include <asm/xen/hypercall.h>
68#include <asm/xen/hypervisor.h>
69
70#include <xen/xen.h>
71#include <xen/page.h>
72#include <xen/interface/xen.h>
73#include <xen/interface/hvm/hvm_op.h>
74#include <xen/interface/version.h>
75#include <xen/interface/memory.h>
76#include <xen/hvc-console.h>
77
78#include "multicalls.h"
79#include "mmu.h"
80#include "debugfs.h"
81
82/*
83 * Protects atomic reservation decrease/increase against concurrent increases.
84 * Also protects non-atomic updates of current_pages and balloon lists.
85 */
86DEFINE_SPINLOCK(xen_reservation_lock);
87
88#ifdef CONFIG_X86_32
89/*
90 * Identity map, in addition to plain kernel map. This needs to be
91 * large enough to allocate page table pages to allocate the rest.
92 * Each page can map 2MB.
93 */
94#define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
95static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
96#endif
97#ifdef CONFIG_X86_64
98/* l3 pud for userspace vsyscall mapping */
99static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
100#endif /* CONFIG_X86_64 */
101
102/*
103 * Note about cr3 (pagetable base) values:
104 *
105 * xen_cr3 contains the current logical cr3 value; it contains the
106 * last set cr3. This may not be the current effective cr3, because
107 * its update may be being lazily deferred. However, a vcpu looking
108 * at its own cr3 can use this value knowing that it everything will
109 * be self-consistent.
110 *
111 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
112 * hypercall to set the vcpu cr3 is complete (so it may be a little
113 * out of date, but it will never be set early). If one vcpu is
114 * looking at another vcpu's cr3 value, it should use this variable.
115 */
116DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
117DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
118
119static phys_addr_t xen_pt_base, xen_pt_size __initdata;
120
121/*
122 * Just beyond the highest usermode address. STACK_TOP_MAX has a
123 * redzone above it, so round it up to a PGD boundary.
124 */
125#define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
126
127unsigned long arbitrary_virt_to_mfn(void *vaddr)
128{
129 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
130
131 return PFN_DOWN(maddr.maddr);
132}
133
134xmaddr_t arbitrary_virt_to_machine(void *vaddr)
135{
136 unsigned long address = (unsigned long)vaddr;
137 unsigned int level;
138 pte_t *pte;
139 unsigned offset;
140
141 /*
142 * if the PFN is in the linear mapped vaddr range, we can just use
143 * the (quick) virt_to_machine() p2m lookup
144 */
145 if (virt_addr_valid(vaddr))
146 return virt_to_machine(vaddr);
147
148 /* otherwise we have to do a (slower) full page-table walk */
149
150 pte = lookup_address(address, &level);
151 BUG_ON(pte == NULL);
152 offset = address & ~PAGE_MASK;
153 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
154}
155EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
156
157void make_lowmem_page_readonly(void *vaddr)
158{
159 pte_t *pte, ptev;
160 unsigned long address = (unsigned long)vaddr;
161 unsigned int level;
162
163 pte = lookup_address(address, &level);
164 if (pte == NULL)
165 return; /* vaddr missing */
166
167 ptev = pte_wrprotect(*pte);
168
169 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
170 BUG();
171}
172
173void make_lowmem_page_readwrite(void *vaddr)
174{
175 pte_t *pte, ptev;
176 unsigned long address = (unsigned long)vaddr;
177 unsigned int level;
178
179 pte = lookup_address(address, &level);
180 if (pte == NULL)
181 return; /* vaddr missing */
182
183 ptev = pte_mkwrite(*pte);
184
185 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
186 BUG();
187}
188
189
190static bool xen_page_pinned(void *ptr)
191{
192 struct page *page = virt_to_page(ptr);
193
194 return PagePinned(page);
195}
196
197void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
198{
199 struct multicall_space mcs;
200 struct mmu_update *u;
201
202 trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
203
204 mcs = xen_mc_entry(sizeof(*u));
205 u = mcs.args;
206
207 /* ptep might be kmapped when using 32-bit HIGHPTE */
208 u->ptr = virt_to_machine(ptep).maddr;
209 u->val = pte_val_ma(pteval);
210
211 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
212
213 xen_mc_issue(PARAVIRT_LAZY_MMU);
214}
215EXPORT_SYMBOL_GPL(xen_set_domain_pte);
216
217static void xen_extend_mmu_update(const struct mmu_update *update)
218{
219 struct multicall_space mcs;
220 struct mmu_update *u;
221
222 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
223
224 if (mcs.mc != NULL) {
225 mcs.mc->args[1]++;
226 } else {
227 mcs = __xen_mc_entry(sizeof(*u));
228 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
229 }
230
231 u = mcs.args;
232 *u = *update;
233}
234
235static void xen_extend_mmuext_op(const struct mmuext_op *op)
236{
237 struct multicall_space mcs;
238 struct mmuext_op *u;
239
240 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
241
242 if (mcs.mc != NULL) {
243 mcs.mc->args[1]++;
244 } else {
245 mcs = __xen_mc_entry(sizeof(*u));
246 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
247 }
248
249 u = mcs.args;
250 *u = *op;
251}
252
253static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
254{
255 struct mmu_update u;
256
257 preempt_disable();
258
259 xen_mc_batch();
260
261 /* ptr may be ioremapped for 64-bit pagetable setup */
262 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
263 u.val = pmd_val_ma(val);
264 xen_extend_mmu_update(&u);
265
266 xen_mc_issue(PARAVIRT_LAZY_MMU);
267
268 preempt_enable();
269}
270
271static void xen_set_pmd(pmd_t *ptr, pmd_t val)
272{
273 trace_xen_mmu_set_pmd(ptr, val);
274
275 /* If page is not pinned, we can just update the entry
276 directly */
277 if (!xen_page_pinned(ptr)) {
278 *ptr = val;
279 return;
280 }
281
282 xen_set_pmd_hyper(ptr, val);
283}
284
285/*
286 * Associate a virtual page frame with a given physical page frame
287 * and protection flags for that frame.
288 */
289void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
290{
291 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
292}
293
294static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
295{
296 struct mmu_update u;
297
298 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
299 return false;
300
301 xen_mc_batch();
302
303 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
304 u.val = pte_val_ma(pteval);
305 xen_extend_mmu_update(&u);
306
307 xen_mc_issue(PARAVIRT_LAZY_MMU);
308
309 return true;
310}
311
312static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
313{
314 if (!xen_batched_set_pte(ptep, pteval)) {
315 /*
316 * Could call native_set_pte() here and trap and
317 * emulate the PTE write but with 32-bit guests this
318 * needs two traps (one for each of the two 32-bit
319 * words in the PTE) so do one hypercall directly
320 * instead.
321 */
322 struct mmu_update u;
323
324 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
325 u.val = pte_val_ma(pteval);
326 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
327 }
328}
329
330static void xen_set_pte(pte_t *ptep, pte_t pteval)
331{
332 trace_xen_mmu_set_pte(ptep, pteval);
333 __xen_set_pte(ptep, pteval);
334}
335
336static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
337 pte_t *ptep, pte_t pteval)
338{
339 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
340 __xen_set_pte(ptep, pteval);
341}
342
343pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
344 unsigned long addr, pte_t *ptep)
345{
346 /* Just return the pte as-is. We preserve the bits on commit */
347 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
348 return *ptep;
349}
350
351void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
352 pte_t *ptep, pte_t pte)
353{
354 struct mmu_update u;
355
356 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
357 xen_mc_batch();
358
359 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
360 u.val = pte_val_ma(pte);
361 xen_extend_mmu_update(&u);
362
363 xen_mc_issue(PARAVIRT_LAZY_MMU);
364}
365
366/* Assume pteval_t is equivalent to all the other *val_t types. */
367static pteval_t pte_mfn_to_pfn(pteval_t val)
368{
369 if (val & _PAGE_PRESENT) {
370 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
371 unsigned long pfn = mfn_to_pfn(mfn);
372
373 pteval_t flags = val & PTE_FLAGS_MASK;
374 if (unlikely(pfn == ~0))
375 val = flags & ~_PAGE_PRESENT;
376 else
377 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
378 }
379
380 return val;
381}
382
383static pteval_t pte_pfn_to_mfn(pteval_t val)
384{
385 if (val & _PAGE_PRESENT) {
386 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
387 pteval_t flags = val & PTE_FLAGS_MASK;
388 unsigned long mfn;
389
390 if (!xen_feature(XENFEAT_auto_translated_physmap))
391 mfn = __pfn_to_mfn(pfn);
392 else
393 mfn = pfn;
394 /*
395 * If there's no mfn for the pfn, then just create an
396 * empty non-present pte. Unfortunately this loses
397 * information about the original pfn, so
398 * pte_mfn_to_pfn is asymmetric.
399 */
400 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
401 mfn = 0;
402 flags = 0;
403 } else
404 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
405 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
406 }
407
408 return val;
409}
410
411__visible pteval_t xen_pte_val(pte_t pte)
412{
413 pteval_t pteval = pte.pte;
414
415 return pte_mfn_to_pfn(pteval);
416}
417PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
418
419__visible pgdval_t xen_pgd_val(pgd_t pgd)
420{
421 return pte_mfn_to_pfn(pgd.pgd);
422}
423PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
424
425__visible pte_t xen_make_pte(pteval_t pte)
426{
427 pte = pte_pfn_to_mfn(pte);
428
429 return native_make_pte(pte);
430}
431PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
432
433__visible pgd_t xen_make_pgd(pgdval_t pgd)
434{
435 pgd = pte_pfn_to_mfn(pgd);
436 return native_make_pgd(pgd);
437}
438PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
439
440__visible pmdval_t xen_pmd_val(pmd_t pmd)
441{
442 return pte_mfn_to_pfn(pmd.pmd);
443}
444PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
445
446static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
447{
448 struct mmu_update u;
449
450 preempt_disable();
451
452 xen_mc_batch();
453
454 /* ptr may be ioremapped for 64-bit pagetable setup */
455 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
456 u.val = pud_val_ma(val);
457 xen_extend_mmu_update(&u);
458
459 xen_mc_issue(PARAVIRT_LAZY_MMU);
460
461 preempt_enable();
462}
463
464static void xen_set_pud(pud_t *ptr, pud_t val)
465{
466 trace_xen_mmu_set_pud(ptr, val);
467
468 /* If page is not pinned, we can just update the entry
469 directly */
470 if (!xen_page_pinned(ptr)) {
471 *ptr = val;
472 return;
473 }
474
475 xen_set_pud_hyper(ptr, val);
476}
477
478#ifdef CONFIG_X86_PAE
479static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
480{
481 trace_xen_mmu_set_pte_atomic(ptep, pte);
482 set_64bit((u64 *)ptep, native_pte_val(pte));
483}
484
485static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
486{
487 trace_xen_mmu_pte_clear(mm, addr, ptep);
488 if (!xen_batched_set_pte(ptep, native_make_pte(0)))
489 native_pte_clear(mm, addr, ptep);
490}
491
492static void xen_pmd_clear(pmd_t *pmdp)
493{
494 trace_xen_mmu_pmd_clear(pmdp);
495 set_pmd(pmdp, __pmd(0));
496}
497#endif /* CONFIG_X86_PAE */
498
499__visible pmd_t xen_make_pmd(pmdval_t pmd)
500{
501 pmd = pte_pfn_to_mfn(pmd);
502 return native_make_pmd(pmd);
503}
504PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
505
506#if CONFIG_PGTABLE_LEVELS == 4
507__visible pudval_t xen_pud_val(pud_t pud)
508{
509 return pte_mfn_to_pfn(pud.pud);
510}
511PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
512
513__visible pud_t xen_make_pud(pudval_t pud)
514{
515 pud = pte_pfn_to_mfn(pud);
516
517 return native_make_pud(pud);
518}
519PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
520
521static pgd_t *xen_get_user_pgd(pgd_t *pgd)
522{
523 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
524 unsigned offset = pgd - pgd_page;
525 pgd_t *user_ptr = NULL;
526
527 if (offset < pgd_index(USER_LIMIT)) {
528 struct page *page = virt_to_page(pgd_page);
529 user_ptr = (pgd_t *)page->private;
530 if (user_ptr)
531 user_ptr += offset;
532 }
533
534 return user_ptr;
535}
536
537static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
538{
539 struct mmu_update u;
540
541 u.ptr = virt_to_machine(ptr).maddr;
542 u.val = pgd_val_ma(val);
543 xen_extend_mmu_update(&u);
544}
545
546/*
547 * Raw hypercall-based set_pgd, intended for in early boot before
548 * there's a page structure. This implies:
549 * 1. The only existing pagetable is the kernel's
550 * 2. It is always pinned
551 * 3. It has no user pagetable attached to it
552 */
553static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
554{
555 preempt_disable();
556
557 xen_mc_batch();
558
559 __xen_set_pgd_hyper(ptr, val);
560
561 xen_mc_issue(PARAVIRT_LAZY_MMU);
562
563 preempt_enable();
564}
565
566static void xen_set_pgd(pgd_t *ptr, pgd_t val)
567{
568 pgd_t *user_ptr = xen_get_user_pgd(ptr);
569
570 trace_xen_mmu_set_pgd(ptr, user_ptr, val);
571
572 /* If page is not pinned, we can just update the entry
573 directly */
574 if (!xen_page_pinned(ptr)) {
575 *ptr = val;
576 if (user_ptr) {
577 WARN_ON(xen_page_pinned(user_ptr));
578 *user_ptr = val;
579 }
580 return;
581 }
582
583 /* If it's pinned, then we can at least batch the kernel and
584 user updates together. */
585 xen_mc_batch();
586
587 __xen_set_pgd_hyper(ptr, val);
588 if (user_ptr)
589 __xen_set_pgd_hyper(user_ptr, val);
590
591 xen_mc_issue(PARAVIRT_LAZY_MMU);
592}
593#endif /* CONFIG_PGTABLE_LEVELS == 4 */
594
595/*
596 * (Yet another) pagetable walker. This one is intended for pinning a
597 * pagetable. This means that it walks a pagetable and calls the
598 * callback function on each page it finds making up the page table,
599 * at every level. It walks the entire pagetable, but it only bothers
600 * pinning pte pages which are below limit. In the normal case this
601 * will be STACK_TOP_MAX, but at boot we need to pin up to
602 * FIXADDR_TOP.
603 *
604 * For 32-bit the important bit is that we don't pin beyond there,
605 * because then we start getting into Xen's ptes.
606 *
607 * For 64-bit, we must skip the Xen hole in the middle of the address
608 * space, just after the big x86-64 virtual hole.
609 */
610static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
611 int (*func)(struct mm_struct *mm, struct page *,
612 enum pt_level),
613 unsigned long limit)
614{
615 int flush = 0;
616 unsigned hole_low, hole_high;
617 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
618 unsigned pgdidx, pudidx, pmdidx;
619
620 /* The limit is the last byte to be touched */
621 limit--;
622 BUG_ON(limit >= FIXADDR_TOP);
623
624 if (xen_feature(XENFEAT_auto_translated_physmap))
625 return 0;
626
627 /*
628 * 64-bit has a great big hole in the middle of the address
629 * space, which contains the Xen mappings. On 32-bit these
630 * will end up making a zero-sized hole and so is a no-op.
631 */
632 hole_low = pgd_index(USER_LIMIT);
633 hole_high = pgd_index(PAGE_OFFSET);
634
635 pgdidx_limit = pgd_index(limit);
636#if PTRS_PER_PUD > 1
637 pudidx_limit = pud_index(limit);
638#else
639 pudidx_limit = 0;
640#endif
641#if PTRS_PER_PMD > 1
642 pmdidx_limit = pmd_index(limit);
643#else
644 pmdidx_limit = 0;
645#endif
646
647 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
648 pud_t *pud;
649
650 if (pgdidx >= hole_low && pgdidx < hole_high)
651 continue;
652
653 if (!pgd_val(pgd[pgdidx]))
654 continue;
655
656 pud = pud_offset(&pgd[pgdidx], 0);
657
658 if (PTRS_PER_PUD > 1) /* not folded */
659 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
660
661 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
662 pmd_t *pmd;
663
664 if (pgdidx == pgdidx_limit &&
665 pudidx > pudidx_limit)
666 goto out;
667
668 if (pud_none(pud[pudidx]))
669 continue;
670
671 pmd = pmd_offset(&pud[pudidx], 0);
672
673 if (PTRS_PER_PMD > 1) /* not folded */
674 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
675
676 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
677 struct page *pte;
678
679 if (pgdidx == pgdidx_limit &&
680 pudidx == pudidx_limit &&
681 pmdidx > pmdidx_limit)
682 goto out;
683
684 if (pmd_none(pmd[pmdidx]))
685 continue;
686
687 pte = pmd_page(pmd[pmdidx]);
688 flush |= (*func)(mm, pte, PT_PTE);
689 }
690 }
691 }
692
693out:
694 /* Do the top level last, so that the callbacks can use it as
695 a cue to do final things like tlb flushes. */
696 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
697
698 return flush;
699}
700
701static int xen_pgd_walk(struct mm_struct *mm,
702 int (*func)(struct mm_struct *mm, struct page *,
703 enum pt_level),
704 unsigned long limit)
705{
706 return __xen_pgd_walk(mm, mm->pgd, func, limit);
707}
708
709/* If we're using split pte locks, then take the page's lock and
710 return a pointer to it. Otherwise return NULL. */
711static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
712{
713 spinlock_t *ptl = NULL;
714
715#if USE_SPLIT_PTE_PTLOCKS
716 ptl = ptlock_ptr(page);
717 spin_lock_nest_lock(ptl, &mm->page_table_lock);
718#endif
719
720 return ptl;
721}
722
723static void xen_pte_unlock(void *v)
724{
725 spinlock_t *ptl = v;
726 spin_unlock(ptl);
727}
728
729static void xen_do_pin(unsigned level, unsigned long pfn)
730{
731 struct mmuext_op op;
732
733 op.cmd = level;
734 op.arg1.mfn = pfn_to_mfn(pfn);
735
736 xen_extend_mmuext_op(&op);
737}
738
739static int xen_pin_page(struct mm_struct *mm, struct page *page,
740 enum pt_level level)
741{
742 unsigned pgfl = TestSetPagePinned(page);
743 int flush;
744
745 if (pgfl)
746 flush = 0; /* already pinned */
747 else if (PageHighMem(page))
748 /* kmaps need flushing if we found an unpinned
749 highpage */
750 flush = 1;
751 else {
752 void *pt = lowmem_page_address(page);
753 unsigned long pfn = page_to_pfn(page);
754 struct multicall_space mcs = __xen_mc_entry(0);
755 spinlock_t *ptl;
756
757 flush = 0;
758
759 /*
760 * We need to hold the pagetable lock between the time
761 * we make the pagetable RO and when we actually pin
762 * it. If we don't, then other users may come in and
763 * attempt to update the pagetable by writing it,
764 * which will fail because the memory is RO but not
765 * pinned, so Xen won't do the trap'n'emulate.
766 *
767 * If we're using split pte locks, we can't hold the
768 * entire pagetable's worth of locks during the
769 * traverse, because we may wrap the preempt count (8
770 * bits). The solution is to mark RO and pin each PTE
771 * page while holding the lock. This means the number
772 * of locks we end up holding is never more than a
773 * batch size (~32 entries, at present).
774 *
775 * If we're not using split pte locks, we needn't pin
776 * the PTE pages independently, because we're
777 * protected by the overall pagetable lock.
778 */
779 ptl = NULL;
780 if (level == PT_PTE)
781 ptl = xen_pte_lock(page, mm);
782
783 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
784 pfn_pte(pfn, PAGE_KERNEL_RO),
785 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
786
787 if (ptl) {
788 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
789
790 /* Queue a deferred unlock for when this batch
791 is completed. */
792 xen_mc_callback(xen_pte_unlock, ptl);
793 }
794 }
795
796 return flush;
797}
798
799/* This is called just after a mm has been created, but it has not
800 been used yet. We need to make sure that its pagetable is all
801 read-only, and can be pinned. */
802static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
803{
804 trace_xen_mmu_pgd_pin(mm, pgd);
805
806 xen_mc_batch();
807
808 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
809 /* re-enable interrupts for flushing */
810 xen_mc_issue(0);
811
812 kmap_flush_unused();
813
814 xen_mc_batch();
815 }
816
817#ifdef CONFIG_X86_64
818 {
819 pgd_t *user_pgd = xen_get_user_pgd(pgd);
820
821 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
822
823 if (user_pgd) {
824 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
825 xen_do_pin(MMUEXT_PIN_L4_TABLE,
826 PFN_DOWN(__pa(user_pgd)));
827 }
828 }
829#else /* CONFIG_X86_32 */
830#ifdef CONFIG_X86_PAE
831 /* Need to make sure unshared kernel PMD is pinnable */
832 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
833 PT_PMD);
834#endif
835 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
836#endif /* CONFIG_X86_64 */
837 xen_mc_issue(0);
838}
839
840static void xen_pgd_pin(struct mm_struct *mm)
841{
842 __xen_pgd_pin(mm, mm->pgd);
843}
844
845/*
846 * On save, we need to pin all pagetables to make sure they get their
847 * mfns turned into pfns. Search the list for any unpinned pgds and pin
848 * them (unpinned pgds are not currently in use, probably because the
849 * process is under construction or destruction).
850 *
851 * Expected to be called in stop_machine() ("equivalent to taking
852 * every spinlock in the system"), so the locking doesn't really
853 * matter all that much.
854 */
855void xen_mm_pin_all(void)
856{
857 struct page *page;
858
859 spin_lock(&pgd_lock);
860
861 list_for_each_entry(page, &pgd_list, lru) {
862 if (!PagePinned(page)) {
863 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
864 SetPageSavePinned(page);
865 }
866 }
867
868 spin_unlock(&pgd_lock);
869}
870
871/*
872 * The init_mm pagetable is really pinned as soon as its created, but
873 * that's before we have page structures to store the bits. So do all
874 * the book-keeping now.
875 */
876static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
877 enum pt_level level)
878{
879 SetPagePinned(page);
880 return 0;
881}
882
883static void __init xen_mark_init_mm_pinned(void)
884{
885 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
886}
887
888static int xen_unpin_page(struct mm_struct *mm, struct page *page,
889 enum pt_level level)
890{
891 unsigned pgfl = TestClearPagePinned(page);
892
893 if (pgfl && !PageHighMem(page)) {
894 void *pt = lowmem_page_address(page);
895 unsigned long pfn = page_to_pfn(page);
896 spinlock_t *ptl = NULL;
897 struct multicall_space mcs;
898
899 /*
900 * Do the converse to pin_page. If we're using split
901 * pte locks, we must be holding the lock for while
902 * the pte page is unpinned but still RO to prevent
903 * concurrent updates from seeing it in this
904 * partially-pinned state.
905 */
906 if (level == PT_PTE) {
907 ptl = xen_pte_lock(page, mm);
908
909 if (ptl)
910 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
911 }
912
913 mcs = __xen_mc_entry(0);
914
915 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
916 pfn_pte(pfn, PAGE_KERNEL),
917 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
918
919 if (ptl) {
920 /* unlock when batch completed */
921 xen_mc_callback(xen_pte_unlock, ptl);
922 }
923 }
924
925 return 0; /* never need to flush on unpin */
926}
927
928/* Release a pagetables pages back as normal RW */
929static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
930{
931 trace_xen_mmu_pgd_unpin(mm, pgd);
932
933 xen_mc_batch();
934
935 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
936
937#ifdef CONFIG_X86_64
938 {
939 pgd_t *user_pgd = xen_get_user_pgd(pgd);
940
941 if (user_pgd) {
942 xen_do_pin(MMUEXT_UNPIN_TABLE,
943 PFN_DOWN(__pa(user_pgd)));
944 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
945 }
946 }
947#endif
948
949#ifdef CONFIG_X86_PAE
950 /* Need to make sure unshared kernel PMD is unpinned */
951 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
952 PT_PMD);
953#endif
954
955 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
956
957 xen_mc_issue(0);
958}
959
960static void xen_pgd_unpin(struct mm_struct *mm)
961{
962 __xen_pgd_unpin(mm, mm->pgd);
963}
964
965/*
966 * On resume, undo any pinning done at save, so that the rest of the
967 * kernel doesn't see any unexpected pinned pagetables.
968 */
969void xen_mm_unpin_all(void)
970{
971 struct page *page;
972
973 spin_lock(&pgd_lock);
974
975 list_for_each_entry(page, &pgd_list, lru) {
976 if (PageSavePinned(page)) {
977 BUG_ON(!PagePinned(page));
978 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
979 ClearPageSavePinned(page);
980 }
981 }
982
983 spin_unlock(&pgd_lock);
984}
985
986static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
987{
988 spin_lock(&next->page_table_lock);
989 xen_pgd_pin(next);
990 spin_unlock(&next->page_table_lock);
991}
992
993static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
994{
995 spin_lock(&mm->page_table_lock);
996 xen_pgd_pin(mm);
997 spin_unlock(&mm->page_table_lock);
998}
999
1000
1001#ifdef CONFIG_SMP
1002/* Another cpu may still have their %cr3 pointing at the pagetable, so
1003 we need to repoint it somewhere else before we can unpin it. */
1004static void drop_other_mm_ref(void *info)
1005{
1006 struct mm_struct *mm = info;
1007 struct mm_struct *active_mm;
1008
1009 active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1010
1011 if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1012 leave_mm(smp_processor_id());
1013
1014 /* If this cpu still has a stale cr3 reference, then make sure
1015 it has been flushed. */
1016 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1017 load_cr3(swapper_pg_dir);
1018}
1019
1020static void xen_drop_mm_ref(struct mm_struct *mm)
1021{
1022 cpumask_var_t mask;
1023 unsigned cpu;
1024
1025 if (current->active_mm == mm) {
1026 if (current->mm == mm)
1027 load_cr3(swapper_pg_dir);
1028 else
1029 leave_mm(smp_processor_id());
1030 }
1031
1032 /* Get the "official" set of cpus referring to our pagetable. */
1033 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1034 for_each_online_cpu(cpu) {
1035 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1036 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1037 continue;
1038 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1039 }
1040 return;
1041 }
1042 cpumask_copy(mask, mm_cpumask(mm));
1043
1044 /* It's possible that a vcpu may have a stale reference to our
1045 cr3, because its in lazy mode, and it hasn't yet flushed
1046 its set of pending hypercalls yet. In this case, we can
1047 look at its actual current cr3 value, and force it to flush
1048 if needed. */
1049 for_each_online_cpu(cpu) {
1050 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1051 cpumask_set_cpu(cpu, mask);
1052 }
1053
1054 if (!cpumask_empty(mask))
1055 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1056 free_cpumask_var(mask);
1057}
1058#else
1059static void xen_drop_mm_ref(struct mm_struct *mm)
1060{
1061 if (current->active_mm == mm)
1062 load_cr3(swapper_pg_dir);
1063}
1064#endif
1065
1066/*
1067 * While a process runs, Xen pins its pagetables, which means that the
1068 * hypervisor forces it to be read-only, and it controls all updates
1069 * to it. This means that all pagetable updates have to go via the
1070 * hypervisor, which is moderately expensive.
1071 *
1072 * Since we're pulling the pagetable down, we switch to use init_mm,
1073 * unpin old process pagetable and mark it all read-write, which
1074 * allows further operations on it to be simple memory accesses.
1075 *
1076 * The only subtle point is that another CPU may be still using the
1077 * pagetable because of lazy tlb flushing. This means we need need to
1078 * switch all CPUs off this pagetable before we can unpin it.
1079 */
1080static void xen_exit_mmap(struct mm_struct *mm)
1081{
1082 get_cpu(); /* make sure we don't move around */
1083 xen_drop_mm_ref(mm);
1084 put_cpu();
1085
1086 spin_lock(&mm->page_table_lock);
1087
1088 /* pgd may not be pinned in the error exit path of execve */
1089 if (xen_page_pinned(mm->pgd))
1090 xen_pgd_unpin(mm);
1091
1092 spin_unlock(&mm->page_table_lock);
1093}
1094
1095static void xen_post_allocator_init(void);
1096
1097static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1098{
1099 struct mmuext_op op;
1100
1101 op.cmd = cmd;
1102 op.arg1.mfn = pfn_to_mfn(pfn);
1103 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1104 BUG();
1105}
1106
1107#ifdef CONFIG_X86_64
1108static void __init xen_cleanhighmap(unsigned long vaddr,
1109 unsigned long vaddr_end)
1110{
1111 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1112 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1113
1114 /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1115 * We include the PMD passed in on _both_ boundaries. */
1116 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE));
1117 pmd++, vaddr += PMD_SIZE) {
1118 if (pmd_none(*pmd))
1119 continue;
1120 if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1121 set_pmd(pmd, __pmd(0));
1122 }
1123 /* In case we did something silly, we should crash in this function
1124 * instead of somewhere later and be confusing. */
1125 xen_mc_flush();
1126}
1127
1128/*
1129 * Make a page range writeable and free it.
1130 */
1131static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1132{
1133 void *vaddr = __va(paddr);
1134 void *vaddr_end = vaddr + size;
1135
1136 for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1137 make_lowmem_page_readwrite(vaddr);
1138
1139 memblock_free(paddr, size);
1140}
1141
1142static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1143{
1144 unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1145
1146 if (unpin)
1147 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1148 ClearPagePinned(virt_to_page(__va(pa)));
1149 xen_free_ro_pages(pa, PAGE_SIZE);
1150}
1151
1152/*
1153 * Since it is well isolated we can (and since it is perhaps large we should)
1154 * also free the page tables mapping the initial P->M table.
1155 */
1156static void __init xen_cleanmfnmap(unsigned long vaddr)
1157{
1158 unsigned long va = vaddr & PMD_MASK;
1159 unsigned long pa;
1160 pgd_t *pgd = pgd_offset_k(va);
1161 pud_t *pud_page = pud_offset(pgd, 0);
1162 pud_t *pud;
1163 pmd_t *pmd;
1164 pte_t *pte;
1165 unsigned int i;
1166 bool unpin;
1167
1168 unpin = (vaddr == 2 * PGDIR_SIZE);
1169 set_pgd(pgd, __pgd(0));
1170 do {
1171 pud = pud_page + pud_index(va);
1172 if (pud_none(*pud)) {
1173 va += PUD_SIZE;
1174 } else if (pud_large(*pud)) {
1175 pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1176 xen_free_ro_pages(pa, PUD_SIZE);
1177 va += PUD_SIZE;
1178 } else {
1179 pmd = pmd_offset(pud, va);
1180 if (pmd_large(*pmd)) {
1181 pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1182 xen_free_ro_pages(pa, PMD_SIZE);
1183 } else if (!pmd_none(*pmd)) {
1184 pte = pte_offset_kernel(pmd, va);
1185 set_pmd(pmd, __pmd(0));
1186 for (i = 0; i < PTRS_PER_PTE; ++i) {
1187 if (pte_none(pte[i]))
1188 break;
1189 pa = pte_pfn(pte[i]) << PAGE_SHIFT;
1190 xen_free_ro_pages(pa, PAGE_SIZE);
1191 }
1192 xen_cleanmfnmap_free_pgtbl(pte, unpin);
1193 }
1194 va += PMD_SIZE;
1195 if (pmd_index(va))
1196 continue;
1197 set_pud(pud, __pud(0));
1198 xen_cleanmfnmap_free_pgtbl(pmd, unpin);
1199 }
1200
1201 } while (pud_index(va) || pmd_index(va));
1202 xen_cleanmfnmap_free_pgtbl(pud_page, unpin);
1203}
1204
1205static void __init xen_pagetable_p2m_free(void)
1206{
1207 unsigned long size;
1208 unsigned long addr;
1209
1210 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1211
1212 /* No memory or already called. */
1213 if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1214 return;
1215
1216 /* using __ka address and sticking INVALID_P2M_ENTRY! */
1217 memset((void *)xen_start_info->mfn_list, 0xff, size);
1218
1219 addr = xen_start_info->mfn_list;
1220 /*
1221 * We could be in __ka space.
1222 * We roundup to the PMD, which means that if anybody at this stage is
1223 * using the __ka address of xen_start_info or
1224 * xen_start_info->shared_info they are in going to crash. Fortunatly
1225 * we have already revectored in xen_setup_kernel_pagetable and in
1226 * xen_setup_shared_info.
1227 */
1228 size = roundup(size, PMD_SIZE);
1229
1230 if (addr >= __START_KERNEL_map) {
1231 xen_cleanhighmap(addr, addr + size);
1232 size = PAGE_ALIGN(xen_start_info->nr_pages *
1233 sizeof(unsigned long));
1234 memblock_free(__pa(addr), size);
1235 } else {
1236 xen_cleanmfnmap(addr);
1237 }
1238}
1239
1240static void __init xen_pagetable_cleanhighmap(void)
1241{
1242 unsigned long size;
1243 unsigned long addr;
1244
1245 /* At this stage, cleanup_highmap has already cleaned __ka space
1246 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1247 * the ramdisk). We continue on, erasing PMD entries that point to page
1248 * tables - do note that they are accessible at this stage via __va.
1249 * For good measure we also round up to the PMD - which means that if
1250 * anybody is using __ka address to the initial boot-stack - and try
1251 * to use it - they are going to crash. The xen_start_info has been
1252 * taken care of already in xen_setup_kernel_pagetable. */
1253 addr = xen_start_info->pt_base;
1254 size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1255
1256 xen_cleanhighmap(addr, addr + size);
1257 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1258#ifdef DEBUG
1259 /* This is superfluous and is not necessary, but you know what
1260 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1261 * anything at this stage. */
1262 xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1263#endif
1264}
1265#endif
1266
1267static void __init xen_pagetable_p2m_setup(void)
1268{
1269 if (xen_feature(XENFEAT_auto_translated_physmap))
1270 return;
1271
1272 xen_vmalloc_p2m_tree();
1273
1274#ifdef CONFIG_X86_64
1275 xen_pagetable_p2m_free();
1276
1277 xen_pagetable_cleanhighmap();
1278#endif
1279 /* And revector! Bye bye old array */
1280 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1281}
1282
1283static void __init xen_pagetable_init(void)
1284{
1285 paging_init();
1286 xen_post_allocator_init();
1287
1288 xen_pagetable_p2m_setup();
1289
1290 /* Allocate and initialize top and mid mfn levels for p2m structure */
1291 xen_build_mfn_list_list();
1292
1293 /* Remap memory freed due to conflicts with E820 map */
1294 if (!xen_feature(XENFEAT_auto_translated_physmap))
1295 xen_remap_memory();
1296
1297 xen_setup_shared_info();
1298}
1299static void xen_write_cr2(unsigned long cr2)
1300{
1301 this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1302}
1303
1304static unsigned long xen_read_cr2(void)
1305{
1306 return this_cpu_read(xen_vcpu)->arch.cr2;
1307}
1308
1309unsigned long xen_read_cr2_direct(void)
1310{
1311 return this_cpu_read(xen_vcpu_info.arch.cr2);
1312}
1313
1314void xen_flush_tlb_all(void)
1315{
1316 struct mmuext_op *op;
1317 struct multicall_space mcs;
1318
1319 trace_xen_mmu_flush_tlb_all(0);
1320
1321 preempt_disable();
1322
1323 mcs = xen_mc_entry(sizeof(*op));
1324
1325 op = mcs.args;
1326 op->cmd = MMUEXT_TLB_FLUSH_ALL;
1327 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1328
1329 xen_mc_issue(PARAVIRT_LAZY_MMU);
1330
1331 preempt_enable();
1332}
1333static void xen_flush_tlb(void)
1334{
1335 struct mmuext_op *op;
1336 struct multicall_space mcs;
1337
1338 trace_xen_mmu_flush_tlb(0);
1339
1340 preempt_disable();
1341
1342 mcs = xen_mc_entry(sizeof(*op));
1343
1344 op = mcs.args;
1345 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1346 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1347
1348 xen_mc_issue(PARAVIRT_LAZY_MMU);
1349
1350 preempt_enable();
1351}
1352
1353static void xen_flush_tlb_single(unsigned long addr)
1354{
1355 struct mmuext_op *op;
1356 struct multicall_space mcs;
1357
1358 trace_xen_mmu_flush_tlb_single(addr);
1359
1360 preempt_disable();
1361
1362 mcs = xen_mc_entry(sizeof(*op));
1363 op = mcs.args;
1364 op->cmd = MMUEXT_INVLPG_LOCAL;
1365 op->arg1.linear_addr = addr & PAGE_MASK;
1366 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1367
1368 xen_mc_issue(PARAVIRT_LAZY_MMU);
1369
1370 preempt_enable();
1371}
1372
1373static void xen_flush_tlb_others(const struct cpumask *cpus,
1374 struct mm_struct *mm, unsigned long start,
1375 unsigned long end)
1376{
1377 struct {
1378 struct mmuext_op op;
1379#ifdef CONFIG_SMP
1380 DECLARE_BITMAP(mask, num_processors);
1381#else
1382 DECLARE_BITMAP(mask, NR_CPUS);
1383#endif
1384 } *args;
1385 struct multicall_space mcs;
1386
1387 trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1388
1389 if (cpumask_empty(cpus))
1390 return; /* nothing to do */
1391
1392 mcs = xen_mc_entry(sizeof(*args));
1393 args = mcs.args;
1394 args->op.arg2.vcpumask = to_cpumask(args->mask);
1395
1396 /* Remove us, and any offline CPUS. */
1397 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1398 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1399
1400 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1401 if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1402 args->op.cmd = MMUEXT_INVLPG_MULTI;
1403 args->op.arg1.linear_addr = start;
1404 }
1405
1406 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1407
1408 xen_mc_issue(PARAVIRT_LAZY_MMU);
1409}
1410
1411static unsigned long xen_read_cr3(void)
1412{
1413 return this_cpu_read(xen_cr3);
1414}
1415
1416static void set_current_cr3(void *v)
1417{
1418 this_cpu_write(xen_current_cr3, (unsigned long)v);
1419}
1420
1421static void __xen_write_cr3(bool kernel, unsigned long cr3)
1422{
1423 struct mmuext_op op;
1424 unsigned long mfn;
1425
1426 trace_xen_mmu_write_cr3(kernel, cr3);
1427
1428 if (cr3)
1429 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1430 else
1431 mfn = 0;
1432
1433 WARN_ON(mfn == 0 && kernel);
1434
1435 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1436 op.arg1.mfn = mfn;
1437
1438 xen_extend_mmuext_op(&op);
1439
1440 if (kernel) {
1441 this_cpu_write(xen_cr3, cr3);
1442
1443 /* Update xen_current_cr3 once the batch has actually
1444 been submitted. */
1445 xen_mc_callback(set_current_cr3, (void *)cr3);
1446 }
1447}
1448static void xen_write_cr3(unsigned long cr3)
1449{
1450 BUG_ON(preemptible());
1451
1452 xen_mc_batch(); /* disables interrupts */
1453
1454 /* Update while interrupts are disabled, so its atomic with
1455 respect to ipis */
1456 this_cpu_write(xen_cr3, cr3);
1457
1458 __xen_write_cr3(true, cr3);
1459
1460#ifdef CONFIG_X86_64
1461 {
1462 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1463 if (user_pgd)
1464 __xen_write_cr3(false, __pa(user_pgd));
1465 else
1466 __xen_write_cr3(false, 0);
1467 }
1468#endif
1469
1470 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1471}
1472
1473#ifdef CONFIG_X86_64
1474/*
1475 * At the start of the day - when Xen launches a guest, it has already
1476 * built pagetables for the guest. We diligently look over them
1477 * in xen_setup_kernel_pagetable and graft as appropriate them in the
1478 * init_level4_pgt and its friends. Then when we are happy we load
1479 * the new init_level4_pgt - and continue on.
1480 *
1481 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1482 * up the rest of the pagetables. When it has completed it loads the cr3.
1483 * N.B. that baremetal would start at 'start_kernel' (and the early
1484 * #PF handler would create bootstrap pagetables) - so we are running
1485 * with the same assumptions as what to do when write_cr3 is executed
1486 * at this point.
1487 *
1488 * Since there are no user-page tables at all, we have two variants
1489 * of xen_write_cr3 - the early bootup (this one), and the late one
1490 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1491 * the Linux kernel and user-space are both in ring 3 while the
1492 * hypervisor is in ring 0.
1493 */
1494static void __init xen_write_cr3_init(unsigned long cr3)
1495{
1496 BUG_ON(preemptible());
1497
1498 xen_mc_batch(); /* disables interrupts */
1499
1500 /* Update while interrupts are disabled, so its atomic with
1501 respect to ipis */
1502 this_cpu_write(xen_cr3, cr3);
1503
1504 __xen_write_cr3(true, cr3);
1505
1506 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1507}
1508#endif
1509
1510static int xen_pgd_alloc(struct mm_struct *mm)
1511{
1512 pgd_t *pgd = mm->pgd;
1513 int ret = 0;
1514
1515 BUG_ON(PagePinned(virt_to_page(pgd)));
1516
1517#ifdef CONFIG_X86_64
1518 {
1519 struct page *page = virt_to_page(pgd);
1520 pgd_t *user_pgd;
1521
1522 BUG_ON(page->private != 0);
1523
1524 ret = -ENOMEM;
1525
1526 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1527 page->private = (unsigned long)user_pgd;
1528
1529 if (user_pgd != NULL) {
1530#ifdef CONFIG_X86_VSYSCALL_EMULATION
1531 user_pgd[pgd_index(VSYSCALL_ADDR)] =
1532 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1533#endif
1534 ret = 0;
1535 }
1536
1537 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1538 }
1539#endif
1540
1541 return ret;
1542}
1543
1544static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1545{
1546#ifdef CONFIG_X86_64
1547 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1548
1549 if (user_pgd)
1550 free_page((unsigned long)user_pgd);
1551#endif
1552}
1553
1554#ifdef CONFIG_X86_32
1555static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1556{
1557 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1558 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1559 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1560 pte_val_ma(pte));
1561
1562 return pte;
1563}
1564#else /* CONFIG_X86_64 */
1565static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1566{
1567 unsigned long pfn;
1568
1569 if (xen_feature(XENFEAT_writable_page_tables) ||
1570 xen_feature(XENFEAT_auto_translated_physmap) ||
1571 xen_start_info->mfn_list >= __START_KERNEL_map)
1572 return pte;
1573
1574 /*
1575 * Pages belonging to the initial p2m list mapped outside the default
1576 * address range must be mapped read-only. This region contains the
1577 * page tables for mapping the p2m list, too, and page tables MUST be
1578 * mapped read-only.
1579 */
1580 pfn = pte_pfn(pte);
1581 if (pfn >= xen_start_info->first_p2m_pfn &&
1582 pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1583 pte = __pte_ma(pte_val_ma(pte) & ~_PAGE_RW);
1584
1585 return pte;
1586}
1587#endif /* CONFIG_X86_64 */
1588
1589/*
1590 * Init-time set_pte while constructing initial pagetables, which
1591 * doesn't allow RO page table pages to be remapped RW.
1592 *
1593 * If there is no MFN for this PFN then this page is initially
1594 * ballooned out so clear the PTE (as in decrease_reservation() in
1595 * drivers/xen/balloon.c).
1596 *
1597 * Many of these PTE updates are done on unpinned and writable pages
1598 * and doing a hypercall for these is unnecessary and expensive. At
1599 * this point it is not possible to tell if a page is pinned or not,
1600 * so always write the PTE directly and rely on Xen trapping and
1601 * emulating any updates as necessary.
1602 */
1603static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1604{
1605 if (pte_mfn(pte) != INVALID_P2M_ENTRY)
1606 pte = mask_rw_pte(ptep, pte);
1607 else
1608 pte = __pte_ma(0);
1609
1610 native_set_pte(ptep, pte);
1611}
1612
1613/* Early in boot, while setting up the initial pagetable, assume
1614 everything is pinned. */
1615static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1616{
1617#ifdef CONFIG_FLATMEM
1618 BUG_ON(mem_map); /* should only be used early */
1619#endif
1620 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1621 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1622}
1623
1624/* Used for pmd and pud */
1625static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1626{
1627#ifdef CONFIG_FLATMEM
1628 BUG_ON(mem_map); /* should only be used early */
1629#endif
1630 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1631}
1632
1633/* Early release_pte assumes that all pts are pinned, since there's
1634 only init_mm and anything attached to that is pinned. */
1635static void __init xen_release_pte_init(unsigned long pfn)
1636{
1637 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1638 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1639}
1640
1641static void __init xen_release_pmd_init(unsigned long pfn)
1642{
1643 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1644}
1645
1646static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1647{
1648 struct multicall_space mcs;
1649 struct mmuext_op *op;
1650
1651 mcs = __xen_mc_entry(sizeof(*op));
1652 op = mcs.args;
1653 op->cmd = cmd;
1654 op->arg1.mfn = pfn_to_mfn(pfn);
1655
1656 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1657}
1658
1659static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1660{
1661 struct multicall_space mcs;
1662 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1663
1664 mcs = __xen_mc_entry(0);
1665 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1666 pfn_pte(pfn, prot), 0);
1667}
1668
1669/* This needs to make sure the new pte page is pinned iff its being
1670 attached to a pinned pagetable. */
1671static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1672 unsigned level)
1673{
1674 bool pinned = PagePinned(virt_to_page(mm->pgd));
1675
1676 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1677
1678 if (pinned) {
1679 struct page *page = pfn_to_page(pfn);
1680
1681 SetPagePinned(page);
1682
1683 if (!PageHighMem(page)) {
1684 xen_mc_batch();
1685
1686 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1687
1688 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1689 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1690
1691 xen_mc_issue(PARAVIRT_LAZY_MMU);
1692 } else {
1693 /* make sure there are no stray mappings of
1694 this page */
1695 kmap_flush_unused();
1696 }
1697 }
1698}
1699
1700static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1701{
1702 xen_alloc_ptpage(mm, pfn, PT_PTE);
1703}
1704
1705static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1706{
1707 xen_alloc_ptpage(mm, pfn, PT_PMD);
1708}
1709
1710/* This should never happen until we're OK to use struct page */
1711static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1712{
1713 struct page *page = pfn_to_page(pfn);
1714 bool pinned = PagePinned(page);
1715
1716 trace_xen_mmu_release_ptpage(pfn, level, pinned);
1717
1718 if (pinned) {
1719 if (!PageHighMem(page)) {
1720 xen_mc_batch();
1721
1722 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1723 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1724
1725 __set_pfn_prot(pfn, PAGE_KERNEL);
1726
1727 xen_mc_issue(PARAVIRT_LAZY_MMU);
1728 }
1729 ClearPagePinned(page);
1730 }
1731}
1732
1733static void xen_release_pte(unsigned long pfn)
1734{
1735 xen_release_ptpage(pfn, PT_PTE);
1736}
1737
1738static void xen_release_pmd(unsigned long pfn)
1739{
1740 xen_release_ptpage(pfn, PT_PMD);
1741}
1742
1743#if CONFIG_PGTABLE_LEVELS == 4
1744static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1745{
1746 xen_alloc_ptpage(mm, pfn, PT_PUD);
1747}
1748
1749static void xen_release_pud(unsigned long pfn)
1750{
1751 xen_release_ptpage(pfn, PT_PUD);
1752}
1753#endif
1754
1755void __init xen_reserve_top(void)
1756{
1757#ifdef CONFIG_X86_32
1758 unsigned long top = HYPERVISOR_VIRT_START;
1759 struct xen_platform_parameters pp;
1760
1761 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1762 top = pp.virt_start;
1763
1764 reserve_top_address(-top);
1765#endif /* CONFIG_X86_32 */
1766}
1767
1768/*
1769 * Like __va(), but returns address in the kernel mapping (which is
1770 * all we have until the physical memory mapping has been set up.
1771 */
1772static void * __init __ka(phys_addr_t paddr)
1773{
1774#ifdef CONFIG_X86_64
1775 return (void *)(paddr + __START_KERNEL_map);
1776#else
1777 return __va(paddr);
1778#endif
1779}
1780
1781/* Convert a machine address to physical address */
1782static unsigned long __init m2p(phys_addr_t maddr)
1783{
1784 phys_addr_t paddr;
1785
1786 maddr &= PTE_PFN_MASK;
1787 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1788
1789 return paddr;
1790}
1791
1792/* Convert a machine address to kernel virtual */
1793static void * __init m2v(phys_addr_t maddr)
1794{
1795 return __ka(m2p(maddr));
1796}
1797
1798/* Set the page permissions on an identity-mapped pages */
1799static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1800 unsigned long flags)
1801{
1802 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1803 pte_t pte = pfn_pte(pfn, prot);
1804
1805 /* For PVH no need to set R/O or R/W to pin them or unpin them. */
1806 if (xen_feature(XENFEAT_auto_translated_physmap))
1807 return;
1808
1809 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1810 BUG();
1811}
1812static void __init set_page_prot(void *addr, pgprot_t prot)
1813{
1814 return set_page_prot_flags(addr, prot, UVMF_NONE);
1815}
1816#ifdef CONFIG_X86_32
1817static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1818{
1819 unsigned pmdidx, pteidx;
1820 unsigned ident_pte;
1821 unsigned long pfn;
1822
1823 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1824 PAGE_SIZE);
1825
1826 ident_pte = 0;
1827 pfn = 0;
1828 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1829 pte_t *pte_page;
1830
1831 /* Reuse or allocate a page of ptes */
1832 if (pmd_present(pmd[pmdidx]))
1833 pte_page = m2v(pmd[pmdidx].pmd);
1834 else {
1835 /* Check for free pte pages */
1836 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1837 break;
1838
1839 pte_page = &level1_ident_pgt[ident_pte];
1840 ident_pte += PTRS_PER_PTE;
1841
1842 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1843 }
1844
1845 /* Install mappings */
1846 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1847 pte_t pte;
1848
1849 if (pfn > max_pfn_mapped)
1850 max_pfn_mapped = pfn;
1851
1852 if (!pte_none(pte_page[pteidx]))
1853 continue;
1854
1855 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1856 pte_page[pteidx] = pte;
1857 }
1858 }
1859
1860 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1861 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1862
1863 set_page_prot(pmd, PAGE_KERNEL_RO);
1864}
1865#endif
1866void __init xen_setup_machphys_mapping(void)
1867{
1868 struct xen_machphys_mapping mapping;
1869
1870 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1871 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1872 machine_to_phys_nr = mapping.max_mfn + 1;
1873 } else {
1874 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1875 }
1876#ifdef CONFIG_X86_32
1877 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1878 < machine_to_phys_mapping);
1879#endif
1880}
1881
1882#ifdef CONFIG_X86_64
1883static void __init convert_pfn_mfn(void *v)
1884{
1885 pte_t *pte = v;
1886 int i;
1887
1888 /* All levels are converted the same way, so just treat them
1889 as ptes. */
1890 for (i = 0; i < PTRS_PER_PTE; i++)
1891 pte[i] = xen_make_pte(pte[i].pte);
1892}
1893static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1894 unsigned long addr)
1895{
1896 if (*pt_base == PFN_DOWN(__pa(addr))) {
1897 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1898 clear_page((void *)addr);
1899 (*pt_base)++;
1900 }
1901 if (*pt_end == PFN_DOWN(__pa(addr))) {
1902 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1903 clear_page((void *)addr);
1904 (*pt_end)--;
1905 }
1906}
1907/*
1908 * Set up the initial kernel pagetable.
1909 *
1910 * We can construct this by grafting the Xen provided pagetable into
1911 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1912 * level2_ident_pgt, and level2_kernel_pgt. This means that only the
1913 * kernel has a physical mapping to start with - but that's enough to
1914 * get __va working. We need to fill in the rest of the physical
1915 * mapping once some sort of allocator has been set up. NOTE: for
1916 * PVH, the page tables are native.
1917 */
1918void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1919{
1920 pud_t *l3;
1921 pmd_t *l2;
1922 unsigned long addr[3];
1923 unsigned long pt_base, pt_end;
1924 unsigned i;
1925
1926 /* max_pfn_mapped is the last pfn mapped in the initial memory
1927 * mappings. Considering that on Xen after the kernel mappings we
1928 * have the mappings of some pages that don't exist in pfn space, we
1929 * set max_pfn_mapped to the last real pfn mapped. */
1930 if (xen_start_info->mfn_list < __START_KERNEL_map)
1931 max_pfn_mapped = xen_start_info->first_p2m_pfn;
1932 else
1933 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1934
1935 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1936 pt_end = pt_base + xen_start_info->nr_pt_frames;
1937
1938 /* Zap identity mapping */
1939 init_level4_pgt[0] = __pgd(0);
1940
1941 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1942 /* Pre-constructed entries are in pfn, so convert to mfn */
1943 /* L4[272] -> level3_ident_pgt
1944 * L4[511] -> level3_kernel_pgt */
1945 convert_pfn_mfn(init_level4_pgt);
1946
1947 /* L3_i[0] -> level2_ident_pgt */
1948 convert_pfn_mfn(level3_ident_pgt);
1949 /* L3_k[510] -> level2_kernel_pgt
1950 * L3_k[511] -> level2_fixmap_pgt */
1951 convert_pfn_mfn(level3_kernel_pgt);
1952
1953 /* L3_k[511][506] -> level1_fixmap_pgt */
1954 convert_pfn_mfn(level2_fixmap_pgt);
1955 }
1956 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1957 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1958 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1959
1960 addr[0] = (unsigned long)pgd;
1961 addr[1] = (unsigned long)l3;
1962 addr[2] = (unsigned long)l2;
1963 /* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1964 * Both L4[272][0] and L4[511][510] have entries that point to the same
1965 * L2 (PMD) tables. Meaning that if you modify it in __va space
1966 * it will be also modified in the __ka space! (But if you just
1967 * modify the PMD table to point to other PTE's or none, then you
1968 * are OK - which is what cleanup_highmap does) */
1969 copy_page(level2_ident_pgt, l2);
1970 /* Graft it onto L4[511][510] */
1971 copy_page(level2_kernel_pgt, l2);
1972
1973 /* Copy the initial P->M table mappings if necessary. */
1974 i = pgd_index(xen_start_info->mfn_list);
1975 if (i && i < pgd_index(__START_KERNEL_map))
1976 init_level4_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1977
1978 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1979 /* Make pagetable pieces RO */
1980 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1981 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1982 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1983 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1984 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1985 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1986 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1987 set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
1988
1989 /* Pin down new L4 */
1990 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1991 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1992
1993 /* Unpin Xen-provided one */
1994 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1995
1996 /*
1997 * At this stage there can be no user pgd, and no page
1998 * structure to attach it to, so make sure we just set kernel
1999 * pgd.
2000 */
2001 xen_mc_batch();
2002 __xen_write_cr3(true, __pa(init_level4_pgt));
2003 xen_mc_issue(PARAVIRT_LAZY_CPU);
2004 } else
2005 native_write_cr3(__pa(init_level4_pgt));
2006
2007 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
2008 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
2009 * the initial domain. For guests using the toolstack, they are in:
2010 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
2011 * rip out the [L4] (pgd), but for guests we shave off three pages.
2012 */
2013 for (i = 0; i < ARRAY_SIZE(addr); i++)
2014 check_pt_base(&pt_base, &pt_end, addr[i]);
2015
2016 /* Our (by three pages) smaller Xen pagetable that we are using */
2017 xen_pt_base = PFN_PHYS(pt_base);
2018 xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
2019 memblock_reserve(xen_pt_base, xen_pt_size);
2020
2021 /* Revector the xen_start_info */
2022 xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
2023}
2024
2025/*
2026 * Read a value from a physical address.
2027 */
2028static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
2029{
2030 unsigned long *vaddr;
2031 unsigned long val;
2032
2033 vaddr = early_memremap_ro(addr, sizeof(val));
2034 val = *vaddr;
2035 early_memunmap(vaddr, sizeof(val));
2036 return val;
2037}
2038
2039/*
2040 * Translate a virtual address to a physical one without relying on mapped
2041 * page tables.
2042 */
2043static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
2044{
2045 phys_addr_t pa;
2046 pgd_t pgd;
2047 pud_t pud;
2048 pmd_t pmd;
2049 pte_t pte;
2050
2051 pa = read_cr3();
2052 pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
2053 sizeof(pgd)));
2054 if (!pgd_present(pgd))
2055 return 0;
2056
2057 pa = pgd_val(pgd) & PTE_PFN_MASK;
2058 pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
2059 sizeof(pud)));
2060 if (!pud_present(pud))
2061 return 0;
2062 pa = pud_pfn(pud) << PAGE_SHIFT;
2063 if (pud_large(pud))
2064 return pa + (vaddr & ~PUD_MASK);
2065
2066 pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
2067 sizeof(pmd)));
2068 if (!pmd_present(pmd))
2069 return 0;
2070 pa = pmd_pfn(pmd) << PAGE_SHIFT;
2071 if (pmd_large(pmd))
2072 return pa + (vaddr & ~PMD_MASK);
2073
2074 pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
2075 sizeof(pte)));
2076 if (!pte_present(pte))
2077 return 0;
2078 pa = pte_pfn(pte) << PAGE_SHIFT;
2079
2080 return pa | (vaddr & ~PAGE_MASK);
2081}
2082
2083/*
2084 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2085 * this area.
2086 */
2087void __init xen_relocate_p2m(void)
2088{
2089 phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
2090 unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
2091 int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
2092 pte_t *pt;
2093 pmd_t *pmd;
2094 pud_t *pud;
2095 pgd_t *pgd;
2096 unsigned long *new_p2m;
2097
2098 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
2099 n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
2100 n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
2101 n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
2102 n_pud = roundup(size, PGDIR_SIZE) >> PGDIR_SHIFT;
2103 n_frames = n_pte + n_pt + n_pmd + n_pud;
2104
2105 new_area = xen_find_free_area(PFN_PHYS(n_frames));
2106 if (!new_area) {
2107 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2108 BUG();
2109 }
2110
2111 /*
2112 * Setup the page tables for addressing the new p2m list.
2113 * We have asked the hypervisor to map the p2m list at the user address
2114 * PUD_SIZE. It may have done so, or it may have used a kernel space
2115 * address depending on the Xen version.
2116 * To avoid any possible virtual address collision, just use
2117 * 2 * PUD_SIZE for the new area.
2118 */
2119 pud_phys = new_area;
2120 pmd_phys = pud_phys + PFN_PHYS(n_pud);
2121 pt_phys = pmd_phys + PFN_PHYS(n_pmd);
2122 p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
2123
2124 pgd = __va(read_cr3());
2125 new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
2126 for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
2127 pud = early_memremap(pud_phys, PAGE_SIZE);
2128 clear_page(pud);
2129 for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
2130 idx_pmd++) {
2131 pmd = early_memremap(pmd_phys, PAGE_SIZE);
2132 clear_page(pmd);
2133 for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
2134 idx_pt++) {
2135 pt = early_memremap(pt_phys, PAGE_SIZE);
2136 clear_page(pt);
2137 for (idx_pte = 0;
2138 idx_pte < min(n_pte, PTRS_PER_PTE);
2139 idx_pte++) {
2140 set_pte(pt + idx_pte,
2141 pfn_pte(p2m_pfn, PAGE_KERNEL));
2142 p2m_pfn++;
2143 }
2144 n_pte -= PTRS_PER_PTE;
2145 early_memunmap(pt, PAGE_SIZE);
2146 make_lowmem_page_readonly(__va(pt_phys));
2147 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
2148 PFN_DOWN(pt_phys));
2149 set_pmd(pmd + idx_pt,
2150 __pmd(_PAGE_TABLE | pt_phys));
2151 pt_phys += PAGE_SIZE;
2152 }
2153 n_pt -= PTRS_PER_PMD;
2154 early_memunmap(pmd, PAGE_SIZE);
2155 make_lowmem_page_readonly(__va(pmd_phys));
2156 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
2157 PFN_DOWN(pmd_phys));
2158 set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys));
2159 pmd_phys += PAGE_SIZE;
2160 }
2161 n_pmd -= PTRS_PER_PUD;
2162 early_memunmap(pud, PAGE_SIZE);
2163 make_lowmem_page_readonly(__va(pud_phys));
2164 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
2165 set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
2166 pud_phys += PAGE_SIZE;
2167 }
2168
2169 /* Now copy the old p2m info to the new area. */
2170 memcpy(new_p2m, xen_p2m_addr, size);
2171 xen_p2m_addr = new_p2m;
2172
2173 /* Release the old p2m list and set new list info. */
2174 p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
2175 BUG_ON(!p2m_pfn);
2176 p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
2177
2178 if (xen_start_info->mfn_list < __START_KERNEL_map) {
2179 pfn = xen_start_info->first_p2m_pfn;
2180 pfn_end = xen_start_info->first_p2m_pfn +
2181 xen_start_info->nr_p2m_frames;
2182 set_pgd(pgd + 1, __pgd(0));
2183 } else {
2184 pfn = p2m_pfn;
2185 pfn_end = p2m_pfn_end;
2186 }
2187
2188 memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
2189 while (pfn < pfn_end) {
2190 if (pfn == p2m_pfn) {
2191 pfn = p2m_pfn_end;
2192 continue;
2193 }
2194 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
2195 pfn++;
2196 }
2197
2198 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2199 xen_start_info->first_p2m_pfn = PFN_DOWN(new_area);
2200 xen_start_info->nr_p2m_frames = n_frames;
2201}
2202
2203#else /* !CONFIG_X86_64 */
2204static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
2205static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
2206
2207static void __init xen_write_cr3_init(unsigned long cr3)
2208{
2209 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
2210
2211 BUG_ON(read_cr3() != __pa(initial_page_table));
2212 BUG_ON(cr3 != __pa(swapper_pg_dir));
2213
2214 /*
2215 * We are switching to swapper_pg_dir for the first time (from
2216 * initial_page_table) and therefore need to mark that page
2217 * read-only and then pin it.
2218 *
2219 * Xen disallows sharing of kernel PMDs for PAE
2220 * guests. Therefore we must copy the kernel PMD from
2221 * initial_page_table into a new kernel PMD to be used in
2222 * swapper_pg_dir.
2223 */
2224 swapper_kernel_pmd =
2225 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2226 copy_page(swapper_kernel_pmd, initial_kernel_pmd);
2227 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
2228 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
2229 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2230
2231 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2232 xen_write_cr3(cr3);
2233 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2234
2235 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2236 PFN_DOWN(__pa(initial_page_table)));
2237 set_page_prot(initial_page_table, PAGE_KERNEL);
2238 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2239
2240 pv_mmu_ops.write_cr3 = &xen_write_cr3;
2241}
2242
2243/*
2244 * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2245 * not the first page table in the page table pool.
2246 * Iterate through the initial page tables to find the real page table base.
2247 */
2248static phys_addr_t xen_find_pt_base(pmd_t *pmd)
2249{
2250 phys_addr_t pt_base, paddr;
2251 unsigned pmdidx;
2252
2253 pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd));
2254
2255 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++)
2256 if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) {
2257 paddr = m2p(pmd[pmdidx].pmd);
2258 pt_base = min(pt_base, paddr);
2259 }
2260
2261 return pt_base;
2262}
2263
2264void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2265{
2266 pmd_t *kernel_pmd;
2267
2268 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2269
2270 xen_pt_base = xen_find_pt_base(kernel_pmd);
2271 xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE;
2272
2273 initial_kernel_pmd =
2274 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2275
2276 max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024);
2277
2278 copy_page(initial_kernel_pmd, kernel_pmd);
2279
2280 xen_map_identity_early(initial_kernel_pmd, max_pfn);
2281
2282 copy_page(initial_page_table, pgd);
2283 initial_page_table[KERNEL_PGD_BOUNDARY] =
2284 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2285
2286 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2287 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2288 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2289
2290 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2291
2292 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2293 PFN_DOWN(__pa(initial_page_table)));
2294 xen_write_cr3(__pa(initial_page_table));
2295
2296 memblock_reserve(xen_pt_base, xen_pt_size);
2297}
2298#endif /* CONFIG_X86_64 */
2299
2300void __init xen_reserve_special_pages(void)
2301{
2302 phys_addr_t paddr;
2303
2304 memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2305 if (xen_start_info->store_mfn) {
2306 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2307 memblock_reserve(paddr, PAGE_SIZE);
2308 }
2309 if (!xen_initial_domain()) {
2310 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2311 memblock_reserve(paddr, PAGE_SIZE);
2312 }
2313}
2314
2315void __init xen_pt_check_e820(void)
2316{
2317 if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2318 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2319 BUG();
2320 }
2321}
2322
2323static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2324
2325static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2326{
2327 pte_t pte;
2328
2329 phys >>= PAGE_SHIFT;
2330
2331 switch (idx) {
2332 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2333 case FIX_RO_IDT:
2334#ifdef CONFIG_X86_32
2335 case FIX_WP_TEST:
2336# ifdef CONFIG_HIGHMEM
2337 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2338# endif
2339#elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2340 case VSYSCALL_PAGE:
2341#endif
2342 case FIX_TEXT_POKE0:
2343 case FIX_TEXT_POKE1:
2344 /* All local page mappings */
2345 pte = pfn_pte(phys, prot);
2346 break;
2347
2348#ifdef CONFIG_X86_LOCAL_APIC
2349 case FIX_APIC_BASE: /* maps dummy local APIC */
2350 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2351 break;
2352#endif
2353
2354#ifdef CONFIG_X86_IO_APIC
2355 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2356 /*
2357 * We just don't map the IO APIC - all access is via
2358 * hypercalls. Keep the address in the pte for reference.
2359 */
2360 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2361 break;
2362#endif
2363
2364 case FIX_PARAVIRT_BOOTMAP:
2365 /* This is an MFN, but it isn't an IO mapping from the
2366 IO domain */
2367 pte = mfn_pte(phys, prot);
2368 break;
2369
2370 default:
2371 /* By default, set_fixmap is used for hardware mappings */
2372 pte = mfn_pte(phys, prot);
2373 break;
2374 }
2375
2376 __native_set_fixmap(idx, pte);
2377
2378#ifdef CONFIG_X86_VSYSCALL_EMULATION
2379 /* Replicate changes to map the vsyscall page into the user
2380 pagetable vsyscall mapping. */
2381 if (idx == VSYSCALL_PAGE) {
2382 unsigned long vaddr = __fix_to_virt(idx);
2383 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2384 }
2385#endif
2386}
2387
2388static void __init xen_post_allocator_init(void)
2389{
2390 if (xen_feature(XENFEAT_auto_translated_physmap))
2391 return;
2392
2393 pv_mmu_ops.set_pte = xen_set_pte;
2394 pv_mmu_ops.set_pmd = xen_set_pmd;
2395 pv_mmu_ops.set_pud = xen_set_pud;
2396#if CONFIG_PGTABLE_LEVELS == 4
2397 pv_mmu_ops.set_pgd = xen_set_pgd;
2398#endif
2399
2400 /* This will work as long as patching hasn't happened yet
2401 (which it hasn't) */
2402 pv_mmu_ops.alloc_pte = xen_alloc_pte;
2403 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2404 pv_mmu_ops.release_pte = xen_release_pte;
2405 pv_mmu_ops.release_pmd = xen_release_pmd;
2406#if CONFIG_PGTABLE_LEVELS == 4
2407 pv_mmu_ops.alloc_pud = xen_alloc_pud;
2408 pv_mmu_ops.release_pud = xen_release_pud;
2409#endif
2410
2411#ifdef CONFIG_X86_64
2412 pv_mmu_ops.write_cr3 = &xen_write_cr3;
2413 SetPagePinned(virt_to_page(level3_user_vsyscall));
2414#endif
2415 xen_mark_init_mm_pinned();
2416}
2417
2418static void xen_leave_lazy_mmu(void)
2419{
2420 preempt_disable();
2421 xen_mc_flush();
2422 paravirt_leave_lazy_mmu();
2423 preempt_enable();
2424}
2425
2426static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2427 .read_cr2 = xen_read_cr2,
2428 .write_cr2 = xen_write_cr2,
2429
2430 .read_cr3 = xen_read_cr3,
2431 .write_cr3 = xen_write_cr3_init,
2432
2433 .flush_tlb_user = xen_flush_tlb,
2434 .flush_tlb_kernel = xen_flush_tlb,
2435 .flush_tlb_single = xen_flush_tlb_single,
2436 .flush_tlb_others = xen_flush_tlb_others,
2437
2438 .pte_update = paravirt_nop,
2439
2440 .pgd_alloc = xen_pgd_alloc,
2441 .pgd_free = xen_pgd_free,
2442
2443 .alloc_pte = xen_alloc_pte_init,
2444 .release_pte = xen_release_pte_init,
2445 .alloc_pmd = xen_alloc_pmd_init,
2446 .release_pmd = xen_release_pmd_init,
2447
2448 .set_pte = xen_set_pte_init,
2449 .set_pte_at = xen_set_pte_at,
2450 .set_pmd = xen_set_pmd_hyper,
2451
2452 .ptep_modify_prot_start = __ptep_modify_prot_start,
2453 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2454
2455 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2456 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2457
2458 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2459 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2460
2461#ifdef CONFIG_X86_PAE
2462 .set_pte_atomic = xen_set_pte_atomic,
2463 .pte_clear = xen_pte_clear,
2464 .pmd_clear = xen_pmd_clear,
2465#endif /* CONFIG_X86_PAE */
2466 .set_pud = xen_set_pud_hyper,
2467
2468 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2469 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2470
2471#if CONFIG_PGTABLE_LEVELS == 4
2472 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2473 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2474 .set_pgd = xen_set_pgd_hyper,
2475
2476 .alloc_pud = xen_alloc_pmd_init,
2477 .release_pud = xen_release_pmd_init,
2478#endif /* CONFIG_PGTABLE_LEVELS == 4 */
2479
2480 .activate_mm = xen_activate_mm,
2481 .dup_mmap = xen_dup_mmap,
2482 .exit_mmap = xen_exit_mmap,
2483
2484 .lazy_mode = {
2485 .enter = paravirt_enter_lazy_mmu,
2486 .leave = xen_leave_lazy_mmu,
2487 .flush = paravirt_flush_lazy_mmu,
2488 },
2489
2490 .set_fixmap = xen_set_fixmap,
2491};
2492
2493void __init xen_init_mmu_ops(void)
2494{
2495 x86_init.paging.pagetable_init = xen_pagetable_init;
2496
2497 if (xen_feature(XENFEAT_auto_translated_physmap))
2498 return;
2499
2500 pv_mmu_ops = xen_mmu_ops;
2501
2502 memset(dummy_mapping, 0xff, PAGE_SIZE);
2503}
2504
2505/* Protected by xen_reservation_lock. */
2506#define MAX_CONTIG_ORDER 9 /* 2MB */
2507static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2508
2509#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2510static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2511 unsigned long *in_frames,
2512 unsigned long *out_frames)
2513{
2514 int i;
2515 struct multicall_space mcs;
2516
2517 xen_mc_batch();
2518 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2519 mcs = __xen_mc_entry(0);
2520
2521 if (in_frames)
2522 in_frames[i] = virt_to_mfn(vaddr);
2523
2524 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2525 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2526
2527 if (out_frames)
2528 out_frames[i] = virt_to_pfn(vaddr);
2529 }
2530 xen_mc_issue(0);
2531}
2532
2533/*
2534 * Update the pfn-to-mfn mappings for a virtual address range, either to
2535 * point to an array of mfns, or contiguously from a single starting
2536 * mfn.
2537 */
2538static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2539 unsigned long *mfns,
2540 unsigned long first_mfn)
2541{
2542 unsigned i, limit;
2543 unsigned long mfn;
2544
2545 xen_mc_batch();
2546
2547 limit = 1u << order;
2548 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2549 struct multicall_space mcs;
2550 unsigned flags;
2551
2552 mcs = __xen_mc_entry(0);
2553 if (mfns)
2554 mfn = mfns[i];
2555 else
2556 mfn = first_mfn + i;
2557
2558 if (i < (limit - 1))
2559 flags = 0;
2560 else {
2561 if (order == 0)
2562 flags = UVMF_INVLPG | UVMF_ALL;
2563 else
2564 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2565 }
2566
2567 MULTI_update_va_mapping(mcs.mc, vaddr,
2568 mfn_pte(mfn, PAGE_KERNEL), flags);
2569
2570 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2571 }
2572
2573 xen_mc_issue(0);
2574}
2575
2576/*
2577 * Perform the hypercall to exchange a region of our pfns to point to
2578 * memory with the required contiguous alignment. Takes the pfns as
2579 * input, and populates mfns as output.
2580 *
2581 * Returns a success code indicating whether the hypervisor was able to
2582 * satisfy the request or not.
2583 */
2584static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2585 unsigned long *pfns_in,
2586 unsigned long extents_out,
2587 unsigned int order_out,
2588 unsigned long *mfns_out,
2589 unsigned int address_bits)
2590{
2591 long rc;
2592 int success;
2593
2594 struct xen_memory_exchange exchange = {
2595 .in = {
2596 .nr_extents = extents_in,
2597 .extent_order = order_in,
2598 .extent_start = pfns_in,
2599 .domid = DOMID_SELF
2600 },
2601 .out = {
2602 .nr_extents = extents_out,
2603 .extent_order = order_out,
2604 .extent_start = mfns_out,
2605 .address_bits = address_bits,
2606 .domid = DOMID_SELF
2607 }
2608 };
2609
2610 BUG_ON(extents_in << order_in != extents_out << order_out);
2611
2612 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2613 success = (exchange.nr_exchanged == extents_in);
2614
2615 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2616 BUG_ON(success && (rc != 0));
2617
2618 return success;
2619}
2620
2621int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2622 unsigned int address_bits,
2623 dma_addr_t *dma_handle)
2624{
2625 unsigned long *in_frames = discontig_frames, out_frame;
2626 unsigned long flags;
2627 int success;
2628 unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2629
2630 /*
2631 * Currently an auto-translated guest will not perform I/O, nor will
2632 * it require PAE page directories below 4GB. Therefore any calls to
2633 * this function are redundant and can be ignored.
2634 */
2635
2636 if (xen_feature(XENFEAT_auto_translated_physmap))
2637 return 0;
2638
2639 if (unlikely(order > MAX_CONTIG_ORDER))
2640 return -ENOMEM;
2641
2642 memset((void *) vstart, 0, PAGE_SIZE << order);
2643
2644 spin_lock_irqsave(&xen_reservation_lock, flags);
2645
2646 /* 1. Zap current PTEs, remembering MFNs. */
2647 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2648
2649 /* 2. Get a new contiguous memory extent. */
2650 out_frame = virt_to_pfn(vstart);
2651 success = xen_exchange_memory(1UL << order, 0, in_frames,
2652 1, order, &out_frame,
2653 address_bits);
2654
2655 /* 3. Map the new extent in place of old pages. */
2656 if (success)
2657 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2658 else
2659 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2660
2661 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2662
2663 *dma_handle = virt_to_machine(vstart).maddr;
2664 return success ? 0 : -ENOMEM;
2665}
2666EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2667
2668void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2669{
2670 unsigned long *out_frames = discontig_frames, in_frame;
2671 unsigned long flags;
2672 int success;
2673 unsigned long vstart;
2674
2675 if (xen_feature(XENFEAT_auto_translated_physmap))
2676 return;
2677
2678 if (unlikely(order > MAX_CONTIG_ORDER))
2679 return;
2680
2681 vstart = (unsigned long)phys_to_virt(pstart);
2682 memset((void *) vstart, 0, PAGE_SIZE << order);
2683
2684 spin_lock_irqsave(&xen_reservation_lock, flags);
2685
2686 /* 1. Find start MFN of contiguous extent. */
2687 in_frame = virt_to_mfn(vstart);
2688
2689 /* 2. Zap current PTEs. */
2690 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2691
2692 /* 3. Do the exchange for non-contiguous MFNs. */
2693 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2694 0, out_frames, 0);
2695
2696 /* 4. Map new pages in place of old pages. */
2697 if (success)
2698 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2699 else
2700 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2701
2702 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2703}
2704EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2705
2706#ifdef CONFIG_XEN_PVHVM
2707#ifdef CONFIG_PROC_VMCORE
2708/*
2709 * This function is used in two contexts:
2710 * - the kdump kernel has to check whether a pfn of the crashed kernel
2711 * was a ballooned page. vmcore is using this function to decide
2712 * whether to access a pfn of the crashed kernel.
2713 * - the kexec kernel has to check whether a pfn was ballooned by the
2714 * previous kernel. If the pfn is ballooned, handle it properly.
2715 * Returns 0 if the pfn is not backed by a RAM page, the caller may
2716 * handle the pfn special in this case.
2717 */
2718static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2719{
2720 struct xen_hvm_get_mem_type a = {
2721 .domid = DOMID_SELF,
2722 .pfn = pfn,
2723 };
2724 int ram;
2725
2726 if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2727 return -ENXIO;
2728
2729 switch (a.mem_type) {
2730 case HVMMEM_mmio_dm:
2731 ram = 0;
2732 break;
2733 case HVMMEM_ram_rw:
2734 case HVMMEM_ram_ro:
2735 default:
2736 ram = 1;
2737 break;
2738 }
2739
2740 return ram;
2741}
2742#endif
2743
2744static void xen_hvm_exit_mmap(struct mm_struct *mm)
2745{
2746 struct xen_hvm_pagetable_dying a;
2747 int rc;
2748
2749 a.domid = DOMID_SELF;
2750 a.gpa = __pa(mm->pgd);
2751 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2752 WARN_ON_ONCE(rc < 0);
2753}
2754
2755static int is_pagetable_dying_supported(void)
2756{
2757 struct xen_hvm_pagetable_dying a;
2758 int rc = 0;
2759
2760 a.domid = DOMID_SELF;
2761 a.gpa = 0x00;
2762 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2763 if (rc < 0) {
2764 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2765 return 0;
2766 }
2767 return 1;
2768}
2769
2770void __init xen_hvm_init_mmu_ops(void)
2771{
2772 if (is_pagetable_dying_supported())
2773 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2774#ifdef CONFIG_PROC_VMCORE
2775 register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2776#endif
2777}
2778#endif
2779
2780#define REMAP_BATCH_SIZE 16
2781
2782struct remap_data {
2783 xen_pfn_t *mfn;
2784 bool contiguous;
2785 pgprot_t prot;
2786 struct mmu_update *mmu_update;
2787};
2788
2789static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2790 unsigned long addr, void *data)
2791{
2792 struct remap_data *rmd = data;
2793 pte_t pte = pte_mkspecial(mfn_pte(*rmd->mfn, rmd->prot));
2794
2795 /* If we have a contiguous range, just update the mfn itself,
2796 else update pointer to be "next mfn". */
2797 if (rmd->contiguous)
2798 (*rmd->mfn)++;
2799 else
2800 rmd->mfn++;
2801
2802 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2803 rmd->mmu_update->val = pte_val_ma(pte);
2804 rmd->mmu_update++;
2805
2806 return 0;
2807}
2808
2809static int do_remap_gfn(struct vm_area_struct *vma,
2810 unsigned long addr,
2811 xen_pfn_t *gfn, int nr,
2812 int *err_ptr, pgprot_t prot,
2813 unsigned domid,
2814 struct page **pages)
2815{
2816 int err = 0;
2817 struct remap_data rmd;
2818 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2819 unsigned long range;
2820 int mapped = 0;
2821
2822 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2823
2824 if (xen_feature(XENFEAT_auto_translated_physmap)) {
2825#ifdef CONFIG_XEN_PVH
2826 /* We need to update the local page tables and the xen HAP */
2827 return xen_xlate_remap_gfn_array(vma, addr, gfn, nr, err_ptr,
2828 prot, domid, pages);
2829#else
2830 return -EINVAL;
2831#endif
2832 }
2833
2834 rmd.mfn = gfn;
2835 rmd.prot = prot;
2836 /* We use the err_ptr to indicate if there we are doing a contiguous
2837 * mapping or a discontigious mapping. */
2838 rmd.contiguous = !err_ptr;
2839
2840 while (nr) {
2841 int index = 0;
2842 int done = 0;
2843 int batch = min(REMAP_BATCH_SIZE, nr);
2844 int batch_left = batch;
2845 range = (unsigned long)batch << PAGE_SHIFT;
2846
2847 rmd.mmu_update = mmu_update;
2848 err = apply_to_page_range(vma->vm_mm, addr, range,
2849 remap_area_mfn_pte_fn, &rmd);
2850 if (err)
2851 goto out;
2852
2853 /* We record the error for each page that gives an error, but
2854 * continue mapping until the whole set is done */
2855 do {
2856 int i;
2857
2858 err = HYPERVISOR_mmu_update(&mmu_update[index],
2859 batch_left, &done, domid);
2860
2861 /*
2862 * @err_ptr may be the same buffer as @gfn, so
2863 * only clear it after each chunk of @gfn is
2864 * used.
2865 */
2866 if (err_ptr) {
2867 for (i = index; i < index + done; i++)
2868 err_ptr[i] = 0;
2869 }
2870 if (err < 0) {
2871 if (!err_ptr)
2872 goto out;
2873 err_ptr[i] = err;
2874 done++; /* Skip failed frame. */
2875 } else
2876 mapped += done;
2877 batch_left -= done;
2878 index += done;
2879 } while (batch_left);
2880
2881 nr -= batch;
2882 addr += range;
2883 if (err_ptr)
2884 err_ptr += batch;
2885 cond_resched();
2886 }
2887out:
2888
2889 xen_flush_tlb_all();
2890
2891 return err < 0 ? err : mapped;
2892}
2893
2894int xen_remap_domain_gfn_range(struct vm_area_struct *vma,
2895 unsigned long addr,
2896 xen_pfn_t gfn, int nr,
2897 pgprot_t prot, unsigned domid,
2898 struct page **pages)
2899{
2900 return do_remap_gfn(vma, addr, &gfn, nr, NULL, prot, domid, pages);
2901}
2902EXPORT_SYMBOL_GPL(xen_remap_domain_gfn_range);
2903
2904int xen_remap_domain_gfn_array(struct vm_area_struct *vma,
2905 unsigned long addr,
2906 xen_pfn_t *gfn, int nr,
2907 int *err_ptr, pgprot_t prot,
2908 unsigned domid, struct page **pages)
2909{
2910 /* We BUG_ON because it's a programmer error to pass a NULL err_ptr,
2911 * and the consequences later is quite hard to detect what the actual
2912 * cause of "wrong memory was mapped in".
2913 */
2914 BUG_ON(err_ptr == NULL);
2915 return do_remap_gfn(vma, addr, gfn, nr, err_ptr, prot, domid, pages);
2916}
2917EXPORT_SYMBOL_GPL(xen_remap_domain_gfn_array);
2918
2919
2920/* Returns: 0 success */
2921int xen_unmap_domain_gfn_range(struct vm_area_struct *vma,
2922 int numpgs, struct page **pages)
2923{
2924 if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2925 return 0;
2926
2927#ifdef CONFIG_XEN_PVH
2928 return xen_xlate_unmap_gfn_range(vma, numpgs, pages);
2929#else
2930 return -EINVAL;
2931#endif
2932}
2933EXPORT_SYMBOL_GPL(xen_unmap_domain_gfn_range);